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Multichannel Efimov physics is investigated in ultracold heteronuclear admixtures of K and Rb atoms.
We observe a shift in the scattering length where the first atom-dimer resonance appears in the 41K-87Rb
system relative to the position of the previously observed atom-dimer resonance in the 40K-87Rb system.
This shift is well explained by our calculations with a three-body model including van der Waals
interactions, and, more importantly, multichannel spinor physics. With only minor differences in the atomic
masses of the admixtures, the shift in the atom-dimer resonance positions can be cleanly ascribed to the
isolated and overlapping Feshbach resonances in the 40K-87Rb and 41K-87Rb systems, respectively. Our
study demonstrates the role of multichannel Feshbach physics in determining Efimov resonances in
heteronuclear three-body systems.
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If physical systems exhibit properties that are indepen-
dent of the details of the interaction, they are called
universal [1]. Universality has played a central role in
the analysis of quantum degenerate gases; e.g., the effect of
binary collisions were successfully characterized by a
single parameter, the s-wave scattering length a, indepen-
dent of the details of the two-body potential. For few-body
phenomena, however, it has been well known that an
additional parameter—e.g., a three-body parameter [1]—
is necessary for a complete description of the system.
Efimov states, an infinite series of three-body bound states
with discrete scale invariance when a two-body scattering
length diverges [2], provided us a unique opportunity to
investigate the properties of the three-body parameter both
theoretically and experimentally. Combined experimental
efforts to observe Efimov-related resonances provided us
with an unexpected constancy of three-body parameters
[3–9], while detailed theoretical analysis showed the origin
of this constancy in some limiting cases [10,11]. Recent
topics of Efimov physics are reviewed in Ref. [12].
Recently, a three-body spinor model that included both

van der Waals interactions and multichannel Feshbach
physics was developed [13]. It was impressive to see that
predictions from a three-body model constructed to repro-
duce only two-body Feshbach physics match almost
perfectly with the experimentally observed three-body
features in homonuclear systems [13,14]. This achievement
suggests that the necessity of including precise few-body
short-range chemical forces in studies of universal
few-body phenomena—a task far beyond our current
capability—may be removed.
Extending this universal theory to heteronuclear systems

is the next big challenge. In addition to the mass ratio,

heteronuclear systems have the extra complication of
having both inter- and intraspecies scattering lengths.
The predictions of the single-channel universal van der
Waals theory [15] have been confirmed in experiments with
several heteronuclear systems [16–19], and the effect of
multichannel Feshbach physics has therefore not been well
demonstrated and understood.
We focus on the systems with small or moderate mass

ratios—the “Efimov-unfavored” systems, where the origin
of universality is similar to homonuclear systems [15].
There are several experimental groups working on Efimov-
unfavored systems of K-Rb admixtures [20–23]. We
compare our experimental results for 41K-87Rb mixture
with those obtained by the JILA group for the 40K-87Rb
mixture [21,22]. In general, Efimov-unfavored systems
have relatively small universal scaling constant s0, which
leads to the large Efimov scaling cycle eπ=s0 [1]; the size of
the scattering length needed for seeing an Efimov reso-
nance in three-body recombination is too large to be
realized experimentally. We therefore measure the positions
of the Efimov-like atom-dimer resonances instead, which
could be observed at significantly lower scattering length
[24]. For a comprehensive analysis of the heteronuclear
Efimov resonance, we also investigate the three-body loss
in 41K-87Rb admixtures. We confirmed the absence of
resonance in a three-body recombination, which is con-
sistent with the universal predictions [15].
These two K-Rb systems are suitable for comparing the

single- and multichannel theories for Efimov physics. They
are nearly identical in the single channel theory: the van der
Waals lengths (rvdW) are 71.9a0 and 72.2a0 [25], where a0
is the Bohr radius, and the scaling parameters s0 for two Rb
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atoms and one K atom are 0.6444 and 0.6536, for the
41K-87Rb and 40K-87Rb mixtures, respectively [24].
However, they are different in multichannel theory: they
exhibit different two-body Feshbach spectra, the over-
lapping resonances for the 41K-87Rb mixture, and the
isolated resonance for the 40K-87Rb mixture. The descrip-
tion of these Feshbach resonances is summarized in
Ref. [26]. We observed a shift of Efimov atom-dimer
resonances in these isotopic systems. Our new spinor
model successfully reproduced this result and this fact
reveals the critical effect of multichannel Feshbach physics
on the heteronuclear systems.
The details of our experimental setup can be found in

