Deletion of *degQ* gene enhances outer membrane vesicle production of Shewanella oneidensis cells

Ojima Yoshihiro, Mohanadas Thivagaran, Kitamura Kosei, Nunogami Shota, Yajima Reiki, Taya Masahito

Citation	Archives of Microbiology. 199(3); 415-423	
Issue Date	2017-04	
Туре	Journal Article	
Textversion	sion author	
	This is a post-peer-review, pre-copyedit version of an article published in Archives of	
Rights	Microbiology. The final authenticated version is available online at:	
	https://doi.org/10.1007/s00203-016-1315-4	
DOI	10.1007/s00203-016-1315-4	

Self-Archiving by Author(s) Placed on: Osaka City University

Deletion of *degQ* gene enhances outer membrane vesicle production of *Shewanella oneidensis* cells

Yoshihiro Ojima*[†], Thivagaran Mohanadas, Kosei Kitamura, Shota Nunogami, Reiki Yajima and Masahito Taya

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan [†]Present address: Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan)

* Corresponding author: Yoshihiro Ojima Tel: +81-6-6605-2163; fax: +81-6-6605-3092 e-mail: ojima@bioa.eng.osaka-cu.ac.jp

Keywords: *Shewanella oneidensis*, outer membrane vesicle, *degQ*, periplasmic serine protease

1 Abstract

 $\mathbf{2}$ Shewanella oneidensis is a Gram-negative facultative anaerobe that can use a wide 3 variety of terminal electron acceptors for anaerobic respiration. In this study, S. oneidensis degQ gene, encoding a putative periplasmic serine protease was cloned and 4 expressed. The activity of purified DegQ was inhibited by diisopropyl fluorophosphate, $\mathbf{5}$ a typical serine protease-specific inhibitor, indicating that DegQ is a serine protease. 6 7 In-frame deletion and subsequent complementation of the degO was carried out to 8 examine the effect of envelope stress on the production of outer membrane vesicles (OMVs). Analysis of periplasmic proteins from the resulting S. oneidensis strain 9 10 showed that deletion of degQ induced protein accumulation, and resulted in a 11 significant decrease in protease activity within the periplasmic space. OMVs from the 12wild-type and mutant strains were purified and observed by transmission electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the 1314 OMVs showed a prominent band at ~37 kDa. Nano liquid chromatography-tandem mass spectrometry analysis identified three outer membrane porins (SO3896, SO1821 1516 and SO3545) as dominant components of the band, suggesting that these proteins could be used as indices for comparing OMV production by S. oneidensis strains. Quantitative 1718 evaluation showed that *degO*-deficient cells had a five-fold increase in OMV production 19compared with wild-type cells. Thus, the increased OMV production following the deletion of DegQ in S. oneidensis may be responsible for the increase in envelope stress. 20

1 Introduction

 $\mathbf{2}$ Many Gram-negative bacteria form outer membrane vesicles (OMVs) as part of 3 their natural growth cycle (Rothfield and Pearlman-Kothencz 1969; Wensink and Witholt 1981; Nowotny et al. 1982; Beveridge 1999). OMVs are spherical bilayered 4 proteolipids with a diameter of 20-250 nm, and are compositionally similar to the outer $\mathbf{5}$ membranes of bacteria, which contain outer membrane proteins, lipids, periplasmic 6 7 proteins, lipopolysaccharides, RNA, and DNA (Knox et al. 1966; Kadurugamuwa and 8 Beveridge 1996). Gram-negative bacteria living in fresh water environments and as pathogens in animal hosts produce OMVs (Schwechheimer et al. 2013). Although OMV 9 10 production appears to be a ubiquitous physiological process, the factors triggering OMV 11 formation have not been conclusively identified. Previous research suggested that disturbances in growth, exposure to antibiotics, or simply turnover in cell wall 1213components initiates vesicle formation (Knox et al. 1966; Kadurugamuwa and 14 Beveridge 1995; Zhou et al. 1998).

Recent work has also suggested that OMV production is closely related to envelope 15stress (McBroom and Kuehn 2007; Schwechheimer and Kuehn 2015). The hypothesis 16 that vesiculation plays an important role in disposing envelope "garbage" was first 17proposed with respect to proteinaceous waste accumulation in an Escherichia coli 18 19 *degP*-deficient strain. DegP is a periplasmic chaperone and protease in *E. coli* that manages envelope stress caused by unfolded and misfolded periplasmic proteins 20(Lipinska et al. 1990; Schwechheimer and Kuehn 2013). Random mutagenesis of E. coli 21determined that a transposon insertion immediately following the start codon of degP 22resulted in hypervesiculation (McBroom et al. 2006). Misfolded proteins were not 23digested in the *degP*-deficient strain, and such undigested substrates can cause lethality $\mathbf{24}$

under conditions of relatively high temperature, at which protein misfolding is more likely to occur (Strauch et al. 1989). Notably, the lumen of OMVs produced by the *degP*-deficient strain contained misfolded outer-membrane proteins, which can be substrates for DegP (Schwechheimer and Kuehn 2013). Thus, *E. coli* strains lacking DegP likely increase OMV production as a survival strategy to eliminate these undesired proteins from the cell envelope.

7 Shewanella oneidensis is a Gram-negative facultative anaerobe that can use a wide 8 variety of terminal electron acceptors for anaerobic respiration (Myers and Nealson 1988; Myers and Nealson 1990; Myers and Myers 1994; Myers and Myers 2000). It 9 10 plays an important role in many environmental and biotechnological processes, 11 including removing toxic metal contaminants, such as uranium and chromium, by 12reductive reactions (Fredrickson et al. 2008; Belchik et al. 2011). The genome sequence of S. oneidensis suggested the presence of a putative periplasmic serine protease, DegQ 1314 (Dai et al. 2015). Furthermore, deletion of degO resulted in severe growth defects at higher temperatures, indicating that DegQ might act as a major protease for protein 15quality control in the periplasm (Dai et al. 2015). It is therefore important to clarify the 16relationship between OMV production and periplasmic protease DegQ in S. oneidensis. 17

In this study, we investigated the relationship between DegQ and OMV production in *S. oneidensis* from the perspective of envelope stress. DegQ was confirmed as a functional serine protease by using purified DegQ. In addition, the *degQ*-deficient *S. oneidensis* mutant was compared with the wild type to identify differences in amount and level of protease activity in the periplasmic proteins. OMV production was examined, and the proteins associated with the isolated OMVs from *S. oneidensis* were

1 identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

2 and nano liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses.

