Plasma polyunsaturated fatty acid profile is associated with vascular endothelial function in patients with type 2 diabetes

Tomoaki Morioka, Masanori Emoto, Satoshi Imamura, Yoshinori Kakutani, Yuko Yamazaki, Koka Motoyama, Katsuhito Mori, Shinya Fukumoto, Atsushi Shioi, Tetsuo Shoji, Masaaki Inaba

Citation	Diabetes and Vascular Disease Research, 15(4); 352-355			
Issue Date	2018-07-01			
Type Journal Article				
Textversion	Author			
	The following article has been accepted by Diabetes and Vascular Disease Research.			
Diahta	After it is published, it will be found at <u>https://doi.org/10.1177/1479164118774314</u> . This			
rights	article may be downloaded for personal use only. Any other use requires prior			
	permission of the author and SAGE Publications.			
DOI	10.1177/1479164118774314			

Self-Archiving by Author(s) Placed on: Osaka City University

1	Short Report
---	--------------

2	
3	Plasma Polyunsaturated Fatty Acid Profile is Associated with Vascular
4	Endothelial Function in Patients with Type 2 Diabetes
5	
6	
7	Tomoaki Morioka ¹ , Masanori Emoto ¹ , Satoshi Imamura ¹ , Yoshinori Kakutani ¹ , Yuko
8	Yamazaki ¹ , Koka Motoyama ¹ , Katsuhito Mori ² , Shinya Fukumoto ³ , Atsushi Shioi, ^{4,5} ,
9	Tetsuo Shoji ^{4,5} , Masaaki Inaba ^{1,5}
10	
11 12	¹ Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
13	² Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka,
14	Japan
15	³ Department of Premier Preventive Medicine, Osaka City University Graduate School of
16	Medicine, Osaka, Japan
17	⁴ Department of Vascular Medicine, Osaka City University Graduate School of Medicine,
18	Osaka, Japan
19	⁵ Vascular Science Center for Translational Research, Osaka City University Graduate
20	School of Medicine, Osaka, Japan
21	
22	
23	Running head: Plasma PUFA profile and FMD in type 2 diabetes
24	Word count: 1483 words excluding references and tables
25	
26	Corresponding author: Tomoaki Morioka, MD, PhD
27	Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City
28	University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-
29	8585, Japan
30	Tel.: +81-6-6645-3806; Fax: +81-6-6645-3808
31	E-mail: m-tomo@med.osaka-cu.ac.jp

32

Morioka et al.

33 Abstract

Decreased plasma n-3 polyunsaturated fatty acid (PUFA) levels or the n-3/n-6 PUFA 34ratios are associated with a risk of cardiovascular events. In this cross-sectional study, we 35 measured plasma levels of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), 36 and arachidonic acid (AA) and investigated the association between the plasma PUFA 37profile and vascular endothelial function in 396 patients with type 2 diabetes. 38Endothelium-dependent, flow-mediated dilatation (FMD) of the brachial artery was 39 measured using ultrasonography. Multiple regression analyses, including age, sex, body 40 41 mass index, and other cardiovascular risk factors, revealed that plasma EPA levels (β = 0.140, p = 0.008) and the EPA/AA ratio ($\beta = 0.127$, p = 0.019), but not plasma DHA levels 42 $(\beta = 0.067, p = 0.220)$ or the DHA/AA ratio $(\beta = 0.034, p = 0.559)$, were independently 43and positively associated with FMD. In conclusion, plasma EPA levels and the EPA/AA 44 ratio are independently associated with endothelial function in patients with type 2 45diabetes. This study indicates a positive association between EPA, rather than DHA, and 4647endothelial function in type 2 diabetes.

48

Keywords: polyunsaturated fatty acid; eicosapentaenoic acid; endothelial function; flowmediated dilatation; type 2 diabetes

51

Morioka et al.

52 Introduction

53	The consumption of n-3 polyunsaturated fatty acids (PUFAs), ¹ or the circulating
54	PUFA profile, including eicosapentaenoic acid (EPA) levels, docosahexaenoic acid
55	(DHA) levels, and the n-3 PUFA/arachidonic acid (AA) ratio, ^{2, 3} are inversely
56	associated with cardiovascular outcomes. Many clinical trials have also shown that the
57	supplementation of n-3 PUFAs improves vascular endothelial function, a predictor of
58	subclinical cardiovascular outcomes. ⁴ However, the effect of n-3 PUFA supplementation
59	on endothelial function has been inconsistent in studies on patients with type 2
60	diabetes, ^{5, 6} who evidently have endothelial dysfunction. ⁷ Moreover, to our knowledge,
61	no study has demonstrated the association between the circulating n-3 PUFA profile and
62	endothelial function in patients with type 2 diabetes. Our hypothesis was that
63	endothelial dysfunction is associated with an abnormal plasma PUFA profile in patients
64	with type 2 diabetes.
65	
66	Methods

