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SHARP HARDY-LERAY AND RELLICH-LERAY INEQUALITIES
FOR CURL-FREE VECTOR FIELDS

NAOKI HAMAMOTO AND FUTOSHI TAKAHASHI

ABSTRACT. In this paper, we prove Hardy-Leray and Rellich-Leray inequal-
ities for curl-free vector fields with sharp constants. This complements the
former work by Costin-Maz’ya [2] on the sharp Hardy-Leray inequality for
axisymmetric divergence-free vector fields.

1. INTRODUCTION

In this paper, we concern the classical functional inequalities called Hardy-Leray
and Rellich-Leray inequalities for smooth vector fields and study how the best
constants will change according to the pointwise constraints on their differentials.

Let N € N be an integer with N > 2 and put = (x1,--- ,zy) € RV. In the
following, C>°(RY)YN denotes the set of smooth vector fields

w = (uy,ug, - ,un): RY 3z u(z) e RY

having compact supports on RY. Let v # 1 — N/2. Then it is well known that

N ? [ul® 5 20,12
(1) <7+ N 1) / e de g/ V|| de
2 Ry || RN

holds for any vector field u € C°(RY)N with u(0) = 0 if v < 1 — N/2. This
is a higher dimensional extension of the 1-dimensional inequality by G. H. Hardy,
see [8], also [12], and was first proved by J. Leray [10] in 1933 when the weight
v = 0, see also the book by Ladyzhenskaya [9]. It is also known that the constant
(’y + % — 1)2 is sharp and never attained. In [2], Costin and Maz’ya proved that
if the smooth vector fields are axisymmetric and subject to the divergence-free
constraint divu = 0, then the constant (’y + % — 1)2 in (1) can be improved and
replaced by a larger one. More precisely, they proved the following:

Theorem A. (Costin-Maz’ya [2]) Let N > 3. Let v # 1 — N/2 be a real number
and u € C(RN)N be an avisymmetric divergence-free vector field. Assume that
u(0) =0 if y<1—N/2. Then

|ul

2
Cns [ ElaPrde< [ Vuplefds
RN |Z RN
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holds with the optimal constant Cn ~ given by

2N +1+ (y— )
2
N-1+(ry-%)
N _ )2 : AN -
(v+3-1) +2+?§%(H+H+N1+("/g)2> Nz 47>1)
(y+1)° +2 (N =3,7>1),

(v+%-1) (v <1,

Cny =

Note that the expression of the best constant Cy , is slightly different from that
in [2] when N > 4, but a careful checking the proof in [2] leads to the above formula
in Theorem A. Choosing v = 0 in Theorem A, we see that the best constant in (1)
is actually improved for axisymmetric divergence-free vector fields in the sense that

2
C’N7o/ %dwﬁ/ |Vu|*dx
kg RN

. . 2
holds with the optimal constant Cy o = (% - 1)2 % > (%) .

In 2-dimensional case, the result in [2] reads as follows:

Theorem B. (Costin-Maz’ya [2]) Let v # 0 be a real number and u € C°(R?)? be
a divergence-free vector field. We assume that u(0) =0 if v < 0 . Then

2
Coo [ [ iaPrar < [ Vullafraa
Rr2 || R2

holds with the optimal constant Cs  given by

3+ (y—1?
P for |y + 1] < V3,
Copy = 1+ (y—1)?
v +1 otherwise.

When N = 2, the divergence-free field u in Theorem B need not be axisymmetric.
Furthermore if we consider u = (—ug,u1) for u = (uy,uz) in Theorem B, then
the condition divu = 0 is replaced by curlu’ = 0 and also |Vu|? = [Vu*|?. Thus
the above inequality in Theorem B holds also for curl-free vector fields with the
same constant.

Motivated by this observation, our aim in this paper is to generalize Costin-
Maz’ya’s result for curl-free vector fields when N = 2 to higher-dimensional cases.
In addition, we also consider the Rellich type inequality involving the higher-order
derivative, Aw, for curl-free vector fields. We refer to [5] for the Rellich-Leray
inequality for divergence-free vector fields. See also [6], [7] for other improvements
of [2].

Now, main results of this paper are as follows:

Theorem 1. Let y # 1—N/2 be a real number and let u € C° (RN be a curl-free
vector field. We assume that w(0) =0 if v <1 — N/2. Then

|ul?

@) o [ feblePiin< [ [Vuleds
RN || RN
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with the optimal constant Hy ., given by

2

2 3(N=-1)+(y+5 -2 .
(+ ¥ -0 A, i e ¥ < VR L

(7 + % _ 1)2 + N -1 otherwise.

(3) Hyy =

We remark that no symmetry assumption for u is needed. Theorem 1 corre-
sponds to the higher-dimensional analogue of Theorem B in the sense that Cy , =
Hs .

For curl-free vector fields u, Poincaré’s lemma implies that there exists a smooth
scalar potential ¢ such that u = V¢. Thus by using the potential function ¢,
Theorem 1 is equivalent to the following corollary.

