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Classification of torus manifolds with codimension one
extended actions

Shintaro KUROKI

ABSTRACT. The goal of this paper is to classify torus manifolds (M?2", T™)
with codimension one extended G-actions (M?™, G) up to essential isomor-
phism, where G is a compact, connected Lie group whose maximal torus is 7.
For technical reasons, in this paper, we do not assume that torus manifolds
are omnioriented. As a result, we have the following two results: (1) if there is
no exceptional orbit in extended G-actions, there are five kinds of (M2", G)’s
(Theorem 1.1, 1.2); (2) otherwise, there are two kinds of (M?", G)’s (Theorem
1.3). As a corollary of these results, we also have that if M?™ is a non-singular
toric variety or a quasitoric manifold with codimension one extended G-actions,
then M?2™ is a complex projective bundle over a product of complex projective
spaces.

1. Introduction

This paper is a continuation of [12] and [13] devoted to the study of the ex-
tended G-actions on torus manifolds (M?", T™), where a torus manifold is an even
dimensional oriented manifold M?2™ acted on by a half-dimensional torus 7" with
non-empty fixed point set, and G is a compact, connected Lie group whose maxi-
mal torus is 7. In the first paper [12], we classified the homogeneous (unoriented)
torus manifolds and their transformation groups up to essential isomorphism, where
here an unoriented torus manifold means a torus manifold which is not assumed
omniorientations. By using classical Lie theory, we proved such torus manifolds are
only products of even dimensional spheres and complex projective spaces divided
by finite groups. In the second paper [13], we classified quasitoric manifolds with
codimension 1 extended G-actions up to essential isomorphism and studied rela-
tions with moment-angle manifolds. In order to classify such quasitoric manifolds,
we classified more general class which involve them, i.e., simply connected torus
manifolds with codimension 1 extended G-actions whose two singular orbits are
also simply connected torus manifolds. To classify such torus manifolds, we used
the part of the Uchida’s method in [17]. The Uchida’s method is the strong method
to classify codimension 1 compact Lie group actions up to essential isomorphism.
In the case that we apply the Uchida’s method to classify codimension 1 actions,
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we usually need to divide our proof into two cases (compare the method of [11,
Section 7, 8] and that of [11, Section 10, 11]). In particular, for torus manifolds
with codimension 1 extended G-actions, (as we mentioned in [13]) we divide our
proof into the following two cases: the case that two singular orbits of G-actions
are torus manifolds; and the case that one of two singular orbits of G-actions is not
a torus manifold. Remark that if a singular orbit is a torus manifold then this is
a homogeneous torus manifold (see Lemma 2.1); therefore, we know such singular
orbit type by using [12] (see Lemma 2.2). In the previous paper [13], we only
studied the former case because of its purpose. However, in general, the latter case
also occurs (see [13, Example 3.5]). The goal of this paper is to classify all un-
oriented torus manifolds with codimension one extended G-actions up to essential
isomorphism. In particular, in this paper, we put a special emphasis on the proof
of the latter case, because the proof of the former case is almost similar to that of
[13] even if in the case of the classification of such unoriented torus manifolds.

Now we state the main result of this paper. Put m;, I; € NU {0} for j =
1, -+, bandi =1, ---, a, and A C H?:1 Zo. We get the following three
theorems (see Section 3.1, 5.1 and 8.1 for detail).

THEOREM 1.1 (Theorem 3.1). Suppose a torus manifold M has a codimension
one extended G-action. If there are two singular orbits and both of them are torus
manifolds, then (M, G) is essentially isomorphic to

b b
[15°™ xaN, J]SO@m;+1)xH |,
j=1

j=1

such that (N, H) is one of the following three types:

| N \ 2] |
(IT=, 57 7T) 7« S(CE & R) [T, SU( + 1) x U(k)
(H;:f S%H) Xpa—1 P(CP @ CR2) | T9Z SUL; +1) x S(U (k1) x Ul(ks))
[I_, CP(l;) x S(R** & R) 1=, SU(I; + 1) x SO(2k)

where k, ki, ko € N.

THEOREM 1.2 (Theorem 8.1). Suppose a torus manifold M has a codimension
one extended G-action. If there are two singular orbits and one of them is not a
torus manifold, then (M, G) is essentially isomorphic to

b—1 b—1
[15% xaN, J]SO@m;+1)xH |,
j=1 j=1

such that (N, H) is one of the following two types:

| N [ 7] |
[T, S?iFl xpa S(CH @ R¥*F2=1) [ T[T, SU(l; + 1) x U(ky) x SO(2ky — 1)
[T, CP(l;) x SR¥+ @ R¥F==1) [ T["_, SU(l; + 1) x SO(2k;) x SO(2ky — 1)

where k1 € N, ko > 2.

THEOREM 1.3 (Theorem 5.1). Suppose a torus manifold M has a codimension
one extended G-action. If there is an exceptional orbit, then (M, G) is essentially
2



isomorphic to
b b
[15%" xaxz N, [] SO@m; +1) x H |,
j=1 j=1
such that (N, H) is one of the following two types:
| N | H |
(H?Zl S%’“) x7a S(CH&R) [ T[_, SU; +1) x U(ky)
[, CP(l;) x SR o R) | [, SU(; +1) x SO(2k;)
where k1 € N.

From the above theorems (see Section 3.1, 5.1 and 8.1 for detail), the finite
group A or Ax Zs acts only on ngl 52mi and on the fibre of N' (noton []j_, S2!i*!
and [[{_, CP(l;)). Therefore, we also have that if an unoriented torus manifold has
a codimension one extended G-action, then this manifold is a fibre bundle over
the homogeneous torus manifold H;’.Zl S#mi A" x [1{_, CP(l;) (see [12]) whose
fibre is a complex projective space CP(l), an even dimensional sphere S?™, or an
even dimensional real projective space RP(2m). Therefore, we can easily show the
following corollary:

COROLLARY 1.4. If a non-singular toric variety or a quasitoric manifold M has
a codimension one extended G-action, then (M, @) is essentially isomorphic to

a—1 a—1
<H S xgums P(Cgt @ CF2), [ SUL+1) x S(U(k) x U(@))) .
i=1 i=1

Remark that the manifold in Corollary 1.4 is equivariantly diffeomorphic to

a—1
[T Cht xceyer P(CE & CF),
i=1

where Clitl = Clitl — {0} and C* = C — {0} (removed the origin).

The organization of this paper is as follows. In Section 2, we first set up some
notation and basic facts from [12, 13]. Then we know that, in order to classify
codimension one extended actions, we need to consider the three cases: the cases
(1), (2) and (3). In Section 3, we classify the case (1), i.e., two singular orbits are
torus manifolds. The proof of this case is similar to the previous classification in
[13]. Hence, we can apply the arguments of the proofs in [13], and show Theorem
1.1. In Section 4, we give a preparation for the cases (2) and (3). In particular, we
know the following key fact in this section: in order to classify the cases (2) and
(3), we may only study the isotropy subgroup Ky C G and its slice representation
o2 by Remark 4.2, where G/K is the singular orbit of the codimension 1 extended
action which is a torus manifold and G/K> is the other non-principal orbit. In
Section 5, we state the main theorem and give the remark for the case (2), i.e., one
of non-principal orbits is an exceptional orbit. In particular, we divide this case
into (2)-(a) and (2)-(b). In Section 6 and 7, we study the cases (2)-(a) and (2)-(b)
respectively, and prove Theorem 1.3. In Section 8, we state the main theorem of the
case (3), i.e., one of the non-principal orbits is not a torus manifold but a singular
orbit, and we divide this case into the cases (3)-(a) and (3)-(b). In Section 9 and
10, we classify the case (3)-(a) and the case (3)-(b) respectively, and prove Theorem
1.2.
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2. Review of the previous papers

In order to classify codimension 1 extended actions, in this section, we recall
the basic facts (see [1, 8, 12, 13, 17] for detail).

2.1. Definition of torus manifold. We start with recalling the definition of
the torus manifold. Let (M?", T™) be a pair 2n-dimensional, compact, connected
manifold M?" and a half dimensional torus 7". We call (M?", T™) a torus manifold
if it satisfies that

(1) T"-action on M?" is amost effective, i.e., the intersection of all isotropy
subgroups is a finite subgroup in T";
(2) its fixed point set is non-empty, i.e., M7 # 0.
A torus manifold (M?", T") is often denoted by (M, T) or M simply.

In the paper [8], the definition of torus manifolds involves the choice of orienta-
tions of manifold M and its characteristic submanifolds called omniorientation on
M. Because we will classify extended actions up to essential isomorphism in this
paper, we do not need to choice an omniorientation on M. Moreover, the T-action
on M does not need to be effective (also see [12, Remark 2.1]). We also call such
torus manifold an unoriented torus manifold in this paper.

Note that M7 is finite for unoriented torus manifolds (M, T) as well as the
torus manifolds in the sense of [8].

2.2. Codimension 1 extended G-actions and their singular orbits. Let
(M, T) be a torus manifold, and let G be a compact, connected Lie group whose
maximal torus is T'. We next recall the basic facts for extended G-actions of (M, T).

Suppose a T"-action on M?3" extends to a G-action on M with codimension
1 principal orbits, i.e., (2n — 1)-dimensional orbit. Then we call (M, T) has a
codimension 1 extended G-action, and such extended G-action on M is denoted by
(M, G). We will classify such (M, G) up to essential isomorphism, where here
we say that (M, G) is essentially isomorphic to (M’', G') if these induced effective
actions are weak equivariantly diffeomorphic (see [12, 13] for detail)

For codimension 1 extended actions of (M, T), the following lemma holds (see
[13, Lemma 3.1, 3.2)).

LEMMA 2.1. Suppose that an (unoriented) torus manifold (M?", T™) has a
codimension 1 extended G-action. Then a G-orbit G/Ky of T-fized points is a
singular orbit in (M, G), i.e., dimG/K; < 2n — 1.

Furthermore, there is some subtorus T' C T such that (G/Ky, T') is an (un-
oriented) torus manifold.

PROOF. In the previous paper [13], we assume the orientation of the torus
manifold. However, we can also apply the proofs of [13, Lemma 3.1, 3.2] to the
case of unoriented torus manifolds. Hence, we can prove this lemma with a method
similar to the proofs of [13, Lemma 3.1, 3.2]. O

In this paper, we do not need to consider the orientation on the singular orbit
G/K,. Hence, we can directly apply the main result in [12] to a homogeneous torus
manifold G/K;. Moreover, we get the following lemma using the argument in [13,
Section 3.3].



LEMMA 2.2. Suppose that a torus manifold (M?*", T") extends to a codi-
mension 1 extended action. Then this codimension 1 extended action is essen-
tially isomorphic to (M, G) which satisfies that, for its singular orbit G/K, with
MTNG/Ky # 0, the pair (G, K1) is as follows:

a b a
[Isv@+1) x ] so@m; +1) x Gy, [[SWE) x UML) x & x G |,
=1

i=1 j=1

where H?zl SO(2m;) C & C H§=1 S(O(2m;) x O(1)) and GY is a product of
connected, simple Lie groups and tori.

2.3. Slice representations of G/K;. In this subsection, we study the slice
representation of G/K; for the case of unoriented torus manifolds.

Due to Lemma 2.1, G/Kj is a torus manifold. Therefore, we can put dim G/K; =
2n — 2ky for ky > 1. Let K =T[}_, S(U(l;) x U(1)) x S; (see Lemma 2.2), and let
Z(X) be the centralizer of a subgroup X in O(2k;), i.e., Z(X) = {g € O(2k1) | gz =
xg for all x € X}.

Using a method similar to the proof of [13, Lemma 5.6], we have the following
lemma for K; = K| x GY and the slice representation o1 : K1 — O(2k1).

LEMMA 2.3. For GY in K1 = K| x GY, there are the following two cases:
G| =8SU(k1) xT', and G = SO(2k;).

For these two cases, the slice representation o1 : K1 = K| x Gf — O(2ky)
satisfies the following list:

] Gy \ o1(GY) \ o1(K1) \
(1) | SU(k1) x T" | U(k1) C O(2k1) | Z(U (k1)) =TT C U(ky) C O(2ky)
(2] | SO(2ky) SO(2k) Z(SO(2k)) = {£Ian,} C O(2ky)

where the right list means o1(K1) C Z(U(ky)) for (1) and o1(K}) C Z(SO(2k1))
for (2).
Furthermore, the image of o1 is in SO(2ky), i.e., o1 : K1 — SO(2k;).

REMARK 2.4. We give the following four remarks.

(1) If GY = SO(2k1) then we can regard k; > 2, because SO(2) ~ T! =
SU(1) x T for ky = 1.

(2) In the previous paper [13], o1(K]) is always connected, because K; is
connected. However, in this paper, K7 is not always connected (because

Y is connected but K| might not be connected for Ky = K| x GY).

(3) Moreover, in [13], we can assume m; > 2 (where m; is defined in Lemma
2.2). However, in this paper, we assume m; > 1.

(4) K1/K =2 K¢?/K° = §?k1~1 because dim G/K; = 2n—2k; and the tubular
neighborhood of G/K; is G Xk, D?F1 guch that K acts transitively on
OD*1 (= K, /K) through 0.

In order to apply the same arguments in [13] to the case m; > 1, we need to
study the case m; = 1. Let r; : H?:1 SO(2m; +1) — SO(2m; + 1) be the natural
projection to the j-th factor. Note that we have for &7 in Lemma 2.2

ri(S1) = S0(2m;) or S(O(2m;) x O(1)) C SO(2m; + 1).

The following lemma holds.



LEMMA 2.5. Assume mj; = 1. Then there are the following two cases:

(1) ifr;(S1) = SO(2m;)(= SO(2)), then we can regard SO(2m;+1) = SO(3)
as SU(2) = SU(ly+1 + 1) up to essential isomorphism;

(2) if rj(S1) = S(O(2m;) x O(1))(= S(O(2) x O(1))), then there is some
inclusion ¢ : S(O(2) x O(1)) — 81 such that Im ¢ N SO(2m;) = SO(2m;),
and for the slice representation o1 we have

01 01(S(0(2) x O(1))) € {£Iox,} C SO(2ky).

PROOF. The first statement can be easily proved using the fact that SO(3) ~
SU(2), i.e., these Lie algebras are same (also see [13, Section 2.2]). We may only
prove the second statement.

Suppose 7 (S1) = S(0O(2m;)x0(1))(= S(O(2)xO(1))). Because H?:l SO(2m;) C
S C H?:1 S(0O(2m;) x O(1)), we can easily see that there is some inclusion
¢ : S(0(2) x O(1)) — &1 such that Im ¢ N SO(2m;) = SO(2m;). We may only
prove that this inclusion ¢ satisfies o1 0 t(S(O(2) x O(1))) C {£Iak, } C SO(2ky).

