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SHARP HARDY-LERAY AND RELLICH-LERAY INEQUALITIES

FOR CURL-FREE VECTOR FIELDS

NAOKI HAMAMOTO AND FUTOSHI TAKAHASHI

Abstract. In this paper, we prove Hardy-Leray and Rellich-Leray inequal-
ities for curl-free vector fields with sharp constants. This complements the

former work by Costin-Maz’ya [2] on the sharp Hardy-Leray inequality for
axisymmetric divergence-free vector fields.

1. Introduction

In this paper, we concern the classical functional inequalities called Hardy-Leray
and Rellich-Leray inequalities for smooth vector fields and study how the best
constants will change according to the pointwise constraints on their differentials.

Let N ∈ N be an integer with N ≥ 2 and put x = (x1, · · · , xN ) ∈ RN . In the
following, C∞

c (RN )N denotes the set of smooth vector fields

u = (u1, u2, · · · , uN ) : RN ∋ x 7→ u(x) ∈ RN

having compact supports on RN . Let γ ̸= 1−N/2. Then it is well known that

(1)

(
γ +

N

2
− 1

)2 ∫
RN

|u|2

|x|2
|x|2γdx ≤

∫
RN

|∇u|2|x|2γdx

holds for any vector field u ∈ C∞
c (RN )N with u(0) = 0 if γ < 1 − N/2. This

is a higher dimensional extension of the 1-dimensional inequality by G. H. Hardy,
see [8], also [12], and was first proved by J. Leray [10] in 1933 when the weight
γ = 0, see also the book by Ladyzhenskaya [9]. It is also known that the constant(
γ + N

2 − 1
)2

is sharp and never attained. In [2], Costin and Maz’ya proved that
if the smooth vector fields are axisymmetric and subject to the divergence-free

constraint divu = 0, then the constant
(
γ + N

2 − 1
)2

in (1) can be improved and
replaced by a larger one. More precisely, they proved the following:

Theorem A. (Costin-Maz’ya [2]) Let N ≥ 3. Let γ ̸= 1 − N/2 be a real number
and u ∈ C∞

c (RN )N be an axisymmetric divergence-free vector field. Assume that
u(0) = 0 if γ < 1−N/2. Then

CN,γ

∫
RN

|u|2

|x|2
|x|2γdx ≤

∫
RN

|∇u|2|x|2γdx
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holds with the optimal constant CN,γ given by

CN,γ =



(
γ + N

2 − 1
)2 N + 1 +

(
γ − N

2

)2
N − 1 +

(
γ − N

2

)2 (γ ≤ 1),

(
γ + N

2 − 1
)2

+ 2 +min
κ≥0

(
κ+ 4(N−1)(γ−1)

κ+N−1+(γ−N
2 )

2

)
(N ≥ 4, γ > 1),(

γ + 1
2

)2
+ 2 (N = 3, γ > 1),

Note that the expression of the best constant CN,γ is slightly different from that
in [2] when N ≥ 4, but a careful checking the proof in [2] leads to the above formula
in Theorem A. Choosing γ = 0 in Theorem A, we see that the best constant in (1)
is actually improved for axisymmetric divergence-free vector fields in the sense that

CN,0

∫
RN

|u|2

|x|2
dx ≤

∫
RN

|∇u|2dx

holds with the optimal constant CN,0 =
(
N
2 − 1

)2 N2+4N+4
N2+4N−4 >

(
N−2
2

)2
.

In 2-dimensional case, the result in [2] reads as follows:

Theorem B. (Costin-Maz’ya [2]) Let γ ̸= 0 be a real number and u ∈ C∞
c (R2)2 be

a divergence-free vector field. We assume that u(0) = 0 if γ < 0 . Then

C2,γ

∫
R2

|u|2

|x|2
|x|2γdx ≤

∫
R2

|∇u|2|x|2γdx

holds with the optimal constant C2,γ given by

C2,γ =

γ
2 3 + (γ − 1)

2

1 + (γ − 1)
2 for |γ + 1| ≤

√
3,

γ2 + 1 otherwise.

WhenN = 2, the divergence-free field u in Theorem B need not be axisymmetric.
Furthermore if we consider u⊥ = (−u2, u1) for u = (u1, u2) in Theorem B, then
the condition divu = 0 is replaced by curlu⊥ = 0 and also |∇u|2 = |∇u⊥|2. Thus
the above inequality in Theorem B holds also for curl-free vector fields with the
same constant.

Motivated by this observation, our aim in this paper is to generalize Costin-
Maz’ya’s result for curl-free vector fields when N = 2 to higher-dimensional cases.
In addition, we also consider the Rellich type inequality involving the higher-order
derivative, ∆u, for curl-free vector fields. We refer to [5] for the Rellich-Leray
inequality for divergence-free vector fields. See also [6], [7] for other improvements
of [2].

Now, main results of this paper are as follows:

Theorem 1. Let γ ̸= 1−N/2 be a real number and let u ∈ C∞
c (RN )N be a curl-free

vector field. We assume that u(0) = 0 if γ < 1−N/2. Then

(2) HN,γ

∫
RN

|u|2

|x|2
|x|2γdx ≤

∫
RN

|∇u|2|x|2γdx
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with the optimal constant HN,γ given by

(3) HN,γ =


(
γ + N

2 − 1
)2 3(N−1)+(γ+N

2 −2)
2

N−1+(γ+N
2 −2)

2 if
∣∣γ + N

2

∣∣ ≤ √
N + 1,(

γ + N
2 − 1

)2
+N − 1 otherwise.

We remark that no symmetry assumption for u is needed. Theorem 1 corre-
sponds to the higher-dimensional analogue of Theorem B in the sense that C2,γ =
H2,γ .

For curl-free vector fields u, Poincaré’s lemma implies that there exists a smooth
scalar potential ϕ such that u = ∇ϕ. Thus by using the potential function ϕ,
Theorem 1 is equivalent to the following corollary.

Corollary 2. Let γ ̸= 1−N/2 be a real number and let ϕ ∈ C∞
c (RN ). We assume

that ∇ϕ(0) = 0 if γ < 1−N/2. Then

HN,γ

∫
RN

|∇ϕ|2

|x|2
|x|2γdx ≤

∫
RN

|D2ϕ|2|x|2γdx

with the optimal constant HN,γ given in (3). Here D2ϕ(x) =
(

∂2ϕ
∂xi∂xj

(x)
)
1≤i,j≤N

denotes the Hessian matrix of ϕ.