3

4 Materials and methods

5 Bacterial strains and culture conditions

The strains and plasmids used in this study are listed in Table 1. For genetic manipulations, *E. coli* and *S. oneidensis* strains were cultured in lysogeny broth (LB) medium (10 g L⁻¹ Hipolypepton (Wako Pure Chemical Industries), 5 g L⁻¹ Bacto-yeast extract, and 10 g L⁻¹ NaCl) at 37 and 30°C, respectively. The culture media of strains harboring the plasmid were supplemented with 25 mg L⁻¹ chloramphenicol and 1 mM isopropyl thiogalactoside (IPTG) when necessary.

All *S. oneidensis* strains were precultured in LB medium for 18 h at 30°C, and then inoculated into 80 mL of fresh LB medium in a flask to give an optical density at 660 $mm(OD_{660}) = 0.01$. The cultures were placed on a rotary shaker (NR-20, Taitec) with shaking at 120 strokes per minute. Cell growth was recorded on a basis of dry cell weight (DCW) by measuring changes in OD₆₆₀.

17

18 In-frame deletion mutagenesis

The degQ (SO3942) gene was deleted in-frame from the *S. oneidensis* genome as described previously (Fennessey et al. 2010; Gao et al. 2010; Sundararajan et al. 2011). Briefly, a 592-bp fragment of the region upstream of the open reading frame (ORF), a 364-bp fragment of degQ (from 989 - 1353 bp), and a 292 bp fragment of the region downstream of the ORF were amplified by PCR, generating fragments F1 and F2, which were fused by overlap extension PCR to generate fragment F3 (see

Supplementary Fig. S1). The primers used for construction are listed in Supplementary 1 $\mathbf{2}$ Table S1. Fragment F3 was cloned into suicide plasmid pRE112 (Edwards et al. 1998) using SacI and XbaI restriction endonucleases, and then transformed into JM109 Apir 3 (Penfold and Pemberton 1992) by the calcium chloride method. The resulting plasmid, 4 pRE112-F3, was transferred into recipient S. oneidensis MR-1 cells by conjugation from 5 E. coli SM10 \lapir (Miller and Mekalanos 1988). Integration of the mutagenesis 6 $\overline{7}$ construct into the chromosome was induced to generate the final deletion strain. Gene deletion was verified by PCR using the F1-F and F2-R primers. The resulting mutation 8 9 was confirmed as an in-frame deletion that removed approximately 1000 bp of the degQgene. The mutant strain was named $\Delta degQ$. 10

11

12 Knock-in complementation analysis

The degQ region (SO3942) was amplified from S. oneidensis MR-1 genomic DNA 1314using primer pair degQ-F and R (see Supplementary Table S1). The amplicon was ligated into pHSG399 at the XhoI and BamHI restriction sites to generate recombinant 15plasmid pHSG399-degQ. The purified pHSG399-degQ (approximately 2 µg) was 16 17transformed into $\Delta degQ$ cells by electroporation using 0.2-cm Gene Pulser/MicroPulser cuvettes (Bio-Rad) and a Bio-Rad XPulser. Immediately after transformation, 0.5 mL of 18super optimal broth with catabolite repression (SOC) medium devoid of antibiotics was 19 added to the cell suspension. Cells were transferred into a sterile culture tube and 20incubated at 30°C for 1 h with continuous shaking. Following incubation, the cells were 2122spread onto LB agar plates supplemented with 25 µg/mL chloramphenicol and incubated at 30°C for 2–3 days. The complementation strain was named $\Delta degO+degO$. 23

1 Characterization of DegQ

 $\mathbf{2}$ Plasmid pHSG399-degQ-His was also constructed to express DegQ with a His6-tag 3 sequence at the C-terminus. The plasmid was transformed into wild-type S. oneidensis MR-1 cells by electroporation, and the resulting strain was named WT+degQ-His. The 4 cells were pre-cultured and then inoculated into 80 mL of LB medium containing 25 $\mathbf{5}$ μ g/mL chloramphenicol and incubated with shaking at 30°C. When OD₆₆₀ = 0.5, IPTG 6 7 was added to the cultures at a final concentration of 1 mM, and the cultures were further 8 incubated for 20 h. The cells were harvested by centrifugation at 4,000 $\times g$ for 10 min at 4 °C. The cell pellets were resuspended in phosphate-buffered saline (PBS; pH7.4) and 9 10 disrupted by ultrasonication. The supernatant was recovered by centrifugation at 2,800 11 \times g for 10 min at 4 °C, followed by additional centrifugation at 10,000 \times g for 10 min at 4 °C. The supernatant was purified by using a Bio-Scale Mini Profinity IMAC cartridge 1213as well as a Profinia protein purification system (Bio-Rad Laboratories Inc.) based on 14the affinity of the His6-tag, according to the manufacturer's protocol. The concentration of purified DegQ was determined by a Pierce BCA Protein Assay kit (Thermo Fisher 15Scientific Inc.) using bovine serum albumin as a standard. A 5-µL aliquot of purified 16 protein was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis 1718 (SDS-PAGE) and visualized by Coomassie Blue staining. For western bloting, protein 19 was transferred from the gel to a membrane sheet of Hybond P (GE Healthcare Ltd.) using the semi dry transfer method. Hybridization was conducted using an anti-His6 20primary antibody and an ECL Western Blotting Starter kit (GE Healthcare Ltd.) 2122according to the manufacturer's protocol. Hybridization signals were detected using a ChemiDoc imaging system (Bio-Rad Laboratories Inc.). 23

24

Protease activity was determined as described previously (Secades and Guijarro

1999) using azocasein as a substrate, with slight modifications. A 120-uL solution of 1 $\mathbf{2}$ purified DegQ containing 0.12 mg protein was mixed with 480 μ L of 0.1% (w/v) 3 azocasein in 25 mM Tris-HCl buffer (pH 7.6) with 5 mM MgCl₂, and the mixture was incubated for 30 min at 30°C. When necessary, diisopropyl fluorophosphate (DFP) was 4 added as a serine protease-specific inhibitor. A 600-µL volume of 10% (v/w) $\mathbf{5}$ trichloroacetic acid was added to terminate the reaction, and samples were incubated for 6 30 min on ice, followed by centrifugation at 15,000 $\times g$ for 10 min at 4°C. An aliquot of 7 supernatant (800 µL) was mixed with 200 µL of 1.8 M NaOH, and the absorbance at 8 440 nm (A_{440}) was measured using an ultraviolet-visible (UV-Vis) spectrometer 9 10 (UV-2600 PC, Shimadzu Corp.). One unit of enzyme activity was defined as the 11 amount of enzyme that yielded an increase in A_{440} of 0.01 per minute at 30°C.

