
In April 2022, Osaka City University and Osaka Prefecture University marge to Osaka Metropolitan University 

TAKAHASHI, F. (2015). Extremal solutions to Liouville-Gelfand type elliptic problems with 

nonlinear Neumann boundary conditions. Communications in Contemporary Mathematics. 17. 

https://doi.org/10.1142/S0219199714500163  

Extremal solutions to Liouville–Gelfand 

type elliptic problems with nonlinear 

Neumann boundary conditions 
 

Futoshi Takahashi 

 

 

Citation Communications in Contemporary Mathematics, 17(03):1450016 

Issue Date 2015-6 

Type Journal Article 

Textversion author 

Rights 

Electronic version of an article published as Communications in Contemporary 

Mathematics, v17 n03 (June 2015), DOI:10.1142/S0219199714500163. © World 

Scientific Publishing Company, http://www.worldscientific.com/worldscinet/ccm 

 

This is the accepted manuscript version. Please cite only the published version.  

この論文は出版社版でありません。引用は出版社版をご利用ください。 

DOI 10.1142/S0219199714500163 

 

 

Self-Archiving by Author(s) 

Placed on: Osaka City University Repository 

 

https://doi.org/10.1142/S0219199714500163
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& Osaka City University Advanced Mathematical Institute
Sumiyoshi-ku, Osaka, 558-8585, Japan

Tel: (+81)(0)6-6605-2508
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Abstract. Consider the Liouville-Gelfand type problems with nonlinear
Neumann boundary conditions{

−∆u+ u = 0 in Ω,
∂u
∂ν

= λf(u) on ∂Ω,

where Ω ⊂ RN , N ≥ 2, is a smooth bounded domain, f : [0,+∞) → (0,+∞)
is a smooth, strictly positive, convex, increasing function with superlinear at
+∞, and λ > 0 is a parameter. In this paper, after introducing a suitable
notion of weak solutions, we prove several properties of extremal solutions
u∗ corresponding to λ = λ∗, called an extremal parameter, such as regular-
ity, uniqueness, and the existence of weak eigenfunctions associated to the
linearized extremal problem.

Keywords: Extremal solutions, Weak solutions, Nonlinear Neumann bound-
ary conditions.

2010 Mathematics Subject Classifications: 35J20, 35J25. 35J60.

1 Introduction

Let Ω ⊂ RN (N ≥ 2) be a smooth bounded domain and let ν denote the
unit outer normal to ∂Ω. Consider the Liouville-Gelfand type problems with
nonlinear Neumann boundary conditions{

−∆u+ u = 0 in Ω,
∂u
∂ν

= λf(u) on ∂Ω,
(1.1)
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where λ > 0 is a parameter. Throughout the paper, the nonlinearity f :
[0,+∞) → (0,+∞) is assumed to satisfy

f ∈ C1([0,+∞)), f(0) > 0, convex, increasing, (1.2)

lim
t→+∞

f(t)

t
= +∞. (1.3)

Then maximum principle implies that solutions are positive on Ω.
Problem (1.1) may be considered as a variant of the well-studied problem{

−∆u = λf(u) in Ω,

u = 0 on ∂Ω,
(1.4)

where λ > 0 and f is assumed to satisfy (1.2), (1.3). For the problem (1.4),
the notion of suitable weak solutions, the uniqueness and the regularity of
extremal solutions, and the existence of the weak eigenfunction correspond-
ing to zero eigenvalue of the linearized problem around the weak extremal
solution, have been studied so far, see [4], [6], [13], [17], [8], and the refer-
ences therein. Main purpose of this paper is to establish several facts for the
problem (1.1), known to be true for (1.4). For other type of variants of the
problem (1.4), see [3], [11].

Now, it is classic that the following proposition holds for the problem
(1.1). The proof will be obtained by a slight modification of that of the
similar proposition for the problem (1.4), see [9], [16], [10], [12], so we omit
it.

Proposition 1 Define

λ∗ = sup{λ > 0 : (1.1)λ admits a classical solution ∈ C2(Ω)}. (1.5)

Then we have 0 < λ∗ <∞ and

(i) For every λ ∈ (0, λ∗), (1.1)λ has a positive, classical, minimal solution
uλ in the sense that uλ(x) ≤ u(x)(∀x ∈ Ω) for any other solution u to
(1.1)λ. This is the unique strictly stable solution of (1.1)λ, in the sense
that ∫

Ω

(|∇φ|2 + φ2)dx > λ

∫
∂Ω

f ′(uλ)φ
2dsx (1.6)

holds for every φ ∈ C1(Ω), φ ̸≡ 0.
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(ii) The map λ 7→ uλ(x) is continuous and increasing for any x ∈ Ω.

Motivated by the work by P. Quittner and W. Reichel [18], see also J.
Dávila [10], we define the notion of weak solutions of (1.1) as follows.

Definition 2 ([18]) Let L1(Ω×∂Ω) denote the space of measurable functions
u on Ω such that its pointwise restrictions u|Ω and u|∂Ω satisfy (u|Ω, u|∂Ω) ∈
L1(Ω)× L1(∂Ω). L1(Ω× ∂Ω) is a Banach space with the norm

∥u∥L1(Ω×∂Ω) = ∥u|Ω∥L1(Ω) + ∥u|∂Ω∥L1(∂Ω).

As is remarked in [18], u|Ω and u|∂Ω are not generally related with each
other for u ∈ L1(Ω× ∂Ω). The space L1(Ω× ∂Ω) is isomorphic to L1(Ω)×
L1(∂Ω). We use the notation u = (u1, u2) ∈ L1(Ω)× L1(∂Ω) for u ∈ L1(Ω×
∂Ω), where u1 = u|Ω, u2 = u|∂Ω.

Definition 3 Let h ∈ L1(∂Ω). We call a function u = (u1, u2) ∈ L1(Ω) ×
L1(∂Ω) is a weak solution to{

−∆u+ u = 0 in Ω,
∂u
∂ν

= h on ∂Ω,
(1.7)

if it holds ∫
Ω

(−∆φ+ φ)u1dx =

∫
∂Ω

(hφ− ∂φ

∂ν
u2)dsx (1.8)

for any φ ∈ C2(Ω). Also a function u = (u1, u2) ∈ L1(Ω)× L1(∂Ω) is called
a weak solution to (1.1)λ if f(u2) ∈ L1(∂Ω) and∫

Ω

(−∆φ+ φ)u1dx =

∫
∂Ω

(λf(u2)φ− ∂φ

∂ν
u2)dsx (1.9)

holds for any φ ∈ C2(Ω).

Remark 4 In some parts of the paper, admitting some ambiguity, we will
identify u1 or u2 with u for u ∈ L1(Ω× ∂Ω).

Remark 5 If u ∈ H1(Ω) is an energy solution to (1.1), that is, f(γ(u)) ∈
L1(∂Ω) and ∫

Ω

(∇u · ∇φ+ uφ)dx =

∫
∂Ω

λf(γ(u))φdsx

3



holds for any φ ∈ C1(Ω), then u is a weak solution in the sense of Definition
3 for u1 = u and u2 = γ(u), here γ(u) ∈ H1/2(∂Ω) is the usual trace of H1

function u on ∂Ω. In the following, we denote again γ(u) = u|∂Ω, or simply
u, for a Sobolev function u.

By Proposition 1, we may define a function

u∗(x) = lim
λ↑λ∗

uλ(x), x ∈ Ω. (1.10)

Then u∗ = ((u∗)1, (u
∗)2) = (u∗|Ω, u∗|∂Ω) becomes a weak solution of (1.1)λ∗

in the sense of Definition 3. Indeed, let λ1 > 0 denote the first eigenvalue of
the Steklov type eigenvalue problem{

−∆φ+ φ = 0 in Ω,
∂φ
∂ν

= λφ on ∂Ω,
(1.11)

and φ1 the first eigenfunction. It is known that λ1 is simple, isolated and φ1

can be chosen positive (see [19]). Multiplying φ1 to the equation of uλ, we
have

λ1

∫
∂Ω

uλφ1dsx = λ

∫
∂Ω

f(uλ)φ1dsx.

Since f satisfies the assumption (1.3), there exists a C > 0 such that f(t) ≥
4λ1t
λ∗

− C for every t > 0. Thus when λ ∈ (λ∗/2, λ∗), it holds

λ1

∫
∂Ω

uλφ1dsx = λ

∫
∂Ω

f(uλ)φ1dsx

≥ 2λ1

∫
∂Ω

uλφ1dsx − C,′ (C ′ =
Cλ∗

2

∫
∂Ω

φ1dsx).