By similar arguments, we prove the following Rellich-Leray inequality for curl-
free vector fields.

Theorem 3. Let γ ̸= 2−N/2 be a real number and let u ∈ C∞
c (RN )N be a curl-free

vector field. We assume that
∫
RN |x|2γ−4|u|2dx <∞. Then

(4) RN,γ

∫
RN

|u|2

|x|4
|x|2γdx ≤

∫
RN

|∆u|2|x|2γdx

with the optimal constant RN,γ given by

(5) RN,γ = min
ν∈N∪{0}

(1− N
2 − γ)2 + αν(

3− N
2 − γ

)2
+ αν

(α3−N
2 −γ − αν)

2

for γ ̸= 3−N/2, where we put

αs = s(s+N − 2), s ∈ R,
and

(6) RN,3−N/2 =

{
4(N − 2)2 for N = 2, 3, 4,

(N + 3)(N − 1) for N ≥ 5.

Corollary 4. Let γ ̸= 2−N/2 be a real number and let ϕ ∈ C∞
c (RN ) be a potential

function such that
∫
RN |x|2γ−4|∇ϕ|2dx <∞. Then

RN,γ

∫
RN

|∇ϕ|2

|x|4
|x|2γdx ≤

∫
RN

|∇∆ϕ|2|x|2γdx

holds with the optimal constant RN,γ as in (5) and (6).

Remark 5. The best constants HN,γ and RN,γ in Theorem 1 and 3 are respectively
unchanged even if we additionally assume the axisymmetry condition on the curl-
free fields u. Indeed, ψν(σ) = Pν(− cos θ1), where Pν is a Legendre polynomial of
ν-th order (see Appendix in [5]), is the axisymmetric eigenfunction of the Laplace-
Beltrami operator on the sphere SN−1 associated with the eigenvalue αν = ν(ν +
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N −2). Therefore, in the proof of the optimality for HN,γ or RN,γ , we may use the
axisymmetric curl-free test fields by applying (35) to ψν0(σ) = Pν0(− cos θ1). This
implies the claim.

Remark 6. We do not know that the optimal constants HN,γ and RN,γ are attained
or not in the class of vector fields in Theorem 1 and Theorem 3.

Also in Theorem 1 and Theorem 3, if we restrict ourselves only on vector fields
in C∞

c (RN \ {0}), then the additional assumptions u(0) = 0 if γ < 1 − N/2, or∫
RN |x|2γ−4|u|2dx <∞ are not needed and the same conclusions hold true.

Concerning Corollary 2 which is equivalent to Theorem 1, we should remark
that the similar results already exist by [13], [3]; see also [4] Chapter 6.5. More
precisely, improving the work by Tertikas and Zographopoulos [13], Ghoussoub and
Moradifam ([3]: Appendix B) proved the following: Let C∞

c (BR) denote the set
of smooth functions having compact supports on a ball BR ⊂ RN with radius R.
Define

AN,γ(R) = inf


∫
BR

|∆ϕ|2|x|2γdx∫
BR

|∇ϕ|2
|x|2 |x|2γdx

: ϕ ∈ C∞
c (BR)

 .

Assume γ ≥ 1−N/2. Then AN,γ(R) is independent of R, and is equal to

AN,γ = min
ν∈N∪{0}


(

(N−4+2γ)(N−2γ)
4 + αν

)2
(

N−4+2γ
2

)2
+ αν

 ,

where αν = ν(N+ν−2) (ν ∈ N∪{0}) is the ν-th eigenvalue of the Laplace-Beltrami
operator on the unit sphere SN−1 in RN . Note that by the simple formula

|D2ϕ|2 =

N∑
i,j=1

(
∂2ϕ

∂xi∂xj

)2

= div

(
1

2
∇|∇ϕ|2 − (∆ϕ)∇ϕ

)
+ (∆ϕ)2,

for ϕ ∈ C∞
c (BR), we have

∫
BR

|D2ϕ|2dx =
∫
BR

|∆ϕ|2dx which impliesHN,0 = AN,0.

However, in weighted cases, it holds
∫
BR

|D2ϕ|2|x|2γdx ̸=
∫
BR

|∆ϕ|2|x|2γdx, and in

general we have HN,γ ̸= AN,γ . Also the inequality in Corollary 4 seems new.
The organization of this paper is as follows: In §2, we recall the method by

Costin-Maz’ya in [2] and derive the equivalent curl-free condition in polar coordi-
nates. In §3, we prove Theorem 1 and the sharpness of the constant (3). In §4,
we prove Theorem 3 and the sharpness of the constants (5) and (6). Since the test
vector fields introduced in [2] may not have compact supports, we will use different
test vector fields for the proof of the sharpness of the constants.

2. Preparation: Costin-Maz’ya’s setting

In this section, we recall the method of Costin-Maz’ya [2] and derive the polar
coordinate representation of the curl-free condition.

Spherical polar coordinate. We introduce the spherical polar coordinates

(ρ, θ1, θ2, · · · , θN−2,θN−1) ∈ (0,∞)× (0, π)N−2 × [0, 2π)
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whose relation to the standard Euclidean coordinates x = (x1, · · · , xN ) ∈ RN is
given by

x = ρ(cos θ1, π1 cos θ2, π2 cos θ3, · · · , πk−1 cos θk, · · · , πN−2 cos θN−1, πN−1),

hereafter we use the notation

π0 = 1, πk =
k∏

j=1

sin θj , (k = 1, 2, · · · , N − 1)

for simplicity. Also we use the notation

∂ρ =
∂

∂ρ
, ∂θk =

∂

∂θk
, (k = 1, 2, · · · , N − 1)

for the partial derivatives, and

dx =
N∏

k=1

dxk = dx1dx2 · · · dxN , dσ =
N−1∏
k=1

(sin θk)
N−k−1dθk

for the volume elements on RN and SN−1.
The orthonormal basis vector fields eρ, eθ1 , eθ2 , · · · , eθN−1 along the polar coor-

dinates are given by

(7)


eρ =

∂ρx
|∂ρx| = (cos θ1, π1 cos θ2, π2 cos θ3, · · ·πN−2 cos θN−1, πN−1) ,

eθk =
∂θk

x

|∂θk
x| =

1

πk−1
∂θkeρ, (k = 1, 2, · · · , N − 1)

that are clearly independent of the radius ρ. Note that we can rewrite them as

eρ = (cos θ1, π1 cos θ2 , π2 cos θ3 , · · · , πk−1 cos θk , πkφk) ,

eθk =
(
0, 0, · · · , 0︸ ︷︷ ︸

k−1

,− sin θk, cos θkφk

)
,

where

φk =

(
cos θk+1,

πk+1

πk
cos θk+2,

πk+2

πk
cos θk+3, · · · ,

πN−2

πk
cos θN−1,

πN−1

πk

)
∈ SN−k−1

is a (N−k)-vector, which depends only on θk+1, · · · , θN−1. From these expressions,
we can easily check the orthonormality of eρ, eθ1 , eθ2 , · · · , eθN−1 .

