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VANISHING VISCOSITY LIMITS FOR AXISYMMETRIC FLOWS WITH
BOUNDARY

K. ABE

Abstract. We construct global weak solutions of the Euler equations in an infinite cylinder
Π = {x ∈ R3 | xh = (x1, x2), r = |xh| < 1} for axisymmetric initial data without swirl when
initial vorticity ω0 = ωθ

0eθ satisfies ωθ
0/r ∈ Lq for q ∈ [3/2, 3). The solutions constructed

are Hölder continuous for spatial variables in Π if in addition that ωθ
0/r ∈ Ls for s ∈ (3,∞)

and unique if s = ∞. The proof is by a vanishing viscosity method. We show that the
Navier-Stokes equations subject to the Neumann boundary condition is globally well-posed
for axisymmetric data without swirl in Lp for all p ∈ [3,∞). It is also shown that the energy
dissipation tends to zero if ωθ

0/r ∈ Lq for q ∈ [3/2, 2], and Navier-Stokes flows converge
to Euler flow in L2 locally uniformly for t ∈ [0,∞) if additionally ωθ

0/r ∈ L∞. The L2-
convergence in particular implies the energy equality for weak solutions.

Résumé. Nous développons des solutions faibles globales des équations d’Euler dans un
cylindre infini Π = {x ∈ R3 | xh = (x1, x2), r = |xh| < 1} pour les données initiales
axisymétriques sans tourbillon lorsque la vorticité initiale ω0 = ω

θ
0eθ satisfait à ωθ

0/r ∈ Lq

pour q ∈ [3/2, 3). Les solutions développées sont la continuité de Hölder pour les variables
en Π si, par ailleurs, ωθ

0/r ∈ Ls pour s ∈ (3,∞), et sont uniques si s = ∞. La preuve est
établie par une méthode de disparition de la viscosité. Nous démontrons que les équations
de Navier-Stokes soumises à la condition aux limites de Neumann sont globalement bien
posées pour les données axisymétriques sans tourbillon dans Lp pour tout p ∈ [3,∞).
Nous démontrons également que la dissipation d’énergie tend vers zéro si ωθ

0/r ∈ Lq pour
q ∈ [3/2, 2] et que les flux de Navier-Stokes convergent vers le flux d’Euler dans L2 locale-
ment de manière uniforme pour t ∈ [0,∞) si, par ailleurs, ωθ

0/r ∈ L∞. La convergence L2

implique notamment l’égalité ènergétique pour les solutions faibles.

1. Introduction

We consider the Navier-Stokes equations:

(1.1)

∂tu − ν∆u + u · ∇u + ∇p = 0, div u = 0 in Π × (0,∞),
∇ × u × n = 0, u · n = 0 on ∂Π × (0,∞),

u = u0 on Π × {t = 0},

for the infinite cylinder
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Π = {x = (x1, x2, x3) ∈ R3 | xh = (x1, x2), |xh| < 1 }.

Here, n denotes the unit outward normal vector field on ∂Π and ν > 0 is the kinematic
viscosity.

We study the problem (1.1) for axisymmetric initial data. We say that a vector field
u is axisymmetric if u(x) = tRu(Rx) for x ∈ Π, η ∈ [0, 2π], R = (er, eθ, ez) and er =
t(cos η, sin η, 0), eθ = t(− sin η, cos η, 0), ez =

t(0, 0, 1). By the cylindrical coordinate (r, θ, z),
an axisymmetric vector field is decomposed into three terms u = urer + uθeθ + uzez and the
azimuthal component uθ is called swirl velocity (e.g., [67]). It is known that the Cauchy
problem is globally well-posed for axisymmetric initial data without swirl in H2 [58], [81],
[60]. See also [3] for H1/2.

The purpose of this paper is to study axisymmetric solutions in Lp. It is well known
that the Cauchy problem is locally well-posed in Lp for all p ≥ 3 [53]. However, global
well-posedness results are unknown even if initial data is axisymmetric without swirl. For
the two-dimensional case, the problem is globally well-posed in Lp for all p ≥ 2 (including
p = ∞ [41]), since vorticity of two-dimensional flows are uniformly bounded. On the other
hand, for axisymmetric flows without swirl, vorticity estimates are more involved due to the
vortex stretching as r → ∞.

Recently, global-in-time solutions of the Cauchy problem are constructed in [32] for
axisymmetric data without swirl when initial vorticity ω0 = ωθ0eθ is a vortex ring, i.e.,
ωθ0 = κδr0,z0 for κ ∈ R and a Dirac measure δr0,z0 in the (r, z)-plane. See [37] for the unique-
ness. For such initial data, initial velocity belong to Lp for p ∈ (1, 2) and BMO−1 by the
Biot-Savart law. For small data in BMO−1, a global well-posedness result is in known [57].

In this paper, we study axisymmetric solutions in the infinite cylinder Π = {r < 1},
subject to the Neumann boundary condition. Since the cylinder is horizontally bounded,
vorticity estimates are simpler than those in the whole space. We prove that vorticity of
axisymmetric solutions without swirl to (1.1) is uniformly bounded in the infinite cylinder
Π, and unique global-in-time solutions exist for large axisymmetric data without swirl in Lp

for all p ∈ [3,∞).
An important application of our well-poseness result is a vanishing viscosity limit as

ν → 0. We apply our global well-posedness result to (1.1) and construct global weak
solutions of the Euler equations. Although local well-posedness results are well known for
the Euler equations with boundary (see below Theorem 1.1), a few results are known on
existence of global weak solutions. The well-posedness result to (1.1) in Lp for p ∈ [3,∞)
enable us to study weak solutions of the Euler equations when initial vorticity is in Lq for
q ∈ [3/2, 3) by the Biot-Savart law 1/p = 1/q − 1/3.

To state a result, let Lp
σ denote the Lp-closure of C∞c,σ, the space of all smooth solenoidal

vector fields with compact support inΠ. The space Lp
σ agrees with the space of all divergence-

free vector fields whose normal trace is vanishing on ∂Π [75]. By a local well-posedness
result in the companion paper [1], unique local-in-time solutions to (1.1) exist for u0 ∈ Lp

σ

and p ∈ [3,∞). Our first result is:
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Theorem 1.1. Let u0 ∈ Lp
σ be an axisymmetric vector field without swirl for p ∈ [3,∞).

Then, there exists a unique axisymmetric solution without swirl u ∈ C([0,∞); Lp)∩C∞(Π×
(0,∞)) of (1.1) with some associated pressure p ∈ C∞(Π × (0,∞)).

We apply Theorem 1.1 to construct global weak solutions of the Euler equations:

(1.2)

∂tu + u · ∇u + ∇p = 0, div u = 0 in Π × (0,∞),
u · n = 0 on ∂Π × (0,∞),

u = u0 on Π × {t = 0}.

Unique existence of local-in-time solutions of the Euler equations u ∈ C([0,T ]; Wk,q) ∩
C1([0,T ]; Wk−1,q) is known for sufficiently smooth initial data u0 ∈ Wk,q with integers k >
1 + n/q and q ∈ (1,∞), when Π is smoothly bounded in Rn for n ≥ 2 [27], [12], [79], [54].
For axisymmetric data without swirl, it is known that local-in-time solutions for u0 ∈ Hs

(s ≥ 3) are continued for all time [74]. Observe that for k = 2 and n = 3, the condition
q ∈ (3,∞) is required in order to construct local-in-time unique solutions. We construct
global weak solutions under the lower regularity condition q ∈ [3/2, 3); see below.

When Π is a two-dimensional bounded and simply-connected domain (e.g., a unit disk),
global weak solutions of the Euler equations are constructed in [70] by a vanishing viscosity
method for initial vorticity satisfying ω0 ∈ Lq and q ∈ (1, 2) (see [25], [43] for R2). For the
two-dimensional case, the Neumann boundary condition in (1.1) is reduced to the condition
ω = 0 and u · n = 0 on ∂Π, called the free condition [62] ( [63, p.129]). The vanishing
viscosity method subject to the free condition is studied in [7], [82] for ω0 ∈ L2. The
condition q ∈ (1, 2) implies that initial velocity belongs to Lp for some p ∈ (2,∞) by the
Biot-Savart law u0 = ∇⊥(−∆D)−1ω0 for 1/p = 1/q − 1/2. Here, ∇⊥ = t(∂2,−∂1) and −∆D
denotes the Laplace operator subject to the Dirichlet boundary condition.

Our goal is to construct three-dimensional weak solutions in the infinite cylinder Π for
axisymmetric data without swirl when initial vorticity ω0 = ωθ0eθ satisfies ωθ0/r ∈ Lq for
q ∈ [3/2, 3). The assumption forωθ0/r is stronger than that for vorticity itself and implies that
the initial velocity is in Lp for some p ∈ [3,∞) by the Biot-Savart law u0 = ∇ × (−∆D)−1ω0
and 1/p = 1/q − 1/3. For such initial data, unique global-in-time solutions to (1.1) exist by
Theorem 1.1. Note that the condition ωθ0/r ∈ Lq is weaker than u0 ∈ W2,q for q ∈ [3/2, 3)
since ωθ0/r = −er · (eθ · ∇ω0).

Let BCw([0,∞); Lp) denote the space of bounded and weakly continuous (resp. weakly-
star continuous) functions from [0,∞) to Lp for p ∈ (1,∞) (resp. for p = ∞). Let P denote
the Helmholtz projection on Lp [75]. We construct global weak solutions for ωθ0/r ∈ Lq

and q ∈ [3/2, 3), which are Lp-integrable and may not be continuous. Under the additional
regularity assumptions ωθ0/r ∈ Ls for s ∈ (3,∞) and s = ∞, the weak solutions are Hölder
continuous and unique. The main result of this paper is the following:

Theorem 1.2. Let u0 ∈ Lp
σ be an axisymmetric vector field without swirl for p ∈ [3,∞) such

that ωθ0/r ∈ Lq for q ∈ [3/2, 3) and 1/p = 1/q − 1/3.
(i) (Existence) There exists a weak solution u ∈ BCw([0,∞); Lp) of (1.2) in the sense that
∇u ∈ BCw([0,∞); Lq) and
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∫ ∞

0

∫
Π

(u · ∂tφ + uu : ∇φ)dxdt = −
∫
Π

u0 · φ0dx(1.3)

for all φ ∈ C1
c (Π × [0,∞)) such that div φ = 0 in Π and φ · n = 0 on ∂Π for t ≥ 0, where

φ0(x) = φ(x, 0).
(ii) (Hölder continuity) If ωθ0/r ∈ Ls for s ∈ (3,∞), then u ∈ BC([0,∞); Ls) satisfies ∇u ∈
BCw([0,∞); Ls), ∂tu ∈ L∞(0,∞; Ls) and

∂tu + Pu · ∇u = 0 on Ls for a.e. t > 0.(1.4)

In particular, u(·, t) is bounded and Hölder continuous in Π of exponent 1 − 3/s for each
t ≥ 0.
(iii) (Uniqueness) If in addition that ωθ0/r ∈ L∞, then ∇× u ∈ BCw([0,∞); L∞) and the weak
solution is unique.

It is an interesting question whether the weak solutions constructed in Theorem 1.2 con-
serve the energy. Since the Poincaré inequality holds for the infinite cylinder (see Remarks
4.4 (ii)), the condition ωθ0/r ∈ Lq for q ∈ [3/2, 2] implies the finite energy u0 ∈ Lp

σ ∩ L2

and the energy equality holds for global-in-time solutions to (1.1); see below (1.5). In the
sequel, we consider the case q ∈ [3/2, 2].

