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Abstract 17 

Binding of organic chemicals to α-cyclodextrin (αCD) is a typical example for host-guest 18 

complexation that is influenced by the 3D-structure of both the binding site (host) and the 19 

solute (guest). Prediction of the binding constant is challenging and requires a successful 20 

representation of the binding site-solute interactions in the 3D-space. In this study, we 21 

tested if a 3D quantitative structure activity relationship (3D-QSAR) model with quantum 22 

mechanically based local sigma profiles (LSPs) derived from the COSMOsar3D method is 23 

capable of predicting αCD binding constants from the most recent literature and how the 24 

model performs in comparison to a standard comparative molecular field analysis and to a 25 

reference 2D-QSAR. The results showed that the new 3D-QSAR model was more predictive 26 

than both reference models (RMSE 0.45 vs 0.53/0.52, R² 0.70 vs 0.53/0.68). Furthermore, 27 

only the new model captured the differences in the binding constants between structural 28 

isomers of aliphatic alcohols and allowed an extrapolation of the prediction to another 29 

literature data set. The high performance of the 3D-QSAR model with LSPs tested in this 30 

study and its theoretical robustness suggest that this modeling approach should be 31 

applicable to other binding processes including protein binding. 32 

Keywords: 33 

α-Cyclodextrin (CD); Binding constant; Inclusion complex; Prediction   34 
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1 Introduction 35 

Binding of organic chemicals to macromolecules is of high relevance in environmental 36 

science and related fields. For example, binding to macromolecular sorbents such as 37 

cyclodextrins (CDs) can be utilized for remediation of contaminated materials. Moreover, 38 

binding to proteins including binding proteins, enzymes, transporters, and receptors has 39 

strong impacts on toxicity of chemicals. Prediction of binding coefficients poses a major 40 

challenge, as the three-dimensional (3D) structure of both the solute and the binding site 41 

strongly influences the binding free energy, thus the binding constant (Herrmann, 2014). 42 

This is in contrast to the partition coefficients between liquids, for which the free energy is 43 

sufficiently well predicted by descriptors that characterize the interaction properties of the 44 

whole molecule without considering the molecular geometry (Karickhoff et al., 1991; Klamt, 45 

1995; Abraham et al., 2004; Endo and Goss, 2014). 46 

3D quantitative structure activity relationships (3D-QSARs) attempt to establish a correlation 47 

between a macroscopic property (e.g., binding constant, receptor affinity) and 3D-structural 48 

features of the solute molecules. A widely used 3D-QSAR tool is comparative molecular field 49 

analysis (CoMFA) (Cramer et al., 1988). CoMFA uses 3D-discretized molecular field 50 

properties, called molecular interaction fields (MIFs), as descriptors for a statistical method 51 

(e.g., partial least square, PLS). Recently, Klamt et al. proposed the COSMOsar3D method 52 

(Klamt et al., 2012), which uses 3D-gridded COSMO surface polarization charge densities as a 53 

new set of MIFs. This extension of CoMFA emerges from the quantum mechanically-based 54 

COSMO-RS (conductor-like screening model for real solvent) method (Klamt, 1995; Klamt et 55 

al., 1998), which predicts the properties of a chemical by using the surface polarization 56 

charge densities (called sigma surface) of the molecule calculated quantum mechanically in a 57 

virtual conductor. For each molecule, the calculated sigma surface can be condensed into a 58 
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sigma profile, a histogram of all the ‘partial’ charges (or charge-patches) of the molecule. 59 

The sigma surface and the sigma profile of a chemical appear to accurately describe the 60 

abilities of the molecule to undergo intermolecular interactions including electrostatic, 61 

hydrogen-bond, and van der Waals interactions (Klamt, 2011). To extend this concept to 3D-62 

QSARs, COSMOsar3D computes the sigma profiles at grid points within the 3D space to give 63 

the local sigma profiles (LSPs) (Thormann et al., 2012). The LSP is thus a histogram that 64 

contains information about the sigma surface of a specific part of the molecule. Considering 65 

the theoretical basis and the proven accuracy of COSMO-RS for partitioning between liquids, 66 

it is anticipated that the LSPs are ideal MIFs for 3D-QSAR modeling of the binding free energy 67 

that is strongly influenced by the molecular geometry of solutes. Nevertheless, the 68 

COSMOsar3D method has only been tested against standard sets of enzymatic inhibition 69 

activities by the developers and there has been no attempt to apply this method to 70 

equilibrium binding constants.  71 

In this study, COSMOsar3D is used to model data sets of α-cyclodextrin (αCD) binding 72 

constants. αCD is built of six 1-4-linked glucopyranose units that form a conic ring with a 73 

diameter of 5 Å. In water, all hydroxyl groups are positioned on the outside of the αCD ring, 74 

resulting in a hydrophobic cavity inside (Cox et al., 1984), which enables αCD to form host-75 

guest complexes. Formation of such complexes (Connors, 1997) can improve the solubility of 76 

chemicals (Hedges, 1998), clean waste gas streams (Blach et al., 2008), remediate 77 

contaminated soils (Villaverde et al., 2005; Flaherty et al., 2013),  and mask taste and odor 78 

compounds (Del Valle, 2004). Further, CDs can be used to enhance the bioavailability of 79 

organic pollutants (Liu et al., 2013), remove them from aqueous media (Sawicki and Mercier, 80 

