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We study the effects of a position-dependent artificial gauge field on an atomic Bose-Einstein condensate in
quasi-one-dimensional and two-dimensional ring settings. The inhomogeneous artificial gauge field can induce
global and local currents in the Bose-Einstein condensate via phase gradients along the ring and vortices,
respectively. We observe two different regimes in the system depending on the radial size of the ring and the
strength of the gauge field. For weak artificial gauge fields, the angular momentum increases, as expected,
in a quantized manner; however, for stronger values of the fields, the angular momentum exhibits a linear
(nonquantized) behavior. We also characterize the angular momentum for noncylindrically symmetric traps.

DOI: 10.1103/PhysRevA.105.053307

I. INTRODUCTION

Ultracold atomic gases provide excellent test beds for
studying quantum phenomena in a controlled manner. They
are trapped in an external potential and cooled down at their
lowest-energy state [1–4]. As the temperature of the gas de-
creases below a critical value, a Bose-Einstein condensate
(BEC) is obtained. In the mean-field approximation, a BEC
trapped in an external potential is described by using a macro-
scopic wave function that obeys a nonlinear Schrödinger-type
equation, known as the Gross-Pitaevskii equation (GPE), and
has been extensively studied in various frameworks [5–8].

Cold atomic gases have been used to investigate dynamical
phenomena associated with superfluidity in low temperature
physics. This entails studying the formation of various vortex
structures and their dynamics in a BEC [9,10] in addition
to more complex nonlinear phenomena such as quantum
turbulence [11–15].

Ring-shaped potentials give one of the simplest geometries
that is topologically nontrivial and therefore allows persistent
currents (global currents) around the whole loop. A toroidal
potential can be prepared by using various methods such as
painting time-dependent potentials [16] or optical lattices in
the form of a ring trap with a tunable boundary phase twist,
which is created by interference between the plane wave and
Laguerre-Gaussian laser modes [17]. It can also be created
using a radio-frequency-dressed (RF-dressed) magnetic trap
with an optical potential [18], or a rapidly scanned time-
averaged dipole potential [19], using a ring-shaped magnetic
waveguide [20], the BEC being stored in a ring potential using
a magnetic field [21]. However, in strictly one-dimensional
(1D) systems vortices cannot exist and the mechanisms
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inducing currents [22,23] may differ from those in two-
dimensional (2D) scenarios [24,25]. Therefore, the transition
between quasi-1D and 2D can present substantial differences
when considering nonhomogeneous artificial gauge fields.

The superfluid behavior of ultracold atomic gases, such as
BECs, can also cause the appearance of topological defects,
e.g., the creation of quantized vortices. In a corotating frame,
superfluid vortex states correspond to a global energy min-
imum. Their creation process usually requires one to break
the rotational symmetry at some point. For homogeneous ro-
tations, there exists a critical rotational frequency for which
vortices start to appear in a BEC [26]. This produces a sudden
increase in the angular momentum and changes in the phase
profile. Therefore, the appearance of vortices is triggered by
a symmetry breaking, where the angular momentum is trans-
ferred into the condensate through the excitation of surface
modes, resulting in the generation of vortices. The critical
frequency is found to be greater than the vortex stability
frequency [27]. The vortex nucleation and lattice formation
in a rotating condensate has been studied theoretically [28,29]
and observed experimentally [30–33].

This has led to the development of different techniques
to create vortices as well as currents in BECs. For instance,
stirring a BEC with a laser beam [26,30], phase imprinting
[32], a rotating trap [34], a rotating laser spoon [26], rotating
magnetic trap, rotating thermal cloud [35], phase engineering
in two-species condensates [36], inhomogeneous synthetic
magnetic fields [37], and, recently, using vector gauge poten-
tial [38–40]. The defects in BECs result in different vortex
lattice structural geometries, e.g., linear vortex lattices [41]
and zigzag arrangement of vortices [42]. One possible classi-
fication of vortices that allows us to distinguish different cases
and phenomena is the following: (i) visible vortices, which can
easily be detected via their density depression as well as phase
winding; (ii) hidden/invisible vortices, which are not visible
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on the density distribution but only in the phase profile of the
gas and induce a persistent current in the fluid, and (iii) ghost
vortices that are on the outskirts of the BEC, where the density
is almost negligible and carry neither angular momentum nor
energy [28,43–48]. Nonetheless, such classification is purely
empirical and all vortices are topologically equal.