In the Kolmogorov’s theory of turbulence, it is a basic hypothesis that the energy dissi-
pation tends to a positive constant at large Reynolds numbers. See, e.g., [33]. If the energy
dissipation converges to a positive constant for global-in-time solutions uν to (1.1) as ν→ 0,
we would obtain a weak solution strictly decreasing the energy as a vanishing viscosity limit.
Unfortunately, due to a regularizing effect, the energy dissipation converges to zero at least
under the initial condition ωθ0/r ∈ Lq for q ∈ [3/2, 2]. However, it is still non-trivial whether
vanishing viscosity limits conserve the energy since they are no longer continuous.

In the sequel, we prove that global-in-time solutions to (1.1) converge to a limit in L2

locally uniformly for t ∈ [0,∞) under the additional assumption ωθ0/r ∈ L∞. If the limit is
a C1-solution, the L2-convergence to a limit is equivalent to the convergence of the energy
dissipation [52]. The equivalence may not always hold if a limit is a weak solution. The
assumption ωθ0/r ∈ L∞ does not imply that ∇u is bounded for the limit and at present is
optimal in order to obtain the L2-convergence. Once we know the L2-convergence, the
energy conservation immediately follows as a consequence.

Theorem 1.3. Let u0 ∈ Lp
σ ∩ L2 be an axisymmetric vector field without swirl such that

ωθ0/r ∈ Lq for q ∈ [3/2, 2] and 1/p = 1/q − 1/3. Let uν be a solution of (1.1) as in Theorem
1.1.
(i) (Energy dissipation) The solution uν ∈ BC([0,∞); L2) satisfies the energy equality

∫
Π

|uν|2dx + 2ν
∫ t

0

∫
Π

|∇uν|2dxds =
∫
Π

|u0|2dx, t ≥ 0,(1.5)
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and

ν

∫ T

0

∫
Π

|∇uν|2dxds ≤ Cν5/2−3/q → 0 as ν→ 0 for each T > 0,(1.6)

with some constant C = C(q,T ).
(ii) (L2-convergence) Assume in addition that ωθ0/r ∈ L∞. Then,

lim
ν, µ→0

sup
0≤t≤T

||uν − uµ||L2(Π) = 0.(1.7)

In particular, the limit u ∈ BC([0,∞); L2) satisfies the energy equality of (1.2):

∫
Π

|u|2dx =
∫
Π

|u0|2dx, t ≥ 0.(1.8)

It is noted that there is a possibility that the energy equality (1.8) holds under a weaker
assumption than ωθ0/r ∈ L∞ although we assumed it in order to prove the L2-convergence
(1.7). In fact, it is known as a celebrated Onsager’s conjecture [71] that Hölder continuous
weak solutions to the Euler equations of exponent α > 1/3 conserve the energy (but not
necessarily if α ≤ 1/3). The conjecture is studied in [31] and the energy conservation is
proved for weak solutions in the whole space under a stronger assumption. A simple proof
is given in [20] under a weaker and natural assumption in the Besov space u ∈ L3(0,T ; Bα,∞3 )
for α > 1/3. See [26], [16] for further developments and [30] for a review. Recently, the
energy conservation is proved in [8] for weak solutions in a bounded domain in the Hölder
space u ∈ L3(0,T ; Cα(Π)) for α > 1/3. The weak solutions constructed in Theorem 1.2 are
indeed Hölder continuous of exponent α = 1 − 3/s > 1/3 if in addition that ωθ0/r ∈ Ls for
s ∈ (9/2,∞]. If the result of [8] holds also for the infinite cylinder, the weak solutions in
Theorem 1.2 satisfy (1.8) even for s ∈ (9/2,∞].

We outline the proofs of Theorems 1.1-1.3. By a local well-posedness result of (1.1) in
[1], there exist local-in-time smooth axisymmetric solutions without swirl u ∈ C([0,T ]; Lp)∩
C∞(Π × (0,T ]) for u0 ∈ Lp

σ and p ∈ [3,∞) satisfying the integral equation

u = e−tνAu0 −
∫ t

0
e−(t−s)νAP (u · ∇u)(s)ds.

Here, A denotes the Stokes operator subject to the Neumann boundary condition. We estab-
lish an apriori estimate in Lp based on the vorticity equation. Since the vorticity ω = ωθeθ
vanishes on the boundary subject to the Neumann boundary condition, ωθ/r satisfies the
drift-diffusion equation with the homogeneous Dirichlet boundary condition:
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(1.9)
∂t

(ωθ
r

)
+ u · ∇

(ωθ
r

)
− ν

(
∆ +

2
r
∂r

)(ωθ
r

)
= 0 in Π × (0,T ),

ωθ

r
= 0 on ∂Π × (0,T ).

We prove the a priori estimate

∥∥∥∥ωθr ∥∥∥∥
Lρ(Π)

≤ C

(νt)
3
2 ( 1

q−
1
ρ )

∥∥∥∥ωθ0r ∥∥∥∥
Lq(Π)

, t > 0, ν > 0,(1.10)

for 1 ≤ q ≤ ρ ≤ ∞, with C = C(q), independent of ρ and ν. The estimate (1.10) for
ρ = q is proved in [81] for Π = R3. Moreover, the decay estimate for ρ ∈ [1,∞] and
q = 1 is established in [32]. We prove (1.10) for the infinite cylinder Π. Since local-in-time
solutions of (1.1) are smooth for t > 0, we may assume that ωθ0/r is bounded. Then, the
a priori estimate (1.10) for ρ = q = ∞ implies that vorticity is uniformly bounded in the
infinite cylinder Π = {r < 1}. Since Pu · ∇u = Pω × u, by the Gronwall’s inequality we
obtain an exponential bound of the form

||u||Lp(Π) ≤ C||u0||Lp(Π) exp
(
C
∥∥∥∥ωθ0r ∥∥∥∥

L∞(Π)
t
)
, t ≥ 0,

with some constant C = C(p), independent of ν. This estimate implies that the Lp-norm
does not blow-up. Hence the local-in-time solutions are continued for all time. (Moreover,
the solutions converge to zero in Lρ for ρ ∈ (p,∞) as time goes to infinity; see Remarks 2.6
(ii).)

The proof of Theorem 1.2 is based on the Biot-Savart law in the infinite cylinder. We
show that axisymmetric vector fields without swirl satisfy

u = ∇ × (−∆D)−1(∇ × u),(1.11)

||u||Lp + ||∇u||Lq ≤ C||∇ × u||Lq , 1/p = 1/q − 1/3,(1.12)

with C = C(q). The existence of global weak solutions (i) and regularity properties (ii)
follow from the a priori estimate (1.10) for ρ = q and (1.12) by taking a vanishing viscosity
limit and applying an abstract compactness theorem. The uniqueness in Theorem 1.2 (iii) is
based on the growth estimate of the Lρ-norm

||∇u||Lρ(Π) ≤ Cρ||∇ × u||Lρ∩Lρ0 (Π),(1.13)

for 3 < ρ0 < ρ < ∞ with some absolute constant C, independent of ρ. The estimate (1.13)
is proved in [84] for bounded domains. We extend it for the infinite cylinder and adjust the
Yudovich’s energy method of uniqueness [85] for solutions with infinite energy by a cut-off
function argument.
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The convergence of the energy dissipation (1.6) follows from the vorticity estimate (1.10)
for ρ = 2 and q ∈ [3/2, 2]. The L2-convergence (1.7) is based on the estimate (1.13). Since
the condition ωθ0/r ∈ L∞ implies that ∇ × uν is uniformly bounded for ν > 0 and ρ > 3, we
estimate the energy norm of uν − uµ for two solutions of (1.1) by using the estimate (1.13).

Let us remark a novelty from the perspective of technique. Although the a priori estimate
(1.10) for ρ = q = ∞ is well known, the exponential bound on the Lp-norm of u is a
new estimate. Since a bound for ωθ/r does not imply that for ωθ in R3, the exponential
bound can not be obtained for R3 in the same way as the cylinder Π. We developed the
Lp-theory of (1.1) for the cylinder with the Neumann boundary condition which may be
non-standard compared with R3 or bounded domains with the Dirichlet boundary condition.
The technical difficulty is the construction of the local-in-time solutions in this setting [1],
which relies on linear tools developed in [75], [6], [39]. Once the local well-posedness is
established, global-in-time solutions for axisymmetric data without swirl are constructed by
a simple approach as explained above.

During the revision of this paper, the author learned existence results on global weak
solutions to the Euler equation (1.2) in R3 for axisymmetric data without swirl [14], [13]. In
the papers, global weak solutions are constructed under a weak regularity condition forωθ0/r,
motivated by two-dimensional weak solutions for vortex-sheet initial data [23], [29], [66]
(see [67]). The constructions in [14], [13] are based on approximation of initial data and a
global well-posedness result of the Euler equations. More recently, global weak solutions
are constructed in [48] for axisymmetric data u0 ∈ L2

σ(R3) satisfying ωθ0/r ∈ Lq ∩ L1(R3)
for q ∈ (1,∞), by a vanishing viscosity method based on the global well-posedness result to
(1.1) in H2(R3) [58], [81], [60]. Our construction is based on the Lp-global wellposedness
result to (1.1) (Theorem 1.1) which enables us to study vanishing viscosity limits under the
condition u0 ∈ Lp

σ(Π) for p ∈ [3,∞) without approximation of initial data or a finite energy
condition.

The Lp-theory for axisymmetric solutions to (1.1) is a new tool to study Leray-Hopf
weak solutions [61], [44]. The Leray-Hopf weak solutions are known to exist for general
u0 ∈ L2

σ(R3) and their regularity and uniqueness are questions. If the problem (1.1) is
globally well-posed on Lp for p ∈ [3,∞), one can deduce that they are smooth for all
t > 0. See [61] for Leray’s structure theorem (also [40, Theorem 5]). In the present setting,
we may construct axisymmetric Leray-Hopf weak solutions without swirl for u0 ∈ L2

σ by
approximation of initial data and using Theorem 1.1. Since (1.1) is globally well-posed on
Lp for axisymmetric data without swirl by Theorem 1.1, such solutions will be smooth for
all t > 0.

On the other hand, uniqueness is a question even if Leray-Hopf weak solutions are ax-
isymmetric without swirl. See [59], [47]. It is also a question whether there exists a Leray-
Hopf weak solution for u0 ∈ L2

σ satisfying the energy equality (1.5). If u0 ∈ Lp
σ ∩ L2 for

p ∈ [3,∞), (1.5) holds as in Theorem 1.3. The energy equality (1.5) is necessary to study
the energy conservation for vanishing viscosity limits (1.8).

It is an interesting question whether the energy dissipation tends to a positive constant as
ν→ 0. If ωθ0/r ∈ Lq for q ∈ [3/2, 2], u0 belongs to Lp

σ for some p ∈ [3, 6] by the Biot-Savart
law and the energy dissipation converges to zero as in (1.6). The case q ∈ (1, 3/2) is a
question. We may study this case for strong solutions assuming that u0 ∈ Lp

σ for p ∈ [3,∞)
or for Leray-Hopf weak solutions for u0 ∈ L2

σ. The case q ∈ (1, 6/5] seems particularly
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important since the decay estimate (1.10) does not imply the convergence (1.6). We give a
detailed comment for q = 1 in Remarks 6.4 (i).