Thus we have
∫
∂Ω
uλφ1dsx ≤ C and also

∫
∂Ω
f(uλ)φ1dsx ≤ C, where C is

independent of λ ∈ (λ∗/2, λ∗). Thus by Fatou’s lemma and the fact φ1|∂Ω ≥
c0 > 0 for some c0 > 0, we obtain that u∗ ∈ L1(∂Ω) and f(u∗) ∈ L1(∂Ω). To
see that u∗ ∈ L1(Ω), let ζ ∈ C2(Ω) be the solution of{

−∆ζ + ζ = 1 in Ω,
∂ζ
∂ν

= 0 on ∂Ω.

Multiplying ζ to the equation of uλ, we have∫
Ω

uλdx = λ

∫
∂Ω

f(uλ)ζdsx ≤ C.
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Fatou’s lemma again confirms that u∗ ∈ L1(Ω). Since uλ satisfies∫
Ω

(−∆φ+ φ)uλdx =

∫
∂Ω

(λf(uλ)φ− ∂φ

∂ν
uλ)dsx

for any φ ∈ C2(Ω), letting λ ↑ λ∗ and using Lebesgue’s dominated conver-
gence theorem on Ω and ∂Ω, we obtain that u∗ is a weak solution of (1.1)λ∗ .
In the following, we call u∗ the extremal solution of (1.1).

Compared with the well-studied problem (1.4), the problem (1.1) has
several technical difficulties. For example, on Ω = B, a ball, explicit singular
extremal solutions are known for some specific nonlinearities such as f(u) =
eu or f(u) = (1 + u)p for (1.4). However, we lose such explicit examples for
the problem (1.1). Also, for the problem (1.4), Hardy inequality(

N − 2

2

)2 ∫
Ω

u2

|x|2
dx ≤

∫
Ω

|∇u|2dx, ∀u ∈ H1
0 (Ω)

plays an important role when one studies the stability properties for the
singular extremal solutions, see [6]. We can not use the arguments in [6]
directly for (1.1).

In [4], [14], [15], the corresponding parabolic problems for (1.4) have been
treated and the global behavior of solutions, complete blow up phenomena,
and the instability of singular extremal solutions are studied. Corresponding
studies for the problem (1.1) will be future works.

The organization of the paper is as follows. In §2, we collect lemmas which
will be used in the later sections. Several facts analogous to those established
by Brezis, Cazenave, Martel and Ramiandrisoa [4] for (1.4) will be proved.
In §3, we treat the regularity property of the extremal solution to (1.1), as
in Nedev [17], see also Dávila [10]. In §4, similarly to the result by Martel
[13], the uniqueness of the extremal solution among weak solutions will be
proved. In §5, we study the existence of weak eigenfunctions corresponding
to zero eigenvalue of the linearized eigenvalue problem around the extremal
solution. Corresponding result for the problem (1.4) has been studied by
Cábre and Martel [8].

2 Preliminaries

In this section, we prepare several useful lemmas in the sequel of the paper.
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Lemma 6 Given h ∈ L1(∂Ω), there exists a unique weak solution u =
(u1, u2) ∈ L1(Ω)× L1(∂Ω) to (1.7) in the sense of (1.8). Moreover, it holds

∥u1∥L1(Ω) + ∥u2∥L1(∂Ω) ≤ C∥h∥L1(∂Ω). (2.1)

for some C > 0 independent of u and h. Also if h ≥ 0 on ∂Ω, then u1, u2 ≥ 0.

Proof. We prove the uniqueness first. Let u = (u1, u2), ũ = (ũ1, ũ2) be weak
solutions. Then w = (w1, w2), w1 = u1 − ũ1, w2 = u2 − ũ2, satisfies∫

Ω

(−∆φ+ φ)w1dx =

∫
∂Ω

(−∂φ
∂ν

)w2dsx

for any φ ∈ C2(Ω). Given ζ ∈ C∞(∂Ω), let φ ∈ C2(Ω) be the solution to{
−∆φ+ φ = 0 in Ω,
∂φ
∂ν

= ζ on ∂Ω.
(2.2)

Then we have ∫
∂Ω

w2ζdsx = 0

for such ζ, hence w2 = 0 a.e. on ∂Ω. Similarly, for given η ∈ C∞
0 (Ω), let

φ ∈ C2(Ω) be the solution to{
−∆φ+ φ = η in Ω,
∂φ
∂ν

= 0 on ∂Ω,
(2.3)

then we have ∫
Ω

w1ηdx = 0

and conclude w1 = 0 a.e. on Ω.
To prove the a priori estimate (2.1), let φ+, φ− ∈ C2(Ω) be the solution

to {
−∆φ+ φ = ±1 in Ω,
∂φ
∂ν

= 0 on ∂Ω

respectively. By the definition of the weak solution, we have∫
Ω

u1dx =

∫
Ω

(−∆φ+ + φ+)u1dx =

∫
∂Ω

hφ+dsx ≤ max
∂Ω

|φ+|∥h∥L1(∂Ω),
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and similarly∫
Ω

(−u1)dx =

∫
Ω

(−∆φ− + φ−)u1dx =

∫
∂Ω

hφ−dsx ≤ max
∂Ω

|φ−|∥h∥L1(∂Ω).

By the maximum principle, maxx∈∂Ω |φ±(x)| ≤ 1, thus we have ∥u1∥L1(Ω) ≤
∥h∥L1(∂Ω). Similarly, we have ∥u2∥L1(∂Ω) ≤ C∥h∥L1(∂Ω) if we take test func-
tions ψ+, ψ− as the solutions to{

−∆ψ + ψ = 0 in Ω,
∂ψ
∂ν

= ±1 on ∂Ω

respectively.
To prove the existence, put

hm(x) =


m if h(x) ≥ m,

h(x) if |h(x)| ≤ m,

−m if h(x) ≤ −m.
(2.4)

for m ∈ N. Since hm ∈ L∞(∂Ω), there exists um ∈ H1(Ω) such that{
−∆um + um = 0 in Ω,
∂um
∂ν

= hm on ∂Ω.
(2.5)

By the estimate (2.1), we have

∥um−un∥L1(Ω)+∥um|∂Ω−un|∂Ω∥L1(∂Ω) ≤ C∥hm−hn∥L1(∂Ω) = o(1), (m,n→ ∞).

Thus {um}m∈N and {um|∂Ω}m∈N are Cauchy sequences in L1(Ω) and L1(∂Ω)
respectively. Then there exist u1 ∈ L1(Ω), u2 ∈ L1(∂Ω) such that

um → u1 in L1(Ω), um|∂Ω → u2 in L1(∂Ω).

Since um satisfies∫
Ω

(−∆φ+ φ)umdx =

∫
∂Ω

(
hφ− ∂φ

∂ν
um|∂Ω

)
dsx

for any φ ∈ C2(Ω), we easily see that (u1, u2) ∈ L1(Ω) × L1(∂Ω) is a weak
solution of (1.7) by letting m→ ∞.

Lastly, if h ≥ 0 on ∂Ω, we have hm ≥ 0 and the maximum principle
implies that um ≥ 0 on Ω. Thus u1 ≥ 0 on Ω and u2 ≥ 0 on ∂Ω.
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Lemma 7 Let h ∈ L1(∂Ω) and let u = (u1, u2) ∈ L1(Ω)×L1(∂Ω) be the weak
solution to (1.7) in the sense of (1.8). Let Φ ∈ C2(R) be concave, with Φ′

bounded and Φ(0) = 0. Then v = (v1, v2) = (Φ(u1),Φ(u2)) ∈ L1(Ω)×L1(∂Ω)
is a weak supersolution to{

−∆v + v = 0 in Ω,
∂v
∂ν

= Φ′(u2)h on ∂Ω,

in the sense that∫
Ω

(−∆ψ + ψ)v1dx ≥
∫
∂Ω

{
Φ′(u2)hψ − ∂ψ

∂ν
v2

}
dsx

for any ψ ∈ C2(Ω), ψ ≥ 0 on Ω.

