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Improved Rellich type inequalities inRN

Megumi Sano and Futoshi Takahashi

1 Introduction

Let N ≥ 2,1≤ p< N, and letΩ be a bounded domain inRN with 0 ∈ Ω, orΩ = RN.
The classical Hardy inequality∫

Ω
|∇u|pdx≥

(
N− p

p

)p∫
Ω

|u|p
|x|p dx (1)

holds for all u ∈ W1,p
0 (Ω), or u ∈ D1,p(RN) whenΩ = RN. Here W1,p

0 (Ω) (resp.
D1,p(RN)) is the completion ofC∞0 (Ω) (resp.C∞0 (RN)) with respect to the norm

∥∇·∥Lp(Ω) (resp.∥∇·∥Lp(RN)). It is known that for 1< p<N, the best constant (N−p
p )p

is never attained inW1,p
0 (Ω), or inD1,p(RN). Therefore, one can expect the existence

of remainder terms on the right-hand side of the inequality (1). Indeed, there are
many papers that deal with remainder terms for (1) whenΩ is a smooth bounded
domain (see [1], [8], [9], [12], [13], [21], to name a few). For example, Brezis and
Vázquez [8] show that the inequality∫

Ω
|∇u|2dx≥

(
N−2

2

)2∫
Ω

|u|2
|x|2

dx+z2
0

(
ωN

|Ω|

) 2
N
∫
Ω
|u|2dx (2)

holds true for allu ∈W1,2
0 (Ω) wherez0 = 2.4048· · · is the first zero of the Bessel

function of the first kind.
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On the other hand, whenΩ = RN, the remainder term in (2) becomes trivial and
does not provide better inequality than the classical one. More generally, Ghoussoub
and Moradifam [14] show that there is no strictly positiveV ∈C1((0,+∞)) such that
the inequality∫

RN
|∇u|2dx≥

(
N−2

2

)2∫
RN

|u|2
|x|2

dx+
∫
RN

V(|x|)|u|2dx

holds for allu ∈W1,2(RN). One of the reasons of it is the lack of the Poincaré in-
equality:∥∇u∥L2(Ω) ≥C∥u∥L2(Ω) whenΩ = RN. Although there is a result of refining
the Hardy type inequality on the whole space (see Maz’ya’s book [18], pp. 139,
Corollary 3.), we cannot expect the same type of remainder terms as in (2) on the
whole space.

In spite of this fact, the authors of the present paper recently showed the following
result [23] : Let 2≤ p < N andq > 2. Setα = α(p,q,N) = N

2 (q−2)− pq
2 +2. Then

there existsD = D(p,q,N) > 0 such that the inequality

∫
RN
|∇u|pdx≥

(
N− p

p

)p∫
RN

|u|p
|x|p dx+D


∫
RN |u#|

pq
2 |x|αdx∫

RN |u#|p|x|2−p
dx


2

q−2

(3)

holds for allu ∈W1,p(RN), u. 0. Hereu# denotes the Schwartz symmetrization of
a functionu onRN:

u#(x) = u#(|x|) = inf

{
λ > 0

∣∣∣∣∣∣ ∣∣∣{x ∈ RN | |u(x)| > λ}
∣∣∣ ≤ |B|x|(0)|

}
,

where|A| denotes the measure of a setA⊂ RN (see e.g., [17]). Note that the integral∫
RN |u#|p|x|2−pdx is finite for anyu ∈W1,p(RN).

In this paper, we focus on the higher-order case. A higher-order generalization of
(1) was first proved by Rellich [22]: it holds∫

Ω
|∆u|2dx≥

(
N(N−4)

4

)2∫
Ω

|u|2
|x|4

dx

for all u ∈W2,2
0 (Ω), whereΩ is a domain inRN, N ≥ 5. More generally, letk,m∈ N

andk< kp< N. Define

|u|pk,p =

∫
Ω
|∆mu|pdx if k= 2m,∫
Ω
|∇(∆mu)|pdx if k= 2m+1, and

Ck,p =

p−2m∏m
j=1 (N−2 jp) {N(p−1)+2( j −1)p} if k= 2m,

(N− p)p−2(m+1)∏m
j=1 (N− (2 j +1)p) {N(p−1)+ (2 j −1)p} if k= 2m+1.

