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Semi-analytical model for a static sheath including a weakly
collisional presheath

Tatsuru Shirafuji∗1 and Kazuki Denpoh2

1 Department of Physical Electronics and Informatics, Osaka City University, Osaka 558-8585, Japan
2 Process Development Center, Tokyo Electron Limited, Nirasaki, Yamanashi 407-0192, Japan

A semi-analytical static sheath (SASS) model can provide a spatial potential profile on a biased surface

with microstructures, which can be used for predicting ion trajectories on the surface. However, two- or

three-dimensional SASS models require a search procedure for a sheath edge equipotential profile, at

which ions have the Bohm velocity, as the starting positions for calculating ion trajectories. This procedure

can be troublesome when surface microstructures have complex structures. This difficulty is due to the fact

that the SASS model cannot handle a presheath region. In this work, we propose a modified SASS model

that can handle a presheath region. By using the modified SASS model, ion trajectories can be calculated

from edges with arbitrary geometry without searching for the equipotential profile corresponding to sheath

edges.

1. Introduction

In reactive ion etching processes, ions are accelerated in a sheath adjacent to a wafer sur-

face and play an important role in controlling etching characteristics such as etching rate,1)

anisotropy,2,3) directionality,4–6) selectivity,7,8) and damage.9–12)Among them, the directional-

ity of ions is closely related to the shapes of microstructures formed on the wafer surface. The

resulting microstructures can have desirable or undesirable shapes depending on the purpose

of the etching process.

In the processes for fabricating ultralarge-scale integrated circuits, perpendicular ion bom-

bardment is generally required. Obliquely impinging ions, which tend to exist near the edge

of a wafer, are not preferred because they cause anomalous microstructure formation such

as microtrenching13) and shadowing.14) Recent advanced etchers therefore employ an appro-

priately designed focus ring that surrounds a wafer to compensate for the nonuniformity of

impinging ions.15,16) Some other etching processes, on the other hand, prefer oblique ion

bombardment, as used in the processes for fabricating three-dimensional (3D) photonic crys-
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tals.17,18) Regardless of the process, simulation tools are required for analyzing or designing

electrical potential profiles governing ion trajectories in a sheath for a given surface geometry.

At present, two types of simulation tools are available. One is a large-scale model cover-

ing a whole plasma reactor, in which fluid or particle dynamics are calculated together with

reaction kinetics and electromagnetics.15,16,19)Although the large-scale model provides de-

tailed information in a plasma reactor, it is time-consuming and requires days to weeks to

accomplish the calculation.

Another is a small-scale model or a stand-alone model, which covers only a sheath re-

gion and is based on the classical sheath theory, which was first proposed by Tonks and

Langmuir in 1929.20) The stand-alone model was simplified by Bohm in 1949, who deduced

Bohm’s criterion.21) The stand-alone sheath theory has been critically discussed by many

researchers,22–36)even recently.37–46)

Although we must pay attention to the problem of the singularity involved in the clas-

sical sheath theory, the stand-alone model has an advantage of low calculation cost. In the

case of one-dimensional (1D) geometries, we can analytically calculate potential profiles in

a sheath adjacent to a wafer surface using the four basic plasma parameters of ion massMi,

bulk plasma densityn0, electron temperatureTe, and bias voltageVdc on the wafer surface.

The stand-alone model is also valid in the case of two-dimensional (2D) or three-dimensional

(3D) geometries, although the solutions in these cases are not obtained analytically but nu-

merically. We call the stand-alone model employing numerical calculations a semi-analytical

static sheath (SASS) model.