For any smooth vector field u = (u1, u2, · · · , uN ) : RN → RN , its polar compo-
nents uρ, uθ1 , uθ2 , · · · , uθN−1 as R-valued smooth functions are defined by

u = uρeρ +

N−1∑
k=1

uθkeθk .

The second term of the right-hand side is denoted by

uσ =
N−1∑
k=1

uθkeθk

and we call this the spherical component of u. Thus we have the polar decomposi-
tion of u:

(8) u = uρeρ + uσ
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which gives the decomposition of u into the radial and the spherical parts. Also by
using the chain rules together with (7), we have

∂ρ = eρ · ∇, and
1

ρ
∂θk = πk−1eθk · ∇, (k = 1, · · · , N − 1),

which give the polar decomposition of the gradient operator ∇:

(9) ∇ = eρ∂ρ +
1

ρ
∇σ ,

where

(10) ∇σ =
N−1∑
k=1

eθk
πk−1

∂θk

is the gradient operator on SN−1.
Moreover, it is well-known that the polar representation of the Laplace operator

∆ =
∑N

k=1 ∂
2/∂x2k is given by

(11) ∆ =
1

ρN−1
∂ρ
(
ρN−1∂ρ

)
+

1

ρ2
∆σ ,

where

(12) ∆σ =
N−1∑
k=1

(sin θk)
k+1−N

π2
k−1

∂θk
(
(sin θk)

N−k−1∂θk
)
=

N−1∑
k=1

1

π2
k−1

Dθk∂θk

is the Laplace-Beltrami operator on SN−1 and for every k = 1, · · · , N − 1

Dθk = ∂θk + (N − k − 1) cot θk

is the adjoint operator of −∂θk in L2(dσ,SN−1) : it holds that

−
∫
SN−1

f (∂θkg) dσ =

∫
SN−1

(Dθkf) gdσ

for any smooth functions f, g on SN−1.
We also introduce the deformed radial coordinate t ∈ R by the Emden transfor-

mation

(13) t = log ρ.

Note that (13) leads to the transformation law of the differential operators ρ∂ρ = ∂t.
By this transformation, it is easy to check that the polar decomposition of ∇ , ∆
in (9) , (11) are also given by

ρ∇ = eρ∂t +∇σ,(14)

ρ2∆ = ∂2t + (N − 2)∂t +∆σ.(15)

For the later use, we prove the following lemma.

Lemma 7. Let ∇σ and ∆σ are given by (10) and (12) respectively. Then for any
f ∈ C∞(SN−1) , σ = eρ ∈ SN−1 and α ∈ C, there holds that

∆σ(eρf)− eρ∆σf =
(
2∇σ − (N − 1)eρ

)
f,(16)

∆σ∇σf −∇σ∆σf =
(
(N − 3)∇σ − 2eρ∆σ

)
f,(17)

∆σ (feρ + α∇σf) = eρ
(
(1− 2α)∆σf − (N − 1)f

)
(18)

+
(
2 + (N − 3)α

)
∇σf + α∇σ∆σf.
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Proof. Take any f ∈ C∞(SN−1). We identify f with the function f̃ ∈ C∞(RN\{0})
defined by f̃(x) = f(x/|x|) . Since f = f̃ does not depend on the radius ρ, we
have ∇σf = ρ∇f by (9) and ∆σf = ρ2∆f by (11). Thus we compute

∆σ(eρf)− eρ∆σf = ρ2∆

(
xf

ρ

)
− x

ρ
ρ2∆f

= ρ2
(
∆(xf)

ρ
+ 2

((
∇ρ−1

)
· ∇
)
(xf) + (∆ρ−1)xf

)
− ρx∆f

= 2ρ(∇f · ∇)x− 2 (∇ρ · ∇) (xf) + ρ3(∆ρ−1)eρf

= 2ρ∇f − 2∂ρ(ρeρf)− (N − 3)eρf

=
(
2∇σ − (N − 1)eρ

)
f,

here we have used ∇ρ · ∇ = ∂ρ and ∆ρ−1 = −(N − 3)ρ−3. This proves (16).
Similarly, also noting the commutativity ∆∇ = ∇∆ and using ∆ρ = (N − 1)ρ−1,
we have

(∆σ∇σ −∇σ∆σ)f = ρ2∆∇σf − ρ∇∆σf

= ρ2∆
(
ρ∇f

)
− ρ∇

(
ρ2∆f

)
= ρ2

(
(∆ρ)∇f + 2(∇ρ · ∇)∇f

)
− ρ
(
∇ρ2

)
∆f

= (N − 1)ρ∇f + 2ρ2∂ρρ
−1∇σf − 2ρ2eρ∆f

= (N − 3)∇σf − 2eρ∆σf .

This proves (17). Finally, by (16) and (17), we see

∆σ (feρ + α∇σf) = ∆σ(eρf) + α∆σ∇σf

= (eρ∆σ + 2∇σ − (N − 1)eρ) f + α (∇σ∆σ + (N − 3)∇σ − 2eρ∆σ) f

= eρ ((1− 2α)∆σf − (N − 1)f) + (2 + (N − 3)α)∇σf + α∇σ∆σf.

This proves (18). □

Representing the curl-free condition in polar coordinates. In the follow-
ing, let “·” denote the standard inner product in RN , “∧” the wedge product
for differential forms and “d” the exterior derivative operator. For a vector field
a = (a1, a2, · · · , aN ) : RN → RN , we define the vector valued 1-form da =
(da1, da2, · · · , daN ). If u = (u1, u2, · · · , uN ) is a vector field, then u · da denotes

the 1-form
∑N

k=1 ukdak. Now, for any C
∞ vector field u : RN → RN with variable

x = (x1, · · · , xN ), we define its curl as the differential 2-form

curlu = d(u · dx).

