2つのスケーリング指数で拡張された Flory-Rehner モデルの実装と基礎的解析

清水 章司, 奥村 大, 内田 真, 田中 展

Citation	計算数理工学論文集 Vol.16; 37-42				
Issue Date	2016-12				
Туре	Journal Article				
Textversion	Publisher				
	$\ensuremath{\mathbb{C}2016}$ Japan Society for Computational Methods in Engineering. This manuscript				
Rights	version is made available under the CC-BY-NC-ND 4.0 License.				
	http://creativecommons.org/licenses/by-nc-nd/4.0/.				
	The following article appeared at				
	http://gspsun1.gee.kyoto-u.ac.jp/JASCOME/denshi-journal/index.html				
	In this study, we perform finite element implementation of a free energy function				
Abstract	extended by introducing two scaling exponents into the Flory-Rehner model for				
	swollen elastomers. This extended model is implemented into the finite element				
	package Abaqus using the user-defined material subroutine UHYPER. To verify this				
	implementation, the stress-stretch responses of elastomers at equilibrium swelling				
	under uniaxial tension are simulated and compared with analytical predictions. The				
	aid of artificial damping is needed to capture a rapid decrease in stress caused by				
	swelling-induced strain softening. Effects of artificial damping on automatic				
	incrementation analysis are discussed.				

Self-Archiving by Author(s) Placed on: Osaka City University

2つのスケーリング指数で拡張された Flory-Rehner モデルの実装と基礎的解析

IMPLEMENTATION OF AN EXTENDED FLORY-REHNER MODEL WITH TWO SCALING EXPONENTS AND BASIC ANALYSIS

清水 章司¹⁾,奥村 大²⁾,内田 真³⁾,田中 展⁴⁾

Shoji SHIMIZU, Dai OKUMURA, Makoto UCHIDA, and Hiro TANAKA

- 1) 名古屋大学大学院工学研究科(〒464-8603 名古屋市千種区不老町, E-mail: shimizu@mml.mech.nagoya-u.ac.jp)
- 2) 大阪大学大学院工学研究科(〒565-0871 吹田市山田丘, E-mail: okumura@mech.eng.osaka-u.ac.jp)
- 3) 大阪市立大学大学院工学研究科 (〒558-8585 大阪市住吉区杉本, E-mail: uchida@imat.eng.osaka-cu.ac.jp)
- 4) 大阪大学大学院工学研究科(〒565-0871 吹田市山田丘, E-mail: htanaka@mech.eng.osaka-u.ac.jp)

In this study, we perform finite element implementation of a free energy function extended by introducing two scaling exponents into the Flory-Rehner model for swollen elastomers. This extended model is implemented into the finite element package Abaqus using the user-defined material subroutine UHYPER. To verify this implementation, the stress-stretch responses of elastomers at equilibrium swelling under uniaxial tension are simulated and compared with analytical predictions. The aid of artificial damping is needed to capture a rapid decrease in stress caused by swelling-induced strain softening. Effects of artificial damping on automatic incrementation analysis are discussed.

Key Words: Constitutive model, Elastomers, Swelling, Strain softening, Finite element analysis

1. 緒 言

高分子ゲルは生体代替材料として期待されている⁽¹⁾. また, 外部刺激(温度や光,溶媒のpHなど)に反応して,自発的 に溶媒を吸収(以後,膨潤と呼ぶ)・排出する特徴を有して おり,この特徴を利用したセンサーやアクチュエータの開発 事例が数多く報告されている⁽²⁾. さらには,基盤に拘束され たゲル膜は,膨潤誘起型のパターン変態により,膜表面に複 雑なパターンを形成することが観察されており,表面改質な どへの応用が期待されている⁽³⁾. したがって,膨潤現象を考 慮した高分子ゲルの力学応答数値シミュレーションの重要 性は高まっている.

