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SYMMETRY OF A SYMPLECTIC TORIC MANIFOLD

MIKIYA MASUDA

Abstract. The action of a torus group T on a symplectic toric
manifold (M,ω) often extends to an effective action of a (non-
abelian) compact Lie group G. We may think of T and G as com-
pact Lie subgroups of the symplectomorphism group Symp(M,ω)
of (M,ω). On the other hand, (M,ω) is determined by the associ-
ated moment polytope P by the result of Delzant [4]. Therefore,
the group G should be estimated in terms of P or we may say that
a maximal compact Lie subgroup of Symp(M,ω) containing the
torus T should be described in terms of P .

In this paper, we introduce a root system R(P ) associated to
P and prove that any irreducible subsystem of R(P ) is of type A
and the root system ∆(G) of the group G is a subsystem of R(P )
(so that R(P ) gives an upper bound for the identity component
of G and any irreducible factor of ∆(G) is of type A). We also
introduce a homomorphism D from the normalizer NG(T ) of T
in G to an automorphism group Aut(P ) of P , which detects the
connected components of G. Finally we find a maximal compact
Lie subgroup Gmax of Symp(M,ω) containing the torus T .

1. Introduction

A symplectic toric manifold is a compact connected symplectic man-
ifold (M,ω) with an effective Hamiltonian action of a torus group T
of half the dimension of the manifold M . Delzant [4] proves that M is
equivariantly diffeomorphic to a smooth projective toric variety with
the restricted T -action. Moreover he classifies symplectic toric mani-
folds by showing that the correspondence from symplectic toric man-
ifolds to their moment polytopes is one-to-one. Therefore, all geo-
metrical information on (M,ω) is encoded in the moment polytope P
associated with (M,ω).
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2 M. MASUDA

The T -action on (M,ω) often extends to an effective action of a (non-
abelian) compact Lie group G. We may think of T and G as compact
Lie subgroups of the symplectomorphism group Symp(M,ω) of (M,ω).
Since the T -fixed point set in M is non-empty and isolated, there is
no torus subgroup of Symp(M,ω) containing T properly. This means
that T is a maximal torus of G.

In this paper, we introduce a root system R(P ) associated to the mo-
ment polytope P and a homomorphism D : NG(T ) → Aut(P ), where
NG(T ) denotes the normalizer of T in G and Aut(P ) denotes an au-
tomorphism group of P . It turns out that the root system R(P ) gives
information on the identity component of G and the homomorphism
D detects the connected components of G. Here is a summary of our
results.

Theorem 1.1. Let (M,ω) be a symplectic toric manifold with a Hamil-
tonian action of a torus T of half the dimension of the dimension of M
and let P be the associated moment polytope. Then the following hold.

(1) Any irreducible subsystem of R(P ) is of type A.
(2) If G is a compact Lie subgroup of Symp(M,ω) containing the

torus T , then the root system ∆(G) of G is a subsystem of R(P ),
so that any irreducible factor of ∆(G) is of type A by (1) above.

(3) If ∆(G) = R(P ) and the homomorphism D : NG(T ) → Aut(P )
above is surjective, then G is maximal among compact Lie sub-
groups of Symp(M,ω) containing the torus T .

(4) There exists a compact Lie subgroup Gmax of Symp(M,ω) con-
taining the torus T such that the assumption in (3) above is
satisfied.

Remark. By (3) above, the group Gmax in (4) above is maximal among
compact Lie subgroups of Symp(M,ω) containing T . However, the
author does not know whether any maximal compact Lie subgroup of
Symp(M,ω) containing T is conjugate to Gmax in Symp(M,ω), where
the torus T is fixed. Related to this question, it is proved in [8] that
when dim M = 4, the number of conjugacy classes of 2-dimensional
tori in Symp(M,ω) is finite.

Our work is motivated by the work of Demazure [5] (see also [3] or
[11, Section 3.5]). He introduces a root system R(∆) for a complete
non-singular fan ∆ and proves that it agrees with the root system of the
automorphism group Aut(X(∆)) of the compact smooth toric variety
X(∆) associated with ∆, where Aut(X(∆)) is known to be an algebraic
group, and that Rs(∆) := R(∆) ∩ (−R(∆)) is the root system of the
reductive (or semisimple) part of Aut(X(∆)). The symplectic toric
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manifold (M,ω) is equivariantly diffeomorphic to a smooth projective
toric variety X with the restricted T -action as mentioned before and
the fan ∆X of the X is the so-called normal fan derived from the
moment polytope P associated with (M,ω), where normal vectors vi’s
to facets of P are edge vectors in the fan ∆X . One sees that our
root system R(P ) agrees with Rs(∆X). Demazure also describes the
connected components of Aut(X(∆)) in terms of the automorphism
group Aut(∆) of the fan ∆. The automorphism group Aut(P ) of P
can be regarded as a counterpart to Aut(∆). We remark that the root
systems R(P ) and R(∆) depend only on the vectors vi’s but Aut(P )
and Aut(∆) are not determined by the vectors.

This paper is organized as follows. In Section 2 we review an explicit
construction (called the Delzant construction in [6]) of a symplectic
toric manifold (M,ω) with moment polytope P . In Section 3 we rewrite
the construction in terms of equivariant (co)homology and also recall
some facts on the equivariant cohomology of M . In Section 4 we make
some observations on roots of a compact Lie subgroup G of Symp(M,ω)
containing the torus T . Based on the observations, we introduce the
root system R(P ) and prove the assertions (1) and (2) in Theorem 1.1
(see Proposition 5.1, Theorem 5.4 and Corollary 5.5). In Section 6
we find a connected compact Lie subgroup G of Symp(M,ω) which
attains the equality ∆(G) = R(P ). In Section 7 we introduce the
homomorphism D : NG(T ) → Aut(P ) and observe that D detects the
connected components of G. The assertions (3) and (4) in Theorem 1.1
are proved in Section 8 (see Theorem 8.1).

Throughout this paper, (M,ω) will denote a symplectic toric mani-
fold with moment polytope P , where a Hamiltonian T -action on (M,ω)
is incorporated although it is often not mentioned explicitly. The ar-
gument developed in this paper works for torus manifolds introduced
in [7] with some modification. We will discuss this in a forthcoming
paper.