This paper is organized as follows. In Section 2, we prove the vorticity estimate (1.10)
for local-in-time solutions to (1.1). Since we only use the estimate (1.10) for ρ = q = ∞ in
order to prove Theorem 1.1, we give a proof for the case ρ , q in Appendix A. In Section 3,
we prove the Biot-Savart law (1.11) and the estimate (1.13). In Section 4, we prove Theorem
1.2 (i) and (ii) by applying a vanishing viscosity method. In Section 5, we prove Theorem
1.2 (iii). In Section 6, we prove Theorem 1.3.

2. Global smooth solutions with viscosity

We prove Theorem 1.1. We first observe unique existence of local-in-time axisymmetric
solutions without swirl for u0 ∈ Lp

σ and p ∈ [3,∞). The vorticity estimate (1.10) for ρ = q is
obtained by integration by parts for q ∈ [1,∞]. Throughout this section, we denote solutions
of (1.1) by u = uν and suppressing ν > 0.

2.1. Local-in-time solutions. We set the Laplace operator subject to the Neumann bound-
ary condition

Bu = −∆u, for u ∈ D(B),

D(B) = {u ∈ W2,p(Π) | ∇ × u × n = 0, u · n = 0 on ∂Π },

It is proved in [1, Lemma B.1] that the operator −B generates a bounded C0-analytic semi-
group on Lp (1 < p < ∞) for the infinite cylinder Π. We set the Stokes operator

Au = Bu, for u ∈ D(A),

D(A) = Lp
σ ∩ D(B).

Since Au ∈ Lp
σ by the Neumann boundary condition, the operator −A generates a bounded

C0-analytic semigroup on the solenoidal vector space Lp
σ. By the analyticity of the semi-

group, we are able to construct local-in-time solutions satisfying the integral form

u = e−tνAu0 −
∫ t

0
e−(t−s)νAP (u · ∇u)(s)ds, 0 ≤ t ≤ T,(2.1)

for some T > 0, depending on ν > 0. By a standard argument using a fractional power of
the Stokes operator, it is not difficult to see that all derivatives of the mild solution belong to
the Hölder space Cµ((0,T ]; Ls) for µ ∈ (0, 1/2) and s ∈ (p,∞). Hence the mild solution is
smooth for t > 0 and satisfies (1.1).
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Lemma 2.1. For an axisymmetric vector field without swirl u0 ∈ Lp
σ and p ∈ [3,∞), there

exists T > 0 and a unique axisymmetric mild solution without swirl u ∈ C([0,T ]; Lp) ∩
C∞(Π × (0,T ]) of (1.1). All derivatives of u belong to Cµ((0,T ]; Ls) for µ ∈ (0, 1/2) and
s ∈ (p,∞).

Proof. The unique existence of local-in-time smooth mild solutions is proved in [1, Theo-
rems 1.1, 6.3]. The axial symmetry follows from the uniqueness. We consider a rotation
operator U : f 7−→ tR f (Rx) for R = (er(η), eθ(η), ez) and η ∈ [0, 2π]. Since the Stokes semi-
group e−tνA and the Helmholtz projection P are commutable with the operator U (see [2,
Proposition 2.6]), by multiplying U by (2.1) we see that Uu is a mild solution for the same
axisymmetric initial data u0. By the uniqueness of mild solutions, the function Uu agrees
with u. Hence u(x, t) = tRu(Rx, t) for η ∈ [0, 2π] and u is axisymmetric.

It is not difficult to see that u is without swirl. By the Neumann boundary condition in
(1.1), we see that an axisymmetric solution u = urer + uθeθ + uzez satisfies

ur = 0, ∂ruθ + uθ = 0, ∂ruz = 0 on {r = 1}.(2.2)

Since u is smooth for t > 0 and uθ0 = 0, by a fundamental calculation, we see that φ = uθeθ ∈
C([0,T ]; Lp) ∩C∞(Π × (0,T )) satisfies

∂tφ − ∆φ + u · ∇φ − (∂rur + ∂zuz)φ = 0 in Π × (0,T ),
∂nφ + φ = 0 on ∂Π × (0,T ),

φ = 0 on Π × {t = 0}.

Since the Laplace operator −∆R with the Robin boundary condition generates a C0-analytic
semigroup on Lp [5] ( [65, Theorem 3.1.3]), by the uniqueness of the inhomogeneous heat
equation, the function φ satisfies the integral form

φ = −
∫ t

0
e(t−s)ν∆R(u · ∇φ − (∂rur + ∂zuz)φ)ds.

Since u ∈ C([0,T ]; Lp) and t1/2∇u ∈ C([0,T ]; Lp), it is not difficult to show that φ ≡ 0
by estimating Lp-norms of φ. Hence the local-in-time solution u is axisymmetric without
swirl. □

In order to prove Theorem 1.3 later in Section 6, we show that local-in-time solutions
satisfy the energy equality (1.5) for initial data with finite energy.

Proposition 2.2. For axisymmetric initial data without swirl u0 ∈ Lp
σ ∩ L2 for p ∈ [3,∞),

the local-in-time solution u satisfies

u, t1/2∇u ∈ C([0,T ]; Lp ∩ L2),(2.3)
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and the energy equality (1.5) for t ≥ 0.

Proof. We prove (2.3). The energy equality (1.5) follows from (2.2) and integration by parts.
We give a proof for the case p = 3 since we are able to prove the case p ∈ (3,∞) in a similar
way. We may assume that ν = 1. We invoke an iterative argument in [1, Theorem 5.2]. We
use regularizing estimates of the Stokes semigroup [1, Lemma 5.1],

||∂k
xe−tA f ||L2 ≤ C

t
3
2 ( 1

ρ−
1
2 )+ |k|2
|| f ||Lρ(2.4)

for t ≤ T0, |k| ≤ 1 and ρ ∈ [6/5, 2] with C = C(ρ, k,T0). We set a sequence {u j} as usual by
u1 = e−tAu0,

u j+1 = e−tAu0 −
∫ t

0
e−(t−s)APu j · ∇u jds, j ≥ 1,

and the constants

K j = sup
0≤t≤T

tγ||u j||Lq(t),

M j = sup
0≤t≤T

(||u j||L2 + t1/2||∇u j||L2),

for γ = 3/2(1/3 − 1/q) and q ∈ (3,∞). Then, we have K j ≤ K1 for all j ≥ 1 for sufficiently
small T > 0. We set 1/ρ = 1/2 + 1/q. Since ρ ∈ (6/5, 2], applying (2.4) and the Hölder
inequality imply that

||u j+1||L2 ≤ ||e−tAu0||L2 +

∫ t

0

C

(t − s)
3
2 ( 1

ρ−
1
2 )
||u j · ∇u j||Lρds

≤ ||e−tAu0||L2 +C′K jM j.

We estimate the L2-norm of ∇u j+1 in a similar way and obtain

M j+1 ≤ M1 +CK1M j,

with C = C(q). We take T > 0 sufficiently small so that CK1 ≤ 1/2 and obtain the
uniform bound M j+1 ≤ 2M1 for all j ≥ 1. Since the sequence {u j} converges to a limit
u ∈ C([0,T ]; L3) such that t1/2∇u ∈ C([0,T ]; L3), in a similar way, the uniform estimate for
M j is inherited by the limit. We obtained (2.3). □



11

2.2. Vorticity estimates. We shall prove the vorticity estimate (1.10) for ρ = q ∈ [1,∞].

Lemma 2.3. Let u be an axisymmetric solution as in Lemma 2.1. Assume that ωθ0/r ∈ Lq

for q ∈ [1,∞]. Then, the estimate

∥∥∥∥ωθr ∥∥∥∥
Lq(Π)

≤
∥∥∥∥ωθ0r ∥∥∥∥

Lq(Π)
, t > 0(2.5)

holds.

Proof. We prove (2.5) for q ∈ [1,∞). The case q = ∞ follows by sending q → ∞. We
observe that ωθ/r is smooth for t > 0 and satisfies

(2.6)
∂t

(ωθ
r

)
+ u · ∇

(ωθ
r

)
− ν

(
∆ +

2
r
∂r

)(ωθ
r

)
= 0 in Π × (0,T ),(ωθ

r

)
= 0 on ∂Π × (0,T ).

In order to differentiate the Lq-norm of Ω = ωθ/r, we approximate the absolute value func-
tion ψ(s) = |s|. For an arbitrary ε > 0, we set a smooth non-negative convex function
ψε(s) = (s2 + ε2)1/2 − ε for s ∈ R, i.e., 0 ≤ ψε ≤ |s|, ψ̈ε > 0. The function ψε satifies
ψε(0) = ψ̇ε(0) = 0. We differentiate ψq

ε(Ω) to see that

∂t(ψ
q
ε(Ω)) = q(∂tΩ)ψ̇ε(Ω)ψq−1

ε (Ω),

∇(ψq
ε(Ω)) = q(∇Ω)ψ̇ε(Ω)ψq−1

ε (Ω).

Since ψε(Ω) = ψ̇ε(Ω) = 0 on ∂Π by the boundary condition, integration by parts yields

d
dt

∫
Π

ψ
q
ε(Ω)dx = q

∫
Π

( − u · ∇Ω + ν∆Ω + 2ν
1
r
∂rΩ

)
ψ̇ε(Ω)ψq−1

ε (Ω)dx

= −
∫
Π

u · ∇(ψq
ε(Ω))dx + νq

∫
Π

∆Ωψ̇ε(Ω)ψq−1
ε (Ω)dx + 2ν

∫
Π

1
r
∂r(ψ

q
ε(Ω))dx.

The first-term vanishes by the divergence-free condition. Since ψε is non-negative and con-
vex, we see that∫

Π

∆Ωψ̇ε(Ω)ψq−1
ε (Ω)dx = −

∫
Π

|∇Ω|2((q − 1)ψq−2
ε (Ω)|ψ̇ε(Ω)|2 + ψq−1

ε (Ω)ψ̈ε(Ω)
)
dx

≤ −4
q

(
1 − 1

q

) ∫
Π

∣∣∣∇(ψq/2
ε (Ω)

)∣∣∣2dx,

∫
Π

1
r
∂r

(
ψ

q
ε(Ω)

)
dx = 2π

∫
R

dz
∫ 1

0
∂r

(
ψ

q
ε(Ω)

)
dr = −2π

∫
R
ψ

q
ε(Ω(0, z, t))dz ≤ 0,
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for Ω = Ω(r, z, t). Hence we have

d
dt

∫
Π

ψ
q
ε(Ω)dx + 4ν

(
1 − 1

q

) ∫
Π

∣∣∣∇(ψq/2
ε (Ω)

)∣∣∣2dx ≤ 0.(2.7)

We integrate in [0, t] and estimate∫
Π

ψ
q
ε(Ω)dx ≤

∫
Π

ψ
q
ε(Ω0)dx, t ≥ 0.

Since ψε(s) monotonically converges to ψ(s) = |s|, sending ε → 0 implies the desired
estimate for q ∈ [1,∞). □

Remark 2.4. Since the operator ∆x + 2r−1∂r can be regarded as the Laplace operator in R5,
it is also possible to prove (2.5) for q = ∞ by a maximum principle. See [56], [32].

We further deduce the decay estimate of vorticity from the inequality (2.7). We give a
proof for the following Lemma 2.5 in Appendix A.

