
 

 

TOPOLOGICAL CLASSIFICATION OF TORUS  

MANIFOLDS WHICH HAVE CODIMENSION ONE 

EXTENDED G-ACTIONS 

 

SUYOUNG CHOI AND SHINTARO KUROKI 

 

Citation OCAMI Preprint Series 

Issue Date 2009 

Type Preprint 

Textversion Author 

 

 

From: Osaka City University Advanced Mathematical Institute 

 

http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html  

http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html


TOPOLOGICAL CLASSIFICATION OF TORUS MANIFOLDS WHICH
HAVE CODIMENSION ONE EXTENDED G-ACTIONS

SUYOUNG CHOI AND SHINTARÔ KUROKI

Abstract. The problem whether cohomology ring determines topological types of (quasi)toric
manifolds (the cohomological rigidity problem) is still open problem and some affirmative
evidences are known by the first authors. On the other hand, the second author classified
torus manifolds (the generalization of (quasi)toric manifolds) with codimension one extended
G-actions up to G-equivariantly homeomorphism. They are equivariantly homeomorphic to
the sphere bundle or projective bundle over some torus manifold. The goal of this paper is
to classify such torus manifolds up to homeomorphism (that is, we forget the G-action). As
a result, we show that their topological types are completely determined by their cohomol-
ogy rings and characteristic classes. Due to this result, we find the counterexample of the
cohomological rigidity problem in the category of torus manifolds. Moreover, we find the
class of manifolds in torus manifolds with codimension one extended G-actions which is not
in the class of (quasi)toric manifolds but cohomologically rigid.
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1. Introduction

A toric variety of dimension n is a normal algebraic variety on which an algebraic torus
(C∗)n acts with a dense orbit. In this paper, we call a compact non-singular toric variety
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a toric manifold. We regard the compact torus Tn as the standard compact subgroup in
(C∗)n. The orbit space of a toric manifold with Tn can be identified with the simple polytope
and the action of Tn on a toric manifold is locally standard, that is, locally modelled by
the standard action on Cn. Davis and Januszkiewicz first introduced the notion of a toric
manifold as a topological counterpart, which is now called a quasitoric manifold, by taking
these two characteristic properties as the starting point (see [1], [5]). A quasitoric manifold
is a smooth closed manifold of dimension 2n with a locally standard Tn-action whose orbit
space is a simple polytope. Obviously not all quasitoric manifolds belong to the family of toric
manifolds. For instance, a connected sum CP 2#CP 2 of two CP 2’s is a quasitoric manifold
with an appropriate action of T 2 but not a toric manifold because it does not allow an almost
complex structure. Moreover, the family of quasitoric manifolds does not contain the family
of toric manifolds entirely, but the theory can be extended to a certain family of manifolds
containing both toric manifolds and quasitoric manifolds. As an ultimate generalization of
(quasi)toric manifolds, Hattori and Masuda introduced a torus manifold (or unitary toric
manifold in the earlier terminology) in [7], [11], which is an oriented, closed smooth manifold
of dimension 2n with an effective Tn-action with a non-empty fixed point set. Among the
definition of torus manifolds, if a torus manifold M satisfies the following two conditions:

(1) Hodd(M) = 0 (resp. H∗(M) is generated by H2(M) as ring);
(2) M , Mi’s and connected components of any multiple intersection of Mi’s are all simply

connected,

where Mi’s are characteristic submanifolds of M , then the orbit space is a homotopy cell (resp.
homotopy polytope) and the converse also holds (see [13]). Thus Masuda and Suh believe in
[15] that the toric theory can be developed to the family of torus manifolds satisfying the two
conditions above in the topological category in a nice way.

On the other hand, the topological classification of these manifolds has recently attracted
the attention of toric topologists. Masuda and Suh ask several problems in [15]. Of special
interest is the following problem which is now called a cohomological rigidity problem for toric
manifolds:

Problem 1.1. Are toric manifolds diffeomorphic (or homeomorphic) if their cohomology
rings are isomorphic as graded rings?

They also ask the problem for quasitoric manifolds and torus manifolds satisfying the
two conditions above. Because there are yet no negative answer to Problem 1.1 for toric
or quasitoric manifolds but there are some affirmative evidences, Problem 1.1 has been still
open in the toric or quasitoric categories (see [2], [13]). In the present paper, we find negative
answers to Problem 1.1 for the family of torus manifolds each of whose orbit space is a
homotopy cell. In order to do, we study a topological classification of torus manifolds which
have extended G-actions, where G is a compact, connected Lie group with maximal torus
Tn. Recently the second author has classified the torus manifolds which have extended G-
actions with codimension 0 or 1 principal orbits in [8], [9], [10]. The (simply connected) torus
manifold which has a codimension 0 extended G-action (i.e., transitive G-action) is a product
of complex projective spaces and spheres. This is nothing but a product of projective spaces
and spheres from the (non-equivariant) topological point of view. Thus, this paper will be
restricted to consideration of the topological types of the torus manifolds which have extended
G-actions with codimension 1 principal orbits. We denote such class as M. The aim of this
paper is to prove the following theorem (see Corollary 4.2 in Section 4).
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Theorem 1.2. Homeomorphism types of M are completely determined by their cohomology
rings, Pontrjagin classes and Stiefel-Whitney classes.

This paper is organized as follows. In Section 2, we recall the results of [9], [10] and
prepare notations. In Section 3, we compute cohomology rings and characteristic classes of
these manifolds. In Section 4, we present the main result of this paper. Finally, in Section 5,
we prove the main result and exhibit several non-trivial examples.

2. Notations

We first recall the definition of torus manifolds (see [7], [11]). Let M be a 2n-dimensional,
oriented, closed manifold with an effective half dimensional torus Tn action. We call M a
torus manifold if its fixed point set MT is non empty. Remark that in [7], [11], we need
to choice the omniorientations, namely, an orientation of the torus manifold and its char-
acteristic submanifolds, on torus manifolds. However, in this paper we do not assume the
omniorientations on torus manifolds because we focus only on the topological types of torus
manifolds.