67 Study design and participants

In this cross-sectional study, we consecutively enrolled 396 patients with type 2
diabetes who were admitted to the Diabetes Center of the Osaka City University

70	Hospital between January 2009 and June 2013. Patients who were regularly taking
71	drugs containing n-3 PUFAs were excluded from the present study.
72	This study was performed in accordance with the Declaration of Helsinki (1975, as
73	revised in 2013). The study protocol was approved by the Ethics Committee of Osaka
74	City University Graduate School of Medicine (No. 308). All participants provided
75	written informed consent prior to the study.
76	Measurements
77	Frozen plasma samples were shipped to SRL (Tokyo, Japan), and EPA, DHA, and
78	AA concentrations were measured using capillary gas chromatography as previously
79	described. ^{3, 8} We measured FMD and endothelium-independent, nitroglycerin-mediated
80	dilatation (NMD) of the brachial artery using an ultrasound system (UNEXEF; Unex
81	Co. Ltd., Nagoya, Japan). The measurements were performed in a quiet, air-conditioned
82	room at 25.0°C for inpatients who had not consumed any foods, caffeine, or tobacco
83	and had not engaged in exercise for at least 12 hours before the measurements,
84	according to the International Brachial Artery Reactivity Task Force guideline.9
85	Statistical analysis
86	Correlations were examined using the nonparametric Spearman's rank correlation
87	test. Multiple regression analyses were used to explore the influence of each of the

88	PUFA levels or the n-3/n-6 PUFA ratio on FMD or NMD. Skewed parameters, such as
89	triglycerides and the plasma PUFA profile, were logarithmically transformed before
90	regression analyses. A p value of <0.05 was considered significant. Statistical analyses
91	were performed using the JMP 10 software (SAS Institute Inc., Cary, NC, USA).
92	
93	Results
94	This study's participants included 228 men and 168 women, aged 65 years
95	(median). The median duration of diabetes and the body mass index (BMI) were 11
96	years and 24.9 kg/m ² , respectively. The median plasma EPA, DHA, and AA levels were
97	39.0 $\mu g/mL$, 94.3 $\mu g/mL$, and 138.7 $\mu g/mL$, respectively. The median EPA/AA,
98	DHA/AA, and (EPA+DHA)/AA ratios were 0.29, 0.66, and 0.96, respectively. The
99	median FMD and NMD were 5.9% and 14.5%, respectively.
100	The FMD was negatively correlated with age ($\rho = -0.167$, $p = 0.001$), duration of
101	diabetes ($\rho = -0.117$, $p = 0.020$), and systolic blood pressure ($\rho = -0.179$, $p < 0.001$),
102	and was positively correlated with estimated glomerular filtration rate (eGFR) (ρ =
103	0.222, $p < 0.001$). None of the parameters of the plasma PUFA profile were significantly
104	correlated with FMD in unadjusted analyses. To explore the independent association
105	between plasma PUFA levels or n-3 PUFA/AA ratios and FMD, we performed multiple

	regression analyses after adjusting for potential confounders. Aside from the traditional
107	risk factors for atherosclerosis, including age, BMI, systolic blood pressure, and
108	glycated hemoglobin (HbA1c) levels, plasma EPA levels and the plasma EPA/AA ratio
109	were found to be independently and positively associated with FMD (Table 1). No
110	significant association was found between FMD and plasma DHA levels, plasma AA
111	levels, the DHA/AA ratio, or the (EPA+DHA)/AA ratio. In contrast, none of the
112	parameters of the plasma PUFA profile were significantly associated with NMD, after
113	adjusting for the same variables as those used in the models for FMD (data not shown).
114	
115	Discussion
115116	Discussion The present study demonstrated that plasma EPA levels and the EPA/AA ratio were
115 116 117	Discussion The present study demonstrated that plasma EPA levels and the EPA/AA ratio were positively associated with FMD of the brachial artery in patients with type 2 diabetes.
115 116 117 118	Discussion The present study demonstrated that plasma EPA levels and the EPA/AA ratio were positively associated with FMD of the brachial artery in patients with type 2 diabetes. Notably, those associations were independent of the traditional cardiovascular risk
115 116 117 118 119	Discussion The present study demonstrated that plasma EPA levels and the EPA/AA ratio were positively associated with FMD of the brachial artery in patients with type 2 diabetes. Notably, those associations were independent of the traditional cardiovascular risk factors. Accumulating evidence indicates a beneficial effect of n-3 PUFA
115 116 117 118 119 120	Discussion The present study demonstrated that plasma EPA levels and the EPA/AA ratio were positively associated with FMD of the brachial artery in patients with type 2 diabetes. Notably, those associations were independent of the traditional cardiovascular risk factors. Accumulating evidence indicates a beneficial effect of n-3 PUFA supplementation on endothelial function in individuals with cardiovascular disease or its
 115 116 117 118 119 120 121 	Discussion The present study demonstrated that plasma EPA levels and the EPA/AA ratio were positively associated with FMD of the brachial artery in patients with type 2 diabetes. Notably, those associations were independent of the traditional cardiovascular risk factors. Accumulating evidence indicates a beneficial effect of n-3 PUFA supplementation on endothelial function in individuals with cardiovascular disease or its risk factors. ⁴ Because no study has examined the association between circulating levels

