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ON LAGRANGIAN SUBMANIFOLDS
IN COMPLEX HYPERQUADRICS OBTAINED
FROM ISOPARAMETRIC HYPERSURFACES

大阪市立大学 · 大学院理学研究科　大仁田　義裕 (Yoshihiro Ohnita)
Department of Mathematics,
Graduate School of Science,

Osaka City University

Introduction

This article is based on my joint works with Associate Professor Hui
Ma (Tsinghua University, Beijing).

A Lagrangian submanifold L is an n-dimensional submanifold im-
mersed or embedded in a symplectic manifold (M2n, ω) on which the
symplectic form ω vanishes, and it is the most fundamental object
in symplectic geometry. The study of Lagrangian submanifolds L in
Kähler manifolds (Mn, ω, J, g) is a fruitful area in differential geom-
etry of submanifolds. From various viewpoints of Riemannian geom-
etry and symplectic geometry, there appear many interesting works
on Lagrangian submanifolds in specific Kähler manifolds such as com-
plex Euclidean spaces, complex projective spaces, complex space forms,
Hermitian symmetric spaces, generalized flag manifolds and so on.
Throughout this article, we treat compact immersed or embedded La-
grangian submanifolds without boundary.

In this article we shall explain our recent works on Lagrangian sub-
manifolds in complex hyperquadrics M2n = Qn(C) and their environs.
The complex hyperquadric M2n = Qn(C) is a compact Hermitian sym-
metric space of rank 2. There is a relationship between Lagrangian
geoemtry in the complex hyperquadrics Qn(C) and hypersurface ge-
ometry in the standard unit sphere Sn+1(1). Via the “Gauss maps
”oriented hypersurfaces in Sn+1(1) give Lagrangian submanifolds in
Qn(C). Especially the Gauss images of oriented hypersurfaces with
constant principal curvatures, so called “isoparametric hypersurfaces”,
in Sn+1(1) constitute a nice class of compact minimal Lagrangian sub-
manifolds embedded in Qn(C). By using the results of isoparametric
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hypersurface theory, we shall discuss (1) the properties of such La-
grangian submanifolds, (2) a classification of compact homogeneous
Lagrangian submanifolds and (3) the Hamiltonian stability/instability
of the Gauss images of homogeneous isoparametric hypersurfaces, in
the complex hyperquadrics.

This article is a report of my talk at the RIMS Meeting “Differential
Geometry of Submanifolds and Related Topics”(June 23-25, 2008) .
The author would like to thank Professor Takashi Okayasu for inviting
me to give a talk there and his nice organization of the RIMS Meeting.

1. Lagrangian submanifolds in symplectic manifolds and
Hamiltonian deformations

1.1. Lagrangian submanifolds and Hamiltonian deformations.
Let
(M2n, ω) be a 2n-dimensional symplectic manifold with symplectic
form ω. By the definition a Lagrangian immersion φ : L −→M2n is a
smooth immersion of an n-dimensional (maximal dimensional) smooth
manifold L into M satisfying the condition φ∗ω = 0. If φ : L −→M2n

is a Lagrangian immersion, then by the non-degeneracy of ω the nat-
ural linear bundle map φ−1TM/φ∗TL ∋ v 7→ αv := ω(v, φ∗(·)) ∈ T ∗L
becomes a linear bundle isomorphism and thus we have a linear iso-
morphism C∞(φ−1TM/φ∗TL)→ Ω1(L).

Suppose that φt : L −→ (M2n, ω) is a one-parameter smooth family

of smooth immersions with φ0 = φ. Let Vt :=
∂φt

∂t
∈ C∞(φ−1

t TM).

Then we define

{φt} : Lagrangian deformation⇐⇒
def

φt is Lagr. imm. for each t

⇐⇒ αVt ∈ Z1(L) closed for each t.

{φt} : Hamiltonian deformation⇐⇒
def

αVt ∈ B1(L) exact for each t.

Hamiltonian deformations are Lagrangian deformations. The differ-
ence between Lagrangian deformations and Hamiltonian deformations
is equal to H1(L;R) ∼= Z1(L)/B1(L). Particularly if b1(L) = 0, then
any Lagrangian deformation of L is a Hamiltonian deformation.