Next we recall the definition of quasitoric manifolds (see [1], [5]). If the torus manifold
M2n satisfies the following two properties:

(1) Tn-action is locally standard, that is, locally looks like the standard torus representa-
tion in Cn;

(2) there is a projection map M2n → Pn constant on Tn-orbits which maps every k-
dimensional orbit to a point in the interior of k-dimensional face of Pn for k = 0, . . . , n,
where Pn is a convex, simple, n-dimensional polytope,

then we call M2n a quasitoric manifold.
Let M̃ be the set of simply connected torus manifolds M2n which have extended G-actions

with codimension 1 principal orbits, where G is a compact, connected Lie group with maximal
torus Tn. Due to the main results in [9], [10], M̃ consists of the following three types of
manifolds:

• TYPE 1:
∏b

j=1 S2mj ×
(∏a

i=1 S2`i+1 ×(S1)a P (Ck1
ρ ⊕ Ck2)

)
;

• TYPE 2:
∏b

j=1 S2mj ×
(∏a

i=1 S2`i+1 ×(S1)a S(Ck
ρ ⊕ R)

)
;

• TYPE 3:
∏b

j=1 S2mj ×
(∏a

i=1 S2`i+1 ×(S1)a S(Ck1
ρ ⊕ R2k2+1)

)
,

where P (Ck1
ρ ⊕ Ck2) = (Ck1

ρ ⊕ Ck2 − {0})/C∗ is a complex projective space, S(C` ⊕ Rm) ⊂
C`⊕Rm is a sphere, and (S1)a acts on

∏a
i=1 S2`i+1 naturally and on Ck1

ρ through the following
representation ρ : (S1)a → S1:

ρ(t1, . . . , ta) = tα1
1 · · · tαa

a

for αi ∈ Z (i = 1, . . . , a).
In the remainder of the paper, we assume that a = 1 and b = 0 and M denotes the subset

of M̃ which satisfied a = 1 and b = 0. Let Mi (i = 1, 2, 3) be the subset of M of TYPE i
with a = 1 and b = 0. By the definition of Mi, the element Ni ∈ Mi is as follows:

N1 = S2`+1 ×S1 P (Ck1
ρ ⊕ Ck2);

N2 = S2`+1 ×S1 S(Ck
ρ ⊕ R);

N3 = S2`+1 ×S1 S(Ck1
ρ ⊕ R2k2+1).
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Defining ρ : S1 → S1 as t 7→ tρ, we may regard ρ ∈ Z. First we compute the cohomology rings
and characteristic classes of Ni’s. In order to compute them, we use the following standard
symbols: H∗(X) is the cohomology ring of X over Z-coefficients; w(X) (resp. wi(X)) is the
total (resp. i-th) Stiefel-Whitney class of X; and p(X) (resp. pi(X)) is the total (resp. i-th)
Pontrjagin class of X. Moreover, Z[x1, . . . , xm] denotes the polynomial ring generated by xj

(j = 1, . . . ,m), and < f1(x1, . . . , xm), . . . , fs(x1, . . . , xm) > denotes the ideal in Z[x1, . . . , xm]
generated by the polynomials fj(x1, . . . , xm) (j = 1, . . . , s). The symbol E(η) represents the
total space for the fibre bundle η.

3. Topological invariants

In this section, we will compute the following three topological invariants of Ni (i = 1, 2, 3):
• cohomology rings H∗(Ni);
• Stiefel-Whiteny classes w(Ni);
• Pontrjagin classes p(Ni).

3.1. Topological invariants of N1. The goal of this subsection is to compute topological
invariants of

N1 = S2`+1 ×S1 P (Ck1
ρ ⊕ Ck2).

In order to compute them, we first recall the torus action on N1, where in this case the
dimension of torus is `+k1 +k2−1. The torus action on N1 is defined as follows (k1, k2 ≥ 1):

(a1, . . . , a`, b1, . . . , bk1 , c1, . . . , ck2−1) · [(x0, . . . , x`), [y1; . . . ; yk1 ; y
′
1; . . . ; y

′
k2

]]

= [(x0, a1x1, . . . , a`x`), [b1y1; · · · ; bk1yk1 ; c1y
′
1; · · · ; ck2−1y

′
k2−1; y

′
k2

]],

where ai, bj , ck ∈ S1 and (x0, . . . , x`) ∈ S2`+1 ⊂ C`+1, [y1; · · · ; yk1 ; y
′
1; · · · ; y′k2

] ∈ P (Ck1
ρ ⊕

Ck2). By this torus action, we can easily check that this manifold N1 is a quasitoric manifold
over ∆`×∆k1+k2−1 (product of two simplices) whose dimension is 2`+2k1+2k2−2. Therefore,
we can use the Davis-Januszkiewicz formula in [5, Theorem 4.14, Corollary 6.8] for computing
topological invariants of quasitoric manifolds.

3.1.1. The Davis-Januszkiewicz formula. Next we quickly review the Davis-Januszkiewicz
formula for topological invariants (see [1], [5] for details). The equivariant cohomology of
quasitoric manifolds M2n can be described as follows:

H∗(ET ×T M ; Z) = H∗
T n(M2n; Z) ' Z[v1, . . . , vm]/I,

where vj (deg vj = 2, j = 1, . . . ,m) is the equivariant Poincaré dual of codimension two
invariant submanifold Mj in M2n (characteristic submanifolds) and I is an ideal of the poly-
nomial ring Z[v1, . . . , vm] generated by {

∏
j∈I vj |

⋂
j∈I Mj = ∅}. We call Z[v1, . . . , vm]/I the

face ring of M/T = P . Let π : ET ×T M → BT be the natural projection. Then, we can
define the induced homomorphism

π∗ : H∗(BT ; Z) = Z[t1, . . . , tn] −→ H∗(ET ×T M ; Z) = H∗
T n(M2n; Z).