More recently, there have been proposals with new types
of artificial gauge fields [49–51] that have some position-
dependent features. In such fields, the vortex structures appear
at the high intensity of the effective magnetic field [38]. This
position dependence of the gauge field leads to various inter-
esting features, such as the symmetry breaking of the density
profile of the two-coupled BECs [52] and also the creation of
a position-dependent structure of vortices in the condensate.

In this work, we will explore the effects of an inhomo-
geneous gauge field on a BEC trapped in a finite-width ring
geometry. This geometry is one of the simplest that is topo-
logically nontrivial and therefore allows persistent currents
(global currents) around the whole loop, while at the same
time also permitting localized vortex structures.

The following is an outline of this paper. In Sec. II, we
introduce our physical system and discuss how one can use
light-matter interactions to create an artificial magnetic field
in a BEC which is located near a dielectric prism. We present
the results that correspond to a global current in a quasi-1D
ring in Sec. II A. In Sec. II B, we illustrate the possibility
of having visible and invisible vortices in a 2D ring trap. In
Sec. III, we demonstrate how a change in the symmetry of
the ring trap affects the angular momentum of the system.
Finally, we conclude our observations regarding the effect of
an inhomogeneous gauge field on a ring of BEC in Sec. IV.

II. LOCAL AND GLOBAL CURRENTS IN RING TRAPS

Vortices (in the bulk) and persistent currents (global cur-
rents) are two hallmarks of superfluidity, and they have
recently been studied extensively in atomic BECs. While vor-
tices are singularities within the condensate field, persistent
currents are usually defined in topologically nontrivial ring
settings, where they appear as a phase gradient along the
azimuthal direction with the corresponding singularity located
at the center of the trap where no condensate density exists.

In a simply connected condensate, the fundamental exci-
tation is a vortex, which is defined by the appearance of a
density minimum owing to a phase singularity in the conden-
sate. In contrast, in a topologically nontrivial geometry, such
as a ring trap, the fundamental excitation is a persistent cur-
rent, which is a simple current along the azimuthal direction
that connects onto itself after 2π .

Inducing angular momentum into a cylindrically symmet-
ric system for instance, by rotating a harmonically trapped
BEC, results in a collection of vortices with a winding num-
ber of unity, which are distributed throughout the BEC and
arrange themselves in a lattice structure that is similar to the
Abrikosov lattice [53–55]. This singularity in the density and
the corresponding phase winding around it leads to a local
current around the vortex. In contrast, considering a topologi-
cally nontrivial system, i.e., a one-dimensional ring potential,
introducing the rotation leads to a persistent current along the
ring, with no visible vortices. Therefore, there is a difference

FIG. 1. Vortex configurations. Schematic of vortices in a BEC
trapped in a ring potential. We consider three possible scenarios:
(a) an invisible vortex (gray dot) is located at the center of the ring,
and therefore the BEC experiences a global current; in plot (b) a visi-
ble vortex (black dot) results in a local current at the vicinity of where
the vortex is formed; and (c) a mixture of both visible and invisible
vortices. The green arrows represent an intuitive representation of the
phase winding number.

in behavior between the 2D and 1D regimes. This transition
can be realized, for instance, from a harmonic trap to a 2D
ring and finally to a 1D ring by creating a maximum in the
center of the harmonic trap and increasing its intensity, which
creates a central hole [56]. There are a few methods of creating
a ring trap, such as the combination of magnetic, optical,
and radio-frequency fields [57], or by using time-averaged
adiabatic potentials [58], and the use of a magnetic trap for
RF-dressed atoms [18].

It can be naively expected that applying a localized (in-
homogeneous) gauge field to the system results in local
excitations around the field lines; this does occur, as shown
in [52], which leads to an interesting phase separation in the
immiscible regime. In this work, we demonstrate that local-
ized magnetic fields can also induce global currents.

Two types of vortices can be formed in a ring trap that
experiences an inhomogeneous artificial gauge field. The first
type, herein defined as visible vortices, is located in the high-
density regions of the BEC cloud, and they can be observed
in the density plot as a density minima, as well as in the
phase (as a phase winding around their core). The other type
of vortices, also known as vortex states or current states, we
define as invisible vortices which form in the central part of
the trap and can just be detected via phase measurements, e.g.,
by measuring the particle current [see Fig. 1(a)].

As vortices have an associated angular momentum around
their core, they induce rotation into the BEC cloud, and the
presence of visible and invisible vortices results in three dif-
ferent situations: (a) if the invisible vortex is at the center of
the BEC ring, it induces a global current as it acts as the BEC
is rotating with an external source; (b) when the vortex is in
the high-density regions of the BEC forming a density dip, it
creates a local current in the BEC; and (c) a mixture of two
types of vortices creates a mixture of global and local currents
(See a schematic of these vortex configurations in Fig. 1).