12

13 Gene expression analysis

14To examine gene expression, each strain was cultured in 80 mL of LB medium at 30°C and then harvested at 4 h post-inoculation by centrifugation at 4°C for 10 min at 5 15000 $\times g$. Total RNA was extracted from the collected cells as described elsewhere 16 (Nguyen et al. 2014), and then reverse-transcribed into cDNA using a PrimeScript RT 1718 reagent kit (Takara Bio Inc.) with random hexamer primers. Gene expression was 19 analyzed by real-time PCR, as described in our previous study (Nguyen et al. 2014). The gene expression level was normalized against that of *rrsA* (16S rRNA). The 20specific primer pairs are listed in Table S1. 21

22

23 Isolation of periplasmic proteins and assay for proteolytic activity

24 Periplasmic proteins from *S. oneidensis* were extracted according to the previously

reported method (Ouan et al. 2013) with some modifications. S. oneidensis cells were 1 $\mathbf{2}$ harvested from 80 ml of culture broth at 6 h post-inoculation by centrifugation at 3,000 3 ×g for 20 min at 4°C. Precipitant was gently resuspended in 2 mL of Tris-sucrose-EDTA (TSE) buffer (200 mM Tris-HCl buffer containing 500 mM sucrose and 1 mM EDTA, 4 pH 8.0) using a wire loop. The cells were then incubated on ice for 30 min, and the $\mathbf{5}$ supernatant containing envelope extract was collected by centrifugation at $16,000 \times g$ for 6 30 min at 4°C. Finally, the periplasmic fraction was isolated as a supernatant by 7 ultracentrifugation at 100,000 $\times g$ (CS100FNX, Hitachi) for 1 h at 4°C. Protein 8 concentrations were determined by the Bradford assay, with bovine serum albumin as a 9 10 standard.

Protease activity of periplasmic proteins was also determined using azocasein, as described above. The periplasmic fraction from the sample (120 μ L) was mixed with 480 μ L of 0.1% (w/v) azocasein in 25 mM Tris-HCl buffer (pH 7.6) containing 5 mM MgCl₂.

15

16 Isolation and transmission electron microscope (TEM) observation of OMVs

OMVs were isolated as previously described (Gujrati et al. 2014) with some 1718 modifications. Following incubation for 24 h, S. oneidensis culture broth (80 mL) was 19centrifuged at 3,970 \times g for 10 min at 4°C. The supernatant was then passed through a 0.45 µm pore-size filter. The contents were precipitated using ammonium sulfate (final 20concentration, 400 g L⁻¹) at room temperature for 1 h. The crude OMVs obtained by 21centrifugation at 12,450 \times g for 30 min at 4°C were dissolved in 500 µL of 15% (v/v) 22glycerol, and then concentrated by ultracentrifugation (CS100FNX, Hitachi) at 109,000 23 $\times g$ for 1 h. The OMV pellets were resuspended in 100 μ L of 15% (v/v) glycerol solution. $\mathbf{24}$

As a result, the OMV samples were concentrated 800–fold as compared with the original culture broth. For observation of flocs using a TEM (H6000, Hitachi), the OMV samples were dropped onto a mesh copper grid and negatively stained with 4% uranyl acetate.

 $\mathbf{5}$

6

SDS-PAGE and nano LC-MS/MS analyses of OMVs

A 5-µL sample of isolated OMVs from each strain was analyzed by SDS-PAGE 7 with Coomassie Blue staining. OMV production was quantified according to the 8 previously described method (Schwechheimer and Kuehn 2013) with some 9 10 modifications. The SDS-PAGE band at ~ 37 kDa was analyzed by densitometry (NIH 11 Image J software) as an index of OMV concentration. The OMV density value was divided by dry cell weight (DCW) in each culture to calculate cell-based OMV 1213production, which was then normalized against OMV production of the wild-type strain. 14 The 37-kDa band was cut from the gel and subjected to in-gel digestion with trypsin. The proteins were analyzed using nano-flow liquid chromatography with online tandem 15mass spectrometry (nanoLC/ESI MS/MS system) composed of an LTQ Orbitrap Velos 16 (Thermo Fisher Scientific Inc.) coupled with a nanoLC (Advance, Michrom 17BioResources) and an HTC-PAL autosampler (CTC Analytics), at the Core 18 19 Instrumentation Facility of the Research Institute for Microbial Diseases, Osaka University (Osaka, Japan). Tandem mass spectra were acquired automatically, and then 20 searched against an S. oneidensis database from the National Center for Biotechnology 2122Information using the Mascot Server (Matrix Science).

23

24 **Results and Discussion**

1 Characterization of DegQ

 $\mathbf{2}$ The His6-tagged DegQ protein expressed in the S. oneidensis WT+degQ-His strain 3 was purified and then analyzed by SDS-PAGE. DegQ was detected as a major band at a molecular weight of 45 kDa (Fig. 1A), corresponding to the expected size of DegQ 4 protein. This indicated that the His6-tagged DegQ was successfully expressed in the $\mathbf{5}$ form of soluble molecules in the WT+*degQ*-His cells. In addition, western blot analysis 6 7 using anti-His primary antibody was conducted to further confirm the presence of DegQ. 8 A clear signal at ~ 45 kDa was observed (Fig. 1B), confirming that the purified protein is DegQ. 9

The protease activity of purified DegQ was confirmed by the azocasein hydrolysis assay. As shown in Fig. 1C, the activity of DegQ was 5.4 U mg-protein⁻¹. As DegQ is thought to be a putative periplasmic serine protease, the effect of DFP, a serine protease-specific inhibitor (Swamy et al. 1983), on the activity of DegQ was examined. As expected, 20 mM DFP inhibited protease activity of DegQ by 85%, suggesting that the purified protein was a serine protease. Thus, these results confirmed that the *S*. *oneidensis degQ* gene product is a serine protease.