2. Delzant construction

By the result of Delzant mentioned in the Introduction, a symplectic
toric manifold (M,ω) is determined by the associated moment polytope
P and is explicitly constructed from P . We will review the construction
in this section. The details can be found in [6].

Let µ : M → t∗ be a moment map associated with (M,ω) so that
µ(M) = P , where t∗ is the dual of the Lie algebra t of T . The moment
map µ is uniquely determined by (M,ω) up to parallel translations in
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t∗. We identify t with Rn and t∗ with (Rn)∗ and express

(2.1) P = {u ∈ (Rn)∗ | 〈u, vi〉 ≥ ai (i = 1, . . . ,m)}

where vi ∈ Zn is primitive, 〈 , 〉 is a natural pairing (i.e. evaluation)
and ai ∈ R. Without loss of generality we may assume that there is
no redundant inequality in (2.1) so that the intersection of P with the
hyperplane defined by 〈u, vi〉 = ai is a facet (i.e. codimension 1 face)
of P for each i, which we denote by Pi. So there are exactly m facets
in P . The moment polytope P is non-singular, which means that P is
simple and whenever n facets of P meet at a vertex, the n vectors vi’s
normal to the n facets form a basis of Zn. A non-singular polytope is
called a Delzant polytope in [6].

Let e1, . . . , em be the standard basis of Zm and consider the linear
map π∗ : Zm → Zn sending ei to vi for i = 1, . . . ,m. Since P is non-
singular, π∗ is surjective and we have an exact sequence

(2.2) 0 → Ker π∗
ι∗−→ Zm π∗−→ Zn → 0

where ι∗ is the inclusion. Taking the dual of this sequence, we obtain
an exact sequence

(2.3) 0 ← (Ker π∗)
∗ ι∗←− (Zm)∗

π∗
←− (Zn)∗ ← 0

and one easily sees that

(2.4) π∗(u) =
m∑

i=1

〈u, vi〉e∗i for any u ∈ (Zn)∗

where e∗1, . . . , e
∗
m denote the dual basis of e1, . . . , em.

The map π∗ (resp. π∗) extends to a linear map from Rm onto Rn

(resp. from (Rn)∗ to (Rm)∗) and we use the same notation for the
extended map. We define π∗

a : (Rn)∗ → (Rm)∗ by

π∗
a(u) := π∗(u) −

m∑
i=1

aie
∗
i =

m∑
i=1

(〈u, vi〉 − ai)e
∗
i .

The map π∗
a embeds P into the positive orthant of (Rm)∗. The fiber

product of π∗
a and the (moment) map

(2.5) Φ: Cm → (Rm)∗

sending z = (z1, . . . , zm) to 1
2

∑m
i=1 |zi|2e∗i is

(2.6) {(z, u) ∈ Cm × (Rn)∗ | 1

2

m∑
i=1

|zi|2e∗i = π∗
a(u)}.
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Since π∗
a is injective and ι∗(π∗

a(u)) = −
∑m

i=1 aiι
∗(e∗i ) for any u, the

first projection from Cm × (Rn)∗ onto Cm maps the fiber product (2.6)
diffeomorphically onto

(2.7) ZP := {z ∈ Cm |
m∑

i=1

(
1

2
|zi|2 + ai)ι

∗(e∗i ) = 0}.

Note that

(2.8) ZP = Φ−1(π∗
a(P )).

Remark. The manifold ZP is called the moment-angle manifold of P
and its topology is intensively studied in [2]. It is also studied in [1]
from the viewpoint of real algebraic geometry.

We identify R/Z with the unit circle S1 of the complex numbers C
through the exponential map x → exp(2π

√
−1x) and set

T := (S1)n.

The map π∗ in (2.2) induces an epimorphism

V : (S1)m → T

and we make an identification

(2.9) (S1)m/ KerV = T

through the map V. An element c = (c1, . . . , cn) ∈ Zn defines a homo-
morphism

(2.10) λc : S1 → T

sending g to (gc1 , . . . , gcn) and we note that

(2.11) V(g1, . . . , gm) =
m∏

i=1

λvi
(gi) for (g1, . . . , gm) ∈ (S1)m.

An element b = (b1, . . . , bn) in Zn also defines a homomorphism

χb : T → S1

sending (h1, . . . , hn) to
∏n

i=1 hbi
i . Then we have

(2.12) (χb ◦ λc)(g) = g〈b,c〉 for g ∈ S1

where 〈b, c〉 =
∑n

i=1 bici. Since the intersection of the kernels of χb : T →
S1 for all b is trivial, it follows from (2.11) and (2.12) that

(2.13) KerV = {(g1, . . . , gm) ∈ (S1)m |
m∏

i=1

g
〈u,vi〉
i = 1 for ∀u ∈ Zn}.



6 M. MASUDA

Remark. The elements b and u above are taken from Zn but we will
see that it would be better to regard them as elements of (Zn)∗ through
the product 〈 , 〉.

The group (S1)m acts on Cm by componentwise multiplication and
this action leaves ZP invariant. The map Φ in (2.5) induces a home-
omorphism from the quotient Cm/(S1)m onto the positive orthant of
(Rm)∗ and Φ(ZP ) = π∗

a(P ). The action of (S1)m restricted to KerV is
free on ZP and the quotient ZP / KerV is known to be the given M .
The standard symplectic from

ω0 :=

√
−1

2

m∑
i=1

dzi ∧ dz̄i

on Cm is invariant under the linear action of the unitary group U(m).
The form ω0 descends to the given ω on M . In fact, if

q : ZP → M = ZP / KerV

denotes the quotient map, then ω satisfies

(2.14) ω0|ZP
= q∗(ω)

and is uniquely determined by this identity, where the left-hand side
denotes the restriction of ω0 to ZP . The action of (S1)m on ZP induces
an action of T = (S1)m/ KerV on M = ZP / KerV and this T -action
on M preserves the symplectic form ω.

As remarked before, the equation 〈u, vi〉 = ai defines the facet Pi of
P for each i = 1, . . . ,m, and

ZPi
:= Φ−1(π∗

a(Pi)) and Mi := q(ZPi
)

are respectively closed smooth submanifolds of ZP and M of real codi-
mension 2. We call Mi’s the characteristic submanifolds of M . We see
from (2.7) or (2.8) that

ZPi
= ZP ∩ {zi = 0}

and hence it follows from (2.10) and (2.11) that

Lemma 2.1. The characteristic submanifold Mi is fixed pointwise by
the S1-subgroup λvi

(S1) of T for each i.