高分子ゲルの力学特性を表す自由エネルギー関数として, Flory-Rehner (F-R) モデル⁽⁴⁾が最も基礎的かつ有名である. 近年,不均質場理論^{(5),(6)}に基づいて,有限要素解析ソフト Abaqus⁽⁷⁾のユーザー材料サブルーチン (UHYPER や UMAT) への実装方法が示され,膨潤現象を伴った不均質変形や不安 定変形の解析も可能になってきている^{(5),(6),(8),(9)}. しかしなが ら,この自由エネルギー関数は,Neo-Hookean型の弾性ひず みエネルギーと Flory-Huggins 理論に基づく混合エネルギー の和で構成されており,ヤング率や浸透圧といった力学特性 の膨潤度依存性をいつもうまく再現できる訳ではない⁽¹⁰⁾. この問題を解決するため,Okumura ら⁽¹⁰⁾は2つのスケーリ

2016年9月17日受付, 2016年10月18日受理

ング指数を導入して F-R モデルを拡張した. この拡張 F-R モ デルでは,2 つのスケーリング指数を調整することによって, 上述の膨潤度依存性を再現することが可能であり,この結果 として,膨潤平衡下での単軸引張においてひずみ軟化現象が 生じ得ることを明らかにした. この膨潤誘起ひずみ軟化の発 現傾向は過去の実験⁽¹¹⁾と対応関係があるため,高分子ゲルに 特有の不安定変形機構として,検証のための実験や解析を行 うなどより詳細に研究する必要がある. したがって,拡張 F-R モデルを有限要素解析ソフトに実装すれば,均質変形だ けでなく不均質変形下での膨潤誘起ひずみ軟化現象の解析 も可能になるため有意義である.

そこで本研究では, 拡張 F-R モデルを有限要素解析ソフト Abaqus のユーザー材料サブルーチン UHYPER に実装し, 基 礎的な検討を行う.このため,はじめに拡張 F-R モデルにつ いて述べ,つづいて,有限要素法への実装方法について述べ る.解析例題として,膨潤平衡下での単軸引張に対して,固 定増分解析を行い,人工粘性を導入する必要について述べる. 最後に自動増分解析も行い,結果を議論する.

2. 拡張 F-R モデル

拡張 F-R モデル⁽¹⁰⁾は、Flory-Rehner⁽⁴⁾の自由エネルギー関数を2つのスケーリング指数を用いて拡張したものであり、

$$W = \frac{E_{\rm d}}{6} J^m (I - 3J^{2/3}) + \frac{E_{\rm d}}{6} J^n (3J^{2/3} - 3 - a \log J) - \frac{kT}{\upsilon} \left\{ \upsilon C \log \left(1 + \frac{1}{\upsilon C} \right) + \frac{\chi}{1 + \upsilon C} \right\}$$
(1)

と表される. ここで、右辺の第1項及び第2項は弾性ひずみ エネルギーである. mとnはスケーリング指数であり、偏差 成分と体積成分をそれぞれスケーリングしている. IとJは ひずみの不変量であり、変形勾配 F_{ij} を用いると、 $I = F_{ij}F_{ij}$, J =det F と表され、主方向の伸び λ_i を用いると、 $I = \lambda_1^2 + \lambda_2^2 + \lambda_3^2$, $J = \lambda_1 \lambda_2 \lambda_3$ と表される. E_d は未変形、乾燥状態でのヤング率 であり、aは係数である. 右辺第3項は網目構造の高分子と 溶媒分子の混合エネルギーであり、Cは溶媒分子の濃度、kT は熱エネルギー換算の絶対温度である. vは溶媒1分子当た りの体積、xはFlory-Hugginsの相互作用係数である.拡張 F-R モデルでは、ヤング率及び浸透圧の膨潤度依存性を再現する ために、mとnをそれぞれ調整することができ、m=n=0の とき、元のF-Rモデルに帰着する⁽¹⁰⁾.

網目構造の高分子と溶媒分子に対して,非圧縮性の近似が 成り立つと仮定すると^{(5),(6),(12)},高分子ゲルの体積は乾燥状態 の網目構造の体積と吸収された溶媒の体積の和として,

$$J = 1 + \nu C \tag{2}$$

と表され、Jは体積膨潤比と呼ばれる.式(1)に式(2)の拘束条件をラグランジュの未定乗数法を用いて導入すると、未定乗数 Πを用いて次式が得られる.

$$W = \frac{E_{\rm d}}{6} J^m (I - 3J^{2/3}) + \frac{E_{\rm d}}{6} J^n (3J^{2/3} - 3 - a\log J) - \frac{kT}{\upsilon} \left\{ \upsilon C \log \left(1 + \frac{1}{\upsilon C} \right) + \frac{\chi}{1 + \upsilon C} \right\} + \Pi (1 + \upsilon C - J)$$
(3)