Refs. [26,29]. In summary, we prepared a dual-species
Bose-Einstein condensate (dual-BEC) comprising 41K and
87Rb atoms in a crossed optical dipole trap. Both atoms are
in the jF;mFi ¼ j1; 1i state, where F corresponds to the
atomic angular momentum and mF is its projection. The
typical number of each of the 87Rb and 41K atoms in a dual
BEC is ∼4 × 104.
When it comes to the study of inelastic atom-dimer

collisions, it is necessary for dimers to be produced
efficiently. This is especially true for a Bose-Bose mixture,
in which a large contribution from atom-dimer and dimer-
dimer inelastic collisions limits the efficiency with which
the dimers in traps are produced. We resolve this problem
by using a three-dimensional optical lattice. Some prepar-
atory steps are needed before the dual-BEC can be loaded
onto the optical lattice potential. First, we compensate for
the differential gravitational sag between the 41K and 87Rb
atoms by introducing an additional laser beam whose
wavelength is 809 nm [30]. Second, we decompress the
BEC by decreasing the trapping frequencies in the hori-
zontal directions. This is necessary for increasing the
number of lattice sites that have exactly one K and one
Rb atom when they become a dual Mott insulator phase.
Typical trap frequencies for K and Rb are ðfx; fy; fzÞ ¼
ð13; 92; 38Þ and (10,92,38) Hz, respectively, where the y
axis is the axis of gravity. Finally, we set the magnetic field
B¼85G, where interspecies scattering length a ¼ −20a0.
At this magnetic field, the dual BEC is miscible because the
interspecies scattering length is much smaller than the
intraspecies scattering length [aKK ¼ 63.5ð6Þa0 [31],
aRbRb ¼ 100.4ð1Þa0 [32]].
As we raised the optical lattice potential, the dual BEC

was transformed into a dual Mott insulator. Then magnetic
field was swept across the Feshbach resonance at 78.82 G
and the atoms were adiabatically associated into molecules.
For measuring the atom(Rb)-dimer(KRb) loss coefficient,
we selectively removed the K atoms [26]. Before absorp-
tion imaging, the atoms and molecules were spatially
separated in the horizontal direction via application
of a magnetic field gradient during the time of flight.
Furthermore, molecules were dissociated into atoms by
sweeping the magnetic field across Feshbach resonance.

The typical numbers of Rb atoms and KRb molecules are
∼1.1 × 104 and ∼3 × 103, respectively.
The atom-dimer loss coefficient βad was determined by

placing the atom-dimer mixture into a dipole trap and
measuring the number of dimers and atoms after a variable
holding time t. The rate equation for the number of dimers
NKRb can be expressed as follows:

_NKRbðtÞ ¼ −βad
Z

nRbðr; tÞnKRbðr; tÞd3r

− 2βdd

Z
nKRbðr; tÞ2d3r: ð1Þ

In this equation, NKRbðtÞ is the number of KRb dimers;
nRbðr; tÞ and nKRbðr; tÞ are the densities of Rb atoms and
KRb dimers, respectively; and βad and βdd are the loss
coefficients for the atom-dimer and dimer-dimer collisions,
respectively. Assuming a thermal distribution for the atoms
and dimers in the dipole trap, the right-hand side of Eq. (1)
can be calculated using the number and temperature of atoms
and dimers from the time-of-flight images. Both βad and βdd
can be evaluated by comparing the experimental data from
different initial conditions [26]. Figure 1 shows themeasured
atom-dimer and dimer-dimer loss coefficient, β. The mag-
netic field was converted into the scattering length by using
the aðBÞ from our multichannel two-body calculation. The
calculation uses the atomic potentials in Refs. [33,34] and is
calibrated carefully to give the correct positions of the
Feshbach resonances. The dimer-dimer loss coefficient
βddðaÞ does not show any prominent features [26]. The
resonant feature was clearly observed in the atom-dimer loss
coefficient βadðaÞ, and the overall shape of the resonancewas