In a SASS model, we assume a calculation area that is sufficiently larger than a roughly

estimated sheath and self-consistently solve a Poisson’s equation together with several con-

straints to form a sheath potential profile on a wafer surface. Since we can neglect ion-neutral

collisions in the sheath area in most cases, we can calculate ion trajectories by solving the

equation of motion for ions in the sheath using the calculated potential profile. Because of

this benefit, the 2D or 3D SASS models have been used for various purposes such as ex-

planation of the ion-focusing effect by the sheath,47–49) analysis of the sheath potential in

radio-frequency capacitively coupled plasmas,50–52) and explanation of the oblique etching

used for fabricating 3D photonic crystals.17,18)

However, SASS models have a limitation because the presheath region, which is located

between the sheath edge and the bulk plasma, in a solution of a SASS model shows physically

unacceptable characteristics as described later. This means that the equation of motion for

ions cannot be applied in the entire calculation area and only within the sheath region. Thus,
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when we calculate ion trajectories, we have to search for the sheath edge positions, which are

the initial positions of ions with the Bohm velocity, in the entire calculation area. The sheath

edge positions form an equipotential line or surface in the case of 2D or 3D geometries. It is

very easy to find the sheath edge positions in the case of simple geometries such as a plane

surface. However, it becomes a time-consuming and troublesome procedure if complex 2D

or 3D objects exist in the calculation area. If we can appropriately treat the presheath region,

we can use given geometry edges as the initial positions of ions to calculate their trajectories

without troublesome searching procedures for sheath edges. In this paper, we report that a

SASS model can treat a presheath region by the appropriate handling of its quasi-neutrality

and by assuming weakly collisional conditions.

2. Theory

2.1 Basic equations for conventional SASS

In the conventional SASS model (model 1 hereafter), we solve the following Poisson’s equa-

tion:

∇2V = −q0

ε0
(ni − ne) (1)

under the following constraints:17,47–52)

ne =


ns exp

(
q0V
kBTe

)
(V ≤ 0) ,

ns (V > 0) ,
(2)

u2
i = u2

B −
2q0V
Mi
, (3)

ni =


ns

uB

ui

(
u2

i ≥ u2
B

)
,

ns

(
u2

i < u2
B

)
.

(4)

Although these equations can be applied to 1D, 2D, and 3D geometries, we explain the SASS

theory in 1D geometry for simplicity. In these equations,x, which is implicitly involved in the

differential operator∇, is the distance from the negatively biased surface.V is the potential

measured from the sheath edge.q0 is the unit charge.ε0 is the vacuum permittivity.kB is

the Boltzmann constant.Mi is the ion mass.Te is the electron temperature.ne is the electron

density.ns = e−1/2n0 ≈ 0.6n0 is plasma density at the sheath edge, wheren0 is the bulk plasma

density.ui is the ion velocity. In the case of 2D or 3D geometries,ui is the norm of the ion

velocity vectorui. uB is the Bohm velocity given by
√

kBTe/Mi.
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Since we assume that a negative bias is applied on the surface atx = 0, we do not accept

solutions with positiveV. Therefore, whenV becomes positive during iterations to solve

equations, we setV = 0 as indicated by Eq. (2).

Although the self-consistent solution of model 1 is obtained in the entire calculation area,

only a limited area near the surface will have the characteristics of a sheath that satisfies the

first equation of Eq. (2), Eq. (3), and the first equation of Eq. (4). If we set a sufficiently large

calculation area, the sheath area is within the calculation area. The outermost edge of the

obtained sheath area is the sheath edge. The sheath edge position is automatically obtained

after solving model 1. Although automatic determination of the sheath edge position is a

major benefit of the SASS model, the SASS model has a limitation as mentioned in the

introduction.

In the presheath region, which is located between the sheath edge and the geometry edge,

V should be positive if the constraint given by Eq. (2) is not applied. In model 1, however,

such a presheath region is forced to have the sheath-edge characteristics ofV = 0, ne = ns,

andui = uB owing to the constraints given by Eqs. (2)–(4).

In a physically correct presheath model, the ion velocity should reach the Bohm velocity

uB at the sheath edge after traveling from the plasma-presheath interface to the sheath edge.