This can be expressed in terms of the standard Euclidean coordinates, according
to the usual manipulations for the exterior derivative d and the wedge product ∧ :

d(u·dx) =
N∑

k=1

duk∧dxk =
N∑

k=1

N∑
j=1

∂uk
∂xj

dxj∧dxk =
∑∑

j<k

(
∂uk
∂xj

− ∂uj
∂xk

)
dxj∧dxk.

As well as the standard representation, we want to find a representation of d(u ·
dx) in terms of the polar coordinates (ρ, θ1, · · · , θN−1). For this purpose, first we
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differentiate the unit vector field eρ given by (7) and expand it in the spherical-
coordinate basis:

deρ =
N−1∑
k=1

∂eρ
∂θk

dθk =
N−1∑
k=1

eθkπk−1dθk .

Then, taking the inner product with the vector field u = uρeρ +
∑N−1

k=1 uθkeθk and
also taking its exterior derivative, we see that

u · deρ =
N−1∑
k=1

uθkπk−1dθk ,

d(u · deρ) = dρ ∧
N−1∑
k=1

(∂ρuθk)πk−1dθk +
N−1∑
j=1

N−1∑
k=1

∂θj (πk−1uθk)dθj ∧ dθk .

Also we have

u · dx = u ·
(
(dρ)eρ + ρdeρ

)
= uρdρ+ ρu · deρ.

From these relations, we obtain the polar representation of the curl of u:

d(u · dx) = d(uρdρ+ ρu · deρ)
= duρ ∧ dρ+ dρ ∧ (u · deρ) + ρd(u · deρ)

= dρ ∧
(
− duρ +

∑
k

uθkπk−1dθk +
∑
k

ρ∂ρuθkπk−1dθk

)
+ ρ

∑
j

∑
k

∂θj
(
πk−1uθk

)
dθj ∧ dθk

= dρ ∧
∑
k

(
πk−1∂ρ(ρuθk)− ∂θkuρ

)
dθk

+ ρ
∑∑

j<k

(
∂θj
(
πk−1uθk

)
− ∂θk

(
πj−1uθj

))
dθj ∧ dθk .

Therefore, the curl-free condition d(u · x) = 0 for the vector field u is represented
by

(19)

{
∂ρ
(
ρπk−1uθk

)
= ∂θkuρ

∂θj
(
πk−1uθk

)
= ∂θk

(
πj−1uθj

) ,
(
j, k = 1, 2, · · · , N − 1

)
.

We claim that the second relation in (19) is actually a consequence of the first.
Indeed, by integrating the first equation in (19) on any interval (0, r] ⊂ R with
respect to the measure dρ, we have rπk−1uθk = ∂θk

∫ r

0
uρdρ for every k. Thus

the function ϕ ∈ C∞(RN\{0}
)
defined by ϕ(x) = 1

|x|
∫ |x|
0

uρ
(
ρx/|x|

)
dρ satisfies

πk−1uθk = ∂θkϕ for all k. Then the second relation in (19) is equivalent to ∂θj∂θkϕ =
∂θk∂θjϕ, which holds trivially. This proves the claim.

Consequently we have proved that a vector field u ∈ C∞(RN )N is curl-free if
and only if

∂ρ(ρuθk) =
1

πk−1
∂θkuρ , k = 1, · · · , N − 1 .

That is, using the same vector notation as in (8) and (9), we have

(20) ∂ρ(ρuσ) = ∇σuρ (ρ,σ) ∈ R+ × SN−1.
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In what follows we also call (20) the curl-free condition for u.

Brezis-Vazquez, Maz’ya transformation. Let ε ̸= 1 be a real number. As in
[1], [11], we introduce a new vector field v by the formula

(21) v(x) = ρ1−εu(x).

Then the curl-free condition (20) is transformed into

∇σ

(
ρε−1vρ

)
= ∂ρ(ρ

εvσ) ,

that is,

(22) (ε+ ρ∂ρ)vσ = ∇σvρ .

Fourier transformation in radial direction. In the following, let us use the
abbreviation v(t,σ) = v(etσ) for a vector field v(x) = v(ρσ), where t = log ρ is
the Emden transformation given in (13). As in [2], we apply the one-dimensional
Fourier transformation

v(t,σ) 7→ v̂(λ,σ) =
1√
2π

∫
R
e−iλtv(t,σ)dt

with respect to the variable t. By the transformation law between the derivative
operators

ρ∂ρ = ∂t 7→ ∂̂t = iλ · ,

the curl-free condition (22) is changed into the equation

(ε+ iλ)v̂σ = ∇σ v̂ρ ,

that is,

v̂σ =
1

ε+ iλ
∇σf where f = v̂ρ .

Thus we see that v̂σ is expressed by the spherical gradient of some function f = v̂ρ.
In this sense, we may consider f as a kind of scalar potential of v̂, corresponding
to the fact that the curl-free vector field u has a scalar potential.

Now we have proved the following proposition:

Proposition 8. Let ε ̸= 1 and let u be a smooth vector field on RN . Then
u is curl-free if and only if its Brezis-Vázquez, Maz’ya transformation v(t,σ) =
et(1−ε)u(etσ) satisfies

(23) (ε+ ∂t)vσ = ∇σvρ .

In particular, if u is curl-free and has a compact support on RN , then the Fourier
transformation of v satisfies

(24) v̂(λ,σ) = feρ +
1

ε+ iλ
∇σf

for some complex-valued scalar function f = f(λ,σ) ∈ C∞(R× SN−1).
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We list up some formulae for v̂ and its differentials. The square length of v̂ is

|v̂|2 = |f |2 + 1

ε2 + λ2
|∇σf |2.

By using Lemma 7, we also see that

−∆σv̂ = eρ

(
(N − 1)f +

(
2

ε+ iλ
− 1

)
∆σf

)
−
(
N − 3

ε+ iλ
+ 2

)
∇σf−

1

ε+ iλ
∇σ∆σf .

Then integrating |v̂|2, −v̂ ·∆σv̂ and |∆σv̂|2 over SN−1, we find that∫
SN−1

|v̂|2dσ =

∫
SN−1

f

(
1 +

1

ε2 + λ2
(−∆σ)

)
fdσ,∫

SN−1

|∇σv̂|2dσ =

∫
SN−1

f

(
N − 1 +

(
1 +

3− 4ε−N

ε2 + λ2

)
(−∆σ) +

1

ε2 + λ2
(−∆σ)

2

)
fdσ,∫

SN−1

|∆σv̂|2dσ =

∫
SN−1

f

(
(N − 1)2 +

(
2N + 2 +

(N − 3)2 − 8ε

ε2 + λ2

)
(−∆σ)

+

(
1 +

10− 8ε− 2N

ε2 + λ2

)
(−∆σ)

2 +
1

ε2 + λ2
(−∆σ)

3

)
fdσ.