III. MODEL AND HAMILTONIAN

We consider a BEC of neutral alkali-metal atoms trapped in
a ring potential along the x-z plane in the vicinity of a dielec-
tric prism (see Fig. 2). The BEC is tightly confined along the
other spatial direction y, such that it can be effectively treated
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FIG. 2. Schematic of a BEC cloud with wave function φ(x, z)
trapped in an external ring potential V (x, z), with thickness δr for
the ring BEC. The cold gas is located in the vicinity of a dielectric
prism having a reflective index of n. The orange line indicates the
input laser field with wave vector k and the incident angle θ .

as a two-dimensional system [5]. The ring potential has the
form V (x, z) = 1

2 m(
√

ω2
x x2 + ω2

z z2 − r0)2, with the frequen-
cies of ωx and ωz in the x and z directions, respectively; m is
the mass of the atomic BEC, and r0 corresponds to the inner
radius of the ring. This ring trap is in the vacuum (n0 = 1)
just above the surface of a dielectric prism having a refractive
index n. We choose our Cartesian coordinate system in such
away that the center of the ring potential is located at the origin
(0,0) of the coordinate system, and the upward direction is
considered as positive.

For the circular ring trap, we consider ωx = ωz; however,
in the elliptical case we consider ωx �= ωz. The BEC is created
from ultracold alkali-metal atoms, and each atom has two
internal states: the ground state |g〉 and the excited state |e〉.

The incident laser beam has the wave vector k and fre-
quency ωL, which is selected to be close to the resonance
frequency of the atomic transition, and propagates inside of
the prism under an angle, θ , with respect to the interface of
the prism under vacuum. The propagation angle, θ , is selected
in such a way that the beam undergoes total internal reflec-
tion, i.e., it is greater than the critical angle, θ0 = arcsin(1/n),
which leads to the creation of an evanescent field at the surface
of the prism. The electromagnetic field, E(x, z, t ), propagates
in the x-z plane with an amplitude E0 and decays at the surface
in the positive z direction with a penetration depth d . This can
be written as E(x, z, t ) = tTE(θ )E0e−i[ωt−�(x)]e−z/d , with tTE

as the transmission coefficient, and the running phase �(x) as
shown in [38].

The interaction between the evanescent field and the atoms
in the condensate occurs via a dipole coupling, d · E(x, z),
where d is the electric dipole moment of the atoms. For
simplicity, we assume that both types of atoms have the same
dipole moment and consider the rotating wave approximation
for the dressed states of the atom when they interact with the
light field. From this dressed state, the vector potential can be

FIG. 3. (a) Artificial gauge field and (b) normalized magnetic
field B(z)/B0 is plotted as a function of the position z. The prism
is located at z = −20. The green dashed ( ) and red dot-
dashed ( ) lines correspond to an incident angle of θ −
θ0 = 8 × 10−4 rad and s = 10 and s = 20, respectively. The blue
dotted ( ) curve corresponds to θ − θ0 = 4 × 10−4 rad for
s = 20. The black line corresponds to our toy model AModel(z) =
−0.1[arctan ( z

β
) − π

2 ]/π , where β = 1.3.

calculated as follows [38]:

A(x, z) = nh̄k0

2

⎡
⎣1 − 1√

1 + ∣∣ κ (x,z)



∣∣2

⎤
⎦ sin θ x̂, (1)

where k0 is the amplitude of the wave vector k, 
 = ωL − ω

is the detuning of the laser light from the atomic resonance
frequency, and the parameter κ (x, z) = d · E(x, z)/h̄ indicates
the coupling between the electric field of the evanescent field
and the dipole of atoms. The magnetic field can be calculated
from the vector potential as B = ∇ × A [38]. Hereafter, we
work in the harmonic oscillator unit as x → x/a0, z → z/a0,
and t → tω, with a0 = √

h̄/mω.
A system that consists of a BEC cloud in the presence

of the evanescent field can be described via the mean-field
approach with the GPE as

i
∂φ

∂t
=

[
− 1

2
(∇ + iA)2 + Veff + g|φ|2

]
φ, (2)

where φ is the wave function of the BEC in the mean-field
description and g is the coupling coefficient. In the above
equation, all the parameters are scaled in harmonic oscillator
units [59]. Here, we consider that the effective Veff creates a
trap potential in the form of a ring.