There is a characterization of a Hamiltonian deformation in terms

of “isomonodromy deformation”as follows : Suppose that
1

2π
[ω] ∈

H2(M,R) is an integral class. Then we know that there is a complex
line bundle L over M with a U(1)-connection ∇ in L whose curvature
coincides with

√
−1ω. Let φt : L −→M be a Lagrangian deformation.

For each t, we take the pull-back complex line bundle φ−1
t L over L with
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the pull-back connection φ−1
t ∇ through φt and thus we have a family

of flat connections {φ−1
t ∇}. Then

Lemma 1.1 (cf. [17], [25]). {φt} is a Hamiltonian deformation if and
only if a family of flat connections {φ−1

t ∇} has same holonomy homo-
morphism ρt : π1(L) −→ U(1).

1.2. Lagrangian orbits and moment maps.

Proposition 1.1. All Lagrangian orbits of Hamiltonian group action
G on a symplectic manifold (M,ω) with moment map µ appears as
components of the level set µ−1(α) for some α ∈ z(g∗), where g∗ is the
dual space of Lie algebra g of G and

z(g∗) := {α ∈ g∗ | Ad∗(a)α = α for all a ∈ G}.
If M and G are compact and connected, then each Lagrangian orbit
coincides with the level set µ−1(α) for some α ∈ z(g∗) ∼= c(g) the center
of g.

2. Lagrangian submanifolds in Kähler manifolds

2.1. Hamiltonian minimality and Hamiltonian stability. Let
(M,ω, J, g) be a Kähler manifold with complex structure J and Kähler
metric g and φ : L −→ M be a Lagrangian immersion. Let B denote
the second fundamental form of L in (M, g).

H : mean curvature vector field of φ
↕

αH : mean curvature form of φ

It is known ([11]) that the mean curvature form of a Lagrangian
immersion always satisfies the identity

dαH = φ∗ρM

where ρM denotes the Ricci form ofM defined by ρM(X,Y ) = RicM(JX, Y )
and RicM denotes the Ricci tensor field of (M,ω, J, g). Thus if M is
Einstein-Kähler, then αH is closed.

The notions of Hamiltonian minimality and Hamiltonian stability
were introduced and investigated first by Y. G. Oh (1990) [22]. For the
simplicity throughout this article we assume that L is compact without
boundary.

φ : Hamiltonian minimal (or “H-minimal ”)
⇐⇒
def

∀φt : L −→M Hamil. deform. with φ0 = φ,

d

dt
Vol (L,φ∗

tg)|t=0 = 0
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⇐⇒ δαH = 0

Moreover assume that φ is H-minimal. Then φ is called Hamiltonian
stable if and only if for each Hamiltonian deformation {φt} of φ0 = φ,

d2

dt2
Vol (L,φ∗

tg)|t=0 ≥ 0.

Lemma 2.1 (Hamiltonian Version of The Second Variational Formula
[23]).

d2

dt2
Vol (L,φ∗

tg)|t=0

=

∫
L

(
⟨∆1

Lα, α⟩ − ⟨R(α), α⟩ − 2⟨α⊗ α⊗ αH , S⟩+ ⟨αH , α⟩2
)
dv

where ∆1
L denotes the Laplace operator of (L,φ∗g) acting on the vector

space Ω1(L) of smooth 1-forms on L and
　　

• α := α ∂φt
∂t |t=0

∈ B1(L)

• ⟨R(α), α⟩ :=
n∑

i,j=1

RicM(ei, ej)α(ei)α(ej), {ei} : o.n.b. of TpL

• S(X, Y, Z) := ω(B(X, Y ), Z) symmetric 3-tensor field on L

Suppose that X is a holomorphic Killing vector field defined on
M . Then the corresponding 1-form αX := ω(X, ·) on M is closed.
If H1(M,R) = {0}, then αX = ω(X, ·) is exact, i.e. X is a Hamilton-
ian vector field on M . Hence we see that if M is simply connected,

more generally H1(M,R) = {0}, then each holomorphic Killing vector
field of M generates a volume-preserving Hamiltonian deformation of
φ.

Definition 2.1. Such a Hamiltonian deformation of φ is called trivial.

Definition 2.2. Assume that φ is H-minimal. Then φ is called strictly
Hamiltonian stable if the following two conditions are satisfied :

(i) φ is Hamiltonian stable.
(ii) The null space of the second variation on Hamiltonian deforma-

tions coincides with the vector subspace consisting of infinitesi-
mal deformations induced by trivial Hamiltonian deformations
of φ.