Thus, we have proved the following lemma.

Lemma 9. Let v̂ = feρ +
1

ε+iλ∇σf as in (24). Then∫
SN−1

|v̂|2dσ =

∫
SN−1

fP1(λ,−∆σ)fdσ,∫
SN−1

|∇σv̂|2dσ =

∫
SN−1

fP2(λ,−∆σ)fdσ,∫
SN−1

|∆σv̂|2dσ =

∫
SN−1

fP3(λ,−∆σ)fdσ

where the three polynomials α 7→ Pk(λ, α) (k = 1, 2, 3) are given by

P1(λ, α) = 1 +
1

ε2 + λ2
α,

P2(λ, α) = N − 1 +

(
1 +

3− 4ε−N

ε2 + λ2

)
α+

1

ε2 + λ2
α2,

P3(λ, α) = (N − 1)2 +

(
2N + 2 +

(N − 3)2 − 8ε

ε2 + λ2

)
α

+

(
1 +

10− 8ε− 2N

ε2 + λ2

)
α2 +

1

ε2 + λ2
α3.

3. Proof of Theorem 1

Let γ ̸= 1 − N/2 be a real number and put ε = 2 − N/2 − γ ̸= 1. If the right-
hand side of (2) diverges, there is nothing to prove. When the right-hand side of
(2) is finite, the smoothness of u implies the existence of an integer m > ε − 2
such that ∇u(x) = O(|x|m) as |x| → +0. If ε < 1, then the vector field v(x) in
(21) is Hölder continuous at x = 0 and satisfies v(0) = 0. When ε > 1, again
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the assumption u(0) = 0 implies u(x) = O(|x|m+1) and v(x) = O(|x|m+2−ε),
thus the same properties hold for v. Also since

∇u = ∇(ρε−1v) = ρε−2 ((ε− 1)eρ ⊗ v + ρ∇v)

= ρε−2 (eρ ⊗ (ε− 1 + ∂t)v +∇σv)

by (14), and since
∫∫

Sn−1×R ∂tv · vdσdt vanishes, we calculate

∫
RN

|x|2γ |∇u|2dx =

∫
RN

|x|4−2ε−N |∇u|2dx

(25)

=

∫
SN−1

dσ

∫
R

∣∣eρ ⊗ (ε− 1 + ∂t)v +∇σv
∣∣2dt

=

∫∫
SN−1×R

(
(ε− 1)2|v|2 + |∂tv|2 + |∇σv|2

)
dσdt

=

∫∫
SN−1×R

((
(ε− 1)2 + λ2

)
|v̂|2 + |∇σv̂|2

)
dσdλ

=

∫∫
SN−1×R

f
((
(ε− 1)2 + λ2

)
P1(λ,−∆σ) + P2(λ,−∆σ)

)
fdσdλ

and ∫
RN

|x|2γ−2|u|2dx =

∫
RN

|x|2−2ε−N |u|2dx(26)

=

∫
SN−1

dσ

∫ ∞

0

|v|2 dρ
ρ

=

∫∫
R×SN−1

|v|2dtdσ

=

∫∫
R×SN−1

|v̂|2dλdσ =

∫∫
R×SN−1

fP1(λ,−∆σ)fdλdσ

by Lemma 9. Therefore, by (25) and (26), the optimal constant in (2) can be
expressed as
(27)

HN,γ = inf
u̸=0,curlu=0

∫
RN |x|2γ |∇u|2dx∫
RN |x|2γ−2|u|2dx

= inf
f ̸=0

∫∫
R×SN−1 fQ1(λ,−∆σ)fdλdσ∫∫
R×SN−1 fP1(λ,−∆σ)fdλdσ

,

where Q1(λ, · ) is the polynomial defined by

(28) Q1(λ, α) =
(
(ε− 1)2 + λ2

)
P1(λ, α) + P2(λ, α).

Calculation of a lower bound. In the same manner as Costin-Maz’ya [2], we
expand f in L2(SN−1) by eigenfunctions {ψν}ν∈{0}∪N of −∆σ as

(29) f(λ,σ) =
∞∑
ν=0

fν(λ)ψν(σ) ,

{
−∆σψν = ανψν ,

αν = ν(ν +N − 2) (ν = 0, 1, 2, · · · ).

Then we find that (27) is estimated from below by

HN,γ = inf
f ̸=0

∑
ν∈N∪{0}

∫
RQ1(λ, αν)|fν(λ)|2dλ∑

ν∈N∪{0}
∫
R P1(λ, αν)|fν(λ)|2dλ

≥ inf
λ∈R\{0}

inf
ν∈N∪{0}

Q1(λ, αν)

P1(λ, αν)
,
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where P1, Q1 are the same as in Lemma 9, (28) and where in the last inequality
we have used Lemma 10 in Appendix, applied to X = {(ν, λ) ∈ (N ∪ {0})× R},
µ =

(∑
ν∈N∪{0} δν

)
× dλ and g(ν, λ) = |fν(λ)|2. Therefore, we have

(30) HN,γ ≥ inf
κ>0

inf
ν∈N∪{0}

F (κ, αν)

with F (κ, · ) defined by

(31) F (κ, α) =
Q1(

√
κ, α)

P1(
√
κ, α)

= (ε− 1)2 +N − 1 + κ+ α− 2α
2ε+N − 2

ε2 + κ+ α

for κ > 0 and α ≥ 0. Here we also define F (0, α) by

F (0, α) = lim
|λ|↘+0

Q1(λ, α)

P1(λ, α)
= lim

κ↘+0
F (κ, α)

=


(ε− 1)2 +N − 1 + α− 2α

2ε+N − 2

ε2 + α
for α > 0

(ε− 1)2 +N − 1 for α = 0 .

(32)

In this setting, we calculate the right-hand side of (30). In the case ε < 1−N/2,
by differentiating (31) directly with respect to α, we see that

∂

∂α
F (κ, α) = 1− 2(2ε+N − 2)

ε2 + κ

(ε2 + κ+ α)2
> 0 .

