
 

TAKEUCHI, H. (2015). Detection Sensitivities of Photoluminescence Spectroscopy and Polariscopy 

to Residual Strains in a (110)-oriented ZnTe Single Crystal: Explore of Strain-sensitivity Inspection 

Techniques. Physics Procedia. 76, 4-10. doi:10.1016/j.phpro.2015.10.002 

 

Detection Sensitivities of Photoluminescence 

Spectroscopy and Polariscopy to Residual Strains in 

a (110)-oriented ZnTe Single Crystal: Explore of 

Strain-sensitivity Inspection Techniques 
 

Hideo Takeuchi 

 

Citation Physics Procedia. 76; 4-10 

Issue Date 2015 

Type Journal Article 

Textversion Publisher 

Right 

© 2015 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

(https://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

DOI 10.1016/j.phpro.2015.10.002 

 

 

Self-Archiving by Author(s) 

 

Placed on: Osaka City University Repository 

 

https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 Physics Procedia   76  ( 2015 )  4 – 10 

Available online at www.sciencedirect.com

1875-3892 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of The Organizing Committee of the 17th International Conference on Luminescence and Optical Spectroscopy of 
Condensed Matter
doi: 10.1016/j.phpro.2015.10.002 

ScienceDirect

The 17th International Conference on Luminescence and Optical Spectroscopy of Condensed 
Matter (ICL2014) 

Detection sensitivities of photoluminescence spectroscopy and 
polariscopy to residual strains in a (110)-oriented ZnTe single 

crystal: Explore of strain-sensitivity inspection techniques 

Hideo Takeuchi* 
Department of Applied Physics, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, 

Japan 

Abstract 

We demonstrate that sensitivity of polariscopy to residual strains is higher than that of the photoluminescence spectroscopy in a 
(110)-oriented ZnTe single crystal. We carried out x-ray topography and micro -2  x-ray diffraction measurements in order to 
thoroughly clarify the crystal quality connecting with the residual strains. The two x-ray analyses revealed that there is 
misalignment from the [110] direction in some regions of the present sample. We found the following main results: The 
polariscopic analysis detects the residual strain formed by the misalignment, whereas the photoluminescence measurement 
cannot detect the residual strain. Thus, we conclude that polariscopy has the sensitivity to the residual strain higher than that of 
the photoluminescence spectroscopy. We confirmed that the polariscopic analysis can detect the internal strain less than 0.02% in 
the ZnTe crystal. In addition, we discuss the applicability of polariscopic analysis to other compound semiconductors. 
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1. Introduction 