3. Equivariant cohomology

It is more convenient and natural to interpret the Delzant construc-
tion in terms of equivariant (co)homology. We will discuss it and also
recall some facts on equivariant cohomology in this section. Recall that
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the equivariant homology and cohomology of a space X with an action
of the torus T are respectively defined as

HT
∗ (X) := H∗(ET ×T X) and H∗

T (X) := H∗(ET ×T X)

where ET → BT = ET/T is a universal principal T -bundle and ET×T

X is the quotient of ET × X by the T -action given by

(3.1) t(e, x) = (et−1, tx) for (e, x) ∈ ET × X and t ∈ T .

Let (M,ω) be a symplectic toric manifold and let Mi’s (i = 1, . . . ,m)
be the characteristic submanifolds of M . Since the T -action on M
preserves the symplectic form ω and Mi is fixed pointwise under a
circle subgroup of T (see Lemma 2.1), the ω restricted to Mi is again a
symplectic form. Therefore the form ω and its restriction to Mi define
orientations on M and Mi. Since M and Mi are oriented and the
inclusion map from Mi to M is equivariant, it defines an equivariant
Gysin homomorphism

H∗
T (Mi) → H∗+2

T (M)

which raises the cohomological degree by 2 because the codimension
of Mi in M is 2. We denote by τi the image of the unit element 1 ∈
H0

T (Mi) by the equivariant Gysin homomorphism. The cohomological
degree of τi is 2. We may think of τi as the Poincaré dual of the
cycle Mi in the equivariant setting. Since a cup product

∏
i∈I τi for

I ⊂ [m] := {1, . . . ,m} is the Poincaré dual of ∩i∈IMi, we see that

(3.2)
∏
i∈I

τi = 0 if ∩i∈IMi = ∅.

It turns out that H∗
T (M) is generated by τi’s as a ring and that the

relations in (3.2) are the only relations among τi’s, i.e. we have

Lemma 3.1. H∗
T (M) = Z[τ1, . . . , τm]/(

∏
i∈I τi | ∩i∈IMi = ∅) as rings.

In particular, τi’s are a free additive basis of H2
T (M) and the following

easily follows from this fact.

Lemma 3.2. (see [10, Lemma 1.5] for example). Let π : ET ×T M →
BT be the projection on the first factor. Then for each i = 1, . . . ,m,
there is a unique element vi ∈ H2(BT ) such that

(3.3) π∗(u) =
m∑

i=1

〈u, vi〉τi for any u ∈ H2(BT )

where 〈 , 〉 denotes the natural pairing between cohomology and homol-
ogy.
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The Leray-Serre spectral sequence of the fibration

(3.4) M
ι−→ ET ×T M

π−→ BT

collapses because Hodd(M) = Hodd(BT ) = 0. Therefore H∗
T (M) =

H∗(BT ) ⊗ H∗(M) as H∗(BT )-modules and hence H∗(M) is the quo-
tient of H∗

T (M) by the ideal generated by π∗(u) for u ∈ H2(BT ). This
together with Lemmas 3.1 and 3.2 implies the following well-known
fact.

Proposition 3.3. We set

(3.5) µi := ι∗(τi) ∈ H2(M).

Then H∗(M) is the quotient of a polynomial ring Z[µ1, . . . , µm] by the
ideal generated by the following two types of elements:

(1)
∏

i∈I µi for I ⊂ [m] with ∩i∈IMi = ∅.
(2)

∑m
i=1〈u, vi〉µi for u ∈ H2(BT ).

A homomorphism f : S1 → T induces a continuous map Bf : BS1 →
BT . We fix a generator κ of H2(BT ) ∼= Z. Then the correspondence
f → (Bf)∗(κ) defines an isomorphism

(3.6) Hom(S1, T ) ∼= H2(BT )

and we denote by λv the element of Hom(S1, T ) corresponding to v ∈
H2(BT ). The identity in Lemma 3.2 implies the following.

Lemma 3.4. (see [10, Lemma 1.10] for example). For the elements
vi ∈ H2(BT ) (i = 1, . . . ,m) defined in Lemma 3.2, λvi

(S1) is the circle
subgroup of T which fixes Mi pointwise.

This lemma corresponds to Lemma 2.1. More precisely, one can see
that the vi’s defined in Lemma 3.2 can be identified with the vi’s in
Section 2 through an identification

H2(BT ) = Zn,

(see [10] for example). Taking the dual of this identification, we obtain
an identification

H2(BT ) = (Zn)∗.

Then (2.1) can be rewritten as

(3.7) P = {u ∈ H2(BT ; R) | 〈u, vi〉 ≥ ai (i = 1, . . . ,m)}

where 〈 , 〉 denotes the natural pairing between cohomology and ho-
mology as before.
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Lemma 3.5. The exact sequences in (2.2) and (2.3) can be regarded
as exact sequences derived from the fibration (3.4), namely, (2.2) can
be regarded as

(3.8) 0 → H2(M)
ι∗−→ HT

2 (M)
π∗−→ H2(BT ) → 0

and (2.3) as

(3.9) 0 ← H2(M)
ι∗←− H2

T (M)
π∗
←− H2(BT ) ← 0.

Proof. If we identify H2
T (M) with (Zm)∗ through the identification of

τi with e∗i for i = 1, . . . ,m, then (3.3) agrees with (2.4) and this implies
the lemma. ¤

Through the identifications in Lemma 3.5, (2.7) turns into

(3.10) ZP = {z ∈ Cm |
m∑

i=1

(
1

2
|zi|2 + ai)µi = 0}

where µi’s are the elements of H2(M) defined in (3.5).