Thus 0 ≤ α 7→ F (κ, α) is monotone increasing for each κ > 0, and

F (κ, α) ≥ F (κ, 0) = (ε− 1)2 +N − 1 + κ > F (0, 0) = F (0, α0) ,

that implies

inf
κ>0

inf
ν∈N∪{0}

F (κ, αν) = F (0, α0) when ε < 1−N/2.

In the case ε ≥ 1−N/2, by (31) we see that F (κ, α) is increasing in κ > 0 for each
α ≥ 0. Thus F (κ, α) ≥ F (0, α) and

inf
κ>0

inf
ν∈N∪{0}

F (κ, αν) = inf
ν∈N∪{0}

F (0, αν).

To evaluate the right-hand side, we compute

∂

∂α
F (0, α) = 1− 2(2ε+N − 2)

ε2

(ε2 + α)2
=
ε4 − 4ε3 + 2(α− (N − 2))ε2 + α2

(ε2 + α)2

≥ ε2(ε+ 2)2 + α2

(ε2 + α)2
> 0 if α ≥ N .

Thus we have F (0, α) > F (0, N) for any α ≥ N , which implies F (0, αν) ≥
F (0, α2) = F (0, 2N) for all ν ≥ 2. This in turn implies

inf
ν∈N∪{0}

F (0, αν) = min
ν∈{0,1,2}

F (0, αν) .

Moreover, by computing

F (0, α2)− F (0, α1) = F (0, 2N)− F (0, N − 1)

=
(N + 1)ε2

(
(ε− 2)2 +N − 1

)
+ 2N(N − 1)

(ε2 +N − 1)(ε2 + 2N)
> 0 ,
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we see that

inf
ν∈{0,1,2}

F (0, αν) = min
ν∈{0,1}

F (0, αν).

Therefore, by calculating

F (0, α1)− F (0, α0) = F (0, N − 1)− F (0, 0) = (N − 1)
(ε− 2)2 − (N + 1)

ε2 +N − 1
,

it turns out that

inf
κ>0

inf
ν∈N∪{0}

F (κ, αν) = min
ν∈{0,1}

F (0, αν)

=

{
F (0, α1) for (ε− 2)2 ≤ N + 1 ,

F (0, α0) for (ε− 2)2 > N + 1

(33)

when ε ≥ 1 − N/2. The expression (33) holds true even for ε < 1 − N/2 since
ε < 1−N/2 implies (ε− 2)2 > N + 1.

Inserting this result into (30), we have

HN,γ ≥ min
ν∈{0,1}

F (0, αν)

=

F (0, α1) = (ε− 1)2 ε2+3(N−1)
ε2+N−1 for |ε− 2| ≤

√
N + 1 ,

F (0, α0) = (ε− 1)2 +N − 1 otherwise.

Returning to ε = 2− N
2 − γ, we arrive at the desired infimum value in Theorem 1.

Optimality for HN,γ. In this subsection, we prove that the former lower bound
of HN,γ is indeed realized as an equality:

HN,γ = min
ν∈{0,1}

F (0, αν) = min
ν∈{0,1}

lim
|λ|↘+0

Q1(λ, αν)

P1(λ, αν)
.

For that purpose, let ν0 ∈ {0, 1} be such that

min
ν∈{0,1}

F (0, αν) = F (0, αν0).

By the argument in the last subsection, it is enough to prove that there exists a
sequence of curl-free vector fields {un}n∈N ⊂ C∞

c (RN )N such that

(34) lim
n→∞

∫
RN |x|2γ |∇un|2dx∫
RN |x|2γ−2|un|2dx

= lim
|λ|↘+0

Q1(λ, αν0)

P1(λ, αν0)
.

For the construction of {un}n∈N, take any nonnegative h ∈ C∞
c (R), h ̸≡ 0 and

put hn(t) = h(t/n) for n ∈ N. Set

(35) vn(ρ,σ) = eρ (εhn(t) + h′n(t))ψν0(σ) + hn(t)∇σψν0(σ)

where ρ = et and ψν0 denotes an eigenfunction of −∆σ associated with the eigen-
value αν0 = ν0(ν0 +N − 2). Then it is clear that vn satisfies (23). Define

(36) un(ρ,σ) = ρε−1vn(ρ,σ)

for ε = 2 −N/2 − γ. Then {un}n∈N is a sequence of curl-free vector fields having
compact supports on RN \ {0}. Put

fn(λ,σ) = (̂vn)ρ(λ,σ) = (ε+ iλ) ĥn(λ)ψν0(σ)
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and compute the Hardy-Leray quotient for un by using (25) and (26). We see that∫
RN |x|2γ |∇un|2dx∫
RN |x|2γ−2|un|2dx

=

∫∫
SN−1×R fnQ1(λ,−∆σ)fndσdλ∫∫
SN−1×R fnP1(λ,−∆σ)fndσdλ

=

∫
R(ε

2 + λ2)Q1(λ, αν0)|ĥn(λ)|2dλ∫
R(ε

2 + λ2)P1(λ, αν0)|ĥn(λ)|2dλ

=

∫
RQ01(λ, αν0)|ĥn(λ)|2dλ∫
R P01(λ, αν0)|ĥn(λ)|2dλ

,

here

P01(λ, α) = (ε2 + λ2)P1(λ, α) = ε2 + α+ λ2,(37)

Q01(λ, α) = (ε2 + λ2)Q1(λ, α)

are polynomials in λ. Note that ĥn(λ) = ĥ(t/n)(λ) = nĥ(nλ). Thus if ε2+αν0 ̸= 0,
then we have ∫∫

RN |∇un|2|x|2γdx∫∫
RN |un|2|x|2γ−2dx

=

∫
RQ01(λ, αν0)|ĥ(nλ)|2dλ∫
R P01(λ, αν0)|ĥ(nλ)|2dλ

→ Q01(0, αν0
)

P01(0, αν0)
= lim

|λ|→+0

Q1(λ, αν0
)

P1(λ, αν0)

as n→ ∞. In the case ε = 0 = αν0 , by using

P01(λ, 0) = λ2, Q01(λ, 0) = Nλ2 + λ4,

we can check that∫∫
RN |∇un|2|x|2γdx∫∫
RN |un|2|x|2γ−2dx

=

∫
RQ01(λ, 0)|ĥ(nλ)|2dλ∫
R P01(λ, 0)|ĥ(nλ)|2dλ

=

∫
R(Nλ

2 + λ4)|ĥ(nλ)|2dλ∫
R λ

2|ĥ(nλ)|2dλ

→ N = lim
|λ|→+0

Q1(λ, 0)

P1(λ, 0)

as n → ∞. Thus we have proved (34) which shows the optimality of HN,γ in the
class of curl-free vector fields in C∞

c (RN )N . □

4. Proof of Theorem 3

Let γ ̸= 2 − N/2 be a real number and put ε = 3 − N/2 − γ ̸= 1. Under the
transformation v = ρ1−εu in (21), the gradient vector field is transformed as

∇v = ∇(ρ1−εu) = (1− ε)ρ−εeρ ⊗ u+ ρ1−ε∇u,

which leads to

(38) |ρ∇v|2 = (1− ε)2|ρ1−εu|2 + 2(1− ε)ρ2−2εu · ρ∂ρu+ ρ2−2ε|ρ∇u|2.