If L is strictly Hamiltonian stable, then L has local minimum volume
under each Hamiltonian deformation.
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Definition 2.3. Assume that (M,ω, J, g) is a Kähler manifold and G
is an analytic subgroup of its automorphism group Aut(M,ω, J, g). We
call a Lagrangian orbit L = G ·x ⊂M of K a homogeneous Lagrangian
submanifold of M .

Proposition 2.1. Any compact homogeneous Lagrangian submanifold
in a Kähler manifold is Hamiltonian minimal.

Proof. Since αH is an invariant 1-form on L, δαH is a constant function
on L. Hence by the divergence theorem we obtain δαH = 0. �

2.2. First eigenvalue of minimal Lagrangian submanifolds in
Einstein-Kähler manifolds. By the Lagrangian version of the sec-
ond variational formula, in the case of minimal Lagrangian submani-
folds in Einstein-Kähler manifolds the Hamiltonian stability condition
is simplified as follow :

Corollary 2.1 (B. Y. Chen - T. Nagano - P. F. Leung [9], Y. G. Oh
[22]). Assume M is an Einstein-Kähler manifold of Einstein constant
κ and φ : L → M is a minimal Lagrangian immersion of a compact
smooth manifold L into M (i.e. αH ≡ 0). Then L is Hamiltonian
stable if and only if

λ1 ≥ κ ,

where λ1 denotes the first (positive) eigenvalue of the Laplacian of L
acting on Ω0(L) = C∞(L).

Theorem 2.1 ([26], [27], [4]). Assume that M is a compact homo-
geneous Einstein-Kähler manifold with Einstein constant κ > 0. Let
L ↪→ M be a compact minimal Lagrangian submanifold immersed in
M . Then

λ1 ≤ κ .

Question. What compact minimal Lagrangian submanifolds in a com-
pact homogeneous Einstein-Kähler manifold M with κ > 0 attain the
equality of the inequality λ1 ≤ κ ?

λ1 = κ ⇐⇒ L is Hamiltonian stable.

2.3. Examples of Hamiltonian stable Lagrangian submanifolds.

Question. What compact Lagrangian submanifolds in a Kähler mani-
fold is a Hamiltonian stable H-minimal Lagrangian submanifold ?

Example 2.1. (1) S1 ⊂ R2 ∼= C, S1 ⊂ S2 ∼= CP 1, S1 ⊂ H2 ∼=
CH1, circles
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(2) L ↪→M = CP n embedded cpt. min. Lagr. submfd.
L =

• RP n (Y. G. Oh [22]), S = 0.

• SU(p)/SO(p) ·Zp, SU(p)/Zp, SU(2p)/Sp(p) ·Z2p, E6/F4 ·
Z3

(Amarzaya-Ohnita [4]), S ̸= 0,∇S = 0

• ρ3(SU(2))[z3
0 + z3

1 ] ⊂ CP 3 (L. Bedulli-A. Gori [6], Ohnita
[24]), ∇S ̸= 0

=⇒ L is strictly Hamil. stable
(3) M : cpt. irred. Herm. sym. sp. of rank ≥ 2

L : cpt. totally geodesic Lagrangian submanifold embedded in
M .
Then

(L,M)
tot. geod.

Lagr. submfd.

=


(Qp,q(R) = (Sp−1 × Sq−1)/Z2,
Qp+q−2(C))(q − p ≥ 3)

(U(2p)/Sp(p), SO(4p)/U(p))(p ≥ 3),
(T · E6/F4, E7/T · E6).

⇐⇒ L is NOT Hamil. stable.
(Masaru Takeuchi [32], Y. G. Oh [22], Amarzaya-Ohnita [4],
cf. [17])

Theorem 2.2 (Amarzaya-Ohnita [2], [5]). Let Ln ↪→ M̃(c) be a com-
pact embedded Lagrangian submanifold with ∇S = 0 in a simply con-

nected complete complex space form M̃(c)(= Cn,CP n,CHn). Then L
is Hamiltonian stable.

Problem. Let L ↪→ CP n be a compact minimal Lagrangian subman-
ifold embedded in a complex projective space. Is it true that λ1 = κ
? that is, L is Hamiltonian stable ? (At present I do not know any
counter example yet.)