4. Roots of a compact Lie subgroup of Symp(M,ω)

If g ∈ Symp(M,ω) normalizes the torus T , then ρg defined by

(4.1) ρg(t) := gtg−1

is a group automorphism of T and the diffeomorphism g of M is ρ-
equivariant. Let Eρg be a homeomorphism of ET induced from ρg. It
is ρg-equivariant, i.e. Eρg(et) = Eρg(e)ρg(t) for e ∈ ET and t ∈ T .
Therefore, a homeomorphism of ET ×M sending (e, x) to (Eρg(e), gx)
is ρg-equivariant and induces a homeomorphism of ET×T M . Hence we
obtain a ring automorphism of H∗

T (M), denoted by g∗, which preserves
the subalgebra π∗(H∗(BT )). It easily follows from the definition of g∗

that

(4.2) g∗ ◦ π∗ = π∗ ◦ ρg∗ on H∗(BT )

where ρg∗ is an automorphism of H∗(BT ) induced from ρg.
Since the diffeomorphism g of M is ρg-equivariant, it permutes the

characteristic submanifolds Mi’s. Moreover, since g preserves the form
ω, it preserves the orientations on M and Mi’s induced from ω. These
imply that there is a permutation σ on [m] such that

(4.3) g∗(τi) = τσ(i) for any i.

With these understood

Lemma 4.1. ρg∗(vσ(i)) = vi for any i.
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Proof. Sending the identity (3.3) by g∗, it follows from (4.2) and (4.3)
that we have

(4.4) π∗(ρg
∗(u)) = g∗(π∗(u)) =

m∑
i=1

〈u, vi〉g∗(τi) =
m∑

i=1

〈u, vi〉τσ(i),

while it follows from (3.3) applied to ρg
∗(u) instead of u that we have

π∗(ρg
∗(u)) =

m∑
i=1

〈ρg
∗(u), vi〉τi =

m∑
i=1

〈ρg
∗(u), vσ(i)〉τσ(i)

=
m∑

i=1

〈u, ρg∗(vσ(i))〉τσ(i).

(4.5)

Comparing (4.4) with (4.5) and noting that τσ(i)’s are free over Z, we
obtain

〈u, vi〉 = 〈u, ρg∗(vσ(i))〉 for any i,

but since this identity holds for any u ∈ H2(BT ), the desired identity
in the lemma follows. ¤

The following lemma is due to M. Wiemeler and will play a key role
in the subsequent argument.

Lemma 4.2. ([12, Lemma 2.1]). If g induces the identity on H2(M)
and ρg

∗ is a reflection on H2(BT ), then the σ permutes exactly two
elements in [m] and fixes the others.

Proof. Since ρg
∗ is a reflection, its trace is n − 2. On the other hand,

since g induces the identity on H2(M) by assumption, the trace of g∗

on H2
T (M) must be m−2 by (3.8). However, H2

T (M) is freely generated
by τi’s over Z and g∗ permutes the generators by (4.3), so the lemma
follows. ¤

Dualizing the isomorphism (3.6), we obtain an isomorphism

(4.6) Hom(T, S1) ∼= H2(BT ).

For u ∈ H2(BT ), we denote by χu ∈ Hom(T, S1) the element corre-
sponding to u through the isomorphism (4.6).

Now we take a compact Lie subgroup G of Symp(M,ω) containing
T and denote by G0 the identity component of G. As remarked in the
Introduction, the torus T is a maximal torus of G.

Definition. A root of G is a non-zero weight of the adjoint represen-
tation of T on g ⊗ C, where g denotes the Lie algebra of G. We think
of a root of G as an element of H2(BT ) through the isomorphism (4.6)
and denote by ∆(G) the root system of G, that is the set of roots of
G. Needless to say, ∆(G) depends only on the identity component G0.
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For α ∈ ∆(G), we denote by Tα the identity component of the
kernel of χα : T → S1. Since α is non-zero, Tα is a codimension 1
subtorus of T . Let G0

α be the identity component of the subgroup of
G0 which commutes with Tα. The group NG0

α
(T )/T is of order two

and let g ∈ NG0
α
(T ) be a representative of the non-trivial element in

NG0
α
(T )/T . The automorphism ρg of T is independent of the choice of

the representative g, so we may denote it by ρα. It is of order two, its
fixed point set contains the codimension 1 subtorus Tα and ρ∗

α(α) = −α.
We note that ρ∗

α is the Weyl group action associated with α ∈ ∆(G).
Similarly, ρα∗ is a reflection on H2(BT ) and we note that

(4.7) Fix(ρα∗) = H2(BTα) = Ker α.

Lemma 4.3. For α ∈ ∆(G), there are i, j ∈ [m] such that

(4.8) 〈α, vi〉 = −〈α, vj〉(6= 0) and 〈α, vk〉 = 0 for any k 6= i, j.

Proof. Let g ∈ NG0
α
(T ) be a representative of the non-trivial element

in NG0
α
(T )/T . Since g is in G0, it is homotopic to the identity so that

g induces the identity on H2(M). Moreover, ρ∗
g = ρ∗

α is a reflection as
observed above. Therefore there are i, j ∈ [m] such that

g∗(τi) = τj, g∗(τj) = τi, g∗(τk) = τk for any k 6= i, j

by Lemma 4.2. It follows from Lemma 4.1 that

(4.9) ρα∗(vi) = vj, ρα∗(vj) = vi, ρα∗(vk) = vk for any k 6= i, j

and hence 〈α, vk〉 = 0 for k 6= i, j by (4.7). Finally, since ρ∗
α(α) = −α,

we have

〈α, vi〉 = −〈ρ∗
α(α), vi〉 = −〈α, ρα∗(vi)〉 = −〈α, vj〉,

proving the lemma. ¤
Lemma 4.4. For α, β ∈ ∆(G) we have

ρ∗
α(β) = β − 〈β, vi〉 − 〈β, vj〉

〈α, vi〉
α = β − 〈β, vj〉 − 〈β, vi〉

〈α, vj〉
α.

Proof. It follows from (4.9) that

〈ρ∗
α(β) − β, vi〉 = 〈β, ρα∗(vi)〉 − 〈β, vi〉 = 〈β, vj〉 − 〈β, vi〉

〈ρ∗
α(β) − β, vj〉 = 〈β, ρα∗(vj)〉 − 〈β, vj〉 = 〈β, vi〉 − 〈β, vj〉

〈ρ∗
α(β) − β, vk〉 = 〈β, ρα∗(vk)〉 − 〈β, vk〉 = 0 for k 6= i, j.

