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Improved Rellich type inequalities in RN

Megumi Sano and Futoshi Takahashi

1 Introduction

LetN>2 1< p<N, and letQ be a bounded domain i\ with 0 € @, or @ = RN,
The classical Hardy inequality

N-p\" [ |uP
vu pdxz(—) —dx 1
fgl | p o IXP @)

holds for allu e Wé’p(Q), or ue DP(RN) when @ = RN. Here Wé’p(Q) (resp.
DLP(RN)) is the completion o3 (Q) (resp.Cg(RN)) with respect to the norm
IV-llLee) (respIV-llLpgny)- Itis known that for 1< p< N, the best constanil'%p)P

is never attained iWé’p(Q), orin DLP(RN). Therefore, one can expect the existence
of remainder terms on the right-hand side of the inequality (1). Indeed, there are
many papers that deal with remainder terms for (1) wf2eis a smooth bounded
domain (see [1], [8], [9], [12], [13], [21], to name a few). For example, Brezis and
Vazquez [8] show that the inequality

2

N-2\% [ |u? won \N
Vuzdxz( ) f—dx+ (—) fuzdx 2
fgl | 2 o IX2 ZS 12| Q| | @

holds true for allu € Wy?(€2) wherezy = 2.4048 -- is the first zero of the Bessel
function of the first kind.
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On the other hand, whe@ = RN, the remainder term in (2) becomes trivial and
does not provide better inequality than the classical one. More generally, Ghoussoub
and Moradifam [14] show that there is no strictly positive C((0, +0)) such that

the inequality
_2\2 2
f [Vul2dx> N-2 &dx+f V(IX)|ul2dx
EN 2 RN [X? RN

holds for allu e W-2(RN). One of the reasons of it is the lack of the Poircanr-
equality:||Vu||Lz(Q) > Cllull 2(e whenQ = RN. Although there is a result of refining
the Hardy type inequality on the whole space (see Maz'ya’'s book [18], pp. 139,
Corollary 3.), we cannot expect the same type of remainder terms as in (2) on the
whole space.

In spite of this fact, the authors of the present paper recently showed the following
result [23] : Let 2< p< N andq > 2. Seta = a(p,q,N) = §(q-2)- 5+ 2. Then
there existd = D(p,q, N) > 0 such that the inequality

2

_p\P p W2 xedx )2
f VuPdx> (N—pp) WP s D(fR”—dx 3)
RN

rN IXP Jon IUFIPIx2P

holds for allu e W-P(RN), u 0. Hereu* denotes the Schwartz symmetrization of
a functionu onRN:

u(x) = u*(|x)) = inf {/1 >0

ltxe RN [u(x)| > )| < |Bx|(0)|},

where|A| denotes the measure of a #et RN (see e.g., [17]). Note that the integral
fon IU#PIX2~Pd xis finite for anyu € W-P(RN).

In this paper, we focus on the higher-order case. A higher-order generalization of
(1) was first proved by Rellich [22]: it holds

_4)\2 2
[ e (M) [,
Q

o Ix*

forallue Wg’z(Q), whereQ is a domain irRN, N > 5. More generally, lek,me N
andk < kp< N. Define

P _{fgldmulpdx if k=2m,

kp ™ i —

P [oIVU™)Pdx if k=2m+1, and

G = | P TIL(N=2iP)N(p—=1)+2(j - 1)p) if k=2m,
P N=-pp 2™, (N-2j+ DR N(p-1)+ (2] -1)p}  if k=2m+1.

We putjulo,p = llUll_pzn) andCop=1,C1p= N—;p for the convenience of description.
Then the inequality
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. i
ug, > jﬁlwp (4

holds for allu e Wg’p(Q). It is also known tha(?k’p is optimal (see [10], [19], or

Proposition 1 in Appendix) and never attained/ilg’p(g). Furthermore, Gazzola-
Grunau-Mitidieri [13] prove the following inequality on a smooth bounded domain:
there exist positive constarksB > 0 such that the inequality

2 o2 [P u? 2
U3, >C5, | —zdXx+A —2dx+B |u| dx
’ “Je X 2 X

holds for allu e Wg’Z(Q), whereN > 5. In addition to this, there are many papers
that deal with various types of Rellich inequalities with remainder terms on bounded
domains (see [2], [3], [4], [5], [6], [7], [11], [15], [20], [25], [26] etc.).

