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We propose a method to generate entanglement measures systematically by using the irreducible decompo-
sition of some copies of a state under the local unitary �LU� transformations. It is applicable to general
multipartite systems. We show that there are entanglement monotones corresponding to singlet representations
of the LU group. They can be evaluated efficiently in an algebraic way, and experimentally measurable by local
projective measurements of the copies of the state. Nonsinglet representations are also shown to be useful to
classify entanglement. Our method reproduces many well-known measures in a unified way.
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I. INTRODUCTION

Entanglement is one of the most striking features of quan-
tum mechanics, and considered to be the key resource for
quantum-information processing. In spite of the intensive
study in the last decade, description and quantification of
multipartite entanglement is still a challenging problem. A
single quantity is not enough to characterize entanglement
of multipartite states, since there can be qualitatively differ-
ent quantum correlations. �A famous example is the
Greenberger-Horne-Zeillinger �GHZ� state and W states in a
3-qubit system �1�.� Therefore we need more than one mea-
sure to classify multipartite entanglement, and the number of
the necessary measures grows rapidly as the number of par-
ties increases.

An important requirement for entanglement measure is to
be entanglement monotone, i.e., nonincreasing under sto-
chastic local operations and classical communication
�SLOCC�. So far, constructions of entanglement monotones
have been made mostly in heuristic ways using specific fea-
tures of the system under consideration. To the best of the
author’s knowledge, the only method of construction of en-
tanglement monotones which is applicable to general multi-
partite system is the hyperdeterminant �2�. However, we can
make only one entanglement monotone for a system from the
hyperdeterminant. Furthermore, the polynomial degree of the
hyperdeterminant grows very fast as the number of the par-
ties increases, which makes it difficult to write down its ex-
plicit form. Therefore we need a method to generate many
entanglement monotones for an arbitrary multipartite system,
hopefully in a systematic and efficient way.

In this paper, we propose a method which satisfies all
these requirements. We consider q copies of a state ���q�,
where q is an arbitrary positive integer, and decompose it
into irreducible components under the LU group. Then the
norm of an irreducible component can be regarded as a mea-
sure of entanglement. Its explicit form is given by the
Clebsch-Gordan coefficients of the LU group and the expan-
sion coefficients of the given state. Our method enables us to
make a list of all algebraic invariants of the LU group of a
given order.

Irreducible decomposition of ���q� was first introduced in
�3� in the context of algebraic evaluation of the moments of
the generalized Husimi distribution. Our method can be re-
garded as a generalization of the definition of the concur-
rence for multipartite systems in �4�, in which irreducible
decomposition of ���2� was considered. Our method also
includes the construction of entanglement monotones for
multiqubit states in �5� with use of expectation values of
antilinear operators. The expectation value of an antilinear
operator A is written as �A�= �� �LC ���, where L is a linear
operator and C is the complex conjugation. If we expand the
state as ���=� jcj � j�, the expectation value can be written
explicitly as �i,j =Li,jci

*c
j
*, where Li,j = �i �L � j�. Then �A�*

=�i,jLi,jcicj is considered as a linear map from ���2� to a
complex number. Therefore if ��A�� is invariant under the LU
group, it must be obtained from a singlet component of ���2�
�6�.

The purpose of this paper is to show that our group the-
oretical method gives a quite general and unified point of
view for multipartite entanglement measures. Therefore, in
the following, we concentrate mainly on describing the gen-
eral theory and deriving well-known existing measures from
our method. Analysis of complicated entanglement in spe-
cific systems will be reported elsewhere.

II. DESCRIPTION OF THE GENERAL METHOD

First we describe our method as generally as possible. Let
us consider an m-partite system with Ni states for ith party.
The LU group of this system is SU�N1�
�SU�N2�� ¯ �SU�Nm�. Since an irreducible representa-
tion �irrep� of a special unitary group is specified by its high-
est weight �7�, we denote an irrep with the highest weight �
by R�. Then an irreducible representation of the LU group
can be written as R�1