2006), and extract dyes from sand (De Lisi et al., 2007). CDs are also considered a useful test 81 

material for investigating macromolecular binding because of their relatively simple and 82 
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well-studied structure as well as evidences of substantial molecular steric effects on the 83 

binding constants (Tabushi, 1982; Ishiwata and Kamiya, 1999; Schneider, 2009). In the 84 

common cyclodextrin family (i.e., α-, β-, γ-), αCD may be the most suitable starting material 85 

for studying 3D-effects on binding, as it has the smallest cavity and thus the highest 86 

restriction for host-guest complexation. 87 

The purpose of this study is to evaluate the LSP-based 3D-QSAR (i.e., COSMOsar3D) for 88 

predicting αCD binding constants in comparison to a standard CoMFA model that uses steric 89 

and electrostatic fields as MIFs. In addition, these 3D-QSARs are compared to a well-90 

established 2D-QSAR, namely the linear solvation energy relationship (LSER), which is a pp-91 

LFER model using Abraham’s descriptors (Abraham et al., 1994; Goss, 2005). Since the LSER 92 

does not explicitly include descriptors that describe molecular geometry, this comparison 93 

serves to evaluate whether taking into account the molecular 3D geometry improves the 94 

accuracy of predictions for αCD binding constants. 95 

2 Methods 96 

2.1 Data sets 97 

Two data sets of 1:1 αCD binding constants (Ka1) [M-1] were considered in this study. The first 98 

has been measured in our laboratory under a consistent experimental condition, as reported 99 

previously (Linden et al., 2016). This data set, referred to as the “Linden data set”, was used 100 

for the calibration and the first evaluation of the modeling approaches, because we consider 101 

these data of high quality and consistency. The second data set was from Suzuki (Suzuki, 102 

2001), who assembled literature data for αCD binding constants. The Suzuki data set was 103 

used for an additional external validation of the modeling approaches. 104 
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The Linden data set (Linden et al., 2016) consists of 60 neutral aliphatic and aromatic 105 

chemicals (range of log Ka1: 1.25–4.97, mean: 2.42, standard deviation (SD): 0.83). It contains 106 

several groups of isomers, e.g., 1-hexanol (i.e., end-substituted alcohol) and 3-hexanol (i.e., 107 

middle-substituted alcohol) as well as homologous series of chemicals (e.g., alcohols, 108 

ketones, ether, chlorobenzenes). The Suzuki data set (Suzuki, 2001) includes 87 neutral 109 

aliphatic and aromatic chemicals (range of log Ka1: -0.09–3.81, mean: 1.95, SD: 0.81). Ionic or 110 

partly ionic chemicals were not considered here to avoid uncertainty associated with the 111 

actual charge state of the bound molecule (i.e., ionic or neutral) and different descriptions of 112 

ionic molecules between MIFs. The chemicals and the respective log Ka1 values are listed in 113 

Table SI 1 and Table SI 2. Five alcohols, namely 1-butanol, 1-pentanol, 1-heptanol, 1-hexanol, 114 

and 1-octanol exist in both data sets. Their reported log Ka1 values are 0.28-0.51 log units 115 

higher in the Suzuki data set than in the Linden data set. The difference in log Ka1 might be, 116 

in part, caused by the different experimental temperatures (Suzuki data 25 °C, Linden data 117 

30 °C). Linden data were measured at 30 °C which was the lowest adjustable temperature in 118 

the experimental setting. This minor difference in temperature should be borne in mind 119 

when the results are evaluated (see below). 120 

2.2 Selection procedures for training and test sets 121 

For generation and evaluation of each model (i.e., 2D- and 3D-QSARs), the Linden data set 122 

was split into training and test sets. The training set was used for model calibration and 123 

selection, while the performance of the resulting model was validated with regard to the 124 

prediction of the test set. Prediction of data that were not part of the training set is essential 125 

as a control and should be considered the more important quality feature for 3D-QSARs 126 

(Gramatica, 2007).  127 
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For the general model evaluation, the training and test sets were generated with the log Ka1 128 

hierarchic bin system (Kauffman and Jurs, 2001) (procedure 1, see Fig. SI 3 for a scheme). In 129 

this system, the data set was sorted according to the log Ka1 values of the chemicals and 130 

then, from highest to lowest, four consecutive chemicals were placed in one bin. One 131 

chemical from each bin was selected randomly and placed in the test set. This classifies 25% 132 

chemicals of the data set to the test set. The rest of the chemicals formed the training set. 133 

