Synthesis and characterization of $\left.\left[\mathrm{Fe}\left(\mathrm{NCCH}_{3}\right)_{6}\right]\left[\text { cis }-\mathrm{Fe}(\mathrm{InX})_{3}\right)_{2}(\mathrm{CO})_{4}\right](\mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ containing two terminal indium fragments

Masumi Itazaki，Masaki Ito，Satoru Nakashima and Hiroshi Nakazawa

Citation	Dalton Transactions；45（4）：1327－1330
Issue Date	$2016-1-28$
Type	Journal Article
Textversion	author
Supplementary files	Supplementary files is available at https：／／doi．org／10．1039／C5DT03745J．
Rights	This is the accept manuscript version． The article has been published in final form at https：／／doi．org／10．1039／C5DT03745J． Please cite only the published version． 引用は出版社版をご利用ください。
DOI	10．1039／C5DT03745J

Self－Archiving by Author（s）
Placed on：Osaka City University

Dalton Transactions

Synthesis and Characterization of $\left[\mathrm{Fe}\left(\mathrm{NCCH}_{3}\right)_{6}\right]\left[\mathrm{cis}-\mathrm{Fe}\left(\ln X_{3}\right)_{2}(\mathrm{CO})_{4}\right]$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) Containing Two Terminal Indium Fragments ${ }^{\dagger}$

Received 00th January 20xx, Accepted 00th January 20xx

Masumi Itazaki, ${ }^{*}{ }^{a}$ Masaki Ito, ${ }^{a}$ Satoru Nakashima ${ }^{b}$ and Hiroshi Nakazawa* ${ }^{a}$

Iron complexes, $\left.\left[\mathrm{Fe}\left(\mathrm{NCCH}_{3}\right)_{6}\right]\left[\text { cis- } \mathrm{Fe}(\mathrm{InX})_{3}\right)_{2}(\mathrm{CO})_{4}\right](\mathrm{X}=\mathrm{Cl}: 1, \mathrm{Br}: 2, \mathrm{I}$: 3) containing two terminal indium fragments, were synthesized. Their structures were determined using X -ray analysis. The bonding mode of the $\mathrm{Fe}-\mathrm{In}$ bonds in the anionic part was investigated using ${ }^{57} \mathrm{Fe}$ Mössbauer and IR spectroscopy. These complexes represent the first example of transition metal complexes containing two terminal indium fragments.

The chemistry of complexes in which transition metals are involved in a Z-type interaction with group 13 elements has been developed rapidly, and interesting reactivity has been reported. ${ }^{1,2} \mathrm{~A}$ Z-type interaction ($\mathrm{M} \rightarrow \mathrm{E}, \mathrm{M}=$ transition metal and $\mathrm{E}=$ group 13 element) is formed by the donation of two electrons from electron-rich M to electron-deficient EX_{3}. In group 13 elements, syntheses and reactivities of $M \rightarrow$ borane complexes are well investigated, whereas much less information is available on $\mathrm{M} \rightarrow$ indane complexes; however, different bonding fashions between M and In have been reported (Fig. 1).-8

Indane Complex

Indyl Complex

Bridging Indylene Complex

Complex

Fig. 1 Various coordination modes of M-In complex.
In 1942, Hieber and Teller reported the first M-In complex $\left[\operatorname{In}\left\{\mathrm{Co}(\mathrm{CO})_{4}\right\}_{3}\right]$ having $\mathrm{M}-\operatorname{In} \sigma$ bonds. ${ }^{9}$ Since then, a large number of transition metal complexes containing $\mathrm{M}-\mathrm{In} \sigma$ bond(s) have been synthesized. We also reported the bridging indylene ($\mathrm{W}-\mathrm{In}-\mathrm{W}$) complex with tungsten $\left[\left\{\mathrm{Cp}(\mathrm{CO})_{3} \mathrm{~W}\right\}_{2} \operatorname{lnCl}(\mathrm{py})\right]{ }^{10}$ However, only a few examples of indane complexes $\left(\mathrm{M} \rightarrow \ln X_{3}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}\right)$ have been

[^0]reported, and group 6 transition metal complexes have been crystallographically authenticated. ${ }^{11}$ In addition, the group of Bourissou synthesized a palladium indane complex [(TPI)Pd] (TPI = triphosphine-indane). ${ }^{12}$ Only three examples of iron indane complexes ($\mathrm{Fe} \rightarrow \mathrm{In}(\mathrm{III})$) have been reported so far (Fig. 2). ${ }^{13}$