式(3)より、主方向の伸び λ_i を用いて公称応力 $s_i = \partial W / \partial \lambda_i$ は求められ、真応力は換算式 $\sigma_i = s_i \lambda_i / J$ (*i*=1,2,3)より、

$$\sigma_{i} = \frac{E_{d}}{3} J^{m-1} \left\{ \lambda_{i}^{2} - J^{2/3} + \frac{m}{2} (I - 3J^{2/3}) \right\}$$

$$+ \frac{E_{d}}{3} J^{n-1} \left\{ J^{2/3} - \frac{a}{2} + \frac{n}{2} (3J^{2/3} - 3 - a\log J) \right\} - \Pi \qquad (i = 1, 2, 3)$$
(4)

と求められる(主方向成分の関係であるため,総和規約に従わないことに注意).また,外部溶媒の化学ポテンシャルを μ と表すとき,高分子ゲル中の溶媒分子の化学ポテンシャルとのつり合いは,式(3)に $\mu = \partial W / \partial C$ の関係を適用して,

$$\mu = kT \left\{ \log \left(\frac{J-1}{J} \right) + \frac{1}{J} + \frac{\chi}{J^2} \right\} + \Pi \upsilon$$
 (5)

となる.上式の右辺第1項は混合エネルギー寄与成分であり, 第2項は弾性エネルギー寄与成分である.未変形,乾燥状態 では C=0, $\lambda_i=J=1$ なので $\mu=-\infty$ である.一方,膨潤平衡 下では, $\mu=0$ であり,式(4)と(5)を組み合わせて解くことに よって,応力や伸び,体積膨潤比を調べることができる.

単軸負荷 ($\sigma_1 \neq 0$, $\sigma_2 = \sigma_3 = 0$) では,式(4)と $s_1 = (\sigma_1 - \sigma_2) J / \lambda_1$ の関係から未定乗数Пを消去でき,負荷方向の公称応力は,

$$s_{1} = \frac{E_{d}}{3} J^{m} \left(\lambda_{1} - \lambda_{1}^{-1} \lambda_{2}^{2} \right) = \frac{E_{d}}{3} J^{m} \left(\lambda_{1} - J \lambda_{1}^{-2} \right)$$
(6)

と求められる.上式に示すように、 $\lambda_2 = J^{1/2} \lambda_1^{-1/2}$ の関係 ($J = \lambda_1 \lambda_2 \lambda_3$ に基づく)より公称応力は λ_1 とJを用いて表現できる.さらに、式(4)から П も λ_1 とJを用いて表すことができ、膨潤平衡下 ($\mu = 0$)において、式(5)は、П を消去して、次式のように求められる.

$$\left\{ \log\left(\frac{J-1}{J}\right) + \frac{1}{J} + \frac{\chi}{J^2} \right\} + \frac{E_d \upsilon}{3kT} J^{m-1} \left\{ J\lambda_1^{-1} - J^{2/3} + \frac{m}{2} \left(\lambda_1^2 + 2J\lambda_1^{-1} - 3J^{2/3}\right) \right\} + \frac{E_d \upsilon}{3kT} J^{n-1} \left\{ J^{2/3} - \frac{a}{2} + \frac{n}{2} \left(3J^{2/3} - 3 - a\log J\right) \right\} = 0$$
(7)

したがって、 λ_1 を入力として、式(7)より Jを求め、つづいて、 式(6)より s_1 を求められるので、膨潤平衡下での単軸負荷応 答を解析することができる⁽¹⁰⁾.本研究では、式(6)と(7)から 求められた解析解を有限要素解析の結果と比較する.

3. 有限要素法への実装

拡張 F-R モデルを有限要素解析ソフト Abaqus⁽⁷⁾に実装する 方法について述べる.式(1)と(3)は、変形勾配 F_{ij} と溶媒分子 の濃度 Cの関数であり,式(4)と(5)の関係からわかるように、 Π を経由して、応力と溶媒濃度(言い換えると、体積膨潤比) は連成関係にある.したがって、応力分布に依存して濃度分 布も不均質になるため、一般に溶媒濃度は未知である.この ため、以下に述べるように変数変換が必要になる^{(5),(6)}.