Moreover, the π∗-image of ti, π∗(ti) (i = 1, . . . , n), can be described by the information of
the T -action on M . Such information is called the characteristic matrix Λ = (λ1 · · ·λm) ∈
M(n, m; Z) (the set of n × m integer matrices), where λj ∈ Zn (j = 1, . . . ,m) corresponds
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with the generator of Lie algebra of isotropy subgroup of characteristic submanifold Mj . Put
λj = (λ1j · · · λnj)t ∈ Zn. Then we can describe π∗(ti) (i = 1, . . . , n) as follows:

π∗(ti) =
m∑

j=1

λijvj .

Let J be the ideal in Z[v1, . . . , vm] generated by π∗(ti) for all i = 1, . . . , n. Then the ordinary
cohomology of quasitoric manifolds are described as follows:

H∗(M2n; Z) ' Z[v1, . . . , vm]/(I + J ).(1)

Moreover, for an inclusion ι : M → ET ×T M , the Pontrjagin class1 and the Stiefel-Whitney
class can be described as follows:

p(M) = ι∗
m∏

i=1

(1 + v2
i ),(2)

w(M) = ι∗
m∏

i=1

(1 + vi).(3)

3.1.2. Topological invariants of N1. Now we may compute the topological invariants of N1. In
order to use the Davis-Januszkiewicz formula, we need to compute the characteristic matrix
of N1. By the definition of the torus action on N1, the characteristic matrix of N1 is as
follows:  I` 0 0 1 0

0 Ik1 0 ρ1 1
0 0 Ik2−1 0 1

 ∈ M(n, n + 2; Z),(4)

where n = ` + k1 + k2 − 1 and 1 = (1, . . . , 1)t ∈ M(r, 1; Z) for r = `, k1 and k2.
Now we may compute the topological invariants of N1. Because the equivariant cohomology

ring H∗
T n(N1) is the face ring of ∆` ×∆k1+k2−1, we have that

H∗
T n(N1) ' Z[v1, . . . , v`+1, w1, . . . , wk1+k2 ]/I,(5)

where deg vi = deg wj = 2. Moreover, by the definition of the torus action, we can easily
check that the ideal I (see Section 3.1.1) is generated by

v1 · · · v`+1

and

w1 · · ·wk1+k2 .

Now the ideal J (see Section 3.1.1) is generated by the following elements by using (4):

v1 + v`+1, . . . , v` + v`+1,

w1 + ρv`+1 + wk1+k2 , . . . , wk1 + ρv`+1 + wk1+k2 ,(6)
wk1+1 + wk1+k2 , . . . , wk1+k2−1 + wk1+k2 .

1In [5, Corollary 6.8], the Pontrjagin class of quasitoric manifolds (toric manifolds in [5]) is ι∗
∏m

i=1(1− v2
i ).

However, this formula coincides with 1 − p1(M) + p2(M) − · · · =
∑m

i=0(−1)ipi(M). Therefore, by [15], the

Pontrjagin class of quasitoric manifolds must be p(M) = 1 + p1(M) + p2(M) + · · · = ι∗
∏m

i=1(1 + v2
i )
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By using (1), (5) and (6), we have the following formula:

H∗(N1) ' Z[v1, . . . , v`+1, w1, . . . , wk1+k2 ]/(I + J )

' Z[v`+1, wk1+k2 ]/ < (−1)`(v`+1)`+1, (−wk1+k2 − ρv`+1)k1(−wk1+k2)
k2 >

' Z[x, y]/ < x`+1, yk2(y + ρx)k1 >,

where x = v`+1, y = wk1+k2 .
Because of (2), (3) and (6), we have the characteristic classes of N1 as follows:

p(N1) = (1 + v2
`+1)

`+1(1 + (ρv`+1 + wk1+k2)
2)k1(1 + w2

k1+k2
)k2

= (1 + x2)`+1(1 + (ρx + y)2)k1(1 + y2)k2 ;

w(N1) ≡2 (1 + v`+1)`+1(1 + ρv`+1 + wk1+k2)
k1(1 + wk1+k2)

k2

≡2 (1 + x)`+1(1 + ρx + y)k1(1 + y)k2 .

In summary, we have the following proposition.

Proposition 3.1. Topological invariants of N1 are as follows:

H∗(N1) = Z[x, y]/ < x`+1, yk2(y + ρx)k1 >;

p(N1) = (1 + x2)`+1(1 + (ρx + y)2)k1(1 + y2)k2 ;

w(N1) ≡2 (1 + x)`+1(1 + ρx + y)k1(1 + y)k2 ;

where deg x = deg y = 2 and `, k1, k2 ∈ N.

3.2. Topological invariants of N2 and N3. Recall the following two manifolds:

N2 = S2`+1 ×S1 S(Ck
ρ ⊕ R);

N3 = S2`+1 ×S1 S(Ck1
ρ ⊕ R2k2+1).

The goal of this subsection is to prove the following propositions.

Proposition 3.2. Topological invariants of N2 are as follows:

H∗(N2) = Z[x, z]/ < x`+1, z(z + (ρx)k) >;

p(N2) = (1 + x2)`+1(1 + ρ2x2)k;

w(N2) ≡2 (1 + x)`+1(1 + ρx)k,

where deg x = 2, deg z = 2k and `, k ∈ N.

Proposition 3.3. Topological invariants of N3 are as follows:

H∗(N3) = Z[x, z]/ < x`+1, z2 >;

p(N3) = (1 + x2)`+1(1 + ρ2x2)k1 ;

w(N3) ≡2 (1 + x)`+1(1 + ρx)k1 ,

where deg x = 2, deg z = 2(k1 + k2) and `, k1, k2 ∈ N.