In the case of model 1 mentioned above, the ion velocity already has the Bohm velocity in

the presheath before reaching the sheath edge, which is physically unacceptable. Because of

this, we must search for the sheath edges as the initial positions to calculate ion trajectories

only in the physically correct sheath region. This search procedure is an easy task in the case

of 1D geometries. However, it becomes a time-consuming and troublesome procedure in the

case of 2D or 3D geometries, especially for those with complex structures.

2.2 Boundary conditions for model 1

The boundary conditions for model 1 are set as follows:

ni = ne = ns = n0e
−1/2 (x = L), (5)

ui = uB (x = L), (6)

V = 0 (x = L), (7)

V = Vdc (x = 0), (8)

whereVdc (≤ 0) is the potential at the negatively biased surface.L is the size of the calculation

area. As can be understood from Eqs. (5)–(7), model 1 forces the calculated results to have
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the characteristics of the sheath edge at the outermost edgex = L.

Note that this setting is not to set the sheath edge position atx = L before we solve model

1. The sheath position is involved in the obtained solution but we have to search for it. The

sheath position is obtained as the first position where the ion velocity becomes the Bohm

velocity when we evaluate the ion velocity from the surface (x = 0) toward the geometry

edge (x = L).

2.3 Electron density and ion velocity in modified SASS model

In the modified SASS model, the constraints given by Eqs. (2) and (3) are modified as follows

to treat the presheath region:

ne =


n0 exp

(
q0V
kBTe

)
(V ≤ 0) ,

n0 (V > 0) ,
(9)

u2
i = −

2q0V
Mi
. (10)

Since the outermost edge of the calculation area is assumed to be the edge of bulk plasma,

the potentialV is measured from the bulk plasma edge, where the plasma density isn0. Note

that the actual potentialϕmeasured from the ground level is expressed asV(≤ 0)+ ϕp, where

ϕp is the bulk plasma potential measured from the ground level. If we need to draw the actual

potential profile measured from the ground level, we can simply shift the calculatedV by ϕp.

Since the actual potentialϕ cannot exceed the plasma potentialϕp, positive values ofV are

forbidden during iterative calculation procedures. The initial velocity of ions at the geometry

edge is zero because the electric field is assumed to be zero in the bulk plasma. Accordingly,

the formula for the ion velocityui, which is given by Eq. (3) in model 1, is modified to Eq.

(10) in the modified SASS model.

Note that the ion velocity is calculated using the equation for freefall motion in both

the conventional and modified SASS models. Thus, the ions in the entire geometry should

be under a non- or weakly collisional condition. According to Meyer et al.,53) the presheath

length is on the order of the mean free pathλinc of ions in the case of an electron cyclotron

resonance etcher. This means that the modified SASS model can be applied to a practical

processing plasma, althoughL should be on the order ofλinc.
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2.4 Ion density in modified SASS model

In the modified SASS model, the formula to obtain the ion densityni is modified from Eq.

(4) to the following formula:

ni =


ns

uB

ui

(
u2

i ≥ u2
B

)
,

ne+ δn
(
u2

i < u2
B

)
.

(11)

As can be understood from Eq. (11), we do not apply exact neutrality (ni = ne) in the presheath

but apply quasi-neutrality (ni = ne + δn). δn represents the deviation from exact neutrality,

which is assumed to be small but not zero and can be estimated using the following equation

if the transport of ions and electrons is governed by ambipolar diffusion:54)

δn ≈ ε0
q0

|∇V|
Lch
≈ ε0

q0

|V|
L2

ch

. (12)

∇V is the ambipolar electric field, which is very small in comparison with the electric field

in the sheath but is not zero.Lch is the characteristic length of the system. In this work, we

assumed the following relationship:

Lch =

√
Da

νizc
,

whereDa is the ambipolar diffusion coefficient andνizc is the ionization frequency in the bulk

plasma. We assumed this relationship according to the fact that a time-independent diffusion

equation is derived from Poisson’s equation involving the space charge densityδn given by

Eq. (12), which is described in the appendix. To investigate the effects ofδn, we have exam-

ined the two modified SASS models of model 2 withδn = 0 and model 3 withδn given by

Eq. (12).