In Fig. 3, we plot the artificial gauge field A and magnetic
field B(z) versus the position z for various detunings and also
two different incident angles. For simplicity, we consider that
the artificial gauge field of our model has the form

AModel(z) = −w0

[
arctan

(
z

β

)
− π

2

]
x̂, (3)

where w0 modulates the amplitude, and β is the steepness
of the magnetic field (β �= 0). This results in the magnetic
field |BModel(x, z)| = (βw0)/(z2 + β2). The field presented in
Eq. (1) reduces the number of parameters present in the ex-
perimentally realistic artificial gauge field while retaining its
main features. The two parameters, β and w0, can be used to
change the steepness as well as the amplitude.
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To understand how this inhomogeneous artificial gauge
field affects the BEC trapped in the ring potential, we in-
troduce the artificial gauge field AModel(z) from Eq. (3) into
the GPE, from Eq. (2), and solve the resulting equation
numerically.

We compare the thickness of the BEC with the healing
length to define two regimes for which the quasi-one- and
two-dimensional ring is able to sustain vortices or not. The
healing length is calculated by comparing the interaction
energy (ng) with the kinetic energy (n = |ψ |2) and consid-
ering a fixed value for a given system [60]. We also consider
|AModel(x, z)| = A(x, z) henceforth in the paper. However, for
a system that experiences an inhomogeneous artificial gauge
field, the spatial scale can be written as ξA = h̄

A(x,z)+√
2ng

(see
Appendix C for details). As the artificial gauge field is not
constant, the healing length is modified as the strength of the
gauge field changes. For this calculation, we take the maxi-
mum of the A field. In the limiting case where the strength
of the gauge field is zero, i.e., w0 = 0, the spatial scale leads
to the well-known equation ξ0 = h̄/

√
2ng, and for a strong

artificial gauge field the spatial scale of the healing length
is reduced. This means that vortices created by an inhomo-
geneous artificial gauge field will have a smaller vortex-core
size as compared to homogeneous artificial gauge fields, as the
typical length scale of the vortices is proportional to the local
healing length of the system. Therefore, there exists a compe-
tition between the size of the ring, which is fixed for a given
system, and the healing length ξA. The value of n for a trapped
BEC is replaced by the maximum of density n̄, namely, n ≈ n̄.
By numerical inspection, we find that vortices start to appear
whenever δr � 16

√
2ξA, with δr being the thickness of the

ring. The typical length scale of the vortex core in a BEC is
given by

√
2ξA. However, this does not give the true size of the

vortex core, which will also depend on the trapping and gauge
field applied. Therefore, this threshold gives an approximate
phenomenological value for which vortices appear in the bulk
(more details in Appendix D).

In the following, we study the current induced by an in-
homogeneous artificial magnetic field that changes along z in
the form of an arctangent [see Eq. (3)]. Herein, we address
how the angular momentum of this system changes as the
ring transitions from a one-dimensional ring, namely, a ring of
BEC with negligible thickness, into a two-dimensional ring,
i.e., a ring of BEC with substantial thickness. This has been
used to study the role of dimensionality and has also been
explored experimentally [61]. We also study how tilting the
trapping potential and adding a small asymmetry can result in
a different behavior of the angular momentum. In this work,
we mainly focus on artificial gauge fields with large gradients
and vary the amplitude (see Fig. 3) as it will highlight the
inhomogeneous effects of the artificial gauge field.

A. Global currents in quasi-1D ring

In this section, we present the results obtained from a BEC
in a narrow ring potential. The parameters of the ring trap have
been selected such that the BEC in the trap can be considered
a quasi-one-dimensional BEC.

The number of vortices is strongly related to the strength
of the artificial gauge field. In particular, by increasing the
strength of the magnetic field, invisible vortices appear in the

FIG. 4. Quantized regime for a quasi-1D ring. The angular mo-
mentum Ly of a narrow ring of the BEC is plotted with respect to
the strength of the artificial gauge field w0. The density plot of the
BEC is shown with the location of invisible vortices for (a) w0 = 0,
(b) w0 = 1.00, (c) w0 = 1.20, and (d) w0 = 1.35 with β = 1

8 . The
trapping potential has r0 = 6.5 and v0 = 5.66. All parameters are
given in harmonic oscillator units.

central region of the trapped BEC, inducing an angular mo-
mentum in a quantized manner. This can be observed through
the phase as a linearly increasing function from 0 to multiples
of 2π in the azimuthal direction.