Let
J:(? é)eO@).

Then J? = I,. Therefore, by the right list in Lemma 2.3, we have that

(2.1) oot (( ‘é N )) € {41, } C U(2k1) C SO(2ky).

If GY = SO(2k1), then the statement o1 0 t(S(O(2) x O(1))) C {£ 12, } is straight-
forward because of Lemma 2.3. Assume GY = SU (k1) x T'. Now we can put

alob(< 61 " >> _ A7 € 50(2) C SO(2ky)

for A € SO(2), where v € Z and A7 € SO(2) ~ Tt C U(ky) C SO(2k;) for the
diagonal subgroup T C U(k1), because SO(2) is the abelian group. Hence, by Eq.
(2.1), we have that

= A7
It follows that < = 0; hence, we have the second statement. ([l

If m; > 2, then we can easily show that o1 0 ¢ 0r;(S1) C {xIa, }. Hence, by
the above Lemma 2.5, we can regard o1(S1) C {£I2g, }. This corresponds with the
previous fact that O’S(ngl SO(2m;)) = {e} in [13, Lemma 7.1, 7.2, 7.3]. Because
{£lo, } is the center of SO(2k;), we can use the same argument in the previous
paper [13, Section 7] for analyzing the slice representation oy.

6



2.4. Global structures of codimension 1 extended actions. We next
study the global structure of (M, G). Even if M is non-oriented, the following
structure theorem holds (see [1, 8.2 Theorem in Chapter IV]):

THEOREM 2.6. Let (M, G) be a G-manifold M with codimension 1 orbits.
If every orbit is principal, then M is a G/K-bundle over S'. Otherwise, there
are two non-principal orbits G/K1 and G/Ks such that K1 N Ky D K (K is the

principal isotropy subgroup). Furthermore, there exists a closed, invariant tubular
neighborhood X of G/ K for s =1, 2 such that

M:X1UX2 and XlﬂXQ:(?Xl:aXQ:G/K,
where 0Xs means the boundary of Xs.

Because of Lemma 2.1, we can assume G/K; is a singular orbit and a torus
manifold throughout this paper; moreover, because of Theorem 2.6, there are the
following three cases:

(1) G/K; is a torus manifold (automatically G/K» is a singular orbit);
(2) G/K, is an exceptional orbit, namely, dim G/K, = dimG/K = 2n — 1;
(3) G/K> is not a torus manifold but a singular orbit.

We call the above cases the case (1), (2) and (3), respectively. Remark that if M is
simply connected, then we do not need to consider the case (2) (see [13, Theorem
2.6] or [17, Lemma 1.2.1]). From the next section, we start to classify for each
above case.

Before we go to the next section, we introduce the following Lemma 2.7 for
the attaching map of f : 0X; — 9Xs. In the final part of the classification,
we compute the attaching maps f from 0X; to 0Xs, and construct the manifold
M(f) = X1 Uy Xo by using f. For two attaching maps f and f’, we know whether
M(f) and M(f") are diffeomorphic or not, by making use of the following Uchida’s
criterion (see [17, Lemma 5.3.1]).

LEMMA 2.7 (Uchida’s criterion). Let f, f': X1 — 0Xs be G-equivariant dif-
feomorphisms. Then M(f) is equivariantly diffeomorphic to M(f’) as G-manifolds,
if one of the following conditions are satisfied:

(1) f is G-diffeotopic to f';
(2) f~Lf" is extendable to a G-equivariant diffeomorphism on Xi;
(3) f'f~1 is extendable to a G-equivariant diffeomorphism on Xo.

We remark that this criterion also holds for non-orientable cases.

Using the above criterion (1), we can take the attaching map f from the group
N(K;G)/N(K;G)°, where N(K;G) is the normalizer of K in G and N(K;G)° is
its identity component (also see [13, Section 8.1])).

3. The case (1): two singular orbits are torus manifolds

The goal of this section is to classify the case (1). So, in this section, we
assume that the other singular orbit G/K> is also a torus manifold. Then we can
put dim G/K, = 2n — 2k, for ks > 1 and s = 1, 2. Note that the proof of this case
is similarly to that of the previous classification [13].

7



3.1. Notations and main theorem. First, we state the main theorem of
this section. In order to state it, we prepare some notations. A manifold X xg Y
denotes a quotient manifold of X x Y divided by a free H-action. The manifold
(IT7, S?+1) x7a S(CE@R) is the quotient manifold of (TT;_; 5% 1) x S(CE®R)
divided by the following T*-action: T acts on [[;_, S 2li+1 by the a-times product
of the scaler S'-action on S%i*! c Clitl for i = 1, ---, a (in other words, T
acts on []7_, S?! naturally); and T* acts on the 2k-dimensional sphere S(CF &
R) C C¥ ® R through the representation a : T¢ — S such that a(ty, -+, t,) —
.. t% for some ay, -+, o, € Z, that is, C¥ ~ C* (as a vector space) is the
representation space of the representation a (S! acts on this space by the scaler

multiplication). The manifold (H?;ll Szli“) X a1 P((C];1 @ C*2) is the projectify
of the complex vector bundle (H?;ll Szli“) Xra-1 (CF* @ Ck2), where 7%~ acts

on H?;ll 52+l paturally; and T ! acts on the representation space (Clgl ~ Ck
through the representation b : 7¢~' — S and on CF2 trivially. A group A is a
subgroup of H?‘:1 Zs, where Z, is generated by the antipodal involution on $2™
forj=1, ---, b

Now we may state the main theorem in this section.

THEOREM 3.1. Suppose a torus manifold M has a codimension one extended
G-action. If there are two singular orbits and both of them are torus manifolds,
then (M, G) is essentially isomorphic to

b b
[15°™ xanN, J]SO@m;+1)xH |,

j=1 j=1

such that (N, H) is one of the followings:

L N \ H |
(o) (ITi=; ™) x1« S(C; & R) I[,_, SU( +1) x U(k)
) | (T 82471) xpems P(CY @ C*) | TS, SU(+1) x S(U (k) x U(k))
(c) [T, CP(;) x S(R?* & R) [T, SU(l; + 1) x SO(2k)

where A acts on szl S2mi qs the subgroup H?:l Zo and on the fibre of N through
the following representations:

(a): oc: A— {1} C S! on S(CE @ R)NCE;

(b): oc: A — {£1} C S* on C*-factor in P(Cy* @ Ck2);

(¢): or : A — {£Is} C SO(2k) on S(R* @ R) NR2*;
respectively.

Here, G-actions on M are as follows: [[SO(2m; + 1) and [[SU(l; + 1) act

naturally on []S?™i and [] S%i*!, respectively; and U(k), S(U(k1) x U(k2)) and
SO(2k) act naturally on CF, (C’;l ® CF2 and R?*, respectively.

From the next subsection, we start to prove the above theorem.
3.2. Singular isotropy subgroups and images of their slice represen-

tations. Because G/K} is a torus manifold, the pair (G, K3) as well as (G, K;)
8



which is described in Lemma 2.2 satisfies the following property:

(G, Ks) = (HSU1’+1xHSO2m +1) x GYy HS ))xs2xG”)
=1 Jj=1

where []7_; SO(2m}) € S» C []{_; S(O(1) x O(2m})) and GY is a product of
connected, simple Lie groups and tori.

By the same argument of [13, Section 6, 7] for G/K¢ and G/K§ (where K? is
the identity component of K), we have

b
(G, K1, K2) = ([ S0@2m; +1) x G, 8 x K1, Sy x k)
j:
such that (@ Ky, Kg) is as follows:

~

(a): G= Hl SU(l; +1) x SU(k) x T,
K1 K2 H 1S(U(Z1)XU(1))X5UU€) XTl,
where dim G/K, = 2n — 2k and k > 1 (k1 = ko = k);
(b): G =TI'Z SU(l; + 1) x SU(ky) x SU (ko) x T,
Ky =105 S(U(L) x UL)) x SU(ky) x S(U(ky — 1) x U(1)) x T,
Ko =15 S(U(L) x UL)) x S(U(ky — 1) x U(1)) x SU(ka) x T,
where dim G/ K, = 2n — 2k, and kg > 1;
() G =TI, SU®i + 1) x SO(2k),
1= Ko = 1, SU() x U(1)) x SO(2),
where dim G/Ks; = 2n — 2k and k > 2 (ky = ko = k).
We call the above cases the case (1)-(a), (1)-(b) and (1)-(c), respectively.
Next, we consider the slice representation o, for s = 1, 2. Because of Lemma
2.3 and 2.5, we have o5 : K; = K. x G — SO(2k;). Moreover, there are the
following two cases:

<A A 0s(KY) |
SU(ks) x TY [ U(ks) C O(2ks) | Z(U(ks)) =~ TT C U(ks) C SO(2k,)
SO(2k,) SO(2k,) Z(SO(2k,)) = {£Iax.} C SO(2ks)

where the right list means o4(K7) C Z(U(ks)) or Z(SO(2ks)).

In order to classify the above each case, we analyze the followings: principal
isotropy subgroups K = o7 '(SO(2k; — 1)) = 05 1(SO(2ky — 1)); attaching maps
f:G/K = 90X, — 0Xy = G/K € N(K;G)/N(K;G)° (see Section 2.4); and
constructions of G-manifolds as M(f) = X1 Uy Xo, where X, denotes a G-invariant
tubular neighborhood of G/K; for s =1, 2.

3.3. The case (1)-(a). In this subsection, we study the case (1)-(a), that is,
o G=T1)_;80@2m; +1) x [T, SU(l; +1) x SU(k) x T",
o K1 =38 x[[L, S(UL;) xU(1)) x SU(k) x T*,
o Ky =38 x[[i_, S(Ul;) x U(1)) x SU(k) x T*
where [[5_; SO(2m;) C S, C [[}; S(0(2m;) x O(1)), dim G/K, = 2n — 2k, and
k>1fors=1, 2.
In order to know the precise structure of K, we analyze slice representations
os : Ky — SO(2k). By Section 3.2, the slice representation o5 : K, — U(k) C
9



SO(2k) satisfies the followings:

os(S(U1;) x U1))) = {Iox} or Z(U(k)) =T cU(k) foralli =1, --- , a;

os(SU(k) x TY) = U(k),
where Z(U(k)) = T' C U(k) is the center of U(k), i.e., the diagonal subgroup.
Because 04(S?) = US(Hl;:l SO(2m;)) = {1} c T' c U(k) (by making use of
Lemma 2.5) and SS/H?—:1 SO(2m;) ~ A C H?:1 Zs (ie., As is a subgroup of
H?’:l Zs generated by antipodal involutions), we have that

04(Ss) = oc(As) C {+1} c T c U(k),

where o¢ : A; — {£1}. If 05(Ss) = {1} then we can apply the same argument in
[13]. So we assume o4(S;) = {£1}.

Now, the principal isotropy subgroup K is as follows (X =Y means that two
groups X and Y are conjugate in G):

K o—ll(U(k—l))z{(,aL (t1, -, to), (%( g>t)

o7 Uk~ 1)) = {(B ot () ) t)

where A € S;, B€ S2; X, Y € U(k—1), z, y € T' such that zdet X = ydetY = 1;
and

(1, ...,ta):(< o tol) (% t‘i ))ezﬁlsw(zi)xmm.

First we take A = B = e € & NSy (the identity elements in H?:l SO(2m; + 1)).
Then 01(A) = 1 = 02(B). Hence, by using the the same argument of [13, Section
7.1] for A = B = e, we have that

o1 (At - Yt = 1}

oo (B)yti - - Pt = 1} :

o, =0;€Zfori=1, ---, a, and a=pF¢cN.

Moreover, if k = 1 then we can take « = § = 1 (up to essential isomorphism).
Next, we consider the following part in K (if k > 2):
Ae 81}

(e (0 0n) )
{(B, ‘ (‘é 02?3)),1> BeSQ}RQ,

where e € [[i_, S(U(l;) x U(1)) is the identity element and J € U(k — 1) such
that J = Iy (if 05(Cs) = 1) or det J = —1 with J? = I;_1 (if 05(Cs) = —1) for
s=1, 2and C; = A, Cy = B. For Ry and R, we can easily show the following
isomorphisms (not identity in G):

81 ~ Rl, 82 o R2~
Because Ry = Ro, we see that

S1=8CcKiNKs
10
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by the definition of S, i.e., we can regard K1 = K5 in G. If kK = 1, then we can apply
the same above argument by taking the set {(4, e, 01(A))} = {(B, e, 02(B))},
and we can regard Ky = Ks. Therefore, by using the above argument, we have
o1 = 09. Moreover, K is as follows:

K:{(A o (500

As the result of the above argument, the tubular neighborhood X, = G x i, D?*
(s =1, 2) is equivariantly diffeomorphic to the following manifold:

b a
(3.1) [15%™ xa (H S2itL e D(C’j)) :
j=1 i=1

where T acts on []i_, 5?1 naturally, and on D(CK) by a : (t1, -+, t,) —
t7r - tGe; and A = A = Ax(~ §1/8¢ = S»/89) acts on H§:1 52mi as the sub-
group of H?:1 Zsy, and on D(CF) by oc : A — {&1} (induced by ;). Here,
G = H?:l SO2m; +1) x [Ti_, SU(l; + 1) x SU(k) x T" acts on this manifold as
follows: H?:l SO(2m; + 1) acts on H?:l S%mi naturally; [, SU(l; + 1) acts on
[15—, S?*! naturally; and SU(k) x T* acts on D(C¥) by (A, t) — At* € U(k).
Next, we analyze attaching maps f: 0X; — 0Xs. Because of o € N, we have

o1 (A)ztt -0t = 1}

b a

N(K;G)/N(K;G)° =[] Z2 x [ Wi, 11,
j=1 i=1

j=1 ZQ and

W {41} il >20r0; #£0
il = Sy ifl;=1and oy = 0.

where [[7_; S(O(2m;) x O(1))/SO(2m;) ~ [T

Here, the above Ss(~ Zs) is the Weyl group of SU(2). Therefore, by the same
argument as [13, Section 8.2], we can show that I o f : 9X; — 0X; is extendable
to the equivariant map X; — X, where I : G/K = 0Xs — 0X; = G/K is the
identity attaching map. Hence, M(f) = M(I) for all attaching maps f by the
Uchida’s criterion (2). As the result, we have that if the case (1) holds for (M, G),
then such (M, G) is only determined by the representations a : 7¢ — T and
oc : A — {£1} (up to essential isomorphism), i.e., if we fix the representations a
and oc, then (M, G) is unique up to essential isomorphism. Thus, we have that
such manifold M and G are as follows (up to essential isomorphism):

b a
M = H S2mi x4 (H S+l s ra S(Cr @ R)) ,

i=1

b a
G =[] s0@m;+1) x [[SUW+1) x U(k),
j=1 i=1
by computing the orbits G/K, G/K; and G/Ks. This corresponds with the first

case of Theorem 3.1.
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3.4. The case (1)-(b). In this subsection, we study the case (1)-(b), that is,
o G=TI'_,S0@2m; +1) x [[{} SU(l; + 1) x SU (k1) x SU(ks) x T*,
o K =8 x [['2] S(WU(l) x U1)) x SU (k1) x S(U(ky — 1) x U(1)) x T,
o Ky =38y x [1/Z] SWU ) x U1)) x S(U(ky — 1) x U(1)) x SU (k) x T,
where H?Zl SO(2m;) C Ss C H?Zl S(0(2m;) x O(1)), dim G/K, = 2n — 2k, and
ks >1fors=1, 2.
In order to know the precise structure of K, we analyze the slice representation

os: Ky — SO(2ks). The following property can be proved similarly to that of the
case (1)-(a) (see Section 3.2, 3.3):
os(S(U(l;) x U(1))) ={Iag,} or Z(U(ks)) CU(ks) foralli =1, ---, a—1;
os(S(U(ky —1) x U(1))) = {2k, } or Z(U(ks)) C Ul(ks);
(SU (k) x T) = Ul(ks);
05(Ss) = oc(As) € {£1},
where s +r =3 and s, » > 1. Therefore, K satisfies that

K = o' (Ulki—1))

Os

o7 Uk — 1))

where A € 81, B € Sy, (t1, -+, ta_1) € [[:Z; SUL) x U(1)), and C, Y €
Uy —1), D, X € Ulky — 1), 2, y, ¢, d € T such that xdet X = ydetY =
cdetC'=ddetD = 1.
By the same argument as [13, Section 7.2] for 01(A) = 1 = 09(B), we see that
aq=0p;€Zfori=1, -+, a—1, and a,=0,=1 and a=pg€N.