On the other hand, the assumption
∫
RN |x|2−2ε−N |u|2dx <∞ and the smoothness

of u imply that

u(x) = O (|x|m) , ∇u(x) = O
(
|x|m−1

)
as |x| ↘ 0

for some integer m > ε− 1 if ε > 1. Therefore, we see that v must satisfy

(39) |v(0)| = lim
ρ↘0

|ρ∇v| = 0
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by (38) when ε > 1.
Next, we see the ∆u is written in terms of v as follows:

∆u = ∆(ρε−1v) = ρε−3
(
αε−1v + (2ε+N − 4)∂tv + ∂2t v +∆σv

)
,(40)

here we have used (15) and ∆ρε−1 = αε−1ρ
ε−3. Note that

∫∫
SN−1×R ∂tv · vdσdt =∫∫

SN−1×R ∂
2
t v · ∂tvdσdt = 0 and

∫∫
SN−1×R v · ∂2t vdσdt = −

∫∫
SN−1×R |∂tv|2dσdt

by (39). Thus by using (40), Lemma 9, and noting (2ε + N − 4)2 − 2αε−1 =
(N − 2)2 + 2αε−1, we find that the both integrals of the Rellich-Leray inequality
(4) are written as

∫
RN

|x|2γ |∆u|2dx =

∫
RN

|x|6−2ε−N |∆u|2dx

(41)

=

∫
SN−1

dσ

∫ ∞

0

∣∣αε−1v + (2ε+N − 4)∂tv + ∂2t v +∆σv
∣∣2 dρ
ρ

=

∫
SN−1

dσ

∫
R

(
α2
ε−1|v|2 +

(
(N − 2)2 + 2αε−1

)
|∂tv|2 + |∂2t v|2

− 2αε−1|∇σv|2 + 2|∂t∇σv|2 + |∆σv|2
)
dt

=

∫∫
R×SN−1

((
α2
ε−1 +

(
(N − 2)2 + 2αε−1

)
λ2 + λ4

)
|v̂|2

+ 2
(
λ2 − αε−1

)
|∇σv̂|2 + |∆σv̂|2

)
dλdσ

=

∫∫
R×SN−1

f

((
α2
ε−1 +

(
(N − 2)2 + 2αε−1

)
λ2 + λ4

)
P1(λ,−∆σ)

+ 2
(
λ2 − αε−1

)
P2(λ,−∆σ) + P3(λ,−∆σ)

)
fdλdσ,

and ∫
RN

|x|2γ−4|u|2dx =

∫
RN

|x|2−2ε−N |u|2dx(42)

=

∫∫
R×SN−1

fP1(λ,−∆σ)fdλdσ.

Therefore, by (41) and (42), the optimal constant in (4) can be expressed as

(43) RN,γ = inf
u̸=0,curlu=0

∫
RN |x|2γ |∆u|2dx∫
RN |x|2γ−4|u|2dx

= inf
f ̸=0

∫∫
R×SN−1 fQ2(λ,−∆σ)fdλdσ∫∫
R×SN−1 fP1(λ,−∆σ)fdλdσ

with the polynomial Q2(λ, α) given by

Q2(λ, α) =
(
α2
ε−1 +

(
(N − 2)2 + 2αε−1

)
λ2 + λ4

)
P1(λ, α)(44)

+ 2
(
λ2 − αε−1

)
P2(λ, α) + P3(λ, α).

Calculation of a lower bound. As in (29), we expand f in terms of eigenfunc-
tions of −∆σ. Then by (43), (44), and Lemma 10, we find

RN,γ ≥ inf
ν∈N∪{0}

inf
λ∈R\{0}

Q2(λ, αν)

P1(λ, αν)
= inf

ν∈N∪{0}
inf
κ>0

F (κ, αν),
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where for κ > 0 and α ≥ 0, F (κ, α) is defined as

F (κ, α) =
Q2(

√
κ, α)

P1(
√
κ, α)

= α2
ε−1 +

(
(N − 2)2 + 2αε−1

)
κ+ κ2 +

2 (κ− αε−1)P2(
√
κ, α) + P3(

√
κ, α)

P1(
√
κ, α)

.

By directly calculating further, we can check that

F (κ, α) = κ2 +
4α(1− ε)(N + 2ε− 2)2κ

(ε2 + α)(κ+ ε2 + α)

+

(
N2

2
+ 2

(
ε+

N − 4

2

)2

+ 2α

)
κ+

(ε− 2)2 + α

ε2 + α
(αε − α)2

for ε = 3−N/2− γ ̸= 0, and

F (κ, α) = κ2 +
4(N − 2)2κ

κ+ α
+
(
(N − 2)2 + 4 + 2α

)
κ+ (4 + α)α

for ε = 0. We also define F (0, α) as

F (0, α) = lim
|λ|↘+0

Q2(λ, α)

P1(λ, α)
= lim

κ↘+0
F (κ, α)

=


(ε−2)2+α

ε2+α (αε − α)2, for ε ̸= 0, α ≥ 0,

(4 + α)α, for ε = 0, α > 0,

4(N − 2)2, for ε = 0, α = 0.

(45)

In these settings, from now on we evaluate the expression

inf
ν∈N∪{0}

inf
κ>0

F (κ, αν).

