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A New Access to Fluorine-containing Asparagine and Glutamine 

Analogues via Pd-catalyzed Formate Reduction 

Yoshinosuke Usuki,* Yosuke Wakamatsu, Minoru Yabu, and Hideo Iio[a] 

 

Abstract: A new synthesis of fluorine-containg asparagine and 

glutamine analogues (1 and 2) via palladium-catalized formate 

reduction of fluorinated carbonate esters is described. Primary 

amide moieties at side-chain of asparagine and glutamine were 

successfully replaced with fluoroolefin, which are proposed to be 

aprotic mimic for amides due to their electronic properties. 

The ability of fluorine to impart unique properties to organic 

molecules has been exploited in the design of fluorine-

containing bioactive compounds.[1] Functionalized fluoroolefins 

are particularly important, with current applications in the 

synthesis of biologically active materials such as peptide 

isosteres.[2,3] Asparagine and glutamine residues play important 

structural roles in proteins because their side-chain amide 

groups could act as both hydrogen bond acceptors and 

donors.[4] In addition, chemical modification such as deamidation, 

which is conjected to be one of the factors that limit the useful 

lifetime of proteins, occurs at these residues.[5]  In our continuing 

studies on synthetic organofluorine chemistry towards 

fluorinated biomimetics,[6] we have been interested in 

replacement of side-chain amide moieties of asparagine and 

glutamine with fluoroolefins, which are proposed to be aprotic 

mimic for amides due to their electronic properties.[3a] Recent 

studies on fluorine-containing π-allyl palladium complex 

encouraged us to investigate Pd-catalyzed formate reduction of 

fluoro-allyl carbonate.[6a,6b,7] This report describes a new 

synthesis of fluorine-containg asparagine and glutamine 

analogues (1 and 2) via formate reduction.[8] 
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Figure 1. Replacement of side-chain amide moiety with fluoroolefin. 

Our synthesis of 1 commences with fluorinated allyl alcohol E-3 

and Z-3.[9] Acylation of E-3 and Z-3 were achieved with ethyl 

chloroformate in pyridine to give the desired allyl carbonate E-4 

and Z-4 respectively in good yields.  

 

Scheme 1. Preparation of carbonate 4. 

Pd-catalyzed formate reduction of E-4 was examined. Treatment 

of E-4 with HCO2
-NEt3H+ (1.2 equiv) in the presence of 

Pd2(dba)3•CHCl3 in DMF at 80 ºC for 4 h afforded a 8:1 mixture 

of the desired γ-product 5 and the α-product 6 (Table 1, entry 1). 

The Z configurations of internal fluoroolefin 6 was established by 

the large coupling constant between the vinylic proton and 

fluorine (3JHF=29.1 Hz) on the 19F NMR spectrum. Interestingly, 

the use of Pd2(dba)3 led to optimum regioselectivity (5:6 = 21:1) 

as shown in entry 2. Addition of 2.5 mol% CHCl3 to Pd2(dba)3 

decreased the regioselectivity significantly (entry 3), although 

the role of CHCl3 is still obscure. Under the optimized reaction 

conditions, reactions of Z-4 and phenyl carbonate E-4’ 

proceeded smoothly the desired terminal fluoroolefin 5 in good 

regioselectivity (entry 4, 5).  

 
Table 1. Pd-catalyzed formate reduction of carbonate 4. 

BocN

OF

RO2CO

Pd cat., PPh3

Et3N, HCOOH

DMF, 80 oC

+
BocN

OF

BocN

O

F

4 5 6

HJHF = 29.1 Hz

 

Entry R Pd Catalyst Yields[%] 

5 

5:6[a] 

1 Et (E-4) Pd2(dba)3•CHCl3 69 8:1 

2 Et (E-4) Pd2(dba)3 72 21:1 

3 Et (E-4) Pd2(dba)3 + 2.5 mol% CHCl3 65 11:1 

4 Et (Z-4) Pd2(dba)3 74 19:1 

5 Ph (E-4’) Pd2(dba)3 67 19:1 

[a] Determined by 19F NMR spectroscopy.  

 

Treatment of 5 with CSA in MeOH resulted in removal of 

acetonide moiety to afford 7 in 90% yield. Dess–Martin oxidation 

of 7 proceeded to give the corresponding aldehyde 8 in 84% 

yield.  Pinnick oxidation of 8 followed by acidic removal of Boc 

group afforded the desired L-asparagine analogue (S)-1 in 62% 
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yield for 2 steps.[10] The optical rotation of (S)-1, [α]D -20.0 (c 

0.52, H2O), was in close agreement with the value reported in 

the literature, [α]D -18.0 (c 1.0, H2O).[11]  
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Scheme 2. Synthesis of (S)-1. 