17

18 **Deletion and complementation of** *degQ* in *S. oneidensis*

To confirm the in-frame deletion of degQ, genomic DNA was extracted from wild type *S. oneidensis* and the $\Delta degQ$ mutant. The degQ gene (1353 bp) plus 592 bp and 2020 292 bp of the upstream and downstream regions, respectively, were amplified by PCR. Electrophoresis results are shown in Supplementary Fig. S1. An approximately 2.2–kbp fragment was amplified from the wild type cells, corresponding to the combined size of degQ plus the surrounding regions. In contrast, an ~ 900 bp band was amplified from 1 the putative $\Delta degQ$ mutant. Furthermore, real-time PCR analysis did not detect degQ2 mRNA expression from the mutant cells (Table 2). These results indicate the successful 3 deletion of degQ from the chromosome of *S. oneidensis*.

The complete degQ gene was expressed and re-introduced into the $\Delta degQ$ mutant using the pHSG399–degQ plasmid. The relative expression of degQ (normalized against that of *rrsA*) in the resultant $\Delta degQ+degQ$ cells at 4 h post-inoculation was 1.5×10^{-2} , which was much higher than the expression in wild type cells (6.3×10^{-5}) (Table 2). This increased expression compared with the wild type can be attributed to the high copy number of pHSG399 plasmid (Takeshita et al. 1987).

10

11 **Periplasmic protease activity**

Figure 2 shows representative growth curves of the wild type S. oneidensis, 12deletion mutant $\Delta degO$, and complemented mutant $\Delta degO + degO$ strains. The wild type 13and $\Delta degO$ strains showed similar growth profiles (average growth rate of about 0.6 g-14DCW h⁻¹ during 6-12 h). The cell densities of the wild type and $\Delta degO$ cultures at 24 h 15post-inoculation reached DCW = 6.9 and 7.8 g L^{-1} , respectively. It can be mentioned 16 that the deletion of *degO* did not repress cell growth at 30°C. Meanwhile, the growth of 17 $\Delta degO + degO$ cells appeared to be slightly slower at 12 h than the other two strains, 18 19probably owing to the load of the high-copy number plasmid. The cell density of $\Delta degO + degO$ reached DCW = 6.7 g L⁻¹ at 24 h. On the whole, these results suggest that 20 the deletion and complementation of *degQ* did not drastically influence the growth of S. 2122oneidensis.

Next, cells of each strain were harvested at exponential growth phase (culture
time of 6 h post-inoculation) for isolation of periplasmic proteins and analysis of

protease activity. Table 2 shows protease activity on a DCW basis, as well as the 1 $\mathbf{2}$ concentration of periplasmic proteins obtained from each strain. The specific protease activity of the periplasmic proteins from the wild type was 19.4 U g–DCW⁻¹, while the 3 activity of the $\Delta degQ$ cells was 7.0 U g–DCW⁻¹, corresponding to only 30% of that of 4 the wild type. Thus, the periplasmic protease activity was significantly lowered by $\mathbf{5}$ deletion of degO. In contrast, the complemented mutant, $\Delta degO + degO$, had the highest 6 protease activity of 61.3 U g–DCW⁻¹. This corresponded with the increased degQ78 mRNA expression observed in $\Delta degQ + degQ$ cells compared with the wild type.

Interestingly, the concentration of periplasmic proteins from the $\Delta degO$ cells 9 was 2.56 mg g–DCW⁻¹, which was approximately 2.5 times greater than that from the 10 wild type cells (1.03 mg g–DCW⁻¹). This result strongly suggests that deletion of degQ11 12induced protein accumulation in the periplasmic space of S. oneidensis cells. In contrast, the complemented mutant $\Delta degQ + degQ$ cells produced the lowest concentration of 13periplasmic proteins (0.44 mg g-DCW⁻¹), which corresponds with the increased 14protease activity of this strain. Thus, our results strongly suggest that DegQ is a 15dominant periplasmic protease of S. oneidensis, and that lack of DegQ induces protein 16 accumulation in the periplasmic space. 17

18

19 Comparison of OMV production among strains

As in the case of *E. coli* (McBroom and Kuehn 2007; Schwechheimer and Kuehn 2013), it is likely that accumulation of periplasmic proteins in *S. oneidensis* cells would 22 induce OMV production, owing to envelope stress. Therefore, the insoluble fraction of 23 the supernatant containing OMVs was obtained from wild type, $\Delta degQ$, and 24 $\Delta degQ+degQ$ culture broths at a culture time of 24 h by ultracentrifugation. The 1 extracted OMVs from each strain were observed by TEM with negative staining (Fig. 3). 2 All strains produced OMVs, and while OMVs from the wild type culture tended to 3 aggregate, there was no significant difference in the size of OMVs between the wild 4 type and $\Delta degQ$ strains. On the other hand, fewer OMVs were obtained from the 5 $\Delta degQ+degQ$ cells compared with the other strains, indicating reduced OMV 6 production. In addition, co-precipitating appendages such as fimbriae and flagella were 7 confirmed in the sample from the $\Delta degQ+degQ$ cells.

8 To compare OMV production, the fractions containing OMVs from each S. oneidensis strain were analyzed by SDS-PAGE and qualitatively compared with the 9 10 wild type. The protein bands in the sedimented fractions from the $\Delta degQ$ cells were 11 much more intense (Fig. 4A), while the bands from the $\Delta degQ + degQ$ cells were much 12weaker. These results suggested that deletion of *degQ* enhanced OMV production, as was observed in E. coli (McBroom et al. 2006). However, it has been reported that a 1314portion of the periplasmic proteins is included inside the OMV structure when OMVs are generated (Lee et al. 2007). Therefore, we cannot exclude the possibility that the 15more intense bands from the $\Delta degQ$ sample is a consequence of increased amounts of 16periplasmic proteins inside the OMVs, rather than being indicative of enhanced OMV 1718 production.