2.5 Boundary conditions for modified SASS model

Since the outermost edge of the geometry is not the sheath edge but bulk plasma in the

modified SASS model, the boundary conditions are modified as follows:

ni = ne = n0 (x = L), (13)

ui = 0 (x = L), (14)

V = 0 (x = L), (15)

V = Vdc (x = 0). (16)

L is the length from the biased surface to the edge of the bulk plasma and should be

less thanλinc for ions according to the strict constraint on ion-neutral collisions. Generally,
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however, if the number of collisions is sufficiently small, we can apply noncollisional models

even in the case ofL > λi. Such models are known as weakly collisional models.55) Thus,

we can apply the modified SASS models to 2D or 3D geometries in which the length of a

diagonal can be
√

2 or
√

3 times larger than the length of a side.

Note that the negative biasVdc is measured from the bulk plasma. Thus,Vdc is expressed

as the sum ofϕdc(≤ 0) andϕp, whereϕdc andϕp are the negative bias on the surface and

the plasma potential measured from the ground level, respectively. If we need to perform the

simulation on a nonbiased surface withϕdc = 0, we can setVdc = −ϕp.

2.6 Calculation conditions

We solved Poisson’s equation using a commercially available finite element method solver,

COMSOL Multiphysics, using the following parameters: plasma densityn0 = 1017 m−3,

electron temperatureTe = 11, 604 K (= 1 eV), negative biasVdc = −100 V, ion massMi =

6.64× 10−26 kg (argon, atomic mass 40), pressureP = 1 mTorr, gas temperatureTg = 300 K,

ion temperatureTi = 400 K. The Bohm velocity under these conditions isuB = 1,553 m/s.

The Debye lengths in the bulk plasma and at the sheath edge are respectively as follows:

λDe =

√
ε0kBTe

n0q2
0

= 23.5 µm, (17)

λDs =

√
ε0kBTe

nsq2
0

= 30.2 µm. (18)

The thickness of the Child–Langmuir sheath is

sCL = λDs

√
2

3

(
2|Vdc|

Te

)3/4

= 0.757 mm= 32λDe. (19)

Since the thickness of the Debye sheathsDe is approximately 5λDs or 6λDe,56) the total thick-

ness of the sheath iss= sCL + sDe = 38λDe.

λinc for ions, which is the maximum length for which we can apply modified SASS mod-

els, is57,58)

λi =
1

ngσi
= 41.4 mm= 1,762λDe, (20)

whereng is the gas density, which is 6.44× 1019 m−3 under the present conditions.σi is the

cross section of ion-neutral collisions, which is 10−18 m2 in the case of argon ions in argon

plasma.57,59)
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Fig. 1. (Color online) Calculated results of model 1 without a presheath region. Panels (a) and (b) show the

results near the surface (x/λDe = 0–100). Panel (c) shows those in the entire calculation region

(x/λDe = 0–1750).

3. Results and discussion

3.1 Model 1

The results of the conventional SASS model (model 1) are shown in Figs. 1(a)–1(c). Figures

1(a) and 1(b) show the part of the results near the surface, in which we can see typical sheath

characteristics at positions below the estimated sheath edge of 38λDe.

Figure 1(c), which covers the whole region, however, clearly shows problems with the

conventional SASS model. At the left-hand side of the sheath edge, the electron and ion

densitiesne andni, respectively, are fixed at the sheath edge densityns = 0.6n0. These char-

acteristics are physically unacceptable because they should asymptotically approach the bulk

plasma densityn0. In addition, the ion velocityui is fixed at the Bohm velocity in the region

corresponding to the presheath. This characteristic is also physically unacceptable because

ui should gradually reach the Bohm velocityuB as ions travel from the bulk plasma edge to

the sheath edge. As can be understood from these results, model 1 generates physically un-

acceptable results in the region corresponding to the presheath. Therefore, physically correct

ion trajectories are available only in the sheath region.