Fig. 2 Examples of previously reported $\mathrm{Fe} \rightarrow \ln$ (III) complexes.
Previously, we reported the first ruthenium indane complexes fac$\left[\mathrm{Ru}(\mathrm{NCMe})_{3}(\mathrm{CO})_{2}\left(\operatorname{InX} X_{3}\right)\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and their reactivity with PPh_{3} (eqn (1)). ${ }^{14}$ In this paper, the synthesis and characterization of iron complexes containing two terminal indium fragments are described, and the bonding mode of the two $\mathrm{Fe}-\mathrm{In}$ bonds based on ${ }^{57} \mathrm{Fe}$ Mössbauer and IR data are discussed.

Triiron dodecacarbonyl $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ was treated with 3 equiv of $\operatorname{In} X_{3}$ $(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ in acetonitrile at $80^{\circ} \mathrm{C}$ for 30 min to produce an iron complex with two $\operatorname{In} X_{3}$ groups, $\left[\mathrm{Fe}(\mathrm{NCMe})_{6}\right]\left[\right.$ cis- $\left.\mathrm{Fe}(\operatorname{InX})_{2}(\mathrm{CO})_{4}\right](X=$ $\mathrm{Cl}: \mathbf{1 , ~ B r : ~ 2 , ~ I : ~ 3) , ~ i n ~ h i g h ~ y i e l d s ~ (S c h e m e ~ 1) . ~}$

$\mathrm{X}=\mathrm{Cl}: \mathbf{1 8 2 \%}$, $\mathrm{Br}: \mathbf{2 8 5 \%}$, I:389\%
Scheme 1 Synthesis of $\left.\left[\mathrm{Fe}\left(\mathrm{NCCH}_{3}\right)_{6}\right]\left[\text { cis- } \mathrm{Fe}(\operatorname{lnX})_{3}\right)_{2}(\mathrm{CO})_{4}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$.

Complex 2 was obtained in 88\% yield in the reaction of $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ with 2 equiv of InBr_{3} in acetonitrile at $80^{\circ} \mathrm{C}$ for 1 h .

However, when $\mathrm{Fe}(\mathrm{CO})_{5}$ was used instead of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ or $\mathrm{Fe}_{2}(\mathrm{CO})_{9}, \mathbf{2}$ was not formed (Scheme 2).

Scheme 2 Reaction of InBr_{3} with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ or $\mathrm{Fe}(\mathrm{CO})_{5}$.
The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 1 at $25{ }^{\circ} \mathrm{C}$ showed a broad singlet at $\delta 216.03$ corresponding to the carbonyl groups. This signal split into two singlets ($\delta 218.38,219.87$) at $-40{ }^{\circ} \mathrm{C}$, indicating that $\mathbf{1}$ in solution shows fluxional behavior.

The electric charge of $\left[\mathrm{Fe}(\mathrm{NCMe})_{6}\right]$ is known to be $2+;{ }^{15,16}$ therefore, the electric charge of cis-[Fe $\left.\left(\ln X_{3}\right)_{2}(\mathrm{CO})_{4}\right]$ should be 2-. As 1-3 were prepared from $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$, charge disproportionation among neutral $\mathrm{Fe}(0)$ species took place. Previously, Scheer et al. reported the synthesis of the analogous iron complex $[\mathrm{Na}(\mathrm{OEt})]_{2}\left[\mathrm{Fe}\left(\mathrm{GaCl}_{3}\right)_{2}(\mathrm{CO})_{4}\right] .{ }^{17}$ However, this complex was not synthesized by charge disproportionation but by the reaction of 2 equiv of GaCl_{3} with the dianion iron complex $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$.