FIG. 1. Atom-dimer and dimer-dimer loss coefficients observed
in an ultracold 41K-87Rb system. While the dimer-dimer
(KRb-KRb) loss coefficient (open triangles) does not show
any prominent features, the atom-dimer (Rb-KRb) loss coeffi-
cient (circles) shows a resonant feature. Lines of best fit for
dimer-dimer and atom-dimer loss coefficients are illustrated by
dashed and solid lines. The fit for the dimer-dimer loss coefficient
assumes a linear dependence on a, while the fit for the atom-
dimer loss assumes Eq. (2). The typical densities of the atoms
and dimers are nRb ¼ 1.3 × 1011 and nKRb ¼ 0.7 × 1011 cm−3,
respectively. The typical temperature is 60 nK.
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quite similar to that of the 87Rb-40K87Rb mixture. The peak
position, however, was different. We can quantify the differ-
ence in thepeakpositions by fitting the curveswith the results
obtained from the effective field theory, which includes three
fitting parameters (a�, η�, Cβ) [35],

βadðaÞ ¼ Cβ
sinhð2η�Þ

sin2½s0 lnða=a�Þ� þ sinh2ðη�Þ
ℏa
m1

: ð2Þ

In Eq. (2), a� represents the resonance position, η� is the
resonancewidth, andCβ is the overall magnitude of the loss.
Note thatm1 is the mass of the K atom in this case, and s0 is
the scaling parameter. We can fit βad using Eq. (2) and
compare the results with those obtained for the 40K-87Rb
system. The results of both fits are summarized in Table I.
An isotopic comparison showed that η� matches within

the error bars, while a� and Cβ are different between the
two isotopes. The difference in Cβ can be attributed to
the systematic uncertainty in density calibration, whereas
the difference in a� [36] signifies the difference in the
position of the peak. Thus, it is worth asking whether the
difference can be attributed to the difference of the proper-
ties of the Feshbach resonances.
To better understand why there was an isotopic

difference, we also checked the three-body recombination
rate. Recent studies on the three-body recombination
coefficient of the K-Rb systems [21–23] showed that there
is no Efimov-related resonance in the region of 200a0 <
jaj < 3000a0. Furthermore, the single-channel universal
theory on the heteronuclear Efimov resonance for broad
resonance predicts that there is no resonance in the region
of jaj < 2800a0 [15].

Experimental details on how the three-body loss coef-
ficient was measured are presented in Ref. [26]. Measuring
the three-body loss coefficient for a heteronuclear system of
bosonic atoms is problematic because we have to distin-
guish between competing processes. In the case of the
three-body loss for the 41K-87Rb mixture in the vicinity of
the 41K-87Rb Feshbach resonance, there are two major
contributions: K-K-Rb and K-Rb-Rb [26]. Therefore,
increasing the signal-to-noise ratio of data is mandatory.
In our experiment, the main source of noise in the data
analysis originated from fluctuations in the initial number
of atoms. We eliminated these fluctuations by taking
multiple images of the same cloud using phase-contrast
imaging. Additionally, we enhanced the three-body loss by
increasing the atomic density [26]. The measured three-
body recombination loss coefficients are shown in Fig. 2. In
the vicinity of resonance, three-body recombination loss
coefficient deviates from the a4 dependence and shows
saturation. In general, saturation can be caused by either
temperature [37,38] or density [39]. In this experiment, the
typical density, temperature, and phase-space density of the
gas were approximately 1 × 1013 cm−3, 400 nK, and 0.5,
respectively. Since the phase-space density was high, the
saturation of the loss coefficient was dominated by the
density effect [which happens when the scattering length
reaches the interparticle spacing k−1 ¼ 1=ð6π2nÞ1=3 ¼
2000a0] rather than the temperature effect (which happens
when the scattering length approaches the thermal de
Broglie length λdB ¼ 6000a0). The saturation was clearly
observed in the negative side of the three-body loss
coefficient. What is happening on the positive side is less
clear. Again, it could be just the saturation, but we cannot
exclude the possibility of three-body loss coefficient having
a minimum in a > 1300a0 region. Note that the absolute
value of the three-body recombination loss coefficient is
smaller than the previously reported value [23]. We believe
this discrepancy comes from the fact that we did a complete
analysis by including the other loss channel (i.e., K-K-Rb)
[26] that was neglected in Ref. [23].
The significant shift in the positions of the atom-dimer