The procedure was repeated five times, resulting in five random training sets and the 134 

corresponding test sets. 135 

In order to evaluate varying steric effects within homologous series of chemicals and isomers, 136 

the following modified procedure was used to generate constructed test sets (procedure 2). 137 

As in the first procedure, the chemicals were sorted by log Ka1 and four chemicals in a row 138 

were grouped into one bin. Then, the numbers 1 to 4 were given randomly to the four 139 

chemicals of a bin. In the first run of chemical selection, the chemicals with the number 1 140 

embodied the test set, while the rest of the chemicals were used as the training set. In the 141 

second run, the chemicals with the number 2 were the test set, and so forth. This procedure 142 

resulted in four test and training set combinations. In comparison to procedure 1, the 143 

randomness of the selection is reduced, whereas each chemical is part of a test set once and 144 

the other three times it belonged to the training set. 145 

2.3 3D-QSARs 146 

The 3D-QSAR modeling followed the workflow shown in Fig. SI 1. Modeling generally takes 147 

the following steps: 3D-structure generation, alignment, MIFs generation, model calibration 148 

with PLS, and model evaluation using the test set. There are multiple options for each step, 149 

as explained below, and different combinations were tested in this work for comprehensive 150 

evaluation of the methods. 151 



 
 

8 
 

2.3.1 3D structure generation 152 

The 3D structures of all chemicals were generated with Tinker or COSMOconfX13. Tinker 153 

(Marinescu and Bols, 2009) is a molecular modeling package implemented in Open3Dalign v. 154 

2.3 (O3A) (Tosco et al., 2011) and generates the structure-data files of the conformers for 155 

the O3A alignment. The quenched molecular dynamics conformational search of Tinker was 156 

performed with an implicit solvent calculation and a dielectric constant of 24, which is the 157 

dielectric constant of βCD (Yu et al., 2002), while for the rest of the parameters the default 158 

setting was chosen.  159 

COSMOconfX13 is a tool box that uses Turbomole (Sijm et al., 2000) for the quantum 160 

mechanics calculations of COSMO files. The default COSMOconf procedure was modified so 161 

that it creates more conformers than usual (see SI). That is to say, the total number of 162 

possible conformers was increased, the energetic distance between conformers was 163 

reduced, and the clustering steps were loosened. These modifications were intended to 164 

account for the flexibility of the chemicals, which is more important for the αCD binding than 165 

for bulk phase partitioning. 166 

2.3.2 Alignments 167 

The 3D structures of chemicals need to be aligned in the 3D space before performing 168 

statistical analysis. Ideally, the resulting position and orientation of a chemical in the 3D 169 

space corresponds to the optimal interaction possibility between the chemical and αCD. In a 170 

target-based approach, the structure or a substructure of αCD is used as the template to 171 

which all molecules are aligned. In a ligand-based approach, the template is generated with 172 

the help of chemicals that bind strongly to αCD (i.e., with high log Ka1 values). For all 173 

approaches, up to ten conformers of each chemical were considered and the conformer with 174 

the highest alignment score and, if there are multiple conformers with the highest score, 175 
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then that with the lowest energy was chosen for the model. In this study, the following three 176 

alignment procedures were applied.  177 

1. The O3A alignment maximizes the overlap of atoms of the template chemicals and of 178 

the remaining chemicals. This is a ligand-based method and a standard alignment for 179 

CoMFA approaches and was performed here by using O3A v. 2.3 (Tosco et al., 2011). 180 

The seven chemicals with the largest log Ka1 values of the Linden data set, namely 1-181 

dodecanol, 1-undecanol, 1-decanol, 1-nonanol, 2-undecanone, 2-decanone, and 182 

hexylbenzene were used as template chemicals. These chemicals were pre-aligned 183 

against each other and then each conformer of the remaining chemicals was aligned 184 

against the pre-aligned conformers of each template chemical. In the end, the 185 

position of the chemical/conformer with the highest score against any of the 186 

template chemicals was chosen. 187 

2. The COSMOsim3D alignment (Thormann et al., 2012) maximizes the overlap between 188 

the sigma surfaces of the chemical and the template. Hereby, the template is an 189 

averaged sigma profile of the template chemicals. The template chemicals used were 190 

the same as in the previous alignment method.  191 

3. The COSMOsim3D receptor alignment is a target-based approach that maximizes the 192 

overlap between the inverted sigma surface of αCD (which is the sigma charge value 193 

of each surface patch multiplied with -1) and the sigma surface of the chemicals of 194 

the data set. The sigma surface of αCD needs to be inverted because the alignment 195 

algorithm maximizes the overlap of like sigma charges in a ligand-based approach. 196 