We put|u|0,p= ∥u∥Lp(RN) andC0,p= 1,C1,p=
N−p

p for the convenience of description.
Then the inequality
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|u|pk,p ≥Cp
k,p

∫
Ω

|u|p
|x|kp

dx (4)

holds for allu ∈Wk,p
0 (Ω). It is also known thatCp

k,p is optimal (see [10], [19], or

Proposition 1 in Appendix) and never attained inWk,p
0 (Ω). Furthermore, Gazzola-

Grunau-Mitidieri [13] prove the following inequality on a smooth bounded domain:
there exist positive constantsA,B> 0 such that the inequality

|u|22,2 ≥C2
2,2

∫
Ω

|u|2
|x|4

dx+A
∫
Ω

|u|2
|x|2

dx+B
∫
Ω
|u|2dx

holds for allu ∈W2,2
0 (Ω), whereN ≥ 5. In addition to this, there are many papers

that deal with various types of Rellich inequalities with remainder terms on bounded
domains (see [2], [3], [4], [5], [6], [7], [11], [15], [20], [25], [26] etc.).

A main aim of this paper is to obtain remainder terms for the inequality (4) when
Ω = RN. Note that the inequalities (1) and (4) have the scale invariance under the
scaling

uλ(x) = λ−
N−kp

p u
( x
λ

)
(5)

for λ > 0 whenΩ = RN. Therefore the possible remainder term to (4) should be
invariant under the scaling (5) whenΩ = RN. In the following,ωN will denote the
area of the unit sphere inRN, ∥ · ∥r = ∥ · ∥Lr (RN) andDk,p(RN) is the completion of
C∞0 (RN) with respect to the norm| · |k,p.

Our main results are as follows:

Theorem 1. (Radial case) Letk ≥ 2 be an integer,k < kp< N andq > 2. Setαk =
N
2 (q−2)− kpq

2 +2. Then there exists a constantC > 0 such that the inequality

|u|pk,p ≥Cp
k,p

∫
RN

|u|p
|x|kp

dx+C


∫
RN |u|

pq
2 |x|αk dx∫

RN |u|p|x|2−kpdx


2

q−2

(6)

holds for all radial functionu ∈ Dk,p(RN)∩Lp(RN), u, 0.

In the non-radial case, we obtain only partial results fork= 2,3.

Theorem 2. (Non-radial case) Fork = 2 or k = 3, let k < kp< N and q > 2. Set
αk =

N
2 (q−2)− kpq

2 +2 andr = Np
N+2p (i.e. 1

p =
1
r −

2
N ). Then there exists a constant

C > 0 such that the inequality

|u|pk,p ≥Cp
k,p

∫
RN

|u|p
|x|2p

dx+C


∫
RN |u#|

pq
2 |x|αk dx

|u|
kp−2

k
k,p ∥∆u∥

2
k
r


2

q−2

(7)

holds for allu ∈ Dk,p(RN)∩D2,p(RN)∩D2,r (RN), u, 0.
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Remark 1.The remainder term of the inequalities (6) and (7) are scale invariant

under the scaling (5) onRN: uλ(x) = λ−
N−kp

p u(y), y = x
λ , x ∈ RN. Indeed, it holds

|uλ|k,p = |u|k.p and fora,b ∈ R,∫
RN
|uλ(x)|a|x|bdx= λ−

( N−kp
p

)
a+b+N

∫
RN
|u(y)|a|y|bdy. (8)

Thus by takinga= pq
2 andb= αk, or a= p andb= 2−kp in (8), we have∫
RN
|uλ(x)|

pq
2 |x|αkdx= λ2

∫
RN
|u(y)|

pq
2 |y|αkdy,∫

RN
|uλ(x)|p|x|2−kpdx= λ2

∫
RN
|u(y)|p|y|2−kpdy.