静的つり合い状態からの位置 x_i と溶媒濃度Cの任意の変分 を $\delta x_i \ge \delta C$ で表すとき,仮想仕事の原理より,

$$\int_{V} \delta W dV = \int_{V} B_{i} \delta x_{i} dV + \int_{A} T_{i} \delta x_{i} dA + \mu \int_{V} \delta C dV$$
(8)

ここで、 $V \ge A$ は基準状態での物体の体積と境界をそれぞれ 表す.右辺は外部仮想仕事であり、第1項と第2項は物体力 $B_i \ge$ 表面力 T_i による仕事である.また、第3項は外部溶媒に よる仕事である.

変形勾配 F_{ij} と溶媒濃度 C の関数である Wは、ルジャンド ル変換

$$\hat{W} = W - \mu C \tag{9}$$

によって、 F_{ij} と μ の関数 \hat{W} に変換され、式(8)と(9)より、

$$\int_{V} \delta \hat{W} dV = \int_{V} B_{i} \delta x_{i} dV + \int_{A} T_{i} \delta x_{i} dA$$
(10)

が成り立つ⁽⁷⁾. すなわち,静的つり合い状態にあるとき,高 分子ゲル中の溶媒分子の化学ポテンシャルは一様かつ外部 溶媒の化学ポテンシャルと等しい. 結果として, µは状態変 数と見なすことができ,式(10)のつり合い条件は超弾性体の つり合い条件と同じ形式を取る.

式(1)と(2), (9)を用いると, 拡張 F-R モデルの自由エネルギ ー関数は, 次のように書き換えられる.

$$\hat{W} = \frac{E_{\rm d}}{6} J^m (I - 3J^{2/3}) + \frac{E_{\rm d}}{6} J^n (3J^{2/3} - 3 - a\log J) - \frac{kT}{\upsilon} \bigg[(J - 1)\log \frac{J}{J - 1} + \frac{\chi}{J} \bigg] - \frac{\mu}{\upsilon} (J - 1)$$
(11)

上式の自由エネルギー関数 Ŵは、変形勾配 Fij と化学ポテン

シャルµの関数として陽な形式を取っており,溶媒吸収による体積変化を含んでいるため,圧縮性のある超弾性体のための自由エネルギー関数と同じ形式となる.

有限要素解析ソフト Abaqus⁽⁷⁾では,非線形問題を増分解析 するために,積分点では、与えられた変形状態に対応する真 応力 σ_{ij} とそこでのコンシステント接線係数を求める必要が ある.コンシステント接線係数は、キルヒホフ応力 $J\sigma_{ij}$ の変 分を表す次式において C_{ijkl} として表される.

$$\delta(J\sigma_{ij}) = J(C_{ijkl}\delta D_{kl} + \delta W_{ik}\sigma_{kj} - \sigma_{ik}\delta W_{kj})$$
(12)

ここで、 $\delta D_{ij} \geq \delta W_{ij}$ はそれぞれ変形速度とスピンの変分である. なお、材料モデルを実装するために2つのユーザー材料 サブルーチンが提供されており、汎用的に用いることのできる UMAT と超弾性体用の UHYPER がある. F-R モデル及び 拡張 F-R モデルの実装には、どちらも利用可能であるが^{(5),(6)}、 本研究では UHYPER への実装を考える. UMAT への実装や 違いについては、参考文献(6)に詳しく書かれている.

UHYPER は超弾性体に限定されたサブルーチンであるため、このサブルーチン内では、真応力やコンシステント接線 係数を直接計算するのではなく、その計算に必要なひずみの 不変量に対する自由エネルギー関数の微分係数を与えるだ けでよい⁽⁷⁾. 微分係数は解析的に導出できるため、コーディ ングは非常に容易である.ただし、以下の2点について注意 が必要である.

まず, Abaqus⁽⁷⁾ではひずみの不変量として低減不変量 ($\overline{I}_1, \overline{I}_2, J$)が用いられており,本研究で用いている不変量 *I*に対して, *I* = $J^{2/3}\overline{I}_1$ の変換が必要である.次に,未変形, 乾燥状態(*I*=3, *J*=1)において, μ =-∞であるから,この状 態を初期状態にはできない.このため,無応力状態(σ_{0ij} =0) での初期自由膨潤 J_0 ,言い換えれば,初期変形勾配 F_{0ij} = $J_0^{1/3}\delta_{ij}$ (δ_{ij} はクロネッカーデルタ)を考え,式(4)と(5)より化 学ポテンシャルの初期値 μ_0 を決定する⁽⁵⁾.このとき式(11)は,