The inversion therefore places the chemicals in a position where greatest interaction 197 

energies between both αCD and the respective chemical occur, as the interaction 198 

energy is greatest when the difference between the sigma charges of two interacting 199 
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surface segments is maximal. This alignment already considers the steric restrictions 200 

of the αCD cavity because the chemicals cannot be placed at the same position as the 201 

αCD. The input structure for the COSMOsim3D receptor alignment is the 3D structure 202 

of αCD and the position of an exemplary ligand, the latter defines the starting 203 

position in the alignment procedure for all chemicals that need to be aligned. Two 204 

input structures were used in our approach to test the dependence of the 205 

COSMOsim3D receptor alignment on the input structure: 206 

(3a) The 3D structure of αCD and the position of a ligand (poly-p-phenylene rotaxane) 207 

were obtained from an X-ray measurement (Stanier et al., 2001) (three different 208 

views of the complex are shown in Fig. SI 4). The cosmo file of the αCD structure was 209 

derived with a single point calculation using COSMOconfX13. 210 

(3b) The 3D structure of αCD and the position of a ligand (1-dodecanol) were 211 

estimated by a molecular dynamics simulation (MDsim), which was kindly provided 212 

by Sven Jakobtorweihen at Hamburg University of Technology. The complex with the 213 

smallest distance between the center of mass of αCD and that of 1-dodecanol was 214 

chosen as the template for the alignment (Fig. SI 5). The cosmo file for the resulting 215 

αCD structure was derived with a single point calculation using COSMOconfX13. 216 

2.3.3 MIFs 217 

Two sets of MIFs were used as independent variables for the PLS regression analysis.  218 

1. The van der Waals (vdW) and the electrostatic (ele) fields are the two standard 219 

CoMFA variables. Molecular mechanics calculations using the Merck force field 220 

(MMFF94) were performed with Open3DQSAR v. 2.3 (Tosco and Balle, 2011) to 221 

derive the vdW and ele fields. A sp³ carbon atom was used as the probe. A grid 222 
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spacing of 1 Å was used with a 5 Å gap, i.e., the minimal distance to the box, around 223 

the chemicals. 224 

2. LSPs were derived from the cosmo files by COSMOsar3D (Klamt et al., 2012). For the 225 

3D-QSAR model used here the LSPs were split into several consecutive profiles, each 226 

covering a range of 0.006 e/Å². Thus, MIFs 1, 2, …, and 7 cover sigma values from -227 

0.024 to -0.018 e/ Å², -0.018 to -0.012 e/ Å², …, and, 0.012 to 0.018 e/ Å², respectively 228 

(Fig. SI 2). In the end, the integral of each LSP serves as the value for the independent 229 

variable. A grid spacing of 2 Å was used in a box that leaves at least a 5 Å gap around 230 

the chemicals. 231 

2.3.4 Statistical tool 232 

The independent variables, i.e., the MIFs, of the training set chemicals were correlated with 233 

the log Ka1 values using PLS regression analysis. Prior to PLS regression analysis, the number 234 

of independent variables was reduced as following. An energy cutoff was set at 235 

± 30 kcal/mol (Kim, 1995), and variables that have a SD below a level of 0.1 among all 236 

training chemicals were excluded. The different MIFs were scaled before the PLS procedure 237 

using block unscaled weighting (Kastenholz et al., 2000). Moreover, fractional factorial 238 

design selection (Baroni et al., 1992; Baroni et al., 1993) was used to reduce the number of 239 

variables.  240 

PLS analysis was performed to derive one to five PLS components. Thus, each run resulted in 241 

five different models that used one to five PLS components. Leave-two-out cross validation 242 

was performed with each model and then the model with the minimum of the root mean 243 

square error (RMSE) value was selected for further evaluation against the test set. 244 
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2.4 pp-LFER 245 

The pp-LFER is among the most accurate and robust models to describe solute partitioning 246 

between liquids or liquid and gas phases, where molecular interactions are not sterically 247 

restricted. In a practical sense, a 3D-QSAR model may be considered meaningful only if it 248 

gives better predictions than the pp-LFER model, which is simple and quick as long as the 249 

solute descriptors are known. The pp-LFER used here appears, 250 

log 𝐾𝑎1 = 𝑐 + 𝑠𝑆 + 𝑎𝐴 + 𝑏𝐵 + 𝑣𝑉 + 𝑙𝐿    (1) 251 

where S is the polarizability/dipolarity parameter, A the solute H-bond acidity, B the solute 252 

H-bond basicity, V the McGowan characteristic volume (cm³ mol-1/100) and L the logarithm 253 

of the hexandecane-air partitioning coefficient. In this work, the pp-LFER solute descriptors 254 

(capital letters in eq. 2) were obtained from the UFZ-LSER database (Endo et al., 2015) and 255 

the system parameters (lower case letters in eq. 2) were fitted with multiple linear 256 

regression analysis using the experimental data for log Ka1 of training chemicals. 257 

3 Results & Discussion 258 

Table 1 shows the statistical results for evaluation of the modeling approaches using the 259 