� R�2
� ¯ � R�m

, where R�i
is the irre-

ducible representation of SU�Ni� with the highest weight �i.
We denote this representation by R�, where the bold symbol
�	��1 ,�2 , . . . ,�m� represents the set of the highest weights.
A purestate ��� in this system is in the defining representa-
tion of the LU group, which is denoted by Re. Here, e
	�e1 ,e2 , . . . ,em�, and ei is the highest weight of the defining
representation of SU�Ni�. Explicit form of the highest weight
depends on the choice of the basis of the Lie algebra. For*sugita@a-phys.eng.osaka-cu.ac.jp
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example, in the convention of Ref. �7�, ei

= � 1
2 , 1

2
3
, . . . , 1


2m�m+1� , . . . , 1

2�Ni−1�Ni

�.
Then we consider q copies of a state ���q�	����q. Since

Re
�q is reducible for q�2, we can decompose it into irreduc-

ible components as

Re
�q = ��R��

. �1�

���q� is decomposed correspondingly as

���q� = �
�

P��
���q� , �2�

where P��
	 P��,1

� ¯ � P��,m
is the projection operator to

the representation space of R��
. Among the irreducible com-

ponents, there is always a unique component with the “maxi-
mum” highest weight qe= �qe1 , . . . ,qem�. It has been shown
in �8� that ���q��Rqe iff ��� is not entangled. Therefore, for
q�2, we can conclude that

��� is unentangled ⇔ �Pqe���q�� = 1

assuming ��� is normalized, and

��� is unentangled ⇒ P��
���q� = 0

for ���qe.
It has been shown that �Pqe ���q��2 is the qth moment of a

generalized Husimi distribution up to a constant multiplier
�3,8�, and the Rényi subentropy defined from the moment is
an entanglement monotone for N�N bipartite systems �9�.

�P��
���q�� with ���qe is also a good candidate measure

of entanglement since it is invariant under LU transforma-
tions and vanishes for unentangled states. Singlet represen-
tations, which have the “minimum” highest weight ��=0
	�0, . . .0�, are of particular interest. �Note that 0 within the
bracket is not a number, but the zero weight vector.� Actually
we can show that �P��=0 ���q��1/q is an entanglement mono-
tone.

Proof of monotonicity. We use a theorem proved in �10�
which claims that a linearly homogeneous positive function
of a pure state that remains invariant under determinant 1
SLOCC operations is an entanglement monotone. Since it is
obvious that �P��=0 ���q��1/q is linearly homogeneous and
positive, what we have to show is its invariance under the
SLOCC group SL�N1 ,C�� ¯ �SL�Nm ,C�.

If we consider a singlet representation R�=0 of SU�N�, it is
obvious that T ���=0 for any T�su�N� and ����R�=0,
where the fracture letters denote the Lie algebra of the cor-
responding Lie group. Since sl�N ,C� is obtained as the com-
plexification of su�N�, i.e., the set of linear combinations of
its elements with complex coefficients, T ���=0 holds also
for ∀ T�sl�N ,C�. Therefore an element of the singlet rep-
resentation of SU�N� is also invariant under SL�N ,C�. In the
same way, P��=0 ���q� is shown to be invariant under
SL�N1 ,C�� ¯ �SL�Nm ,C�.

III. 2-QUBIT CASE

Let us consider a 2-qubit system to see how our general
theory works. A qubit is in the defining �spin 1/2� represen-

tation of SU�2�, which is R1/2 in our notation. Note that the
highest weight is the total spin quantum number in this case.
In general, the tensor product of two irreducible representa-
tions of SU�2� is decomposed as Rm � Rn=Rm+n � Rm+n−1
� ¯ � R�m−n�.

In the simplest case q=2, two copies of a qubit is decom-
posed into a triplet R1 and a singlet R0. Hereafter we arrange
the tensor product to represent copies of a quantum state
vertically in order to distinguish it from the tensor product to
represent multipartite states. Then the irreducible decompo-
sition of the two copies of a qubit can be written as

R1/2
�2 =

R1/2

�

R1/2

= R1 � R0. �3�

Since a 2-qubit state is in the representation R1/2 � R1/2, two
copies of a 2-qubit state is decomposed as

�R1/2 � R1/2�
�

�R1/2 � R1/2�
= �R1/2

�

R1/2
� � �R1/2

�

R1/2
� �4�

=�R1 � R0� � �R1 � R0� �5�

=R1 � R1 � R1 � R0 � R0 � R1 � R0 � R0.