Therefore the remainder term in the inequality (6) has the scale invariance.
Furthermore from Proposition 2 in Appendix, we obtain∫

RN
|(uλ)#|

pq
2 |x|αk dx=

∫
RN
|(u#)λ|

pq
2 |x|αk dx= λ2

∫
RN
|u#|

pq
2 |x|αk dx,

∥∆uλ∥
2
k

Lr (RN)
= λ2∥∆u∥

2
k

Lr (RN)
.

Thus the remainder term in the inequality (7) also has the scale invariance.

Remark 2.If αk ≤ 0 in Theorem 2, thenu# in the RHS of (7) can be replaced by
u thanks to the Hardy-Littlewood inequality:

∫
RN g#h# ≥

∫
RN gh (see e.g., [17]), and

the fact (|x|αk)# = |x|αk.

2 Proofs of Main results

In this section, we prove Theorem 1 and Theorem 2. The next simple lemma is used
in the proof.

Lemma 1. Let p≥ 1 anda,b ∈ R. Then it holds

|a−b|p− |a|p ≥ −p|a|p−2ab.

Proof. . First, we assumea ≥ 0. We use the mean value theorem for the function
f (t) = (a− t)p, which is defined fort ≤ a. Whenb≤ a, we have

f (b)− f (0)= (a−b)p−ap = pcp−1(−b) ≥ −pap−1b,

wherec ∈ R satisfies 0≤ a−b≤ c≤ a if b≥ 0, or 0≤ a≤ c≤ a−b if b≤ 0. When
b≥ a, then 2a−b≤ a and we have

f (2a−b)− f (0)= (b−a)p−ap = pcp−1(b−2a) ≥ −pap−1b,



Improved Rellich type inequalities inRN 5

wherec∈ R satisfies 0≤ a≤ c≤ b−a if b−2a≥ 0, or 0≤ b−a≤ c≤ a if b−2a≤ 0.
This implies the result whena≥ 0.

The casea≤ 0 follows by consideringa= −ã, ã≥ 0 andb= −b̃, b̃ ∈ R.
⊓⊔

Proof. of Theorem 1.
We show the inequality (6) for all radial functionu ∈ Dk,p(RN)∩ Lp(RN). By

density argument, we may assumeu ∈C∞0 (RN) without loss of generality.
First, note that the inequality

|u|pk,p = |∆u|
p
k−2,p ≥Cp

k−2,p

∫
RN

|∆u|p
|x|(k−2)p

dx (9)

holds from Rellich’s inequality (4). Actually whenk = 2, this is the equality. Thus,
in order to prove Theorem, it is enough to show the RHS of (9) is bounded from
below by the RHS of (6).

Sinceu is radial,u can be written asu(x) = ũ(|x|) whereũ ∈ C∞0 ([0,+∞)). We
define the new functionv as follows:

ṽ(r) = r
N−kp

p ũ(r), r ∈ [0,∞), and v(y) = ṽ(|y|), y ∈ R2. (10)

Note thatṽ(0)= 0 and also ˜v(+∞) = 0 since the support ofu is compact. We claim
that if u ∈ Dk,p(RN)∩Lp(RN), thenv ∈ Lp(R2). Indeed, we have∫

R2
|v(y)|pdy= ω2

∫ ∞

0
|ṽ(r)|prdr

= ω2

∫ ∞

0
|ũ(r)|prN−kp+1dr =

ω2

ωN

∫
RN

|u|p
|x|kp−2

dx

≤ ω2

ωN

(∫
RN

|u|p
|x|kp

dx

) kp−2
kp

(∫
RN
|u|pdx

) 2
kp

≤ ω2

ωN
C

2−kp
k

k,p |u|
kp−2

k
k,p

(∫
RN
|u|pdx

) 2
kp

<∞, (11)

here we have used Ḧolder’s inequality, Rellich’s inequality (4), and the assumption
u ∈ Dk,p(RN)∩Lp(RN). Therefore we have checkedv ∈ Lp(R2).