Corollary 2. Lety # 1 — N/2 be a real number and let ¢ € C(RN). We assume
that V¢(0) =0 if v <1 — N/2. Then

v 2
iy, [ VOl o pvan < [ popiapras
RN |$| RN

with the optimal constant Hy ., given in (3). Here D*¢(x) = (83-25;]- (x ) .
‘ 1<i,5<
denotes the Hessian matrix of ¢.

By similar arguments, we prove the following Rellich-Leray inequality for curl-
free vector fields.

Theorem 3. Let y # 2—N/2 be a real number and let u € C°(RM)N be a curl-free
vector field. We assume that [y |2*7~*lu|?dz < co. Then

2
@) R [ apar < [ aulielia
RN |Z| RN

with the optimal constant Ry, given by
1-5 —9)2+aq,
(5) By, = min ( ]%, 7)2
veNU{0} (3 -3 — 7) +a,
for v # 3 — N/2, where we put
as =38(s+N—-2), seR,

and
4(N —2)2 for N =234,
(6) Ry nys = { N ~2)

(N+3)(N-1) for N >5.

Corollary 4. Lety # 2— N/2 be a real number and let ¢ € C(RYN) be a potential
Junction such that [,y |2|*7~*|V¢[*dx < co. Then

2
RNW/ Vol |a:|2'7dx§/ VA2l dz
RN RN

|z|*

holds with the optimal constant Ry as in (5) and (6).

Remark 5. The best constants Hy , and Ry ~ in Theorem 1 and 3 are respectively
unchanged even if we additionally assume the azxisymmetry condition on the curl-
free fields w. Indeed, 1, (o) = P,(—cos8), where P, is a Legendre polynomial of
v-th order (see Appendix in [5]), is the azisymmetric eigenfunction of the Laplace-
Beltrami operator on the sphere SN~ associated with the eigenvalue o, = v(v +
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N —2). Therefore, in the proof of the optimality for Hy , or Ry ~, we may use the
azisymmetric curl-free test fields by applying (35) to ¢y, (o) = P,y (—cosby). This
implies the claim.

Remark 6. We do not know that the optimal constants Hy ., and Ry, are attained
or not in the class of vector fields in Theorem 1 and Theorem 3.

Also in Theorem 1 and Theorem 3, if we restrict ourselves only on vector fields
in C (RN \ {0}), then the additional assumptions w(0) = 0 if v < 1 — N/2, or
Jan |22 HulPde < 0o are not needed and the same conclusions hold true.

Concerning Corollary 2 which is equivalent to Theorem 1, we should remark
that the similar results already exist by [13], [3]; see also [4] Chapter 6.5. More
precisely, improving the work by Tertikas and Zographopoulos [13], Ghoussoub and
Moradifam ([3]: Appendix B) proved the following: Let C2°(Bpg) denote the set
of smooth functions having compact supports on a ball By C RV with radius R.
Define

5, |80 |]* da

v 2
I ||m¢|)2" |z|2Ydz

AN,'y(R) = inf NS CCOO(BR)

Assume v > 1 — N/2. Then Ay (R) is independent of R, and is equal to

2
((N—4+2z)(N—2'y) n a,,)

Ay, = min 5
veNUL0} (w) fa
2 v

where a, = V(N +v—2) (v € NU{0}) is the v-th eigenvalue of the Laplace-Beltrami
operator on the unit sphere SV~ in RY. Note that by the simple formula

2,12 > >¢ ? (1 2 2
LEEDY (505 ) = v (57196 ~ a0)70) + (20
for ¢ € C°(BR), we have an |D?¢|2dx = fBR |A¢|?dx which implies Hy o = An .
However, in weighted cases, it holds [, |[D?¢|*|z[*dx # [, |A¢[*|z|*Ydz, and in
general we have Hy , # An~. Also the inequality in Corollary 4 seems new.

The organization of this paper is as follows: In §2, we recall the method by
Costin-Maz’ya in [2] and derive the equivalent curl-free condition in polar coordi-
nates. In §3, we prove Theorem 1 and the sharpness of the constant (3). In §4,
we prove Theorem 3 and the sharpness of the constants (5) and (6). Since the test
vector fields introduced in [2] may not have compact supports, we will use different
test vector fields for the proof of the sharpness of the constants.

2. PREPARATION: COSTIN-MAZ’YA’S SETTING

In this section, we recall the method of Costin-Maz’ya [2] and derive the polar
coordinate representation of the curl-free condition.