Now N2 has the following fibration:

S2k = S(Ck
ρ ⊕ R) −→ N2

π−→ S2`+1/S1 ∼= CP (`),

that is, N2 is a sphere bundle over a complex projective space. Therefore, we can use the
following lemma ([6, Lemma 4]):
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Lemma 3.4. Let π : E → M be a smooth, oriented r-sphere bundle over an oriented manifold
M which has a section s : M → E. Let the normal bundle ν of the embedding s be oriented
by π, and let χ(ν) ∈ Hr(M) be the Euler class of ν with respect to this orientation. Then
there exists a unique class z ∈ Hr(E) such that

s∗(z) = 0 ∈ H∗(M) and < i∗(z), [Sr] >= 1.

Furthermore H∗(E), as a module over H∗(M), has the basis {1, z} subject to the relation

z2 + π∗(χ(ν))z = 0;

We define the section of π : N2 → CP (`) as follows:

s : CP (`) 3 [z0; . . . ; z`] 7→ ([z0; . . . ; z`], (0, . . . , 0, 1)) ∈ N2,

where (0, . . . , 0, 1) ∈ S(Ck
ρ ⊕ R). We can easily check this map is well-defined because

(0, . . . , 0, 1) ∈ S(Ck
ρ ⊕R) is one of the fixed points of the S1-action on S(Ck

ρ ⊕R). Then the
normal bundle of this section is isomorphic to the following bundle ξρ:

Ck −→ S2`+1 ×S1 Ck
ρ −→ CP (`),

where ρ : S1 → S1 defined by t → tρ. Then, we have that

ξρ ≡ γ⊕k
ρ

where E(γρ) = S2`+1 ×S1 Cρ such that S1 acts on Cρ by the representation t 7→ tρ. If ρ = 1,
then γρ is isomorphic to the orientation reversing, canonical line bundle over CP (`) as a
complex line bundle. Hence, γρ = (γ)⊗ρ for the orientation reversing, canonical line bundle
γ(= γ1). Therefore, the Euler class of ξρ is

χ(ξρ) = ck(ξρ) = ck(γ⊕k
ρ ) = c1(γρ)k = c1((γ)⊗ρ)k = (ρc)k = ρkck,

where c ∈ H2(CP (`)) is the generator (determined by c1(γ)) of the cohomology ring H∗(CP (`)).
Now π∗ is injective by using Hodd(CP (`)) = 0 and Hodd(S2k) = 0 (see [17]). Hence, by us-
ing H∗(CP (`)) = Z[c]/ < c`+1 > and Lemma 3.4, there are the following relations in the
cohomology ring H∗(N2):

x`+1 = 0;
z2 + ρkxkz = 0,

for x = π∗(c) ∈ H2(N2) and some z ∈ H2k(N2). Making use of the Serre spectral sequence for
the bundle π : N2 → CP (`), there is an epimorphism Z[x, z] → H∗(N2), and additively the
cohomology of H∗(N2) coincides with that of CP (`)×S2k. Hence, there is no other relations
except those mentioned in the above arguments. Thus, we have the cohomology formula in
Proposition 3.2.

In order to compute characteristic classes, we regard N2 = S2`+1×S1 S(Ck
ρ⊕R) as the unit

sphere bundle of the following vector bundle over CP (`):

ξ = ξρ ⊕ R ≡ γ⊕k
ρ ⊕ R,(7)

where R is the trivial line bundle. Note that E(ξ) = S2`+1 ×S1 (Ck
ρ ⊕ R). We often denote

N2 as S(ξ), i.e., the unit sphere bundle of ξ.
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Now T denotes the tangent bundle of E(ξ). Then, there is the following pull-back diagram:

ι∗T −→ T
↓ ↓

S(ξ) ι−→ E(ξ)

where ι : (N2 =)S(ξ) → E(ξ) is the natural inclusion, and the following relation holds:

T |N2 = ι∗T = τ2 ⊕ ν2,

where τ2 is the tangent bundle of N2 = S(ξ) and ν2 is the normal bundle of the inclusion
ι : N2 = S(ξ) → E(ξ). Note that ν2 is a real 1-dimensional bundle by the equation dim E(ξ)−
dim S(ξ) = 1. Because N2 is simply connected, we have the following lemma for ν2 (see [20]).

Lemma 3.5. ν2 is the trivial real line bundle over N2, i.e., E(ν2) = N2 × R.

Hence, we have

ι∗p(T ) = p(ι∗T ) = p(τ2 ⊕ ν2) = p(τ2) = p(N2),(8)
ι∗w(T ) = w(ι∗T ) = w(τ2 ⊕ ν2) = w(τ2) = w(N2).(9)

We also remark ι∗ : H∗(E(ξ)) → H∗(S(ξ)) is injective, because π : S(ξ) → CP (`) is decom-
posed into π = π̃◦ι where π̃ : E(ξ) → CP (`) and π∗ is injective. In order to prove Proposition
3.2, we compute p(T ) and w(T ).

Let s̃ be the zero section of π̃ : E(ξ) → CP (`). Consider the following pull-back diagram:

s̃∗T −→ T
↓ ↓

CP (`) s̃−→ E(ξ).

Because the normal bundle ν(CP (`)) of the image of s̃ is isomorphic to ξ, we have that

s̃∗T ≡ τ(CP (`))⊕ ν(CP (`)) ≡ τ(CP (`))⊕ ξ,

where τ(CP (`)) is the tangent bundle over CP (`). Therefore, by (7), we have

s̃∗(p(T )) = p(s̃∗T ) = p(τ(CP (`))⊕ ξ) = p(τ(CP (`)))p(ξ) = (1 + c2)`+1(1 + ρ2c2)k,

s̃∗(w(T )) = w(s̃∗T ) = w(τ(CP (`))⊕ ξ) = w(τ(CP (`)))w(ξ) = (1 + c)`+1(1 + ρc)k.