A main aim of this paper is to obtain remainder terms for the inequality (4) when
Q =RN. Note that the inequalities (1) and (4) have the scale invariance under the
scaling

ui(x) = A’N;F'kpu(j—l() )

for 1 >0 when@ = RN. Therefore the possible remainder term to (4) should be
invariant under the scaling (5) whea=RN. In the following,wy will denote the
area of the unit sphere iRN, ||-||, = |- llLr vy and DXP(RN) is the completion of
Cg (RN) with respect to the norm |y p.

Our main results are as follows:

Theorem 1. (Radial case) Lek > 2 be an integerk < kp< N andq > 2. Setay =
%(q— 2)- %* + 2. Then there exists a consta®t> 0 such that the inequality

2

p N Ul Z [xekdx )2
=ty [ &dm[&_] ©

N |xkP o lUIPIX2kPdx
holds for all radial functionu € D*P(RN) N LP(RN), u # 0.

In the non-radial case, we obtain only partial resultdfer2, 3.

Theorem 2.(Non-radial case) Fokk =2 or k=3, letk < kp< N and g > 2. Set

ax=5(-2)- kpq +2andr = NN+§p (i.e. Tl) =1 _2) Then there exists a constant

C > Osuch that the inequality

_2_
q-2

Jole]
u U Z | x| % dx
|u|kp _CP f | | 2 dx+ wa— (7)

X2P g2k
jul S 4l

holds for allu € DYP(RN) N DZP(RN) N D' (RN), u # 0.
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Remark 1The remainder term of the mequalmes (6) and (7) are scale invariant

under the scaling (5) oRN: uy(x) = A~ 5 u(y) y = %,x € RN. Indeed, it holds
[Ualk,p = Uk p and fora,b € R,
[ = (5N [ ey, ®)

Thus by takinga = p_2q andb = ay, ora= pandb=2-kpin (8), we have

[ o0 Ferax=22 [ o) Eyreay
RN RN
[ P Bax= 22 [ Py ey
RN RN

Therefore the remainder term in the inequality (6) has the scale invariance.
Furthermore from Proposition 2 in Appendix, we obtain

Jolt] Jok P9
f (U7 X" dx= f |(U*)al 2 X" dx = 22 f U Z |x% dx,
RN N RN

Mulf = A2l

L' ®N) Lr@®N)’

Thus the remainder term in the inequality (7) also has the scale invariance.

Remark 2If ax < 0 in Theorem 2, then in the RHS of (7) can be replaced by
u thanks to the Hardy-Littlewood inequality;  g*h* > [\ gh(see e.g., [17]), and

the fact (x*)* = x|,

2 Proofs of Main results

In this section, we prove Theorem 1 and Theorem 2. The next simple lemma is used
in the proof.

Lemma 1.Letp>1anda,beR. Then it holds
la—blP - [a]° > —pla]*~?ab.

Proof. . First, we assuma > 0. We use the mean value theorem for the function
f(t) = (a—1t)P, which is defined fot < a. Whenb < a, we have

f(b)— f(0) = (a—b)P—aP = pc®~1(-b) > —pa"1b,

wherec € R satisfies ka-b<c<aifb>0,or0<a<c<a-bif b<0. When
b > a, then &A—b < aand we have

f(2a—b) - f(0) = (b—a)P—aP = pc”1(b-2a) > —paP b,
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wherec e R satisfles ka<c<b-aif b—2a>0,0or0<b-a<c<aif b-2a<0.
This implies the result whea > 0. o
The case < 0 follows by consideringe=-& a> 0 andb=-b,beR.

Proof. of Theorem 1

We show the inequality (6) for all radial functiame D%P(RN) n LP(RN). By
density argument, we may assume Cg’(RN) without loss of generality.

First, note that the inequality

P _ 4P p jAulP
Ul p = 14Ul 52 Ck—zsPLN X6 dx 9)
holds from Rellich’s inequality (4). Actually whek= 2, this is the equality. Thus,
in order to prove Theorem, it is enough to show the RHS of (9) is bounded from
below by the RHS of (6).
Sinceu is radial,u can be written asi(x) = T(|x]) whereu'e C7’([0, +0)). We
define the new functiom as follows:
N-k
W=re )., ref0e). and vy)=Wy). yeR%  (10)

Note thatv{0) = 0 and also/(+0) = 0 since the support af is compact. We claim
that if u e DXP(RN) N LP(RN), thenv € LP(R?). Indeed, we have

[ Morpay=oz [ teyrar

00
~ N-kp+1
=w2f [G(r)|Priv=*Pdr = )
0 wN JrN X

= 2

w u kp kp

s—zf %dx flulpdx
wN \JgrN [X*P RN

2
w2 2-kp kp-2 kp
<—=C. & lul Jﬂ|wpdx < oo, (11)
wn kP ke | Jen

w2 [P

here we have usedditler’s inequality, Rellich’s inequality (4), and the assumption
ue OFPRN) N LP(RN). Therefore we have checkedt LP(R?).
Fork>2 ke Nandk <kp< N, put