Spherical polar coordinate. We introduce the spherical polar coordinates

(p,01,02,+ ,0n_20n_1) € (0,00) x (0,m)N 72 x [0, 27)
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whose relation to the standard Euclidean coordinates = = (zy,--- ,7n) € RY is
given by
x = p(cosfy,m cosby, o cos b3, -+ Mp_1080, - , TN_2COSON_1,TN_1),

hereafter we use the notation
k
mo=1, m=][[sin6;, (k=1,2--- ,N-1)
j=1

for simplicity. Also we use the notation

0 0
y=—, O =—-——, (k=12 N-1
] 8/)’ 0 69’67 ( ) 4y ) )
for the partial derivatives, and
N N-1
dx = H dry, = dvdzs - dzy, do= H (sin 6)N "+ 1db,
k=1 k=1

for the volume elements on R™ and SV—1.
The orthonormal basis vector fields e,, e, , €s,, - ,e9,_, along the polar coor-
dinates are given by

)
e, = \a"§| = (cos B, cos by, macosbs, - TN_ocosOn_1,TN_1),
P

(7) 89 T ]-
€01 = peal — ;ﬁekepa (k=1,2,---,N—1)
that are clearly independent of the radius p. Note that we can rewrite them as
e, = (cos B, mcosby, mpcosbsz,- -, mp_1cosb, L) ,
eg, = (0,0, <o, 0, —sin Oy, cos@kcpk) ,
——
k-1
where
7r 7r TN— TN—
Pr = <cos Okt1, TR s Ok 2, TRH2 s Okrs, -+, N=2 cos On_1, N 1> e SV-k-1
Tk Tk Tk Tk
is a (N —k)-vector, which depends only on 01, -+ ,0ny—_1. From these expressions,
we can easily check the orthonormality of e,, eq,,€q,, -+ ,e€05_,-
For any smooth vector field uw = (uy,ug,--- ,uy) : RY — RY_ its polar compo-
nents u,, ug,, Ug,, - -, Ugy_, as R-valued smooth functions are defined by

N-1
U =uye, + E Ug,, €9, -
k=1

The second term of the right-hand side is denoted by

N-1
Us = E u(gkegk
k=1

and we call this the spherical component of u. Thus we have the polar decomposi-
tion of u:

(8) U= Up€p + Uy
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which gives the decomposition of w into the radial and the spherical parts. Also by
using the chain rules together with (7), we have

1
0,=e€,-V, and Eangﬂ'k_legk'v, (k=1,---,N—1),

which give the polar decomposition of the gradient operator V:

1
(9) V - epap + Evo- 9
where
N-1
(10) Vo = %% Op,
el Tk—1

is the gradient operator on SV—1.
Moreover, it is well-known that the polar representation of the Laplace operator

A= lecv:1 02 /0x% is given by

1 _ 1
(11) A= Wc?p (pN10,) + ?Aa ;
where
N—-1 ,. k+1—N N-1
sin 0 . ke 1
(12) Ap =) (WQ k) Do, ((sin )V F"10p,) = — Dy, 0%,
k=1 k-1 k=1 "k—1

is the Laplace-Beltrami operator on SN—!

and for every k=1,--- N —1
Dok :c%k—i-(N—k—l)COt@k

is the adjoint operator of —dp, in L?(do,S™~1) : it holds that

- / f (D, g) do = / (Do, ) gdo
SN—l SN—l

for any smooth functions f,g on SV¥~1.

We also introduce the deformed radial coordinate ¢ € R by the Emden transfor-
mation

(13) t =logp.
Note that (13) leads to the transformation law of the differential operators pd, = 0;.

By this transformation, it is easy to check that the polar decomposition of V , A
in (9) , (11) are also given by

(14) pV =e,0, + Vg,
(15) PPA =0+ (N —2)0, + A,
For the later use, we prove the following lemma.

Lemma 7. Let V, and A, are given by (10) and (12) respectively. Then for any
feC=SN1Y), o=e, e SN and a € C, there holds that

(16) Ac(epf) —epAof = (2V4 — (N —1)e,) f,
(17) AoVof—Volof=((N-3)Vs—2e,As)f,
(18) Ao (fe, +aVef) =e,((1—2a)Asf — (N —1)f)

+(2+ (N =3)a)Vof +aVeAsf.
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Proof. Take any f € C>(SN-1). We identify f with the function f e C=@®RN\{0})
defined by f(x) = f(x/|x|) . Since f = f does not depend on the radius p, we
have Vo f = pVf by (9) and A, f = p?Af by (11). Thus we compute

Aolepf) - ephof = A ( o ) -2 g

_ (Np“;f) (V) V) (@f) + (Ap1>xf> —prAf

— (VS )z 2(Vp- ) (@) + 0 (D Ve
=2pV [ —20,(pepf) — (N —3)e, f
= (2Vo — (N —1)e,) f,

here we have used Vp -V = 9, and Ap~! = —(N — 3)p~3. This proves (16).
Similarly, also noting the commutativity AV = VA and using Ap = (N — 1)p~!
we have

(AgVo — Vol )f = pP’AVef — pV AL f
= p*A(pVf) = pV (p*Af)
= > ((Ap)Vf+2(Vp-V)VS) = p(Vp)Af
= (N = 1)pVf+20%0,0 'Vof —2p%e,Af
=(N—-3)Vof —2e,Asf .
This proves (17). Finally, by (16) and (17), we see
Ay (fe,+aVof) =As(e,f) +alAeVeaf
= (epAs +2Vy — (N —1)e,) f+ @ (Volo + (N —3)Ve —2e,A,) f
=e,((1-20)Asf —(N=1)f)+ (24 (N —3)a) Vo f + aVsAsf.
This proves (18). O

Representing the curl-free condition in polar coordinates. In the follow-
ing, let “” denote the standard inner product in RY, “A” the wedge product
for differential forms and “d” the exterior derivative operator. For a vector field
a = (ai,az, - ,ay) : RY — RY we define the vector valued 1-form da =
(day,das, -+ ,dayn). If uw = (u1,us, -+ ,un) is a vector field, then u - da denotes
the 1-form Z,ivzl urday. Now, for any C° vector field w : RV — RY with variable
x = (1, -+ ,xN), we define its curl as the differential 2-form

curlu = d(u - dx).