Lemma 2.5. Under the same assumption of Lemma 2.3, the estimate

∥∥∥∥ωθr ∥∥∥∥
Lρ(Π)

≤ C

(νt)
3
2 ( 1

q−
1
ρ )

∥∥∥∥ωθ0r ∥∥∥∥
Lq(Π)

, t > 0, ν > 0,(2.8)

holds for 1 ≤ q ≤ ρ ≤ ∞ with some constant C = C(q), independent of ρ and ν.

2.3. An exponential bound. We now complete:

Proof of Theorem 1.1. Let u ∈ C([0,T ]; Lp)∩C∞(Π×(0,T ]) be a local-in-time axisymmetric
solution as in Lemma 2.1 for T = Tν > 0. Since all derivatives of u belong to Cµ((0,T ]; Ls)
for µ ∈ (0, 1/2) and s ∈ (p,∞), particularly we have ∇2u ∈ Cµ((0,T ]; L∞) and ωθ/r =
−er · (eθ · ∇ω) ∈ Cµ((0,T ]; L∞).

We take an arbitrary t0 ∈ (0,T ). We show that the Lp-norm of u is globally bounded for
t ≥ t0. By translation, we set

ũ(·, t) = u(·, t + t0), 0 ≤ t ≤ T − t0.

The function ũ is a local-in-time solution to (1.1) satisfying ũ0 = ũ(·, 0) ∈ Lp
σ, ω̃0/r =

(ω̃0/r)(·, 0) ∈ L∞ and
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ũ = e−tνAũ0 −
∫ t

0
e−(t−s)νAP (ũ · ∇ũ)(s)ds, 0 ≤ t ≤ T − t0.(2.9)

We apply Lemma 2.3 for ũ to estimate

∥∥∥∥ ω̃θr ∥∥∥∥
L∞(Π)

≤
∥∥∥∥ ω̃θ0r ∥∥∥∥

L∞(Π)
, t ≥ 0.

Since r < 1, this yields a uniform estimate of vorticity

∥ω̃θ∥L∞(Π) ≤
∥∥∥∥ ω̃θ0r ∥∥∥∥

L∞(Π)
, t ≥ 0.

Since Pũ · ∇ũ = Pω̃ × ũ and the Stokes semigroup is a bounded semigroup on Lp, it follows
from (2.9) that

||ũ||Lp(Π) ≤ C1||ũ0||Lp(Π) +C2

∥∥∥∥ ω̃θ0r ∥∥∥∥
L∞(Π)

∫ t

0
||ũ||Lp(Π)ds, t ≥ 0.

with some constants C1 and C2, independent of ν > 0. Applying the Gronwall’s inequality
yields

||ũ||Lp(Π) ≤ C1||ũ0||Lp(Π) exp
(
C2

∥∥∥∥ ω̃θ0r ∥∥∥∥
L∞(Π)

t
)
, t ≥ 0.(2.10)

Since the Lp-norm of ũ is globally bounded, so is u. Hence the local-in-time solution u is
continued for all t ≥ T . The proof is complete. □

Remarks 2.6. (i) (p = ∞) It is unknown whether the assertion of Theorem 1.1 holds for p =
∞. For the two-dimensional Cauchy problem, unique existence of global-in-time solutions
is known for bounded and non-decaying initial data u0 ∈ L∞σ [41]. Moreover, global-in-time
solutions satisfy a single exponential bound of the form

||u||L∞(R2) ≤ C1||u0||L∞(R2) exp
(
C2||ω0||L∞(R2)t

)
, t ≥ 0,

with some constants C1 and C2, independent of viscosity [72]. The single exponential bound
is further improved to a linear growth estimate as t → ∞ by using viscosity. See [86],
[34]. For a two-dimensional layer, unique global-in-time solutions exist for bounded initial
data subject to the Neumann boundary condition. Moreover, the L∞-norm of solutions are
uniformly bounded for all time [36], [35].
(ii) (Large time behavior) Global-in-time solutions in Theorem 1.1 are uniformly bounded
for all time, i.e., u ∈ BC([0,∞); Lp). In fact, we are able to assume that ωθ0/r ∈ Lp by
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replacing the initial time since local-in-time solutions u(·, t) belong to W2,p for p ∈ [3,∞).
As proved later in Lemma 3.5 and Proposition 4.3, since axisymmetric solutions of (1.1)
are uniquely determined by the Biot-Savart law and the Poincaré inequality holds in the
cylinder, we have

||u||Lp(Π) ≤ C||∇u||Lp(Π) ≤ C′||∇ × u||Lp(Π) ≤ C′
∥∥∥∥ωθr ∥∥∥∥

Lp(Π)
,

with some constants C = C(p) and C′ = C′(p). By the vorticity estimate (2.8), the solutions
are uniformly bounded in Lp and tend to zero in Lρ for ρ ∈ (p,∞) as t → ∞.

3. The Biot-Savart law

In this section, we give a Biot-Savart law in the infinite cylinder (Lemma 3.5). Since
stream functions exist for axisymmetric vector fields without swirl and satisfy the Dirichlet
boundary condition, we are able to represent axisymmetric vector fields without swirl by
the Laplace operator with the Dirichlet boundary condition u = ∇ × (−∆D)−1∇ × u. We first
prepare Lp-estimtates for the Dirichlet problem of the Poisson equation and apply them to
axisymmetric vector fields without swirl.

3.1. Lp-estimates for the Poisson equation. We consider the Poisson equation in the infi-
nite cylinder:

(3.1) −∆ϕ = f in Π, ϕ = 0 on ∂Π.

Lemma 3.1. (i) Let q ∈ (1,∞). For f ∈ Lq, there exists a unique solution ϕ ∈ W2,q of (3.1)
satisfying

||ϕ||W2,q ≤ C|| f ||Lq ,(3.2)

with some constant C = C(q).
(ii) For q ∈ (1, 3) and p ∈ (3/2,∞) satisfying 1/p = 1/q − 1/3, there exists a constant C′

such that

||∇ϕ||Lp ≤ C′|| f ||Lq .(3.3)

with some constant C′ = C′(q).

We prove Lemma 3.1 by using the heat semigroup et∆D .



15

Proposition 3.2. (i) There exists a constant M such that

||et∆D f ||Lq ≤ e−µqt|| f ||Lq , t > 0,(3.4)

for f ∈ Lq with the constant µq = M/(qq′), where q′ is the conjugate exponent to q ∈ (1,∞).
(ii) The heat kernel K(x, y, t) of et∆D satisfies the Gaussian upper bound,

0 ≤ K(x, y, t) ≤ 1
(4πt)3/2 e−|x−y|2/4t, x, y ∈ Π, t > 0.(3.5)

Proof. The pointwise upper bound (3.5) is known for an arbitrary domain. See [22, Example
2.1.8]. We prove the assertion (i). It suffices to show (3.4) for f ∈ C∞c . Suppose that f ≥ 0.
Then, u = et∆D f is non-negative by a maximum principle. By multiplying quq−1 by the heat
equation and integration by parts, we see that φ = uq/2 satisfies

d
dt

∫
Π

|φ|2dx +
4
q′

∫
Π

|∇φ|2dx = 0.

Since the function φ vanishes on ∂Π, we apply the Poincaré inequality in the cylinder
||φ||L2 ≤ C||∇φ||L2 [4, 6.30 THEOREM] to estimate

d
dt

∫
Π

|φ|2dx ≤ − 4
C2q′

∫
Π

|φ|2dx.

By the Gronwall’s inequality,

||φ||22 ≤ ||φ(·, 0)||22e−4t/C2q′ .

Since ||φ||22 = ||u||
q
q, the estimate (3.4) holds with the constant M = 4/C2. For general

f ∈ C∞c , we approximate the absolute value function as in the proof of Lemma 2.3 and
obtain (3.4). □

By (3.4), we are able to define the inverse operator of −∆D by using the Laplace trans-
form.

Proof of Lemma 3.1. We prove (i). We set

ϕ =

∫ ∞

0
et∆D f dt for f ∈ Lq.

Since the heat semigroup is an analytic semigroup on Lq, it follows from (3.4) that
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||ϕ||W1,q ≤ C
(
1 +

1
µq

)
|| f ||Lq(3.6)

with some constant C = C(q), independent of q. Since −∆ϕ = f , by the elliptic regularity
estimate [5], if follows that

||∇2ϕ||Lq ≤ C(|| f ||Lq + ||ϕ||W1,q),(3.7)

with C = C(q). We obtained (3.2). The uniqueness follows from a maximum principle.
We prove (ii). Since ϕ = (−∆D)−1 f = (−∆D)−1/2(−∆D)−1/2 f , we use a fractional power of

the operator −∆D. We set the domain D(−∆D) by a space of all functions in W2,q, vanishing
on ∂Π. By estimates of pure imaginary powers of the operator [73], the domain of the
fractional power D((−∆D)1/2) is continuously embedded to the Sobolev space W1,q. Hence
the operator ∂(−∆D)−1/2 acts as a bounded operator on Lq.

It suffices to show that the fractional power (−∆D)−1/2 acts as a bounded operator from
Lq to Lp. We see that

((−∆D)−1/2 f )(x) =
∫ ∞

0
t−1/2et∆D f dt =

∫
Π

f (y)dy
∫ ∞

0
t−1/2K(x, y, t)dt.

By (3.5), we have ∫ ∞

0
t−1/2K(x, y, t)dt ≤ C

|x − y|2 ,

with some absolute constant C. Since the operator f 7−→ |x|−2 ∗ f acts as a bounded operator
from Lq to Lp for 1/p = 1/q− 1/3 by the Hardy-Littlewood-Sobolev inequality [77, p.354],
so is (−∆D)−1/2. The proof is complete. □

3.2. Dependence of a constant. The growth rate of the constant in (3.2) is at most linear
as q→ ∞.

Lemma 3.3. Let q0 ∈ (3,∞). There exists a constant C such that

||ϕ||W2,q(Π) ≤ Cq|| f ||Lq∩Lq0 (Π)(3.8)

holds for solutions of (3.1) for f ∈ Lq ∩ Lq0(Π) and q ∈ [q0,∞), where

|| f ||Lq∩Lq0 = max{|| f ||Lq , || f ||Lq0 }.

The constant C is independent of q.
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We prove Lemma 3.3 by a cut-off function argument.

Proposition 3.4. Let G be a smoothly bounded domain in R3. Let q0 ∈ (3,∞). There exists
a constant C such that

||ϕ||W2,q(G) ≤ Cq|| f ||Lq(G)(3.9)

holds for solutions of (3.1) for f ∈ Lq(G) and q ∈ [q0,∞). The constant C is independent of
q.

Proof. The assertion is proved in [84, Corollary 1] for general elliptic operators and n-
dimensional bounded domains. □

Proof of Lemma 3.3. Let {φ j}∞j=−∞ ⊂ C∞c (R) be a partition of the unity such that 0 ≤ φ j ≤ 1,
spt φ j ⊂ [ j − 1, j + 1] and

∑∞
j=−∞ φ j(x3) = 1, x3 ∈ R. Let ϕ ∈ W2,q(Π) be a solution of (3.1)

for f ∈ Lq ∩ Lq0(Π). We set ϕ j = ϕφ j and observe that

−∆ϕ j = f j in G j,

ϕ j = 0 on ∂G j,

for G j = D × ( j − 1, j + 1) and f j = fφ j − 2∇ϕ · ∇φ j − ϕ∆φ j. We take a smooth bounded
domain G̃ j such that G j ⊂ G̃ j ⊂ D × [ j − 2, j + 2] and apply (3.9) to estimate

||ϕ j||W2,q(G̃ j) ≤ Cq|| f j||Lq(G̃ j)

for q ∈ [q0,∞) with some constant C, independent of j and q. It follows that

||∇2ϕφ j||Lq(Π) ≤ Cq(|| f ||Lq(G j) + ||ϕ||W1,q(G j)).