If ε < 1, it is clear that the map 0 < κ 7→ F (κ, α) is increasing for any fixed α ≥ 0.
Also, if ε > 1, estimating ∂κF (κ, α) from below by

∂F (κ, α)

∂κ
= 2κ− 4α(ε− 1)(N + 2ε− 2)2

(κ+ ε2 + α)2
+
N2

2
+ 2

(
ε+

N − 4

2

)2

+ 2α

≥ −4α(ε− 1)(N + 2ε− 2)2

(ε2 + α)2
+
N2

2
+ 2

(
ε+

N − 4

2

)2

+ 2α

≥ −ε− 1

ε2
(N + 2ε− 2)2 +

N2

2
+ 2

(
ε+

N − 4

2

)2

+ 2α

≥ −1

4
(N + 2ε− 2)2 +

N2

2
+ 2

(
ε+

N − 4

2

)2

+ 2α

=

(
ε+

N

2
− 3

)2

+
N2 − 4

2
+ 2α ≥ 0,

we see again that F (κ, α) is increasing with respect to κ > 0 for any α ≥ 0.
Therefore we have

inf
κ>0

F (κ, α) = F (0, α)

for all ε ̸= 1, which implies

inf
ν∈N∪{0}

inf
κ>0

F (κ, αν) = inf
ν∈N∪{0}

F (0, αν) .
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Moreover, we can check that

∂F (0, α)

∂α
≥ 0, α ≥ max{α1, αε},

see Lemma 11. This implies that inf
ν∈N∪{0}

F (0, αν) is attained. Therefore, we have

the desired estimate:

(46) RN,γ ≥ min
ν∈N∪{0}

F (0, αν) with F (0, αν) = lim
|λ|↘+0

Q2(λ, αν)

P1(λ, αν)
.

Furthermore, we see that min
ν∈N∪{0}

F (0, αν) is given by

min
ν∈N∪{0}

F (0, αν) = min
ν∈N∪{0}

(ε− 2)2 + αν

ε2 + αν
(αε − αν)

2

for ε = 3−N/2− γ ̸= 0, and

min
ν∈N∪{0}

F (0, αν) = min
{
4(N − 2)2, (4 + α1)α1

}
=

{
4(N − 2)2 = F (0, α0) for N = 2, 3, 4,

(N + 3)(N − 1) = F (0, α1) for N ≥ 5

for ε = 3−N/2−γ = 0 . This gives the lower bound of RN,γ . In the next subsection
we will show that the above inequality is indeed the equality.

Optimality for RN,γ. To show that the inequality (46) is indeed the equality,
let ν0 ∈ N ∪ {0} be such that F (0, αν0) = min

ν∈N∪{0}
F (0, αν) is satisfied. We use

the sequence of curl-free vector fields {un}n∈N in (36) again with (35), however for
ε = 3 − N/2 − γ. Then, as in the proof of Theorem 1, we obtain the following
expression: ∫

RN |x|2γ |∆un|2dx∫
RN |x|2γ−4|un|2dx

=

∫∫
SN−1×R fnQ2(λ,−∆σ)fndσdλ∫∫
SN−1×R fnP1(λ,−∆σ)fndσdλ

=

∫
R(ε

2 + λ2)Q2(λ, αν0)|ĥn(λ)|2dλ∫
R(ε

2 + λ2)P1(λ, αν0)|ĥn(λ)|2dλ

=

∫
RQ02(λ, αν0)|ĥn(λ)|2dλ∫
R P01(λ, αν0)|ĥn(λ)|2dλ

,

where P01(λ, α) is the same as in (37) and

Q02(λ, α) = (ε2 + λ2)Q2(λ, α)

is a polynomial in λ. When ε = 0 and αν0 = 0, by using the facts

Q02(λ, 0) = 4(N − 2)2λ2 + (N2 − 4N + 8)λ4 + λ6

and P01(λ, 0) = λ2, we prove that

lim
n→∞

∫
RN |x|2γ |∆un|2dx∫
RN |x|2γ−4|un|2dx

= 4(N − 2)2 = F (0, 0).
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Thus as in the proof of Theorem 1, we can show that

lim
n→∞

∫
RN |x|2γ |∆un|2dx∫
RN |x|2γ−4|un|2dx

= F (0, αν0)

for all cases ε2+αν0 ̸= 0 and ε2+αν0 = 0. This leads to the optimality of RN,γ . □

5. Appendix.

In this appendix, we prove technical lemmas.

Lemma 10. Let (X,M, µ) be a measure space and let ξ, η : X → R be a µ-
measurable function such that ξ ̸= 0 µ-a.e. Suppose g : X → R is a µ-measurable
function satisfying, ξg ≥ 0 µ-a.e., 0 <

∫
X
ξgdµ < ∞, and

∫
X
|ηg|dµ < ∞. Then

we have ∫
X
ηgdµ∫

X
ξgdµ

≥ ess inf
x∈X

η(x)

ξ(x)
.

Proof. Let I = ess infx∈X
η(x)
ξ(x) . Then η

ξ ≥ I µ-a.e. Multiply the both sides by

ξg ≥ 0, we have ηg = η
ξ ξg ≥ Iξg µ-a.e.. By integrating over X, we obtain∫

X

ηgdµ ≥ I

∫
X

ξgdµ

which leads the result. □

Lemma 11. Let F (0, α) be given by (45). Then we have

∂F (0, α)

∂α
≥ 0 for α ≥ max{α1, αε}.

Proof. Recall α1 = N − 1 and αε = ε(ε+N − 2). It is enough to show the lemma

when ε ̸= 0 and F (0, α) = (ε−2)2+α
ε2+α (αε − α)2. A direct computation shows that

∂F (0, α)

∂α
=

2(α− αε)

(α+ ε2)2
fε(α), where

fε(α) = α2 + 2(ε2 − ε+ 1)α+ ε2(ε− 1)2 + 2αε(1− ε).

Since ε2 − ε + 1 > 0 for any ε ∈ R, we see that fε is strictly increasing for α ≥ 0.
Thus if we show (i) fε(αε) ≥ 0 if αε ≥ α1, and (ii) fε(α1) ≥ 0 if α1 ≥ αε, then
fε(α) ≥ 0 for any α ≥ max{α1, αε}, which concludes the lemma.

To prove (i), we observe that fε(αε) = (αε + ε2)(αε + (ε − 2)2). Thus if αε ≥
α1 = N − 1 > 0, clearly we have fε(αε) > 0.

To prove (ii), we observe that fε(α1) = fε(N −1) = ε4−6ε3+8ε2−2ε+N2−1.
We need to prove this quartic function is nonnegative for ε ∈ R such that α1 ≥ αε,
i.e., −(N − 1) ≤ ε ≤ 1. However, this is an elementary fact. □
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