This can be expressed in terms of the standard Euclidean coordinates, according
to the usual manipulations for the exterior derivative d and the wedge product A :

d(u-dz) Zduk/\dxk = ZZ Oui T 73 e = ZZ (Z;"f - g;‘i) daj Ndzy.
J

k=1 j=1

As well as the standard representation, we want to find a representation of d(u
dx) in terms of the polar coordinates (p, 61, -+ ,0n_1). For this purpose, first we
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differentiate the unit vector field e, given by (7) and expand it in the spherical-

coordinate basis:
N-1

! de
de, = Z 0 55 10k = Z eo, k10 .

Then, taking the inner product with the vector field u = u,e, + Zivz_ll ug, g, and
also taking its exterior derivative, we see that

u-de, = Zwﬂk 1dby,

N-1 N—-1N-1
d(u-de,) = dp Ay (Opug, )T 1d0k + > Y g, (Th_1up, )db; A dby .
k=1 j=1 k=1

Also we have
u-dr=u- ((dp)ep + pde,,) =u,dp + pu - de,,.

From these relations, we obtain the polar representation of the curl of wu:
d(u - dz) = d(u,dp + pu - de,)
=du, Ndp+dp A (u - de,) + pd(u - de,)

=dp A ( — dup + Zlmkﬂkfldek + Z paputgkﬂ'kfldek)
k k
+ pz Z 89_7. (wk,lu(,k)d&j A dy,
7k
=dpA Z (Wk_lap(pUQk) — &;kup)dek
k

+ pZZ(@gj (Wk_luek) - 89k (7Tj_1u.9j))d9j Adby, .

i<k
Therefore, the curl-free condition d(u - &) = 0 for the vector field u is represented
by

0 (pﬂ'k_lu€ ) =0g, u .
19 P h S . (k=1,2,--- ,N—1).
. { 0o, (m—110,) = Do, (mj-1ug,) o )

We claim that the second relation in (19) is actually a consequence of the first.
Indeed, by integrating the first equation in (19) on any interval (0,7] C R with
respect to the measure dp, we have rm_ 1u9k = ng for uydp for every k. Thus
the function ¢ € C>(RN\{0}) defined by ¢(z) = le f‘wl u, (px/|x|)dp satisfies
Tp—1Ug, = Op, ¢ for all k. Then the second relatlon in (19) is equivalent to dg, g, ¢ =
09,0, ¢, which holds trivially. This proves the claim.

Consequently we have proved that a vector field u € C®(RM)¥ is curl-free if

and only if

1
ap(ﬂuek)za?akup, k:]'??Nil

That is, using the same vector notation as in (8) and (9), we have

(20) p(pus) =Vou, (p,o)cRy xSVTL
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In what follows we also call (20) the curl-free condition for w.

Brezis-Vazquez, Maz’ya transformation. Let ¢ £ 1 be a real number. As in
[1], [11], we introduce a new vector field v by the formula

(21) v(@) = p' (@),
Then the curl-free condition (20) is transformed into

Vo (nglvp) = 0p(p"vo)
that is,

(22) (e+ p0,)Ve = Vgou, .

Fourier transformation in radial direction. In the following, let us use the
abbreviation v(t,0) = v(efa) for a vector field v(x) = v(po), where t = logp is
the Emden transformation given in (13). As in [2], we apply the one-dimensional
Fourier transformation

o(t, o) s B\, o) = \/% /R e~ My(t, o)dt

with respect to the variable ¢. By the transformation law between the derivative
operators

pd, =0y — O =i\-,
the curl-free condition (22) is changed into the equation
(e4+1i\)Vy = Vo1, ,

that is,

_ 1 —

Vo = mv,,f where f=7,.
Thus we see that U, is expressed by the spherical gradient of some function f = v,,.
In this sense, we may consider f as a kind of scalar potential of ¥, corresponding
to the fact that the curl-free vector field u has a scalar potential.

Now we have proved the following proposition:

Proposition 8. Let ¢ # 1 and let w be a smooth vector field on RY. Then
w is curl-free if and only if its Brezis-Vdzquez, Maz’ya transformation v(t,o) =
et=Su(eto) satisfies

(23) (e+0)ve =Vou, .