From this perspective, in the case of *E. coli*, the bands observed in the sample at ~37 kDa (OmpF, OmpC, and OmpA) could be used as an index of OMV concentration, as these membrane proteins are expressed specifically and abundantly within the outer membrane of cells, and thus, are also found in abundance in OMVs (Schwechheimer and Kuehn 2013). Therefore, the same type of index could be used for evaluation of OMV production by *S. oneidensis*. As shown in Fig. 4A, a prominent band with a

molecular mass of \sim 37 kDa was confirmed from all strains by SDS-PAGE analysis. The 1 $\mathbf{2}$ proteins contained within this band were then examined by nano LC-MS/MS analysis. 3 Table 3 summarizes the properties of 10 proteins in descending order according to matching score from the first analysis. Among these proteins, OmpS38 (SO3896) had 4 the highest score. Omp35 is a putative porin on the outer membrane of S. oneidensis $\mathbf{5}$ cells that was confirmed by subcellular fraction analysis (Maier and Myers 2004). 6 7 OmpS38 is upregulated under anaerobic conditions and is involved in respiration of 8 non-oxygen electron acceptors (Gao et al. 2015). The protein with the next highest score was also identified as a putative outer membrane porin (SO1821) (Heidelberg et al. 9 10 2002). These two outer membrane porins were confirmed to have the highest scores 11 during the second analysis run (Table 3). MotA, a flagellar motor transmembrane 12channel protein, had the third highest score, while, the fourth protein (SO3545) was OmpA, which is also outer membrane porin (Gao et al. 2015). Thus, outer membrane 1314 proteins dominated the OMV samples, indicating that the bands at ~37 kDa can be used as an index of OMV production in S. oneidensis. Taking these findings into account, the 15OMV production was quantitatively analyzed based on the densitometry of the band at 16 ~37 kDa from each strain. As a result, we determined that OMV production by the 1718 $\Delta degO$ strain was about five times greater than that of the wild type strain (Fig. 4B). In 19contrast, the complemented $\Delta degQ + degQ$ strain showed about a 60% reduction in OMV production compared with the wild type strain. Together with the data from 20periplasmic protease activity analysis and periplasmic protein concentration, our results 2122suggest that OMV production was promoted by the deletion of *degQ* in *S. oneidensis* cells as a result of the accumulation of excessive amounts of periplasmic proteins. 23

In conclusion, our results show that degQ encodes a serine protease in *S. oneidensis*. Deletion of degQ resulted in the accumulation of periplasmic proteins, and led to a significant decrease in protease activity within the periplasmic space. SDS-PAGE analysis of isolated OMVs showed the band corresponding to outer membrane porins was more intense in the $\Delta degQ$ cells. Thus, OMV production by *S. oneidensis* was promoted by the lack of DegQ, most likely as a result of an increase in envelope stress.

8

9 Acknowledgement

10 This study was supported in part by a grant from the Noda Institute for Scientific 11 Research. We thank Dr. Muranaka at the Research Center for Ultra-High Voltage 12 Electron Microscopy, Osaka University, Japan, for assistance with TEM imaging.

13

14 References

- 15 Belchik SM, Kennedy DW, Dohnalkova AC, Wang Y, Sevinc PC, Wu H, Lin Y, Lu HP,
- 16 Fredrickson JK, Shi L (2011) Extracellular reduction of hexavalent chromium by
- 17 cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ

18 Microbiol 77:4035-4041 doi: 10.1128/aem.02463-10

Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane
 vesicles. J Bacteriol 181:4725-4733

- 21 Dai J, Wei H, Tian C, Damron FH, Zhou J, Qiu D (2015) An extracytoplasmic function
- sigma factor-dependent periplasmic glutathione peroxidase is involved in
- 23 oxidative stress response of *Shewanella oneidensis*. BMC Microbiol 15:34 doi:
- 24 10.1186/s12866-015-0357-0

1	Edwards RA, Keller LH, Schifferli DM (1998) Improved allelic exchange vectors and		
2	their use to analyze 987P fimbria gene expression. Gene 207:149-157		
3	Fennessey CM, Jones ME, Taillefert M, DiChristina TJ (2010) Siderophores are not		
4	involved in Fe(III) solubilization during anaerobic Fe(III) respiration by		
5	Shewanella oneidensis MR-1. Appl Environ Microbiol 76:2425-2432 doi:		
6	10.1128/aem.03066-09		
7	Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS,		
8	Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JL,		
9	Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Towards		
10	environmental systems biology of Shewanella. Nat Rev Microbiol 6:592-603 doi:		
11	10.1038/nrmicro1947		
12	Gao H, Barua S, Liang Y, Wu L, Dong Y, Reed S, Chen J, Culley D, Kennedy D, Yang Y,		
13	He Z, Nealson KH, Fredrickson JK, Tiedje JM, Romine M, Zhou J (2010) Impacts		
14	of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration.		
15	Microb Biotechnol 3:455-466 doi: 10.1111/j.1751-7915.2010.00181.x		
16	Gao T, Ju L, Yin J, Gao H (2015) Positive regulation of the Shewanella oneidensis		
17	OmpS38, a major porin facilitating anaerobic respiration, by Crp and Fur.		
18	Scientific Reports 5:14263 doi: 10.1038/srep14263		
19	Gujrati V, Kim S, Kim SH, Min JJ, Choy HE, Kim SC, Jon S (2014) Bioengineered		
20	bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for		
21	cancer therapy. ACS Nano 8:1525-1537 doi: 10.1021/nn405724x		
22	Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA,		
23	Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M,		
24	Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF,		

1	Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J,		
2	Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J,		
3	Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH,		
4	Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing		
5	bacterium Shewanella oneidensis. Nat Biotechnol 20:1118-1123 doi:		
6	10.1038/nbt749		
7	Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from		
8	Pseudomonas aeruginosa in association with membrane vesicles during normal		
9	growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J		
10	Bacteriol 177:3998-4008		
11	Kadurugamuwa JL, Beveridge TJ (1996) Bacteriolytic effect of membrane vesicles		
12	from Pseudomonas aeruginosa on other bacteria including pathogens:		
13	conceptually new antibiotics. J Bacteriol 178:2767-2774		
14	Knox KW, Vesk M, Work E (1966) Relation between excreted lipopolysaccharide		
15	complexes and surface structures of a lysine-limited culture of <i>Escherichia coli</i> . J		
16	Bacteriol 92:1206-1217		
17	Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, Park KS, Lee JO, Kim YK,		
18	Kwon KH, Kim KP, Gho YS (2007) Global proteomic profiling of native outer		
19	membrane vesicles derived from Escherichia coli. Proteomics 7:3143-3153 doi:		
20	10.1002/pmic.200700196		
21	Lipinska B, Zylicz M, Georgopoulos C (1990) The HtrA (DegP) protein, essential for		
22	Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol		
23	172:1791-1797		
24	Maier TM, Myers CR (2004) The outer membrane protein Omp35 affects the reduction		