�6�

Here, R1 � R0 and R0 � R1 are antisymmetric with respect to
the exchange of the two copies, because R1 is symmetric and
R0 is antisymmetric. Since ���2� is symmetric, P1
� P0 ���2� and P0 � P1 ���2� vanish identically. Hence the
irreducible decomposition of the two copies of a 2-qubit state
is

���2� = P1 � P1���2� + P0 � P0���2� . �7�

The squared norm of the first term is the second moment of
the generalized Husimi distribution �3,11� up to a constant
multiplier. The second term is the projection to the singlet
representation R0 � R0. Hence the square root of its norm is
an entanglement monotone.

Let us derive the explicit form of P0 � P0 ���2�. The basis
vector of the second order singlet R0 is

�s2� 	
1

2

�0

1
� − �1

0
�� �8�

=
�ij


2
� i

j
� , �9�

where �ij is the completely antisymmetric tensor. Note that
the Einstein summation convention is used and the indices
take on the values 0 or 1. Then the basis vector of R0 � R0 is

�s2� � �s2� �10�

=
1

2
�i11i21

�i12i22
�i11 i12

i21 i22
� �11�
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=
1

2
�0 0

1 1
� + �1 1

0 0
� − �0 1

1 0
� − �1 0

0 1
�� . �12�

Note that the set of indices �ijk� forms a q�m matrix in
general. We expand the state ��� in the standard basis as
���=cij � ij�. Then

���2� =

cij�ij�
�

ckl�kl�
�13�

=ci11i12
ci21i22

�i11 i12

i21 i22
� . �14�

Therefore

�P0 � P0���2�� = ���s2� � �s2�����2�� �15�

=
1

2
��i11i21

�i12i22
ci11i12

ci21i22
� �16�

= �c11c00 − c10c01� . �17�

This is the concurrence for pure states except for a factor of
two.

IV. 3-QUBIT CASE

Next we consider a 3-qubit system. For q=2, we have a
singlet �s2� � �s2� � �s2� but this is antisymmetric with respect
to the exchange of the two copies. Therefore the projection
of ���2�, where ��� is a 3-qubit state, to this component
vanishes identically.

Then we have to consider larger q to find nontrivial en-
tanglement monotones. Since it is impossible to make a sin-
glet from three copies a qubit, the next candidate is q=4. In
this case, the irreducible decomposition is

R1/2
�4 = �R1 � R0��2 = R2 � 3R1 � 2R0. �18�

Therefore we can make two different singlets. One is in-
cluded in the combination of the two triplets R1

�2=R2 � R1
� R0. Its explicit form is

�s4,a� 	
1

2
3�2�
0

0

1

1
� + 2�

1

1

0

0
� − �

0

1

0

1
�

− �
1

0

1

0
� − �

0

1

1

0
� − �

1

0

0

1
�� �19�

=dijkl�
i

j

k

l
� , �20�

where

dijkl 	�
1

3

��ijkl� = �1100�,�0011��

−
1

2
3
��ijkl� = �1010�,�0101�,�1001�,�0110��

0 else

.

�21�

The other singlet is �s4,b�	�s2��2, i.e., two copies of the sec-
ond order singlet �s2�. It can be written explicitly as

�s4,b� =
1

2
�ij�kl�

i

j

k

l
� �22�

=
1

2��
0

1

0

1
� + �

1

0

1

0
� − �

0

1

1

0
� − �

1

0

0

1
�� . �23�

We can make entanglement monotones by using these sin-
glets. For example, �s4,a� � �s4,a� � �s4,a� is represented as