In Fig. 4 (top row), we present the density of a ring of
BEC for various values of strengths of the artificial gauge
field (a) w0 = 0, (b) w0 = 1.00, (c) w0 = 1.20, and (d) w0 =
1.35 for the BEC with the coupling coefficient of g = 800.
We consider a ring trap which has the potential Vcircular =
1
2v2

0 (
√

x2 + z2 − r0)2. Figure 4(e) displays the angular mo-
mentum, Ly = (r × p)y = −ih̄(z∂x − x∂z ), versus the strength
of the artificial gauge field w0. Panel (a), where w0 = 0, does
not have any artificial gauge field, therefore presenting no
current in the ring. For a higher value of w0, although the
density plot does not change significantly, the presence of the
invisible vortices results in a change in the global current.
Here we show the location of the invisible vortices with dotted
circles. In panel (b), where w0 = 1.00, there exists just one
invisible vortex, which results in a global current with one
unit of angular momentum and azimuthal phase gradient of
2π . Due to the single-axis dependence of the artificial gauge
field, z, and the symmetry of the trapping potential, as the
strength of the gauge field increases, the number of invisible
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FIG. 5. Visible and invisible vortices. The density (left figure)
and phase (right figure) of the BEC trapped in a ring potential of
parameters v0 = 1.34, and radius of r0 = 6.5. The strength of the
gauge field is w0 = 1.5 with β = 1/8. The white dashes in the phase
plot show the position of the trap, and the black circles indicate the
locations of visible vortices.

vortices does not always occur in steps of one. To address this
symmetry effect, we consider elliptical ring traps with certain
tiltings (see Sec IV). For example, at w0 = 1.20 in panel (c),
we see that two invisible vortices come from left and right
into the system, as well as three invisible vortices which can
be detected from the phase plot with 6π . Finally, we note that,
as discussed above, for large values of ω0 the healing length
will be largely reduced and it is expected that vortices will
start to appear even for thin rings (which still retain some 2D
character).

B. Visible and invisible vortices in quasi-2D rings

In this section, we consider a wider potential (a ring po-
tential with thicker radius). As the thickness of the ring of the
BEC, δrring, is substantial as compared to the healing length ξ ,
the trap can hold visible vortices in it. As shown in Fig. 5, at a
high value of the gauge field, for example w0 = 1.50, visible
vortices appear in the BEC, in addition to invisible vortices
in the low density. The presence of the invisible vortices
here is the result of the inhomogeneous gauge field, which
is related to the phase plot. Note, however, that the presence
of the artificial gauge field redefines the probability current as
discussed in Appendix C.

In this regime of the trap thickness, two different types of
behavior of the angular momentum are observed: quantized
and linear regimes, as shown in Fig. 6. When increasing the
strength of the artificial gauge field, the system first presents
invisible vortices. However, on further increasing the artificial
gauge field, visible vortices start to appear in the high-density
regions of the BEC (see Fig. 6, at w0 = 0.8). For example,
in Fig. 6(c), there are five invisible vortices that can be found
through the phase profile of the BEC (as shown in Fig. 5).
Moreover, as the the strength of the gauge field increases, the
angular momentum Ly starts to increase linearly with respect
to the strength of the gauge field (see Fig. 6). It should be
noted that the same symmetry argument, discussed at the end
of the previous sections, can also be made here regarding the
increase in the two units of angular momentum.

This transition from a quantized angular momentum to a
linear regime can also be observed in harmonically trapped

FIG. 6. Quantized and linear regimes of a 2D ring. Density plot
of the BEC ground state in a ring of radius r0 = 6.5 that has a
gauge field strength of (a) w0 = 0, (b) w0 = 0.50, (c) w0 = 0.80,
and (d) w0 = 1.50 with β = 1/8 and v0 = 1.34. Panel (a) shows the
density of the ground state of the cloud of the BEC when there is
no artificial gauge field. As the strength of the gauge field increases,
at first the invisible vortices enter the system, as can be observed in
panel (b), and the angular momentum increases by quanta of one. In
panel (c), there are five invisible vortices in the BEC which lead to a
10π phase. Finally, in panel (d), visible vortices enter the BEC and
the angular momentum is 20π . (e) presents the angular momentum
of Ly with respect to the strength of the artificial gauge field w0.
This plot shows both quantized and linear regimes of the angular
momentum. For comparison, please refer to the angular momentum
plot of the harmonic trap in Fig. 8, as it exhibits the same behavior.