The structures of 1-3 were determined by X-ray crystallography. The molecular structures of the anionic part of 1-3, i.e., cis- $\left[\mathrm{Fe}\left(\ln \mathrm{X}_{3}\right)_{2}(\mathrm{CO})_{4}\right]^{2-}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$, are shown in Figs. $3-5$, respectively. Two independent molecules of $\mathbf{2}$ crystallized in the unit cell. As these are basically the same, only one anionic part, i.e., cis- $\left[\mathrm{Fe}\left(\mathrm{InBr}_{3}\right)_{2}(\mathrm{CO})_{4}\right]^{2-}$ (Fe 1 molecule), is shown in Fig. 4. In all cases, the Fe atom for the cationic part is coordinated by six MeCN ligands, and the Fe atom for the anionic part is coordinated by two indium ligands and four terminal CO ligands. These $\ln X_{3}$ ligands are in a mutual cis position. The Fe-In bond distances (2.5817(5), 2.5896(6) Å for 1, 2.5861(13)-2.6039(11) Å for 2 , and 2.6001(7), 2.6233(7) A for 3) are longer than those of previously reported $\mathrm{Fe}-\operatorname{In} X_{3}(X=$ $\mathrm{Cl}, \mathrm{I})$ complexes ($2.517(2) \AA$ for $\mathrm{Cl},{ }^{13 \mathrm{~b}} 2.5275(9) \AA$ for $\mathrm{I}^{13 \mathrm{a}}$). The distances of $\mathrm{Fe}-\mathrm{C}$ bonds trans to $\ln (1.805(4), 1.811(4) \AA$ Å for 1, 1.782(9)-1.816(8) \AA for $\mathbf{2}$, and 1.805(5), 1.801(5) \AA for 3) are similar to those of Fe-C bonds trans to CO (1.802(4), 1.782(4) Å for 1, 1.786(9)-1.812(7)Å for 2, and 1.795(5), 1.804(5) Å for 3). In contrast to the Ru case, the $\operatorname{In} X_{3}$ ligands of 1-3 do not show a greater trans-influence than CO. ${ }^{14}$ The interaction between Fe and $\ln X_{3}$ in 1-3 seems to be weaker than that in the previously reported indane iron complex, because the $\operatorname{In}-X$ bond distances for 1-3 (X = CI: 2.3865(9)-2.4153(10) Å for 1, X $=\mathrm{I}$: for $2.7413(6)-2.7956(5) \AA$ for 3) are shorter than those for the indane iron complex ($\mathrm{X}=\mathrm{Cl}: 2.432(3)-2.469(3) \AA^{1,3 \mathrm{~b}} \mathrm{X}=\mathrm{I}$: for $\left.2.7942(6)-2.8060(6) \AA^{13 a}\right)$.

Fig. 3 ORTEP drawing of cis- $\left[\mathrm{Fe}\left(\mathrm{InCl}_{3}\right)_{2}(\mathrm{CO})_{4}\right]^{2-}$ anionic part of 1 in the crystal (30% thermal ellipsoidal plots). All hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): Fe1-In1 2.5896(6), Fe1-In2 2.5817(5), Fe1-C1 1.805(4), Fe1-C2 1.811(4), Fe1-C3 1.802(4), Fe1-C4 1.782(4), C1-O1 1.133(5), C2-O2 1.129(5), C3-O3 1.139(4), C4-O4 1.148(5), In1-Cl1 2.3965(10), In1-Cl2 2.3996(10), In1-Cl3 $2.4153(10), \ln 2-\mathrm{Cl} 42.4025(10), \ln 2-\mathrm{Cl} 5$ 2.4089(10), $\ln 2-\mathrm{Cl} 62.3865(9)$, In1-Fe1-In2 92.930(17).

Fig. 4 ORTEP drawing of cis- $\left[\mathrm{Fe}\left(\mathrm{InBr}_{3}\right)_{2}(\mathrm{CO})_{4}\right]^{2-}$ anionic part (Fe 1 molecule) of 2 in the crystal (30% thermal ellipsoidal plots). All hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): Fe1-In1 2.6039(11), Fe1-In2 2.5883(10), Fe1-C1 1.782(9), Fe1-C2 1.816(8), Fe1-C3 1.812(7), Fe1-C4 1.794(8), C1-O1 1.134(10), C2-O2 1.121(9), C3-O3 1.125(8), C4-O4 1.126(9), In1-Br1 2.5456(9), In1-Br2 2.5532(10), In1-Br3 2.5655(10), In2-Br4 2.5496(11), In2-Br5 2.5539(12), $\operatorname{In} 2-\mathrm{Br} 62.5369(11), \ln 1-\mathrm{Fe} 1-\operatorname{In} 2$ 93.38(3) for Fe1 molecule. Fe2-In3 2.5861(13), Fe2-In4 2.5910(12), Fe2-C5 1.799(11), Fe2-C6 1.802(8), Fe2-C7 1.786(9), Fe2-C8 1.791(9), C5-O5 1.132(12), C6-O6 1.134(10), C7-O7 1.140(10), C8-O8 1.144(10), In3-Br7 2.5576(11), In3-Br8 2.5504(13), In3-Br9 2.5364(14), $\operatorname{In} 4-\mathrm{Br} 10$ 2.5314(14), $\ln 4-$ Br11 2.5505(15), In4-Br12 2.5351(13), In3-Fe2-In4 91.77(4) for Fe2 molecule.