In particular, if w is curl-free and has o compact support on RN, then the Fourier
transformation of v satisfies

~ 1
(24) ’U()\,O') = fep + mvo—f

for some complex-valued scalar function f = f(\,0) € C®(R x SN-1).
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We list up some formulae for v and its differentials. The square length of ¥ is

~ 1
o] = |f]* + m|vaf\2~

By using Lemma 7, we also see that

_Ao-'i;:ep (( _1)f+(<32)\_ )Acrf)_<]v+i+2> crf )\v Ao‘f

Then integrating 9|2, —v - Ay® and |A,D|? over S¥~1, we find that

~12 o 1
\/SN*1|’U‘ dcr—/SNi f<1—|— 2_’_)\2( ))fda

3—4e— N 1
o0|*do = N-—1 TN (2, CAL)?
/SIHIV v|%do = SNI +( T )( )+ ! ))fdo,
-~ N —3)2 — 8¢
Ao o|*do = 2N gy W37 =83 ()
/SN—l | v| 7= SN 1 ( 2+ 52 +)\2 > ( )

10 — 8¢ — 2N s 1 ;
- (1 e ) (-20)" + 5 (-4) >fda.

Thus, we have proved the following lemma.

Lemma 9. Let © = fe, + Vo[ as in (24). Then

[ ko= [ FR-a0)fdo
SN*I N—-1

[ WetPdo= [ TP -A,)fdo,
SN*I SN*I

[ 1actPas= [ P08, fdo
SN*I N—-1

where the three polynomials o — Pi(\ «) (k= 1,2,3) are given by

1
Pl(A,Oé):1+mOé
3-4e— N 1,
Pg()\,Oé)NlJr(lJrM)OéﬂLMaa

_ 9 (N —3)? - 8¢

L 0mseaNy L1
€2 4 A2 24X

3. PROOF OF THEOREM 1

Let v # 1 — N/2 be a real number and put e = 2 — N/2 — v # 1. If the right-
hand side of (2) diverges, there is nothing to prove. When the right-hand side of
(2) is finite, the smoothness of w implies the existence of an integer m > & — 2
such that Vu(x) = O(|z|™) as || — 4+0. If ¢ < 1, then the vector field v(x) in
(21) is Holder continuous at & = 0 and satisfies v(0) = 0. When € > 1, again
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the assumption u(0) = 0 implies u(x) = O(|z|™™!) and v(z) = O(|z|™279),

thus-the same properties-holdforw- Also since
Vu=V(p v)=p""2(c—1)e, @ v+ pVv)
=p"2(e,® (e~ 1+ ) v+ Vov)
by (14), and since [[, 1, O4v - vdodt vanishes, we calculate
(25)
/ |27 |Vu|?ds = / |42 N | V| da
RN

:/ da/|ep —140,) v+ Vool dt
SN-—-1

// D?[v]* +[00* + |Vov|*) dodt

SN— 1XR

= // (e =2+ N [3” + |VoD?) dodX
SN-1xR

— [[ T 0P P -20) + a1 ~A) fdady
SN—1xR

and

0) [ PP = [ el Vupda
RN

/ da/ |v|2d” // lv|2dtdo

SN 1 RXSN 1

_ / / 15[2dMdor = / / TP (A —Ay) fdrdo
RxSN—1 RxSN—1

by Lemma 9. Therefore, by (25) and (26), the optimal constant in (2) can be
expressed as
(27)

. Jon 1227 |Vul?dx - [fawen—1 FQ1(N, —Ag) fdAdo
1 =1 — ,
u#0,curl u=0 flRN |:13|2772|'U/|2d$ f#0 ffRXSN,l fPl()\, —Ao-)fdAdU

Hy, =

where @Q1()\, +) is the polynomial defined by
(28) Q1N @) = ((e—1)*+ X)) Pi(\, a) + P2 (X, a).

Calculation of a lower bound. In the same manner as Costin-Maz’ya [2], we
expand f in L?(SN~1) by eigenfunctions {1, },efoyun of —Ag as

- _Aaqpu = audju )
29 )\, - v >\ v )
(29)  f(\o) ;Of()w (o) { = v+ N—2) (r=0,1,2,-).
Then we find that (27) is estimated from below by

A, )| £ (V) [2dA
Hy, = inf i) Jg Qa0 Il )‘2 > inf ot Q)
120 3 enugoy Jr 1O aw) [ o (M) PAA T~ xer\{o} venugor Pr(A, o)
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where P;, Q1 are the same as in Lemma 9, (28) and where in the last inequality
we have used Lemma 10 in Appendix, applied to X = {(v,\) € (NU{0}) x R},

= (ZVENU o 5U) x dX and g(v, A) = |f,(\)]2. Therefore, we have

S
(30) Ay 2 lnf uEIl\Ir&Jf{O} Fix,ar)

with F(k, -) defined by

Q1(Vk, @) 9 26+ N -2
31 o = 2LV 124N -1 _9 T 2
3)  Plro) = B < =12 N 10T
for kK > 0 and o > 0. Here we also define F'(0, ) by
. Ql(Ava) :
FO,a) = lim ———= = lim F(x,a
0,0) ANAO PN @) w\HO (K, @)
2 N -2
(32) (5—1)2+N—1+a—2a% for a>0
_ e“+ta
(e—1)24+N-1 for a=0.