This together with (4.8) shows that the three terms in the lemma take
a same value on each v`. Since v`’s span H2(BT ), the desired identity
in the lemma follows. ¤
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Let aβ,α be the constant defined by

(4.10) ρ∗
α(β) = β − aβ,αα.

By Lemma 4.4 we have

(4.11) aβ,α =
〈β, vi〉 − 〈β, vj〉

〈α, vi〉
=

〈β, vj〉 − 〈β, vi〉
〈α, vj〉

.

The following is well-known (see [9, 9.4] but aβ,α is denoted 〈β, α〉 in
the book):

(1) aβ,α is an integer,
(2) aβ,α 6= 0 if and only if aα,β 6= 0,
(3) 0 ≤ aβ,αaα,β ≤ 3 if β 6= ±α

We set
Nα := |〈α, vi〉| = |〈α, vj〉|.

We say that α and β are joined if ρ∗
α(β) 6= β. By (2) above, ρ∗

α(β) 6= β
if and only if ρ∗

β(α) 6= α.

Lemma 4.5. If α and β are joined, then Nα = Nβ.

Proof. Since N−α = Nα, we may assume β 6= ±α. Then aβ,α is a
non-zero integer, so it follows from (4.11) that |aβ,α| ≥ 2 if Nα 6= Nβ.
Changing the role of α and β, we also have that |aα,β| ≥ 2 if Nα 6= Nβ.
But this contradicts the above fact (3) that 0 ≤ aβ,αaα,β ≤ 3 if β 6=
±α. ¤

∆(G) decomposes into a direct sum of irreducible root systems. Since
we are concerned with the isomorphism type of ∆(G) as a root system,
we may assume that Nα = 1 for any α by Lemma 4.5.

5. The root system of a moment polytope

Remember that the correspondence from symplectic toric manifolds
to their moment polytopes (which are non-singular) is one-to-one. Mo-
tivated by the observation made in Section 4, we make the following
definition.

Definition. For a non-singular polytope P described in (3.7), we define

R(P ) := {α ∈ H2(BT ) | 〈α, vi〉 = 1, 〈α, vj〉 = −1 for some i, j,

and 〈α, vk〉 = 0 for k 6= i, j},
and call it the root system of P . (It will be proved below that R(P ) is
actually a root system.)

Remark. The root system R(P ) depends only on the vi’s and not on
the constants ai’s used to describe the moment polytope P in (3.7).
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Example. We identify H2(BT ) with Zn and denote by {ei}n
i=1 the

standard basis of Zn and by {e∗i }n
i=1 the basis of (Zn)∗ dual to {ei}n

i=1.
Remember that m is the number of facets of P .

(1) Let m = n + 1 and take vi = ei for 1 ≤ i ≤ n and vn+1 =
−

∑n
i=1 ei. Then

R(P ) = {±e∗i (1 ≤ i ≤ n), ±(e∗i − e∗j) (1 ≤ i < j ≤ n)}

and this is a root system of type An. Note that the manifold M is the
complex projective space CP n of complex dimension n in this case.

(2) Let n = 2, m = 4 and take v1 = e1, v2 = e2, v3 = −e1 + ae2

and v4 = −e2 where a is an arbitrary integer. If a = 0, then P is a
rectangle and

R(P ) = {±e∗1, ±e∗2}

which is of type A1 × A1, and if a 6= 0, then P is a trapezoid with two
right angle corners and

R(P ) = {±e∗1}

which is of type A1. Note that the manifold M is a Hirzebruch surface
in this case.

(3) If n = 2 and m ≥ 5, then one easily checks that R(P ) is empty.

For α ∈ R(P ) with 〈α, vi〉 = 1 and 〈α, vj〉 = −1, we define a reflection
rα on H2(BT ) by

rα(v) := v − 〈α, v〉(vi − vj)

which interchanges vi and vj and fixes vk’s for k 6= i, j, and define its
dual reflection r∨α on H2(BT ) by

〈r∨α(β), v〉 := 〈β, rα(v)〉 = 〈β, v − 〈α, v〉(vi − vj)〉.

This shows that

(5.1) r∨α(β) = β − (〈β, vi〉 − 〈β, vj〉)α.

In particular, r∨α(±α) = ∓α. One can easily check that r∨α preserves
R(P ). Comparing Lemma 4.4 with (5.1) and noting that we may as-
sume Nα = 1 for any α, we see that ρα∗ agrees with r∨α and hence we
obtain the following.

Proposition 5.1. R(P ) is a root system and if P is the moment poly-
tope associated with a symplectic toric manifold (M,ω) and G is a
compact Lie subgroup of Symp(M,ω) containing the torus T , then the
root system ∆(G) of G is a subsystem of R(P ).
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We define a symmetric scalar product ( , ) on H2(BT ) by

(5.2) (β, γ) :=
m∑

`=1

〈β, v`〉〈γ, v`〉.

One easily sees from the definition of R(P ) that

(α, α) = 2 for α ∈ R(P ),

(α, β) = 0 or ± 1 for α, β ∈ R(P ) with β 6= ±α.
(5.3)

The group generated by the reflections r∨α (α ∈ R(P )) is called the
Weyl group of R(P ).

Lemma 5.2. The scalar product ( , ) is invariant under the Weyl
group of R(P ).

Proof. It suffices to check that (r∨α(β), r∨α(γ)) = (β, γ) for α ∈ R(P ) and
β, γ ∈ H2(BT ). By definition there are i, j ∈ [m] such that 〈α, vi〉 = 1,
〈α, vj〉 = −1 and 〈α, vk〉 = 0 for k 6= i, j. We denote 〈η, v`〉 by η` for
η ∈ H2(BT ). Then since (α, η) = ηi − ηj, it follows from (5.1) that

(r∨α(β), r∨α(γ)) = (β − (βi − βj)α, γ − (γi − γj)α)

=(β, γ) − (βi − βj)(α, γ) − (γi − γj)(β, α) + (βi − βj)(γi − γj)(α, α)

=(β, γ) − (βi − βj)(γi − γj) − (γi − γj)(βi − βj) + 2(βi − βj)(γi − γj)

=(β, γ),

proving the lemma. ¤

For α, β ∈ R(P ) we define an integer aβ,α by

(5.4) r∨α(β) = β − aβ,αα.

similarly to (4.10). If 〈α, vi〉 = 1 and 〈α, vj〉 = −1, then

(5.5) aβ,α = 〈β, vi〉 − 〈β, vj〉

by (5.1). Another description of aβ,α is the following.