BECs (see Fig. 8 in the Appendix). This effect originates in
the inhomogeneity of the artificial gauge field rather than the
geometry of the trapping potential. In the case of ring traps,
we estimate that this linear behavior starts to appear whenever
the thickness of the ring of BEC, δr, is comparable with the
healing length, ξA. Therefore, vortices start to appear in the
bulk, and the healing length is substantially affected by the
artificial gauge field. In the harmonic trap, however, vortices
start to appear at smaller values of w0 (see Appendix A)
in the high-density region (center of the trap), and thus, the
linearization of Ly also occurs sooner. In our simulation, the
maximum density of the ground state for the harmonic trap
considered in Appendix A is n̄ = 4.4 × 10−3, in natural units
(h̄ = m = 1) with interaction strength of g = 800; in the case
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FIG. 7. Symmetry breaking of angular momentum. We plot the
angular momentum of an elliptical ring versus ω0, as shown in Eq. (4)
with η = 0.9, r0 = 6.5, γ = π/2, and v0 = 4. The elliptical ring has
semiminor and semimajor axes of (1,1.5), plotted for various angles:
(a) α = 0, (b) α = π/4, and (c) α = π/2. All parameters are given
in harmonic oscillator units.

FIG. 8. Harmonic oscillator. Panels (a)–(d) show the density plot
of a BEC trapped in a harmonic potential Vharmonic = 1

2 v2
0 (x2 + z2).

The artificial gauge field has the same value as Fig. 6 with v0 = 0.22.
The strength of the gauge field is (a) w0 = 0, (b) w0 = 0.40, (c) w0 =
1.00, and (d) w0 = 1.50. In plot (e) the angular momentum Ly is
plotted with respect to the gauge field strength, w0. All parameters
are given in harmonic oscillator units.

of the ring trap, we have n̄ = 7.9 × 10−3, and consequently,
ξ0,ring ≈ 0.28.

IV. SYMMETRY BREAKING IN THE ELLIPTICAL
RING TRAP

We have mentioned in Sec. III B that the system is highly
sensitive to the symmetries of the ring and artificial gauge
field. Therefore, in this section we analyze how a small
asymmetry in the trapping potential can affect measurable
quantities such as the angular momentum. Instead of con-
sidering a perfect circular ring, we consider a more realistic
situation with a slightly deformed elliptical ring.

In particular, we look at the response of the angular mo-
mentum to different tilting angles of the major axis of an
elliptical trap and compare it with the circular case. Moreover,
for completeness, we also compare this with a homogeneous
gauge field that represents a global rotation in Appendix C.

For an ellipse with a semimajor axis a and semiminor
axis b, the equation is given by x2/a2 + z2/b2 = 1, where the
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eccentricity of the ellipse is e =
√

1 − a2/b2. By changing the
eccentricity e of the ring trap from a circle with e = 1 to an
elliptical trap with e < 1 and then tilting the major axis, one
can observe that the angular momentum of the system changes
as the tilting changes. In order to take into consideration the
tilting of the ellipse with respect to the x coordinate, we
replace x by x cos γ and y by y sin γ , and the potential thus
becomes

Velliptical(x, z) = v2
0

2

(
η

√
x2

a2
cos2 γ + z2

b2
sin2 γ − r2

0

)
. (4)

Figure 7 shows that the angular momentum of a BEC confined
in a tight elliptical trap is considerably affected by the change
in the axial trap with respect to the high-density line of the
magnetic field. In each figure, the angular momentum of the
elliptical ring BEC with eccentricity e = 0.745 (a = 1, b =
1.5) is plotted for (a) the tilting angle α = 0, (b) α = π/4,
and (c) α = π/2 with η = 0.9, r0 = 6.5, and γ = π/2. We
show that, for elliptical traps, the angular momentum does
not present flattop steps, but has a linear dependence on the
artificial magnetic field with a slope that depends on the tilting
angle of the ellipse α. (See Figure 4 for comparison, as the
angular momentum in the quantized regime increases by an
integer number.)

In this figure, we observe that the angular momentum does
not always increase in a quantized manner. It also does not
increase linearly with respect to the increase in the strength
of the artificial gauge field, in which it depends on ellipticity
and the angle of tilting of the trapping potential with respect
to inhomogeneous artificial gauge field (Fig. 8).

For instance, as shown in Fig. 7(a), the angular momentum
steps of the elliptical trap with a tilting angle of α = 0, in
comparison with the circular flat steps, decreases linearly as
the strength of the artificial gauge field increases. However,
for α = π/2, the situation is opposite, as w0 increases the
“plateaus” displayed by the angular moment increase linearly
again. All this occurs while the angular momentum presents
quantizedlike jumps of total angular momentum Ly. We also
note that, for a tilting angle of α = π/4, the angular moment
of the elliptical ring of the BEC exhibits the same behavior
as that observed for the circular potential with almost flat
plateaus.