Ultrafast response of nonlinear optical crystals has considerable significance on cutting-edge photonics: terahertz 
optoelectronics (Sakai 2005). Recent progresses in femtosecond-pulse-laser systems have been enabling time-
domain terahertz spectroscopy. The application of terahertz spectroscopy covers biological system imaging, 
innovative drug development, security system, and metamaterial investigation. Terahertz waves are useful 
spectroscopic probing tools to investigate novel physics of condensed matters (Lee 2008). In terahertz spectroscopy, 
essential optical components are terahertz-wave emitters and detectors, of the operation principles which connect 
with ultrafast phenomena. For the terahertz emitters, the utilizations of photoconductive antennas (Auston 1983) and 
semiconductor surfaces (Zhang and Auston 1992) are proposed. The nonlinear optical crystals also have a capability 
of generating the terahertz wave. The second electric susceptibility tensor of the nonlinear optical crystal produces 
optical rectification in illuminating the femtosecond laser pulses, triggering the generation of the terahertz wave. 
Various nonlinear optical crystals have been examined for achieving the intense terahertz waves (Auston et al. 1984; 
Hu et al. 1990; Han and Zhang 1998; Huber et al. 2000; Blanchard et al. 2007; Hirori et al. 2011). The nonlinear 
optical crystals are also are utilized as the detectors for the terahertz wave. This is because they are suitable for the 
electro-optic sampling (Wu and Zhang 1995; Wu and Zhang 1996). The mechanism of the electro-optic sampling is 
based on the Pockels effect (Lee 2008, p.92): the optical birefringence due to the externally applied electric fields. 
The Pockels effect has the same nonlinear optical coefficient as the optical rectification (Boyd 2008, Chapter 11). 
Accordingly, the nonlinear optical crystals, which were the targets of the investigation of References (Auston et al. 
1984; Hu et al. 1990; Han and Zhang 1998; Huber et al. 2000; Blanchard et al. 2007; Hirori et al. 2011), are 
employed in the electro-optic sampling. Among various nonlinear optical crystals for terahertz spectroscopy, (110)-
oriented ZnTe crystals, of the thicknesses which are several hundred micrometers, are widely used owing to its large 
electro-optic coefficient 41: 4.0 10-12 m/V (Boyd 2008, p.517). In addition, it is relatively easy to obtain the velocity 
matching condition at the typical operational wavelength (about 800 nm) of Ti:sapphire femtosecond pulse lasers 
(Lee 2008, pp. 87-90). Wu et al. demonstrated the two-dimensional electro-optic imaging of the terahertz beam with 
use of the ZnTe crystal (Wu et al. 1996). Usami et al. developed a real-time terahertz imaging system based on the 
two-dimensional electro-optic sampling (Usami et al. 2002). They obtained the terahertz images using a charge-
coupled-detection camera at the video rate up to 30 frames per second, and observed moving objects. The referenced 
reports indicate the high advantage of the ZnTe crystals in the terahertz spectroscopic measurement. The two-
dimensional electro-optic sampling requires the following characteristics to the ZnTe crystal: being free from 
residual strains. The residual strain leads to the emergence the photoelastic effect. The photoelastic effect also causes 
the optical birefringence, so that the terahertz image is disturbed from the ideal image. In addition, the residual strain 
forms the warp in the ZnTe crystal, resulting in the deviation from the flatness. Accordingly, it is essential and 
meaningful to evaluate the residual strain. 

The strain evaluations are widely performed using the photoluminescence measurement in the research and 
development fields of semiconductors. In measuring photoluminescence spectra, the residual strain is reflected to the 
peak photon energy of the band due to the interband transition and/or exciton transition. The peak energy of the band 
originating from these transitions is shifted by the stress corresponding to the strain through the deformation 
potential (Pelant 2012). The photoluminescence map of the semiconductor wafer is used to evaluate the strain 
distribution. We, on the other hand, point out other choices for evaluating the residual strain: Polariscopy (Whalstom 
1951; Cloud 1994; Kompane tsev 2006). The polariscopic analysis is applicable to the samples transparent to the 
light. The residual strain causes the refractive index anisotropy, which forms the fast and slow axes. The formation 
changes the polarization direction of the light. In the polariscopic measurement, the sample is placed between the 
polarizer and analyzer aligned in the crossed-Nicol (or referred as cross-Nicol) configuration. The magnitude of the 
strain is recorded as the intensity of the transmitted light. Since the fundamental transition energy of ZnTe is 2.26 eV 
at room temperature (Larch 1957; Madelung 1982), the incoming light with the wavelength longer than 550 nm 
transmits through the ZnTe crystal. Accordingly, the polariscopic analysis has a potential for the evaluation of the 
ZnTe crystal.  

In the present paper, we compare the strain sensitivity of polariscopy with that of photoluminescence 
spectroscopy. We systematically performed the present investigation. We, in advance, carried out reflection-type x-
ray topography and micro -2  x-ray diffraction measurement. This is because, for discussing the evaluation 
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each peak photon energy of the photoluminescence band is the same within the spectral resolution power, indicating 
the quite low sensitivity of the photoluminescence measurement to the residual strain. Thus, we conclude that the 
polariscopic analysis has the internal strain sensitivity higher than the photoluminescence measurement. 

Finally, we discuss the highest limit of the strain sensitivity. The peak energy shift of the photoluminescence 
band E is proportional to the relative variation of the unit-cell volume V/V: 

 
 

 

 

Fig. 4. The polariscopic image. The inhomogeneous light transmission is clearly observed at the upper right corner region that exhibits the 
undulation pattern in the x-ray topograph. 