Moreover, if k1 = 1 or ko = 1, then we have that @« = 1 or § = 1, respectively.
Using the method similar to that demonstrated in Section 3.3, we can also prove

S1 =8 Cc KiNK,,

and o1|s, = 02]s, (i-e., the restricted representations are the same representations).
Hence, K is as follows:

K:{(A, (tr, -+, ta—1), (3(; 2)’ ()O( 2>’t)

As the result of the above argument, the tubular neighborhood X; = G Xk,
D?Fs (s =1, 2) is equivariantly diffeomorphic to the following manifold:

b a—1

H S2mi % 4 (H SHL e D(C’;s)) x CP(k, — 1),

7j=1 =1

where T%~1 acts on [[/Z, 2! naturally and on D(C{*) by b: (tr, -+, te_1) =

tor ot A(= Ag = 85/89) acts on H?zl S?mi as the subgroup of H?Zl Zs

and on D((C’;S) by oc : A — {£1}, and s +r = 3 for s, r > 1. Here, G =
12

Y 0 D 0
{(B, (tl; cee tn.—l)a ( 0 y ), < 0 d >, t) O'Q(B) :t'fltaﬁ‘i—llyﬁatﬁd

o (AN -t eyt = 1} .

C 0 X 0 o Xa—1 g 4Qx
{(A, (t17~..7ta71)7 ( O C)’ ( 0 I‘)’t) Jl(A):tll"'tafleat C}

}

i



H?:l SO2m;+1) x [1¢Z] SU(l;+1) x SU (ks) x T* x SU (k,.) acts on this manifold
as follows: ]_[b,1 SO(2mj+1) acts on Hb,1 S2mi naturally; H?:_ll SU(l;+1) acts on
| ! §2li+1 paturally; SU(k,) x T' acts on D(CF*) by (A, t) — At*; and SU (k,)
acts on CP(k, — 1) naturally.

Next, we analyze attaching maps f : 0X; — 0Xs. In this case, we have

N(K;G)/N(K;G)° Hzgx le+1

where H?:1 S(0(2m;) x O(1))/SO(2m;) ~ H?zl Zo and

W, _ {Ili+1} if lz Z 2 or (67 7£ 0
il = SQ if lz =1 and a; = 0.

This is the same as the case (1)-(a). Therefore, we can show the Uchida’s criterion
(2) for Io f. Hence, by using the similar argument to that demonstrated in Section
3.3, we have that (M, G) which satisfies the case (1)-(b) is unique up to essential
isomorphism if we fix the representations b and o¢. Thus, we have that M and G
in the case (1)-(b) are as follows (up to essential isomorphism):

b a—1
H S2Mi % 4 (H S2iH x pay P(CH @C’”)) ,

=1
a—1

b
H (2m; +1) x [ SU +1) x S(U(k1) x U(ky)).

i=1

This corresponds with the second case of Theorem 3.1.

3.5. The case (1)-(c). In this subsection, we study the case (1)-(c), that is,
o G=T1)_; S0@2m; +1) x [T¢_, SU(l; +1) x SO(2k),
o K1 =8 x[[i, S(UL) xU(1)) x SO(2k),
o Ky =8 x [Ty SWL) x U(1) x SO(2k),
where H _150(2m;) C Ss C H 15(0(2m;) x O(1)), dimG/Ky = 2n — 2k and
k>2 for s=1, 2.

In order to know the precise structure of K, we analyze the slice representation
os : Ky — SO(2k) as well as the cases (1) and (2). By Section 3.2, we have the
followings for the slice representation o, : K, — SO(2k):

os(S(U1;) x U(1))) = {12} € SO(2k) for alli =1, ---, a;
0s(SO(2k)) = SO(2k);
O’S(Ss) = O’]R(.As) C {ifgk}

Therefore, we have that K is the following subgroup:

o7 (SO(2k —1)) = {(Aa (b1, -+ ta), ( g 2 )>

2 (SO(2k - 1)) = {<B7 S ( g ? )>

13
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where A € S1, B e Ss, (tl, s, ta) S H?:l S(U(ZZ) XU(l)), and F/, F € O(2]€—1),
e, f € O(1) such that edet E = fdet FF = 1.
Next, we consider the following part in K:

(e (4 2)
{(B, (1, -+, 1), ( 02(82)1%_1 JQ?B) ))

By using R1, Ro and the method similar to that demonstrated in Section 3.3 (the
case (1)-(a)), we can regard Ky = K5 in G and 01 = 09. Hence, K is as follows:

K =[] 5w x U() x {(A (5 7)) esixs0o@k-1xow)

As the result of the above argument, the tubular neighborhood X, = G x i, D?*
(s =1, 2) is equivariantly diffeomorphic to the following manifold:

Ry o1(A) = il}

O'2(B> == il} = RQ.

o1(A)x = 1}

a b
(3.2) [IcPw) x [ T] $*™ xa D®?*) |,

i=1 j=1
where A(= A ~ §;/82) acts on ngl S2™Mi as the subgroup of H?Zl Zs and on
D(R?*) by op : A — {&Iy}. Here, G = [[;_; SO@2m; + 1) x [[\_, SU(l; +
1) x SO(2k) acts on this manifold as follows: []7_, SU(l; 4+ 1) acts on [[{_, CP(l;)
naturally; H?:l SO(2m; + 1) acts on H2:1 S2mi naturally; and SO(2k) acts on

D(R?*) naturally.
Next, we analyze attaching maps f : 0X; — 0Xo. In this case, we have

N(K;G)/N(K;G)° HZ2xHWl x W,

where W = S(O(2k — 1) x O(1))/SO(2k — 1) = {I2k, —Iox} =~ Z2, and

W {41} il >20ra; #£0
i+l = Sy ifl;=1and o; = 0.

Therefore, by the same argument of [13, Section 8.4], we can show the Uchida’s
criterion (2) for I o f. Hence, by using the similar argument to that demonstrated
in Section 3.3, we have that (M, G) which satisfies the case (1)-(c) is unique up to
essential isomorphism if we fix the representation og. Thus, we have that M and
G in the case (1)-(c) are as follows (up to essential isomorphism):

b a
=[] S0@m; +1) x [[ SU + 1) x SO(2k).

i=1

This corresponds with the third case of Theorem 3.1.
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4. Preliminary for the cases (2) and (3)

In this section, we prepare to classify the other cases, i.e., G/K; is a torus
manifold but G/K> is not a torus manifold (the cases (2) and (3)). Henceforth,
we assume that G/K» is not a torus manifold. In this case, G/Ky N MT = {),
by using Lemma 2.1. It follows that 7' C G (a maximal torus) but T ¢ K3, i.e.,
rank G > rank K¥.

We first prove that dim G/K9 = dim G/K is odd. Because G/K; is a torus
manifold, we can apply the same argument which is demonstrated in Section 3 to
get K (also see Section 4.1). By using K’s in Section 3, we can easily show the
following formula:

rank G =rank K7 =rank K°+ 1.

Let 7" C K° be a maximal torus such that 77 C T. If 7" is not a maximal torus
in K§, then we have rank K§ = rank K° + 1 by using 7" C K° C K§ C G and
the above formula. However, this gives a contradiction to rank G > rank K3.
Therefore, we have rank K§ = rank K°. Due to [7, Theorem 1.1], we also have
dim K9/K?° is even. Thus, by considering the fibration: K§/K° — G/K° — G/K%
and dim G/K° = 2n — 1, we have that dim G/K9 = dim G/ K> is odd. Hence, we
can put

for ko > 1. Remark that if ko = 1 then this is in the case (2): G/Kj is an
exceptional orbit, otherwise this is in the case (3): G/K> is a singular orbit.
Since our G-action on M has codimension 1 orbits, we have that

Ky /K = §%h=2

in each case.
In summary, we have the following lemma.

LEMMA 4.1. Suppose a torus manifold (M, T) has codimension 1 extended
G-actions. If G/K> is not a torus manifold, then

dimG/Ky = 2n —2ky +1, Ko/K = §%k272,
for ke > 1.

4.1. Structures of G/K; and their tubular neighborhoods of the cases
(2) and (3). The main part to classify the cases (2) and (3) is to determine the
group K and its inclusion Ko C G. From the next section, We will determine
Ky C G by making use of the relation K C Ky C G and the classification result of
the transitive action on S$?#272. In this subsection, we recall G, K; and K; and in
the next subsection, we give an important remark for the attaching map.

Let dim G/K; = 2n — 2k, for k1 > 1. By Lemma 2.2, 2.3 and Remark 2.4, we
have (G, K) as the following two cases:

(a): G =T]"_, SO@2m; + 1) x [, SU(l; + 1) x SU(ky) x T', and K; =
St x [17, S(U;) x UQ1)) x SU (k1) x T* for ky > 1;
(b): G =TI )—, SO@2m; +1) x [T, SU(l; + 1) x SO(2k;), and K = S x
[T, S(U;) x U(1)) x SO(2ky) for ky > 2.
We call them the case (a) and (b) respectively.
15



4.1.1. The case (a). For the principal isotropy subgroup K of the case (a), we
can easily show the following by using the same argument in Section 3.3:

e (22)9

where A € Sy, (t1, -+, to) € [[}=, S(U(L)xU(1)),t € T* and X € U(ky —1) such
that z det X = 1. Here, 01(A) C {£1} C Stand (a1, -+, qq, ) € Z*xN. Ifky =
1, then we can take oo = 1. Therefore, a tubular neighborhood X; = G x g, D
of the case (a) is equivariantly diffeomorphic to the following manifold defined in

(3.1):

b a
(4.1) IIS%HXA1<IISWH1XTQDme>.

j=1 i=1

o1 (A)xtt - toet” = 1} )

Remark that from this section we write the representation a : 7¢ — S! as c.
4.1.2. The case (b). For the principal isotropy subgroup K of the case (b), we
can easily show the following by using the same argument in Section 3.5:

K = T[sww) =)

v {GL<§>2>)€&XSQQM—UXOGD

Hence, a tubular neighborhood X; = G x g, D?*1 of the case (b) is equivariantly
diffeomorphic to the following manifold defined in (3.2):

O'l(A)x = 1} .

a b
(42) HCP(LL) X Hs2mj X A, D(R2k1)
i=1

Jj=1

4.2. Important remark for the attaching maps of the cases (2) and
(3). Before we go to the next section, we give the following important remark for
the attaching maps f: G/K = 0X; — 00Xy, = G/K.

REMARK 4.2. In each above case (a) and (b), we see that N(K; G)/N(K;G)° is
the same as one of the cases (1)-(a), (1)-(b) and (1)-(c¢). Therefore, we have already
proved the Uchida’s criterion (2) for I o f in Section 3, that is, I o f : 0X; — 0X;
is extendable to the equivariant map X; — X;. Hence, once we know X; and X5
for the cases (2) and (3), then a G-diffeomorphism M (f) = M (I) always holds, i.e.,
the constructing manifold X7 U X is unique. It follows that, for the cases (2) and
(3), we may only analyse the structure of Xo = G x g, D?*2~1.

In the next six sections (the case (2) in Section 5, 6, 7; the case (3) in Section
8,9, 10), we will analyze Ky and its slice representation o : Ky — O(2ky — 1) of
the cases (2) and (3).

5. Main theorem and remarks of the case (2)

The goal of this section is to state the main theorem and give some remarks of
the case (2). In this section and the next two sections, we assume that the other
singular orbit G/ K5 is an exceptional orbit, i.e., dimG/K3 = dimG/K = 2n — 1.
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Then we have ks = 1 and K»/K =2 S° by Lemma 4.1. Due to [1, 3.2 Theorem (ii)
in Chapter IV], we have that K is a normal subgroup of Ko, i.e.,

(5.1) K Cc Ky C N(K;G),
where N(K;G) is the normalizer of K in G.

5.1. Main theorem of the case (2). Before we state the main theorem, we
prepare some notations (also see Section 3.1). Let A be a subgroup of H?:l Zo,

where [[°_ Zs is generated by the antipodal involutions on $2™ for j =1, ---, b.
Jj=1 g

The subgroup A in S* x O(1) (resp. in SO(2k;) x O(1)) denotes the diagonal
subgroup {(1, 1), (=1, —1)} (resp. {({2k,, 1), (—I2k,, —1)}), and the subgroup
O(1) in ST xO(1) (resp. in SO(2k;1) x O(1)) denotes the subgroup {(1, 1), (1, —1)}
(resp. {(I2,, 1), (J2x,, —1)}). Now we may state the main theorem of this case.