3. Lagrangian Submanifolds in Complex Hyperquadrics

3.1. Complex hyperquadrics and real Grassmannian manifolds
of oriented 2-planes. The complex hyperquadric

Qn(C) ∼= G̃r2(R
n+2) ∼= SO(n+ 2)/SO(2)× SO(n)
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is a compact Hermitian symmetric space of rank 2, where

Qn(C) := {[z] ∈ CP n+1 | z2
0 + z2

1 + · · ·+ z2
n+1 = 0},

G̃r2(R
n+2) := {W | oriented 2-dimensional vector subspace of Rn+2}.

The identification between Qn(C) and G̃r2(R
n+2) is given by

CP n+1 ⊃ Qn(C) ∋ [a+
√
−1b]←→ W = a∧b ∈ G̃r2(Rn+2) ⊂

2∧
Rn+2

Here {a,b} is an orthonormal basis of W compatible with its orienta-
tion.

3.2. Lagrangian submanifolds in complex hyperquadrics and
hypersurfaces in spheres. Let Nn ↪→ Sn+1(1) ⊂ Rn+2 be an ori-
ented hypersurface immersed or embedded in the (n + 1)-dimensional
unit standard sphere.
Let x and n denote the position vector of points of Nn and the unit
normal vector field of Nn in Sn+1(1), respectively.

The “Gauss map”

G : Nn ∋ p 7−→ [x(p) +
√
−1n(p)] = x(p) ∧ n(p) ∈ Qn(C)

is a Lagrangian immersion.

Proposition 3.1 ([17]). Any deformation of oriented hypersurface Nn

in Sn+1(1) gives a Hamiltonian deformation of G in Qn(C). Con-
versely, any small Hamiltonian deformation of G in Qn(C) is obtained
from a deformation of oriented hypersurface Nn in Sn+1(1).

Remark. (2n+ 1)-dimensional real Stiefel manifold

V2(R
n+2) := {(a,b) | a,b ∈ Rn+2 orthonormal } ∼= SO(n+ 2)/SO(n)

the standard Einstein-Sasakian manifold over Qn(C).
The natural projections

p1 : V2(R
n+2) ∋ (a,b) 7−→ a ∈ Sn+1(1),

p2 : V2(R
n+2) ∋ (a,b) 7−→ a ∧ b ∈ Qn(C).

?

V2(R
n+2) =V2(R

n+2)

p1 S
n

Sn+1(1)

-Ñn
ψ

Legend.

?

∼=
?

Nn

ori.hypsurf.
-

p2 S
1

Qn(C) ⊃ p2(ψ(Nn)) = G(Nn)
Lagr.

Here the Legendrian life Ñn of Nn ↪→ Sn+1(1) to V2(R
n+2) is defined

by Nn ∋ p 7−→ (x(p),n(p)) ∈ V2(R
n+2).
7



3.3. The mean curvature form formula. Let gstd
Qn(C) be the stan-

dard Kähler metric of Qn(C) induced from the standard inner prod-
uct of Rn+2. Note that the Einstein constant of gstd

Qn(C) is equal to n.

Let κi (i = 1, · · · , n) denote the principal curvatures of Nn ⊂ Sn+1(1).
Choose an orthonormal frame {ei} on Nn ⊂ Rn+1 such that the second
fundamental form h of Nn in Sn+1(1) with respect to n is diagonalized
as h(ei, ej) = κiδij and let {θi} be its dual coframe. Then the induced
metric G∗gstd

Qn(C) on Nn by the Gauss map G is given as

G∗gstd
Qn(C) =

n∑
i=1

(1 + κ2
i )θ

i ⊗ θi.

Let H denote the mean curvature vector field of G. Then the mean
curvature form of the Gauss map G is expressed in terms of the principal
curvatures as follows :

Lemma 3.1 (B. Palmer [30]).

αH = d

(
Im

(
log

n∏
i=1

(1 +
√
−1κi)

))
.

In case n = 2, if N2 ⊂ S3(1) is a minimal surface, then the Gauss

map G : N2 −→ G̃r2(R
4) ∼= Q2(C) ∼= S2 × S2 is a minimal La-

grangian immersion. See also Castro-Urbano [8]. More generally, if
Nn ⊂ Sn+1(1) is an oriented minimal hypersurface in Sn+1(1) which
is an austere submanifold of Sn+1(1) (Harvey-Lawson [14]), then the
Gauss map G : Nn −→ Qn(C) is a minimal Lagrangian immersion.