In this setting, we calculate the right-hand side of (30). In the case ¢ < 1— N/2,
by differentiating (31) directly with respect to «, we see that
%F(n,a) _ 1—2(25+N—2)m >0,
Thus 0 < a +— F(k, «) is monotone increasing for each x > 0, and
F(k,a) > F(k,0) = (¢ = 1)+ N — 14+ x > F(0,0) = F(0, ap) ,
that implies

inf  inf  F(k,a,) = F(0, h <1-NJ2.
i P00 = F0.00) when ¢ <1
In the case € > 1 — N/2, by (31) we see that F(k,«) is increasing in x > 0 for each
a > 0. Thus F(k,a) > F(0,a) and

inf inf F(k,a,)= inf F(0,a,).
x>0 veNU{0} veNU{0}

To evaluate the right-hand side, we compute
g2 et —4e3 +2(a— (N - 2))e% + o?

0
%F(O’a)_1_2(2€+N_2)(52+a)2 = EETE

e2(e+2)2+a?
e
Thus we have F(0,a) > F(0,N) for any @ > N, which implies F(0,a,) >
F(0,a2) = F(0,2N) for all v > 2. This in turn implies

inf F(0,a,)= min F(0,a,) .
veNU{0} ve{0,1,2}

>0 if a>N.

Moreover, by computing
F(0,a2) — F(0,a7) = F(0,2N) — F(0O, N — 1)
(N + 1)82((8* 2)2+ N — 1) +2N(N —-1)

= >0,
(e24+ N —1)(e2 4+ 2N)
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we see that

inf  F(0,a,) = min F(0,a,).
ve{0,1,2} ve{0,1}

Therefore, by calculating
(e—2)2—(N+1)

F(0,01) — F(0,00) = F(0O,N — 1) — F(0,0) = (N — 1)

e2+N-1
it turns out that
inf inf F(k,a,)= min F(0,q,)
k>0 veNU{0} ve{0,1}
(33) ) F(0,a1) for (e—22<N+1,
| F(0,a0) for (e—2)2>N+1

when ¢ > 1 — N/2. The expression (33) holds true even for ¢ < 1 — N/2 since
e <1— N/2 implies (¢ —2)%> > N + 1.
Inserting this result into (30), we have

Hy~. > min F(0,a,
N”Y_ue{é,l} (0, 0)

2
F(0,0n) = (e — 125280 for e—2[<VN+1,

F(0,a0) = (e —1)2+ N -1 otherwise.

Returning to e = 2 — % — 7, we arrive at the desired infimum value in Theorem 1.

Optimality for Hy . In this subsection, we prove that the former lower bound
of Hy . is indeed realized as an equality:

. . . Ql()\7al/)
= F(0,a,) = lim L2V
Lgﬁ}mﬂ)zgﬁmgbﬂuﬂﬁ

For that purpose, let 19 € {0, 1} be such that

in F(0,0,) = F(0,q,,).
,in (0,0) (0, )

Hy.,

s

By the argument in the last subsection, it is enough to prove that there exists a
sequence of curl-free vector fields {w, fnen C C°(RY)YN such that

(34) lim flRN |z|> |V, |*dx o Ql()‘vauo).
oo f]RN |$|27*2|un\2d:v [AIN\+0 Pl(AaaVo)

For the construction of {u,},cn, take any nonnegative h € C°(R), h # 0 and
put h,(t) = h(t/n) for n € N. Set

(35) vn(p, o) = e, (ehn(t) + h (1)) Yoo () + hn(H) Veiby, ()

where p = €' and v, denotes an eigenfunction of —A, associated with the eigen-
value oy, = vo(vo + N — 2). Then it is clear that v,, satisfies (23). Define

(36) Un (p7 U) = pgilvn(pa U)

for e =2 — N/2 —~. Then {u,}nen is a sequence of curl-free vector fields having
compact supports on RY \ {0}. Put

—

Fa\a) = Wn) (A &) = (£ +iA) Ton (N ()
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and compute the Hardy-Leray quotient for u,, by using (25) and (26). We see that
Jan 122V, [Pde Jfsw-1xr Q1A —A0) frdodA
Jan (22 un2de [fony p FaPL (N, —Ag) fodod
CLa(E H N)Q1N, ) [ (V) [2dN
fR(E2 + A2) P (A, ag ) [hn (M) ]2dN
_ Je Qo any)[An (V) PdA
 J Por Oy o) (V)20

here
(37) Poi(\, @) = (2 4+ X)Py(\ o) =2 + a+ A2,
Q()l()\, a) = (52 + )\Q)Ql ()\, Oé)

are polynomials in A. Note that hAn()\) = W)()x) = nh(n)). Thus if €2+, # 0,
then we have
S [VunPl2dz - fy Qon(h awy) [h(nA)PdA
Jfan [un?lz>—2dz I Por (X, awy ) [h(nA)[2dA
N Q01(07al/0) = lim Ql(Au al/o)
Pp1(0,0,)  1AI=+0 Pr(A au,)
as n — 00. In the case ¢ = 0 = «,,,, by using