THEOREM 5.1. Suppose a torus manifold M has a codimension one extended
G-action. If there is an exceptional orbit, then (M, G) is essentially isomorphic to

b b
[15%™ xaxz, N, [[S0@m;+1)xH |,

Jj=1 Jj=1

such that (N, H) is one of the followings:

[ N | a |
(a) | (TT_, S% ) xpa S(CH@R) | [T, SUl +1) x U(ky)
()| 11, CP() x SR 5 R) | TI., SU(L + 1) x SO@2k1)
where A acts on H?:1 S2mi qs the subgroup H?‘:1 Zo and on the fibre of N through
the following representations:

(a): oc: A— {£1} C S! on S(CF @ R)NCHk;

(b): or: A— {:l:[gkl} C SO(2]€1) on S(R2k1 (&) R) N R2k N
respectively, and Zs (i.e., the second factor of A X Zs) acts on H§:1 S2™Mi through
the representation p : Zo — H§'=1 Zs which satisfies p(Za) N A = {1} and on the
fibre of N through the following representations:

(a): ocer : Za — {£1} x O(1) C ST x O(1) on CH @ R;

(b): orar : Zo — {£lo, } x O(1) C SO(2k;) x O(1) on R?*1 @ R;
respectively, such that o (= ocgr, orer) and p satisfy one of the followings:

(1): p is non-trivial, and o(Zs) = O(1) or o(Zs) = A;

(ii): p is trivial, and o(Zs) = A.
Here, G-actions of (a), (b) are the same as Theorem 3.1 (a), (c), respectively.

REMARK 5.2. All manifolds appeared in Theorem 5.1 (a), (b) are Zs-quotient
of manifolds appeared in Theorem 3.1 (a), (c¢), respectively. These Zo-actions are
defined by p x o in Theorem 5.1. Moreover, we remark that torus actions of
manifolds in Theorem 3.1 (a), (c) have the next property: two singular orbits
are same (diffeomorphic to G/H). By the Zs-quotient defined in Theorem 5.1,
these two same singular orbits in Theorem 3.1 (a), (¢) go to just one singular orbit
G/K;. Then G/K; can be regarded as Z;\G/H (if p is non-trivial) or G/H (if p
is trivial).

17



In order to prove Theorem 5.1, we divide this case (2) into two cases which
correspond with the case (a) and (b) for the type of Ky (see Section 4). We call
them the case (2)-(a) and (2)-(b), respectively, i.e., the case (2)-(a) is that G/ K,
is an exceptional orbit and G/K; satisfies the case (a), and the case (2)-(b) is that
G/K, is an exceptional orbit and G/K; satisfies the case (b).

In Section 6 and 7, we study the case (2)-(a) and (2)-(b), respectively. Before
we go to Section 6, we give some technical remarks to study the case (2).

5.2. Remarks of the case (2). We have already analysed X; and attaching
map f: 0X; — 00Xz in Section 4.1.1, 4.1.2 and 4.2; therefore, in order to construct
a G-manifold M = X; Uy X5, we may only analyse Xo = G Xk, D(R), where
D(R) = D! C R (1-dimensional disk).

Because Ky/K ~ S° and G/ K3 is an exceptional orbit, we can easily show that
the slice representation o : Ko — O(1) always satisfies the following properties:

e 5 is surjective;

e kerog = K.
Hence, a tubular neighborhood X3 = G x i, D(R) is only determined by the inclu-
sion Ky C G. Therefore, we may only analyse the inclusion K C Ky C N(K;QG),
(see (5.1)) in the case (2). So we first need to compute N(K;G). In the remainder
of this section, we compute N(K;G) in the cases (2)-(a) and (2)-(b).

First we assume that K is in the case (2)-(a) (see Section 4.1.1). Because of
the definition of K in the case (2)-(a), we have that N(K;G) is as follows:

b
= [Is0@m,) x o) x [[w: x [] Sw) xv)

J=1 el el
xS(U(ky —1) x U(1)) x T,
where if [; = 1 and «; = 0 then ¢ € I, otherwise ¢/ € I’ I UI' = {1, -+, a}),
and W; = N(S(U(1) x U(1)); SU(2)) for ¢ € I. However, if [; = 1 and a; = 0
then we can regard SU(2) as SO(3) up to essential isomorphism (SU(2) = SO(3)).
Regarding {1, ---, b}UT as {1, ---, b} and I’ as {1, ---, a} again, we can write
N(K;G) as follows:

(5.2) = JIs©@Em;) x o))

j=1

H U(1)) x S(U(ky — 1) x U(1)) x T,

<.

Next we assume that K is in the case (2)-(b) (see Section 4.1.2). By the similar
argument of the case (2)-(a), we can regard N(K;G) in the case (2)-(b) as follows:

e s

(5.3) NE;G) = T[S0@m;) x 0(1))

1

.
I

:9

S(U(l;) x U(1)) x S(O(2k; — 1) x O(1)).

1

.
Il

In the next two sections, we will analyse K C Ky C N(K;G).
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6. The case (2)-(a)

In this section, we study the case (2)-(a). From Section 4.1.1, we have that
b a
G =[] s0@m; +1) x [T SUWU +1) x SU(ky) x T,
j=1 i=1

Kl = 81 X ﬁS(U(ll) X U(l)) X SU(k‘l) X Tl7

K:{<A7 (tr, - s ta), (JO( 2)’t>

The elements of K are often denoted by (A, (t1, -+, tq), x, t) simply.
In order to analyse the inclusion K C Ko C N(K; Q) (see (5.2) for N(K;G)),
we first define p; and py as the following two natural projections:

o1 (AN - Yt = 1} .

b
p1: N(K;G) — [] S(0(2m;) x O(1));

j=1

ps: N(K;G) — ﬁS(U(li) x U(1)) x S(U(ky — 1) x U(1)) x T".

i=1
Then we can easily prove the following lemma.

LEMMA 6.1. For p1, p2 and K, the following properties hold:
(1) the image of K by p1 satisfies p1(K) = S1;
(2) if 01(S1) = {1}, then K = &1 X pa(K) and
p2<K) = {((tlv"' 7ta)7x’t) | t?l cetgeatt = 1};
(3) if 01(S1) = {1}, then (S1 x p2(K))/K ~ Zy and
po(K) = {((t1, - ,ta), @, t) | tT - tQoxt® = £1}.

PROOF. We define R; C K as follows (also see Section 3.3):

Ry = {(A, e(g Ul(()A)),1) AeSl}

where e € [[_,; S(U(l;) x U(1)) is the identity element and J € U(k; — 1) such
that J = I, 1 (if o1(A) = 1) or detJ = —1 with J? = I, _; (if o1(A) = —1).
Then R; ~ S;. It follows that the first statement holds. The second and third
statements are proved by the definition of K and the first property p1(K) =8;. O

Let S be a subgroup of H?Zl S(0(2m;)xO(1)) such that Sp/S1 ~ Z,. Because
Ky/K ~ S, for ps(K>) and ps(K) (s = 1, 2), one of the following four cases occurs:

(1): p1(K2) = S, and p2(K2) = p2(K);
(if): p1(K2) = p1(K) = S, and pa(K2)/p2(K) =~ Zo;
(iii): p1(K2) = p1(K) = 81, and pa(K2) = p2(K);
(iv): otherwise, i.e., p1(K2) = S, and po(K2)/p2(K) ~ Zs.
We call the above cases the case (2)-(a)-(1), (2)-(a)-(ii), (2)-(a)-(iii) and (2)-(a)-(iv),
respectively.
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6.1. The case (2)-(a)-(i). Suppose the case (2)-(a)-(i) occurs, that is,
p1(K2)/p1(K) = S2/S1 = Zs, and

p2(K2) = p2(K) = {((t1, -+, ta), x, t) | 17" - t5ewt™ € 01(S1) C {F1}}.
Because K C p1(K) x p2(K) and K2 C p1(K32) X pa(K3), in this case we have that
(61) KCSl XPQ(K), KCKQCSQ XPQ(K)

First we assume 01(S1) = {£1}, then (81 x p2(K))/K ~ Zs by Lemma 6.1 (3).
Therefore, #(82 XPQ(K))/K =4 by 52/81 ~ ZQ and K C Sl XPQ(K) C 82 ng(K)
(where #F is the number of the finite group F'). Hence, by making use of Ko/K ~
SY and (6.1), we also have

(6.2) (So x pa(K)) /Ko ~ Zs.
Because p; (K3) = Soy K C KoM (81 x p2(K)) C Ky and Ko/ K ~ 59 we also have
(6.3) K> N (81 x po(K)) = K.
Now we define the representation p : &1 X pa(K) — Zs as follows:
p(A, (t1, «+, ta), x, t) = o1 (AT -+ -t at™.

By the definition of K, we have kerp = K. Let p : So X pa(K) — Zz be a lift
of this representation, i.e., the restricted representation pls, xp,(x) coincides with
p. Because S3/S1 ~ Zo and pl,, (k) = Plp, (k) this lift p is only determined by a
representation oo : S; — Zo such that oz|s, = o1. Hence, we have the following
lemma.

LEMMA 6.2. Let p: Sy X po(K) — Zy be a lift of p. Then there is a represen-
tation o9 : Sy — Zg such that o3|s, = 01 and p is denoted as follows:
p(B, (ti, ++, ta), x, t) = oo(B)t]* - - t5oxt”.
On the other hand, by (6.2), there is the following sequence:
K2 ; 82 X pQ(K) L ZQ,

where i is an inclusion and 7 is the surjective representation induced by the pro-
jective representation Sz x pa(K) — (S2 X pa(K))/Ka. Let r be the restricted
representation 7|s, xp,(x)- Using (6.3), we see that the representation 7 is induced
by the natural surjection S; X pa(K) — (81 x p2(K))/K, i.e., there is the following
restricted sequence:

K -5 81 x pa(K) - Zs,

where 4 is the natural inclusion. By the definition of K, we have that r can be
identified with p. Therefore, by Lemma 6.2, we have that 7 = p for some o3 : So —
Zs. In other wards, there is the representation oo : So — Zs such that

(6.4) Ky = ker p(= ker7)

_ {<37 (tr, -+, ta), <)0( 2>vt>

Next we assume o01(S1) = {1}, then K = §; X p3(K) by Lemma 6.1 (2). Hence,
by using (6.1) and the assumption of the case (2)-(a)-(i), we have
K2 = SQ X pQ(K)
20
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We can regard this case as the case that 02(S2) = {1} in Eq.(6.4).

Therefore, in the case (2)-(a)-(i), the inclusion Ko C N(K;G) is completely
determined by the subgroup Ss C Hg.:l S(O(2m;) x O(1)) and the representation
o2 : 8o — Zg such that o3]s, = o1. Hence, using (4.1) and Remark 4.2, we can
easily check the following manifold corresponds with M = X; U X5 up to essential
isomorphism (by computing orbit types of the natural G = H?Zl SO(2m; +1) x
[T, SU(l; + 1) x U(ky) action):

b a
M =] 5" xaxz, (H S+ e S(Chr @ R)) ,

j=1 i=1

where A = A; ~ S/ H?Zl SO(2m;) and the A-quotient is defined by the following
actions:
e on H?Zl S52™i as the subgroup of H?:1 Zp;
e on C¥ through the representation oy : A — Zo (this representation is
induced by o7 : 81 — Zs);
e on R trivially,
and the Zs-quotient is defined by the following actions:
e on H?:l S52™Mi by a non-trivial representation p : Zy — H?:l Zy which
satisfies p(Z2) N A = {1} (this corresponds with p; (K3) = Ss);
e on CF by a representation o9 : Zy — {£1}, where if o is trivial then o9 is
also trivial (this corresponds with that if o1(S1) = {1} then 02(S2) = {1});
e on R by the natural representation (this corresponds with the existence
of an exceptional orbit).

Remark that A x Zsy acts on H?’:l S2mi freely because p is non-trivial and satisfies
p(Z2) N A = {1}; therefore, M is a manifold, more precisely a fibre bundle over
[10_, %™ /(A x Zs) with the fibre [[¢_; S%:*1 x70 S(CH @ R).
6.2. The case (2)-(a)-(ii). Suppose the case (2)-(a)-(ii) occurs, that is,
p1(K2) =pi1(K) =81 and
p2(K2)/p2(K) ~ Zs.

First we prove the following lemma.

LEMMA 6.3. Suppose that pa(Ks)/p2(K) ~ Zo. Then the inclusion pa(Ks) C
p2(N(K;G)) is unique. Furthermore, we have

m(&)z{(m, o (300

where m =2 if 01(S1) = {1} orm =4 if 01(S1) = {£1}.

PrOOF. We first remark that o1(S1) C {£1}, by Section 4.1.1.
Consider the following surjective representation o : po(N(K; G)) = [[;_, S(U(l;) x
U(1)) x S(U(ky —1) x U(1)) x T* — ST (induced by the slice representation o1 ):

U((t17"'ata)7 ()0( 2),t>:t$1---tg‘axta (or #{t---toet for ki =1).

Then we see that po(K) = 07 (01(S1)) C p2(K2) by the definition of K. Therefore,
we have that o(p2(K)) = 01(S1) C o(p2(Ks)).
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Because pa(K3)/p2(K) =~ Zsy, we also have that
0 (pa(K2))/o(pa(K)) C Zo(C o(p2(N(K; G)))/o(p2(K)) = S).
If 0(pa(K2)) /o (2 (K)) = {1} C Za, then o(ps(K3)) = o(p2(K)) = 01(S1). Hence,

we have pa(K2) C 0 1(01(S1)) = pa(K). However, this gives a contradiction,
because pa(K2)/pa(K) =~ Zs. Therefore, we have

o(p2(K2))/o(pa(K)) = Zy C S*.
It follows that there are the following two cases:
o if 01(S1) = o(p2(K)) = {1}, then o(pa(K2)) = Zz = {1} C S'; hence,
pa2(K2) C o~ H(Za);
o if 01(S1) = o(p2(K)) = {£1}, then o(p2(K2)) = Zy = {£1, i} C SY
hence, po(K2) C 071 (Zy).
Because pa(K»)/p2(K) ~ Zs and pa(K) = 07 1(01(S1)), we can easily show that
pa(K2) = 07 1(Zs) for the case 01(S1) = {1} and pa(K2) = 0 (Z4) for the case
01(S1) = {£1}. Hence, we have that the inclusion of p2(K2) C p2(N(K;G)) is
uniquely determined by 0=1(Zy) or 0 ~!(Z4). Thus, we have the statement of this
lemma. (]

Assume 01(S1) = {£1}. Then m = 4 by Lemma 6.3. Let p: S X pa(K2) — Zy

be the following representation:
p(A, (t1, -+, ta), x, t) = o1 (AT -+ t5oat™ € Zy.