Proof. For h ∈ L1(∂Ω) and m ∈ N, define hm as before in (2.4) and let
um ∈ H1(Ω) be an energy solution of (2.5). By Lemma 6, we know um → u1
in L1(Ω), um|∂Ω → u2 in L1(∂Ω), where u = (u1, u2) is a weak solution of
(1.7) in the sense of (1.8). From

∥Φ(u1)− Φ(um)∥L1(Ω) ≤ ∥Φ′∥L∞(R)∥u1 − um∥L1(Ω),

∥Φ(u2)− Φ(um|∂Ω)∥L1(∂Ω) ≤ ∥Φ′∥L∞(R)∥u2 − um|∂Ω∥L1(∂Ω),

we obtain v = (v1, v2) = (Φ(u1),Φ(u2)) ∈ L1(Ω)×L1(∂Ω). Since um satisfies∫
Ω

(∇φ · ∇um + φum) dx =

∫
∂Ω

hmφdsx

for any φ ∈ C2(Ω), by density argument, this holds true for any φ ∈ H1(Ω).
We take φ = Φ′(um)ψ with ψ ∈ C2(Ω), ψ ≥ 0 on Ω, then we find that∫

Ω

{∇ (Φ′(um)ψ) · ∇um + Φ′(um)ψum} dx =

∫
∂Ω

hmΦ
′(um|∂Ω)ψdsx.

Noting Φ′′ ≤ 0 and ψ ≥ 0, we have∫
Ω

{∇ (Φ(um)) · ∇ψ + Φ′(um)ψum} dx ≥
∫
∂Ω

hmΦ
′(um|∂Ω)ψdsx.
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Now, since Φ is concave with Φ(0) = 0, we have Φ(um)
um

≥ Φ′(um). Therefore,∫
Ω

{∇ (Φ(um)) · ∇ψ + Φ(um)ψ} dx ≥
∫
∂Ω

hmΦ
′(um|∂Ω)ψdsx

holds for any ψ ∈ C2(Ω), ψ ≥ 0. Integration by parts leads to∫
Ω

(−∆ψ + ψ) Φ(um)dx ≥
∫
∂Ω

{
hmΦ

′(um|∂Ω)ψ − Φ(um|∂Ω)
∂ψ

∂ν

}
dsx.

Passing to the limit with the estimates∣∣∣∣∫
Ω

(−∆ψ + ψ)(Φ(u1)− Φ(um))dx

∣∣∣∣
≤ ∥ −∆ψ + ψ∥L∞(Ω)∥Φ′∥L∞(R)∥um − u1∥L1(Ω) = o(1),∣∣∣∣∫
∂Ω

(Φ(u2)− Φ(um|∂Ω))
∂ψ

∂ν
dsx

∣∣∣∣ ≤ ∥∇ψ∥L∞(∂Ω)∥Φ′∥L∞(R)∥um|∂Ω − u2∥L1(∂Ω) = o(1),∫
∂Ω

hmΦ
′(um|∂Ω)ψdsx →

∫
∂Ω

hΦ′(u2)ψdsx,

we confirm that v = Φ(u) = (Φ(u1),Φ(u2)) is the desired weak supersolution.
Note that hm → h in L1(∂Ω) strongly. Thus the last estimate is assured by
the Lebesgue dominated convergence theorem, since a.e. convergence along
a subsequence and the estimate |hmΦ′(um|∂Ω)ψ| ≤ ∥Φ′∥L∞(R)∥ψ∥L∞(∂Ω)|h| ∈
L1(∂Ω) hold true.

Lemma 8 Assume (1.1)λ has a weak supersolution w = (w1, w2) ∈ L1(Ω)×
L1(∂Ω), in the sense that f(w2) ∈ L1(∂Ω) and∫

Ω

(−∆φ+ φ)w1dx ≥
∫
∂Ω

{
λf(w2)φ− ∂φ

∂ν
w2

}
dsx

for any φ ∈ C2(Ω), φ ≥ 0 on Ω. Then (1.1)λ has a weak solution u =
(u1, u2) ∈ L1(Ω)× L1(∂Ω).

Proof. Proof consists of a standard monotone iteration argument in our
context. Define w(1) = (w

(1)
1 , w

(1)
2 ) = w = (w1, w2) ∈ L1(Ω) × L1(∂Ω). By
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the definition, we have f(w
(1)
2 ) ∈ L1(∂Ω). Let w(2) = (w

(2)
1 , w

(2)
2 ) be the

unique weak solution of{
−∆w

(2)
1 + w

(2)
1 = 0 in Ω,

∂w
(2)
2

∂ν
= λf(w

(1)
2 ) on ∂Ω

obtained by Lemma 6. Thus,∫
Ω

(−∆φ+ φ)(w
(1)
1 − w

(2)
1 )dx ≥

∫
∂Ω

∂φ

∂ν
(w

(2)
2 − w

(1)
2 )dsx

holds for any φ ∈ C2(Ω), φ ≥ 0 on Ω. As before, for given η ∈ C∞
0 (Ω) η ≥ 0

on Ω, take φ ∈ C2(Ω) as the solution of (2.3). Then we have∫
Ω

(w
(1)
1 − w

(2)
1 )ηdx ≥ 0,

and since η ∈ C∞
0 (Ω), η ≥ 0 can be chosen arbitrary, we conclude that

w
(1)
1 ≥ w

(2)
1 a.e. on Ω. Similarly, for any ζ ∈ C∞(∂Ω), ζ ≥ 0 on ∂Ω, let

φ ∈ C2(Ω) be the solution to (2.2). Then we have

0 ≥
∫
∂Ω

ζ(w
(2)
2 − w

(1)
2 )dsx,

which implies that w
(2)
2 ≤ w

(1)
2 a.e. on ∂Ω. By induction, we obtain

w1 = w
(1)
1 ≥ w

(2)
1 ≥ · · · ≥ w

(n)
1 ≥ · · · , a.e. on Ω,

w2 = w
(1)
2 ≥ w

(2)
2 ≥ · · · ≥ w

(n)
2 ≥ · · · , a.e. on ∂Ω.

By Lemma 6, we know w
(n)
1 ≥ 0 and w

(n)
2 ≥ 0. By the monotone convergence

theorem, w
(n)
1 and w

(n)
2 converges to u1, u2 respectively in L1(Ω) and L1(∂Ω).

Since f is increasing, we have also f(w
(n)
2 ) ≤ f(w

(1)
2 ) ∈ L1(∂Ω) for any n ∈ N,

which leads to f(u2) ∈ L1(∂Ω). Finally, it is easy to check that u = (u1, u2)
is a desired weak solution to (1.1)λ.

Main result in this section is the following nonexistence result for (1.1)λ
above the extremal parameter λ∗. See [4] Corollary 2, or [10] Theorem 3.8.

Theorem 9 Assume (1.2). If λ > λ∗, then there is no solution to (1.1)λ,
even in the weak sense in Definition 3.
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Actually, we prove the following proposition. Theorem 9 is an easy con-
sequence of this proposition and the definition of λ∗ (1.5).

Proposition 10 Let λ > 0 and assume that there exists a weak solution
u = (u1, u2) ∈ L1(Ω) × L1(∂Ω) to (1.1)λ. Then for any α ∈ (0, 1), the
problem {

−∆u+ u = 0 in Ω,
∂u
∂ν

= αλf(u) on ∂Ω,

has a classical solution.

Proof. Let u = (u1, u2) ∈ L1(Ω)× L1(∂Ω), u1, u2 ≥ 0 be a weak solution to
(1.1)λ. Given α ∈ (0, 1), define

H(t) =

∫ t

0

ds

λf(s)
(2.6)

and
Φ(t) = H−1(αH(t)) (2.7)

for t ≥ 0. Then by an easy observation, we see

(i) 0 = Φ(0) ≤ Φ(t) ≤ t for all t ≥ 0,

(ii) Φ is increasing, concave, Φ′(t) ≤ 1 for all t ≥ 0,

(iii) if limt→+∞H(t) is finite, then limt→+∞ Φ(t) is also finite,

see [4]:Lemma 4. Also simple calculation shows

λΦ′(t)f(t) = αλf(Φ(t)) (2.8)

holds. Thus, by Lemma 7 and the relation (2.8), we see that v = (v1, v2) =
(Φ(u1),Φ(u2)) ∈ L1(Ω)× L1(∂Ω) satisfies∫

Ω

(−∆φ+ φ)v1dx ≥
∫
∂Ω

{
αλf(v2)φ− ∂ψ

∂ν
v2

}
dsx

for any φ ∈ C2(Ω), φ ≥ 0 on Ω. That is, v = (v1, v2) is a weak supersolution
to (1.1)αλ.
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Suppose first that ∫ ∞

0

ds

f(s)
< +∞.

In this case, by (iii) above, we have Φ(∞) < ∞, which implies (v1, v2) =
(Φ(u1),Φ(u2)) be a bounded weak supersolution to (1.1)αλ. By Lemma 8, we
have a weak solution to (1.1)αλ, which is bounded, hence classical solution.
This proves Proposition in this case.

Next, consider the case ∫ ∞

0

ds

f(s)
= +∞.