3.2 Model 2

In model 2, the constraints for solving Poisson’s equation have been modified to handle the

presheath region, but quasi-neutrality in the presheath is treated as exact neutrality. The results

of model 2 are shown in Figs. 2(a)–2(c).
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Fig. 2. (Color online) Calculated results of model 2 with an exact neutral presheath region. Panels (a) and

(b) show the results near the surface (x/λDe = 0–100). Panel (c) shows those in the entire calculation region

(x/λDe = 0–1750).

In model 2, as shown in Fig. 2(c), the electron and ion densitiesne and ni gradually

increase from the sheath edge toward the bulk plasma edge, while those in model 1 are fixed

at the sheath edge plasma densityns. However,ne and ni in the presheath region do not

asymptotically approach the plasma densityn0 but increase linearly ton0. This characteristic

is still physically unacceptable.

This is due to the fact that the quasi-neutrality in the presheath is treated as exact neutral-

ity, which results in the potentialV having linear characteristics in the presheath. Since the

potential in the presheath is sufficiently small to approximate the electron density as

ne = n0 exp

(
q0V
kBTe

)
≈ n0

(
1+

q0V
kBTe

)
, (21)

the electron densityne also has linear characteristics. At the same time, the ion densityni also

has the same characteristics because of the exact charge neutrality in the presheath.

The ion velocityui shows parabolic characteristics becauseui is proportional to
√

V, as

can be understood from Eq. (10), andV has linear characteristics as explained above. This

feature ofV is the cause of the rapid increase inui when ions enter the presheath from the bulk

plasma. This tendency ofui disagrees with the physically acceptable picture of a presheath

obtained from the exact model calculations, in which ions gradually accelerate from the bulk

plasma edge toward the sheath edge.29,30,43,60–62)

These results indicate that model 2 is not suitable for handling the presheath region. As

can be understood from the above discussion, the main cause of this problem is the fact that

the presheath region is treated as an exact neutral region. In the next subsection, we discuss

9/21



Jpn. J. Appl. Phys. REGULAR PAPER

2.0

1.5

1.0

0.5

0.0

n
e
/n

0
, 

n
i/
n

0
, 

V
/V

d
c
, 

u
i/
u

B

2000150010005000

x / λDe

ni/n0

ne/n0

ui/uB

Model 3 with presheath

(quasi-neutral)

(c)

V/Vdc

1.0

0.8

0.6

0.4

0.2

0.0n
e
/n

0
, 

n
i/
n

0
, 

V
/V

d
c

ni/n0

ne/n0
V/Vdc

(a)Model 3 with presheath

(quasi-neutral)

15

10

5

0

u
i/
u

B

100806040200

x / λDe

(b)Model 3 with presheath

(quasi-neutral)

Fig. 3. (Color online) Calculated results of model 3 with a quasi-neutral presheath region. Panels (a) and (b)

show the results near the surface (x/λDe = 0–100). Panel (c) shows those in the entire calculation region

(x/λDe = 0–1750).

improvements of the results in the presheath region by considering the slight non-neutrality

involved in the quasi-neutral presheath region.

Note that the results in the sheath region obtained by using models 1 and 2 show exactly

the same characteristics as can be understood from (a) and (b) of Figs. 1 and 2. This is due to

the fact that these two models treat the sheath region in the same way.

3.3 Model 3

The presheath region, which connects the sheath and bulk plasma, is generally treated as a

quasi-neutral region. In most cases, including model 2 in our study, the quasi-neutrality is

treated in the same way as exact neutrality.36) However, as discussed in the previous sec-

tion, the application of exact neutrality to the presheath region results in physically unaccept-

able results. In this section, we discuss the results of model 3, which treats the quasi-neutral

presheath as a region with space charge densityδn given by Eq. (12).