3.4. The Gauss maps of isoparametric hypersurfaces in Sn+1(1).
Assume that Nn ↪→ Sn+1(1) ⊂ Rn+2 is a compact oriented hypersur-
face embedded in the standard sphere with constant principal curva-
tures, so called “isoparametric hypersurface”. Here g denotes the num-
ber of distinct principal curvatures ofNn in Sn+1(1) andm1,m2, · · · ,mg

denote the multiplicities of the principal curvatures. Then the image
of the Gauss map G : Nn −→ Qn(C) is a compact minimal Lagrangian
submanifold embedded in Qn(C) and the Gauss map gives a covering
map Nn −→

Zg

Ln = G(Nn) ∼= Nn/Zg ↪→ Qn(C) with Deck transforma-

tion group Zg.
By the famous theorems of H. F. Münzner [20], [21], we know that

mi (i = 1, · · · , g) satisfy mi = mi+2 for each i, i.e., m1 = m3 = · · · ,
m2 = m4 = · · · , and g must be 1, 2, 3, 4 or 6. We may assume that
m1 ≤ m2.
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If a hypersurface Nn in Sn+1(1) is obtained as an orbit of a compact
connected subgroup G of SO(n + 2), then Nn is called homogeneous.
Obviously a homogeneous hypersurface in Sn+1(1) is an isoparametric
hypersurface in Sn+1(1).

Proposition 3.2 ([17]). Nn is homogeneous if and only if G(Nn) is
homogeneous.

In [17] we classified all compact homogeneous Lagangian submani-
folds in complex hyperquadrics Qn(C) by using the theory of homo-
geneous isoparametric hypersurfaces. We shall mention it in the next
subsection.

By W.-Y. Hsiang and J. B. Lawson, Jr. [15] and Ryoichi Takagi and
Tsunero Takahashi [31] all homogeneous isoparametric hypersurfaces
in the spheres are obtained as principal orbits of the linear isotropy
representations of Riemannian symmetric spaces (U,K) of rank 2.

g (U,K) dimN m1,m2 N ∼= K/K0

1 (S1 × SO(n+ 2), SO(n+ 1)) n n Sn

(n ≥ 1) [R⊕ A1]
2 (SO(p+ 2)× SO(n+ 2− p), n p, n− p Sp × Sn−p

SO(p+ 1)× SO(n+ 1− p))
(1 ≤ p ≤ n− 1) [A1 ⊕ A1]

3 (SU(3), SO(3)) [A2] 3 1, 1 SO(3)
Z2+Z2

3 (SU(3)× SU(3), SU(3)) [A2] 6 2, 2 SU(3)
T 2

3 (SU(6), Sp(3)) [A2] 12 4, 4 Sp(3)
Sp(1)3

3 (E6, F4) [A2] 24 8, 8 F4

Spin(8)

4 (SO(5)× SO(5), SO(5)) [B2] 8 2, 2 SO(5)
T 2

4 (SU(m+ 2), S(U(m)× U(2))) 4m− 2 2, S(U(m)×U(2))
SU(m−2)×T 2

(m ≥ 2) [BC2](m ≥ 3), [B2](m = 2) 2m− 3

4 (SO(m+ 2), SO(m)× SO(2)) 2m− 2 1, SO(m)×SO(2)
SO(m−2)×Z2

(m ≥ 3) [B2] m− 2

4 (Sp(m+ 2), Sp(m)× Sp(2)) 8m− 2 4, Sp(m)×Sp(2)
Sp(m−2)×Sp(1)2

(m ≥ 2) [BC2](m ≥ 3), [B2](m = 2) 4m− 5

4 (SO(10), U(5)) [BC2] 18 4, 5 U(5)
SU(2)×SU(2)×T 1

4 (E6, Spin(10) · T ) [BC2] 30 6, 9 Spin(10)·T
SU(4)·T

6 (G2 ×G2, G2) [G2] 12 2, 2 G2

T 2

6 (G2, SO(4)) [G2] 6 1, 1 SO(4)
Z2+Z2
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In the case of g = 4, the Clifford algebra construction of non-
homogeneous isoparametric hypersurfaces in the sphere were discov-
ered first by Hideki Ozeki and Masaru Takeuchi [28], [29] and gen-
eralized by D. Ferus, H. Karcher and H. F. Münzner [13] (so called
“isoparametric hypersurfaces of OT-FKM type”). Recently T. Cecil,
Q.-S. Chi and G. Jensen [10] and S. Immervoll [16] showed that isopara-
metric hypersurfaces in the sphere with g = 4 except for the cases of
(m1,m2) = (3, 4), (4, 5), (6, 9), (7, 8) are either homogeneous or of type
OT-FKM type.