O = 0(k, N, p) = 2K+ w, and

Ok—1
r

Ag f=1"(r)+ £(r)

for a smooth functiorf = f(r). Define

Acp = (N —kp)[(k—sz)m(p—l)N]'
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Then we se€y_» pAx p = Ci p and a direct calculation shows that

A= 12 (A plr) - 246, U(T)).

l4ulP P f |ulP
J= - —d 12
fRN @ 2p X Ap L 1xgen 0 12)

Now applying Lemma 1 with the choice

Define

a=AU(r) and b=r24,7(r),
and using the facjgoo [V{P-2%7dr = 0 sinceV{0) = ¥(+0) = 0, we have
J=wn fom|—A0(r)|prN‘1‘(k‘2)pdr—AEpr fomm(r)wrN-kHdr
—on [ (1Acatl0) - 2430 A 0)P)
—punAL, fo ) VP20, r dr
= —ponAL fom |\7|92\7(\7’ + QKT_lx/) rdr
= _prAE‘F)lfom [7P=27"rdr.
Moreover by integration by parts, we observe that
—j:o|\7|p‘2\7\7’rdr=(p—l)foooh”/lp‘z(\”/)zrdr+fooo|\7|p‘2\7\7dr
= Mfw|(|\7|p%2v)’|2rdr
i G f V(VZ V)2dy.

pPwp

Combining these, we have
4 1 .
ol I (e . (13)

Now, we apply the Gagliardo-Nirenberg inequality|vt)p%2v e L2(R?): for g > 2,
there exists a consta@{q) > 0 such that it holds

q-2

Ml agezy < C(@) M2 ||L2(R2)||V(|v|*v)||L2(R2 (14)

Combining (13) and (14), we obtain
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2

s SOTDNAL - RO
- pw2 Sz M(y)IPdy
_2_

Ap-DonAY, ( Jan |u|pzq|x|ffko|x]q-2

C(q) 2| ——F— 15
Pw2 @ Je IUIPIX[2-kPdx (13)

Consequently, from (9), (12), (15) a2, Ak p = Ck p, We obtain
p p |[4u|P
Ul p = Ck—z,prN X&2p dx
_cP p ulP
= Ck—2,p(Ak,ij;N X[ dx+J
ulP Fone Il 7 X% dx w2
> CE f S dx+Cf e ——
P Jrn [X<P Jew IUIPIX|2-kPdx
2
whereC = %Ck_z,pckp;lc(q)‘q%. This proves Theorem 1.

Proof. of Theorem 2
First, we treat the cade= 2. We show the inequality

ulP
flAu|pdx2C§ f W i
RN P Jgn [X2P

forallue D2P(RN)N D> (RN). Setf = —4ue LP(RN) andw(X) = g Jan Ixj;(,ﬁ'),z dy.

Sincew(Ox) = w(x) for any O € O(N), the group of orthogonal matrices itl, we
seew is a radial function. Also sincé” e LP(RN), the Calderon-Zygmund inequal-
ity (see [16] Theorem 9.9.) implies thate D%P(RN) and satisfiesAaw = f# a.e. in
RN. Therefore we have

2

Pg —
Jen |u#|z|x|"2dx]q ?

- (16)
ul? Siauly

llAWlp = [|4ullp. 17)

By Talenti’s comparison principle [24], we know> u” > 0. Hence we have
f WX dx > f WP dx if B> 0, (18)
RN RN
> f luf|x” dx if B> 0andy <O.
RN

where the second inequality comes from the Hardy-Littlewood inequality. Further-
more there exists a constant> 0 such that the inequality

IWilp < HIF#llr = HIl(=4u)*|lr = HII(=4u)llr (19)
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holds from the Hardy-Littlewood-Sobolev inequality, Wh%@z 2. From (17),
Theorem 1, (18) and (19), we obtain

P _ p
g, =wij
2
o [ WP Jon W7 X172 dx | 72
>C} f —2dx+C—
P Jgn [X2P Jon IWIPIX[2-2P d

— dx+
2p X|2
IXI=P C - Plawiih il

2
cpf ulP fRNIu#IZIXI"ZdXJ -

_2_
q-2

‘Cpf P o £ |U#I2|x|"2d]