$$\hat{W}' = J_0^{-1} \hat{W} = \frac{E_d}{6} J_0^{m-1/3} J^{m+2/3} (\overline{I}_1 - 3) + \frac{E_d}{6} J_0^{n-1} J^n (3J_0^{2/3} J^{2/3} - 3 - a \log J_0 J) - \frac{kT}{\upsilon} \bigg[(J - J_0^{-1}) \log \frac{J}{J - J_0^{-1}} + \frac{\chi}{J_0^2 J} \bigg] - \frac{\mu}{\upsilon} (J - J_0^{-1})$$
(13)

と展開できる. なお上式では、単位体積当たりの自由エネル ギーとして、 \hat{W} と区別するために \hat{W} 'を定義している⁽⁵⁾.

化学ポテンシャル μ の変化は、温度の変数を代用するなど して入力ファイル内で設定でき、初期値として μ_0 を与える. したがって、UHYPER内では、 J_0 を初期値として、増分解析 において引き渡される \overline{I}_1 、J、 μ に対して、 \hat{W}' の \overline{I}_1 及びJに 関する微分係数を与える.本研究では、解析例題として、膨 潤平衡下での単軸引張解析を行う.このため、初期状態は無 応力下での膨潤平衡状態であり、 $\mu_0=0$ として J_0 を求め、 $\mu=0$ を保って単軸引張変形を解析する.

4. 解析モデル

開発した UHYPER を用いた基礎的解析として, 膨潤平衡 下での単軸引張を解析する. 緒言で述べたように, 拡張 F-R モデルの特徴は, 膨潤誘起型のひずみ軟化を表現可能な点で あり,本研究では,このひずみ軟化が生じるときの増分解析 の安定性に着目し,以下に示す条件で解析を行う.

はじめに,解析に必要な材料定数は,無次元化されたヤン グ率 $E_d \upsilon/(3kT)$,スケーリング指数 $m \ge n$,係数a,Flory-Huggins の相互作用係数 χ の合計 5 個になる. Table 1 に示すように, 天然ゴムに対する検討⁽¹⁰⁾を参考にして,低剛性から高剛性の 場合について幅広く解析を行う. χ についても,良溶媒から 貧溶媒まで広く考慮して,それぞれの場合を調べる.

Table 1 Sets of material parameters used in this study⁽¹⁰⁾.

$E_{\rm d}\upsilon/(3kT)$	т	n	а	χ
0.01	-0.3	-0.4	-2	0204
0.05	0	-0.4	-2	0.2, 0.4,
0.1	0.3	-0.4	-4	0.0, 0.0

解析対象として、単位長さで構成される立方体の1要素を 考える.要素タイプは、3次元8節点1次のハイブリッド要 素(C3D8H)とする.単なる1次要素(C3D8)を用いても、 ほとんど同じ結果が得られるが、拡張F-Rモデルを用いた解 析では、ほぼ非圧縮という変形状態も考えられ、よく使われ る要素タイプであることから、この要素を用いる.

解析対象には、無応力下での膨潤平衡状態を想定し、 $\mu_0=0$ での体積膨潤比 J_0 を初期値として与える (J_0 の値は材料定数 の組み合わせに依存する). つづいて、膨潤平衡下(すなわ ち $\mu=0$)での x_1 方向への単軸引張を、この方向への伸びが λ_1 =8 になるまで与える. 解析解は、式(6)と(7)を用いて求める ことができるため、得られた結果の検証に用いる.

増分解析では、まず、解析区間をN等分する固定増分を考 え、N=10,100,...として解析を行う.Nを大きく取れば、一 般に計算負荷は増える.一方,Nを小さくしすぎると、増分 解析の途中で収束解が得られなくなり,解析は打ち切られる 場合がある.本研究では、膨潤誘起ひずみ軟化発生前後の増 分解析の安定化のために、人工粘性を導入し(*STATIC 解析 における STABILIZE オプション), 散逸エネルギー比を変化 させて解析を行う(7),(9). 散逸エネルギー比が小さすぎる場合 には、人工粘性は、影響を及ぼさず、効果的に作用しない. 一方,大きくするとともに,増分解析は安定化するが,人工 粘性の影響が強く入ってしまい. 高剛性側に解析精度が悪く なる⁽⁹⁾. したがって、最適な値を試行錯誤的に調べる必要が ある.本研究では、散逸エネルギー比の値 10°のωを整数値 で変化させて解析を行う. さらに, 自動増分を用いた解析も 行い,人工粘性の導入に及ぼす相互作用効果を調べる.自動 増分解析では, 増分計算の破棄条件や増分量の再設定条件と いった制御パラメータがあり、ディフォルト値を用いる⁽⁷⁾. 本研究では、初期増分と最大増分が、固定増分における N=10 (固定増分と区別するため、以後、N₀=10と表す)に相当す るようにし、解析打ち切りのための最小増分は設定せずに解 析を行う.