Because s̃∗ : H∗(E(ξ)) → H∗(CP (`)) ' Z[c]/ < c`+1 > induces the isomorphism and s̃∗ =
(π̃∗)−1, we have

p(T ) = (1 + π̃∗(c)2)`+1(1 + ρ2π̃∗(c)2)k,

w(T ) = (1 + π̃∗(c))`+1(1 + ρπ̃∗(c))k.

Hence, we have that

p(N2) = (1 + x2)`+1(1 + ρ2x2)k,

w(N2) = (1 + x)`+1(1 + ρx)k,

by using ι∗ ◦ π̃∗(c) = π∗(c) = x, (8) and (9). Thus, we have the characteristic classes in
Proposition 3.2.

With a method similar to that demonstrated in the above proof of Proposition 3.2, for
N3 = S2`+1 ×S1 S(Ck1

ρ ⊕ R2k2+1), we can prove Proposition 3.3.
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4. Main theorem and Preliminary

In this section, we state the main theorem and prepare to prove it.

4.1. Main theorem. Before we state the main theorem, we prepare some notations (also
see [19]). A manifold M in the given family is said to be cohomologically rigid if for any other
manifold M ′ in the family the ring isomorphism H∗(M ; Z) ' H∗(M ′; Z) implies a homeo-
morphism M ∼= M ′. A manifold M in the given family is said to be rigid by the cohomology
ring and the Pontrjagin class (resp. the Stiefel-Whitney class) if for any other manifold M ′

in the family the ring isomorphism φ : H∗(M ; Z) ' H∗(M ′; Z) such that φ(p(M)) = p(M ′)
(resp. φ(w(M)) = w(M ′)) implies a homeomorphism M ∼= M ′. We remark that if M is
cohomologically rigid in the given family, then M is automatically rigid by the cohomology
ring and the Pontrjagin class (and the Stiefel-Whitney class).

Now we may state the main theorem.

Theorem 4.1. All manifolds M ∈ M satisfy one of the following three properties.
(1) If M is cohomologically rigid in M, then M is one of the followings:

S2`+1 ×S1 P (Ck1
ρ ⊕ Ck2);

S2`+1 ×S1 S(Ck
ρ ⊕ R) ` > 1 and k ≤ `;

S3 ×S1 S(Ck
ρ ⊕ R) for k ≡2 0 (k > 1);

S3 ×S1 S(Ck1
ρ ⊕ R2k2+1) for k1 ≡2 0.

(2) If M is not cohomologically rigid but rigid by the cohomology ring and the Pontrjagin
class in M, then M is one of the followings:

S2`+1 ×S1 S(Ck
ρ ⊕ R) for k > ` > 1;

S2`+1 ×S1 S(Ck1
ρ ⊕ R2k2+1) for ` > 1.

(3) Otherwise, M is rigid by the cohomology ring and the Stiefel-Whitney class in M and
one of the followings:

S3 ×S1 S(Ck
ρ ⊕ R) for k ≡2 1 (k > 1);

S3 ×S1 S(Ck1
ρ ⊕ R2k2+1) for k1 ≡2 1.

It is easy to show that the manifolds in M satisfy the two conditions in Section 1, i.e., for
all M ∈ M,

(1) Hodd(M) = 0;
(2) M , Mi’s and connected components of any multiple intersection of Mi’s are all simply

connected,
where Mi’s are characteristic submanifolds of M . Due to Theorem 4.1, we have that torus
manifolds do not satisfy the cohomological rigidity even if the above two conditions hold.
This gives the negative answer to the cohomological rigidity problem of torus manifolds (see
[15, Problem 1 and Section 7]).

As a corollary of Theorem 4.1, we have the following result.

Corollary 4.2. Homeomorphism types of M are completely determined by their cohomology
rings, Pontrjagin classes and Stiefel-Whitney classes.
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4.2. Preliminary. In this subsection, we prepare to prove Theorem 4.1.
Due to the definition of N1 ∈ M1, this manifold N1 is the projectify of the vector bundle

ηρ:

Ck1+k2 −→ S2`+1 ×S1 (Ck1
ρ ⊕ Ck2) −→ CP (`).

Now we have

ηρ ≡ (γ⊗(−ρ))⊕k1 ⊕ C⊕k2

over CP (`) where γ is the canonical line bundle (E(γ) = S2`+1×S1 C(−1)) and C is the trivial
complex line bundle. Thus, M1 consists of 2-stage generalized Bott towers, i.e., projectiviza-
tions of Whitney sums of line bundles over complex projective spaces (see [2], [3]). Therefore,
we may use the following theorem.

Theorem 4.3 ([2]). Top manifolds of 2-stage generalized Bott towers are diffeomorphic if
and only if their integral cohomology rings are isomorphic.

Note that for all M ∈ M, H∗(M) = Z[x,w]/ < x`+1, f(x,w) >, where f is a homogeneous
polynomial and deg x = 2 and w = y for Proposition 3.1 or w = z for Proposition 3.2, 3.3.
We list up for each case:

Proposition 3.1: f(x, y) = yk2(y + ρx)k1 , deg y = 2 for k1, k2 ∈ N;
Proposition 3.2: f(x, z) = z(z + (ρx)k), deg z = 2k for k ∈ N;
Proposition 3.3: f(x, z) = z2, deg z = 2k1 + 2k2 for k1, k2 ∈ N.

This implies that the cohomology ring determines `,deg w and deg f (remark that ` ≥ 1,
deg w ≥ 2 and deg f ≥ 4). The proof of Theorem 4.1 is divided into the following two cases
corresponding with the degree of w:

CASE 1: deg w = 2, i.e., 2-dimensional sphere bundle or complex projective bundle;
CASE 2: deg w > 2, i.e., m-dimensional sphere bundle and m = deg w > 2;

moreover, we will divide CASE 2 into the following three cases corresponding with `:
CASE 2 (1): deg w > 2 and ` ≥ 4;
CASE 2 (2): deg w > 2 and ` = 2, 3;
CASE 2 (3): deg w > 2 and ` = 1.