The results obtained by using model 3 are shown in Fig. 3. The electron and ion densities

ne andni do not show linear characteristics but slightly convex characteristics. As a result,

the spatial distributions ofne andni in the presheath region tend to asymptotically approach

the bulk plasma densityn0. In addition, the spatial distribution of the ion velocityui becomes

closer to the linear characteristic than the parabolic one.

Note again that the results in the sheath region obtained by using models 1, 2, and 3 show

exactly the same characteristics as can be understood from (a) and (b) of Figs. 1, 2, and 3.
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Fig. 4. (Color online) (a) Normalized space charge density profiles and (b) their magnified (×107) profiles.

This is due to the fact that these three models treat the sheath region in the same way and

means that the modifications of the model employed in this study do not alter the sheath

region and only alter the presheath region.

3.4 Space charge density, potential, and electric field in the presheath

Figure 4(a) shows spatial profiles of the charge density obtained by using models 1, 2, and 3.

Figure 4(b) shows their 107-fold magnified profiles. These three profiles seem to be identical

according to the nonmagnified profiles shown in Fig. 4(a). On the other hand, looking at the

magnified profiles shown in Fig. 4(b), we can see that only the result of model 3 has finite

charge density, which is introduced asδn given by Eq. (12), on the right-hand side of the

sheath edge. This space charge density alters the spatial profiles ofV, ne, ni, andui through

Poisson’s equation and the constraints, which is discussed later.

Figures 1–3 show the potential profiles obtained by using models 1, 2, and 3, respectively.

Looking at the profiles at the scale in these figures, we can see that these potential profiles

seem to be identical. However, we can see differences in the presheath region in the magnified

profiles shown in Fig. 5(a). Figure 5(b) shows the corresponding electric field profiles, which

are normalized byE0 = (Te/2)/λi.

The potentialV obtained by using model 1 becomes zero because of the constraints em-

ployed in model 1. In addition, the electric field also becomes zero, as shown in Fig. 5(b), for

the same reason. On the other hand, in models 2 and 3, a finite electric field is formed in the

presheath region.

In model 2, in which we apply exact neutrality in the presheath, the potential has a linear
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Fig. 5. (Color online) (a) Normalized potential profiles and (b) normalized electric field profiles.

profile with a slope ofE0, and the electric field becomesE0. This can be easily understood by

assuming the right-hand side of Poisson’s equation to be zero. As described in the previous

section, these characteristics cause linear increases in the electron and ion densities and the

parabolic profile of the ion velocity as shown in Fig. 2(c).

In model 3, in which we apply slight non-neutralityδn in the presheath, the potential,

electric field, andδn are self-consistently determined to satisfy Poisson’s equation and the

other constraints in model 3. As a result, the potential profile becomes concave, which is the

main reason why model 3 shows presheath characteristics that are closer to those obtained by

using the exact equations governing the presheath region.

3.5 Comparison with experimental results

We have checked the validity of our model through comparison with the experimental results

given by Meyer et al.,53) in which presheath potential profiles were measured on a wafer stage

in a downflow region of a N2 ECR plasma source.Da was calculated to be 4 m2/s using the

reported diffusion coefficients and mobilities of electrons obtained by BOLSIG+63) and those

of ions reported by Moseley et al.64,65)νizc is not easy to determine but can be estimated from

the types of plasma sources employed and the operation conditions. Since the report of Meyer

et al. does not contain information of the ionization frequency, we employedνizc = 16.1 kHz

to obtain the best-fitting results.Lch becomes 1.6 cm using these values ofDa andνizc.

Calculated potential profiles are shown in Fig. 6 together with the experimental results

of Meyer et al.53) Since their experimental potential profiles were measured from the ground

level, we shifted our calculated potentialV by the actual plasma potentialϕp. The value
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Fig. 6. (Color online) Comparison of experimentally obtained presheath profiles and numerical results

obtained by using model 3.

of ϕp for each pressure is regarded as the maximum value of the experimental potential.