�s4,a� � �s4,a� � �s4,a�

= di11i21i31i41
di12i22i32i42

di13i23i33i43�
i11 i12 i13

i21 i22 i23

i31 i32 i33

i41 i42 i43

� ,

�24�

and

���4� = ci11i12i13
ci21i22i23

ci31i32i33
ci41i42i43�

i11 i12 i13

i21 i22 i23

i31 i32 i33

i41 i42 i43

� ,

�25�

where ���=cijk � ijk� is a 3-qubit state. Then we obtain

���s4,a� � �s4,a� � �s4,a�����4�� �26�

= �di11i21i31i41
di12i22i32i42

di13i23i33i43

�ci11i12i13
ci21i22i23

ci31i32i33
ci41i42i43

� . �27�

By explicit calculation it is shown to be
�3

8
3
, where �3 is the

3-tangle �12�.
There are other fourth order singlets: �s4,b� � �s4,a� � �s4,a�,

�s4,b� � �s4,b� � �s4,a�, �s4,b� � �s4,b� � �s4,b� and their permuta-
tions. However, we have to use singlets with even number of
�s4,b�, since �s4,b� is antisymmetric with respect to the ex-
change of a pair of copies of ���. Therefore we use �s4,b�
� �s4,b� � �s4,a�, and obtain
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��s4,b� � �s4,b� � �s4,a�����4� �28�

=
1

4
��i11i21

�i31i41
�i12i22

�i32i42
di13i23i33i43

�ci11i12i13
ci21i22i23

ci31i32i33
ci41i42i43

� �29�

=
�3

8
3
. �30�

Considering the permutation symmetry of �3, we see that �3
is the only fourth-order invariant polynomial in the 3-qubit
case.

It is possible to choose another basis for the fourth order
singlets. For example, let us make two second order singlets
by combining the first and third copies, and the second and
the fourth ones. By putting together the two second order
singlets we obtain another fourth order singlet

�s4,c� 	
1

2
�ik� jl�

i

j

k

l
� �31�

=
1

2��
0

0

1

1
� + �

1

1

0

0
� − �

1

0

0

1
� − �

0

1

1

0
�� . �32�

It is linearly dependent on �s4,a� and �s4,b�: �s4,c�=

3
2 �s4,a�

+ 1
2 �s4,b�. Therefore it does not give any new measure, but it

gives new expressions for �3. For example,

��s4,b� � �s4,b� � �s4,c�����4� �33�

=
1

8
��i11i21

�i31i41
�i12i22

�i32i42
�i13i33

�i23i43

�ci11i12i13
ci21i22i23

ci31i32i33
ci41i42i43

� �34�

=
�3

16
�35�

is the original form of the 3-tangle given in �12�.

V. OTHER CASES

We can construct entanglement monotones for multiqubit
systems in the same way. The simplest singlet is �s2� � ¯

� �s2�. The corresponding entanglement measure is

1

2m/2 ��i11i21
�i12i22

. . . �i1mi2m
ci11i12. . .i1m

ci21i22. . .i2m
� , �36�

which is a generalization of the concurrence. Although this
second order measure vanishes identically for odd m, we can
construct fourth order measures using �s4,a� and �s4,b�. For
example, the measure corresponding to �s4,a� � ¯ � �s4,a� is

�di11i21i31i41
. . . di1mi2mi3mi4m

ci11. . .i1m
ci21. . .i2m

ci31. . .i3m
ci41. . .i4m

� ,

�37�

which is a natural generalization of the 3-tangle. It vanishes
for the m-qubit W state �Wm�, since �Wm��4 is an eigenstate of
the z component of the total spin with eigenvalue 2m, and
hence has no singlet component. For the m-qubit GHZ state,
it takes the value �2m+1+4�−1�m� / �2
3�m. Unlike the 3-qubit
case, there are many other fourth order invariants for m�4.

It is also possible to construct entanglement measures for
multilevel systems. As a simple example, let us consider a
pair of qutrits. The simplest SU�3� singlet which can be con-
structed from qutrits is the third order completely antisym-
metric state

�s3� 	
1

6

�ijk� i

j

k
� . �38�

Note that the indices take on one of the three values 0, 1, and
2 in this case. Then the measure corresponding to �s3� � �s3�
is

1

6
��i11i21i31

�i12i22i32
ci11i12

ci21i22
ci31i32

� . �39�

This is equal to �det C�, where C	�cij� is a 3�3 matrix. It is
obvious how to generalize this measure to a N�N system.