Lemma 5.3. aβ,α = (α, β) for α, β ∈ R(P ). In particular, aβ,α = aα,β.

Proof. Since r∨α(α) = −α and r∨α is of order 2, it follows from Lemma 5.2
that

(α, r∨α(β) + β) = (−α, β + r∨α(β))

and hence (α, r∨α(β)+β) = 0. This together with (5.3) and (5.4) implies
the lemma. ¤

Theorem 5.4. Any irreducible subsystem of R(P ) is of type A.
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Proof. Let Φ be an irreducible subsystem of R(P ). The Cartan matrix
C(Φ) of Φ is (aβ,α) where α and β run over elements in a basis of Φ.
The diagonal entiries of C(Φ) are all 2 by (5.3) and C(Φ) is symmetric
by Lemma 5.3. Therefore, Φ must be either of type A, D or E (see [9,
p.59]).

Suppose that Φ is of type D or E. Then there are elements α, β, γ, δ
in the basis of Φ such that

(5.6) aβ,α = aγ,α = aδ,α = −1.

As before, let vi, vj be the elements such that 〈α, vi〉 = 1 and 〈α, vj〉 =
−1. It follows from (5.5) and (5.6) that the values which β, γ, δ take on
vi and vj must be either (−1, 0) or (0, 1). Therefore two of β, γ, δ, say
β and γ, must take the same values on vi and vj, say (0, 1). (The same
argument below will work for (−1, 0).) Let vk be the other element on
which β takes a non-zero value. Then rβ(vj) = vk and since 〈β, vj〉 = 1,
we have 〈β, vk〉 = −1. Moreover, since 〈γ, vj〉 = 1 and β 6= γ, we have
〈γ, vk〉 = 0. Therefore

〈r∨β (γ) − γ, vj〉 = 〈γ, rβ(vj)〉 − 〈γ, vj〉 = 〈γ, vk〉 − 〈γ, vj〉 = −1

〈r∨β (γ) − γ, vk〉 = 〈γ, rβ(vk)〉 − 〈γ, vk〉 = 〈γ, vj〉 − 〈γ, vk〉 = 1.

Since β takes 1 on vj and −1 on vk, the above shows that r∨β (γ)−γ = β
and hence aγ,β = 1. However aγ,β must be non-positive because β and
γ are in the basis of Φ and β 6= γ. This is a contradiction. Thus Φ is
neither of type D nor E and hence of type A. ¤

We conclude this section with the following corollary which follows
from Proposition 5.1 and Theorem 5.4.

Corollary 5.5. If G is a compact Lie subgroup of Symp(M,ω) con-
taining the torus T , then any irreducible factor of ∆(G) is of type A.

6. Connected maximal compact Lie subgroup of Symp(M,ω)

In this section we shall observe that the equality ∆(G) = R(P ) is
attained for some compact connected Lie subgroup G of Symp(M,ω).

As discussed in Section 2, we may think of M as ZP / KerV and ω
as the form induced from the standard from ω0 on Cm, where

(6.1) ZP = {z ∈ Cm |
m∑

i=1

(
1

2
|zi|2 + ai)µi = 0}
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from (3.10) and
(6.2)

KerV = {(g1, . . . , gm) ∈ (S1)m |
m∏

i=1

g
〈u,vi〉
i = 1 for ∀u ∈ H2(BT )}

from (2.13) through the identificaiton H2(BT ) = Zn discussed in Sec-
tion 3.

Lemma 6.1. Let α be an element of R(P ) such that 〈α, vi〉 = 1,
〈α, vj〉 = −1 and 〈α, vk〉 = 0 for k 6= i, j. Then µi = µj in (6.1)
and gi = gj in (6.2).

Proof. It follows from (3.3) that π∗(α) = τi − τj. Applying ι∗ to the
both sides of this identity, we get the former identity in the lemma
because ι∗ ◦ π∗ = 0 by (3.9) and µ` = ι∗(τ`) by (3.5). If we take the α

as u in (6.2), then the condition
∏m

i=1 g
〈u,vi〉
i = 1 reduces to gig

−1
j = 1

and this proves the latter statement in the lemma. ¤
The purpose of this section is to prove the following.

Proposition 6.2. There is a closed connected subgroup G̃ of the uni-
tary group U(m) which leaves ZP invariant and contains KerV in its
center (so that the action of G̃ induces an effective action of G̃/ KerV
on M = ZP / KerV) and ∆(G̃/ KerV) = R(P ).

Proof. Let Φ be an irreducible factor of R(P ). It is of type A by
Theorem 5.4. Suppose that the rank of Φ is r − 1. Then it follows
from Lemma 6.1 that there is a subset I(Φ) := {i1, . . . , ir} of [m] such
that µi1 = · · · = µir and gi1 = · · · = gir for g = (g1, . . . , gm) ∈ KerV .
Therefore the action of U(m) on Cm restricted to the subgroup

U(Φ) := {(xij) ∈ U(m) | xij = δij unless both i and j are in I(Φ)},
where δij = 1 if i = j and 0 otherwise, leaves ZP invariant and U(Φ)
commutes with KerV . We note that the root system of U(Φ) is (iso-
morphic to) Φ.

Now we decompose R(P ) into sum of irreducible factors Φ1, . . . , Φs.
Then the subsets I(Φ1), . . . , I(Φs) of [m] are disjoint. We consider the
subgroup G̃ of U(m) generated by

∏s
i=1 U(Φi) and (S1)m. Since (S1)m

contains KerV , so does G̃. It follows from the observation above that
G̃ commutes with KerV and the action of U(m) on Cm restricted to G̃
leaves ZP invariant so that the action descends to an effective action
of G̃/ KerV on M . Since the action of G̃ on ZP preserves the standard
form ω0|ZP

, the induced action of G̃/ KerV on M preserves the form ω

on M , see (2.14). Finally, ∆(G̃/ KerV) = R(P ) by construction. ¤
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7. Automorphisms of a moment polytope

Since the dual of the Lie algebra of T can be naturally identified with
H2(BT ; R), we think that the moment map µ associated with (M,ω)
takes values in H2(BT ; R) and P = µ(M). When g ∈ Symp(M,ω)
normalizes the torus T , we associated the ρg of Aut(T ) to g in Section 4,
where

(7.1) ρg(t) = gtg−1 for t ∈ T

and Aut(T ) denotes the group of automorphisms of T . The moment
map associated to (M,ω) with the T -action twisted by ρg is given by
ρg

∗ ◦ µ, so the image of M by the map is ρg
∗(P ). Since g preserves

the form ω, the images of M by µ and ρg
∗ ◦ µ are congruent modulo

parallel translations in H2(BT ; R). Motivated by this observation, we
define

Aut(P ) := {ρ ∈ Aut(T ) | ρ∗(P ) ≡ P}
where ≡ denotes congruence modulo parallel translations in H2(BT ; R).