Fig. 5 ORTEP drawing of cis- $\left[\mathrm{Fe}\left(\mathrm{InI}_{3}\right)_{2}(\mathrm{CO})_{4}\right]^{2-}$ anionic part of 3 in the crystal (30% thermal ellipsoidal plots). All hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: Fe1-In1 2.6001(7), Fe1-In2 2.6233(7), Fe1-C1 1.805(5), Fe1-C2 1.801(5), Fe1-C3 1.795(5), Fe1-C4 1.804(5), C1-O1 1.139(6), C2-O2 1.136(6), C3-O3 1.147(6), C4-O4 1.133(6), $\ln 1-112.7493(6), \ln 1-122.7956(5), \ln 1-132.7512(6)$, In2-I4 2.7607(5), In2-I5 2.7845(6), In2-I6 2.7413(6), In1-Fe1-In2 95.33(2).

Next, we focused on the Fe-In bonding mode in the anionic part cis-[$\left.\mathrm{Fe}\left(\ln \mathrm{X}_{3}\right)_{2}(\mathrm{CO})_{4}\right]^{2-}$. Three possible combinations concerning Fe- In bonds for $\left[\mathrm{Fe}\left(\operatorname{InX} \mathrm{X}_{3}\right)_{2}(\mathrm{CO})_{4}\right]^{2-}$ are conceivable (Fig. 6): (i) two Z-type bonds (electron donation from $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$ to two $\ln X_{3}$ serving as a Lewis acid), (ii) two covalent bonds (two $\mathrm{Fe}-\ln ^{-} \mathrm{X}_{3}$, that is, two indate portions), (iii) one Z-type bond and one covalent bond (a situation between (i) and (ii)). The formal oxidation number of Fe is considered to be -II for (i), 0 for (ii), and -I for (iii).
(i)

(ii)

(iii)

Fig. 6 Three possible structures for the anionic part cis-$\left[\mathrm{Fe}(\operatorname{InX})_{2}(\mathrm{CO})_{4}\right]^{2-}$.

Fig. $7{ }^{57} \mathrm{Fe}$ Mössbauer spectrum of solid 1 recorded at 80 K . The black dot marks are the raw data, and the solid lines were obtained from least-squares fits of the spectrum with two doublets, Fe^{2+} component (blue, 40%) $\delta=1.28 \mathrm{~mm} / \mathrm{s}, \Delta E_{\mathrm{Q}}=0.55 \mathrm{~mm} / \mathrm{s}$ and Fe^{0} component (red, $60 \%) \delta=-0.03 \mathrm{~mm} / \mathrm{s}, \Delta E_{\mathrm{Q}}=0.24 \mathrm{~mm} / \mathrm{s}$.