By summing over j, we obtain

||∇2ϕ||Lq(Π) ≤ Cq(|| f ||Lq(Π) + ||ϕ||W1,q(Π)).(3.10)

We estimate the lower order term of ϕ. By Lemma 3.1(i), we have ||ϕ||W2,q0 ≤ C|| f ||Lq0 with
C = C(q0). In particular, ||ϕ||W1,∞ ≤ C|| f ||Lq0 by the Sobolev inequality. Applying the Hölder
inequality implies that

||ϕ||W1,q(Π) ≤ C|| f ||Lq0 (Π)(3.11)
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for q ∈ [q0,∞) with some constant C, independent of q. The estimate (3.8) follows from
(3.10) and (3.11). □

3.3. Stream functions. We shall give a Biot-Savart law for axisymmetric vector fields
without swirl. We see that a smooth axisymmetric solenoidal vector field without swirl
u = urer + uzez in Π satisfies

∂z(ruz) + ∂r(rur) = 0 (z, r) ∈ R × (0, 1),

rur = 0 on {r = 0, 1}.

Since (ruz, rur) is regarded as a solenoidal vector field in the two-dimensional layerR×(0, 1),
there exists a stream function ψ(r, z) such that

ruz =
∂ψ

∂r
, rur = −∂ψ

∂z
.

Since ψ is constant on the boundary, we may assume that ψ = 0 on {r = 1}. Since ϕ =
(ψ/r)eθ satisfies

div ϕ = 0, ∇ × ϕ = u in Π, ϕ = 0 on ∂Π,

we see that −∆ϕ = ∇ × u. Thus the stream function is represented by ϕ = (−∆D)−1∇ × u.

Lemma 3.5. (i) Let u be an axisymmetric vector field without swirl in Lp
σ such that∇×u ∈ Lq

for q ∈ (1, 3) and 1/p = 1/q − 1/3. Then,

u = ∇ × (−∆D)−1(∇ × u).(3.12)

(ii) The estimates

||u||Lp + ||∇u||Lq ≤ C1||∇ × u||Lq ,(3.13)
||∇u||Lρ ≤ C2||∇ × u||Lρ , 1 < ρ < ∞,(3.14)
||∇u||Lρ ≤ C3ρ||∇ × u||Lρ∩Lρ0 , 3 < ρ0 < ρ < ∞,(3.15)

hold with some constants C1 = C1(q) and C2 = C2(ρ). The constant C3 is independent of ρ.

It suffices to show (3.12). The assertion (ii) follows from Lemmas 3.1 and 3.3.
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Proposition 3.6. Let w be an axisymmetric vector field without swirl in Lp for p ∈ (1,∞).
Assume that

div w = 0, ∇ × w = 0 in Π, w · n = 0 on ∂Π.

Then, w ≡ 0.

Proof. Since w = wrer +wzez is a harmonic vector field in Π and ∆ = ∂2
r + r−1∂r + r−2∂2

θ +∂
2
z

by the cylindrical coordinate, we see that

0 = ∆w = ∆(wrer) + ∆(wzez)

=
{(
∂2

r + r−1∂r − r−2 + ∂2
z

)
wr

}
er + (∆wz)ez

=
{(
∆ − r−2

)
wr

}
er + (∆wz)ez.

Hence, (∆ − r−2)wr = 0 and ∆wz = 0. By ∆(wrer) = {(∆ − r−2)wr}er = 0, wrer is harmonic
in Π. Since wr vanishes on the boundary and the operator −∆D is invertible on Lp, we see
that wr ≡ 0. By the divergence-free condition ∂rwr +wr/r + ∂zwz = 0 and a decay condition
wz ∈ Lp, we have wz ≡ 0. □

Proof of Lemma 3.5. We set

ϕ̃ = (−∆D)−1(∇ × u), ũ = ∇ × ϕ̃.

Since u is axisymmetric without swirl, ϕ̃ is axisymmetric and ϕ̃ = ϕ̃θeθ. Since ϕ̃ satisfies

div ϕ̃ = 0, −∆ϕ̃ = ∇ × u in Π, ϕ̃ = 0 on ∂Π,

it follows that

div ũ = 0, ∇ × ũ = ∇ × u in Π, ũ · n = 0 on ∂Π.

Applying Proposition 3.6 for w = u − ũ implies u ≡ ũ. We proved (3.12). □
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4. Vanishing viscosity limits

We prove Theorem 1.2 (i) and (ii). When the initial vorticity satisfies ωθ0/r ∈ Lq for
q ∈ [3/2, 3), the initial velocity belongs to Lp for p ∈ [3,∞) by the Biot-Savart law and a
global-in-time unique solution u = uν of (1.1) exists by Theorem 1.1. We use the vorticity
estimate (2.3) and construct global weak solutions of the Euler equations by sending ν→ 0.
In the subsequent section, we prove Hölder continuity of weak solutions.

4.1. Convergence to a limit. We first derive a priori estimates independent of the viscosity
ν > 0.

Lemma 4.1. (i) Let u0 ∈ Lp
σ be an axisymmetric vector field without swirl such that ωθ0/r ∈

Lq for q ∈ [3/2, 3) and 1/p = 1/q − 1/3. Let uν ∈ C([0,∞); Lp) ∩ C∞(Π × (0,∞)) be a
solution of (1.1) for u0 as in Theorem 1.1. There exits a constant C = C(q) such that

||uν||Lp(Π) + ||∇uν||Lq(Π) ≤ C
∥∥∥∥ωθ0r ∥∥∥∥

Lq(Π)
, t ≥ 0, ν > 0.(4.1)

Moreover, for each bounded domain G ⊂ Π, there exists a constant C′ = C′(q) such that

||∂tuν||W−1,q(G) ≤ C′
∥∥∥∥ωθ0r ∥∥∥∥

Lq(Π)

(
ν +

∥∥∥∥ωθ0r ∥∥∥∥
Lq(Π)

)
, t ≥ 0, ν > 0,(4.2)

where W−1,q denotes the dual space of W1,q′

0 and q′ is the conjugate exponent to q.
(ii) If ωθ0/r ∈ Ls for s ∈ (3,∞), then

||∇uν||Ls(Π) ≤ C
∥∥∥∥ωθ0r ∥∥∥∥

Ls(Π)
, t ≥ 0, ν > 0.(4.3)

with some constant C = C(s).
(iii) If ωθ0/r ∈ L∞, then

||∇ × uν||L∞(Π) ≤
∥∥∥∥ωθ0r ∥∥∥∥

L∞(Π)
, t ≥ 0, ν > 0.(4.4)

Proof. Since ωθ0/r ∈ Lq, applying Lemma 2.3 implies the vorticity estimate

∥∥∥∥ωθνr ∥∥∥∥
Lq
≤

∥∥∥∥ωθ0r ∥∥∥∥
Lq
.

Since r < 1, the Lq-norm of the vorticity ∇ × uν is bounded. By the estimate of the Biot-
Savart law (3.13), we obtain (4.1). The estimates (4.3) and (4.4) follow in the same way.
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We prove (4.2). We take an arbitrary φ ∈ C∞c (G) and consider its zero extension to
Π\G (denoted by φ). We set f = Pφ by the Helmholtz projection operator P. By a higher
regularity estimate of the Helmholtz projection operator [75, Theorem 6], we see that f ∈
C∞(Π) and

|| f ||W1,s = ||Pφ||W1,s ≤ C||φ||W1,s

with some constant C = C(s) and s ∈ (1,∞). By multiplying f by (1.1) and integration by
parts, we see that

∫
Π

∂tuν · f dx = ν
∫
Π

∆uν · f dx −
∫
Π

(uν · ∇uν) · f dx

= −ν
∫
Π

∇ × uν · ∇ × f dx +
∫
Π

uνuν : ∇ f dx.

By div u = 0, the left-hand side equals to the integral of ∂tuν · φ in G. By applying the
estimate of the Helmholtz projection, we obtain

∣∣∣∣∣∣
∫

G
∂tuν · φdx

∣∣∣∣∣∣ ≤ C
(
ν||∇uν||Lq(Π)||φ||W1,q′ (G) + ||uν||2Lp(Π)||φ||W1,p/(p−2)(G)

)
,

with C = C(q). Since p/(p − 2) ≤ q′, the norms of φ are estimated by the W1,q′-norm of φ
in G. By (4.1), we obtain (4.2). □

We apply the estimates (4.1) and (4.2) in order to extract a subsequence of {uν}. We recall
an abstract compactness theorem in [80, Chapter III, Theorem 2.1].

Proposition 4.2. (i) Let X0, X and X1 be Banach spaces such that X0 ⊂ X ⊂ X1 with
continuous injections, X0 and X1 are reflexive and the injection X0 ⊂ X is compact. For
T ∈ (0,∞) and s ∈ (1,∞), set the Banach space

Y = {u ∈ Ls(0,T ; X0) | ∂tu ∈ Ls(0,T ; X1)},

equipped with the norm ||u||Y = ||u||Ls(0,T ;X0) + ||∂tu||Ls(0,T ;X1). Then, the injection Y ⊂
Ls(0,T ; X) is compact.

Proof of Theorem 1.2 (i). For an arbitrary bounded domain G ⊂ Π, we set X0 = W1,q(G),
X = Lq(G) and X1 = W−1,q(G). Since {uν} is a bounded sequence in Y by (4.1) and (4.2),
we apply Proposition 4.2 to get a subsequence (still denoted by uν) that converges to a limit
u in Ls(0,T ; Lq(G)). By choosing a subsequence, we may assume that
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uν → u in Ls(0,T ; Lq(G)),

for arbitrary G ⊂ Π and T > 0.
We take an arbitrary φ ∈ C1

c (Π× [0,∞)) such that div φ = 0 in Π and φ · n = 0 on ∂Π. By
multiplying φ by (1.1) and integration by parts, we see that

∫ ∞

0

∫
Π

(uν · ∂tφ − ν∇uν · ∇φ + uνuν : ∇φ)dxdt = −
∫
Π

u0 · φ0dx(4.5)

Note that the integral of ∂nuν · φ on ∂Π vanishes since ∂ruz
ν = 0 and φ · n = 0 on ∂Π.

The first term converges to the integral of u · ∂tφ and the second term vanishes by (4.1).
We take a bounded domain G ⊂ Π and T > 0 such that spt φ ⊂ G × [0,T ]. Since uν is
uniformly bounded in L∞(0,∞; Lp(Π)), by (4.1) and p ≥ q′, uν is uniformly bounded in
Ls′(0,T ; Lq′(G)). Hence

∣∣∣∣∣∫ ∞

0

∫
Π

(uνuν : ∇φ − uu : ∇φ)dxdt
∣∣∣∣∣

≤
∣∣∣∣∣∣
∫ T

0

∫
G

uν(uν − u) : ∇φdxdt

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫ T

0

∫
G

(uν − u)u : ∇φdxdt

∣∣∣∣∣∣
≤ ||∇φ||L∞(G×(0,T ))

(
||uν||Ls′ (0,T ;Lq′ (G)) + ||u||Ls′ (0,T ;Lq′ (G))

)
||uν − u||Ls(0,T ;Lq(G)) → 0 as ν→ 0.