3.5. Classification of compact homogeneous Lagrangian sub-
manifolds in complex hyperquadrics. Suppose thatG ⊂ SO(n+ 2)
is a compact connected Lie subgroup and L = G · [W ] ⊂ Qn(C) is a
Lagrangian orbit of G through a point [W ] ∈ Qn(C)
W is an oriented 2-dimensional vector subspace of Rn+2 and we

denote a unit circle of W by

S1(W ) := {v ∈ W | ∥v∥ = 1}.
Then we can show that there is a finite subset w1, · · · , wd of S1(W )
such that for each w ∈ S1(W ) \ {w1, · · · , wd} the orbit G · w of G
through w on Sn+1(1) ⊂ Rn+1 is a compact homogeneous hypersurface
in Sn+1(1) ([17]). We set Nn := G · w.

By the Hsiang-Lawson’s theorem, There is a compact Riemannian
symmetric pair (U,K) of rank 2 such that

Nn = Adp(K)v ⊂ Sn+1(1) ⊂ Rn+2 = p for some v ∈ Sn+1(1),

where u = k + p is the canonical decomposition of the symmetric pair
(U,K). Here we may assume that Adp(K) ⊂ SO(n + 2) is a maximal
compact subgroup of SO(n+2) containing G which is orbit-equivalent
to the action of G on Sn+1(1).

Then we obtain

Theorem 3.1 (Hui Ma-Y. Ohnita [17]). There exists a compact homo-
geneous isoparametric hypersurface Nn ⊂ Sn+1(1) ⊂ Rn+2 such that

(i) L = G(N) and L is a compact minimal Lagrangian submanifold,
or

(ii) L is contained in a Lagrangian deformation of G(N) consisting
of compact homogeneous Lagrangian submanifolds.

The second case (ii) happens only when (U,K) is one of

(1) (S1 × SO(3), SO(2)),
(2) (SO(3)× SO(3), SO(2)× SO(2)),
(3) (SO(3)× SO(n+ 1), SO(2)× SO(n)) (n ≥ 3),
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(4) (SO(m+ 2), SO(2)× SO(m)) (n = 2m− 2,m ≥ 3).

In the first two cases, it is elementary and well-known to describe all
Lagrangian orbits of the natural actions of K = SO(2) on Q1(C) ∼= S2

and K = SO(2) × SO(2) on Q2(C) ∼= S2 × S2. Also in the last
two cases there exist one-parameter families of Lagrangian K-orbits in
Qn(C) and each family contains Lagrangian submanifolds which can
NOT be obtained as the Gauss image of any homogeneous isopara-
metric hypersurface in a sphere. The fourth one is a new family of
Lagrangian orbits.

(1) If (U,K) is (S1×SO(3), SO(2)), then L is a small or great circle
in Q1(C) ∼= S2.

(2) If (U,K) is (SO(3)×SO(3), SO(2)×SO(2)), then L is a product
of small or great circles of S2 in Q2(C) ∼= S2 × S2.

(3) If (U,K) is (SO(3)×SO(n+1), SO(2)×SO(n)) (n ≥ 2) , then

L = K · [Wλ] ⊂ Qn(C) for some λ ∈ S1 \ {±
√
−1},

where K · [Wλ] (λ ∈ S1) is the S1-family of Lagrangian or
isotropic K-orbits satisfying
(a) K · [W1] = K · [W−1] = G(Nn) is a totally geodesic La-

grangian submanifold in Qn(C).
(b) For each λ ∈ S1 \ {±

√
−1},

K · [Wλ] ∼= (S1 × Sn−1)/Z2
∼= Q2,n(R)

is an H-minimal Lagrangian submanifold in Qn(C) with
∇S = 0 and thus ∇αH = 0.

(c) K · [W±
√
−1] are isotropic submanifolds in Qn(C) with

dimK · [W±
√
−1] = 0 (points !).