5. Proof of the main theorem

In this final section, we prove Theorem 4.1.

5.1. CASE 1 : deg w = 2. Assume deg w = 2. Then this case is a 2-dimensional sphere
bundle or a complex projective bundle over CP (`) , i.e.,

N1 = S2`+1 ×S1 P (Ck1
ρ ⊕ Ck2) or

N2 = S2`+1 ×S1 S(Cρ ⊕ R).

First, we prove this case is equivalent to a toric manifold. By using Hodd(Ni) = 0 (i = 1, 2, 3)
and [13, Theorem 4.1], we see that the torus action on this manifold is locally standard.
Moreover, the orbit space of this torus action is a product of two simplicies. Therefore,
we have that this case is a quasitoric manifold. Consider the standard torus action on the
following toric manifolds:

(C`+1\{0})×C∗ P (Ck1
ρ ⊕ Ck2).
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Then its orbit space and the characteristic matrix are same as N1 for all k1, k2 ≥ 1 or N2 for
k1 = k2 = 1. Therefore, N1 and N2 are equivalent to the above toric manifolds.

Moreover, this case has the same cohomology rings as a 2-stage generalized Bott tower.
Hence, by using [2, Theorem 6.4] and [4, Theorem 1.6], we also see that this case is a 2-stage
generalized Bott tower. Hence, by using Theorem 4.3, we have that this case (deg w = 2)
satisfies the cohomological rigidity.

In summary, the following proposition holds.

Proposition 5.1. If the CASE 1 holds, i.e., deg w = 2, then the manifold in this case is
cohomologically rigid in M.

5.2. CASE 2 (1) : deg w > 2 and ` ≥ 4. Assume deg w > 2 and ` ≥ 4. In this case, M
must be in M2 or M3.

Let M1 and M2 be in M (we will denote w = z). Without loss of generality,

M1 = S((γ⊗(−ρ1))⊕k11 ⊕ R2k12+1)

and

M2 = S((γ⊗(−ρ2))⊕k21 ⊕ R2k22+1)

for some ρ1, ρ2 ∈ Z, k11, k21 ∈ N and k12, k22 ≥ 0, where (k11, k12), (k21, k22) 6= (1, 0)
because deg z(= deg w) > 2.

Suppose H∗(M1) ' H∗(M2). Because M1 and M2 are sphere bundles over complex pro-
jective spaces, we can assume their base spaces are same dimension 2` and

H∗(M1) = Z[x1, z1]/ < x`+1
1 , f1(x1, z1) >

' H∗(M2) = Z[x2, z2]/ < x`+1
2 , f2(x2, z2) >,

where deg xi = 2, deg zi = deg w = 2ki1 + 2ki2 (i = 1, 2) and

fi(xi, zi) = zi(zi + (ρixi)ki1) for ki2 = 0, i.e., Mi ∈ M2;
fi(xi, zi) = z2

i for ki2 > 0, i.e., Mi ∈ M3.

Let φ : H∗(M1) → H∗(M2) be an isomorphism. Because deg xi = 2, deg zi > 2 and φ
preserves generators, we have

φ(x1) = ±x2.(10)

Therefore, we have that the cohomology isomorphism φ induces the identity of Pontrjagin
classes, i.e., by using Propositions 3.2 and 3.3,

φ(p(M1)) = (1 + x2
2)

`+1(1 + ρ2
1x

2
2)

k11

= p(M2) = (1 + x2
2)

`+1(1 + ρ2
2x

2
2)

k21 ,

if and only if each coefficient of pj(M1) and pj(M2) (j = 1, . . . , ` + ki1 + ki2) are same.

5.2.1. This case is rigid by the cohomology ring and the Pontrjagin class. Assume coefficients
of pj(M1) and pj(M2) are same for all j = 1, . . . , ` + ki1 + ki2. Note that x4

2 6= 0 in H∗(M2)
since ` ≥ 4. Then, by the above arguments, we have every isomorphism φ preserves their
Pontrjagin classes and in particular we have

φ(p1(M1)) = p1(M2) ⇔ k11ρ
2
1 = k21ρ

2
2,

φ(p2(M1)) = p2(M2) ⇔
(

k11

2

)
ρ4
1 =

(
k21

2

)
ρ4
2.
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Therefore, we can easily show that there are two cases; one is ρ1 = ρ2 = 0 and the other
is ρ1 = ±ρ2 and k11 = k21. In both cases, the vector bundle

(
γ⊗(−ρ1)

)⊕k11 ⊕ R2k12+1 and(
γ⊗(−ρ2)

)⊕k21 ⊕R2k22+1 are isomorphic as a real vector bundle. This implies that M1 and M2

(unit sphere bundles of these vector bundles) are homeomorphic. Hence, in this case, we have
that if cohomology rings and coefficients of pj(M1) and pj(M2) are same then M1 and M2 are
homeomorphic. In other words, if there is a graded ring isomorphism φ : H∗(M1) → H∗(M2)
such that φ(p(M1)) = p(M2) then M1 and M2 are homeomorphic, i.e., this case is rigid by
the cohomology ring and the Pontrjagin class.

In order to check whether this case satisfies the cohomological rigidity or not, we divide
this case into the following three cases.

5.2.2. The case k12, k22 > 0. Assume k12, k22 > 0, i.e., Mi ∈ M3 for i = 1, 2. Using their
cohomology ring structures, we can easily show that

φ(z1) = ±z2.

Because of (10), ρ1 and ρ2 are independent of φ. Hence, by taking M1 and M2 with different
coefficients of pj(M1) and pj(M2) for some j, we can easily construct examples which do not
satisfy the cohomological rigidity. Therefore, this case does not satisfy the cohomological
rigidity.