Por(M,0) =A%, Qo1(\,0) = N2+ 2%,

we can check that

o [VunPleYde [ QoA 0)[R(nA)2dN _ [o(NA? + A1) [R(nA)2dX
S Tl =2dz J Por(A )|ﬁ( A)[2dA Jz A2|h(nA)[2dA
Ql( 70)

— N =

I
A0 PL(A0)

as n — oo. Thus we have proved (34) which shows the optimality of Hy , in the
class of curl-free vector fields in C°(RM)V. O

4. PROOF OF THEOREM 3

Let v # 2 — N/2 be a real number and put ¢ = 3 — N/2 — v # 1. Under the
transformation v = p'~¢w in (21), the gradient vector field is transformed as

Vo =V(p'“u)=(1-¢)p e, @u+ p' “Vu,
which leads to
(38) pVo? = (1= €)*|p'"ul® + 2(1 — £)p* > u - pdpu + p*~* | pVul®.

On the other hand, the assumption [,y |&[>~2* N |u|?dz < co and the smoothness
of w imply that

u(x) = O (|lz|™), Vu(z)=0(lz["™") as |z[\0
for some integer m > e — 1 if ¢ > 1. Therefore, we see that v must satisfy

39 0)| = lim |[pVo| =0
(39) [v(0)] pl{‘rg)lp v|
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by (38) when ¢ > 1.
Next, we see the Aw is written in terms of v as follows:

(40) Au=A(p" ') = p° 3 (e_1v + (26 + N — 4)0pv + 0jv + Ayv)

here we have used (15) and Ap*~' = a._1p°~?. Note that [[. ., O - vdodt =
[fin—iy g Ofv - Qpvdodt = 0 and [[o v - Ofvdodt = — [[n 1 p|0pv|*dodt
by (39). Thus by using (40), Lemma 9, and noting (2¢ + N — 4)? — 2a._; =
(N —2)%2 4+ 2a._1, we find that the both integrals of the Rellich-Leray inequality
(4) are written as

(41)
/ |w|2’Y\Au|2dx=/ 202N | Auf2da
RN RN

d
/ da/ ’ag 10+ (26 + N —4)0w + 0%v + Ay v|2 P
SN 1

= [ o [ (a2l + (V=2 4 20 Wit + ol
SN-1

— 20 _1|Vov|? 4 2|0:Vv|? + |Aav\2>dt

— //Rxszv—l ((0631 + (N —2)* +20c_1) > + )\4) B2

+2(N —a._1) [Veo]* + |A,,17|2>d)\da

[ T(( o (=22 4 2000) 2 X PO -)

+2 (/\2 _ as,l) Py(\,—Ag) + P3(A, Aa)> fdAdo,

(42) [P tude = [ e Vs
RN RN

= // fPi(\, —Ay) fd\do.
RxSN-1
Therefore, by (41) and (42), the optimal constant in (4) can be expressed as

2 Aul?d L1 fQ2(N\, —Ag) fdNdo
43) Ry, = inf e lelTAuPdr o Jsove: JQo i
’ u#0,curl u=0 f]RN |:I:|27_4|’U,|2dl‘ f#0 ffoSAPl fpl(/\, 7Aa)fd)\d0'
with the polynomial Q2(\, «) given by
(44) Q2N ) = (21 + (N —2)* +2a._1) N> + X') Pi(\, )

+2(A\? — 1) P2(N @) + P3(\, o).

Calculation of a lower bound. As in (29), we expand f in terms of eigenfunc-
tions of —A,. Then by (43), (44), and Lemma 10, we find

Q2(/\ au)
Ry > inf 220 W) _ inf inf Fi(k, a,
N uegb{o}AelR\{o} P\ ) VGII\II&J{O} go (k, a),
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where for k > 0 and « > 0, F(k, @) is defined as

Pl = G

(k — ac—1) Po(VK, ) + P3(VK, @) -

2
2 2 2
=a;_;+ (N —=2)" 4+ 20— + R+
oy (( ) o) 1).% K (V)

By directly calculating further, we can check that
4a(l —g)(N + 2 — 2)%k
(e2+a)(k+e2+a)

2 N 2 _ 9)\2
+(1\;+2<€+N4) ><><>

F(k,a) = k* +

2 e+«
fore =3—-N/2—~#0, and

4(N —2)?
F(k,a) :n2+%+ (N=2)?+4+42a)k+ (4+ )
K+ o
for e = 0. We also define F'(0, «) as
. QQ(AaO‘) .
F(0 =1 ————~ = lim F
(0,) \)\|1\12r0 P\ ) b0 (1, )

(45) %(a‘S —a)? fore # 0, > 0,
=q @+ oo, fore =0,a > 0,
4(N —2)2, fore =0, = 0.

In these settings, from now on we evaluate the expression

inf inf F(k, ).
veNU{0} k>0

If £ < 1, it is clear that the map 0 < k — F(k, «) is increasing for any fixed a > 0.
Also, if € > 1, estimating J, F(k, ) from below by

_ _9)2 2 N2
8F(n,a):2574a(6 1)(N +2e —2) +N7+2 E+N 4 + %
Ok (k+e2+a)? 2
dafe —1)(N +2c —2)2 N2 N —4\?
Z—Q(E JNV + 26 )+—+2 e+ ——] +2
(24 a)? 2
e—1

N2 N —4\?