However, we slightly adjusted the value ofϕp to obtain the best fit between the experimental

and calculated potential profiles as shown in Fig. 6. We can see a fairly good agreement

between the curvatures of the experimental and calculated potential profiles except for the

case of 2 mTorr. The disagreement in the case of 2 mTorr may be due to deviation from the

weakly collisional condition assumed in our model.

3.6 Application to 2D geometries

Since our model does not solve transport equations, the calculation time for obtaining the

sheath and presheath characteristics becomes much shorter than that for conventional meth-

ods. In this subsection, we show examples of calculated results in 2D and 3D geometries.

Figure 7(a) shows calculated results of model 3 on a 2D geometry, in which a small

convex object is placed on a surface biased to−100 V on a plasma in N2 under a pressure

of 1 mTorr. The electron temperatureTe and the plasma densityn0 are 3.8 eV and 1.5× 1017

m−3, respectively. Figure 7(b) shows the calculated results of model 1 for comparison. Each

figure shows spatial profiles of the potential normalized byVdc, its 100-fold magnified view,

and ion trajectories with the color indicating the ion velocityui normalized byuB.

Figure 8(a) is an enlarged view in the vicinity of the convex object at the bottom in Fig.

7(a). We can confirm that the sheath, namely, a steep potential drop, is formed near the convex

object. Ion trajectories are bent by this potential profile. Note that it takes only 26 and 15 s

to calculate the potential profile and ion trajectories, respectively, shown in Fig. 7(a) or 8(a),

where the calculation was performed by using COMSOL and a Xeon E3-1240 processor (3.3
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Fig. 7. (Color online) Calculated results of (a) model 3 (with presheath) and (b) model 1 (without

presheath) applied to 2D geometry, in which a small convex object is placed on a negatively biased surface.

GHz).

The potential profile obtained by using model 3, which was calculated in consideration of

the presheath region, has a very small potential gradient in the presheath region in addition

to the large potential drop near the convex object at the bottom. Although the small potential

drop in the presheath cannot be confirmed in the figure plotted in the 1-fold scale ofV/Vdc,

it can be clearly seen in the figure plotted in the 100-fold scale ofV/Vdc, as shown in Fig.

7(a). Ions in the presheath increase their velocities in this presheath region, which can be

confirmed from the color change in the spatial profile ofui/uB.

The potential profiles obtained by using model 1, which cannot handle the presheath

region, are almost the same as long as the figure is plotted in the 1-fold scale ofV/Vdc as
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Fig. 8. (Color online) Magnified views in the vicinity of sheath regions in the calculated results of (a) model

3 (with presheath) and (b) model 1 (without presheath) applied to 2D geometry.

can be seen in Fig. 7(b). However, when we compare the potential profiles of models 1 and

3 in the 100-fold scale ofV/Vdc, we can see clear differences between them. The potential

drop in the presheath region in model 1 is exactly zero, while that in model 3 is not zero as

mentioned before. Because of this feature of model 1, ions cannot increase velocity in the

presheath region. Consequently, we cannot calculate the trajectories of ions, as can be seen

in the spatial profile ofui/uB in Fig. 7(b).

Figure 8(b) is an enlarged view of the vicinity of the convex object at the bottom in Fig.

7(b). We can confirm that the sheath formed in model 1 is almost exactly the same as that in

model 3. However, since there is no potential drop in the presheath region in model 1, ions
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Fig. 9. (Color online) Application of model 3 to a 3D geometry containing a complex object on a negatively

biased surface: (a) normalized electron density, (b) normalized ion density, (c) normalized potential, and (d)

ion trajectories and their normalized velocities. Presheath regions are also calculated but are not included in

these figures for simplicity.

cannot reach this region as shown in Fig. 8(b). This is one of the physically unacceptable

features of model 1.