Morioka et al.

123 an association between the plasma PUFA profile and endothelial function in those124 patients.

125	Contrary to our results, a number of studies performed in patients with diabetes
126	failed to show a beneficial effect of supplementation with n-3 PUFAs on endothelial
127	function. ^{10, 11} Impaired endothelial function has been documented in patients with type 2
128	diabetes. ⁷ Furthermore, a dysregulated plasma PUFA profile was associated with the
129	presence of type 2 diabetes in our recent study. ⁸ Taken together, the association between
130	the plasma PUFA profile and endothelial function would be complicated in patients with
131	type 2 diabetes. Therefore, our data may indicate that EPA exerts its vasodilatory
132	effect ¹² even in patients with type 2 diabetes. It remains unclear why a significant
133	association between the plasma PUFA profile and FMD was found in our study subjects
134	with type 2 diabetes; however, a relatively large number of participants compared to the
135	number in prior studies ^{10, 11} may be one possible reason.
136	The present study further showed that plasma levels of DHA were not associated
137	with FMD. Results from limited studies indicate that DHA might be more effective than
138	EPA in improving forearm vascular reactivity and that the vasodilatory effects of EPA
139	are endothelial cell-dependent, while those of DHA are endothelial cell-independent. ¹² It
140	needs to be mentioned that none of those previous studies were performed in patients

Page 7

141	with type 2 diabetes. In our results, neither EPA nor DHA was associated with NMD, an
142	endothelium-independent vasodilatation, whereas only EPA was associated with FMD,
143	potentially highlighting the pivotal role of endothelium-dependent, vasodilatory effects
144	of EPA in type 2 diabetes.
145	This study has several limitations. First, we measured PUFA levels in total plasma
146	lipids, but not in phospholipids from the cellular membrane, which are direct precursors
147	of bioactive eicosanoids. Second, we did not evaluate dietary intake, the use of dietary
148	supplements, or lifestyles of participants, which could have affected vascular function,
149	as well as the plasma PUFA profile. Third, the participants with type 2 diabetes were
150	receiving statin, antihypertensive, and/or anti-diabetic drugs including insulin, which
151	could affect vascular function and related risk factors. Fourth, a relatively small sample
152	size and a single measurement of plasma PUFA could influence the results of the
153	present study. Finally, we did not include non-diabetic controls. Although previous
154	studies in the non-diabetic population have shown inconsistent results, we could have
155	evaluated whether the presence of diabetes modifies the association between circulating
156	PUFAs and FMD using a non-diabetic control group.
157	In conclusion, this study demonstrated that plasma EPA levels and the EPA/AA ratio
158	are independently associated with FMD in patients with type 2 diabetes. Our data

159	indicate a positive association between EPA and endothelial function, an established
160	predictor of cardiovascular disease, and further propose the plasma levels of EPA, rather
161	than those of DHA, as a potential biomarker of vascular health, even in patients with
162	type 2 diabetes who have impaired endothelial function.
163	
164	Acknowledgements
165	The authors acknowledge the excellent technical assistance of Ms. Setsuko Arita and
166	Ms. Mika Sakaki of the research laboratory in the Department of Metabolism,
167	Endocrinology and Molecular Medicine, Osaka City University Graduate School of
168	Medicine.
169	
170	Declaration of conflicting interests
171	The authors declare no conflicts of interest related to this study.
172	
173	Funding
174	This study was supported by a Grant-in-Aid for Scientific Research (No. 20591068)
175	from the Japan Society for the Promotion of Science (to M.E. and K. Mor.).
176	