Linden data set. RMSE and R² calculated with the test sets are considered more important 260 

evaluation criteria than q². Each value in the table represents the mean (+/- standard 261 

deviation) of five runs with five different training and test sets generated by test set 262 

selection procedure 1. In the following, the results of the pp-LFER approach are discussed 263 

first and then the results of the 3D-QSAR approach. 264 

Table 1. Comparison of the statistical results of the different modeling approaches for the 265 

prediction of log Ka1 of the Linden data set using test set selection procedure 1. 266 

Modeling Method Alignment Field q² ± SD RMSE ± SD R² ± SD 
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approach 

M1 pp-LFER 
   

0.52 ± 0.05 0.68 ± 0.07 

M2 3D-QSAR O3A LSP 0.63 ± 0.03 0.54 ± 0.08 0.56 ± 0.17 

M3 3D-QSAR O3A vdW ele 0.58 ± 0.08 0.53 ± 0.11 0.53 ± 0.11 

M4 3D-QSAR COSMOsim3D LSP 0.83 ± 0.02 0.45 ± 0.06 0.70 ± 0.08 

M5 3D-QSAR COSMOsim3D vdW ele 0.70 ± 0.01 0.56 ± 0.06 0.53 ± 0.12 

M6a 3D-QSAR COSMOsim3D 

receptor X-ray 

LSP 0.66 ± 0.06 0.51 ± 0.06 0.61 ± 0.09 

M6b 3D-QSAR COSMOsim3D 

receptor MDsim 

LSP 0.71 ± 0.04 0.49 ± 0.04 0.64 ± 0.07 

M7 3D-QSAR COSMOsim3D 

receptor X-ray 

vdW ele 0.51 ± 0.08 0.55 ± 0.08 0.56 ± 0.13 

O3A means open3DALIGN, q² is the coefficient of determination for the leave-two-out 267 

cross validation using the training set, RMSE is the root mean square error of the test set in 268 

log units, and R² is the coefficient of determination of the test set. LSP, vdW, and ele 269 

indicate the usage of local sigma profiles, van der Waals interaction field, and electrostatic 270 

interaction field as molecular interaction field, respectively, SD is standard deviation, and 271 

MDsim is molecular dynamics simulation. 272 

3.1 pp-LFER 273 

First, the pp-LFER equation (eq. 2) was fitted to all experimental αCD binding constants of 274 

the Linden data set (i.e., no test and training set selection) to have an idea to what extent 275 

the 2D model can describe the whole data set (Fig. SI 4). This fit resulted in the equation 276 

log 𝐾𝑎1 = −0.32 (± 0.44) + 2.04 (± 0.63) 𝑆 + 3.15 (± 0.63) 𝐴 − 3.01 (± 0.50) 𝐵 +277 

6.01 (± 0.88) 𝑉 − 1.10 (± 0.21) 𝐿  (2) 278 

The fit of the pp-LFER equation usually results in a standard deviation of 0.1 to 0.2 log units 279 

for homogeneous solvent-water partition systems, which are not influenced by steric effects, 280 

and a larger standard deviation for partitioning or binding to heterogeneous materials such 281 

as serum albumin and natural organic matter (Bronner and Goss, 2011; Endo and Goss, 282 

2011). The RMSE for the binding to αCD (Fig. SI 4) is 0.48, being comparable to fits for other 283 

heterogeneous materials (Bronner and Goss, 2011). 284 
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The pp-LFER fits for training sets extracted from the Linden data set resulted in system 285 

parameters similar to those for the complete Linden data set (Table SI 3). The predictions for 286 

the corresponding test sets (Table 1, M1) were surprisingly accurate (RMSE = 0.52 ± 0.05 and 287 

R² = 0.68 ± 0.07). This result was unexpected because the experimental results do suggest 288 

strong steric effects, whereas the pp-LFER model does not capture such effects (Linden et al., 289 

2016). A closer examination of the results revealed that systematic prediction errors do exist 290 

for binding constants, e.g., log Ka1 values for end-substituted chemicals were systematically 291 

underestimated and those for middle-substituted chemicals were overestimated, which is an 292 

indication that the pp-LFER model is not able to cover the underlying steric effects. In 293 

addition, chemicals that are not expected to fit into the αCD cavity due to the steric 294 

hindrance were over-predicted by the pp-LFER, e.g., the log Ka1 value of 1-chloronaphthalene 295 

is predicted as 2.13, while the experiment showed that it is < 1.3 (Linden et al., 2016). 296 

3.2 3D-QSARs 297 

Seven 3D-QSAR model variants were constructed using different combinations of structure 298 

generation, alignment, and MIF methods and evaluated with the Linden data set, as 299 

explained in the method section (Fig. SI 1, Table 1). The results show the following trends: (i) 300 

RMSE and R² of the 3D-QSAR model variants for test set predictions were 0.45–0.56 and 301 