Thus sending ν→ 0 to (4.5) yields (1.3). Since the estimate (4.1) is inherited to the limit u,
we see that u ∈ L∞(0,∞; Lp) and ∇u ∈ L∞(0,∞; Lq).

We show the weak continuity u ∈ BCw([0,∞); Lp). We take an arbitrary φ ∈ C∞c (Π) and
η ∈ C∞c (0,∞). By multiplying φη by (1.1) and integration by parts as we did in the proof of
Lemma 4.1, we obtain the estimate∣∣∣∣∣∣

∫ ∞

0

( ∫
Π

uν(x, t) · φ(x)dx
)
η̇(t)dt

∣∣∣∣∣∣
≤ C

∥∥∥∥ωθ0r ∥∥∥∥
Lq(Π)

(
ν||φ||W1,q′ (Π) +

∥∥∥∥ωθ0r ∥∥∥∥
Lq(Π)
||φ||W1,p/(p−2)(Π)

) (∫ ∞

0
η(t)dt

)
with C = C(q), independent of ν. Sending ν→ 0 yields

∣∣∣∣∣∣
∫ ∞

0

(∫
Π

u(x, t) · φ(x)dx
)
η̇(t)dt

∣∣∣∣∣∣ ≤ C
∥∥∥∥ωθ0r ∥∥∥∥2

Lq(Π)
||φ||W1,p/(p−2)(Π)

(∫ ∞

0
η(t)dt

)
.

Thus

h(t) =
∫
Π

u(x, t) · φ(x)dx
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is differentiable in the sense of distribution and

∣∣∣∣∣∫ ∞

0
ḣ(t)η(t)dt

∣∣∣∣∣ = ∣∣∣∣∣∫ ∞

0
h(t)η̇(t)dt

∣∣∣∣∣ ≤ C
∥∥∥∥ωθ0r ∥∥∥∥2

Lq(Π)
||φ||W1,p/(p−2)(Π)

(∫ ∞

0
η(t)dt

)
.

By duality, ḣ ∈ L∞(0,∞) and

∣∣∣∣∣∣ d
dt

∫
Π

u(x, t) · φ(x)dx

∣∣∣∣∣∣ ≤ C
∥∥∥∥ωθ0r ∥∥∥∥2

Lq(Π)
||φ||W1,p/(p−2)(Π), a.e. t > 0.

Hence for s ∈ [0,∞), we have∫
Π

u(x, t) · φ(x)dx→
∫
Π

u(x, s) · φ(x)dx as t → s.

By u ∈ L∞(0,∞; Lp) and the density, the above convergence holds for all φ ∈ Lp′ . Thus
u ∈ BCw([0,∞); Lp). The weak continuity of ∇u on Lq follows from that of u on Lp. We
proved the assertion (i). □

4.2. Regularity of weak solutions. We prove Theorem 1.2 (ii). We use the Poincaré in-
equality.

Proposition 4.3. Let u ∈ C(Π) be an axisymmetric vector field without swirl such that
div u = 0 in Π, u · n = 0 on ∂Π and u(x) → 0 as |x| → ∞. Assume that ∇u ∈ Ls(Π) for
s ∈ (1,∞). Then, the estimate

||u||Ls(Π) ≤ C||∇u||Ls(Π)(4.6)

holds with some constant C = C(s).

Proof. Since the radial component ur vanishes on ∂Π by u · n = 0, we apply the Poincaré
inequality [4] to estimate

||ur ||Ls(Π) ≤ C||∇ur ||Ls(Π),

with C = C(s). We estimate uz. For arbitrary z1, z2 ∈ R, we set G = D × (z1, z2) by
D = {xh = (x1, x2) | |xh| < 1}. Since div u = 0, it follows that

0 =
∫

G
div udx =

∫
D

uz(r, z2)dH −
∫

D
uz(r, z1)dH .
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Since u decays as |z2| → ∞, we see that the flux on D is zero, i.e.,∫
D

uz(r, z1)dH = 0.

We apply the Poincaré inequality [28] to estimate

||uz||Ls(D)(z1) ≤ C||∇huz||Ls(D)(z1),

with C = C(s), where ∇h denotes the gradient for the horizontal variable xh = (x1, x2). By
integrating for z1 ∈ R, we obtain (4.6). □

Proof of Theorem 1.2 (ii). If ωθ0/r ∈ Ls for s ∈ (3,∞), the limit u ∈ BCw([0,∞); Lp) satisfies
∇u ∈ L∞(0,∞; Ls) by (4.3). Thus u(·, t) is Hölder continuous in Π and decaying as |x| →
∞. We apply the Poincaré inequality (4.6) to see that u ∈ L∞(0,∞; W1,s) and u · ∇u ∈
L∞(0,∞; Ls) by the Sobolev inequality. By integration by parts, it follows from (1.3) that∫ ∞

0

∫
Π

u · φη̇dxdt =
∫ ∞

0

∫
Π

(u · ∇u) · φηdxdt(4.7)

for all φ ∈ Ls′
σ and η ∈ C∞c (0,∞), where s′ is the conjugate exponent to s. By the bound-

edness of the Helmholtz projection on Ls′ and a duality, we see that ∂tu ∈ L∞(0,∞; Ls) and
u ∈ BC([0,∞); Ls). The equation (1.4) follows from (4.7) by integration by parts. Since
∇u ∈ L∞(0,∞; Ls) and u ∈ BC([0,∞); Ls), we see that for φ ∈ C∞c (Π),∫

Π

∂u(x, t) · φ(x)dx = −
∫
Π

u(x, t) · ∂φ(x)dx→ −
∫
Π

u0(x) · ∂φ(x)dx

=

∫
Π

∂u0(x) · φ(x)dx as t → 0,

where ∂ = ∂k
x for |k| = 1. By density of C∞c (Π) in Ls′(Π), we have for φ ∈ Ls′(Π)∫

Π

∂u(x, t) · φ(x)dx→
∫
Π

∂u0(x) · φ(x)dx as t → 0.

Thus ∇u is weakly continuous at t = 0, i.e., ∇u ∈ BCw([0,∞); Ls).
If in addition that ωθ0/r ∈ L∞, the limit satisfies ∇ × u ∈ BCw([0,∞); L∞) by (4.4). □

Remarks 4.4. (i) The equation (1.4) is written as

∂tu + u · ∇u + ∇p = 0 on Ls for a.e. t > 0,
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by the associated pressure ∇p = −(I − P)u · ∇u ∈ L∞(0,∞; Ls).
(ii) The weak solutions in Theorem 1.2 are with finite energy for q ∈ [3/2, 2]. In fact, by the
global estimate (4.1) and applying the Poincaré inequality (4.6) for global-in-time solutions
u = uν of (1.1) for ωθ0/r ∈ Lq in Theorem 1.1, we see that

||uν||Lp + ||uν||Lq ≤ C||∇uν||Lq ≤ C′
∥∥∥∥ωθ0r ∥∥∥∥

Lq
, t ≥ 0, ν > 0,

with C′ = C′(q) for p ∈ [3, 6] satisfying 1/p = 1/q − 1/3. By the Hölder inequality,

||uν||Lρ ≤ ||uν||θLq ||uν||1−θLp ≤ C′
∥∥∥∥ωθ0r ∥∥∥∥

Lq
, t > 0, ν > 0,

for 1/ρ = θ/q + (1 − θ)/p. Hence uν is uniformly bounded in Lρ for all ρ ∈ [q, p]. Since
[2, 3] ⊂ [q, p], in particular uν ∈ L∞(0,∞; L2) and the limit as ν → 0 belongs to the same
space.

5. Uniqueness

We prove Theorem 1.2 (iii). It remains to show the uniqueness. Since the weak solutions
are with infinite energy for q ∈ (2, 3), we estimate a local energy of two weak solutions in
the cylinder by using a cut-off function θR. We then send R → ∞ and prove the uniqueness
by using the growth bound of the Lρ-norm (3.15). To this end, we show decay properties of
weak solutions.

5.1. Decay properties of weak solutions. We use the Poincaré inequality (4.6) and deduce
decay properties of velocity as |x3| → ∞.

Proposition 5.1. The weak solutions (u, p) as in Theorem 1.2 (iii) satisfy

u,∇u, ∂tu,∇p ∈ L∞(0,∞; Lq).(5.1)

Proof. Since u(·, t) is bounded and Hölder continuous in Π and ∇u ∈ BCw([0,∞); Lq), we
see that u · ∇u ∈ L∞(0,∞; Lq). Thus, ∂tu and ∇p = −(I − P)u · ∇u belong to L∞(0,∞; Lq) by
(1.4). By the Poincaré inequality (4.6), u ∈ L∞(0,∞; Lq) follows. □

We estimate the pressure p as |x3| → ∞. We set
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(5.2)
p̃(xh, x3, t) = p(xh, x3, t) − p̂(x3, t),

p̂(x3, t) =
1
|D|

∫
D

p(xh, x3, t)dxh.

Proposition 5.2.

p̃ ∈ L∞(0,∞; Lq),(5.3)

|p̂(x3, t)| ≤ C(1 + |x3|)1/3, x3 ∈ R, t > 0,(5.4)

with some constant C, independent of x3 ∈ R and t > 0.

Proof. The property (5.3) follows from (5.1) by applying the Poincaré inequality on D. We
show (5.4). We integrate the vertical component of (1.2) on D to see that

∂

∂t

∫
D

uzdxh +

∫
D

u · ∇uzdxh +
∂

∂z

∫
D

pdxh = 0.

Since the flux of u on D is zero as we have seen in the proof of Proposition 4.3, the first term
vanishes. We integrate the equation by the vertical variable between (0, z) to get∫

D
p(r, z, t)dxh =

∫
D

p(r, 0, t)dxh −
∫ z

0

∫
D

u · ∇uzdx.

We observe that u ∈ L∞(0,∞; W1,ρ) for ρ ∈ [q, 3) by (5.1) and Theorem 1.2 (ii). Since
u · ∇u ∈ L∞(0,∞; Lρ/2) for ρ ≥ 2, we apply the Hölder inequality to estimate∣∣∣∣∣∣

∫ z

0

∫
D

u · ∇uzdx

∣∣∣∣∣∣ ≤ |D × (0, z)|1−2/ρ||u · ∇u||Lρ/2 ≤ C|z|1−2/ρ, t > 0.

Since ρ ∈ [2, 3) and 1 − 2/ρ < 1/3, we obtain (5.4). □

We use the growth bound for the Lρ-norm of ∇u as ρ→ ∞.

Proposition 5.3.

∇u ∈ BCw([0,∞); Lρ), ρ ∈ (3,∞),

∇ × u ∈ BCw([0,∞); L∞),
||∇u||Lρ ≤ Cρ, ρ > 3, t ≥ 0,

with some constant C, independent of ρ.
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Proof. By construction, the weak solution u satisfies

||∇ × u||Lρ ≤
∥∥∥∥ωθ0r ∥∥∥∥

Lρ
, t ≥ 0.

for all ρ ∈ (3,∞). We fix ρ ∈ (3,∞) and take ρ0 ∈ (3, ρ). It follows from (3.15) that

||∇u||Lρ ≤ Cρ||∇ × u||Lρ∩Lρ0 ≤ Cρ
∥∥∥∥ωθ0r ∥∥∥∥

Lρ∩Lρ0
,

with the constant C, independent of ρ. Since the Lρ-norm of ωθ0/r is uniformly bounded for
all ρ > 3 by ωθ0/r ∈ L∞, we obtain the desired estimate for ∇u. □

5.2. Local energy estimates. We now prove the uniqueness. Let (u1, p1) and (u2, p2) be
two weak solutions to (1.2) in Theorem 1.2 (iii) for the same initial data. Then, w = u1 − u2
and π = p1 − p2 satisfy

(5.5)

∂tw + u1 · ∇w + w · ∇u2 + ∇π = 0, div w = 0 in Π × (0,∞),
w · n = 0 on ∂Π × (0,∞),

w = 0 on Π × {t = 0}.