1	of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1. BMC Microbiol		
2	4:23 doi: 10.1186/1471-2180-4-23		
3	McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ (2006) Outer membrane vesicle		
4	production by Escherichia coli is independent of membrane instability. J Bacteriol		
5	188:5385-5392 doi: 10.1128/JB.00498-06		
6	McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative		
7	bacteria is a novel envelope stress response. Mol Microbiol 63:545-558 doi:		
8	10.1111/j.1365-2958.2006.05522.x		
9	Miller VL, Mekalanos JJ (1988) A novel suicide vector and its use in construction of		
10	insertion mutations: osmoregulation of outer membrane proteins and virulence		
11	determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575-2583		
12	Myers CR, Myers JM (1994) Ferric iron reduction-linked growth yields of Shewanella		
13	putrefaciens MR-1. J Appl Bacteriol 76:253-258		
14	Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with		
15	manganese oxide as the sole electron acceptor. Science 240:1319-1321 doi:		
16	10.1126/science.240.4857.1319		
17	Myers CR, Nealson KH (1990) Respiration-linked proton translocation coupled to		
18	anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens		
19	MR-1. J Bacteriol 172:6232-6238		
20	Myers JM, Myers CR (2000) Role of the tetraheme cytochrome CymA in anaerobic		
21	electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of		
22	menaquinone. J Bacteriol 182:67-75		
23	Nguyen MH, Ojima Y, Sakka M, Sakka K, Taya M (2014) Probing of		
24	exopolysaccharides with green fluorescence protein-labeled carbohydrate-binding		

1	module in <i>Escherichia coli</i> biofilms and flocs induced by <i>bcsB</i> overexpression. J		
2	Biosci Bioeng 118:400-405 doi: 10.1016/j.jbiosc.2014.03.005		
3	Nowotny A, Behling UH, Hammond B, Lai CH, Listgarten M, Pham PH, Sanavi F		
4	(1982) Release of toxic microvesicles by Actinobacillus actinomycetemcomitans.		
5	Infect Immun 37:151-154		
6	Penfold RJ, Pemberton JM (1992) An improved suicide vector for construction of		
7	chromosomal insertion mutations in bacteria. Gene 118:145-146		
8	Quan S, Hiniker A, Collet J-F, Bardwell CAJ (2013) Isolation of Bacteria Envelope		
9	Proteins. In: Delcour AH (ed) Bacterial Cell Surfaces : Methods and Protocols.		
10	Springer, pp 359-366		
11	Rothfield L, Pearlman-Kothencz M (1969) Synthesis and assembly of bacterial		
12	membrane components. A lipopolysaccharide-phospholipid-protein complex		
13	excreted by living bacteria. J Mol Biol 44:477-492		
14	Schwechheimer C, Kuehn MJ (2013) Synthetic effect between envelope stress and lack		
15	of outer membrane vesicle production in Escherichia coli. J Bacteriol		
16	195:4161-4173 doi: 10.1128/jb.02192-12		
17	Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative		
18	bacteria: biogenesis and functions. Nat Rev Microbiol 13:605-619 doi:		
19	10.1038/nrmicro3525		
20	Schwechheimer C, Sullivan CJ, Kuehn MJ (2013) Envelope control of outer membrane		
21	vesicle production in Gram-negative bacteria. Biochem. 52:3031-3040 doi:		
22	10.1021/bi400164t		
23	Secades P, Guijarro JA (1999) Purification and characterization of an extracellular		
24	protease from the fish pathogen Yersinia ruckeri and effect of culture conditions		

1	on production. Appl Environ Microbiol 65:3969-3975			
2	Strauch KL, Johnson K, Beckwith J (1989) Characterization of degP, a gene required			
3	for proteolysis in the cell envelope and essential for growth of Escherichia coli at			
4	high temperature. J Bacteriol 171:2689-2696			
5	Sundararajan A, Kurowski J, Yan T, Klingeman DM, Joachimiak MP, Zhou J, Naranjo B,			
6	Gralnick JA, Fields MW (2011) Shewanella oneidensis MR-1 sensory box protein			
7	involved in aerobic and anoxic growth. Appl Environ Microbiol 77:4647-4656			
8	8 doi: 10.1128/aem.03003-10			
9	Swamy KH, Chung CH, Goldberg AL (1983) Isolation and characterization of protease			
10	do from <i>Escherichia coli</i> , a large serine protease containing multiple subunits.			
11	Arch Biochem Biophys 224:543-554			
12	Takeshita S, Sato M, Toba M, Masahashi W, Hashimoto-Gotoh T (1987)			
13	High-copy-number and low-copy-number plasmid vectors for lacZ			
14	alpha-complementation and chloramphenicol- or kanamycin-resistance selection.			
15	Gene 61:63-74			
16	Wensink J, Witholt B (1981) Identification of different forms of the murein-bound			
17	lipoprotein found in isolated outer membranes of Escherichia coli. Eur J Biochem			
18	113:349-357			
19	Zhou L, Srisatjaluk R, Justus DE, Doyle RJ (1998) On the origin of membrane vesicles			
20	in Gram-negative bacteria. FEMS Microbiol Lett 163:223-228 doi:			
21	10.1111/j.1574-6968.1998.tb13049.x			

1 **FIGURE LEGENDS**

 $\mathbf{2}$ Fig. 1 Purification and characterization of DegQ protein. (A) SDS-PAGE analysis of purified DegQ protein. DegQ was expressed in the S. oneidensis WT+degQ-His 3 strain. (B) Western blot analysis of purified DegQ protein. Hybridization was 4 conducted using anti-His6 primary antibody. (C) Protease activity of purified $\mathbf{5}$ DegQ protein with or without serine protease inhibitor, diisopropyl 6 $\overline{7}$ fluorophosphates (DFP). Data was determined from three independent experiments. Vertical bars indicate standard deviation. An asterisk indicates 8 9 statistical significance as determined by a Student's t-test (p < 0.05).