3.7 Application to 3D geometries

In this subsection, we demonstrate that our model (model 3) can easily be extended to 3D

geometries and show that the calculation can be accomplished in a very short time. Figures

9(a)–9(d) show the electron density, ion density, potential profile, and ion trajectories, re-

spectively, around a coiled object biased to−100 V in 1 mTorr N2 plasma with a plasma

density of 1.5 × 1017 m−3 and an electron temperature of 3.8 eV. In this calculation, it takes

only 16 min 37 s to calculate the data shown in Figs. 9(a)–9(c) by using COMSOL and a

Xeon E3-1240 processor (3.3 GHz). Calculation of the ion trajectories shown in Fig. 9(d)

requires additional calculation of the motion of ions in the calculated potential. This requires
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an additional calculation time but only of 1 min 29 s.

4. Conclusions

A SASS model can provide spatial profiles of space charge density, potential, and ion velocity

in a sheath region by simply solving Poisson’s equation together with several constraints

deduced from Bohm’s sheath theory. However, the conventional SASS model cannot handle

a presheath region. We have modified the SASS model to be able to appropriately handle a

presheath region by considering the small deviation from charge neutrality in the presheath.
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Appendix

Supposing thatδn given by Eq. (12) is the space charge density in the presheath region,

Poisson’s equation Eq. (1) becomes the Helmholtz equation as follows:

∇2V − V

L2
ch

= 0. (A·1)

The potentialV in the presheath region is generally very small, and the plasma densityn can

be approximated as

n = n0 exp

(
q0V
kBTe

)
≈ n0

(
1+

q0V
kBTe

)
. (A·2)

Using Eq. (A·2), Eq. (A·1) for the potentialV is converted to the following equation for the

plasma densityn:

∇2n− n

L2
ch

= − n0

L2
ch

. (A·3)

This equation is a time-independent diffusion equation with a nonzero source term corre-

sponding to the right-hand side of this equation. This means that, in the presheath region with

small V and δn, solving Poisson’s equation corresponds to solving the transport equation

accompanied by the generation of electrons and ions through ionization.

The diffusion of charged particles in a presheath region is governed by ambipolar diffu-

sion. In the diffusion equation for ambipolar diffusion,L2
ch is given byDa/νizc, whereDa is the

ambipolar diffusion coefficient andνizc is the ionization frequency in the bulk plasma.66) Da

can be calculated using reported diffusion coefficients and mobilities of electrons and ions,67)

and is 576 m2/s. νizc is not easy to determine but can be estimated from the type of plasma

source employed and the operation conditions. In this study, we employedνizc = 1.2 MHz

as a typical value for low-pressure argon plasma with a plasma density of 1017 m−3.68) Lch

becomes 21.9 mm using these values ofDa andνizc.
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62) A. Meige, G. Leray, J. L. Raimbault, and P. Chabert, Appl. Phys. Lett.92, 061501

(2008).

63) G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol.14, 722 (2005).

64) J. T. Moseley, R. M. Snuggs, D. W. Martin, and E. W. McDaniel, Phys. Rev.178, 240

(1969).

65) J. T. Moseley, R. M. Snuggs, D. W. Martin, and E. W. McDaniel, Phys. Rev. Lett.21,

873 (1968).

66) M. A. Lieberman and A. J. Lichtenberg,Principles of Plasma Discharges and

Materials Processing(Wiley, Hoboken, NJ, 2005) 2nd ed., Chap. 5.

67) E. Gogolides and H. H. Sawin, J. Appl. Phys.72, 3971 (1992).

68) P. Chabert and N. Braithwaite,Physics of Radio-Frequency Plasmas(Cambridge

University Press, Cambridge, U.K., 2011) p. 33.

21/21


	1_ＳＵＲＥ
	13474065-57-6s2-06jg02
	1_ＳＵＲＥ
	DP17015