For k≥ 2,k ∈ N andk< kp< N, put

θk = θ(k,N, p) = 2k+
N(p−2)

p
, and

∆θk f = f
′′
(r)+

θk−1
r

f
′
(r)

for a smooth functionf = f (r). Define

Ak,p =
(N−kp)[(k−2)p+ (p−1)N]

p2
.
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Then we seeCk−2,pAk,p =Ck,p and a direct calculation shows that

−∆ũ= rk−2− N
p
(
Ak,pṽ(r)− r2∆θk ṽ(r)

)
.

Define

J =
∫
RN

|∆u|p
|x|(k−2)p

dx−Ap
k,p

∫
RN

|u|p
|x|kp

dx. (12)

Now applying Lemma 1 with the choice

a= Ak,pṽ(r) and b= r2∆θk ṽ(r),

and using the fact
∫ ∞
0 |ṽ|

p−2ṽṽ′dr = 0 sinceṽ(0)= ṽ(+∞) = 0, we have

J = ωN

∫ ∞

0
|−∆ũ(r)|p rN−1−(k−2)pdr−Ap

k,pωN

∫ ∞

0
|ũ(r)|prN−kp−1dr

= ωN

∫ ∞

0

(∣∣∣Ak,pṽ(r)− r2∆θk ṽ(r)
∣∣∣p− |Ak,pṽ(r)|p

)
r−1dr

≥ −pωNAp−1
k,p

∫ ∞

0
|ṽ|p−2ṽ∆θk ṽ r dr

= −pωNAp−1
k,p

∫ ∞

0
|ṽ|p−2ṽ

(
ṽ′′+

θk−1
r

ṽ′
)

r dr

= −pωNAp−1
k,p

∫ ∞

0
|ṽ|p−2ṽṽ′′r dr.

Moreover by integration by parts, we observe that

−
∫ ∞

0
|ṽ|p−2ṽṽ′′r dr = (p−1)

∫ ∞

0
|ṽ|p−2(ṽ′)2r dr +

∫ ∞

0
|ṽ|p−2ṽṽ′dr

=
4(p−1)

p2

∫ ∞

0
|(|ṽ|

p−2
2 ṽ)′|2r dr

=
4(p−1)

p2ω2

∫
R2
|∇(|v|

p−2
2 v)|2dy.

Combining these, we have

J ≥ 4(p−1)ωN

pω2
Ap−1

k,p

∫
R2
|∇(|v|

p−2
2 v)|2dy. (13)

Now, we apply the Gagliardo-Nirenberg inequality to|v|
p−2
2 v ∈ L2(R2): for q > 2,

there exists a constantC(q) > 0 such that it holds

∥|v|
p
2 ∥Lq(R2) ≤C(q)∥|v|

p
2 ∥

2
q

L2(R2)
∥∇(|v|

p−2
2 v)∥

q−2
q

L2(R2)
. (14)

Combining (13) and (14), we obtain
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J ≥
4(p−1)ωNAp−1

k,p

pω2
C(q)−

2q
q−2


∫
R2 |v(y)|

pq
2 dy∫

R2 |v(y)|pdy


2

q−2

=
4(p−1)ωNAp−1

k,p

pω2
C(q)−

2q
q−2


∫
RN |u|

pq
2 |x|αkdx∫

RN |u|p|x|2−kpdx


2

q−2

. (15)

Consequently, from (9), (12), (15) andCk−2,pAk,p =Ck,p, we obtain

|u|pk,p ≥Cp
k−2,p

∫
RN

|∆u|p
|x|(k−2)p

dx

=Cp
k−2,p

(
Ap

k,p

∫
RN

|u|p
|x|kp

dx+ J

)

≥Cp
k,p

∫
RN

|u|p
|x|kp

dx+C


∫
RN |u|

pq
2 |x|αk dx∫

RN |u|p|x|2−kpdx


2

q−2

whereC = 4(p−1)ωN
pω2

Ck−2,pC
p−1
k,p C(q)−

2q
q−2 . This proves Theorem 1.