2,p 2
[X|<P l4ulB~laull

which concludes (16).
Next, we treat the cade= 3. As before, sef = —4u e LP(RN) n DLP(RN) and

wW(X) = (N_%)MN Jon le;(,{ﬂz dy. Again we obtainw € D%P(RN), w radial,w > u” > 0
and—4w = f# a.e. inRN. By Pblya-Szeg inequality (see e.qg., [17]), we have

lul} =f |VAu|de=f |Vf|pdx2f IV £#|Pdx = S .
»P RN RN RN »P

In the same way ds= 2 case, we use Theorem 1. Then we obtain

jul§ = g
=
o [ P Jon 7 X2 dx )
_C3p —3dX+C
P Jrn (X3P fon IWIPIX2-3P dx
%
0 JulP fRN|u#|z|x|“3dx
>C} ——dx+C
NY N|x|3p 23p 3p-
® 2wl il
3,p p
&
# B9 4
u*'Z |x|*2 dx
o [ IUP fRNI
> _ &~ o
_c&pf o X C T ,
lul > llAull?

which concludes (7).
O

Remark 3Up to now, we do not obtain the result foe 4 in Theorem 2. For exam-
ple, putf = —4ue D>PRN) for ue D*P(RN). Since we do not know the validity of

the inequality
f|Af|pdx2f AP dx,
RN RN
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the argument of the proof of Theorem 2 does not WOI’kkf@f4 case. Instead,

if we define f = (-4)%u € LP(RN) andw(x) = Cy &N = le L. dy, then we obtain
(~=A)?w= f#inRN andjuly , = |W|zp. However in this case, we do not know whether
the comparison® < w hold or not, which invalidates the proof of Theorem 2.

3 Another improved Rellich inequality

In this section, we prove another improved Rellich inequality on the whole space.
In Theorem 1, we have used the Gagliardo-Nirenberg inequality as a substitute for
the Poincag inequality, which is usually used to improve the Rellich inequality on
bounded domains. In the next theorem, we will empllog logarithmic Sobolev
inequalityon the whole space.

Theorem 3.Letk > 2 be a integer and < kp < N. Then the inequality

P
P P V]
Ul Ck,pr —|X|kpdx

>BE(u)exp(1+E(u) f ||U| g(‘““'x'N_kp'“'p)dx) (20)

[kp-2 w2E(u)
holds for all radial functioru € WP(RN), whereB = 4”(p‘1)C|f 2 pAE_pl andE(u) =

Jon UIPIXZPdx.

Proof. of Theorem 3We proceed as in the proof of Theorem 1. From the proof of
Theorem 1, we observe that

lA4ulP p=2
|u|l‘<],p_clzp N [XKP dx> Bk, p,N)f ’VM ‘ dy, (21)

where B(k, p,N) = 4(”;)“'NC ke pCp Differently from the proof of Theorem
1, here, instead of the Gagliardo- Nlrenberg inequality, we apply the logarithmic
Sobolev inequality (see [27]) d&?:

f fz(y)logfz(y)dyslog(i f |Vf(y)|2dy) (22)
R2 e Jr2

for the functionf = ||v|||_p(]RZ |v| v (11l 2 ®) =1, wherev is defined in (10). By
(21) and (22), we obtain
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|ulP
lulcp = Cicp f p 4x2 Bl p.N) |V(|v| 2 )P dy

v(y)|P v(V)|P
> 7B(K, p,N)||v||Lp(R2)exp(1+ ||\I/”(y)l Iog[||\|/||(y)l ] dy]
LP(R2) LP(R2)

= 7B(K, p, N)—E(u)exp(1+ =0 rN‘kplu(r)lplog(%’w))rdr)
Ul (X PP
= BE(u)eXp(1+E(U) f N X |kp—2 ( w2E(u) )dx)

whereE(u) = [y [ulPIx/Z*Pdx = X ||v|| Hence the inequality (20) holds.

O

LP(R2)"

N-k
Remark 4 The inequality (20) has an invariance under the scaljiig) = [Tpu(y)
wherey = X, (1> 0,xeRN). Indeed, we hav&(u,) = 2E(u) and

ua9IP wnIXN TPl (X)1P
E(uﬂ)exp(1+ E(uy)” f P2 lo ( w2E(U) )dx)

= 1’E(u) exp(1+ E(u)” f | ﬁ(y;lz (Iog/l‘2 + Iog(—wNIyl::Z;(pr)) dy)

Ui, wnlyNKPlu(y) [P
k-2 g( w2E(U) )dy)

= E(u) exp(1+ E(u)~ f

so the inequality (20) also enjoys a scale invariance.

4 Appendix

Davies-Hinz [10] showed that the consté]j‘tp in the inequality (4) is optimal when
Q =RN. In this Appendix, we will show the fact whe® is a general bounded
domain.