In this case, we set v(1) = (v
(1)
1 , v

(1)
2 ) = (Φ(u1),Φ(u2)) ∈ L1(Ω) × L1(∂Ω).

Then by (i), we have 0 ≤ v
(1)
i ≤ ui for i = 1, 2, and since H is concave,

H(ui)−H(v
(1)
i ) ≤ H ′(v

(1)
i )(ui − v

(1)
i )

holds. By the definitions (2.6) and (2.7), we have

H(v
(1)
2 ) = αH(u2), and H ′(v

(1)
2 ) =

1

λf(v
(1)
2 )

.

Thus, we obtain

λ(1− α)H(u2) ≤
u2 − v

(1)
2

f(v
(1)
2 )

,

hence by the assumption H(∞) = +∞,

λ(1− α)f(v
(1)
2 ) ≤ u2

H(u2)
≤ C(1 + u2) ∈ L1(∂Ω),

which leads to f(v
(1)
2 ) ∈ L1(∂Ω). By Lemma 7, v(1) = (v

(1)
1 , v

(1)
2 ) ∈ L1(Ω) ×

L1(∂Ω) is a weak supersolution of (1.1)αλ. Therefore by Lemma 8, we obtain

a weak solution u(1) = (u
(1)
1 , u

(1)
2 ) ∈ L1(Ω)×L1(∂Ω) with the property u

(1)
i ≤

v
(1)
i for i = 1, 2. Also since f is positive and increasing, 0 ≤ f(u

(1)
2 ) ≤

f(v
(1)
2 ) ∈ L1(∂Ω). Hence by the elliptic L1 estimate of Brezis and Strauss

[5], we have u
(1)
1 ∈ W 1,q(Ω) for any 1 ≤ q < N

N−1
and u

(1)
2 ∈ Lp(∂Ω) for

any 1 ≤ p < N−1
N−2

(for any p < ∞ if N = 2). Now, set v(2) = (v
(2)
1 , v

(2)
2 ) =

(Φ(u
(1)
1 ),Φ(u

(1)
2 )) and repeat the procedure. We confirm that v(2) is a weak

12



supersolution to (1.1)α2λ, and there exists a weak solution u(2) = (u
(2)
1 , u

(2)
2 )

to (1.1)α2λ with the property that 0 ≤ f(u
(2)
2 ) ≤ f(v

(2)
2 ) a.e. on ∂Ω,

λ(1− α2)f(v
(2)
2 ) ≤ u

(1)
2

H(u
(1)
2 )

≤ C(1 + u
(1)
2 ) ∈ Lp(∂Ω),

in particular, f(u
(2)
2 ) ∈ Lp(∂Ω) for any 1 ≤ p < N−1

N−2
(for any p < ∞ if

N = 2). Then elliptic Lp estimates ([1, 2]) that u
(2)
1 ∈ W 1,q(Ω) for any

q < N
N−2

and the trace Sobolev embedding implies u
(2)
2 ∈ Lp(∂Ω) for any

p < N−1
N−3

(for any p < ∞ if N = 3). By iteration, we find a weak solution

u(k) = (u
(k)
1 , u

(k)
2 ) to the problem{

−∆u(k) + u(k) = 0 in Ω,
∂u(k)

∂ν
= αkλf(u(k)) on ∂Ω,

with the property that

u
(k)
1 ∈ W 1,q(Ω), ∀q < N

N − k
, u

(k)
2 ∈ Lp(∂Ω), ∀p < N − 1

N − (k + 1)
.

Thus after iterating N times, we obtain that u
(k)
1 ∈ L∞(Ω) and u

(k)
2 ∈

L∞(∂Ω). That is, u(k) is a bounded, hence classical solution to (1.1)αkλ.
Since α ∈ (0, 1) is arbitrary, we complete the proof.

3 Regularity of extremal solutions

In this section, we prove the extremal solution u∗ to our problem (1.1) is
bounded for N = 2. We follow the argument by Nedev [17], in which the
extremal solution of (1.4) is bounded (hence regular by usual elliptic esti-
mates) when N ≤ 3. Recently, this result for the extremal solution of (1.4) is
improved to N = 4 by Villegas [21], which uses a key estimate by X. Cábre
[7].

Theorem 11 Let u∗ = ((u∗)1, (u
∗)2) be the extremal solution to (1.1)λ∗. As-

sume f ∈ C2([0,+∞)) satisfies (1.2), (1.3). Then we have:

(i) If N = 2, then u∗ = ((u∗)1, (u
∗)2) ∈ L∞(Ω)× L∞(∂Ω).

13



(ii) If N ≥ 3, then (u∗)2 ∈ Lp(∂Ω) for 1 ≤ p < N−1
N−3

(for any 1 ≤ p < ∞
when N = 3). If N ≥ 2, then f((u∗)2) ∈ Lp(∂Ω) for any 1 ≤ p < N−1

N−2

(for any 1 ≤ p <∞ when N = 2).

(iii) (u∗)1 ∈ W 1,γ(Ω) for any 1 ≤ γ < N
N−2

when N ≥ 3 (for any 1 ≤ γ <∞
when N = 2). In particular, (u∗)1 ∈ H1(Ω) if N ≤ 3.

Proof. We obtain several estimates of minimal solutions uλ to (1.1)λ which
are independent of λ ∈ (0, λ∗). Following Nedev [17], see also [10], we put

g(t) =

∫ t

0

{f ′(s)}2ds, t ≥ 0.

Since f is C2, g is also a C2 function. Multiplying g(uλ) ∈ C2(Ω) to the
equation of (1.1)λ satisfied by uλ and integrating, we obtain∫

Ω

f ′(uλ)
2|∇uλ|2dx = λ

∫
∂Ω

f(uλ)g(uλ)dsx −
∫
Ω

uλg(uλ)dx. (3.1)

Recall the stability of uλ:∫
Ω

(|∇φ|2 + φ2)dx ≥ λ

∫
∂Ω

f ′(uλ)φ
2dsx

holds for every φ ∈ C1(Ω). Applying this inequality to φ = f̃(uλ), f̃(t) =
f(t)− f(0), we obtain

λ

∫
∂Ω

f ′(uλ)f̃(uλ)
2dsx ≤

∫
Ω

(
f ′(uλ)

2|∇uλ|2 + f̃(uλ)
2
)
dx. (3.2)

By (3.1) and (3.2), we have

λ

∫
∂Ω

{
f ′(uλ)f̃(uλ)

2 − f̃(uλ)g(uλ)
}
dsx ≤ λf(0)

∫
∂Ω

g(uλ)dsx

+

∫
Ω

(
f̃(uλ)

2 − uλg(uλ)
)
dx. (3.3)

Let

h(t) =

∫ t

0

f ′(s)(f ′(t)− f ′(s))ds.

14



Then we see h(t) ≥ 0 and f ′(t)f̃(t)2 − f̃(t)g(t) = f̃(t)h(t). Also if we put

A(t) = f̃(t)2 − tg(t),

then we see A ∈ C2([0,∞)), A(0) = 0, A′(0) = 0 and

A′′(t) = 2f ′′(t){f̃(t)− tf ′(t)} ≤ 0,

since by the convexity of f and the assumption f ∈ C2, we have f ′′(t) ≥ 0

and f ′(t) ≥ f(t)−f(0)
t

for t > 0. Thus we obtain A(t) ≤ 0 for all t ≥ 0, which
leads to

λ

∫
∂Ω

f̃(uλ)h(uλ)dsx ≤ λf(0)

∫
∂Ω

g(uλ)dsx (3.4)

from (3.3). By the same argument in [17], we have

lim
t→∞

h(t)

f ′(t)
= +∞ (3.5)

and

g(t) =

∫ t

0

{f ′(s)}2ds ≤
∫ t

0

f ′(s)f ′(t)ds ≤ f ′(t)f̃(t),

which with (3.5) implies

lim
t→∞

f̃(t)h(t)

g(t)
= +∞. (3.6)

From (3.4),(3.5) and (3.6), we have, as in [17],∫
∂Ω

g(uλ)dsx ≤ C,

∫
∂Ω

f̃(uλ)h(uλ)dsx ≤ C (3.7)

and also ∫
∂Ω

f̃(uλ)f
′(uλ)dsx ≤ C,

∫
∂Ω

f̃(uλ)
2

uλ
dsx ≤ C (3.8)

for C > 0 independent of λ. We prove here (3.7) only. Indeed, by (3.6), there
exists T > 0 such that h(t)f̃(t) ≥ 2f(0)g(t) for all t > T . Let

∂Ωλ,T = {x ∈ ∂Ω | uλ(x) > T}.