⊓⊔

Proof. of Theorem 2.
First, we treat the casek= 2. We show the inequality

∫
RN
|∆u|pdx≥Cp

2,p

∫
RN

|u|p
|x|2p

dx+C


∫
RN |u#|

pq
2 |x|α2 dx

∥∆u∥p−1
p ∥∆u∥r


2

q−2

(16)

for all u∈D2,p(RN)∩D2,r (RN). Set f =−∆u∈ Lp(RN) andw(x)= 1
(N−2)ωN

∫
RN

f #(y)
|x−y|N−2 dy.

Sincew(Ox) = w(x) for anyO ∈ O(N), the group of orthogonal matrices inRN, we
seew is a radial function. Also sincef # ∈ Lp(RN), the Calderon-Zygmund inequal-
ity (see [16] Theorem 9.9.) implies thatw∈ D2,p(RN) and satisfies−∆w= f # a.e. in
RN. Therefore we have

∥∆w∥p = ∥∆u∥p. (17)

By Talenti’s comparison principle [24], we knoww≥ u# ≥ 0. Hence we have∫
RN
|w|β|x|γ dx≥

∫
RN
|u#|β|x|γ dx if β ≥ 0, (18)

≥
∫
RN
|u|β|x|γ dx if β ≥ 0andγ ≤ 0.

where the second inequality comes from the Hardy-Littlewood inequality. Further-
more there exists a constantH > 0 such that the inequality

∥w∥p ≤ H∥ f #∥r = H∥(−∆u)#∥r = H∥(−∆u)∥r (19)



8 Megumi Sano and Futoshi Takahashi

holds from the Hardy-Littlewood-Sobolev inequality, where1
p =

1
r −

2
N . From (17),

Theorem 1, (18) and (19), we obtain

|u|p2,p = |w|
p
2,p

≥Cp
2,p

∫
RN

|w|p
|x|2p

dx+C


∫
RN |w|

pq
2 |x|α2 dx∫

RN |w|p|x|2−2pdx


2

q−2

≥Cp
2,p

∫
RN

|u|p
|x|2p

dx+C


∫
RN |u#|

pq
2 |x|α2 dx

C1−p
2,p ∥∆w∥

p−1
p ∥w∥p


2

q−2

≥Cp
2,p

∫
RN

|u|p
|x|2p

dx+C


∫
RN |u#|

pq
2 |x|α2 dx

∥∆u∥p−1
p ∥∆u∥r


2

q−2

,

which concludes (16).
Next, we treat the casek = 3. As before, setf = −∆u ∈ Lp(RN)∩D1,p(RN) and

w(x) = 1
(N−2)ωN

∫
RN

f #(y)
|x−y|N−2 dy. Again we obtainw ∈ D2,p(RN), w radial,w≥ u# > 0

and−∆w= f # a.e. inRN. By Pólya-Szeg̈o inequality (see e.g., [17]), we have

|u|p3,p =
∫
RN
|∇∆u|pdx=

∫
RN
|∇ f |pdx≥

∫
RN
|∇ f #|pdx= |w|p3,p.