Let θ ∈ C∞c [0,∞) be a smooth monotone non-increasing function such that θ ≡ 1 in [0, 1]
and θ ≡ 0 in [2,∞). We set θR(x3) = θ(|x3|/R) for R ≥ 1 so that θR ≡ 1 in [0,R], θR ≡ 0 in
[2R,∞), ||∂x3θR||∞ ≤ C/R and spt ∂x3θR ⊂ IR for IR = [R, 2R]. By multiplying 2wθR by (1.2)
and integration by parts, we see that

d
dt

∫
Π

|w|2θRdx + 2
∫
Π

(w · ∇u2) · wθRdx −
∫
Π

u1|w|2 · ∇θRdx − 2
∫
Π

πw · ∇θRdx = 0.(5.6)

We set

ϕR(t) =
∫
Π

|w|2(x, t)θR(x3)dx.

By Theorem 1.2 (ii), the function ϕR ∈ C[0,∞) is differentiable for a.e. t > 0 and satisfies
ϕR(0) = 0. We estimate errors in the cut-off procedure.

Proposition 5.4. There exists a constant C = C(R) such that∣∣∣∣∣∣
∫
Π

u1|w|2 · ∇θRdx

∣∣∣∣∣∣ +
∣∣∣∣∣∣2

∫
Π

πw · ∇θRdx

∣∣∣∣∣∣ ≤ C, t > 0.(5.7)
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The constant C(R) converges to zero as R→ ∞ for each t > 0.

Proof. Since u1 ∈ L∞(0,∞; Lq) and w ∈ L∞(Π × (0,∞)) by Proposition 5.1 and Theorem
1.2 (ii), applying the Hölder inequality yields∣∣∣∣∣∣

∫
Π

u1|w|2 · ∇θRdx

∣∣∣∣∣∣ ≤ C
R

∫
D×IR

|u1|dx ≤ C′

R
|D × IR|1/q

′ ||u1||Lq ≤ C′′

R1/q ,

with some constant C′′, independent of R. We next estimate the second term of (5.7). We
set π = π̃ + π̂ by (5.2). Since π̃ ∈ L∞(0,∞; Lq) by (5.3), it follows that∣∣∣∣∣∣

∫
Π

π̃w · ∇θRdx

∣∣∣∣∣∣ ≤ C
R

∫
D×IR

|π̃|dx ≤ C′

R1/q .

It follows from (5.4) that∣∣∣∣∣∣
∫
Π

π̂w · ∇θRdx

∣∣∣∣∣∣ ≤ C
R2/3

∫
D×IR

|w|dx ≤ C
R2/3 |D × IR|1/q

′ ||w||Lq ≤ C′

R2/3−1/q′ .

with some constant C′, independent of R. Since 2/3 − 1/q′ > 0 for q ∈ [3/2, 3), the right-
hand side converges to zero as R→ ∞. □

Proof of Theorem 1.2 (iii). By Proposition 5.3, there exist constants M1 and M2 such that

||w||L∞ ≤ M1,

||∇u2||Lρ ≤ M2ρ, ρ > 3, t ≥ 0.

For an arbitrary δ ∈ (0, 2/3), we set ρ = 2/δ. We apply the Hölder inequality with the
conjugate exponent ρ′ = 2/(2 − δ) to see that∣∣∣∣∣∣2

∫
Π

(w · ∇u2) · wθRdx

∣∣∣∣∣∣ ≤ 2
∫
Π

|∇u2|(|w|θ1/2
R )2dx

≤ 2Mδ
1

∫
Π

|∇u2|(|w|θ1/2
R )2−δdx

≤ 2Mδ
1 ||∇u2||Lρ

( ∫
Π

|w|2θRdx
)1/ρ′

≤ 2Mδ
1 M2ρϕ

1/ρ′

R .

Thus, ϕR satisfies the differential inequality
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ϕ̇R(t) ≤ aϕR(t)1/ρ′ + b, t > 0,
ϕR(0) = 0,

with the constants a = 2Mδ
1 M2ρ and b = C(R) by (5.6) and (5.7). Hence we have

∫ ϕR(t)

0

ds
as1/ρ′ + b

≤ t.(5.8)

We prove that

limR→∞ϕR(t) < ∞ for each t > 0.(5.9)

Suppose on the contrary that (5.9) were false for some t0 > 0. Then, there exists a sequence
{R j} such that lim j→∞ ϕR j(t0) = ∞. For an arbitrary K > 0, we take a constant N ≥ 1 such
that ϕR j(t0) ≥ K for j ≥ N. It follows from (5.8) that

∫ K

0

ds
as1/ρ′ + b

≤ t0.

Since the constant b = C(R j) converges to zero as R j → ∞, sending j → ∞ yields
(r/a)K1/r ≤ t0. Since K > 0 is arbitrary, this yields a contradiction. Thus (5.9) holds.

Since |w|2θR monotonically converges to |w|2 in Π, it follows from (5.9) that

ϕ(t) :=
∫
Π

|w|2(x, t)dx = lim
R→∞

∫
Π

|w|2(x, t)θR(x3)dx < ∞.

Sending R→ ∞ to (5.8) implies (ρ/a)ϕ1/ρ(t) ≤ t. We thus obtain∫
Π

|w(x, t)|2dx ≤ M2
1(2M2t)2/δ.

Since the right-hand side converges to zero as δ→ 0 for t ∈ [0,T ] and T = (4M2)−1, we see
that w ≡ 0 in [0,T ]. Applying the same argument for t ≥ T implies u1 ≡ u2 for all t ≥ 0.
The proof is now complete. □

Remark 5.5. By a similar cut-off function argument, uniqueness of weak solutions of the Eu-
ler equations with infinite energy is proved in [15, Theorem 5.1.1] for the whole space under
different assumptions from Theorem 1.2 (iii). See also [21, Theorem 2]. We proved unique-
ness of weak solutions in the infinite cylinder based on the Yudovich’s estimate (Lemma
3.3).
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6. Solutions with finite energy

It remains to prove Theorem 1.3. The proof of the L2-convergence (1.7) is simpler than
that of uniqueness of weak solutions since solutions are with finite energy.

6.1. Energy dissipation.

Proposition 6.1. The assertion of Theorem 1.3 (i) holds.

Proof. Let u0 ∈ Lp
σ ∩ L2 be an axisymmetric vector field without swirl such that ωθ0/r ∈ Lq

for q ∈ [3/2, 2] and 1/p = 1/q − 1/3. By Theorem 1.1 and Proposition 2.2, there exists
a unique global-in-time solution uν ∈ BC([0,∞); Lp ∩ L2) of (1.1) satisfying the energy
equality (1.5). Since ωθ0/r ∈ Lq, applying Lemma 2.5 yields

∥∥∥∥ωθr ∥∥∥∥
L2
≤ C

(νt)
3
2 ( 1

q−
1
2 )

∥∥∥∥ωθ0r ∥∥∥∥
Lq
, t ≥ 0, ν > 0,

with C = C(q), independent of ν. It follows that

ν

∫ T

0
||∇uν||2L2dt = ν

∫ T

0
||ωθ||2L2dt ≤ ν

∫ T

0

∥∥∥∥ωθr ∥∥∥∥2

L2
dt ≤ C

∥∥∥∥ωθ0r ∥∥∥∥2

Lq
(νT )

5
2−

3
q .

Thus, (1.6) holds. □

6.2. L2-convergence. We prove Theorem 1.3 (ii). In order to apply the Yudovich’s energy
method, we prepare the following estimate (6.2) for ||∇uν||Lρ , which is uniform for ν > 0,
t > 0, and linearly growing as ρ→ ∞.

Proposition 6.2. Let u0 ∈ Lp
σ ∩ L2 be an axisymmetric vector field without swirl such that

ωθ0/r ∈ Lq ∩ L∞ for q ∈ [3/2, 2] and 1/p = 1/q − 1/3. Let uν ∈ BC([0,∞); Lp ∩ L2) ∩
C∞(Π × (0,∞)) be a solution of (1.1). Then, the estimates

||uν||L∞ ≤ C
∥∥∥∥ωθ0r ∥∥∥∥

Lρ0
,(6.1)

||∇uν||Lρ ≤ C′ρ
∥∥∥∥ωθ0r ∥∥∥∥

Lρ∩Lρ0
,(6.2)

||∇uν||L2 ≤
∥∥∥∥ωθ0r ∥∥∥∥

L2
,(6.3)

hold for t > 0 and 3 < ρ0 < ρ < ∞ with some constants C = C(ρ0) and C′, independent of ρ
and ν.
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Proof. We take ρ0 ∈ (3,∞). It follows from (4.3) and (4.6) that

||uν||W1,ρ0 ≤ C
∥∥∥∥ωθ0r ∥∥∥∥

Lρ0
, t ≥ 0, ν > 0.

By the Sobolev inequality, the estimate (6.1) follows. The estimates (6.2) and (6.3) follow
from (2.5) and (3.15). □

Let (uν, pν) and (uµ, pµ) be two solutions of (1.1) for the same initial data u0. We may
assume that ν ≥ µ. Then, w = uν − uµ and π = pν − pµ satisfy

∂tw − ν∆w − (ν − µ)∆uµ + uν · ∇w + w · ∇uµ + ∇π = 0 div w = 0 in Π × (0,∞),
∇ × w × n = 0, w · n = 0 on ∂Π × (0,∞),

w = 0 on Π × {t = 0}.

By multiplying 2w by the equation and integration by parts, we see that

d
dt

∫
Π

|w|2dx + 2ν
∫
Π

|∇w|2dx + 2(ν − µ)
∫
Π

∇uµ · ∇wdx + 2
∫
Π

(w · ∇uµ) · wdx = 0.

We set

ϕν(t) =
∫
Π

|w(x, t)|2dx.

We show that Kν(T ) = sup0≤t≤T ϕν(t) converges to zero as ν→ 0 for each T > 0.

Proposition 6.3. There exist constants M1 − M3, independent of ν, µ > 0 such that

||w||L∞ ≤ M1,

||∇uµ||Lρ ≤ M2ρ,

||∇uµ||L2 + ||∇w||L2 ≤ M3,

hold for t > 0 and ρ > 3.

Proof. The assertion follows from Proposition 6.2. □
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Proof of Theorem 1.3 (ii). By Proposition 6.3, we estimate

∣∣∣∣2(ν − µ)
∫
Π

∇uµ · ∇wdx
∣∣∣∣ ≤ 2ν||∇uµ||L2 ||∇w||L2 ≤ 2νM2

3 .

For an arbitrary δ ∈ (0, 2/3), we set ρ = 2/δ. Since ρ′ = 2/(2 − δ), in a similar way as in the
proof of Theorem 1.2 (iii), we estimate

∣∣∣∣2 ∫
Π

(w · ∇uµ) · wdx
∣∣∣∣ ≤ 2Mδ

1 M2ρϕ
1/ρ′
ν .

Thus, ϕν satisfies

ϕ̇ν(t) ≤ aϕ1/ρ′
ν (t) + b,

ϕν(0) = 0,

for a = 2Mδ
1 M2ρ and b = 2νM2

3 . We take an arbitrary T > 0. We integrate the differential
inequality between (0, t) and take a supremum for t ∈ [0,T ] to estimate

∫ Kν(T )

0

ds
as1/ρ′ + b

≤ T.