Then we have

2f(0)

∫
∂Ωλ,T

g(uλ)dsx ≤
∫
∂Ωλ,T

f̃(uλ)h(uλ)dsx ≤ f(0)

∫
∂Ω

g(uλ)dsx
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by (3.4). This implies∫
∂Ωλ,T

g(uλ)dsx ≤
∫
∂Ω\∂Ωλ,T

g(uλ)dsx ≤ g(T )|∂Ω|

and ∫
∂Ω

g(uλ)dsx ≤ 2g(T )|∂Ω|.

Backing to (3.4), we have (3.7).

From (3.8) and the assumption limt→∞
f̃(t)
t

= +∞, we obtain that∫
∂Ω

f(uλ)dsx ≤ C

for some C > 0 independent of λ. By the elliptic L1 estimate of Brezis and
Strauss [5], we have

uλ ∈ W 1,q(Ω) for any 1 ≤ q <
N

N − 1
, and

uλ ∈ Lp(∂Ω) for any 1 ≤ p <
N − 1

N − 2
, (1 ≤ p <∞ if N = 2).

Let α ∈ (0, 1) and define

A = {x ∈ ∂Ω | f̃(uλ(x)) ≤ uλ(x)
1/α},

B = {x ∈ ∂Ω | f̃(uλ(x))2/uλ(x) > f̃(uλ(x))
2−α}.

Then by (3.8), we have ∫
B

f̃(uλ(x))
2−αdsx ≤ C

and ∫
A

f̃(uλ)
pdsx ≤

∫
A

u
p/α
λ dsx ≤ C

if p/α < N−1
N−2

. Choosing α ∈ (0, 1) such that 2− α = α(N−1)
N−2

, i.e., α = 2(N−2)
2N−3

(α > 0 is any small if N = 2), we see that∫
∂Ω

f̃(uλ)
pdsx ≤ C for 1 ≤ p <

α(N − 1)

N − 2
=

2N − 1

2N − 3
.
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Then, elliptic Lp estimate ([1], [2]) implies

uλ ∈ W 1,γ(Ω) for γ =
Np

N − 1
, 1 ≤ p <

2(N − 1)

2N − 3
,

and by the trace Sobolev embedding W 1,γ(Ω) ↪→ L
(N−1)γ
N−γ (∂Ω),

uλ ∈ Lp(∂Ω) for any 1 ≤ p <
2(N − 1)

2N − 5
, (1 ≤ p ≤ ∞ if N = 2).

Now, we use a bootstrap argument. Assume we obtain that uλ ∈ Lp(∂Ω) for
p < p0. We choose α ∈ (0, 1) as 2 − α = αp0, i.e., α = 2

1+p0
. Then ellip-

tic Lp estimate and trace Sobolev embedding imply that uλ ∈ W 1,γ(Ω) ↪→
L

(N−1)γ
N−γ (∂Ω), where γ = Np

N−1
so (N−1)γ

N−γ = (N−1)p
N−1−p . Also ∥f(uλ)∥Lp(∂Ω) ≤ C for

any p < αp0. Note that when p < 2p0
1+p0

, then (N−1)p
N−1−p <

2(N−1)p0
N−1+(N−3)p0

. Let us
define

p∞ =
2(N − 1)p∞

N − 1 + (N − 3)p∞
,

that is, p∞ = N−1
N−3

. Then we obtain ∥uλ∥Lp(∂Ω) ≤ C independent of λ for

any p < N−1
N−3

and also ∥f(uλ)∥Lp(∂Ω) ≤ C for any p < 2p∞
1+p∞

= N−1
N−2

. Thus

by elliptic estimates, we have uλ ∈ W 1,γ(Ω) for γ = Np
N−1

, p < N−1
N−2

. Thus

uλ ∈ W 1,γ(Ω) for any γ < N
N−2

when N ≥ 3.

For typical nonlinearities such as f(u) = eu or f(u) = (1 + u)p for p > 1,
we improve the above result as follows:

Proposition 12 Let u∗ be the extremal solution to (1.1)λ∗ with f(u) = eu.
Then if N ≤ 5, we have u∗ ∈ L∞(Ω).

Proposition 13 Let u∗ be the extremal solution to (1.1)λ∗ with f(u) = (1+
u)p for p > 1. Define

Np = 4 + 2

(
1

p− 1
+

√
1 +

1

p− 1

)
. (3.9)

Then if N < Np, we have u∗ ∈ L∞(Ω).

In particular, if N ≤ 6, or N ≥ 7 and 1 < p < p+(N) := N2−6N+6+2
√
2N−3

(N−2)(N−6)
,

then u∗ ∈ L∞(Ω).
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Note that for our problem (1.1), we do not know any information of the
explicit singular extremal solutions even when Ω = B is a ball and f is one
of the above nonlinearities.

Proof of Proposition 12. We follow the arguments in [9], [16] with some
modifications for out context. Recall the minimal solution uλ satisfies the
stability inequality∫

Ω

(|∇φ|2 + φ2)dx ≥ λ

∫
∂Ω

euλφ2dsx, ∀φ ∈ C1(Ω)

and the weak form of the equation∫
Ω

(∇ψ · ∇uλ + uλψ)dx = λ

∫
∂Ω

euλψdsx, ∀ψ ∈ C1(Ω).

We put φ = etuλ and ψ = e2tuλ , where t > 0. Testing with them we have∫
Ω

(t2e2tuλ|∇uλ|2 + e2tuλ)dx ≥ λ

∫
∂Ω

e(2t+1)uλdsx

and ∫
Ω

(2te2tuλ |∇uλ|2 + uλe
2tuλ)dx = λ

∫
∂Ω

e(2t+1)uλdsx.

Combining these, we obtain

2

∫
Ω

e2tuλdx− t

∫
Ω

uλe
2tuλdx ≥ λ(2− t)

∫
∂Ω

e(2t+1)uλdsx.

Since (0,+∞) ∋ s 7→ (2 − ts)e2ts is bounded from above for t > 0, the left
hand side is bounded when λ ↑ λ∗. Thus for any 0 < t < 2, we have euλ

is uniformly bounded in L2t+1(∂Ω), and the elliptic estimate implies that
∥uλ∥

W
1, N

N−1
(2t+1)

(Ω)
≤ C uniformly in λ. Sobolev embedding assures that

∥uλ∥L∞(Ω) ≤ C uniformly in λ if 2t + 1 > N − 1. Since t can be chosen
arbitrary near to 2, this shows that u∗ ∈ L∞(Ω) if N < 6.

Proof of Proposition 13. Again, minimal solution uλ satisfies the stability
inequality∫

Ω

(|∇φ|2 + φ2)dx ≥ λ

∫
∂Ω

p(1 + uλ)
p−1φ2dsx, ∀φ ∈ C1(Ω)
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and the weak form of the equation∫
Ω

(∇ψ · ∇uλ + uλψ)dx = λ

∫
∂Ω

(1 + uλ)
pψdsx, ∀ψ ∈ C1(Ω).

In this case, choosing φ = (1+uλ)
tp+ 1

2 and ψ = (1+uλ)
2tp for t > 0, we have∫

Ω

{
(tp+

1

2
)2(1 + uλ)

2tp−1|∇uλ|2 + (1 + uλ)
2tp+1

}
dx ≥ λp

∫
∂Ω

(1+uλ)
p(2t+1)dsx

and∫
Ω

{
2tp(1 + uλ)

2tp−1|∇uλ|2 + uλ(1 + uλ)
2tp

}
dx = λ

∫
∂Ω

(1 + uλ)
p(2t+1)dsx.

Combining these, we have∫
Ω

{
(tp+

1

2
)2(1 + uλ)

2tp − (tp− 1

2
)2(1 + uλ)

2tp+1

}
dx

≥ λ

{
2tp2 − (tp+

1

2
)2
}∫

∂Ω

(1 + uλ)
p(2t+1)dsx.

Since (0,+∞) ∋ s 7→ A(1 + s)2tp − B(1 + s)2tp+1 is bounded from above
for A,B > 0, the left hand side is bounded when λ ↑ λ∗. Therefore, we
have a uniform bound ∥(1 + uλ)

p∥L2t+1(∂Ω) ≤ C when 2tp2 − (tp + 1
2
)2 >

0. This quadratic inequality with respect to t is equivalent to that t ∈(
2p−1−2

√
p(p−1)

2p
,
2p−1+2

√
p(p−1)

2p

)
, that is,

3p− 1− 2
√
p(p− 1)

p
< 2t+ 1 <

3p− 1 + 2
√
p(p− 1)

p
.