5.2.3. The case k12 > 0 and k22 = 0. Assume k12 > 0 and k22 = 0, i.e., M1 ∈ M3 and
M2 ∈ M2. Then k21 = k11 + k12. Put

φ(z1) = axk21
2 + bz2.

We can easily show b = ±1 because φ preserves generators. Using φ(z1)2 = 0, we have the
following three cases:

(1) k21 ≥ ` + 1;

(2) k21 < ` + 1 ≤ 2k21, ρ2 ≡ 0 (mod 2) and a = ρ
k21
2
2 b (b = ±1);

(3) 2k21 < ` + 1 and ρ2 = 0.

If k21 ≥ `+1, then we have φ(z1) = ±z2 because x`+1
2 = 0. If 2k21 < `+1 and ρ2 = 0, then

we can conclude φ(z1) = ±z2 by the easy computation. These cases are the same situation
as the above case (Section 5.2.2). Hence, with the method similar to that demonstrated in
Section 5.2.2, these cases do not satisfy the cohomological rigidity.

Therefore, it is sufficient to consider the case k21 < `+1 ≤ 2k21 only. In this case, we have

φ(z1) = ±(
ρk21
2

2
xk21

2 + z2).

However, also in this case, by taking M1 and M2 with different coefficients of pj(M1) and
pj(M2) for some j, we can easily construct examples which do not satisfy the cohomological
rigidity. Therefore, this case does not satisfy the cohomological rigidity.

5.2.4. The case k12 = k22 = 0. Assume k12 = 0 = k22. Then k11 = k21 by 2k11 = deg z1 =
deg z2 = 2k21.

If k11 = k21 > `, then we can easily show that φ(z1) = ±z2. Therefore, this case does not
satisfy the cohomological rigidity by using the same argument in Section 5.2.2.
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Assume k11 = k21 ≤ `. Let φ(z1) = axk21
2 + bz2, where b = ±1. Using the formula

z2
i + zi(ρixi)ki1 = 0 (i = 1, 2), we have

φ(z1(z1 + (ρ1x1)k11))

= (axk21
2 + bz2)2 + (axk21

2 + bz2)(±ρ1x2)k11

= a2x2k21
2 + 2abxk21

2 z2 + b2z2
2 + a(±ρ1)k21x2k21

2 + b(±ρ1)k21z2x
k21
2

= a2x2k21
2 + 2abxk21

2 z2 − b2z2(ρ2x2)k21 + a(±ρ1)k21x2k21
2 + b(±ρ1)k21z2x

k21
2

= ax2k21
2 (a + (±ρ1)k21) + bxk21

2 z2(2a− bρk21
2 + (±ρ1)k21) = 0.

If a = 0, then |ρ2| = |ρ1| by using the above equation, b = ±1 and ρ1, ρ2 ∈ Z. This implies
that the vector bundles (γ⊗(−ρ1))⊕k11 ⊕ R and (γ⊗(−ρ2))⊕k21 ⊕ R are same as a real vector
bundle. It follows that unit sphere bundles of these vector bundles are homeomorphic, i.e.,
the manifold in this case is cohomologically rigid. If a 6= 0, then we have a = −(±ρ1)k21 and

−(±ρ1)k21 = bρk21
2 ,

by using the above equation. Using ρ1, ρ2 ∈ Z and b = ±1, we have |ρ1| = |ρ2|. Hence, this
case is also cohomologically rigid with the method similar to that demonstrated in the case
a = 0.

In summary, the following proposition holds.

Proposition 5.2. If the CASE 2-(1) holds, i.e., deg w > 2 (if and only if 2k1 +2k2 > 2) and
` ≥ 4, then we can put M = S2`+1 ×S1 S((Ck1

ρ ⊕R2k2+1) for k1 > 0, k2 ≥ 0 and there are the
following two cases:

(1) M is cohomologically rigid in M ⇔ k2 = 0 and 1 < k1 ≤ `;
(2) M is not cohomologically rigid but rigid by the cohomology ring and the Pontrjagin

class in M ⇔ otherwise, i.e., k2 > 0, or k2 = 0 and k1 > `.

5.3. CASE 2 (2) : deg w > 2 and ` = 2, 3. Assume deg w > 2 and ` = 2, 3. With a
method similar to that demonstrated in CASE 2 (1), we can put

M1 = S((γ⊗(−ρ1))⊕k11 ⊕ R2k12+1) = S2`+1 ×S1 S(Ck11
ρ1

⊕ R2k12+1)

and

M2 = S((γ⊗(−ρ2))⊕k21 ⊕ R2k22+1) = S2`+1 ×S1 S(Ck21
ρ2

⊕ R2k22+1)

for some k11, k21 ∈ N and k12, k22 ≥ 0. Let φ : H∗(M1) → H∗(M2) be an isomorphism.
Then we similarly have that an isomorphic map φ satisfies

φ(x1) = ±x2.

Similarly to CASE 2 (1), we divide this case into the following three cases: the case
k12, k22 > 0; the case k12 > 0, k22 = 0; and the case k12 = k22 = 0.

Assume k12, k22 > 0. Then we have φ(z1) = ±z2. Using the similar method demonstrated
in Section 5.2.2, this case is not cohomologically rigid. Assume φ(p1(M1)) = p1(M2). Then,
by the method similar to that demonstrated in Section 5.2, we have

φ(p1(M1)) = p1(M2) ⇔ k11ρ
2
1 = k21ρ

2
2.