In general, a singlet representation of SU�N� can be con-
structed from kN defining representations, where k�1 is an
integer. For k=1, the completely antisymmetric representa-
tion is the only singlet. There are many singlets for k�2. For
example, there are three sixth order singlets for SU�3�.

VI. NONSINGLET REPRESENTATIONS

A representation whose highest weight is neither “maxi-
mum” nor “minimum” �i.e., ���qe ,0� also seems useful to
classify entanglement, since the projection thereto vanishes
for nonentangled states. We do not know if its norm �or some
function thereof� is an entanglement monotone or not. We
cannot apply our previous proof of monotonicity in this case
because the SLOCC group does not preserve the norm and
hence �P��

���q�� is not an invariant of that group unless
��=0. We can, however, show that if P��

���q��0 and
P��

���q�=0, ��� and ��� does not belong to the same
SLOCC class. The point is that an irrep R��

of the LU group
is also an irrep of the SLOCC group, since the Lie algebra of
the SLOCC group is the complexification of the Lie algebra
of the LU group. Therefore gP��

���q�= P��
�g �����q�R��

for any g in the SLOCC group, and if P��
���q��0,

P��
�g �����q�0 because g is invertible. Hence there is no g

in the SLOCC group such that g ���= ���.
Let us consider two copies of a state in a N1� ¯ �Nm

multipartite system as an example. Two copies of a defining
representation of SU�Ni� is decomposed into symmetric and
antisymmetric irreducible components. We denote the pro-
jection operators for the symmetric and antisymmetric com-
ponents by P+,i and P−,i, respectively. The norm of an irre-
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ducible component �Ps1,1 � ¯ � Psm,m ���2� � �sj = 	 � is the
generalized concurrence defined in �4�. For example, for the
3-qubit case �3�

�P−,1 � P−,2 � P+,3���2��2 =
1

4
CAB

2 +
1

8
�3. �40�

Here, CAB is the concurrence �13� for the first and the second
qubits.

VII. EXPERIMENTAL OBSERVATION

Since an irrep of the LU group can be written in the
product form R�1

� ¯ � R�m
, the projection operator thereto

can also be written as the tensor product of local projection
operators P�= P�1

� ¯ � P�m
�14�. Therefore the value of

our measure can be determined by local projective measure-
ments of some copies of the state. Note that a recently pro-
posed scheme for experimental determination of the SLOCC
class of a 3-qubit state �15� is easily obtained from our
method using Eqs. �35� and �40�.

VIII. CONCLUSION AND REMARKS

In this paper, we have considered irreducible decomposi-
tion of q copies of a quantum state ���q� with respect to the
LU group, and shown that the norm of the projection to an
irreducible component can be a good measure of entangle-
ment. The irreps can be classified into three types: �A� irrep
with the “maximum” highest weight, �B� irrep with the
“minimum” highest weight �singlet�, �C� others. If the state
��� is unentangled, ���q� is in the type A irrep. Therefore
projections to type B and type C components vanish. We
have shown that an entanglement monotone is obtained from

the projection to a type B component. We have also shown
that the projection to a type C component is useful for
SLOCC classification of entanglement.

A remaining problem of our method is that independent
irreducible components do not necessarily give independent
measures. For example, there are many �actually 23=8�
independent fourth order singlets in the 3-qubit case, but the
3-tangle is the only measure obtained from them. It happens
because we do not take into account the permutation sym-
metry of the copies of a quantum state; since ���q� is com-
pletely symmetric with respect to permutations of the copies,
only completely symmetric irreducible components survive
after projection. It means that we should consider irreducible
decomposition not only under the local unitary group, but
also under the permutation group of the copies. Progress in
this direction will be reported in the forthcoming paper �16�.
The permutation group of the parties also would be useful.
We hope extensive use of the group theory would provide
insight into the nature of multipartite entanglement.

Another important problem is to generalize our method
from pure to mixed states. We can formally define an en-
tanglement measure for mixed states E�
� from that for pure
states E����� via the convex roof construction �17,18�

E�
� = min�
i

piE���i��, 
 = �
i

pi��i���i� . �41�

Although it is in general difficult to find the set �pi� which
gives the minimum value, the group theoretical nature of our
method and the projection operator form of the measures
could help in solving this problem.
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