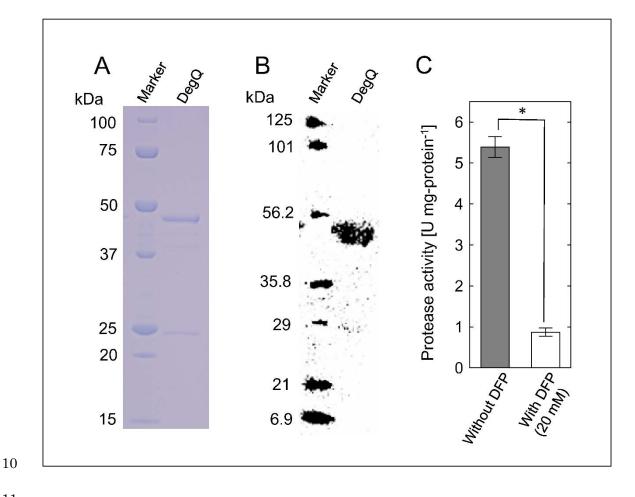
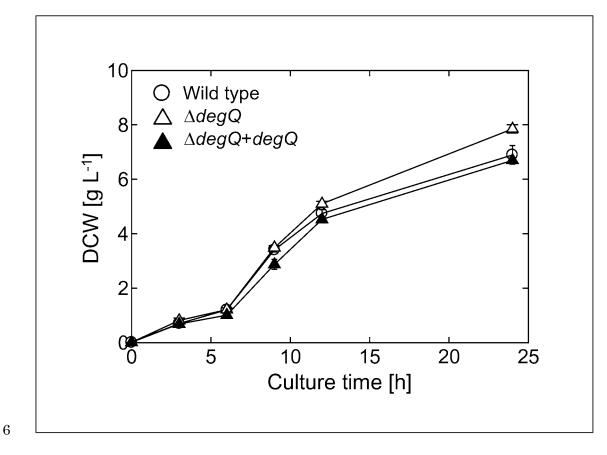
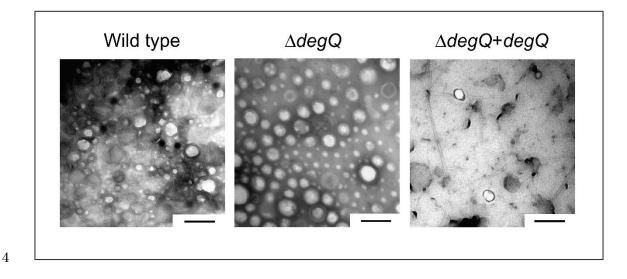
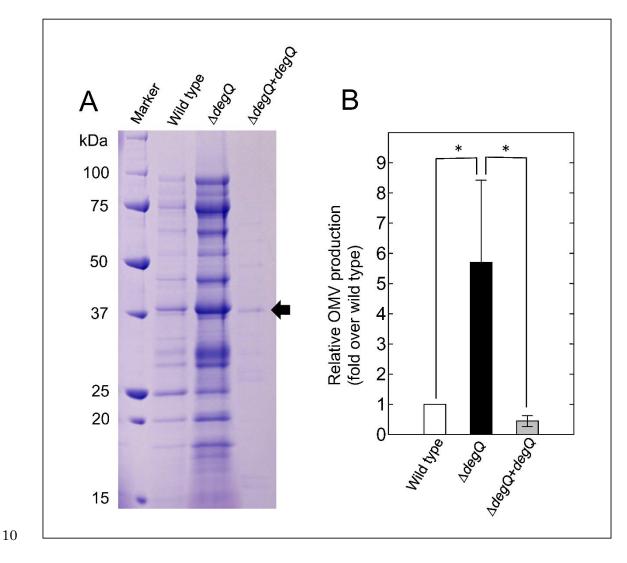




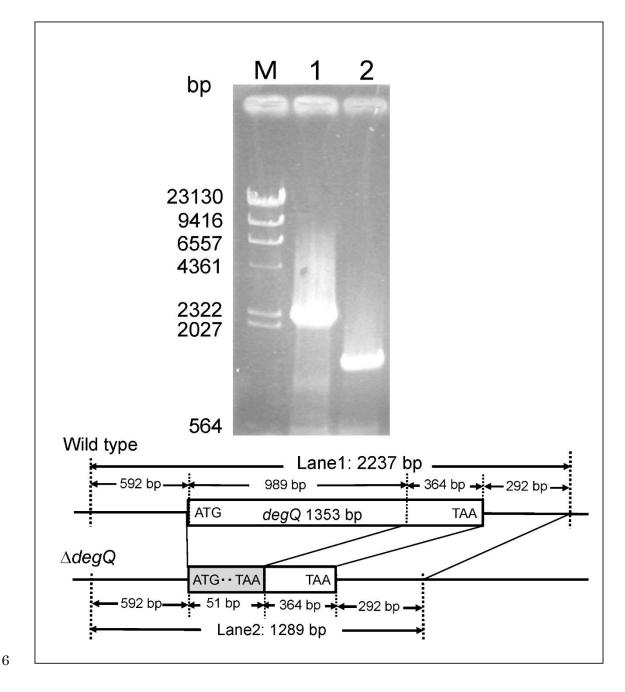
Fig. 2 Growth profiles of *S. oneidensis* wild type, Δ*degQ*, and Δ*degQ+degQ* strains in
LB medium at 30°C. Data were determined from three independent experiments.
Vertical bars indicate standard deviation. DCW was calculated by DCW = α ×
OD₆₆₀ when α = 0.87 (wild type), 0.96 (Δ*degQ*), and 0.93 (Δ*degQ+degQ*) g L⁻¹,
respectively.



1 Fig. 3 TEM images of OMVs isolated from *S. oneidensis* wild type, $\Delta degQ$, and 2 $\Delta degQ + degQ$ strains. The OMVs were stained with uranyl acetate. The scale 3 bars indicate 200 nm.

 $\mathbf{5}$

Fig. 4 Correlation between degO and OMV production. (A) SDS-PAGE analysis of 1 $\mathbf{2}$ OMVs isolated from the S. oneidensis wild type, $\Delta degQ$, and $\Delta degQ+degQ$ 3 strains. The closed arrow indicates the protein bands of interest that were analyzed by nano LC-MS/MS. (B) Comparison of OMV production among S. 4 oneidensis wild type, $\Delta degQ$, and $\Delta degQ+degQ$ strains. OMV production was $\mathbf{5}$ determined as relative values by normalizing against the value of the wild type 6 $\overline{7}$ strain. Data was determined from three independent experiments. Vertical bars 8 indicate standard deviation. An asterisk indicates the statistical significance as 9 determined by ANOVA with Tukey's test (p < 0.05).