0.53–0.70, respectively. While the best 3D-QSAR model (M4) performed slightly better than 302 

the pp-LFER, the statistics were similar on average. (ii) The models that used the LSPs (Klamt 303 

et al., 2012) as independent variables tended to result in better predictions than those using 304 

the vdW and ele MIFs for a given alignment (i.e., O3A, COSMOsim3D, or COSMOsim3d 305 

receptor). These outcomes suggest that LSPs are more suitable descriptors to describe the 306 

binding to αCD than the tested CoMFA variables. This interpretation is in line with the claim 307 
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that LSPs are theoretically more relevant for linear regression models, like PLS, to describe 308 

the interaction energy (Klamt et al., 2012). 309 

Of the 3D-QSARs tested, the model that uses the COSMOsim3D alignment with the LSP 310 

variables (M4, Table 1) was the best model variant (i.e., with the lowest RMSE). No 311 

improvement was observed for the use of the 3D-structure of αCD as the template for the 312 

alignment (compare M6a and M6b to M4). Moreover, no difference was observed between 313 

the use of the two αCD structures (M6a (X-Ray) vs. M6b (MDsim)) for the target-dependent 314 

alignment. The fact that no improvement was observed by the use of the target-dependent 315 

alignment suggests that the selected 7 template chemicals were sufficient for aligning the 60 316 

chemicals in the Linden set. This result, however, may not be general; alignments with a 317 

binding site structure are expected to be advantageous particularly if the data availability is 318 

limited. Note that, in principle, MDsim could directly calculate binding coefficients (Gebhardt 319 

and Hansen, 2016; Sancho et al., 2016) but such calculations would be time consuming for a 320 

larger number of chemicals, although these calculations are more and more automated and  321 

routinely performed. 322 

The possibility of a chance correlation for the best modeling approach (M4) was evaluated 323 

by scrambling of the dependent log Ka1 values in two sorted bins (this means each chemical 324 

got a permuted log Ka1 value) (Tropsha et al., 2003; Rücker et al., 2007), which resulted in 325 

non-predictive models (Rtraining² = 0.40, qLTO² = -0.0030, the mean of 10 times evaluation) . 326 

To infer binding mechanisms, the contributions of the MIFs (vdW and ele, or LSPs) to the PLS 327 

components are examined. The percentage contributions of the seven LSPs to the M4 PLS 328 

model are shown in Fig. SI 6. MIF 4 (-0.012 to 0 e/Å², Fig. SI 2) had the highest contribution 329 

to the PLS components. This is an indication for the importance of vdW interactions and the 330 
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hydrophobic effect for the binding to αCD (Marques, 2010). The contribution of MIF 4 331 

decreases slightly with increasing PLS component number, whereas the contributions of the 332 

other MIFs rather increased with increasing PLS component number. The PLS component 1 333 

in this example already explained 70% of the variance in the log Ka1 data, while the other 334 

four PLS components added up to an explained variance of 27%, i.e., the PLS components 2-335 

5 serve for fine tuning of the model. The field contributions of model variants that used vdW 336 

and ele variables support the mechanistic interpretation obtained from the LSPs; the 337 

contribution of the vdW field is around 90% for the models. 338 

3.2.1 Predictions of specific molecular steric effects 339 

To evaluate the performance of the 3D-QSAR modeling approaches for predicting particular 340 

types of chemicals, four training and test sets were generated from the Linden data set 341 

according to test set selection procedure 2 (see the method section) and all prediction 342 

procedures were redone. Model approaches M3, M4, M5, and M6b were evaluated here 343 

because they performed best in the random evaluation above and allow comparison of the 344 

classical CoMFA approach and the new COSMO-based approach. The resulting statistics (i.e., 345 

q2, RMSE, R2) were similar to those obtained above with test set selection procedure 1 346 

(Table 1), except for M3, for which the test set selection procedure 2 resulted in worse 347 

predictions (see Table SI 5). Fig. 1 compares the experimental data and the predictions by 348 

the best model variant (M4, with COSMOsim3D + LSPs) for individual chemicals. 349 
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 350 

Figure 1. Prediction of log Ka1 of 60 Linden’s chemicals with COSMOsim3D alignment and 351 

local sigma profiles as variables (M4). Test sets were selected with test set selection 352 

procedure 2. The solid line indicates the 1:1 line and the dashed lines indicate a deviation 353 

of 0.5 log units from the 1:1 line. 354 

Many trends of the data that are related to steric effects were quantitatively described in 355 

the best 3D-QSAR model variant we found (M4). For example: experimental data show 356 

relatively large differences in log Ka1 between isomeric chemicals with the functional group 357 

at the terminal and the middle positions such as 1-heptanol and 4-heptanol. These chemicals 358 

are predicted successfully by M4, e.g., 1-heptanol (log Ka1 exper. 3.08, pred. 2.75) and 4-359 