5. 解析結果

Fig.1 は,固定増分 N=10,100 で人工粘性を用いずに解析を

Fig. 1 Stress-stretch responses of elastomers at equilibrium swelling under uniaxial tension without automatic incrementation and artificial damping, where solid lines are predicted from Eqs. (6) and (7), while Symbols \bigcirc and | are obtained from Abaqus using N=10 and 100, respectively.

行った結果である. 図中の実線は式(6)と(7)に基づく解析解 であり、印 | (N=100) と印〇 (N=10) は有限要素解析の結 果である. この図が示すように、材料定数の組み合わせに依 存して良溶媒側からひずみ軟化が生じており、とりわけ、 $E_{d}\upsilon'(3kT)$ =0.01 で χ =0.8 の場合や $E_{d}\upsilon'(3kT)$ =0.05 で χ =0.6 の 場合には、急激な応力減少を伴ってひずみ軟化が生じている. 分割数 Nによらず、解析解と有限要素解析の結果はよく一致 しており、開発した UHYPER は正しく動作していることが 確認できる. しかしながら、印〇や印 | が途中までしかない

Table 2 Influence of the total number of increments on the convergence of global iterations, where S and $S(n_{inc})$ represent success in the convergence until λ_1 =8, where n_{inc} is the total number of increments under automatic incrementation analysis, while $F(n_{inc})$ indicates no convergence in the n_{inc} -th increment under constant incrementation analysis.

		Constant inc.		Automatic inc.
$E_{\rm d}\upsilon/(3kT)$ χ		N = 10	N=100	$N_0 = 10^*, \ \omega = -12$
0.01	0.2	F(3)	S	S(13)
	0.4	F(2)	S	S(13)
	0.6	F(3)	S	S(20)*
	0.8	F(10)	F(92)	S(97)
0.05	0.2	S	S	S(10)
	0.4	F(1)	F(10)	S(15)
	0.6	F(2)	F(25)	S(27)*
	0.8	S	S	S(10)
0.1	0.2	S	S	S(10)
	0.4	F(2)	S	S(12)
	0.6	S	S	S(10)
	0.8	S	S	S(10)

* Note that $N_0=20$ is used for the convergence especially for $E_d \nu/(3kT)=0.01$ and $\chi=0.6$, and $E_d \nu/(3kT)=0.05$ and $\chi=0.6$.

Fig. 2 Effects of artificial damping on constant incremental analysis for $E_d \nu/(3kT) = 0.01$, m = -0.3, n = -0.4, a = -2 and $\chi = 0.8$, where dissipated energy fraction 10^{ω} is optimized for total number of increments *N*.

結果があり、これらの解析では、次の増分の反復計算が収束 せず、解析が打ち切られた(Table 2). すなわち、基本傾向 として、増分量が大きい場合(N=10)には、ひずみ軟化の 開始前に打ち切りが生じ、小さい場合(N=100)にも、急激 な応力減少を伴う解析では同様の打ち切りが生じた.この結 果は、応力が急激に減少するパターンでは、ひずみ軟化の前 後の応力状態が大きく離れており、Nを大きく取ることは、 収束解を得るための根本的な解決策にはならないことを示 している.

最も急激な応力減少を示す $E_{d\nu}/(3kT) = 0.01$ かつ $\chi = 0.8$ の解析を、人工粘性を導入して行った結果を Fig.2 に示す. 図中には解析に用いた固定増分と散逸エネルギー比の値がそれぞれ示されている. この図は、まず分割数 N を決定し、散逸エネルギー比を小さい値から大きな値に変えながらそれぞ

Fig. 3 Effects of artificial damping on automatic incremental analysis for $E_d \nu/(3kT) = 0.01$, m = -0.3, n = -0.4, a = -2 and $\chi = 0.8$, where $N_0 = 10$ is fixed and ω is parametrized using $\omega = -4$, -6, -8, -10 and -12.