Attention was next directed to the synthesis of L-glutamine 

analogue (S)-2. N, O-Acetal 9, prepared from L-aspartic acid by 

the literature procedure,[12] was oxidized to afford the desired 

aldehyde 10 in 87% yield. Treatment of triethyl α-

fluorophosphonoacetate with NaH (1 eq.) in THF at −40 ºC and 

the following addition of 10 afforded the corresponding α-fluoro-

α,β-unsaturated ester 11 as a 7:1 mixture of E/Z isomers in 89% 

yield. Reduction of 11 with DIBAL-H afforded allyl alcohols E-12 

and Z-12, which were easily separated by flash column 

chromatography. Acylation of E-12 and Z-12 were achieved with 

ethyl chloroformate in pyridine to give the desired allyl carbonate 

E-13 and Z-13 respectively in good yields.  
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Scheme 3. Preparation of carbonate 13. 

E-13 was treated with HCO2
-NEt3H+ (1.2 equiv) in the presence 

of Pd2(dba)3 in DMF at 80 ºC for 4 h. However a 6.3:1 mixture of 

the desired γ-product 14 / the α-product Z-15 was obtained 

(Table 2, entry 1). The Z configurations of internal fluoroolefin 15 

was established by the large coupling constant between the 

vinylic proton and fluorine (3JHF=33.9 Hz) on the 19F NMR 

spectrum. Interestingly, CHCl3 did not have any effect on the 

regioselectivity (entries 1 and 2). Although the use of phenyl 

carbonate E-13’ or P(OPh)3 did not increase the regioselectivity 

(entries 3 and 4),  the reaction in the presence of P(n-Bu)3 

proceeded nicely to afford the desired terminal fluoroolefin 14 in 

good regioselectivity (entry 5). Electron-donating ability of P(n-

Bu)3 makes the cathionic intermediate π-allyl palladium complex 

more stable, which would increase regioselectivity.[8] 

  
Table 2. Pd-catalyzed formate reduction of carbonate 13.  

Pd cat., ligand
Et3N, HCOOH

DMF, 80 oC +

14 15
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O
F
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JHF = 16.9 Hz

 

 

Entry R Pd Catalyst Ligand Yields[%] 

14 

14:15[a] 

1 Et (E-13) Pd2(dba)3•CHCl3 PPh3 66 5.9:1 

2 Et (E-13) Pd2(dba)3 PPh3 70 6.3:1 

3 Ph (E-13’) Pd2(dba)3 PPh3 65 6.1:1 

4 Et (E-13) Pd2(dba)3 P(OPh)3 62 3.1:1 

5 Et (E-13) Pd2(dba)3 P(n-Bu)3 77 16:1 

6 Et (Z-13) Pd2(dba)3 P(n-Bu)3 76 16:1 

[a] Determined by 19F NMR spectroscopy.  

  

Conversion of 14 into the desired L-glutamine analogue (S)-2 

was achieved as shown in Scheme 4.[13] To evaluate 

enantiopurity of (S)-2, derivatization with L- or D-FDLA was 

carried out and the resulting mixtures were analyzed by ESI–

LC/MS.[14] These analyses revealed that (S)-2 had >99% ee. 
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Scheme 4. Synthesis of (S)-2. 

In summary, we have developed a new approach for the 

synthesis of fluorine-containing asparagine and glutamine 

analogues, where side-chain amide moieties are replaced with 

fluoroolefin. Investigations into the application of the developed 

protocol to other fluorinated biomimetics are currently underway 

in our laboratory. 

Experimental Section 

General procedure of Tsuji-Trost reaction. 
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To a mixture of Pd catalyst (0.025 mmol) and phosphine ligand (0.2 

mmol) in DMF (0.5 mL) was added a solution of oxazolidine (1.0 mmol) in 

DMF (0.5 mL) at 0 °C. After stirring for 10 min at that temperature, a 

solution of triethylammonium formate in DMF (0.5 mL), prepared from 

formic acid (1.4 mmol) and triethylamine (1.4 mmol), was added to the 

reaction mixture. The resulting mixture was stirred at 80 °C for 4 h. 

before the reaction was quenched with aq. NH4Cl. The resulting mixture 

was filtered through a short pad of Celite and then extracted with Et2O. 

The combined organic layers were washed with brine, dried over 

anhydrous Na2SO4. Filtration and concentration in vacuo afforded the 

crude product, which was purified by silica gel column chromatography 

with hexane-EtOAc (49:1) as an eluent to give pure terminal olefin. 
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