Since b = bν converges to zero as ν → 0, by the same way as in the proof of Theorem 1.2
(iii), we see that the limit superior of Kν(T ) is finite for each T > 0. We set

K(T ) := limν→0Kν(T ) < ∞.

Sending ν → 0 to the above inequality implies (ρ/a)K1/ρ′(T ) ≤ T . Since a = 2Mδ
1 M2ρ and

ρ = 2/δ, it follows that

K(T ) ≤ M2
1(2M2T )2/δ.

Since the right-hand side converges to zero as δ → 0 for T ≤ T0 and T0 = (4M2)−1, we see
that K(T ) ≡ 0. Thus the convergence (1.7) holds. By replacing the initial time and applying
the same argument for T ≥ T0, we are able to show the convergence (1.7) for an arbitrary
T > 0. The proof is now complete. □

Remarks 6.4. (i) (q = 1) We constructed global weak solutions to the Euler equations
for axisymmetric data without swirl by a vanishing viscosity method. As explained in the
introduction, the condition ωθ0/r ∈ Lq for q ∈ [3/2, 3) in Theorem 1.2 (i) is satisfied if
u0 ∈ W2,q. This condition is weaker than u0 ∈ W2,q for q ∈ (3,∞), required for the local
well-posedness of the Euler equations.
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An interesting case is q = 1 for which the condition is invariant under the scaling of (1.1)
in R3. In this case, vorticity can be a measure and we need to consider a space larger than
L3(R3) such as the Morrey space M3(R3) [42] or BMO−1(R3) [57]. See [38]. It is known [37,
Lemma 2.8] that the condition ωθ0/r ∈ L1(R3) implies that u0 ∈ (L∞)−1(R3) ⊂ BMO−1(R3).
We are able to write ωθ0/r ∈ L1(R3) as ωθ0 ∈ L1(H) for H = {(r, z) | r > 0, z ∈ R}, or
more generally ωθ0 ∈ M(H), the space of measures on H. The existence of global-in-time
solutions to (1.1) in R3 for a measure with compact support is proved in [32]. See [37] for
uniqueness. Moreover, global well-posedness for ωθ0 ∈ M(H) with a small pure point part is
proved in [38].

It seems unknown whether global weak solutions to (1.2) exist for vortex-sheet initial
data ωθ0 ∈ M(H) (e.g., ωθ0 ≥ 0, with compact support and u0 ∈ L2

loc(H)). See [24], [49] for
convergence results. For such initial data global-in-time unique solutions to (1.1) are known
to exist [32], [38].
(ii) (Convergence in Sobolev space) Our approach is based on the a priori estimate (1.10)
which is a special property of axisymmetric solutions and is not available at the broad level.
On the other hand, there is an another approach to study vanishing viscosity limits when
the Euler equation is locally well-posed. When Π = R3, unique local-in-time solutions of
the Euler equations are constructed in [78], [50], [51] by a vanishing viscosity method. See
also [18]. In particular, for a local-in-time solution u ∈ C([0,T ]; Hs) of the Euler equations
and u0 ∈ Hs, s > 5/2, the convergence

uν → u in L∞(0,T ; Hs),

is known to hold [68]. The case with boundary is a difficult question related to analysis of
boundary layer. See [19] for a survey. However, convergence results are known subject to
the Neumann boundary condition (1.1). See [83], [9], [10] for the case with flat boundaries
and [11], [76] for curved boundaries.
(iii) (Navier boundary condition) The Neumann boundary condition in (1.1) may be viewed
as a special case of the Navier boundary condition,

(D(u)n + αu)tan = 0, u · n = 0 on ∂Π,(6.4)

where D(u) = (∇u + ∇T u)/2 is the deformation tensor and ftan = f − n( f · n) for a vector
field f . Indeed, for the two-dimensional case, the Neumann boundary condition is reduced
to the free condition ω = 0 and u · n = 0 on ∂Π. The free condition is a special case of (6.4),
which is written as ω + 2(α − κ)u · n⊥ = 0 and u · n = 0 on ∂Π, with the curvature κ(x) and
n⊥ = (−n2, n1). For a two-dimensional bounded domain, vanishing viscosity limits subject
to (6.4) are studied in [17], [64], [55]. For the three-dimensional case, it is shown in [45]
that a Leray-Hopf weak solution uν subject to (6.4) converges to the local-in-time solution
u ∈ C([0,T ]; Hs) of the Euler equations for u0 ∈ H3 in the sense that

uν → u in L∞(0,T ; L2).
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For the Dirichlet boundary condition, the same convergence seems unknown. See [46] for a
boundary layer expansion subject to (6.4) and [69] for a stronger convergence result.

Appendix A. Decay estimates of vorticity

We prove the decay estimate (2.8) (Lemma 2.5). It suffices to show:

Lemma A.1. There exists a constant C = C(q) such that the estimate (2.8) holds for ρ =
2mq, q ∈ [1,∞) and non-negative integers m ≥ 0.

Proof of Lemma 2.5. We apply Lemma A.1. Since

lim
ρ→∞

∥∥∥∥ωθr ∥∥∥∥
Lρ

(t) =
∥∥∥∥ωθr ∥∥∥∥

L∞
(t),

sending m→ ∞ implies (2.8) for ρ = ∞ and q ∈ [1,∞). Since (2.8) holds for ρ = q ∈ [1,∞],
we obtain (2.8) for all 1 ≤ q ≤ ρ ≤ ∞ by the Hölder inequality. □

Let ψε(s) be a non-negative convex function as in the proof of Lemma 2.3. We prove the
estimate (2.8) for ψε(Ω) and Ω = ωθ/r. The assertion of Lemma A.1 follows by sending
ε→ 0.

Proposition A.2. There exists a constant C = C(q) such that the estimate

∥∥∥ψε(Ω)
∥∥∥

Lρ(Π) ≤
C

(νt)
3
2 ( 1

q−
1
ρ )

∥∥∥ψε(Ω0)
∥∥∥

Lq(Π), t > 0, ν > 0,(A.1)

holds for all ε > 0, ρ = 2mq and m ≥ 0. The constant C is independent of m, ν and ε.

We consider differential inequalities for Lρ-norms of ψε(Ω).

Proposition A.3. The function

ϕρ(t) =
∫
Π

ψ
ρ
ε(Ω)dx

satisfies
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ϕ̇ρ(t) ≤ −κν
(
1 − 1

ρ

)ϕ5/3
ρ

ϕ4/3
ρ/2

, t > 0(A.2)

with some absolute constant κ, independent of ρ and ν.

Proof. We apply the interpolation inequality

||φ||L2 ≤ C0||φ||2/5L1 ||∇φ||3/5L2

for φ ∈ H1
0 with some absolute constant C0. Since ψε(Ω) satisfies

d
dt

∫
Π

ψ
ρ
ε(Ω)dx + 4ν

(
1 − 1

ρ

) ∫
Π

∣∣∣∣∇(ψρ/2ε (Ω)
)∣∣∣∣2dx ≤ 0,

by (2.7), applying the interpolation inequality for φ = ψρ/2ε yields

∫
Π

∣∣∣∣∇(ψρ/2ε (Ω)
)∣∣∣∣2dx ≥ 1

C10/3
0

( ∫
Π
ψ
ρ
εdx

)5/3

( ∫
Π
ψ
ρ/2
ε dx

)4/3 =
ϕ5/3
ρ

C10/3
0 ϕ4/3

ρ/2

.

The differential inequality (A.2) follows from the above two inequalities with κ = 4C−10/3
0 .
□

Proof of Proposition A.2. We set λ = ||ψε(Ω0)||Lq . The estimate (A.1) is written as

ϕ
1/ρ
ρ (t) ≤ C

(νt)
3
2 ( 1

q−
1
ρ )
λ, t > 0,(A.3)

for ρ = 2mq and m ≥ 0. We prove (A.3) by induction for m ≥ 0. For m = 0, the estimate
(A.3) holds with C = 1 by Lemma 2.3.

Suppose that (A.3) holds for m = k with some constant C = Ck. We set s = 2ρ for
ρ = 2mq. By the assumption of our induction, we see that

1
ϕρ(t)

≥ (νt)
3
2 (2k−1)

Cr
kλ

ρ
.

It follows from (A.2) that
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ϕ−5/3
s ϕ̇s ≤ −κν

(
1 − 1

s

)
ϕ−4/3
ρ

≤ −κν
(
1 − 1

s

) (νt)2k+1−2

C4ρ/3
k λ4ρ/3

.

We integrate the both sides between [t1, t] and estimate

3
2

(
1

ϕ2/3
s (t)

− 1

ϕ2/3
s (t1)

)
≥ κ

(
1 − 1

s

) (νt)2k+1−1 − (νt1)2k+1−1

C4ρ/3
k λ4ρ/3

(
1

2k+1 − 1

)
.

Since the left-hand side is smaller than 3/2ϕ−2/3
s , sending t1 → 0 yields

ϕ2/3
s (t) ≤ (Ckλ)4ρ/3

(νt)2k+1−1

2k+2

κ(1 − 1/s)
.

Since

3
2s

4ρ
3
= 1,

3
2s

(2k+1 − 1) =
3
2

(1
q
− 1

s

)
,

and 1 − 1/s ≥ 1/2, it follows that

ϕ1/s
s (t) ≤ Ckλ

(νt)
3
2 ( 1

q−
1
s )

(
2k+3

κ

) 3
2k+2q

.

We proved that (A.3) holds for m = k + 1 with the constant Ck+1 = akCk for ak = b
1

2k+2 d
k+3

2k+2

and

b = κ−3/q, d = 23/q.

Thus (A.3) holds for all m ≥ 0. Since

Ck+1 = akCk =

k∏
j=1

a j = b
∑k

j=1 2− j−2
d
∑k

j=1( j+3)2− j−2
,

and the right-hand side converges as k → ∞, we are able to take a uniform constant C = C(q)
in (A.3) for all m ≥ 0. The proof is now complete. □



37

Acknowledgements

The existence results on global weak solutions to the Euler equations [14], [13] were in-
formed by the referee. The author is grateful to the referees for valuable comments. This
work was partially supported by JSPS through the Grant-in-aid for Young Scientist (B)
17K14217, Scientific Research (B) 17H02853 and Osaka City University Advanced Math-
ematical Institute (MEXT Joint Usage / Research Center on Mathematics and Theoretical
Physics).

References

[1] K. Abe. The Navier-Stokes equations with the Neumann boundary condition in an infinite cylinder.
Manuscripta Math., in press, arXiv:1806.04809v1.

[2] K. Abe and G. Seregin. Axisymmetric flows in the exterior of a cylinder. Proc. Roy. Soc. Edinburgh Sect.
A, in press, arXiv:1708.00694v2.
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[37] Th. Gallay and V. Šverák. Uniqueness of axisymmetric viscous flows originating from circular vortex

filaments. arXiv:1609.02030v1.
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[59] O. A. Ladyženskaya. An example of nonuniqueness in Hopf’s class of weak solutions of the Navier-Stokes
equations. Izv. Akad. Nauk SSSR Ser. Mat., 33:240–247, (1969).
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