Fig. 4 Change in the number of increments n_{inc} as a function of stretch λ_1 in Fig.3.

れ解析を行い,解析が打ち切られずに最後まで進む場合の ω を探索することによって作成された.粘性の影響によって, 応力の急激な減少が抑制されるため,増分解析は打ち切られ ずに進むようになる.Nが小さい場合,すなわち増分が大き い場合には,収束解を得るために応力減少を強く抑制する必 要があり, ω には大きな値が必要になる.一方,Nが大きい 場合には,相対的に弱い粘性でも収束解を得ることができる ため, ω の値は小さくなる.したがって,人工粘性の値を最 適化すれば,増分解析は安定化することがわかった.しかし ながら,結果は分割数Nに大きく依存するようになり,解 析解を高精度に再現するためには,Nを非常に大きく取る必 要がある(この解析では, $N = 10^5$ 以上を必要).今回用いて いる単純な解析モデルに対して,このように膨大な分割数が 必要であるとすると,大規模でより複雑な不均質変形を伴う 問題への適用は困難になる.

Fig.3 は,自動増分と人工粘性を組み合わせ, $E_d \omega / (3kT) = 0.01$ かつ $\chi = 0.8$ の解析を行った結果である.4章で述べたように, 自動増分の初期増分と最大増分は $N_0 = 10$ に対応する値を用 いた.この図は、固定増分と自動増分を用いる場合で、人工 粘性の影響は大きく異なることを示している.すなわち、固 定増分では、Fig.2 に示されるように、分割数 N と散逸エネ ルギー比のには、明確な相関関係があり、N が大きいほど、 のは小さくなり、解析精度は改善していく.これに対して、 自動増分では、Fig.3 に示されるように、ある一定以上に小 さな*ω*を用いれば,有限要素解析の結果はいずれも解析解と よく一致する.一方,この値以上の大きな*ω*を用いると,大 きくなるにしたがって,粘性の影響が強くなり,結果は解析 解からずれていく.

Fig.3 に示されるような、自動増分と人工粘性の組み合わ せによる相互作用効果は、次のように説明することができる. 自動増分では、増分計算の破棄条件が設定されており、収束 性の悪い増分区間では, 収束性が良くなるまで, 増分量を小 さくしながら再計算を繰り返す.したがって、膨潤誘起ひず み軟化の発生点に近づくと,再計算が繰り返され,増分量は 小さくなってゆく. すると、人工粘性が効果的に作用する領 域に増分量が入ってくるため、粘性の助けによって増分計算 が収束し、この繰り返しで軟化前後の解析が進むようになる. Fig.4は、解析途中の増分数 ninc を伸び入の関数としてプロッ トしたものであり, 膨潤誘起ひずみ軟化の発生する領域で増 分量 n_{inc} が急上昇していることがわかる. ただし, n_{inc} が急上 昇する場合でも、 散逸エネルギー比が大きくなると、 自動増 分によって, 増分が十分に細分化されるよりも前に, 応力減 少を抑制する形で粘性が作用してしまい,解析精度の低い結 果が得られる場合がある.高精度な解析のためには、散逸エ ネルギー比ω=-8以下が必要であり,ω=-8~-12程度であれ ば、全体として増分回数(すなわち、 $\lambda_1 = 8$ での n_{inc})は100 未満であるから,解析は効率的に実行できるといえる.

最後に、自動増分と人工粘性を用いて、Fig.1 と同じ解析 を行った結果を Fig.5 に示す. この図が示すように、すべて の場合で解析を最後まで行うことができた.このときに要し た全体の増分数 ninc を Table 2 に示す. 急激な応力減少が生じ るところでは自動増分が機能して、増分が細かくなり、高精 度な結果が得られる.一方,滑らかに応力減少を伴う場合に は、 増分はそれほど細かくならずに、 解析は 効率的に進んで いく. この解析では、散逸エネルギー比には*ω* =-12 の値を 用いた. ただし, Edu/(3kT) =0.01 でχ=0.6, Edu/(3kT) =0.05 でχ=0.6の場合には、膨潤誘起ひずみ軟化の開始前に解析の 打ち切りが生じたため,自動増分解析の初期増分と最大増分 を N₀=10 から N₀=20 に変更して再計算を行った. このケー スでは, E_du/(3kT) =0.01 でχ=0.8 の場合と比較して, 膨潤誘 起ひずみ軟化の開始前までの解析領域が短いため, その間を 分割するために比較的小さな初期増分が必要であったと考 えられる. 急激な応力減少を伴う場合には、材料定数の組み 合わせに依存して、自動増分パラメータの調整値は異なるよ うであり、この点について、ほかの制御パラメータも含めて 調整すれば、理解はより深まると考えられ、今後の課題とい える.