The ${ }^{57} \mathrm{Fe}$ Mössbauer spectrum of solid $\mathbf{1}$, collected at 80 K , is shown in Fig. 7. Complex 1 displays two doublets with $\delta=1.28$ $\mathrm{mm} / \mathrm{s}, \Delta E_{\mathrm{Q}}=0.55 \mathrm{~mm} / \mathrm{s}$ (blue, 40% of Fe) and $\delta=-0.03 \mathrm{~mm} / \mathrm{s}$, $\Delta E_{\mathrm{Q}}=0.24 \mathrm{~mm} / \mathrm{s}$ (red, 60% of Fe). The area ratio of the present sample is $40: 60$ at 80 K , which is different from the expected ratio. We measured the same sample at 300 K . The ratio (40:60) at 80 K changed to $27: 73$ at 300 K (see Figure S1). The intensity of Mössbauer absorption changes depending on the molecular vibration. The results suggest that the site of 40% at 80 K is easier to vibrate even at 80 K . The expected ratio would be observed at lower temperature than 80 K . The δ value of the former signal $(1.28 \mathrm{~mm} / \mathrm{s})$ is in the range of the reported values for $\mathrm{Fe}(+\mathrm{II})$ species $(\delta=0.8-1.4 \mathrm{~mm} / \mathrm{s}) .{ }^{18}$ Thus, the doublet can be reasonably assigned to $\left[\mathrm{Fe}(\mathrm{NCMe})_{6}\right]^{2+}$. The δ value of the latter signal $(-0.03 \mathrm{~mm} / \mathrm{s})$ is close to that of an $\mathrm{Fe}(0)$ complex, such as $\mathrm{Fe}(\mathrm{CO})_{5}(0.009 \mathrm{~mm} / \mathrm{s}){ }^{19}$ and is quite different from that of an $\mathrm{Fe}(-\mathrm{II})$ complex, such as $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}(-$ $0.251 \mathrm{~mm} / \mathrm{s}){ }^{20}$ The IR spectra of $\mathbf{1 - 3}$ show v_{co} absorptions at 1984, 2030, $2076 \mathrm{~cm}^{-1}$ for 1, 1984, 2016, $2076 \mathrm{~cm}^{-1}$ for 2, and 1988, 2009, $2064 \mathrm{~cm}^{-1}$ for $\mathbf{3}$. The v_{co} absorptions of $\mathbf{1 - 3}$ are similar to that of the zero-valent iron complex $\mathrm{Fe}(\mathrm{CO})_{5}(2000$, $\left.2022 \mathrm{~cm}^{-1}\right)^{21}$ and far from the v_{co} absorption of the dianion iron complex $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]\left(1730 \mathrm{~cm}^{-1}\right) .{ }^{22}$

The data obtained from the Mössbauer and IR spectra suggest that the formal oxidation number of the Fe atom in cis- $\left[\mathrm{Fe}\left(\ln \mathrm{X}_{3}\right)_{2}(\mathrm{CO})_{4}\right]^{2-}$ is 0 (zero). In addition, there are no large difference between two $\mathrm{Fe}-\mathrm{In}$ distances and among six $\mathrm{In}-\mathrm{X}$ distances in 1-3. Therefore, (ii) in Fig. 6 seems to be an appropriate expression for cis- $\left.\left[\mathrm{Fe}(\operatorname{InX})_{3}\right)_{2}(\mathrm{CO})_{4}\right]^{2-}$.

In summary, we synthesized and characterized the first iron complexes $\left.\left[\mathrm{Fe}(\mathrm{NCMe})_{6}\right]\left[\text { cis-Fe }(\operatorname{lnX})_{3}\right)_{2}(\mathrm{CO})_{4}\right](\mathrm{X}=\mathrm{Cl}: \mathbf{1}, \mathrm{Br}: \mathbf{2}, \mathrm{I}: \mathbf{3})$ containing two terminal indium fragments. In solid state and in solution state at $-40^{\circ} \mathrm{C}$, two $\ln X_{3}$ fragments are situated in a cis position. However, they show cis/trans fractional behavior in solution at room temperature. The ${ }^{57} \mathrm{Fe}$ Mössbauer and IR data suggest that $\mathrm{Fe}^{0}(\mathrm{CO})_{4}$ has two indate ($\mathrm{Fe}-\mathrm{In}^{-} \mathrm{X}_{3}$) portions.
This work was supported by a Grant-in-Aid for Scientific Research from JSPS (Category C, No. 25410073 (M.I.)), by a Challenging Exploratory Research Grant (No. 25620048 (H.N. and M.I.)), and by a Grant-in Aid for Scientific Research on Innovation Area "Stimuli-responsive Chemical Species" (No. 25109538 (H.N.)) from MEXT, Japan.