(4) If (U,K) is (SO(m+ 2), SO(2)× SO(m)) (n = 2m− 2), then

L = K · [Wλ] ⊂ Qn(C) for some λ ∈ S1 \ {±
√
−1},

where K · [Wλ] (λ ∈ S1) is the S1-family of Lagrangian or
isotropic orbits satisfying
(a) K · [W1] = K · [W−1] = G(Nn) is a minimal (NOT totally

geodesic) Lagrangian submanifold in Qn(C).
(b) For each λ ∈ S1 \ {±

√
−1},

K · [Wλ] ∼= (SO(2)× SO(m))/(Z2 × Z4 × SO(m− 2))

is an H-minimal Lagrangian submanifold in Qn(C) with
∇S ̸= 0 and ∇αH = 0.

(c) K · [W±
√
−1]
∼= SO(m)/S(O(1)×O(m− 1)) ∼= RPm−1 are

isotropic submanifolds in Qn(C) with dimK · [W±
√
−1] =

m− 1.
11



3.6. Hamiltonian stability of the Gauss images of homoge-
neous isoparametric hypersurfaces in Sn+1(1). Suppose that Nn

is a compact isoparametric hypersurface embedded in Sn+1(1). Palmer
[30] showed that its Gauss map G : Nn −→ Qn(C) is Hamiltonian
stable if and only if Nn = Sn ⊂ Sn+1(1) (g = 1).

Question. Hamiltonian stability of its Gauss image G(Nn) ⊂ Qn(C) ?

g = 1 : Nn = Sn is a great or small sphere and G(Nn) ∼= Sn is strictly
Hamiltonian stable. More strongly, it is stable as a minimal subman-
ifold and homologically volume-minimizing because it is a calibrated
submanifold.
g = 2 : Nn = Sm1 × Sm2 the Clifford hypersurfaces (n = m1 +

m2, 1 ≤ m1 ≤ m2) and G(Nn) = Qm1+1,m2+1(R) ⊂ Qn(C). Then
m2−m1 ≥ 3 if and only if G(Nn) ⊂ Qn(C) is NOT Hamiltonian stable.
In case m2−m1 ≥ 3, the spherical harmonics of degree 2 on the sphere
Sm1 ⊂ Rm1+1 of smaller dimension give volume-decreasing Hamiltonian
deformations of G(Nn). If m2 −m1 = 2, then it is Hamiltonian stable
but not strictly Hamiltonian stable. If m2 − m1 = 0 or 1, then it is
strictly Hamiltonian stable.
g = 3 : All isoparametric hypersurfaces in the sphere with g = 3

were classified by E. Cartan and they all are homogeneous, so called
“Cartan hypersurfaces”.

Theorem 3.2 (Hui Ma-Ohnita [17]). If g = 3, then L = G(Nn) ⊂
Qn(C) is strictly Hamiltonian stable.

Remark. In case g = 3, each induced metric from Qn(C) is a normal
homogeneous metric. It never holds in cases g = 4, 6

g = 6 : Only homogeneous examples are known now. If g = 6 and
m1 = m2 = 1, then it is homogeneous (Dorfmeister-Neher [12], Reiko
Miyaoka [18]).

Theorem 3.3 (Hui Ma-Ohnita). If g = 6 and Nn is homogeneous,
then L = G(Nn) ⊂ Qn(C) is strictly Hamiltonian stable.

g = 4 : More recently, in the case when g = 4 and Nn is homoge-
neous, we obtain

Theorem 3.4 (Hui Ma-Ohnita). (1)

G(Nn) = SO(5)/T 2 · Z4

is strictly Hamiltonian stable.
12



(2)

G(Nn) = (SO(2)× SO(m))/(Z2 × SO(m− 2)) · Z4 (m ≥ 3)

is NOT Hamiltonian stable if and only if m ≥ 6, i.e. m2−m1 =
(m−2)−1 ≥ 3. If m2−m1 = (m−2)−1 = 2, i.e. m = 5, then
it is Hamiltonian stable but not strictly Hamiltonian stable. If
m2 − m1 = (m − 2) − 1 = 0 or 1, i.e. m = 3 or 4, then it is
strictly Hamiltonian stable.

Our study on the Hamiltonian stability of their Gauss images in the
homogeneous cases of g = 4 is still in progress and we shall report
further results in this case on the forthcoming opportunity.

Problem. Investigate the Hamiltonian stability of the Gauss images
of compact non-homogeneous isoparametric hypersurface embedded in
the sphere with g = 4. For every compact isoparametric hypersur-
face embedded in the sphere, is it true that its Gauss image is not
Hamiltonian stable if and only if m2 −m1 ≥ 3 ?
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