Now, we use a bootstrap argument. If (1 + uλ)
p ∈ Lq(∂Ω), elliptic estimate

and trace Sobolev embedding imply that uλ ∈ W 1, N
N−1

q(Ω) ↪→ L
(N−1)q
N−1−q (∂Ω).

Define {qk}k∈N as{
q1 = 2t+ 1,
1

qk+1
= p

(
1
qk

− 1
N−1

)
, (k = 1, 2, · · · ).
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We easily obtain that 1
qk

= pk−1
(

1
q1
− p

(N−1)(p−1)

)
+ p

(N−1)(p−1)
, hence if

1

q1
<

p

(N − 1)(p− 1)
, (3.10)

then there exists some k ∈ N such that 1
qk+1

< 0, which implies qk > N − 1

and uλ ∈ W 1, N
N−1

qk(Ω) ↪→ L∞(Ω), which ends the proof. Since q1 = 2t + 1

can be chosen arbitrary close to the number
3p−1+2

√
p(p−1)

p
, (3.10) is satisfied

when

(N − 1)(1− 1

p
) <

3p− 1 + 2
√
p(p− 1)

p
,

which is equivalent to N < Np where Np is defined in (3.9). Since Np is
decreasing with respect to p and Np → 6 as p → ∞, we have Np > 6 for
any p > 1. Also we can check that the inequality N < Np is equivalent to

1 < p < p+(N) = N2−6N+6+2
√
2N−3

(N−2)(N−6)
when N ≥ 7. This proves Proposition

13.

4 Uniqueness of weak extremal solutions

In this section, following the argument of Martel [13], see also [10], we show
the uniqueness of extremal solution even in the weak sense, as described
below.

Theorem 14 Assume f ∈ C2([0,+∞)) satisfies (1.2), (1.3). Let λ∗ be
defined in (1.5). Assume (1.1)λ∗ has a weak supersolution w = (w1, w2) ∈
L1(Ω)× L1(∂Ω), in the sense that f(w2) ∈ L1(∂Ω) and∫

Ω

(−∆φ+ φ)w1dx ≥
∫
∂Ω

{
λ∗f(w2)φ− ∂φ

∂ν
w2

}
dsx

for any φ ∈ C2(Ω), φ ≥ 0 on Ω. Then (w1, w2) = ((u∗)1, (u
∗)2), where u

∗ is
defined by (1.10). As a consequence, the extremal solution u∗ is the unique
weak solution to (1.1)λ∗.

Proof. By assumption and Lemma 8, there exists a weak solution u to
(1.1)λ∗ . We argue by contradiction and assume that u ̸≡ u∗, u > u∗ in Ω.
We divide the proof into several steps.
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Step 1. There exists a strict supersolution v to (1.1)λ∗ .
Indeed, the convexity of f implies that ut = tu∗+(1−t)u is a supersolution

of (1.1)λ∗ for any t ∈ (0, 1). Suppose on the contrary that ut is a solution to
(1.1)λ∗ for all t ∈ (0, 1). This implies that there is a set N ⊂ ∂Ω with (N−1)-
dimensional measure 0 such that f(ut(x)) = tf(u∗(x))+(1−t)f(u(x)) for any
x ∈ ∂Ω\N and for all t ∈ (0, 1). Thus f is linear on the interval [u∗(x), u(x)]
for such x. By the same argument of [10] p.148, which uses the regularity of
the extremal solution u∗ as described in Theorem 11, we obtain that u∗(∂Ω)
is dense in the interval [ess inf∂Ω u

∗, ess sup∂Ω u
∗] and ∪x∈∂Ω\N [u∗(x), u(x)] is

also an interval. This implies u∗ is a solution to{
−∆u+ u = 0 in Ω,
∂u
∂ν

= λ∗(au+ b) on ∂Ω

for some a, b ∈ R. Assumption f(0) > 0 implies b > 0. In this linear case, we
easily see that λ∗ = λ1

a
, where λ1 is the first eigenvalue of the problem (1.11).

Regularity theory assures that u∗ is a classical solution. Thus if we multiply
the equation by φ1 the first eigenfunction of (1.11) with the normalization∫
∂Ω
φ1dsx = 1, we have∫

∂Ω

λ∗(au+ b)φ1dsx =

∫
∂Ω

λ1uφ1dsx.

Thus we obtain b = 0, a contradiction.

Step 2. There is an ε > 0 such that{
−∆u+ u = 0 in Ω,
∂u
∂ν

= λ∗f(u) + ε on ∂Ω

has a weak supersolution w.
Indeed, by Step 1, we have a strict supersolution v to (1.1)λ∗ . Let V be

the solution to the linear problem{
−∆V + V = 0 in Ω,
∂V
∂ν

= λ∗f(v) on ∂Ω,

and ψ is a solution of {
−∆ψ + ψ = 0 in Ω,
∂ψ
∂ν

= 1 on ∂Ω.
(4.1)
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Then the maximum principle implies v − V ≥ εψ on Ω for sufficiently small
ε > 0. Define w = V + εψ. Then we see w ≤ v and

∂w

∂ν
= λ∗f(v) + ε ≥ λ∗f(w) + ε

by the monotonicity of f . Thus w is a weak supersolution.

Step 3. Let ε1 ∈ (0, ε), where ε > 0 is a constant in Step 2. Then there
exists a bounded (classical) solution to{

−∆u+ u = 0 in Ω,
∂u
∂ν

= λ∗f(u) + ε1 on ∂Ω.
(4.2)

The proof of this fact is quite similar to that of Proposition 10. Indeed,
let us define

Hε(t) =

∫ t

0

ds

λ∗f(s) + ε

and
Φ(t) = H−1

ε1
(Hε(t))

for t ≥ 0. Put v = Φ(w) where w is a weak supersolution in Step 2. It
is enough to consider the case when

∫∞
0

ds
f(s)

= +∞, because otherwise, we

find as before that v = Φ(w) is a bounded weak supersolution to (4.2) and
Lemma 8 yields the result. We see v ≤ w and since Hε is concave,

Hε(w)−Hε(v)

w − v
≤ H ′

ε(v) =
1

λ∗f(v) + ε
.

Also since Hε(w) = Hε1(v), we have

Hε(w)−Hε(v) = Hε1(v)−Hε(v) =

∫ v

0

(
1

λ∗f(s) + ε1
− 1

λ∗f(s) + ε

)
ds

≥ (ε− ε1)

∫ v

0

1

(λ∗f(s) + 1)2
ds.

From these, we obtain λ∗f(v)+ε ≤ C(1+w)
ε−ε1 ∈ L1(∂Ω). This and the bootstrap

argument as in Proposition 10 yield the proof of Step 3.
Let u be the bounded solution obtained in Step 3 and let λ′ > λ∗. Define

U =
λ′

λ∗
u− ε1ψ
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where ψ is a solution to (4.1). Then we see ∂U
∂ν

= λ′f(u)+ λ′

λ∗
ε1− ε1 ≥ λ′f(u)

on ∂Ω. Choose λ′

λ∗
> 1 sufficiently close to 1 in order to assure U ≤ u on Ω

(note that u is bounded), then we see U is a bounded supersolution to (1.1)
for λ = λ′. By Lemma 8, we have a classical solution to (1.1)λ′ for λ

′ > λ∗,
contradicting to the definition of λ∗.

As an application of Theorem 14, we show a characterization of the un-
bounded extremal solutions in the energy class H1(Ω).

Theorem 15 Let u ∈ H1(Ω), u ̸∈ L∞(∂Ω), be a singular weak solution to
(1.1)λ where f is as in Theorem 14. Then the followings are equivalent:

(i) f ′(u) ∈ L1(∂Ω) and∫
Ω

(|∇φ|2 + φ2)dx ≥ λ

∫
∂Ω

f ′(u)φ2dsx

holds for every φ ∈ C1(Ω), φ ̸≡ 0.

(ii) λ = λ∗ and u = u∗.

Proof. The implication (ii) =⇒ (i) follows easily by the stability property
of the minimal solutions uλ and Fatou’s lemma.