In the same way ask= 2 case, we use Theorem 1. Then we obtain

|u|p3,p ≥ |w|
p
3,p

≥Cp
3,p

∫
RN

|w|p
|x|3p

dx+C


∫
RN |w|

pq
2 |x|α3 dx∫

RN |w|p|x|2−3pdx


2

q−2

≥Cp
3,p

∫
RN

|u|p
|x|3p

dx+C


∫
RN |u#|

pq
2 |x|α3 dx

C
2−3p

3
3,p |w|

3p−2
3

3,p ∥w∥
2
3
p


2

q−2

≥Cp
3,p

∫
RN

|u|p
|x|3p

dx+C


∫
RN |u#|

pq
2 |x|α3 dx

|u|
3p−2

3
3,p ∥∆u∥

2
3
r


2

q−2

,

which concludes (7).
⊓⊔

Remark 3.Up to now, we do not obtain the result fork≥ 4 in Theorem 2. For exam-
ple, put f = −∆u∈D2,p(RN) for u∈D4,p(RN). Since we do not know the validity of
the inequality ∫

RN
|∆ f |p dx≥

∫
RN
|∆ f #|p dx,
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the argument of the proof of Theorem 2 does not work fork = 4 case. Instead,

if we define f = (−∆)2u ∈ Lp(RN) and w(x) = CN

∫
RN

f #(y)
|x−y|N−4 dy, then we obtain

(−∆)2w= f # in RN and|u|p4,p = |w|
p
4,p. However in this case, we do not know whether

the comparisonu# ≤ w hold or not, which invalidates the proof of Theorem 2.

3 Another improved Rellich inequality

In this section, we prove another improved Rellich inequality on the whole space.
In Theorem 1, we have used the Gagliardo-Nirenberg inequality as a substitute for
the Poincaŕe inequality, which is usually used to improve the Rellich inequality on
bounded domains. In the next theorem, we will employthe logarithmic Sobolev
inequalityon the whole space.

Theorem 3.Letk≥ 2 be a integer andk≤ kp< N. Then the inequality

|u|pk,p−Cp
k,p

∫
RN

|u|p
|x|kp

dx

≥ BE(u)exp

(
1+E(u)−1

∫
RN

|u|p
|x|kp−2

log

(
ωN|x|N−kp|u|p
ω2E(u)

)
dx

)
(20)

holds for all radial functionu∈Wk,p(RN), whereB= 4π(p−1)
p Cp

k−2,pAp−1
k,p andE(u) =∫

RN |u|p|x|2−kpdx.

Proof. of Theorem 3. We proceed as in the proof of Theorem 1. From the proof of
Theorem 1, we observe that

|u|pk,p−Cp
k,p

∫
RN

|∆u|p
|x|kp

dx≥ B(k, p,N)
∫
R2

∣∣∣∣∣∇|v| p−2
2 v

∣∣∣∣∣2dy, (21)

where B(k, p,N) = 4(p−1)ωN
pω2

Ck−2,pC
p−1
k,p . Differently from the proof of Theorem

1, here, instead of the Gagliardo-Nirenberg inequality, we apply the logarithmic
Sobolev inequality (see [27]) onR2:∫

R2
f 2(y) log f 2(y)dy≤ log

(
1
πe

∫
R2
|∇ f (y)|2dy

)
(22)

for the function f = ∥v∥−
p
2

Lp(R2)
|v|

p−2
2 v, ∥ f ∥L2(R2) = 1, wherev is defined in (10). By

(21) and (22), we obtain
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|u|pk,p−Cp
k,p

∫
RN

|u|p
|x|kp

dx≥ B(k, p,N)
∫
R2
|∇(|v|

p−2
2 v)|2dy

≥ πB(k, p,N)∥v∥p
Lp(R2)

exp

1+∫
R2

|v(y)|p

∥v∥p
Lp(R2)

log

 |v(y)|p

∥v∥p
Lp(R2)

 dy


= πB(k, p,N)

ω2

ωN
E(u)exp

(
1+
ωN

E(u)

∫ ∞

0
rN−kp|u(r)|p log

(
ωNrN−kp|u(r)|p
ω2E(u)

)
rdr

)
= BE(u)exp

(
1+E(u)−1

∫
RN

|u|p
|x|kp−2

log

(
ωN|x|N−kp|u|p
ω2E(u)

)
dx

)
whereE(u) =

∫
RN |u|p|x|2−kpdx= ωN

ω2
∥v∥p

Lp(R2)
. Hence the inequality (20) holds.