 
 

 

 

Fig. 5. Photoluminescence spectra at the under left corner and upper right corner at room temperature. The band peaking at 2.26 eV originates 
from the interband transition at the  point of the Brillouin zone. 

 
 

(1)

 
In Eq. (1) the quantity  is the hydrostatic deformation potential, where the value of a is -5.53 eV (Bertho et al. 
1991). The spectrum resolution of the present photoluminescence measurement was 0.2 nm that corresponds to 1 
meV in the present wavelength range. Taking account of this value, the relative variation of the unit-cell volume is 
less than 0.02% in the present sample. Accordingly, it is reasonable to deduce that the polariscopic measurement has 
the ability to sensitively detect the strain less than 0.02%. Thus, we conclude that the polariscopic measurement is a 
highly sensitive method for detecting the strains in the ZnTe single crystals. 

We also estimate the pressure p that corresponds to the relative variation of the volume V/V. The pressure p is 
expressed by the following relation, 
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where the quantity B is the bulk modulus. The value of B for ZnTe is 5.08 1011 dyn/cm2 (Lee 1970). The relative 
variation of the volume is 0.02% corresponds to the pressure of 1.1 108 dyn/cm2 (11 MPa). In usual, the band-gap 
energy shift is observable in the pressure is of the order of gigapascal. We note that the present polariscopic 
measurement was performed at room temperature with simple polarizing plate. Taking account of the above-
mentioned facts, we reach a conclusion that the polariscopic analysis has a highly sensitive and convenient 
characterization for the relatively low residual strains.  

  Table 1. Hydrostatic deformation potentials of the typical zincblende compound semiconductors (Van de Walle 1989). 

 Hydrostatic deformation potential (eV) 

InAs  -6.08 

GaP  -8.83 

InP -6.31 

GaSb -7.64 

ZnSe -5.83 

ZnS -5.83 

CdTe -4.52 

HgTe -4.48 

 

Table 2. Hydrostatic deformation potentials of the typical wurtzite compound semiconductors. 

 Hydrostatic deformation potential (eV) 

GaN a) -8.16 

AlN b) -7.1 

ZnO c) 4.47 

From (a) Gil 1995; (b) Blanchard 1997; (c) Karzel 1996. 
 

It is meaningful to discuss that the polariscopic analysis is applicable to other semiconductors. Table 1 and Table 
2 list the hydrostatic deformation potentials of the typical compound semiconductors. The value of the hydrostatic 
potential is the same order as that of ZnTe. The resent progress in wide band-gap semiconductor devices stimulates 
the high yield of the single-crystal  wafers for substrates. The residual strain is still a crucial problem. The 
polariscopic analysis provides a solution of inspecting the residual strain distribution in the wafers of various 
compound semiconductors if the residual strain is not evaluated using the photoluminescence measurement owing to 
the detection limit. 

4. Summary 

We have systematically investigated the residual strain sensitivities of polariscopy and photoluminescence 
spectroscopy in the (110)-oriented ZnTe crystal. We have used the reflection-type x-ray topographic measurement 
and micro -2  x-ray diffraction measurement, enabling the detailed residual strain investigation. We have observed 
the undulation in the x-ray topograph, the position of which contains the misalignment from the [110] direction 
according to the results of the x-ray diffraction measurement. The polariscopic analysis has been clarified that, in the 
undulated region of the x-ray topograph, the light incident to the sample inhomogeneously transmits from the 
analyzer. The light transmission indicates that the refractive index anisotropy is produced by the residual strain. The 
photoluminescence measurement, however, has been revealed to be insensitive to the internal strain. Thus, we reach 
a conclusion that the polariscopic analysis has the residual strain sensitivity higher than the photoluminescence 
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measurement. From the strain-detection limit of the photoluminescence measurement, we have deduced that the 
polariscopic analysis detects the strain less than 0.02%. 
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