1 N? N —4\?
2—4(N+25—2)2+2+2<5+2) + 2ax

N 2 N2y
—<e+2—3)+ 5 +2a >0,

we see again that F(k,«) is increasing with respect to x > 0 for any o > 0.
Therefore we have

;I;f(’) F(k,a) = F(0,)

for all € # 1, which implies

inf inf F(k,a,) = inf F(0,a,) .
veNU{0} k>0 veNU{0}



HARDY-LERAY INEQUALITY 17

Moreover, we can check that

OF (0,
% Z 07 « 2 ma.X{Oél,ag},
see Lemma 11. This implies that Ii\lnf{O}F (0, ) is attained. Therefore, we have
veNU
the desired estimate:
. . . QZ()‘v O‘V)
46 Ry~ > F(0, a, th F(0,a,) = 1 e
(46) N2 ain FO)  with F(0.a) = lim )
Furthermore, we see that min F(0,a,) is given by
veNU{0}
—92)2 y
min  F(0,a,) = min (82ﬂ(aE —a,)?
veNU{0} veNU{0} e“+ oy
fore=3—-N/2—~#0, and
min F(0, o) = min {4(N —2)2 (4+ al)al}
veNU{0}
[ 4N =2)2=F(0,0a0) for N =234,
|l (N43)(N—1)=F(0,0q) for N>5

for e =3—N/2—~ = 0. This gives the lower bound of Ry . In the next subsection
we will show that the above inequality is indeed the equality.

Optimality for Ry .. To show that the inequality (46) is indeed the equality,

let vy € NU {0} be such that F(0,q,,) = I’I{Ilir{lo} F(0,a,) is satisfied. We use
veNU

the sequence of curl-free vector fields {u, }nen in (36) again with (35), however for
€ =3 — N/2—~. Then, as in the proof of Theorem 1, we obtain the following
expression:

Jon [ Auy Pdz [fov 1, faQa(N —Ag) fadod)
Jan 2P~ un2de [ 1 g FaPi(N, —Ag) frdod)
 Je(EH 2ADQa(N, 0| (V) PdA
(€2 + A2 PUA, iy ) i (V) 2dN
e Qoa(X ) [ (V)P
L Pt ) [ (V) 2N

where Pp1 (A, @) is the same as in (37) and
Qo2(A\ @) = (€% + X)) Q2(A, )
is a polynomial in A. When € = 0 and «,,, = 0, by using the facts
Qo2(\,0) = 4(N —2)2X\% + (N2 — 4N + 8)A* + A6
and Py1(),0) = A2, we prove that
flRN |z|>|Aw, |2dx

lim =4(N —2)? = F(0,0).
e Ton 2P Tun Pt — 1N 72 =F0.0)
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Thus as in the proof of Theorem 1, we can show that

 Jon |2 A, |2de
1 RY = F(0,
nooo [ |2 4w, [2dz (0. awo)

for all cases 2+, # 0 and 2 +a,,, = 0. This leads to the optimality of Ry,. O

5. APPENDIX.

In this appendix, we prove technical lemmas.

Lemma 10. Let (X, M,u) be a measure space and let £,m @ X — R be a p-
measurable function such that & # 0 p-a.e. Suppose g : X — R is a p-measurable
function satisfying, £g > 0 p-a.e., 0 < fX Egdp < oo, and fX [ngldp < co. Then
we have

~

d
fX ngel > ess inf &

Jx Egdp zex £(z)

Proof. Let I = ess inf,cx % Then g > I p-a.e. Multiply the both sides by
&g > 0, we have ng = gfg > 1&g p-a.e.. By integrating over X, we obtain

/ ngdu > I/ Egdu
X X
which leads the result. O

Lemma 11. Let F(0,«) be given by (45). Then we have

OF (0
% >0 for a>max{ag,a}.
Proof. Recall a3 = N —1 and a, = (e + N — 2). It is enough to show the lemma

when € # 0 and F(0,«) = w(aa —a)?. A direct computation shows that

e24a
0F(0,a)  2(a—a.)
e’ (a+¢e2)?
fe(@) =a? +2(e? —e+ Da+ (e —1)* + 20.(1 — ¢).

fe(), where

Since €2 — e+ 1 > 0 for any € € R, we see that f. is strictly increasing for o > 0.
Thus if we show (i) fe(ae) > 0if ae > «y, and (i) fe(aq) > 0 if @3 > «., then
fe(a) > 0 for any a > max{aq, e }, which concludes the lemma.

To prove (i), we observe that f.(a.) = (ae + &?)(ae + (¢ — 2)?). Thus if o, >
a1 = N —1>0, clearly we have f.(a.) > 0.

To prove (ii), we observe that f-(a1) = fo(N —1) = e — 63 +8¢2 — 2+ N2 — 1.
We need to prove this quartic function is nonnegative for € € R such that a3 > a,
ie,, —(IN —1) < e < 1. However, this is an elementary fact. O
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