Let us prove (i) =⇒ (ii). Since no solution exists for λ > λ∗ by Theorem
9, we have λ ≤ λ∗. Assume the contrary that λ < λ∗. By the density
argument, we can take the test function φ = u−uλ ∈ H1(Ω). Note that here
we have used the assumption u ∈ H1(Ω). Also the assumption u ̸∈ L∞(∂Ω)
implies that u − uλ ̸≡ 0. Combining the equation satisfied by u − uλ with
(i), we get

λ

∫
∂Ω

(f(u)− f(uλ)) (u− uλ)dsx =

∫
Ω

(|∇(u− uλ)|2 + (u− uλ)
2)dx

≥ λ

∫
∂Ω

f ′(u)(u− uλ)
2dsx,

which implies

λ

∫
∂Ω

(u− uλ) (f(u)− f(uλ)− f ′(u)(u− uλ)) dsx ≥ 0.
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Since the integrand is non positive by the convexity of f , we conclude that
f(u) = f(uλ) + f ′(u)(u − uλ) a.e. on ∂Ω. This implies that f is linear on
intervals of the form [uλ(x), u(x)] for a.e. x ∈ ∂Ω. Now, since u is unbounded
on ∂Ω, the union of these intervals is an interval of the form [A,+∞] and
f is linear on this interval. But this contradicts to the superlinearity at ∞
of f in (1.3). Thus we have λ = λ∗. Finally, by the uniqueness of extremal
solution u∗ in Theorem 14, we conclude u = u∗.

5 Weak eigenfunctions for the extremal lin-

earized problem

In this section, we prove the following theorem, which is a natural extension
of the result by Cabré and Martel [8] to our case.

Theorem 16 Let f be as in Theorem 14. Then there exists a function φ ≥ 0,
φ ̸≡ 0, such that φ ∈ W 1,q(Ω) for any 1 ≤ q < N

N−1
, f ′(u∗)φ ∈ L1(∂Ω) and∫

Ω

(−∆ζ + ζ)φdx =

∫
∂Ω

{
λ∗f ′(u∗)φζ − ∂ζ

∂ν
φ

}
dsx

for all ζ ∈ C2(Ω). That is, there exists a weak solution to the linearized
eigenvalue problem around the extremal solution u∗:{

−∆φ+ φ = 0 in Ω,
∂φ
∂ν

= λ∗f ′(u∗)φ+ µφ on ∂Ω
(5.1)

for µ = 0.

First, we need a lemma.

Lemma 17 Let {un} ⊂ C2(Ω) be a sequence of functions such that{
−∆un + un = 0 in Ω,
∂un
∂ν

≥ 0 on ∂Ω.
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Assume ∥un∥L1(∂Ω) ≤ C for some C > 0 independent of n. Then there exists
a subsequence (denoted again by un) and u ∈ W 1,q(Ω) such that

un ⇀ u weakly in W 1,q(Ω), 1 < q <
N

N − 1
,

un → u strongly in Lp(∂Ω), 1 ≤ p <
N − 1

N − 2
.

Moreover, for any 1 ≤ p < N−1
N−2

, there exists a constant Cp > 0 depending
only on p such that

∥un∥Lp(∂Ω) ≤ Cp∥un∥L1(∂Ω) (5.2)

holds true for any n ∈ N.

Proof. First we prove the a priori estimate (5.2) by a duality argument. For
η ∈ C∞(∂Ω) be given, let ζ ∈ C2(Ω) be a solution to{

−∆ζ + ζ = 0 in Ω,
∂ζ
∂ν

= η on ∂Ω.

Let p ∈ (1, N−1
N−2

). Then the Hölder conjugate exponent p′ = p
p−1

> N − 1.

Elliptic estimate ([1, 2]) implies that ∥ζ∥W 1,γ(Ω) ≤ C∥η∥Lp′ (∂Ω) where γ =
Np′

N−1
> N . Since W 1,γ(Ω) ↪→ Cα(Ω) for α = 1 − N

γ
∈ (0, 1), we have

|ζ|(x) ≤ C∥η∥Lp′ (∂Ω)φ1(x), x ∈ Ω, where φ1 denotes the first eigenfunction
of the problem (1.11). By Green’s identity, we have∣∣∣∣∫

∂Ω

unηdsx

∣∣∣∣ = ∣∣∣∣∫
∂Ω

un
∂ζ

∂ν
dsx

∣∣∣∣
=

∣∣∣∣∫
∂Ω

(
∂un
∂ν

)
ζdsx −

∫
Ω

(∆ζ − ζ)un − (∆un − un)ζdx

∣∣∣∣
≤

∫
∂Ω

(
∂un
∂ν

)
|ζ|dsx ≤ C∥η∥Lp′ (∂Ω)

∫
∂Ω

(
∂un
∂ν

)
φ1dsx

= C∥η∥Lp′ (∂Ω)λ1

∫
∂Ω

unφ1dsx ≤ C∥η∥Lp′ (∂Ω)λ1∥φ1∥L∞(∂Ω)∥un∥L1(∂Ω).

Since η ∈ C∞(∂Ω) is arbitrary, we obtain (5.2) by duality.
Now, let ψ > 0 be the solution of (4.1). Then we have∫

∂Ω

(
∂un
∂ν

)
ψdsx =

∫
∂Ω

(
∂ψ

∂ν

)
undsx =

∫
∂Ω

undsx,
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hence ∥∂un
∂ν

∥L1(∂Ω) ≤
∥un∥L1(∂Ω)

min∂Ω ψ
≤ C, where C is independent of n by the as-

sumption. Thus, by Brezis-Strauss estimate [5], we confirm that ∥un∥W 1,q(Ω) ≤
C∥∂un

∂ν
∥L1(∂Ω) ≤ C for any 1 ≤ q < N

N−1
and there exists a subsequence such

that un ⇀ u in W 1,q(Ω) for 1 < q < N
N−1

for some u ∈ W 1,q(Ω). Since the

trace Sobolev embedding W 1,q(Ω) ↪→ Lp(∂Ω) is compact if 1 ≤ p < (N−1)q
N−q ,

we conclude that ∥un − u∥Lp(∂Ω) → 0 for 1 ≤ p < N−1
N−2

.

Now, we prove Theorem 16.

Proof. As in [8], we divide the proof into several steps.

Step 1. For n ∈ N, define a sequence of functions which are asymptotically
linear approximations of f as

fn(s) =

{
f(s) if s ≤ n,

f(n) + f ′(n)(s− n) if s > n,

and consider the approximated problem{
−∆u+ u = 0 in Ω,
∂u
∂ν

= λfn(u) on ∂Ω.
(5.3)

Denote

λ∗n = sup{λ > 0 : (5.3)λ admits a minimal classical solution ∈ C2(Ω)},

and let un,λ be a classical minimal solution to (5.3) for λ < λ∗n. Note that
fn(0) > 0, increasing and convex, the above extremal parameter λ∗n is finite
and the existence of minimal solution is assured by the standard method.
Note also that fn ≤ fn+1 ≤ f , hence λ∗ ≤ λ∗n+1 ≤ λ∗n for any n ∈ N.
Though fn does not satisfy the superlinear condition at ∞, we claim that
the pointwise limit

u∗n(x) = lim
λ↑λ∗n

un,λ(x)

is a classical solution of (5.3)λ∗n for n large. Indeed, take λ ∈ (λ∗/2, λ∗n) and let
un,λ be the minimal solution to (5.3)λ. Multiplying the equation satisfied by
un,λ by φ1, where φ1 is the first eigenfunction of (1.11), which is normalized
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as
∫
∂Ω
φ1dsx = 1, we obtain that

λ1

∫
∂Ω

φ1un,λdsx = λ

∫
∂Ω

fn(un,λ)φ1dsx

≥ λfn

(∫
∂Ω

φ1un,λdsx

)
>
λ∗

2
fn

(∫
∂Ω

φ1un,λdsx

)
.

Here we have used Jensen’s inequality for convex functions fn. Thus we have

an,λ ≥
(
λ∗

2λ1

)
fn(an,λ)

where we put an,λ =
∫
∂Ω
φ1un,λdsx. On the other hand, (1.3) implies that

f(n) >
(
2λ1
λ∗

)
n and f ′(n) >

(
2λ1
λ∗

)
for n sufficiently large. Assume the con-

trary that fn(an,λ) = f ′(n)(an,λ−n)+ f(n) for some n ∈ N sufficiently large.
Then we have, since an,λ > n,

an,λ ≥
(
λ∗

2λ1

)
fn(an,λ) =

(
λ∗

2λ1

)
{f ′(n)(an,λ − n) + f(n)}

> an,λ − n+ n = an,λ,

which is a contradiction. Thus we conclude there exists n0 ∈ N such that

fn(an,λ) = f(an,λ), and an ≥
(
λ∗

2λ1

)
f(an,λ) for n ≥ n0. Now, by the as-

sumption f , we have C > 0 such that f(s) ≥ 4λ1
λ∗
s− C holds for any s > 0.