177 **References**

- 178 1. Mozaffarian D and Rimm EB. Fish intake, contaminants, and human health:
- evaluating the risks and the benefits. *JAMA*. 2006; 296: 1885-1899.
- 180 2. Mozaffarian D, Lemaitre RN, King IB, et al. Plasma phospholipid long-chain
- 181 omega-3 fatty acids and total and cause-specific mortality in older adults: a cohort
- 182 study. Ann Intern Med. 2013; 158: 515-525.
- 183 3. Shoji T, Kakiya R, Hayashi T, et al. Serum n-3 and n-6 polyunsaturated fatty
- acid profile as an independent predictor of cardiovascular events in hemodialysis
- 185 patients. Am J Kidney Dis. 2013; 62: 568-576.
- 4. Wang Q, Liang X, Wang L, et al. Effect of omega-3 fatty acids supplementation
- 187 on endothelial function: a meta-analysis of randomized controlled trials.
- 188 Atherosclerosis. 2012; 221: 536-543.
- 189 5. McVeigh GE, Brennan GM, Johnston GD, et al. Dietary fish oil augments
- 190 nitric oxide production or release in patients with type 2 (non-insulin-dependent)
- 191 diabetes mellitus. *Diabetologia*. 1993; 36: 33-38.
- 192 6. Sawada T, Tsubata H, Hashimoto N, et al. Effects of 6-month eicosapentaenoic
- acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability,
- and concomitant endothelial dysfunction among newly-diagnosed impaired glucose

195	metabolism patients with coronary artery disease. An open label, single blinded,
196	prospective randomized controlled trial. Cardiovasc Diabetol. 2016; 15: 121.
197	7. Calles-Escandon J and Cipolla M. Diabetes and endothelial dysfunction: a
198	clinical perspective. Endocr Rev. 2001; 22: 36-52.
199	8. Imamura S, Morioka T, Yamazaki Y, et al. Plasma polyunsaturated fatty acid
200	profile and delta-5 desaturase activity are altered in patients with type 2 diabetes.
201	Metabolism. 2014; 63: 1432-1438.
202	9. Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound
203	assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery:
204	a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol.
205	2002; 39: 257-265.
206	10. Wong CY, Yiu KH, Li SW, et al. Fish-oil supplement has neutral effects on
207	vascular and metabolic function but improves renal function in patients with Type 2
208	diabetes mellitus. Diabet Med. 2010; 27: 54-60.
209	11. Woodman RJ, Mori TA, Burke V, et al. Effects of purified eicosapentaenoic
210	acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in
211	hypertensive type 2 diabetic patients. Atherosclerosis. 2003; 166: 85-93.
212	12. Kelley DS and Adkins Y. Similarities and differences between the effects of

- EPA and DHA on markers of atherosclerosis in human subjects. *Proc Nutr Soc.* 2012;
- 214 71: 322-331.

215

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
Age (years)	-0.209*	-0.183*	-0.168*	-0.219*	-0.185*	-0.208*
Sex (male=1, female=0)	-0.077	-0.086	-0.093	-0.089	-0.095	-0.088
BMI (kg/m²)	-0.116*	-0.121*	-0.130*	-0.102	-0.114*	-0.101
Systolic blood pressure (mmHg)	-0.144*	-0.144*	-0.147*	-0.145*	-0.145*	-0.144*
eGFR (mL/min/1.73 m ²)	0.097	0.107	0.107	0.102	0.110	0.109
HbA1c (%)	-0.153*	-0.148*	-0.152*	-0.143*	-0.143*	-0.140*
Log [triglycerides (mg/dL)]	0.032	0.009	0.019	0.030	0.010	0.009
Non HDL-cholesterol (mg/dL)	-0.144*	-0.118	-0.106	-0.117*	-0.098	-0.110
Smokers (yes=1, no=0)	-0.077	-0.067	-0.068	-0.072	-0.064	-0.065
RAS inhibitors (yes=1, no=0)	-0.140*	-0.143*	-0.143*	-0.137*	-0.142*	-0.140*
Statins (yes=1, no=0)	-0.044	-0.030	-0.030	-0.030	-0.022	-0.023
Log [EPA (µg/mL)]	0.140*	-	-	-	_	
Log [DHA (µg/mL)	_	0.067	-	-	_	
$Log [AA (\mu g/mL)]$	_	-	0.049	-	_	
Log [EPA/AA]	_	-	-	0.127*	-	
Log [DHA/AA]	_	-	-	-	0.034	
Log [(EPA+DHA)/AA]	_	-	_	_	_	0.094
R^2	0.152*	0.140*	0.138*	0.149*	0.137*	0.143*

Table 1. Multiple regression analysis for the determinants of FMD in all participants with type 2 diabetes

Values are standard coefficient determined by multiple regression analysis (β); R², coefficient of determination; *, p < 0.05. A smoker was defined as a current smoker or an ex-smoker. FMD, flow-mediated dilatation; BMI, body mass index; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; RAS, renin-angiotensin system; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; AA, arachidonic acid.