heptanol (log Ka1 exper. 2.16, pred. 2.36). Also, as is the case in the experimental data, 360 

elongation of the alkyl chain in only one direction resulted in a higher increase of log Ka1 than 361 

elongation in two or more directions (Fig. 2). The 3D-QSAR model variants M3, M5, and M6b 362 

were not able to describe the differences between these alcohols so well as M4 (Fig. 2). The 363 

comparison between M4 and M5 shows that the use of LSPs instead of vdW and ele not only 364 

minimizes the overall prediction errors but helps distinguish structural isomers of alcohols. 365 
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The standard CoMFA model (M3) underestimates most of these alcohols and is not able to 366 

capture the steric effects. M6b uses LSPs as variables, but it appears that the target-based 367 

alignment cannot as accurately reproduce the trend of alcohol data as the ligand-based 368 

alignment in this case. 369 

 370 

Figure 2. Experimental and predicted log Ka1 for αCD binding of two C6-alcohols and five 371 

C8-alcohols. 372 

Experimental data for chlorobenzenes showed a distinct substitution effect on the αCD 373 

binding constant. Ka1 increases with chlorine substitution up to two chlorine atoms, whereas 374 

a further substitution decreases Ka1, which can be explained by the size limitation of the 375 

cavity. This effect is not well described by any 3D-QSAR model tested here. For example, 376 

1,2,4,5-tetrachlorobenzene and 1,3-dichlorobenzene showed a prediction error larger than 377 

0.6 log units with the best model variant, M4. The use of the αCD target structure 378 

(COSMOsim3D receptor alignment, M6b), the CoMFA variables vdW and ele (M5), and the 379 

standard CoMFA model (M3) did not improve the prediction of chlorobenzenes. A reason for 380 

the inaccurate predictions for chlorobenzenes could be the small number of data that 381 
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showed strong effects of steric restrictions. As shown in the previous work (Linden et al., 382 

2016), Ka1 for chemicals that undergo strong steric restrictions tend to have Ka1 values that 383 

are too low to measure and thus such chemicals cannot be included in the data set for 384 

model calibration. 385 

The end-substituted chemical 1-dodecanol was the biggest outlier in all predictions. A reason 386 

could be that 1-dodecanol has the longest alkyl chain and the largest Ka1 in the data set. 387 

Therefore, the positive interaction between the long alkyl chain and αCD may not be 388 

covered by the models. Additionally, the 3D-QSAR models in this work only consider one 389 

selected conformer of each chemical, which neglects the influence of different binding 390 

modes for predictions of flexible molecules like 1-dodecanol. Furthermore, a recent MDsim 391 

study showed that 1-dodecanol interacts substantially with the water surrounding αCD and 392 

that the explicit consideration of the water molecules is necessary for a successful prediction 393 

of long chain alcohols (Gebhardt and Hansen, 2016). Note that, while the data we 394 

considered are for 1:1 binding constants, 2:1 binding can become more important for 395 

chemicals with long alkyl chain(s). 396 

3.3 Predictions of the Suzuki data set 397 

For a further evaluation of each modeling approach, models were generated using all Linden 398 

data as the training set and evaluated with the Suzuki data as an external test set. The 399 

prediction of the Suzuki data by the pp-LFER calibrated with the Linden data (Table SI 6, M1) 400 

was substantially worse (RMSE = 1.09, R² = 0.13), as compared to the test set predictions of 401 

the Linden data set (Table 1, M1). This RMSE is even greater than the SD of the Suzuki data. 402 

It is notable that the pp-LFER, which does not include steric terms, does show promising 403 

statistics when evaluated with the Linden set alone (Table 1, M1), whereas the model 404 

calibrated with the Linden set does not extrapolate well to the external Suzuki set. We have 405 
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tried the reversed evaluation (i.e., using the Suzuki set as the training set and the Linden set 406 

as the test set, Table SI 6) and obtained similar statistics but substantially different 407 

regression coefficients.  408 

The 3D-QSAR models handled the external prediction better than the pp-LFER model, but 409 

RMSE values for the predictions of the Suzuki data set (Table SI 6, M2-M7) were 0.13-0.19 410 

log units higher than the test set predictions for the Linden data set. The model variant that 411 

uses the COSMOsim3D alignment and LSPs (Table SI 6, M4) achieved an RMSE of 0.59 and an 412 

R² of 0.61, while all other models had RMSE > 0.68 and R² < 0.5. For a given alignment, LSPs 413 

resulted in better or equivalent statistics as compared to vdW and ele. These results are in 414 

line with the findings we obtained from the model evaluation with the Linden data set only. 415 

Note that systematic under-predictions for the Suzuki data were not found; thus, the 416 

temperature difference is not a significant reason for the increased RMSE. We obtained 417 

similar statistics for the reversed evaluation (i.e., using the Suzuki set as training set and the 418 