From this and the former estimate, we have an,λ ≤
(
λ∗

2λ1

)
C for n ≥ n0. This

implies that

∥un,λ∥L1(∂Ω) ≤ C for any n ≥ n0 and any λ ∈ (λ∗/2, λ∗n). (5.4)

At this stage, we can invoke Lemma 17 to confirm that

∥un,λ∥W 1,q(Ω) ≤ C (1 ≤ q <
N

N − 1
) and ∥un,λ∥Lp(∂Ω) ≤ C (1 ≤ p <

N − 1

N − 2
)

for any n ≥ n0 and λ ∈ (λ∗/2, λ∗n). Now, since fn(s) is linear for s large, we
have fn(un,λ) ∈ Lp(∂Ω) and ∥fn(un,λ)∥Lp(∂Ω) ≤ C(n) for 1 ≤ p < N−1

N−2
. Thus

the elliptic Lp estimate: ∥un,λ∥W 1,γ(Ω) ≤ C∥fn(un,λ)∥Lp(∂Ω) where γ = Np
N−1

<

N
N−2

, and the trace Sobolev embedding: W 1,γ(Ω) ↪→ L
(N−1)γ
N−γ (∂Ω), imply that
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∥un,λ∥Lp(∂Ω) ≤ C(n) for any 1 ≤ p < N−1
N−3

. We can continue this bootstrap
procedure. Finally, we have ∥un,λ∥C2(Ω) ≤ C(n) uniformly in λ ∈ (λ∗/2, λ∗n).

Thus, letting λ ↑ λ∗n, we see that un,λ → u∗n in C1,α(Ω) for some α ∈ (0, 1)
and u∗n ∈ C2(Ω) is a classical solution of{

−∆u∗n + u∗n = 0 in Ω,
∂u∗n
∂ν

= λ∗nfn(u
∗
n) on ∂Ω.

This proves the claim.
Now, the facts that u∗n is classical and there is no classical solution of

(5.3)λ for λ > λ∗n, the linearized problem around u∗n must have zero eigen-
value. Thus, there exists φn > 0 with

∫
∂Ω
φndsx = 1 such that{

−∆φn + φn = 0 in Ω,
∂φn

∂ν
= λ∗nf

′
n(u

∗
n)φn on ∂Ω.

(5.5)

Step 2. By letting λ ↑ λ∗n in (5.4), we have ∥u∗n∥L1(∂Ω) ≤ C. Also recall our
normalization ∥φn∥L1(∂Ω) = 1. Thus by Lemma 17, we see that there exist
w,φ ∈ L1(Ω), φ ≥ 0 a.e. such that

u∗n ⇀ w, φn ⇀ φ weakly in W 1,q(Ω),

u∗n → w, φn → φ strongly in Lp(∂Ω) and a.e. on ∂Ω (5.6)

for any 1 < q < N
N−1

and 1 ≤ p < N−1
N−2

. In particular, we have
∫
∂Ω
φdsx = 1,

which implies φ ̸≡ 0 on ∂Ω.
We prove that λ∗n ↓ λ∗ as n → ∞ and w = u∗. First, we show that

the weak limit w ∈ W 1,q(Ω) is a weak supersolution when considered as
w = (w1, w2) ∈ L1(Ω)×L1(∂Ω), where w1 = w|Ω, and w2 = w|∂Ω is the usual
trace of a Sobolev function w on ∂Ω. Indeed, put λ = infn≥n0 λ

∗
n. Since

λ∗n ≥ λ∗ for any n ≥ n0, we have λ ≥ λ∗. For all ζ ∈ C2(Ω), ζ ≥ 0, we
observe that∫

Ω

(−∆ζ + ζ)u∗ndx = λ∗n

∫
∂Ω

fn(u
∗
n)ζdsx −

∫
∂Ω

∂ζ

∂ν
u∗ndsx

≥ λ

∫
∂Ω

fn(u
∗
n)ζdsx −

∫
∂Ω

∂ζ

∂ν
u∗ndsx.
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Using u∗n → w in L1(Ω) on the left side hand and Fatou’s lemma on the right
hand side, we have∫

Ω

(−∆ζ + ζ)wdx ≥ λ

∫
∂Ω

f(w)ζdsx −
∫
∂Ω

∂ζ

∂ν
wdsx

≥ λ∗
∫
∂Ω

f(w)ζdsx −
∫
∂Ω

∂ζ

∂ν
wdsx, ∀ζ ∈ C2(Ω), ζ ≥ 0.

This implies also f(w) ∈ L1(∂Ω) if we take ζ ≡ 1. Thus, we conclude that
w is a weak supersolution to (1.1)λ∗ Then by Theorem 14, we conclude that
λ = λ∗ and w = u∗.

Step 3. Let φn be as in (5.5). We claim that λ∗nf
′
n(u

∗
n)φn → λ∗f ′(u∗)φ

strongly in L1(∂Ω) as n→ ∞.
If this claim is proved, then we pass to the limit n → ∞ in the weak

formulation of (5.5):∫
Ω

(−∆ζ + ζ)φndx =

∫
∂Ω

λ∗nf
′
n(u

∗
n)φnζ −

∂ζ

∂ν
φndsx, ∀ζ ∈ C2(Ω),

and conclude that φ is a weak solution of{
−∆φ+ φ = 0 in Ω,
∂φ
∂ν

= λ∗f ′(u∗)φ on ∂Ω

in the sense of Definition 3. Recall φ ∈ W 1,q(Ω) for any 1 ≤ q < N
N−1

. Thus
the proof of Theorem 16 is finished.

To prove the strong convergence λ∗nf
′
n(u

∗
n)φn → λ∗f ′(u∗)φ in L1(∂Ω), we

invoke Vitali’s Convergence Theorem. First, by (5.6), we see

λ∗nf
′
n(u

∗
n(x))φn(x) → λ∗f ′(u∗(x))φ(x) a.e. x ∈ ∂Ω

for a subsequence. To prove the uniformly absolute continuous property of
the sequence {λ∗nf ′

n(u
∗
n)φn}n∈N, let A ⊂ ∂Ω and ε > 0 be given arbitrary.

Convexity of fn implies

fn

(
χA(x)

ε

)
≥ fn(u

∗
n(x)) + f ′

n(u
∗
n(x))

(
χA(x)

ε
− u∗n(x)

)
a.e. x ∈ ∂Ω, here χA is the characteristic function of A. Also from the
equations satisfied by φn and u∗n,∫

∂Ω

fn(u
∗
n)φndsx =

∫
∂Ω

f ′
n(u

∗
n)u

∗
nφndsx
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holds. Thus∫
∂Ω

f ′
n(u

∗
n)
χA
ε
φndsx ≤

∫
∂Ω

fn

(χA
ε

)
φndsx +

∫
∂Ω

f ′
n(u

∗
n)u

∗
nφndsx −

∫
∂Ω

fn(u
∗
n)φndsx

≤
∫
∂Ω

fn

(χA
ε

)
φndsx

=

∫
∂Ω

{
fn

(χA
ε

)
− f(0)

}
φndsx +

∫
∂Ω

f(0)φndsx

≤
∫
∂Ω

f

(
1

ε

)
φnχAdsx + f(0)

≤ f

(
1

ε

)
|A|

1
p′ ∥φn∥Lp(∂Ω) + f(0)

≤ Cf

(
1

ε

)
|A|

1
p′ + f(0)

for any 1 ≤ p < N−1
N−2

, here |A| denotes the (N − 1) dimensional measure of
A ⊂ ∂Ω. Note that{

fn

(
χA(x)

ε

)
− f(0)

}
φn(x) ≤ f

(
1

ε

)
φn(x)χA(x) a.e. on ∂Ω

and ∥φn∥Lp(∂Ω) ≤ C for some C > 0 independent of n by (5.6). Define

δ = δ(ε) =

(
f(0)

f(1
ε
)C

)p′

.

Then above calculation shows that for any ε > 0, if A ⊂ ∂Ω satisfies that
|A| < δ(ε), we obtain

∫
A
f ′
n(u

∗
n)φndsx ≤ 2f(0)ε. Thus the uniform absolutely

continuity of the sequence {λ∗nf ′
n(u

∗
n)φn}n∈N is confirmed. Also if we take

E ⊂ ∂Ω such that |∂Ω \ E| < δ where δ is as above, we obtain the uniform
integrability of {λ∗nf ′

n(u
∗
n)φn}n∈N: for any ε > 0, there exists E ⊂ ∂Ω such

that
∫
∂Ω\E λ

∗
nf

′
n(u

∗
n)φndsx ≤ Cε. Therefore, Vitali’s Convergence Theorem

assures the claim.

Phenomena of continuum spectrum for the extremal eigenvalue problem
(5.1) has been studied also, see [20].
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