Notes and references

1 (a) H. Braunschweig, R. D. Dewhurst, F. Hupp, C. Kaufmann, A. K. Phukan, C. Schneider and Q. Ye, Chem. Sci., 2014, 5, 4099; (b) H. Kameo and H. Nakazawa, Chem. Asian J., 2013, 8, 1720; (c) J. Bauer, H. Braunschweig, and R. D. Dewhurst, Chem. Rev., 2012, 112, 4329; (d) G. R. Owen, Chem. Soc. Rev., 2012, 41, 3535; (e) A. Amgoune and D. Bourissou, Chem. Commun., 2011, 47, 859; (f) H. Braunschweig and R. D. Dewhurst, Dalton Trans., 2011, 40, 549; (g) H. Braunschweig, R. D. Dewhurst and A. Schneider, Chem. Rev., 2010, 110, 3924; (h) I. Kuzu, I. Krummenacher, J. Meyer, F. Armbruster and F. Breher, Dalton Trans., 2008, 5836.
2 Especially, the chemistry of metal-only Lewis pairs have received a lot of attention in recent years. For example, see: (a) P. J. Malinowski and I. Krossing, Angew. Chem. Int. Ed., 2014, 53, 13460; (b) H. Braunschweig, R. D. Dewhurst, F. Hupp and C. Schneider, Chem. Commun., 2014, 50, 15685;
3 (a) C. Genel, T. Steinke, M. Cokoja, A. Kempter and R. A. Fischer, Eur. J. Inorg. Chem., 2004, 4161; (b) R. Murugavel and V. Chandrasekhar, Angew. Chem., Int. Ed., 1999, 38, 1211; (c) R. A. Fischer and J. Weiß, Angew. Chem., Int. Ed., 1999, 38, 2831.
4 S. González-Gallardo, T. Bollermann, R. A. Fischer and R. Murugavel, Chem. Rev., 2012, 112, 3136.
5 M. Asay, C. Jones and M. Driess, Chem. Rev., 2011, 111, 354.
6 C. Boehme, J. Uddin and G. Frenking, Coord. Chem. Rev., 2000, 249.
7 R. J. Baker and C. Jones, Coord. Chem. Rev., 2005, 1857.
8 Group 13 Chemistry I: Fundamental New Developments. Structure \& Bonding, ed. by H. W. Roesky and D. A. Atwood, Springer-Verlag: Berlin, Heidelberg, New York, 2002, Vol. 103.
9 W. Hieber and U. Teller, Z. Anorg. Allg. Chem., 1942, 249, 43.
10 H. Nakazawa, M. Itazaki and M. Owaribe, Acta Crystallogr., 2005, E61, m945.
11 (a) P. Rutsch, G. Renner, G. Huttner and S. Z. Sandhoefner, Naturforsch., 2002, 57b, 757; (b) B. Nuber, W. Schatz and M. L. Ziegler, Z. Naturforsch., 1990, 45b, 508; (c) L. M. Clarkson, W. Clegg, N. C. Norman, A. J. Tucker and P. M. Webster, Inorg. Chem., 1988, 27, 2653.
12 E. J. Derrah, M. Sircoglou, M. Mercy, S. Ladeira, G. Bouhadir, K. Miqueu, L. Maron and D. Bourissou, Organometallics, 2011, 30, 657.

13 (a) S. Aldridge, D. L. Kays, N. R. Bunn, N. D. Coombs and L. L. Ooi, Main Group Met. Chem., 2005, 28, 201; (b) M. Esser, B. Neumüller, W. Petz, J. Uddin and G. Frenking, Z. Anorg. Allg. Chem., 2000, 626, 915; (c) J. K. Ruff, Inorg. Chem., 1968, 7, 1499.

14 M. Itazaki, M. Ito and H. Nakazawa, Eur. J. Inorg. Chem., 2015, 2033.

15 D. C. Boyd, D. A. Bohling and K. R. Mann, J. Am. Chem. Soc., 1985, 107, 1641.
16 H. Wasada, Y. Wasada-Tsutsui, T. Hashimoto and S. Funahashi, Int. J. Quantum Chem., 2009, 109, 2208.
17 E. Leiner, O. Hampe and M. Scheer, Eur. J. Inorg. Chem., 2002, 584.

18 J. Silver and R. Withnall, Chem. Rev., 2004, 104, 2833.
19 R. H. Herber, R. B. King and G. K. Wertheim, Inorg. Chem., 1964, 3, 101.
20 N. E. Erickson and A. W. Fairhall, Inorg. Chem., 1965, 4, 1320
21 K. Noack and M. Ruch, J. Organomet. Chem., 1969, 17, 309.
22 H. Strong, P. J. Krusic and J. S. Filippo, Inorg. Synth., 1986, 24, 157.

[^0]: a. Department of Chemistry, Graduate School of Science, Osaka City University, 3-3138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
 b. Natural Science Center for Basic Research and Development, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
 Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x
 †Dedicated to Professor Kohtaro Osakada on the occasion of his 60th birthdav