⊓⊔

Remark 4.The inequality (20) has an invariance under the scalinguλ(x)= λ−
N−kp

p u(y)
wherey= x

λ , (λ > 0, x ∈ RN). Indeed, we haveE(uλ) = λ2E(u) and

E(uλ)exp

(
1+E(uλ)

−1
∫
RN

|uλ(x)|p
|x|kp−2

log

(
ωN|x|N−kp|uλ(x)|p
ω2E(uλ)

)
dx

)
= λ2E(u)exp

(
1+E(u)−1

∫
RN

|u(y)|p
|y|kp−2

(
logλ−2+ log

(
ωN|y|N−kp|u(y)|p
ω2E(u)

))
dy

)
= E(u)exp

(
1+E(u)−1

∫
RN

|u(y)|p
|y|kp−2

log

(
ωN|y|N−kp|u(y)|p
ω2E(u)

)
dy

)
,

so the inequality (20) also enjoys a scale invariance.

4 Appendix

Davies-Hinz [10] showed that the constantCp
k,p in the inequality (4) is optimal when

Ω = RN. In this Appendix, we will show the fact whenΩ is a general bounded
domain.

Proposition 1. Let k ∈ N, k< kp< N and letΩ be a bounded domain with0 ∈ Ω in
RN. Then the constantCp

k,p in the inequality (4) is optimal. That is

inf
0,u∈Wk,p

0 (Ω)

|u|pk,p∫
Ω
|u(x)|p
|x|kp dx

=Cp
k,p.

Proof. of Proposition 1.
By the scaling (5) and zero extension, we may assumeB1(0)⊂⊂ Ω without loss

of generality. First, we show the optimality ofCp
k,p in the even casek = 2m, m∈ N.

For 0< ε≪ 1, we define the functionuε ∈W2m,p
0 (Ω) as follows:
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uε(x) =


ε
− N−2mp

p log 1
ε , if 0 ≤ |x| ≤ ε

|x|−
N−2mp

p log 1
|x| , if ε ≤ |x| ≤ 1,

0, if x ∈ Ω \B1(0).

Let α = N−2mp
p . By using the formula

∆r−α = α(α−N+2)r−α−2,

∆

(
r−α log

1
r

)
= α(α−N+2)r−α−2 log

1
r
+ (2α−N+2)r−α−2,

we compute that

∆muε =


0, if 0 ≤ |x| ≤ ε,
Am|x|−(α+2m) log 1

|x| +Bm|x|−(α+2m), if ε ≤ |x| ≤ 1,

0, if x ∈ Ω \B1(0),

whereAm(α) andBm(α) are determined by the iterative formula:

A1(α) = α(α−N+2),

A j+1(α) = (α+2 j) (α+2( j +1)−N)A j , j = 1,2, . . . ,

B1(α) = 2α−N+2,

Bj+1(α) = (α+2 j) (α+2( j +1)−N) Bj +2α+2(2j +1)−N j = 1,2, . . . .

Thus we have

Am= Am(α) =
m−1∏
j=0

(α+2 j)(α+2( j +1)−N), |Am(α)| =C2m,p.