We can easily show that p~1(Zs) = S; xpo(K) and ker p = K. Because Ko/K ~ S,
we also have p(K3) = Zo C Z4. Hence, we have Ko C p~1(Z3) = S1 x p2(K).
However, this gives a contradiction, because ps(K2)/p2(K) ~ Zg. Therefore, we
have 01(81) = {1}

Thus, we have K = & X pa(K) by Lemma 6.1 (2). Because Ko/K ~ S° ~
Zs ~ p2(K3)/p2(K) and K C Ky C 81 X pa(K>), the subgroup Ko C N(K;G) in
the case (2)-(a)-(ii) is as follows:

Ky = 81 x p2(K2),
where ps(K3) is the group in Lemma 6.3 with m = 2. Hence, with a method similar

to that demonstrated in the case (2)-(a)-(i) (Section 6.1), we can easily check the
following manifold corresponds with M = X; U X5 up to essential isomorphism:

b a
M =T[5 xaxz, (H S2H e S(CH & R)) :

j=1 i=1
where the A(= A;)-quotient is defined by the following actions:
e on H?Zl S2mi as the subgroup of H?Zl Zs;

e on CM trivially (this corresponds with that o1 (S;) = {1});
e on R trivially
and the Zs-quotient is defined by the following actions:
e on H?:l S%mi trivially (this corresponds with p;(K3) = S1);
e on CH by a non-trivial representation o : Zy — {£1} (this corresponds
with pQ(KQ)/pQ(K) >~ ZQ),
e on R by the natural representation.
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Remark that M is also G-equivariantly diffeomorphic to the following manifold
(where G = []7_, SO(2m; + 1) x [\, SU(l; + 1) x U(ky)):

b a
H S2mi | A x (H 2t e P(CH R)) ,
j=1 i=1

where P(CF* @ R) is the real projective space.
6.3. The case (2)-(a)-(iii). Suppose the case (2)-(a)-(iii) occurs, that is,
pl(KQ) :pl(K) :Sl and
p2(K2) = p2(K).
For this case (iii), the following lemma holds.

LEMMA 6.4. Suppose that the case (iii) occurs. Then o1(S1) = {£1}, and
p2(K2) C po(N(K;Q)) is

pa(2) = pa(K) = {((tl, o (39

Furthermore, we have Ko = 81 X pa(K).

PRrROOF. If 01(S1) = {1}, then we have K = &; X po(K) by Lemma 6.1 (2). Tt
follows that K = p1(K2) X p2(K3) D K by the assumption of the case (iii). This
gives a contradiction to Ko/K ~ S°. Hence, we have 01(S;) = {£1}. Moreover,
we have that

p2<K2>pz<K>{(<t1, o (30

by Lemma 6.1 (3).
By the definition of py, ps and the assumptions of the case (iii), we have the
following relation:

e e :il}.

1 et = il}

KCcKyCc§ ng(K).

By the definition of K, we can easily check that (S X pa(K))/K =~ Zo. Therefore,
we have Ky = 81 X po(K). O

By using Lemma 6.4 and a method similar to that demonstrated in the previous
cases, we can easily check that the following manifold corresponds with M = X;UX5
up to essential isomorphism:

b a
M =] 5" xaxz, (H S+ e S(Chr @ R)) ,

j=1 i=1

where the A(= A;)-quotient is defined by the following actions:
e on H§'=1 S2™i as the subgroup of H§=1 Loy
e on Ckt through the non-trivial representation oy : A — Zy (this corre-
sponds with 01(S1) = {£1});
e on R trivially,
and the Zs-quotient is defined by the following actions:
e on H?:l S2mi trivially (this corresponds with p;(Kz) = S1);
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e on CM by a non-trivial representation o9 : Zy — {41} (this is known by
using 01(S1) = {1} and p2(K3) = pa(K));
e on R by the natural representation.

Remark that M is also G-equivariantly diffeomorphic to the following manifold as
well as the case (2)-(a)-(ii):

b a
[15°™ xa <H S§2i+L e P(CH R)) .

j=1 i=1
6.4. The case (2)-(a)-(iv). Suppose the case (2)-(a)-(iv) occurs, that is,
pl(Kg)/pl(K) 282/81 2Z2 and
P2(K2)/p2(K) =~ Zo.
First, we remark that Lemma 6.3 can be used in this case because of pa(K2) /p2(K) ~
Zs.
Assume 01(S1) = {£1}. Then we have m = 4 for the group pz(K>) in Lemma
6.3. Let p: Sy x pa(K2) — Zy4 be the following representation:
ﬁ(Bv (tla Y tll)v z, t) = 0-2(B)t(1)(1 o 'tgaxta S Z47

where o9 : Sy — Z4 is some representation such that osls, = o1. Then we can

easily show that oy : S; — Zo, i.e., the image of Sy is in Zs C Z4, because
b b b

[[;=1 SO(2m;) C keroy C kerop and Sa/[[;_, SO(2m;) C [[;=, Z». Hence, we

have that

(6.5) ker p C So x pa(K).

Consider the restricted representation p|g, : Ko — Z4. Then we have the following
sequence:

K C kerﬁ|K2 = kerﬁﬂ Ky C Ko

because of the definitions of K and oo. Therefore, by Ky/K ~ S°, we have that
ker p|lk, = K or K. If ker p| i, = Ka, then we have pa(Ks) = p2(K) by (6.5). This
gives a contradiction to pa(K3)/p2(K) = Zo. Hence, we have ker p|gx, = K. Then
we have

KQ/K = Kg/kersz ~ ﬁ(KQ) =7 = {:l:l} C Zy.
It also follows that Ko C p~1(Zz2) = Sa X pa2(K); therefore, pa(K3) = po(K). This
also gives a contradiction to pa(Ks3)/p2(K) = Zz. Thus, we have 01(S1) = {1}.
Hence, by Lemma 6.1 (2), we have K = S X p2(K).
Because Ky /K = K3 /(81 X pa(K)) >~ Zg and (Sa X p2(K2))/K ~ Zo X Zs (the
assumption of (2)-(a)-(iv)), we have that

(6.6) (S2 X pa(K2))/ K2 = Zs.
Again, we define p: S X po(K3) — Zs X Zsy as follows:
ﬁ(B7 (t17 Tty ta)7 x, t):(UQ(B)v t(fl"'tgaxta) GZQ XZQ?

where o3 : So — Zs such that os|s, = o1. Then we have kerp = K by K =

S1 x p2(K) and 01(S1) = {1}. Because Ky/K ~ Zo, we have that p(K3) ~ Zo, i.e.,

P(Ko) = Zo x {1}, {1} x Zy or A = {(1, 1), (-1, —1)}. If p(K3) = Zs x {1} or

{1} xZs, then this gives a contradiction to that pa(K2)/p2(K) = Zg or p1(K3) = S1,
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respectively. Therefore, we have that p(K3) = A. Moreover, by using (6.6), the
subgroup Ky C Sy x pa(K3) can be denoted as follows:
pHA) =Ky ={(B, t1, -+, tg, x, 1) | o2(B)g* - - - t%at™ = 1},
where o9 : So — Zg such that keros = &;. Hence Ky C N(K;G) is completely
determined by Sy and o3 in the case (2)-(a)-(iv).
With a method similar to that demonstrated in the previous cases, we can

easily check the following manifold corresponds with M = X7 U X5 up to essential
isomorphism:

b a
M = HSij X Ax 7 (H SZlq,-'rl X a S((C’cil @R)) ;
j=1 i=1
where the A(= A;)-quotient is defined by the following actions:

e on H?:l S52™Mi as the subgroup of H?:1 Zo;

e on CM trivially (this corresponds with o1(S1) = {1});

e on R trivially,
and the Zs-quotient is defined by the following actions:

e on H?Zl S52™Mi by a non-trivial representation p : Zy — H?Zl Zs which

satisfies p(Z2) N A = {1} (this corresponds with p; (K3) = Sa);
e on CF* by a non-trivial representation o9 : Zy — {£1} (this corresponds

with pQ(KQ)/pQ(K) ~ Zg);
e on R by the natural representation.

Remark that M is also G-equivariantly diffeomorphic to the following manifold as
well as the previous cases:

b a
[ 5% /A %z, (H 2Lt e S(CH @ R)) .
j=1 i=1

6.5. Summary of the results from (2)-(a)-(i) to (iv). In summary, we
can state the result of the case (2)-(a) as follows. Let (M, G) be the pair in the
case (2)-(a). Then (M, G) is essentially isomorphism to the followings:

b a
M =] 5" xaxz, (H S X e S(CH @R)) :

j=1 i=1
b a

G =[] 50@m; +1)x [[SUWU +1) x U(ky),
j=1 i=1

where G acts on M naturally, and the A(= A;)-quotient is defined by the following
actions:

e on H?:1 S52™i as the subgroup of H?Zl Zo;

e on CM through the representation (= oc) : A — Za;

e on R trivially,
and the Zs-quotient is defined by the following actions:

e on H?:1 S2™mi by a representation p : Zy — H?:l Zy which satisfies

p(Zz) N A ={1};
e on CM by a representation oy : Zg — {£1};
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e on R by the natural representation « : Zo — O(1),

where p or o9 is always non-trivial, i.e., the case that both of two representations
p and o9 are trivial does not occur. This corresponds with the first manifold in
Theorem 5.1, where 09 ® kK = ocgRr.-

7. The case (2)-(b)
In this section, we study the case (2)-(b). From Section 4.1.2, we have that

G = ﬁSO(ij 1 1) x H SU(L + 1) x SO(2k,),
Ky =8 ﬁS(U(li) X U(1)) x SO(2ky),
K= ﬁS(U_(li) < U(1)
y {(A, ( A >) € 81 x S(O(2k1 — 1) x O(1))

- ﬁS(U(li) x U(1)) x K'.

O'l(A)l' = 1}

An element in S x S(O(2k; —1) x O(1)) is often denoted by (A, ). In this case, by
Section 5.2, we may only analyze the inclusion of K5 such that K C Ko C N(K;G)
and N(K;G) is known as (5.3).

Because K C K2 C N(K;G) and Ky/K ~ S°, we have that

Ky = ﬁS(U(lZ—) x U(1)) x K3,
i=1

where K} C H?zl S(0O(2m;) x O(1)) x S(O(2k1 —1) x O(1)) such that K5/K' ~ Z,.
Let p; and ps be the following two natural projections:
b b
p1: [] S(0(2m;) x O(1)) x S(O(2ks — 1) x O(1)) — [] S(O(2m;) x O(1));
j=1

b
p2: [] S(0(2my) x O(1)) x S(O(2k1 — 1) x O(1)) — S(O(2k; — 1) x O(1)).

Similarly to Lemma 6.1, we can easily prove the following lemma.

LEMMA 7.1. For p1, p2 and K', the following properties hold:
(1) the image of K’ by p1 satisfies p1(K') = Sy;
(2) ifO'l(Sl) = {1}, then pQ(K/) = 50(2]{51 — 1) and K' = 81 X 50(2161 — 1),‘
(3) if 01(S1) = {£1}, then pa(K') = S(O(2k1—1)xO(1)) and (S1 xS(O(2k1—
1) x01)))/K' ~ Zs.

PROOF. The first statement is proved by making use of the subgroup R; in
Section 3.5. The second and third statements are proved by the definition of K’
and the first property p;(K') = &;. O
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Because K4 /K' ~ Zs, similarly to the case (2)-(a), one of the following four
cases occurs:

(1): p1(K3) = Sa, and pa(K3) = pa(K');
(ii): p1(K3) = pi(K') = 81, and pa(K5)/pa(K') ~ Zo;
(iii): p1(K%) = p1(K') = Sy, and pa(K5) = pa(K');
(iv): otherwise, i.e., p1(K}%) = Sz, and pa(K3)/p2(K') ~ Za,
where Sy is a subgroup of H?Zl S(0(2m;j) x O(1)) such that Sp/S; ~ Z. We
call the above cases the case (2)-(b)-(i), (2)-(b)-(ii), (2)-(b)-(iii) and (2)-(b)-(iv),
respectively.
7.1. The case (2)-(b)-(i). Suppose the case (2)-(b)-(i) occurs, that is,
p1(K%) =8 and pa(KY) = po(K').
If 01(S1) = {£1}, then K’ is defined as ker p, where p : S1 X po(K') — Zo is
the following representation:
p(A,x) = 01(A)x € Zs.

Consider the lift of this representation p : So X pa(K') — Zsy. Similarly to the proof
of Lemma 6.2, we can easily show that this lift is only determined by o3 : So — Zs
such that o3|s, = o1, i.e., a representation p: So X pa(K') — Zs is denoted by

p(B, x) = o9(B)z.
On the other hand, there is the following induced representation form K} C Sy x
pa(K):
Sy % pa(K') -5 (Sy x pa(K')) /Kb ~ Zy.

With a method similar to that demonstrated in Section 6.1, ¥ can be identified
with p, i.e., the lift of p. Hence, there is a representation oy : S; — Zs such that
7(B, x) = 02(B)z. Because ker 7 = K}, we have that

71) K}
_ {(B, ( )0( v >) €85 x S(0(2k; — 1) x O(1))

where 09 : So — Zs is a representation such that os|s, = o07.
If 01(S1) = {1}, then we have

O’Q(B)SU = 1} s

K= ﬁS(U(ll) X U(].)) X 81 X SO(2]€1 — ].),
i=1
by Lemma 7.1 (2). Because of the assumptions of the case (2)-(b)-(i), we have that
K2 = ﬁS(U(ll) X U(l)) X 82 X 50(2]{?1 — 1)
i=1
Therefore, we can regard K of this case as that with 02(S2) =1 in Eq.(7.1).

Hence, we have that M = X; U X5 is as follows, with the method similar to
that demonstrated in Section 6.1:

a b
M =1]cP@) x | [[S*™ xaxz, S®* &R) |,
i=1 j=1
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where the A X Zs-quotient is defined by the same rule as that in the case (2)-
(a)-(i) (see Section 6.1 by replacing CF as R?**1), and G = [[i_, SU(l; + 1) x
H?Zl SO(2mj + 1) x SO(2k,) acts naturally on this manifold.

7.2. The case (2)-(b)-(ii). Suppose the case (2)-(b)-(ii) occurs, that is,

p1(Ky) =pi(K') =8 and  pay(K35)/pa(K') ~ Zs.

If 01(S1) = {£1}, then we have po(K') = S(O(2ky — 1) x O(1)) D p2(K}) by
Lemma 7.1 (3). This gives a contradiction to pa(K3%)/pa(K') =~ Zs. Therefore, we
have 01(S1) = {1}. Hence, we have that K’ = &; x SO(2k; —1) by Lemma 7.1 (2).

Because p2(K5)/p2(K') ~ Zy and pa(K') = SO(2k1 — 1), we have the following
sequence:

K = S x 50(2161 — 1) C Ké C 81 X pg(Ké) =81 X S(O(2k1 — 1) X 0(1))
Because K4/ K' ~ Zs, we have that K} = &1 x S(O(2k; — 1) x O(1)) and

Ky — ﬁS(U(li) x U(1)) x 81 x S(O(2k; — 1) x O(1)),

K = H S(U(L) x U(1)) x S1 x SO(2k; — 1).