Note that in this case the second Pontrjagin class p2 does not appear by its cohomology ring
structure (see Propositions 3.2 and 3.3). So we need to use a KO-theoretical argument.
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Because of [18], in this case (` = 2, 3) we have KO(CP `) ' Z[y`]/ < y2
` >, where y` =

r(γ) − 2 for the canonical line bundle γ and the realification map r : K(CP `) → KO(CP `).
Moreover, we have r(γ⊗n) = n2y` + 2 by [18]. So, we have that

r(γ⊗(−ρ1)) = ρ2
1r(γ)− 2ρ2

1 + 2, r(γ⊗(−ρ2)) = ρ2
2r(γ)− 2ρ2

2 + 2.

Because k11ρ
2
1 = k21ρ

2
2 and k11 + k12 = k21 + k22, we have the following equation:

k11r(γ⊗(−ρ1)) + 2k12 + 1 = k11(ρ2
1r(γ)− 2ρ2

1) + 2k11 + 2k12 + 1

= k21(ρ2
2r(γ)− 2ρ2

2) + 2k21 + 2k22 + 1 = k21r(γ⊗(−ρ2)) + 2k22 + 1.

Therefore, we have that

(γ⊗(−ρ1))⊕k11 ⊕ R2k12+1 ≡s (γ⊗(−ρ2))⊕k21 ⊕ R2k22+1

⇔ k11ρ
2
1 = k21ρ

2
2 and k11 + k12 = k21 + k22,

where η ≡s ξ means η and ξ are stably isomorphic. If 2ki1 + 2ki2 + 1 > 2` (i = 1, 2,
and ` = 2, 3), these bundles are in the stable range; therefore, two bundles are isomorphic
(γ⊗(−ρ1))⊕k11 ⊕ R2k12+1 ≡ (γ⊗(−ρ2))⊕k21 ⊕ R2k22+1. Otherwise, i.e., ` = 3, ki1 = ki2 = 1
(i = 1, 2), we can easily show that |ρ1| = |ρ2| by using k11ρ

2
1 = k21ρ

2
2; therefore, this case also

satisfies that γ⊗(−ρ1) ⊕R3 ≡ γ⊗(−ρ2) ⊕R3. This implies that the case k12, k22 > 0 is rigid by
the cohomology ring and the Pontrjagin class.

Here we exhibit some non-trivial examples.

Example 5.3. The following two manifolds are homeomorphic because H∗(M1) ' H∗(M2)
and p1(M1) = 4x2

1 and p1(M2) = 4x2
2 (xi ∈ H2(Mi)):

M1 = S7 ×S1 S(C1
2 ⊕ R9); M2 = S7 ×S1 S(C4

1 ⊕ R1).

The following manifold has the same cohomology ring as the above two manifolds, but this
manifold is not homeomorphic to the above manifolds because p1(M) = 16x for x ∈ H2(M).

M = S7 ×S1 S(C4
2 ⊕ R1).

Using the similar argument in this section and Section 5.2.3 and 5.2.4, we have the same
results for the cases k12 > 0, k22 = 0 and k12 = k22 = 0 as that in Section 5.2.3 and 5.2.4,
respectively.

In summary, the following proposition holds.

Proposition 5.4. If the CASE 2 (2) holds, i.e., ` = 2, 3 and 2k1 + 2k2 > 2, then we can put
M = S2`+1 ×S1 S((Ck1

ρ ⊕ R2k2+1) for k1 > 0, k2 ≥ 0 and there are the following two cases:
(1) M is cohomologically rigid in M ⇔ k2 = 0 and 1 < k1 ≤ `;
(2) M is rigid by the cohomology ring and the Pontrjagin class in M ⇔ otherwise, i.e.,

k2 > 0, or k2 = 0 and k1 > `.

5.4. CASE 2 (3) : deg w > 2 and ` = 1. Assume deg w > 2 and ` = 1. In this case, M
must be in M2 or M3 (we will denote w = z). Thus we can put

M = S3 ×S1 S(Ck1
ρ ⊕ R2k2+1)

for ρ ∈ Z, k1 > 0 and k2 ≥ 0, where (k1, k2) 6= (1, 0) and deg z = 2k1 + 2k2. Moreover, by
using Propositions 3.2 and 3.3 and CP (1) ∼= S2, we have that

H∗(M) ' H∗(Sdeg z × S2)
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and

p(M) = 1, w(M) = 1 + k1ρx.

It follows that the Pontrjagin class does not distinguish homeomorphism types of this case.
Recall that Sn−1-bundles over S2 are classified by continuous maps from S2 to Gn = BO(n)

up to homotopy and π2(Gn) ' Z2 for n > 2 (see e.g. [20]). We can easily show that this Z2 is
generated by w2(M). Therefore, if k1 ≡2 1, the homeomorphism type of M is determined by
ρ (mod 2). If k1 ≡2 0, then S3×S1 (Ck1

ρ ⊕R2k2+1) is trivial bundle because its Stiefel-Whitney
class is trivial. Hence, if k1 ≡2 0 then M ∼= Sdeg z × S2.

The above argument implies that homeomorphism types of CASE 2 (3) are determined
as follows: if k1 ≡2 0, then this case is cohomologically rigid; if k1 ≡2 1, then this case is
determined by the cohomology ring and the Stiefel-Whitney class. Moreover, in the case
k1 ≡2 1, we can easy to show that every cohomology graded ring isomorphism preserves
Stiefel-Whitney classes. This implies that the case k1 ≡2 1 is rigid by the cohomology ring
and the Stiefel-Whitney class.

In summary, the following proposition holds.

Proposition 5.5. If the CASE 2 (3) holds, i.e., ` = 1 and 2k1 + 2k2 > 2, then M =
S3 ×S1 S((Ck1

ρ ⊕ R2k2+1) for k1 > 0, k2 ≥ 0 and there are the following two cases:
(1) M is cohomologically rigid in M ⇔ k1 ≡2 0;
(2) M is rigid by the cohomology ring and the Stiefel-Whitney class in M ⇔ k1 ≡2 1.

By using Proposition 5.1, 5.2, 5.4, 5.5, we have Theorem 4.1.
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