We compute∫
Ω
|∆muε(x)|pdx= ωN

∫ 1

ε

∣∣∣∣∣Am log
1
r
+Bm

∣∣∣∣∣p r−(α+2m)p+N−1dr

= ωN

(
1

Am

)∫ Bm+Am log 1
ε

Bm

|t|pdt

= ωN

(
1

Am(p+1)

)(∣∣∣∣∣∣Bm+Am log
1
ε

∣∣∣∣∣∣p(Bm+Am log
1
ε

)− |Bm|pBm

)
. (23)

On the other hand, we have
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Ω

|uε(x)|p
|x|2mp

dx

= ωN ε
−αp

(
log

1
ε

)p∫ ε

0
rN−2mp−1dr+ωN

∫ 1

ε
r−1

(
log

1
r

)p

dr

= ωN
εN−2mp

N−2mp

(
log

1
ε

)p

+ωN

∫ log 1
ε

0
tpdt

= ωN
εN−2mp

N−2mp

(
log

1
ε

)p

+ωN
1

p+1

(
log

1
ε

)p+1

. (24)

By (23), (24) and the fact|Am| =C2m,p, we obtain∫
B1(0) |∆

muε(x)|pdx∫
B1(0)

|uε(x)|p
|x|2mp dx

→ |Am(α)|p =Cp
2m,p asε→ 0,

which implies the optimality ofCp
2m,p.

Next, in the odd casek= 2m+1,m∈N, we consider the functionuε ∈W2m+1,p
0 (B1(0))

as follows:

uε(x) =


ε
− N−(2m+1)p

p log 1
ε , if 0 ≤ |x| ≤ ε,

|x|−
N−(2m+1)p

p log 1
|x| , if ε ≤ |x| ≤ 1,

0, if x ∈ Ω \B1(0).

Let β = N−(2m+1)p
p . Note that

∇(∆muε) =


0, if 0 ≤ |x| ≤ ε,
|x|−(β+2m+2)x

{
−Am(β)(β+2m) log 1

|x| − (Am(β)+ (β+2m)Bm(β))
}
,

if ε ≤ |x| ≤ 1,

0, if x ∈ Ω \B1(0).

If we make a calculation similar to the even case, we obtain∫
Ω
|∇(∆muε)(x)|pdx∫
Ω
|uε(x)|p
|x|(2m+1)p dx

→ |Am(β)|p(β+2m)p asε→ 0,

which implies the optimality ofCp
2m+1,p by β+2m= N−p

p andCp
2m+1,p = |Am(β)|p(β+

2m)p.
⊓⊔

Proposition 2. Put r = |x|, x ∈ RN and let

u#(r) = inf {τ > 0 | µu(τ) ≤ |Br (0)|}
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be the symmetric decreasing rearrangement of a functionu, whereµu is a distribu-

tion function ofu: µu(τ) =
∣∣∣{x ∈ RN | |u(x)| > τ}

∣∣∣, τ ≥ 0. Defineuλ(x) = λ−
N−kp

p u
(

x
λ

)
for λ > 0. Then the equality

(uλ)
#(r) = (u#)λ(r) (25)

holds for anyr,λ > 0.

Proof. of Proposition 2. The distribution function ofuλ can be written as

µuλ(τ) =
∣∣∣{x ∈ RN | |uλ(x)| > τ}

∣∣∣
=

∣∣∣∣∣∣{x ∈ RN

∣∣∣∣∣∣ λ− N−kp
p

∣∣∣∣∣u( x
λ

)∣∣∣∣∣ > τ}
∣∣∣∣∣∣

= |{λy ∈ RN | |u(y)| > λ
N−kp

p τ}|

= λN |{y ∈ RN | |u(y)| > λ
N−kp

p τ}|

= λNµu(λ
N−kp

p τ). (26)

Hence by the definition of (uλ)# and (26), we obtain

(uλ)
#(r) = inf {τ > 0 | µuλ (τ) ≤ |Br |}

= inf {τ > 0 | λNµu(λ
N−kp

p τ) ≤ |Br |}

= inf {λ−
N−kp

p τ̃ > 0 | µu(τ̃) ≤ λ−N|Br |}

= λ
− N−kp

p inf {τ̃ > 0 | µu(τ̃) ≤ |B r
λ
|}

= λ
− N−kp

p u#
( r
λ

)
= (u#)λ(r).

The proof of Proposition 2 is now complete.
⊓⊔
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