Remark. As remarked before, the root system R(P ) depends only
on the vi’s and not on the constants ai’s used to define the moment
polytope P in (2.1) or (3.7). However Aut(P ) actually depends on the
ai’s. For instance, Aut(P ) for a square P is (a dihedral group) of order
8 while Aut(P ) for a (non-square) rectangle P is of order 4.

The correspondence g → ρg defines a homomorphism

(7.2) D : NG(T ) → Aut(P )

where G is any subgroup of Symp(M,ω) containing T (e.g. G may be
the entire group Symp(M,ω)) and NG(T ) denotes the normalizer of T
in G. If g ∈ T , then ρg is the identity; so T is in the kernel of D.

Lemma 7.1. If G is a compact Lie subgroup of Symp(M,ω) containing
the torus T , then the kernel of D is exactly T .

Proof. We note that g ∈ NG(T ) permutes the characteristic submani-
folds Mi’s of M . Suppose that g ∈ NG(T ) is in the kernel of D. Then
g maps Mi to itself for each i. Let x be a T -fixed point in M . Then
x =

∩
i∈I Mi for some I ∈ [m] with cardinality n, so that x is fixed by

g. We decompose the tangent space τxM of M at x into

τxM =
⊕
i∈I

τxM/τxMi.

The differential dg : τxM → τxM preserves each real 2-dimensional
eigenspace τxM/τxMi since g fixes x and maps Mi to itself for each
i. The symplectic form ω determines an orientation on τxM/τxMi for
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each i and dg preserves the orientation on τxM/τxMi since g preserves
the form ω.

Since G is compact, there exists a G-invariant Riemannian metric on
M so that we may assume that dg is an orthogonal transformation on
τxM/τxMi but since dg preserves the orientation on it, dg on τxM/τxMi

is a rotation and hence there exists t ∈ T such that dg = dt, i.e. d(gt−1)
is the identity on τxM . On the other hand, since gt−1 is contained in
G and G is compact, the fixed point set of gt−1 is a closed submanifold
of M . The connected component of this submanifold containing x is
of codimension 0 because d(gt−1) is the identity on τxM . Since M
is connected, the connected component must agree with M and this
means g = t, proving the lemma. ¤
Corollary 7.2. Let G be a compact Lie subgroup of Symp(M,ω) con-
taining the torus T and let G0 be the identity component of G. Then

G/G0 ∼= D(NG(T ))/D(NG0(T )) ⊂ Aut(P )/D(NG0(T ))

where D is the map in (7.2) and NG0(T ) is the normalizer of T in G0.

Proof. Since T is a maximal torus of G and maximal tori in G are
conjugate to each other because G is compact, the inclusion NG(T ) →
G induces an isomorphism

(7.3) NG(T )/NG0(T ) ∼= G/G0.

This fact together with Lemm 7.1 implies the corollary. ¤
We shall construct a cross section of the homomorphism D when

G = Symp(M,ω). We recall the description (3.7) of P :

(7.4) P = {u ∈ H2(BT ; R) | 〈u, vi〉 ≥ ai (i = 1, . . . ,m)}.
Let ρ ∈ Aut(P ). Since ρ∗(P ) ≡ P , we have

ρ∗(P ) = P + u0 for some u0 ∈ H2(BT ; R).

On the other hand, we have

ρ∗(P ) = {ρ∗(u) ∈ H2(BT ; R) | 〈u, vi〉 ≥ ai (i = 1, . . . ,m)}
by definition and this can be rewritten as

(7.5) ρ∗(P ) = {u ∈ H2(BT ; R) | 〈u, ρ∗
−1(vi)〉 ≥ ai (i = 1, . . . ,m)}.

Since ρ∗(P ) ≡ P , it follows from (7.4) and (7.5) that there exists a
permutation σ on [m] such that

(7.6) ρ∗
−1(vi) = vσ(i) for any i ∈ [m]

so that

ρ∗(P ) = {u ∈ H2(BT ; R) | 〈u, vσ(i)〉 ≥ ai (i = 1, . . . ,m)}.
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Therefore

〈u, vσ(i)〉 ≥ aσ(i) ⇐⇒ u ∈ P

⇐⇒ u + u0 ∈ ρ∗(P )

⇐⇒ 〈u + u0, vσ(i)〉 ≥ ai

⇐⇒ 〈u, vσ(i)〉 ≥ ai − 〈u0, vσ(i)〉

and this shows that

(7.7) aσ(i) = ai − 〈u0, vσ(i)〉 for any i.

We make one more observation on the permutation σ.

Lemma 7.3. There is a ring automorphism of H∗(M) sending µi to
µσ(i) for each i.