6. 結 言

本研究では、拡張 F-R モデルを有限要素解析ソフト Abaqus のユーザー材料サブルーチン UHYPER に実装し、基礎的な 検討を行った. 膨潤平衡下での単軸引張を解析することによ って、開発した UHYPER の動作を検証した. UHYPER 内で は、自由エネルギー関数の微分係数を単純にコーディングし ているだけである. したがって、膨潤誘起ひずみ軟化が生じ るときの増分解析の安定化に着目して検討を進めたところ、

Fig. 5 Stress-stretch responses of elastomers at equilibrium swelling under uniaxial tension with automatic incrementation and artificial damping, where solid lines are predicted from Eqs. (6) and (7), while Symbols \bigcirc are obtained from Abaqus using $N_0=10$ or 20 and $\omega=-12$.

固定増分を用いた解析では、急激な応力減少を伴う場合に収 束解が得られなかった.人工粘性を導入すると、増分解析は 安定化するが、解析を高精度化するためには、非常に小さな 増分を必要とすることがわかった.これに対して、自動増分 を用いた解析では、人工粘性との相互作用によって、効率的 に高精度な解が得られることがわかった.ただし、適切な散 逸エネルギー比を探索する必要がある.これらの知見は、拡 張 F-R モデルを用いて大規模な有限要素解析を行う上で、非 常に重要になると考えられる.

謝 辞

本研究はJSPS 科研費 JP16H04234の助成を受けて行われた. ここに記して謝意を表する.

参考文献

- (1) 例えば, T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. Nakajima, J.P. Gong: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity, Nature Materials, Vol.12, 2013, pp.932–937.
- (2) 例えば, T. Tanaka, S.T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, T. Amiya: Mechanical instability of gels at the phase transition, Nature, Vol.325, 1987, pp.796–798.
- (3) S. Yang, K. Khare, P.C. Lin: Harnessing surface wrinkle patterns in soft matter, Advanced Functional Materials, Vol.20, 2010, pp.2550–2564.
- (4) P.J. Flory, J. Rehner: Statistical mechanics of cross-linked polymer networks, II swelling, The Journal of Chemical Physics, Vol.11, 1943, pp.521–526.
- (5) W. Hong, Z.S. Liu, Z. Suo: Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, International Journal of Solids and Structures, Vol.46, 2009, pp.3282–3289.
- (6) M.K. Kang, R. Huang: A variational approach and finite element implementation for swelling of polymeric hydrogels under geometric constraints, The transactions of ASME Journal of Applied Mechanics, Vol.77, 2010, 061004.
- (7) Abaqus 6.14 User Documentation, 2014, Dassault Systems SIMULIA Corporation.
- (8) D. Okumura, T. Kuwayama, N. Ohno: Effect of geometrical imperfections on swelling-induced buckling patterns in gel films with a square lattice of holes, International Journal of Solids and Structures, Vol.51, 2014, pp.154–163.
- (9) D. Okumura, T. Inagaki, N. Ohno: Effect of prestrains on swelling-induced buckling patterns in gel films with a square lattice of holes, International Journal of Solids and Structures, Vol.58, 2015, pp.288–300.
- (10) D. Okumura, A. Kondo, N. Ohno: Using two scaling exponents to describe the mechanical properties of swollen elastomers, Journal of the Mechanics and Physics of Solids, Vol.90, 2016, pp.61–76.
- (11) G. Gee: The interaction between rubber and liquids. X. some new experimental tests of a statistical thermodynamic theory of rubber-liquid systems, Transactions of the Faraday Society, Vol.42, 1946, pp.B033–B044.
- (12) L.R.G. Treloar: The Physics of Rubber Elasticity, 1975, Oxford University Press, Oxford.