Linden set as test set, Table SI 6). We also found that, if both Linden and Suzuki sets are 419 

combined and split to training and test sets, statistics for the test set prediction improves 420 

(RMSE, R2), which suggests that there are significant differences in the chemical domains 421 

that are covered by the two data sets. As an example, the Suzuki data set includes phenols 422 

and phenyl acetates, which are chemical classes not included in the Linden data set. On the 423 

other hand, only the Linden data set includes ethers and ketones. Moreover, the Suzuki data 424 

set is predominated by aromatic chemicals while the proportion of aromatic and aliphatic 425 

chemicals is comparable in the Linden data set. 426 

We further tested if the steric restriction through the cavity can correctly be described by 427 

the model variant M4. The binding coefficients were predicted for the ten chemicals for 428 

which we were able to determine only the upper limit of log Ka1 (< 1.3) in the previous work 429 
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(Linden et al., 2016). These chemicals are most likely too large to fit into the αCD cavity. 430 

Eight of the ten chemicals had predicted log Ka1 values of 1.3 ± 0.4, which is in a semi-431 

quantitative agreement with our experiments. Log Ka1 values for 1-chloronaphthalene 432 

(predicted log Ka1 2.67) and acenaphthene (predicted log Ka1 2.42) were overestimated by > 433 

1 log unit. In contrast, the prediction of a similar chemical, acenaphthylene resulted in a 434 

predicted log Ka1 of 1.7. The COSMOsim3D alignment placed acenaphthene and 435 

acenaphthylene in different positions, which likely explains the deviation in the predictions. 436 

4 Conclusions 437 

A 3D-QSAR model with COSMOsim3D (Thormann et al., 2012) for alignment and LSPs for 438 

independent variables in PLS regression analysis was capable of predicting αCD binding 439 

constants for organic chemicals with an RMSE of 0.45 log units. This model can be used for 440 

the prediction of unknown αCD binding constants for neutral organic chemicals and covers 441 

the most important steric effects that influence the binding to αCD (Linden et al., 2016). As 442 

assumed, the description of the binding to αCD needs to include the 3D-structure of the 443 

solutes because the 3D-QSAR model worked much better than the simple correlation with 444 

log KOW (Linden et al., 2016) and better than the 2D-QSAR model (pp-LFER) considered here. 445 

Hence, it can be concluded that the LSPs are more suitable variables for 3D-QSAR modeling 446 

of the binding process to αCD and probably for other binding processes as well, e.g., binding 447 

to other types of cyclodextrin with a different application range. Use of 7 out of 60 chemicals 448 

as templates for the alignment appeared to be sufficient, also with regard to the prediction 449 

for 84 external data (Suzuki, 2001). Consequently, the combination of COSMOsim3D and 450 

COSMOsar3D may be applicable to similar binding systems with an unknown or flexible 451 

target-structure, as far as data for some strongly binding chemicals are available. In an 452 
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upcoming study, we will apply the 3D-QSAR modeling approaches tested in this study to 453 

model the binding to serum albumin, which also showed specific 3D effects. 454 
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All tables: 561 

Table 2. Comparison of the statistical results of the different modeling approaches for the 562 

prediction of log Ka1 of the Linden data set using test set selection procedure 1. 563 

Modeling 

approach 

Method Alignment Field q² ± SD RMSE ± SD R² ± SD 

M1 pp-LFER 
   

0.52 ± 0.05 0.68 ± 0.07 

M2 3D-QSAR O3A LSP 0.63 ± 0.03 0.54 ± 0.08 0.56 ± 0.17 

M3 3D-QSAR O3A vdW ele 0.58 ± 0.08 0.53 ± 0.11 0.53 ± 0.11 

M4 3D-QSAR COSMOsim3D LSP 0.83 ± 0.02 0.45 ± 0.06 0.70 ± 0.08 

M5 3D-QSAR COSMOsim3D vdW ele 0.70 ± 0.01 0.56 ± 0.06 0.53 ± 0.12 

M6a 3D-QSAR COSMOsim3D 

receptor X-ray 

LSP 0.66 ± 0.06 0.51 ± 0.06 0.61 ± 0.09 

M6b 3D-QSAR COSMOsim3D 

receptor MDsim 

LSP 0.71 ± 0.04 0.49 ± 0.04 0.64 ± 0.07 

M7 3D-QSAR COSMOsim3D 

receptor X-ray 

vdW ele 0.51 ± 0.08 0.55 ± 0.08 0.56 ± 0.13 

O3A means open3DALIGN, q² is the coefficient of determination for the leave-two-out 564 

cross validation using the training set, RMSE is the root mean square error of the test set in 565 

log units, and R² is the coefficient of determination of the test set. LSP, vdW, and ele 566 

indicate the usage of local sigma profiles, van der Waals interaction field, and electrostatic 567 

interaction field as molecular interaction field, respectively, SD is standard deviation, and 568 

MDsim is molecular dynamics simulation. 569 
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