Hence, similarly to Section 7.1, we have that M = X; U X5 is as follows:

a b
M =[] cP:) x (H S2Mi % Az, SR @ R)) ,
1=1

J=1

where the A x Zy-quotient is defined by the same rule as that in the case (2)-(a)-(ii)
(see Section 6.2 by replacing CF as R?*1). This manifold is also G-equivariantly
diffeomorphic to the following manifold:

a b
[Jera) < J] s /Ax PE" @ R),
i=1

j=1
where G = [[_, SU(l; + 1) x [I)_; SO(2m; + 1) x SO(2k1).
7.3. The case (2)-(b)-(iii). Suppose the case (2)-(b)-(iii) occurs, that is,
pi(E3) =pi(K') =81 and  py(K3) = pa(K7).
If 01(S1) = {1}, then we have K/ = §; x SO(2k; — 1) = p1(K') x po(K') =
p1(K%) x po(K4) D Kj. This gives a contradiction to K5/K' ~ Zj. Therefore, we

have 01(51) = {£1}.
Hence, we have the following sequence:

K’ K} C pi(K))  pa(KL) = Sy x S(O(2k1 — 1) x O(1)).

By Lemma 7.1 (3) and K}/K’ ~ Z,, we also have that K} = &1 x S(O(2k; — 1) x
O(1)) and

Ky = ﬁs(U(zi) x U(1)) x 8 x §(0(2k; — 1) x O(1)),

K =[[8W@) xv) x{(A, @) | e1(A)z =1},
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Hence, similarly to Section 7.1, we have that M = X; U X5 is as follows:

a b
M =T]CP@) x [ []S*™ xaxz, S®** &R) |,
i=1 j=1

where the A x Zs-quotient is defined by the same rule as that in the case (2)-(a)-(iii)
(see Section 6.3 by replacing CF as R?¥1). This manifold is also G-equivariantly
diffeomorphic to the following manifold as well as the case (2)-(b)-(ii):

a b
[IcP@) x [ 5°™ xa P®R* & R).
1=1

j=1
7.4. The case (2)-(b)-(iv). Suppose the case (2)-(b)-(iv) occurs, that is,

p1(K5) =8y and  pa(KY)/pe(K') =~ Zs.

By the same reason in the case (2)-(b)-(ii) (see Section 7.2), we have 01(S1) =
{1}. Hence, we have that K’ = S§; x SO(2k; — 1) by Lemma 7.1 (2).

Because po(K%)/p2(K') ~ Zs and pa(K') = SO(2k; — 1), we have the following
sequence:

K' =8 x SO(2k; — 1) C K} C 83 x pa(K%) = Sa x S(O(2k; — 1) x O(1)).
Because K} /K’ ~ Z5, we also have the following inclusion map:
7 Ké/K/ ~ ZQ — (SQ X S(O(le — 1) X O(l)))/K/ ~ Zg X ZQ.

Therefore, there are three types of the inclusion ¢, i.e., i(K}/K') = Zox {1}, {1} xZs
or A, where A is the diagonal subgroup in Zg X Zy. Assume i(K5/K') = Zs x {1} or
{1} xZs. This gives a contradiction to ps(K3)/pe(K') =~ Zs or p1 (K4) /p1(K') ~ Za,
respectively. Therefore, we have that

(7.2) i(Ky/K') = A.
Let p: Sy X p2(K4) — Za X Zsg be a representation such that p(B, x) = (02(B), x)

for some 03 : So — Zy with oa|s, = 01. By (7.2), we have that K} = p~1(A). It
follows that

K, — {(B, < )0( 0 )> € 85 x S(0(2k; — 1) x O(1))

oa(B)x = 1} .

Because Ko = [[i_, S(U(l;) x U(1)) x K and K = [[7_, S(U(l;) x U(1)) x
&1 x SO(2k1 —1), (similarly to Section 7.1) we have that M = X; U X5 is as follows:

a b
M =T]cP@) x | [[S*™ xaxz, S®* @R) |,
i=1 j=1

where the A x Zo-quotient is defined by the same rule as that in the case (2)-(a)-(iv)
(see Section 6.4 by replacing CF1 as R2k1).
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7.5. Summary of the results from (2)-(b)-(i) to (iv). In summary, we
can state the result of the case (2)-(b) as follows. Let (M, G) be the pair in the
case (2)-(b). Then (M, G) is essentially isomorphism to the followings:

b a
M = H S X Az, (H CP(l;) x S(R*** @ ]R)) ,

j=1 i=1
b a
G =[] 50@m;+1) x [[SU® +1) x SO(2ky),
j=1 i=1

where G acts on M naturally, and the A(= A;)-quotient is defined by the following
actions:

e on H?:I S52™i as the subgroup of H?:l Zs;

e on R?"1 through the representation o1 (= og) : A — Zo = {£1Ia, };

e on R trivially,
and the Zs-quotient is defined by the following actions:

e on H?Zl S2™i by a representation p : Zy — H?:1 Zo which satisfies

p(Z2) N A ={1};

e on R?¥1 by a representation oy : Zy — {£1lok, };

e on R by the natural representation & : Zy — O(1),
where p or o9 is always non-trivial as well as the case (2)-(a). This corresponds
with the second manifold in Theorem 5.1, where oy ® kK = ogrgr.

8. Main theorem of the case (3) and preparations

From this section, we start to classify the final case, i.e., the case (3): G/K> is
not a torus manifold but a singular orbit (see Section 2.4). The goal of this section
is to state the main theorem and a preparation to classify the case (3). From this
section, we assume that the orbit G/K> is not a torus manifold but a singular orbit.
By Lemma 4.1 and the assumption of this case, we have for ky > 2

and
(8.2) Ky /K = §%k2=2,

By using (8.1) and (8.2), the slice representation of K3 in the case (3) is
(83) g9 . K2 — O(2]€2 — 1)
In the case (3) as well as the case (2), there are the following two cases:

(3)-(a): the case (3)-(a), i.e., G/K; satisfies the case (a) (see Section 4.1.1);
(3)-(b): the case (3)-(b), i.e., G/K; satisfies the case (b) (see Section 4.1.2).

8.1. Main theorem and notations. First we state the main theorem of the
case (3). Before we state it, we prepare some notations (also see Section 3.1 and

5.1). Let A be a subgroup of ngl Zo, where H?Zl Zs is the following group: the

first (b — 1) factors H?;} Zo are generated by the antipodal involutions on $2™i

for j =1, ---, b—1 and the b-th factor Zy is {£Isx,—1}. The quotient manifold

(IT5—; S?+1) xpa S(CFr @R?*¥271) is defined similarly as ([T7_; S%!) x7a S(CE®
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R) (see Section 3.1), where C¥1(~ C*1) is a representation space of a representation
c: T — St

Now we may state the main theorem of this section.

THEOREM 8.1. Suppose a torus manifold M has a codimension one extended
G-action. If there are two singular orbits and one of them is not a torus manifold,
then (M, G) is essentially isomorphic to

b—1 b—1
[15% xaN, J]SO@m;+1)xH |,
j=1 j=1

such that (N, H) is one of the followings:

| N | H |
(a) (H?Il SQ“H) xra S(CF @ RZF2=1) [ TT7_, SU(l; + 1) x U(k1) x SO(2ky — 1)
)| TI=,CP(l;) x SR*F+ @ RZF==1) [T, SU(l; + 1) x SO(2k;) x SO(2ky — 1)

where A acts on Hbfi 525 x R?*2=1 g5 q subgroup of H?Zl Zo and on the fibre of

j:
N through the following representations:

(a): oc: A — {1} C S! on S(Ck @ R2k2-1)nCkr;
(b): or : A — {£lk, } T SO(2k;) on S(R?**1 @ RZF2—1) N Rk,

respectively, such that if (1, ---, 1, —Iy,—1) € AC H?:1 Zy then
U(la Tty 1a _12/62—1) =-1

for o = oc and oR.

Here, G-actions on M are as follows: [[SO(2m; + 1) and [[SU(l; + 1) act
naturally on []S?™ and [ S?*1, respectively; and U(k1), SO(2ky) and SO(2ky —
1) act naturally on CF1 R?%1 and R?*2=1 respectively.

Note that the following facts: if (1, ---, 1, —Isg,—1) ¢ A then A acts on
[1021 §%™5 x R2k2=1 freelys if (1, -+, 1, —Ipp,—1) € A then A= A’ x {£lo,_1}
and A" acts on H;’;i S?mi freely and {£Iox, 1} acts on S(CF1@R?*271) or S(R?*1
R%#2~1) freely because of the properties of o described in Theorem 8.1. Therefore,
M in Theorem 8.1 is a manifold. Moreover, there is the case that A C H?: Zo;
hence, we do not write manifolds in Theorem 8.1 as manifolds in Theorem 5.1, i.e.,
manifolds divided by A x Zy where Zy acts on S(CH @ R)NR (or S(R?** 3R)NR).

In order to prove the above Theorem 8.1, we will use the following notations.
e Natural projections: p; : G — SU(l; +1),p: G — SU(ky), q : G — T*
and 7;:G— SO(2m; +1), wherei=1, ---, gand j=1, ---, b.
e Inclusions: ¢: K — Ky ort: K° — K§$,and 12 : Ko — G or 15: K§ — G.
8.2. Structure of K. Before we start to prove Theorem 8.1, in this subsec-
tion, we will prove the following Lemma 8.2.
Let Ny o N3y be (N7 x N3)/F for some finite, normal subgroup F C Ny X Na,
where N7 and N> are connected Lie groups. Then, the following lemma holds.
LEMMA 8.2. For the cases (3)-(a) and (3)-(b), the pair (K3, K°) is isomorphic
to
(Spin(2ky — 1) o Kb, Spin(2ke — 2) o K3)

for some Lie group K} and ky > 2.
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PRrROOF. Let Ir(vé’ be the covering of K§ such that it is a product of simply
connected, simple Lie groups and tori (see [12, Section 2.3]). Since a connected
component K$ acts on S?%272 = K, /K transitively through oy (see (8.3)), there is
a factor H in the product group K¢ (i.e., K§ = H x K}, for some product group K})
such that H = Spin(2ke — 1) or H = G4 for ko = 4 by the classification result of
transitive actions on even dimensional spheres (see [13, Theorem 5.1, 5.2]), where
here G5 is the exceptional Lie group. Therefore, there is a subgroup K) such that
(K3, K°) can be denoted as follows:

(Spin(2ke — 1) o Kb, Spin(2ks — 2) o K3);
(Go 0 K}, SU(3) o K3J).
In order to prove this lemma, we assume

(8.4) (K9, K°) = (Go 0 Kb, SU(3) 0 K}).

We will prove that this case does not occur.
Taking some covering of K° in (8.4), we can put

(8.5) Ko = SU(3) x K,

where I?é is a product of simply connected, simple Lie groups and tori. On the
other hand, taking a covering of K° in the cases (3)-(a) and (3)-(b) (see Section
4.1.1, 4.1.2 or (9.1) in Section 9, (10.1) in Section 10), we can put

b a
(8.6) Ko =[] Spin(2m;) x [[ SU@:) x L x T,
j=1 i=1
where T is a torus and
o L =SU(ky —1) for the case (3)-(a),
o L = Spin(2k; — 1) for the case (3)-(b).
Because dim Spin(x) # dim SU(3) for all x € N, there are the following two cases
by (8.5) and (8.6):
(1) I, = 3 and K, = H?Zl Spin(2m;) x [1Z) SU(l;) x L x T, in the case
(3)-(a) or (3)-(b):
(2) k1 =4 and K, = H?.:l Spin(2m;) x [1{_, SU(l;) x T', in the case (3)-(a).
Suppose I, = 3 and K} = H?=1 Spin(2m;) x [102; SUl;) x L x T. Let
pa : G — SU(l, + 1) be the natural projection (see notations in Section 8.1). Then
we have that
Pa(SU(3) o {e}) C pa(Ga o {e}) Cpa(K3) Cpa(G) = SU(4)
because SU(3)o{e} C Gao{e} C K3 C G, where {e} C K} is the identity element
in K. Since SU(3) o {e} C K° and p,(K°) = S(U(3) x U(1)) by Section 4.1, we
also have that

pa(SU(3) o {e}) = SU(3).
Therefore, p,(G2 o {e}) is a non-trivial subgroup in SU(4). Since the restricted
representation pq|q,o{c} is @ non-trivial representation and G is a simple Lie group,
we also have that
dimp, (G2 o {e}) = dim G, = 14.
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It follows that there is a subgroup H C SU(4) such that dim H = 14 and SU(4)/H =
S1, because SU(4) is compact and dim SU(4) = 15. However, this gives a contra-
diction because SU (4)-action on S* is trivial (see [13, Theorem 5.2, 5.3]).

Suppose k; = 4 and K} = H?:1 Spin(2m;) x [[;_, SU(l;) x T. In this case, the
above argument for [, = 3 can also work for the natural projection p : G — SU (k).
It follows that the case (K9, K°) = (G0 K}, SU(3) o K%) does not occur. Hence,
we have Lemma 8.2. ]

In the next two sections, we study the cases (3)-(a) and (3)-(b).

9. The case (3)-(a)

In this section, we study the case (3)-(a). From Section 4.1, we have

b a
G =[] s0@m;+1) x [T SUW +1) x SU(ky) x T,

j=1 i=1

Kl = 81 X ﬁS(U(ll) X U(l)) X SU(k‘1) X Tl,

9.1) K:{(A7l(t17~--,ta)7()0( 2)t>

where A € 81 € []7_, S(O(2m;) x O(1)), (t1, -+, ta) € [I{=y S(U L) x U(1)),
t € T and X € U(k; — 1) such that zdet X = 1. If k; = 1, then we can take
a = 1. Moreover, we have that the finite covering of K° is as follows by (9.1):

o1 (AN - Yt = 1} .

b a
Ko =[] Spin(2m;) x [[ SU@W) x T* x SU(ky — 1) x T if ky > 2;

j=1 i=1

b a
Ko =[] Spin(2m;) x [[ SU@:) x T if ky = 1.
j=1 i=1
Because of Lemma 8.2, we also have
(9.2) K° = Spin(2ks — 2) o K} and K° = Spin(2ks — 2) x K},
(9.3) K§ = Spin(2ky —1) o K} and K9 = Spin(2ky — 1) X If(z
In order to classify the case (3)-(a), we will divide this case into the following
two cases:

e ko > 3 (we will discuss in Section 9.1);
o ky =2 (we will discuss in Section 9.2).