Proof. Since σ is induced from the automorphism ρ of P , we note that
∩i∈IPi = ∅ if and only if ∩j∈σ(I)Pj = ∅ for I ⊂ [m]. Furthermore we
note that ∩i∈IPi = ∅ if and only if ∩i∈IMi = ∅. Therefore, Lemma 3.1
ensures that sending τi to τσ(i) for each i induces a ring automorphism
of H∗

T (M), which we denote by f .
Applying f to the both sides of (3.3), we have

(7.8) f(π∗(u)) =
m∑

i=1

〈u, vi〉f(τi) =
m∑

i=1

〈u, vi〉τσ(i),

while it follows from (3.3) applied to ρ∗(u) instead of u that we have

π∗(ρ∗(u)) =
m∑

i=1

〈ρ∗(u), vi〉τi =
m∑

i=1

〈ρ∗(u), vσ(i)〉τσ(i)

=
m∑

i=1

〈u, ρ∗(vσ(i))〉τσ(i) =
m∑

i=1

〈u, vi〉τσ(i)

(7.9)

where we used (7.6) at the last identity. Comparing (7.8) with (7.9),
we obtain the identity f(π∗(u)) = π∗(ρ∗(u)) for any u ∈ H2(BT ) and
this shows that the ring automorphism f of H∗

T (M) preserves the sub-
algebra π∗(H∗(BT )). Therefore f induces a ring automorphism f̄ of
H∗(M) by Proposition 3.3. Since f(τi) = τσ(i) and µi = ι∗(τi) by (3.5),
we have f̄(µi) = µσ(i) which proves the lemma. ¤

We now define the unitary transformation Fρ of Cm by

(7.10) Fρ(z1, . . . , zm) := (zσ(1), . . . , zσ(m)).
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It preserves ZP because

z ∈ ZP ⇐⇒
∑

(
1

2
|zσ(i)|2 + aσ(i))µσ(i) = 0 (by (3.10))

⇐⇒
∑

(
1

2
|zσ(i)|2 + ai − 〈u0, vσ(i)〉)µσ(i) = 0 (by (7.7))

⇐⇒
∑

(
1

2
|zσ(i)|2 + ai)µσ(i) = 0 (by (2) in Proposition 3.3)

⇐⇒
∑

(
1

2
|zσ(i)|2 + ai)µi = 0 (by Lemma 7.3)

⇐⇒ Fρ(z) ∈ ZP (by (3.10) and (7.10)).

Let φ be the automorphism of (S1)m defined by

(7.11) φ(g1, . . . , gm) := (gσ(1), . . . , gσ(m)).

Then the map Fρ is φ-equivariant.

Lemma 7.4. Let V : (S1)m → T be the homomorphism in (2.11). Then
V ◦ φ = ρ ◦ V. In particular φ preserves KerV.

Proof. Noting that ρ(λv(g)) = λρ∗(v)(g), we see from (7.11), (2.11) and
(7.6) that

V
(
φ(g1, . . . , gm)

)
= V(gσ(1), . . . , gσ(m)) =

m∏
i=1

λvi
(gσ(i))

=
m∏

i=1

λρ∗(vσ(i))(gσ(i)) = ρ
( m∏

i=1

λvσ(i)
(gσ(i))

)
= ρ

( m∏
i=1

λvi
(gi)

)
= ρ

(
V(g1, . . . , gm)

)
.

This proves the lemma. ¤
Since M = ZP / KerV and Fρ is φ-equivariant, Fρ induces a diffeo-

morphism F̄ρ of M by Lemma 7.4. By definition Fρ is a unitary trans-
formation on Cm, so F̄ρ preserves the symplectic form ω and hence
F̄ρ ∈ Symp(M,ω).

Finally we need to prove the following.

Lemma 7.5. F̄ρ normalizes T and D(F̄ρ) = ρ.

Proof. We view an element g = (g1, . . . , gm) of (S1)m as a diffeomor-
phism of ZP ⊂ Cm. Then Fρ ◦ g ◦ F−1

ρ = φ(g). This identity decends
to an identity

(7.12) F̄ρ ◦ V(g) ◦ F̄−1
ρ = V(φ(g)) in Symp(M,ω).
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Since T = V((S1)m), the identity (7.12) shows that F̄ρ normalizes T .
Let t ∈ T . Then

(7.13) t = V(g) =
m∏

i=1

λvi
(gi) for some g ∈ (S1)m

where (2.11) is used for the latter identity. Using (7.13) together with
the definition of D (see also (7.1)), (7.12), (7.11) and (7.6), we have

(D(F̄ρ))(t) = F̄ρ ◦ t ◦ F̄−1
ρ = F̄ρ ◦ V(g) ◦ F̄−1

ρ = V(φ(g))

= V(gσ(1), . . . , gσ(m)) =
m∏

i=1

λvi
(gσ(i)) =

m∏
i=1

λρ∗(vσ(i))(gσ(i))

= ρ(
m∏

i=1

λvσ(i)
(gσ(i))) = ρ(

m∏
i=1

λvi
(gi)) = ρ(V(g)) = ρ(t)

and this proves the latter statement in the lemma. ¤

8. Maximal compact Lie subgroup of Symp(M,ω)

The purpose of this section is to prove the following.

Theorem 8.1. If a compact Lie subgroup G of Symp(M,ω) containing
the torus T satisfies the following two conditions:

(1) ∆(G) = R(P ), and
(2) the map D in (7.2) is surjective,

then G is maximal among compact Lie subgroups of Symp(M,ω) con-
taining the torus T . Moreover, there is a compact Lie subgroup Gmax

of Symp(M,ω) which satisfies the conditions (1) and (2) above.

Proof. What we prove for the former part of the theorem is that if a
compact Lie subgroup H of Symp(M,ω) contains the G in the theorem,
then H = G.

Since G is a subgroup of H, the root system ∆(G) of G is a subsystem
of the root system ∆(H) of H. On the other hand, since H is a compact
Lie subgroup of Symp(M,ω) containing T , ∆(H) is a subsystem of
R(P ). Therefore, it follows from the condition (1) in the theorem that
∆(G) = ∆(H) and this shows that G0 = H0 where the superscript 0
denotes the identity components as before.

Since G is a subgroup of H, NG(T ) is a subgroup of NH(T ). It
follows from Lemma 7.1 and the condition (2) in the theorem that
NG(T ) = NH(T ) and this together with the isomorphism (7.3) for G
and H implies G = H because G0 = H0.

The proof of the latter part of the theorem is as follows. Let G̃max

be the subgroup of U(m) generated by G̃ in Proposition 6.2 and Fρ’s
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in (7.10) (regarded as elements of U(m)) for ρ ∈ Aut(P ). The iden-
tity component of G̃max is G̃. The action of G̃max on Cm leaves ZP

invariant and induces an effective action of Gmax := G̃max/ KerV on M
preserving ω. The group Gmax contains the torus T and satisfies the
two conditions in the theorem by Proposition 6.2 and Lemma 7.5. ¤
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