Quite interestingly, such behavior is not observed in the
case of homogeneous artificial gauge fields such as rotations
(see Appendix A). Owing to the quantized circulation of
superfluids and the continuity of the wave function, it can
be expected that the angular momentum does not depend on
the particular path being enclosed. Furthermore, for global
rotations, the current appears to be independent of the tilting
angle of the ellipse. Thus, we conclude that, again, there is a
sensitivity to the symmetries produced by the inhomogeneous
gauge field in the elliptical ring trap (see discussion on the
closed path integral in Appendix B).

V. SUMMARY AND CONCLUSIONS

We showed how a position-dependent artificial gauge field
has a different impact on cold atomic gases in comparison
to the case of homogeneous rotation [26,28–33]. In our sys-

tem, this difference between rotation and artificial gauge field
appears as local rotations in addition to persistent currents
(global rotation) simultaneously.

We investigated the behavior of the ground state of the
BEC, which is trapped in a ring-shaped potential at the vicin-
ity of a dielectric prism [38]. An artificial magnetic field is
produced due to the interaction between the cold atomic gases
and the evanescent field that emerges at the interface between
the prism and vacuum area when the laser beam undergoes
total internal reflection. As the system has sufficient degrees
of freedom, we monitor the formation of invisible and visible
vortices [28,44–48] by varying the strength of the gauge field.
The position-dependent artificial magnetic field introduces a
local angular momentum into the system, which results in the
inhomogeneous formation of vortex structures in the BEC.
This leads to the creation of vortices arranged in a single-line
structure in the BEC which is aligned along the surface of the
prism. The number and location of the vortices depend on the
detuning, strength of the field, and the incident angle of the
input laser beam.

Our study combines two phenomena: (i) a new kind of
gauge fields, inhomogeneous artificial ones, that are currently
under investigation experimentally in cold atom systems
[49–51], producing inhomogeneous arrangements of vortices,
and (ii) the superfluidity of BECs in toroidal traps, which have
driven a lot of research in recent decades [18,19,23,56–58,62].
As such, our work can open new avenues to investigate the
fundamental properties of vortices in 1D and 2D systems. For
example, one can consider more complex artificial gauge field
configurations, which as we have shown, can lead to peculiar
combinations of local and global currents in the BEC. This in
turn can also be used to detect or measure the actual position
dependence of the artificial gauge field, by looking at the
rotation or the vortices created in the bulk of the system. An-
other interesting approach would be to study the dynamics of
this system and the interplay of visible and invisible vortices
during time evolution. In particular, the nonlinear behavior
of quantum systems that have rotation and vortices can lead
to phenomena such as quantum turbulence [11,46,63]. The
study of such effects in combination with our proposal, where
vortices are formed in a linear structure, can lead to new
dynamics.
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APPENDIX A: HARMONIC TRAP

We plot the density of the ground state of the BEC which
is trapped in a harmonic potential as well as the change in
the angular momentum with respect to the artificial gauge
field strength. We use the harmonic potential to show that
the transition from the step to the linear regime that has been
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FIG. 9. Global current. Angular momentum Ly as a function of
the induced rotation, �, for different values of the angle of the ellipse
in a potential [see Eq. (4)]. Parameters of the 2D GPE are g = 120,
V0 = 15, and a/b = √

1.5, a = 25, and length scale of L = 30. For
the circular ring we choose a radius of r ≈ 5.36. All parameters are
given in harmonic oscillator units.

observed in Fig. 6 also occurs in the harmonic potential, and
consequently, it is not a result of the shape of the potential. We
observe a similar pattern of change in angular momentum as
the amplitude of the gauge field, w0, increases; at the begin-
ning, the angular momentum of the system increases in steps
and after a certain increase in the gauge field (w0 ≈ 0.50), it
enters the linear regime. Furthermore, the healing length is
ξ0 ≈ 0.38, and decreases as the strength of the gauge field
increases.

The two distinguished regimes, i.e., quantized and linear,
for the angular momentum resulting from the fact that the
amount of angular moment added by one vortex depends not
only on the number of vortices but also their size, as the size
of the vortices is reduced as the strength of the gauge field
increases. In other words, as the strength of angular momen-
tum increases, the healing length reduces; consequently the
amount of angular momentum that is added by one vortex to
the BEC changes (see also Appendix C).