1 SUPPORTING INFORMATION

2 Table S1 Primers used in this study.

 $\mathbf{5}$

- 3 Fig. S1 Electrophoresis of the degQ fragment amplified from genomic DNA isolated
- 4 from S. oneidensis wild type (lane 1) and $\Delta degQ$ (lane 2) strains. Lane M;
 - *HindIII*-digested λ DNA marker.

Table 1

Strain and vector	Description	Reference		
Strains				
S. oneidensis MR-1	Wild type strain	(Myers and Nealson 1988)		
WT+ <i>degQ</i> -His	Wild type strain with pHSG399-degQ-His	This study		
$\Delta deg Q$	In-flame deletion of <i>degQ</i>	This study		
$\Delta degQ$ + $degQ$	Cm ^r , complemented strain with pHSG399-degQ	This study		
Escherichia coli				
SM10 λpir	Mating strain	(Miller and Mekalanos 1988)		
JM109 λpir	Cloning strain	(Penfold and Pemberton 1992)		
Plasmids				
pRE112	Cm ^r , pir-dependent suicide vector	(Edwards et al. 1998)		
pRE112-F3	Cm ^r , pRE112 caring F3 fragment	This study		
pHSG399	Cm ^r , expression vector	(Takeshita et al. 1987)		
pHSG399-degQ	Cm^r , expression vector carrying $degQ$	This study		
pHSG399-degQ-His	Cm ^r , expression vector carrying <i>degQ</i> with the His6-Tag sequence at C-terminus	This study		

Table 1 Strains and vectors used in this study.

oneidensis wild type	e, $\Delta degQ$, and $degQ+degQ$ strain	IS.	
Strain	mRNA expression [-]	Protease activity [U g–DCW ⁻¹]	Periplasmic proteins [mg g–DCW ⁻¹]
 Wild type	$(6.3 \pm 4.2) \times 10^{-5}$	19.4 ± 2.9	1.03 ± 0.12

N.D.

 $(1.5 \pm 1.2) \times 10^{-2}$

Table 2 mRNA expressions of degQ gene, protease activities of DegQ protein, and amounts of periplasmic proteins from *S*. *oneidensis* wild type. $\Delta degQ$, and degQ+degQ strains.

 7.0 ± 2.3

 61.3 ± 14.6

 2.56 ± 0.37

 0.44 ± 0.03

The data were determined using the cells harvested at culture times of 4 h for mRNA expression analysis and 6 h for protease activity assay. The data were determined from three independent experiments.

N.D.: Not detected

 $\Delta degQ$

 $\Delta degQ + degQ$

Table 3

Table 3 Proteins identified in OMVs from *S. oneidensis* wild type strain.

Protein	Gene	Mass	Score	Peptide no.	Accession	Note
First analysis						
Outer membrane porin	ompS38	39874	34463	1166	gi 499386175	SO3896
Outer membrane porin	-	39654	6912	327	gi 499385907	SO1821
Flagellar motor protein MotA	motA	48740	1097	36	gi 499384378	SO4287
Outer membrane porin	ompA	43970	1033	28	gi 499384375	SO3545
iron ABC transporter substrate-binding protein	fbpA	37394	953	30	gi 499383481	SO0744
TonB-dependent ferric putrebactin siderophore receptor PutA	putA	81373	877	20	gi 499385445	SO3033
ATP synthase subunit beta	atpD	49856	784	21	gi 499386863	SO4747
alcohol dehydrogenase	adhB	40387	783	23	gi 499384108	SO1490
cytochrome C	omcA	79992	725	27	gi 499384335	SO1779
5'-nucleotidase	ushA	61353	671	29	gi 499384520	SO2001
Second analysis						
Outer membrane porin	ompS38	39874	11280	488	gi 499386175	SO3896
Outer membrane porin	-	39654	1960	109	gi 499385907	SO1821
alcohol dehydrogenase	adhB	40387	709	28	gi 499384108	SO1490
TonB-dependent receptor	hmuA	81373	527	22	gi 499385445	SO3669
Outer membrane porin	ompA	43970	384	22	gi 499384375	SO3545
Isocitrate dehydrogenase	-	36173	370	13	gi 499384148	SO1538
ABC transporter substrate-binding protein	potF	40834	368	16	gi 499383922	SO1270
Phage capsid protein	-	43497	319	18	gi 499385376	SO2963
Cytochrome C	omcA	79992	316	12	gi 499384335	SO1779
Iron ABC transporter substrate-binding protein	fbpA	37394	299	16	gi 499383481	SO0744

Supplementary Table S1

Primers	Sequence			
Mutagenesis				
F1-F	5'- ATCGGAGCTCCA AAGAGTTAGGCTCTTCGGCT -3'			
F1-R	5'- GACTGGCTTAGGTCGTCTCTATTTCGTTTTCATCTATTCATA -3'			
F2-F	5'- AGAGACGACCTAAGCCAGTCCCAAGAGCTGCGTGCTAAAGTC -3'			
F2-R	5'- ATCGTCTAGAGCCTTGGCAAAGGAGAGTTCA -3'			
Complementation				
<i>degQ</i> -F	5'- ATCGAAGCTTGAAAACGAAATTATCT -3'			
<i>degQ</i> -R	5'- ATCGGAATTCTTAACGAAGCACTAA -3'			
Purification				
degQ-His-R	5'- ATCGGAATTCTCAGTGGTGGTGGTGGTGGTGGTGACGAAGCACTAAGTAAAG -3'			
Realtime PCR				
rrsA(house keeping)-RT-F	5'- GCAACGCGAAGAACCTTACC -3'			
rrsA (house keeping)-RT-R	5'- CAGCACCTGTCTCACGGTTC-3'			
<i>degQ</i> (SO3942)-RT-F	5'- AACAAGTGCAAGAGCGTCCA -3'			
<i>degQ</i> (SO3942)-RT-R	5'- CTTCACGGCCATCGTGTAAA -3'			

Supplementary Table S1 Primers used in this study