9.1. The case ks > 3. Assume kg > 3. Comparing coverings K° of the above
K®s in (9.1) and (9.2), and using the fact that Spin(4) ~ SU(2) x SU(2) and
Spin(6) ~ SU(4), there are the following five cases:

(1): Spin(2ke — 2) = Spin(2my), and ke = mp + 1 > 3;
(ii): Spin(2ks —2) = SU(lq—1) x SU(ly), and ky = 3, lg—1 =1, = 2;
(iii): Spin(Qk‘Q — 2) = SU(la) X SU(kl — 1), and ks =3 = k‘l, la = 2;
(iv): Spin(2ke —2) = SU(l,) and ke =4, 1, = 4;
(v): Spin(2ke —2) = SU(ky — 1) and ko =4, k1 =5,
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First we prove the following lemma.
LEMMA 9.1. In the above cases, the cases from (ii) to (v) do not occur.

PROOF. If the case (ii) occurs, then Spin(2ke —2) = SU(l,—1) x SU(l,) and
ko =3, la_1 =1, = 2. Let ¢ : K§ — K§ be the finite covering. By using (9.1),
(9.2) and (9.3), we have

b
A0 Ais 0
K, = HSO(ij)X{<( N t1>< - ta_2>’

j=1

Ta—112 0 redlo 0 X 0 ¢
0 ta—1 )’ 0 ta )’ 0 =z )’

= p(K§ xT?),

1 et = 1}

where 1,2 =t 1, 752 = tq, f(g’ is the product of factors in Ko except Spin(2ke —
2) and T?(C T%). By (9.2), (9.3), [12, Section 3.1] (i.e., for the factor H C K°
in H' C K§ such that H C H’, if K° and K§ are same rank then H and H' are
same rank) and the assumption of the case (ii), we have the following commutative
diagram:
(T? x SU(2) x SU2)) x K —= (T2 x Spin(5)) x K

el Ly

K° - KS,
where 7 is an inclusion map. By using the above diagram and the definition of K

and G, we have the following sequence (also see Section 8.1 about the definitions
of notations):

SU2) xU1)) x SU(2) x U(1))

= (Pa—1 X Pa) Obzobosﬁ(TQ x SU(2) x SU(2))
= (Pa—1 X Pa) 012000 U(T? x SU(2) x SU(2))
C  (Pa—1 X Pa) © 12 0 p(T? x Spin(5))

C  Pa—1 X Pa(G)

— SU(3) x SU(3).

This sequence implies that there is a non-trivial representation from T2 x Spin(5)
to SU(3) x SU(3). Since Spin(5) is a simple Lie group and rank (T2 x Spin(5)) =
rank (SU(3) x SU(3)), there is some subgroup H C SU(3) such that Spin(5) ~ H
(because of [12, Section 3.1]), where Spin(5) ~ H means that Spin(5) and H have
the same Lie algebra. This gives a contradiction, because dim Spin(5) = dim H =
10 > 8 = dim SU(3). Hence, the case (ii) does not occur.

With an argument similar to the above for the case (ii), we can also prove that
the cases (iii) does not occur.

If the case (iv) occurs, then Spin(2ks — 2) = SU(l,) and ky = 4, [, = 4. With
a method similar to that demonstrated in the proof of the case (ii), we have the
following commutative diagram:

(T' x SU4)) x Ky — (T x Spin(7)) x KY
el Ly
K° - K3.
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We have the following sequence by using the above diagram and the definitions of
K and G:
S(U#) x U(1))
= paotaorop(T' x SU(4))
Pq O Ly 0P OZ(TI x SU(4))
C P oty o@(T x Spin(7))
= H
C po(G)=SU(5).
Because S(U(4) x U(1)), SU(5) and T* x Spin(7) are the same rank Lie groups
and Spin(7) is a simple Lie group, we have dim H = dim(T* x Spin(7)) = 22.
Then we see SU(5)/H is a 2-dimensional manifold by dim SU(5) = 24. Moreover,
H = pg o130 @(Tt x Spin(7)) is connected. Therefore, we have SU(5)/H is a
simply connected, compact manifold, because of the homotopy exact sequence of
H — SU(5) — SU(5)/H. Hence, SU(5)/H = S%. However, the SU(5)-action on
S$? must be trivial (see [13, Theorem 5.2]). This gives a contradiction. Hence, the
case (iv) does not occur.
With a method similar to that demonstrated in the above for the case (iv), we
can also prove that the case (v) does not occur. (]

Because of the above Lemma 9.1, we have that
(9.4) Spin(2ke — 2) = Spin(2my) and ks =my + 1> 3.

Now we set

(o (29

If &, = 1, then x = 1 and we can assume « = 1 up to essential isomorphism.

t‘lll...tg‘axtazl} :P(Oél, ey Qgy, T Oé)-

Therefore, P(a, -+, aq, ¢, «) is connected. Then, the following relation holds
by using (9.1), (9.2) and (9.4):
K° = Spin(2ky — 2) o Ki = Spin(2my) o K}
b
= HSO(Qmj) X Plag, -+, Qq, T, Q).
j=1
Therefore, we can put K° = SO(2m;) x K} = SO(2ky — 2) x K} and
b—1
K, = HSO(2mj) x Plag, ++, Qq, T, Q)
j=1
b—1 a
c J[so@m;+1)x [[SUW+1) x SU(k) x T*
j=1 i=1

= G/S0(2my+1) = G/SO(2ky — 1).
By using K9 = Spin(2ks — 1) o K (by (9.3)) and the above K°, we have the
following covering map (:
Spin(2ky —2) x K}, —  Spin(2ke — 1) x K}

el Ly
SO(2ky —2) x K} — K$
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where the top and bottom maps are inclusions. Because the restricted representa-
tion |k, is the identity representation, there is the K3 factor in K§. Therefore,
we have that

K§ = SO(2ky—1) x K}
b—1
= [ S0@m;) x SO2ky —1) x P(as, -+, o, 7, @),
j=1

and there is some inclusion SO(2k; —1) — K> whose image is the factor SO(2my, +
1) C G. Because K§ C Ko C G, we can put K5 is as follows:

K2 = 50(21{:2 — 1) X Ké/

b—1 a
C G =802k —1)x [ [[S0@m; +1) x [[SUW +1) x SU(kx) x T" |,
j=1 i=1
where 2my,+1 = 2k, — 1 and K is a subgroup of []/—; SO(2m; +1) x [T, SU(l;+
1) x SU(k1) x T* whose connected component is Kj. By using the argument of
Section 8.2, the SO(2ky — 1)-factor in Ky acts transitively on Ky/K =2 §2k2=2,
Therefore, for the natural projection ® : Ko = SO(2ke — 1) x K§ — K/, we have
the following relation (see [11, Lemma 8.0.2]):

D(K,) = Ky = d(K).
Hence, we have
Ky =802k — 1) x KY = 80(2ks — 1) x ®(K) C G.

It follows that the inclusion K5 C G is completely determined by K (more precisely
the projection ®(K)).

Next, we consider the slice representation o2 : Ko — O(2ky — 1). Since the
SO(2ky — 1)-factor in Ko acts transitively on Ky/K = S?%2=2 the restricted rep-
resentation oz|so(2k,—1) is the natural isomorphism to SO(2k; — 1) C O(2k; — 1).
Hence, we have that

O'Q(Kg) C Z(SO(QkQ — 1)) = {:‘:12]@,1} C 0(2]62 — 1)
Moreover, by (9.1), we have the following formula for K:
(9.5) K =051 (0(2ky — 2))

- {(A, (t1, ==+ ta), ()0( 2>t)
{2

C S(0(2ks —2) x O(1)) x K.

Therefore, we can easily show that the following lemma by using (9.5).

o1 (AN - Qe gt = 1}

ap = det A, ' = det CTQ(Y)} :

LEMMA 9.2. The following two statements are equivalent:
(1)t 02(KY) = {1} (resp. 02(KY) = {£Io,1}):
(2): K =S0(2ky —2) x K (resp. mp(K) = S(0(2myp) x O(1))).
Moreover, the following statement holds:
(3): if o2(KY) = {xlak,—1}, then we have K # S(O(2my) x O(1)) x K.
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It follows from (9.5) and Lemma 9.2 (1), (2) that the slice representation oy :
Ky — O(2ky — 2) is also completely determined by K. Therefore, the tubular
neighborhood Xy = G x g, D?*271 of G/K, is completely determined by K, and
equivariantly diffeomorphic to the following manifold:

a b—1
TI5% xpa | [ []S*™ x DR*271) | x4 S(CE) |
i=1

Jj=1

where T%-quotient is defined similarly to that in the previous cases (e.g. the case
(2)-(a)), A ~ &1 /S9-quotient is defined by the following actions:

e on H?: S2mi x D(R?¥271) as the subgroup A C H;’: Zo x {£Iok,-1};

e on S(Ck) C Ck by the representation oc : A — {£1} (induced by ay).
Moreover, by using (9.5) and Lemma 9.2 (3), if (1, -+, 1, —Ig,—1) € A C
H;’: Zo x {£Isk,—1}, then o¢(l, -+, 1, —Iok,—1) = —1 (because if not so the
principal isotropy subgroup is K = S(O(2m;) x O(1)) x K4). It follows that A
acts on Hf;} S§?mi x D(R2k271) x S(Ck1) freely; therefore, X5 is a manifold.

By using Remark 4.2, we can easily check that the pair (M, G) of the case

(3)-(a) and ko > 3 is as follows (up to essential isomorphism):

a b—1
M =TS8 xqe | [[ 5™ xa S@®*2"" o CH) | 5
i=1 j=1
a b—1
G=]]SUl+1) x ] SO@m; + 1) x SO(2ky — 1) x U(ky),
i=1 j=1

where A acts on H?;i S2mi x §(R2k2—1 @ Ck) as follows: on CK* by o¢c : A —
{£1}; on H?;} S2mi x R?k2~1 a5 the subgroup H;’;i Zo X {£Iok,—1} such that if
(1, -+, 1, —Lop,_1) € Athen oc(1, -+, 1, —Ipp,_1) = —1.

This corresponds with the first manifold in Theorem 8.1 for ko > 3.

9.2. The case ky = 2. Assume ko = 2. By (9.1) and (9.2), the covering of
K¢ is as follows:

Ko = Spin(2ky — 2) x K}

b a
= I Spin@m;) x [[SU@) x T* x SU(ky = 1) x T* for ky >2 or
j=1 i=1

b a
= I Spin@m;) < [[SUW) x T for ky =1,
j=1 i=1

where [; > 1 for all s =1, ---, a. Comparing the above coverings of K°’s, there
are the following three cases:
(1): Spin(2ke — 2) = Spin(2my), and ko = mp + 1 = 2;
(ii): Spin(2ky — 2) = T, where Ty, is the a-th factor of T* =T x -+ x Ty,
(iii): Spin(2ke —2) =T*, and ki > 2.
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REMARK 9.3. The above case (i) is the same as the case (i) in Section 9.1. By
the same argument of Section 9.1, we have that (M, G) for the above case (i) is as
follows (ke = 2):

a b—1
M = HS2li+1 X Ta H SQmj X 4 S(RQk‘g—l @ C]:I) :
i=1 j=1
a b—1
G=][SUl:+1) x [] SO@m; + 1) x SO(2ky — 1) x U(ky),
i=1 j=1

where 7% and A quotients are similarly defined as that of M in Section 9.1. This
corresponds with the first manifold in Theorem 8.1 for ko = 2. Hence, in this
section, we may only discuss with the other cases: the case (ii) and (iii).

First we prove the following lemma.
LEMMA 9.4. In the above cases, the case (iii) does not occur.

PROOF. By the definition of the case (iii),
b a
Ky =[] Spin(2m;) x [[ SU(L) x T* x SU(ky — 1).
j=1 i=1

By (9.2), (9.3), we can put Kg = Spin(2ks — 1) X I/(vé Therefore, with a method
similar to that demonstrated in the proof of Lemma 9.1, there is the following
commutative diagram (ke = 2):

Spin(2ky —2) x K5y - Spin(2ky — 1) x K}
el Lo
K° - K3,
where ¢ is the finite covering, and 7 and ¢ are inclusion maps. Hence, the following
sequence holds by the commutativity of the above diagram and the definition of G
(also see notations in Section 8.1):

qots oLO(p(Spin(2)) = Qo ogpof(Spin(Q))
C qouz0p(Spin(3))
c q@)=T",

On the other hand, by (9.1), we have
gouorop(Spin(2)) =T = q(G) = qotz 0 u(K°).
Consequently, we have goo0¢(Spin(3)) = T'. However, this gives a contradiction,

because there is no non-trivial representation from Spin(3) to TT. It follows that
the case (iii) does not occur. O

By Remark 9.3 and Lemma 9.4, we may only study the case (ii) in this subsec-
tion.

Assume the case (ii) occurs, that is, Spin(2ky — 2) = T,, where T, is the a-th
factor of T% = Ty x --- x Ty, (T; ~ T*). Let m; : Spin(2m;) — SO(2m;) be the
double covering. In order to study this case, we divide this case into two parts:

e the case k1 = 1;
e the case k1 > 2.
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9.2.1. The case k1 = 1. First, we assume k; = 1. Then, we have the following
finite covering:

b a
m: ] Spin(2m;) x [[ SU) x T* = Ky x T, — K°
j=1 i=1
such that
L1/
w(A;, B;, t;) = (Wj(Aj>7( Bltzb tO ),tlal -~-t;a“>
b a
K° c [[so@m;) < [[S@) xv@)) x 1",

j=1 i=1

m

for the element (A;, B;, t;) € H?Zl Spin(2m;) x [1{_, SU(l;) x T°.
If ay # 0, then K° has the following subgroup:

m(Ta) = m(Spin(2ks — 2)) = {(( Il”tgwa y ) ’t‘;%>

ta

ty € Ta}

where I;, is the identity element in U(l,). Therefore, for the following commutative
diagram (by (9.2) and (9.3)):

Cc (S(UI,) xUQ1) xTHNK®,

Taxl?é N Spin(3)><f(;
Tl IKG

L

K° —_ K3,
we have the following sequence (also see notations in Section 8.1):

T' =qoworon(T,) = qougoion(Spin(2ky —2))
= qouyomol(Spin(2ke —2))
C qgowo %(Spm(ng — 1))
c qG)=T"
This gives a contradiction with a method similar to that demonstrated in the proof
of Lemma 9.4. Hence, we have a, = 0.
Because «, = 0, we have that n(T, x SU(l,)) = S(U(l,) x U(1)). Therefore,
there is the following sequence:
S(U () xU(1)) = pgotgoronm(Ty, x SU(l,))
= pgotgomoi(Ty x SU(l,))
C pgotgom(Spin(3) x SU(l,))
C pu(G)=SU(ls+1).
Because Spin(3) and SU(l,) are simple and dim(SU(l,) x Spin(3)) = 12 + 2 and
dim S(U(l,) x U(1)) = I2, we have that p, o 1 0 T(SU(l) x Spin(3)) # S(U(l,) x
U(1)). Since S(U(l,) x U(1)) is a maximal rank, maximal subgroup in SU(l, + 1)
(see [15]), we have

Pa © L2 0 T(SU(l,) x Spin(3)) = SU(l, + 1).
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Comparing their dimension (dim(SU(l,) x Spin(3)) =2 +2 and dim SU (I, +1) =
12 +2l,), we have

lo=1
(remark Spin(3) ~ SU(2)). Hence, in the case k1 = 1, we can regard

(SU(la + 1), SU(la) x U(1)))
(Spin(2ky — 1), Spin(2ks — 2))
= (Spin(2mpy1 + 1), Spin(2mps1))

where mp41 = 1. Therefore, by regarding b+ 1 as b and a — 1 as a, we can regard
the case (ii) with k; = 1 as the case (i). Hence, this case corresponds with the first
case of Theorem 8.1 which satisfies k; = 1 and k2 = 2 by using Remark 9.3.