APPENDIX B: GLOBAL INDUCED ROTATION

In this section, we investigate the effects of a global rota-
tion, �, on an elliptical ring trap potential. We compare these
results with the ones obtained in the main text (see Fig. 7). In
particular, we consider a GPE of the following form:

i
∂φ

∂t
=

[
− 1

2
∇2 + Veff(x, z) + g|φ|2 − �Ly

]
φ. (B1)

We note that, in Fig. 9, all the curves collapse; thus, there is
no difference between the various angles of the ellipse. We
also add a circular trap for comparison; however, this has a
different radius, which produces a small displacement of the
critical value that induces a current into the system. See [64]

TABLE I. Analytical calculation of the thickness of the BEC
using the Thomas-Fermi approximation and a comparison with the
threshold 16

√
2ξA, also calculated analytically by including the field

A in which vortices start to appear.

ω0 v0 δr 16
√

2ξA

0.60 0.25 7.78 6.76
0.65 0.35 6.95 6.36
0.70 0.50 6.17 5.98
0.75 0.70 5.52 5.64
0.90 0.85 5.17 5.30

for an example of the experimental realization of the plateaus
of the current obtained in circular rings.

APPENDIX C: CONTINUITY EQUATION

From the Schrödinger equation one can obtain the con-
tinuity equation ∂n

∂t + ∇ · j = 0, with probability current
of j = n(x, z; t ) h̄

m ∇S(r, t ), where n = ψ∗ψ , is the density
of the gas, and S is the phase of the wave function,
ψ (r, t ) = √

n(r, t )eiS(x,z;t ) [5]. For the inhomogeneous case,
the equation that governs the system is obtained from a Gross-
Pitaevskii equation and contains a term with an extra spatial
dependence from the artificial gauge field [see Eq. (2)]. This
leads us to the following equation:

∂n

∂t
= i

2
[φ∗∇2φ − φ∇2φ∗

+ 2i(∇ · A|φ|2 + φ∗A · ∇φ + φA · ∇φ∗)], (C1)

where j = i
2 [φ∗∇φ − φ∇φ∗ + 2iφ∗Aφ].

In the absence of an inhomogeneous gauge field, by inte-
gration over the above equation, we obtain

∮ ∇S · dl = 2πq,
where q is an integer number. However, the presence of an in-
homogeneous artificial gauge field (A �= 0) would prevent us
from easily writing Eq. (C1) in a compact form as ∇ · A �= 0.

FIG. 10. Density for fixed ω0. Density cuts of the full density
displaying the vortices along the radial direction. Insets show two
corresponding full density images. Parameters of the system are g =
800 and w0 = 0.65, fixed for all curves.
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FIG. 11. Density for fixed v0. Density cuts of the full density,
displaying the transition from having no vortices to having vortices in
the bulk. We compare the full density to the analytical Thomas-Fermi
approximation. Parameters of the system are g = 800, and fixed v0 =
0.25 with a potential given by v0(r − r0)2 and r0 = 6.5 for all curves.
All parameters are given in harmonic oscillator units.

For our toy model,

∇ · A = −w0

β

1

(1 + z2/β2)
. (C2)

this would prevent us from presenting the integral from of
probability current equation in a compact form. This equa-
tion can be used to explain why, in the elliptical case, the
integral depends on the path for the inhomogeneous gauge
field. It also indirectly explains how the position-dependent
gauge field can affect the value of the angular momentum of a
vortex added to the cold gas.

APPENDIX D: VORTICES INSIDE THE BEC BULK

In this section we briefly describe how the relation δr �
16

√
2ξA is found, with δr being the thickness of the BEC in

the ring and ξA being the healing length.
We study the problem numerically and take

√
2ξA as the

typical vortex core length scale. However, note that this is

not the true size of the vortex core, but only a length scale.

FIG. 12. Various trapping strengths. Angular momentum Ly vs
the strength of the gauge field, w0, for different values of the potential
v0. Parameters of the system are g = 800.

Therefore, we numerically calculate the prefactor at which
vortices start to appear in the BEC bulk.

Using the Thomas-Fermi (TF) approximation, we find that
for a trap of v0(r − r0)2 and interactions g, the Thomas-Fermi
radius reads RTF − r0 = ±1/2(3/π )1/3[g/(r0v0)]2/6. Within
the same approach, we also calculate the maximum density in
the absence of w0 to estimate the healing length. The results
are presented in Table I. As we can see, these results give us
a relatively good estimate for the appearance of vortices, but
due to the symmetry of the system, small perturbations can
lead to slight differences.

From Fig. 10 and Fig. 11 we can observe how the presence
of a vortex inside the density bulk of the BEC creates a density
minimum surrounded by two density maximums. This can be
used to explain the reason why the prefactor is much larger
than simply the vortex core size.

In Fiq. 12, we plotted the angular momentum, Ly, with
respect to strength of gauge field, w0, as the thickness of the
ring changes v0.
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