resonances in the two isotopic K-Rb admixtures clearly

TABLE I. Experimental results of the atom-dimer resonances
for Rbþ 41KRb and Rbþ 40KRb collisions. These values are
determined by fitting of Eq. (2). Subscripts of syst and fit denote
systematic error and fitting error, respectively.

a� ða0Þ η� Cβ

41K-87Rb 348ð8Þfitð41Þsyst 0.24ð2Þfit 15.5ð7Þfit
40K-87Rb [21] 230ð10Þfitð30Þsyst 0.26ð3Þfit 3.2ð2Þfit

FIG. 2. The three-body recombination loss coefficient of the K-Rb-Rb collision in the vicinity of the heteronuclear Feshbach
resonance (circles). The solid line shows an a4 dependence, and the amplitude factor is determined by a fitting on the range of the
positive scattering length 200a0 < a < 1300a0. On the negative side, the amplitude factor is half of its value on the positive side [24].
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cannot be explained by the small differences in the van der
Waals lengths or the universal scaling constants. In fact, the
single-channel, universal van der Waals three-body theory
fails here by a large margin with an incorrectly predicted
atom-dimer resonance near a ¼ 100a0. The failure of the
universal theory raises the important question of whether
the general universality, i.e., the independence of Efimov
physics on short-range chemical forces, is still valid.
Our approach to address the above question is to perform

three-body calculations with a spinor model that reprodu-
ces the relevant two-body Feshbach spectra in each of the
isotopic systems. Such a model is relatively easy to build in
the Rb-Rb-K system because the multichannel physics is
only important for the K-Rb pairs, whereas a single-
channel description is a good approximation for the
Rb-Rb interaction in the whole range of the magnetic field
of our current interest. Our theory, therefore, allows the K
atom to carry the (pseudo)spin degrees of freedom and
treats Rb atoms as spinless. Specifically, the total three-
body wave function Ψ is expanded as Ψ ¼ P

αψαjαi,
where jαi is the (pseudo)spin state of the K atom.
With the spinor model, we solve the three-body

Schrödinger equation in the form of

ðT þ VRbRbÞψα þ
X
β

ðVðαβÞ
KRb;1 þ VðαβÞ

KRb;2Þψβ ¼ ðE − ϵαÞψα;

ð3Þ
where T is the three-body kinetic energy operator; VRbRb,

VðαβÞ
KRb;1, and VðαβÞ

KRb;2 are the single- and multichannel two-
body potentials of the three pairs of the atoms; and ϵα is the
single-atom energy level of the K atom. The proper
magnetic-field dependence of the three-body Hamiltonian
is built in the single-atom energy as ϵα ¼ μαBþ uα, where
the magnetic moment μα and the zero-field energy uα are
chosen to mimic the realistic magnetic moments and the
hyperfine splittings [26]. We solve Eq. (3) and calculate the
atom-dimer loss coefficients with essentially the same
potentialmodels and numerical techniques used inRef. [13].
In Figure 3 we show our numerically calculated atom-