9.2.2. The case k1 > 2. Next, we study the other case: the case k1 > 2.

If k1 > 2, then we have the following finite coverings:

b a
m: [[ Spin(2m;) x [[ SU(L) x T* x SU(ky — 1) x T' — K°
j=1 i=1

such that,

vy 1/ (k1)
7(Aj, Bi ti,Y,t) = (wj(Aj),< Bltzb 0 )( Y . 0 )t)

t; x

b a
e [[so@m) < [[SW xU1) x Sk —1) x U(1)) x T,

where x =7 - -t Yot

If ag, = 0, then we can easily show that [, = 1 and this case corresponds with
the first case of Theorem 8.1 which satisfies k1 > 2 and ko = 2 with the method
similar to that demonstrated in the previous section (Section 9.2.1). Therefore, we
may only discuss with the case a,, # 0.

Assume a, # 0. We will prove this case does not occur. First, we prove the
following lemma.

LEMMA 95. If k1 > 2 and ay # 0, then we can put l, = 1, k1 = 2 and
o, = +1.

Proor. If k; > 2 and a4, # 0, then K° has the following subgroups (ke = 2):

(9.6) 7(SU(L,) x Spin(2ks — 2))
_ Buta /' 0\ ( Tyyatar/ 7Y o
(9.7) i(gg(pm(%z ~2) iaszj(kl( 1)) 0 . >) }

_ Ita 0 ytee/ti=l g
0 te )’ 0 t, e

where t, € T, = Spin(2ks — 2), B, € SU(l,), Y € SU(ky — 1), and Iy, 1, I,
are identity elements in U(k; — 1) and U(l,), respectively. Moreover, there is the
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following commutative diagram by (9.2) and (9.3):

(SU(la) x Spin(2) x SU(ky — 1)) x KY  —— (SU(l) x Spin(3) x SU(ky — 1)) x KY
T 17
K° - K3,
where KI = H?=1 Spin(2m;) x [[0= SU(l;) x T** x T'. Then, we have the
following sequence by (9.6):
S(U(l,) xU(1)) = pagotzoron(SU(,) x Spin(2))
= pgotaomoi(SU(l,) x Spin(2))
C paotzom(SU(l,) x Spin(3))
C pa(G)=SU(l,+1).
With a method similar to that demonstrated in the proof of [, = 1 in Section 9.2.1,
we have [, = 1. Moreover, by (9.7), we have the following sequence:
S({U(ky —1)xU(1)) = poworon(Spin(2) x SU(ky —1))
= powomoi(Spin(2) x SU(ky — 1))
C powom(Spin(3) x SU(ky — 1))
C p(G) = SU(ky).
Similarly, we have k; = 2.
Moreover, we can easily show that po s o7 : Spin(3) — SU(k;) = SU(2) is
an isomorphic map. By considering the restricted representation to Spin(2) of this
isomorphic map and using (9.7), we also have o, = £1. O

By Lemma 9.5, we have I, = 1, k1 = 2 and |a,| = 1; moreover, we have the
following commutative diagram (see the proof of Lemma 9.5):
Spin(2) x I’(\;’ U Spin(3) x f(g’
| IRG
Ko N KS.
Then, we have the following sequence:
H = (pa xp)otzorom(Spin(2))
= (pa X p) otz 07 o(Spin(2))
C (pa % p) 013 0 F(Spin(3))
C paxp(G)=8U(la+1) x SU(k1) = SU(2) x SU(2).

Here, H is one of the followings, because of (9.6) and (9.7) in the proof of Lemma
9.5 and || = 1:

—1 1
A:{(t% t())’(t% t() )}CSU(Q)XSU(Z)foraa:—1;
—1
A/:{<t% to)’(tg tol)}CSU(2)><SU(2)foraa:1,

Since A and A’ are conjugate in G, we can take a, = —1 and H = A. Because
Spin(3) ~ SU(2) and H = A, we can easily show that

(Pa X p) 012 07 (Spin(3)) = {(X, X) | X € SU(2)} C SU(2) x SU(2),
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i.e., the diagonal subgroup. By the definition of 7 and the above argument, we see
the followings:

vom(Spin(2) x TY)

_ {(( tt?(; t(l > ( tt?;ta ta?—a > t) € SU(2) x SU(2) le}

c #(Spin(3) x TY)
= {(X, X, ) e SU@2)x SU(2) xT"'}.
It follows that o = 0. However, this gives a contradiction because v € N (see
Section 4.1.1). Therefore, this case (the case k1 > 2 and «, # 0) does not occur.
10. The case (3)-(b)
In this section, we study the case (3)-(b). From Section 4.1, we have

b a
G =[] s0@m;+1)x [[SUWU +1) x SO(2k1),
j=1

i=1

K1 = 8 x [[ S x U(1)) x S0(2ky)

(10.1) K = ﬁS(U(li) x U(1))

x{ (A, ( )o( v )) €81 x S(0(2k; — 1) x O(1))

where k1 > 2. From Lemma 8.2, we also have

(10.2) K° = Spin(2ky — 2) o K},

(10.3) K9 = Spin(2ks — 1) 0 K}

Therefore, we have the covering of K° as follows by (10.1) and (10.2):

O'l(A)l' = 1} y

Ko = Spin(2ky — 2) x IA(;
b a
= [ Spin@m;) x [ SUW:) x T* x Spin(2k; —1).
j=1 i=1

Comparing the above covering of K°’s and using the fact that Spin(2) ~ T,
Spin(3) ~ SU(2), Spin(4) ~ SU(2) x SU(2) and Spin(6) ~ SU(4), there are the
following five cases:

(1): Spin(2ke — 2) = Spin(2my) and ka = mp + 1 > 2;

(ii): Spin(2ky — 2) = T, and ko = 2, where Ty, is the a-th factor of T* =

Ty x - xT, (T; ~T");

(iii): Spin(?kg — 2) = SU(lafl) X SU(la) and la = la,1 = 2, k‘z = 3;

(iv): Spin(2ke —2) = SU(l,) x Spin(2k; — 1) and I, = 2, k1 = 2, ko = 3;

(v): Spin(2ke —2) = SU(l,) and I, = 4, ko = 4.

Similarly to Lemma 9.1, we can show the following lemma.

LEMMA 10.1. In the above cases, the cases from (iii) to (v) do not occur.
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PROOF. For the cases (iii) and (iv), we can apply a method similar to the proof
of that the case (ii) does not occur in Lemma 9.1. For the case (v), we can apply a
method similar to the proof of that the case (iv) does not occur in Lemma 9.1. So
we may omit the detail of the proof. O

From the next section, we study the cases (i) and (ii): we call them (3)-(b)-(i)
and (3)-(b)-(ii), respectively.
10.1. The case (3)-(b)-(i). Suppose the case (3)-(b)-(i) occurs, that is,
Spin(2ky —2) = Spin(2mp) and ke =mp +1 > 2.
It follows from (10.1) and (10.2) that the following relation holds:

Spin(2ky —2) o K = Spin(2my) o K}
b a
[150@m;) x [] S(W(L) x U(1)) x SO2k — 1) = K°.

j=1 i=1

Therefore, we can put K° = SO(2my) x K) = SO(2ky — 2) x K} and
b—1 a
Ky =[] S0@2m;) x [[ S(W (L) x U(1)) x SO(2ky — 1).
j=1 i=1

Because K§ = Spin(2ke — 1) o K4 (by (10.3)), by using the same argument in
Section 9.1, we have

a b—1
K§ = 1:[15(U(zi) x U(1)) x [[ SO@ms) x SO(2ks — 1) x SO(2k; — 1),

Jj=1

and there is the inclusion SO(2k;—1) — K> such that its image is SO(2mp+1) C G.
Because K§ C Ko C G, we can put K» is as follows:

Ky = SO(2ky — 1) x KY/

b—1 a
C G=80(2k—1)x [ [[SO@m;+1) x [[SU +1) x SO(2k) | ,
j=1 i=1

where 2m;, +1 = 2ky — 1 and K is a subgroup of H?‘:} SO@2m;+1)x[[i, SU(l;+
1) x SO(2ky). By using the same argument of Section 9.1, we have that

Ky = 80(2ky — 1) x ®(K) C G such that ®(K) = ®(K) = KY,

where ® : G — G/SO(2ky — 1) = G/SO(2m;, + 1) is the natural projection. It
follows that the inclusion Ky C G is completely determined by K.

Next, we consider the slice representation og : Ko — O(2ke — 1). By the same
reason demonstrated in Section 9.1, the restricted slice representation 02| so(2x,—1) :
SO(2ky — 1) — O(2kg — 1) is the natural inclusion. Hence, we have that

UQ(Ké/) C Z(SO(?kQ - 1)) = {:‘:12]@271} - O(2]€2 - ].)
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Moreover, by (10.1), we have the following formula for K:
K =05, (O(2ky — 2))

_ {<< ? 2 >Y> € S(0(2ks — 2) x O(1)) x KY

[ 5w xU() x {(A (5 2))esixson -1 o)

b=det B~! = det UQ(Y)}

al(A)x = 1} .

Therefore, we can easily show that the following lemma by using the above formula
for K.

LEMMA 10.2. The following two statements are equivalent:

(1): 02(K3) = {Iak,—1} (resp. 02(K3) = {*lop,~1});

(2): K =850(2ky —2) x KY (resp. mp(K) = S(0(2my) x O(1))).
Moreover, the following statement holds:

(3): if o9(KY) = {1} then K # S(O(2my) x O(1)) x K.

It follows from this Lemma 10.2 and the above formula for K that the slice
representation oy : Ko — O(2ky—2) is also completely determined by K. Therefore,
the tubular neighborhood of G/ K5 is completely determined by K and equivariantly
diffeomorphic to the following manifold:

a b—1
[Icr) < [ T] $%™ x D®*=71) | x4 S(R*),
i=1 j=1

where A ~ §;/8?-quotient is defined by the following actions: on H;’;} S§2mi %
D(R?*271) as the subgroup A C H;’: Zo x {£Iok, 1}; and on S(R?*1) C Rk
by the representation ogr : A — {*la, } (induced by o1). Moreover, by us-
ing Lemma 10.2 (3), if (1, -++, 1, —Iog,—1) € A C [[/2} Za x {Io,—1}, then
or(l, -+, 1, —Izk,—1) = —Iok, . It follows that A acts on H?;} S§%mi x D(R#F2=1) x
S(R2*1) freely; therefore, X5 is a manifold.

From Remark 4.2, we can easily check that the pair of (M, G) of the case
(3)-(b)-(i) is as follows:

a b—1
M =T]CP@) x []5*™ xa S®*~" o R*™);

i=1 j=1
a b—1

G =[[sU+1) x ] SO@2m; +1) x SO(2ks — 1) x SO(2k),
i=1 j=1

where A acts on H?: S§2mi % S(RZ*F2-1 @ R?*1) as follows:
e on R*1 by op : A — {£lo, };
e on H?;i S§?mi x R2k2~1 a5 a subgroup Hg: Zo x {xIs,—1} such that if
(1, cee s 1, —.[2]%,1) € A, then O’R(l, cee s 1, —.[2]%,1) = —Ia,.

This corresponds with the second manifold in Theorem 8.1.
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10.2. The case (3)-(b)-(ii). Suppose the case (3)-(b)-(ii) occurs, that is,
Spin(2ke —2) =T, and ko =2,
where T, is the a-th factor of T¢ =Ty x - x T, (T; ~T*'). Let 1 : Ko — K° be

the finite covering projection, where Kois a product of Lie groups. By (10.1), we
can easily show that

~1/l,
D(Spin(2ks — 2)) = {( Izqt,a to )

ta € Ty = Spin(2kqy — 2)} .

Moreover, there is the following commutative diagram by (10.2) and (10.3):

(SU(la) x Spin(2ky — 2)) x K  — (SU(lq) x Spin(2ks — 1)) x KY
(N} 1y

L

K° — Ks,

where KJ = H?:I Spin(2m;) x [1¢Z) SU(l;) x T*~' x Spin(2k; — 1). Because
pa(K°) = S(U(l,) x U(1)) (by (10.1)), we have the following sequence (ko = 2):
SU(la) x U(1))
— puci2000B(SU(L) x Spin(2kz —2))
= paoizotol(SU(l,) x Spin(2ky — 2))
C paotyoh(SU(l,) x Spin(2ky — 1))
C pa(G)=8U(l,+1).

Therefore, with a method similar to the proof of [, = 1 in Section 9.2.1, we also
have I, =1 (remark Spin(3) ~ SU(2)). Hence, we have

b a—1
K3 = [[so@m) x [[SWU1)xU@)) x SU2) x SO(2k; — 1)
j=1 i=1
b a—1
[150@m) x T S(W (L) x U(1)) x Spin(3) x SO(2k; — 1).
j=1 i=1
By the similar argument of Section 10.1 and using (10.1), we have that

K, = 1:[ S(U(l;) x U(1)) x Spin(3)

v {(A, ( )o( ) )) €81 x S(0(2k; — 1) x O(1))

Similarly, the slice representation oo : Ko — O(3) is the natural representation
from the Spin(3)-factor in Ky to SO(3) C O(3), and from the other factors K4 in
K3 to ZSO(3) = {+I3}. However, by 0, 1(0(2)) = K D Ky = ¢(KY) (see (10.1))
and O(2)N{xIs} = {I3}, we have that oo(KY) = {I3}. Therefore, Ko C G and o9
are completely determined by K.

In this case, by constructing the G-manifold, we can regard Spin(3) as SO(3) =
SO(2mpy1+1) in G up to essential isomorphism. By regarding b+ 1 as b and a —1
as a, we can easily show that this case is the same as the case (3)-(b)-(i) with kg = 2
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and o9(KY) = {I3}. Hence, this corresponds with the second manifold in Theorem
8.1 such that ks = 2 and o9 : K3 — SO(3) C O(3).
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