Proposition 1. Letk e N, k< kp< N and letQ be a bounded domain withe Q in
RN. Then the constarﬂllfp in the inequality (4) is optimal. That is

IUI;<p e
p — Ykp’
O;tueWk °@ o, lTXIX)'l) dx P

Proof. of Proposition 1
By the scaling (5) and zero extension, we may assBqf@) cc Q without loss
of generality. First, we show the optimality G{fp in the even cask=2m, me N.

For 0< & < 1, we define the function, € ng’p(Q) as follows:
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_N-2mp

e ® logi,

_N-2mp
Ug(X) = X~ P |og§,

07

Leta = M=

gmp. By using the formula

Ar =a(@=N+2)r 2,

11

ifo<|x<e
if e <|X <1,
if x € 2\ By(0).

A(r‘“ IogFl) =a(e—N+ 2)r“1‘2Iog% +(2a—N+2)72,

we compute that

07

Amus — Am|X|—(a/+2m) |Og‘_i| + Bmlxl—(aH—Zm)’

07

if0 <X <e,
if e <|x <1,
if xe 2\ By(0),

whereAn(a) andBy(a) are determined by the iterative formula:

Ai(a@) = al@a—N+2),

Ajra(@) = (@+2)) (@ +2(j+1)-N)A;,

Bi(a) =2a—N+2,

Bj+1(@) = (@+2))(@+2(j+1)-N)Bj+ 20+ 2(2j +1)-N

Thus we have

m-1

i=12...,

i=12,....

An=An(@) = [ [(@+2))(@+2(j+1)-N), |An(@)| = Camp.
j=0

]

We compute

1
f|Amug(x)|pdx=wa
Q €

1 Bm+Amlog 1
=wN|— [t|P dt
(o)

“n (el

On the other hand, we have

Bm+Amng
E

p
Am|09%+ Bm‘ r—(a+2m)p+N—ldr

P 1
B+ Anlog )~ BnPEn].  (23)
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|us(X)|P
o |x2mp

1 P e 1 1 p
:a)Ng‘“p(log—) er‘zm‘HdeNf r‘l(logF) dr
& 0 &

N-2mp 1\P log 1
= wN £ log- +wa btpdt
N-2mp € 0

gN-2mp 1\P 1 1 p+1
= WN N—2mp(|Ogg) +wNm(|Og;) . (24)

By (23), (24) and the fadfy| = Comp, We obtain

fBl(O) lA™u, ()P dx

ug(X)IP
fBl(O) [x2mp d

= |Am(@)IP =3, yase =0,

which implies the optimality oCSmp.

Next, in the odd case= 2m+1, me N, we consider the functiom, ng*l’p(Bl(O))
as follows:

N-(2m+1)
g P pIog%, ifoO<|x<e,
N-(2m+1)p
U:()=11x"" 7 logd., ife<iX<l,
0, if x € 2\ B1(0).

Letg = L’;”)p. Note that

0, IfO<|x<e,

X +2m+ x| An(B)(8+2m) log i — (Am(B) + (B+ 2M)Br(B))}.
ife<|x<1,

0, if xeQ\By(0).

V(4™u,) =

If we make a calculation similar to the even case, we obtain

JoIV@™u) (9P dx

— |AnB)IP(B +2m)P ase — O,

f U (X)IP
Q |X|i2m+1ip
which implies the optimality o€} o byp+2m= N—;p andC5 . o = Am(B)IP(B+

2m)P.
o

Proposition 2. Putr = |x|,x e RN and let

u¥(r) = inf{r > 0] uu(z) < B (O)I}
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be the symmetric decreasing rearrangement of a funatjavherey, is a distribu-
N-k
tion function ofu: uu(x) = [(xe BN [lu()| > 7}|, 7 > 0. Defineu,(x) = 4~ 7 u(%)
for A > 0. Then the equality
U)*(r) = Ua() (25)

holds for anyr, 2 > 0.
Proof. of Proposition 2 The distribution function ofi; can be written as

pu, (7) = |(x € RN | Jua(x)] > 7|

N-k

AP

M)

N-kp
=|{yeRN [juiy)l > 2P 7|

{xe RN

> 1}

N-kp
=Mty e RN [uy)l > 2P 7
N-kp
= ANy (2P 7). (26)
Hence by the definition ofuy)* and (26), we obtain

U)*(r) = inf{r > 0y, (7) < B}
=inf{r>0] aNuu(zN_Tkpr) < B}

o Nkp_ . N
=inflA" P >0 uu) <A NB |}

N
=P infE> 0| u(®) < Bz}

= (D)= @,

The proof of Proposition 2 is now complete.
O
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