dimer loss rates compared with the data from our and JILA’s
experiments. To properly reproduce the isolated and over-
lapping characters of the Feshbach resonances in 40K-Rb
and 41K-Rb pairs, two-spin-state and three-spin-state model

interactions are used for VðαβÞ
KRb in the 40K-Rb-Rb and

41K-Rb-Rb calculations, respectively. The results of these
models are multiplied by 5 and 2, which are thermally
averaged at 70 and 300 nK for Rbþ 41KRb and Rbþ
40KRb loss coefficients, respectively. The peak positions of
the theoretical curves are 395a0 and 222a0 for Rbþ 41KRb
and Rbþ 40KRb, respectively. We also calculated loss
coefficients at different temperatures. A factor of 2 change
in the temperature gives changes in the peak positionswithin
�5a0 and�2a0 for Rbþ 41KRb and Rbþ 40KRb systems,
respectively. Without fitting parameters, the calculated

atom-dimer resonance positions agree well with both of
the experimentally observed positions, and, consequently,
reproduce the atom-dimer resonance shift in the isotopic
systems. The need to scale themagnitude by a factor of 5 can
be explained by the large uncertainty in atomic density in our
experiment. On the other hand, there is also limited
predictability on the absolute magnitude of the atom-dimer
loss rates from theory. The absolute magnitudes of the atom-
dimer loss rates are susceptible to the low-lying atom-dimer
decay channels. We expect the overall magnitude is pre-
dicted within a factor of about 2. Note that the character of
the resonant features in the calculations, in particular the
positions of the resonance—the main topic of our current
study—is generally unaffected by the change in the overall
magnitudes.
For the 41K-Rb-Rb system, we point out that in order to

correctly predict the atom-dimer resonance position, it is
necessary for the three-body model to reproduce both the
background (39) and overlapping (79 G) Feshbach reso-
nances. A model that reproduces only the local properties
of the overlapping resonance does not give the atom-dimer
resonance position correctly. Another observation is that
regardless of the number of spin states, the calculated loss

(a)

(b)

FIG. 3. Comparisons of numerically calculated and experimen-
tally measured loss coefficients for (a) Rbþ 41KRb and
(b) Rbþ 40KRb (experimental data obtained from Ref. [21])
collisions. In (a), the numerical results are multiplied by 5, which
are thermally averaged at 20, 70, and 150 nK (dashed-dotted line,
solid line, and dotted line). In (b), the numerical results are
multiplied by 2, which are thermally averaged at 100, 300, and
500 nK (dashed-dotted line, solid line, and dotted line). In both
graphs, results from numerical calculations at middle temperatures
(shown in solid lines) show reasonable agreement with exper-
imental results (shown in circles and triangles). The results from
the fit using the effective field theory (dashed line) are also shown.
The temperature of each measurement was ∼60 (solid circles),
∼150 (open triangles), and∼300 nK (solid triangles), respectively.
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rates in the two isotopic systems have similar magnitude
when the scattering length is low. This suggests that the
observed shift of the atom-dimer resonance position—
going beyond the single-channel van der Waals theory—is
the manifestation of the difference in the underlying two-
body Feshbach physics. The short-range chemical forces
are clearly not involved.
In summary, we measured the heteronuclear atom-dimer

loss coefficients of 87Rb atoms and 41K87Rb Feshbach
molecules at ultracold temperatures. The observed loss
coefficient showed an Efimov-related resonance at
a� ¼ 348ð8Þfitð41Þsyst a0, which shifted from previous mea-
surements for different isotopes of potassium. To explain
this shift, we modeled the system using a three-body
spinor theory that reproduced the properties of Feshbach
resonances. This theory was successful in reproducing the
experimental results of the atom-dimer resonance for both
isotopes. These results show the important role of the
multichannel Feshbach physics in shifting the positions
of the three-body Efimov resonances, and demonstrate the
independence of these three-body resonances from short-
range chemical forces in the heteronuclear atomic systems
even near relatively narrow Feshbach resonances.
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