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FINITE TYPE INVARIANTS OF ORDER 3
FOR A SPATIAL HANDCUFF GRAPH

TAIZO KANENOBU AND KAORI SUGITA

Abstract. We express a basis for the vector space of finite type invariants of order
less than or equal to three for an embedded handcuff graph in a 3-sphere in terms of
the linking number, the Conway polynomial, and the Jones polynomial of the sublinks
of the handcuff graph.

1. Introduction

Generalizing the finite type invariant, or Vassiliev invariant for a knot or link [1, 4, 29]

Stanford [26, 27] defined a finite type invariant for an embedded graph in a 3-sphere S3.

Then the first author [10] has given a basis for the space of the finite type invariants

for the theta curve of order ≤ 3, and Koike [17] has given a basis for the space of order

4. See also [25]. In this paper, we consider an embedded handcuff graph in S3, which

consists of two vertices P1, P2, and three edges e1, e2, e3, with orientation as shown in

Fig. 1. We give a basis for the space of the finite type invariants for the spatial handcuff

graph of order ≤ 3. Our method is similar to one adopted in [9, 11, 12, 13, 14, 23],

where bases of finite type invariants of knots or links of small dimension are given.

!!

!"!#

"! ""

!"""                             !

Figure 1. The oriented handcuff graph.

The value of an order n finite type invariant of a spatial handcuff graph with n

singular points depends only on the corresponding n-chord diagram (Proposition 4.1),
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and every such value determines the space of finite type invariant of order ≤ n, Vn.

However, by the generalized Reidemeister moves for a spatial handcuff graph (Fig. 2)

some n-chord diagrams share the same value, which cause the relations (FI), (4T),

(VE), (RV) as shown in Fig. 7. Let Dn be the space of all n-chord diagrams, and An the

quotient space of Dn modulo these relations. Then there is a natural monomorphism

Vn/Vn−1 → A∗
n, which sends a finite type invariant of order n to the linear function on

the space on An. The main result of this paper is to give a basis for Vn/Vn−1, n ≤ 3

(Theorems 7.1, 7.2, 8.1). Our method is similar to [10], where we have given a basis

of the space of finite type invariant for a theta curve of order ≤ 3. First, we give a

spanning set for An, n ≤ 3 (Sec. 6), which gives an upper bound for the dimension of

Vn/Vn−1. Next, we give a certain set of finite type invariants whose number is the same

as the obtained upper bound for dimVn/Vn−1; these invariants are derived from the

Conway polynomials or the Jones polynomials of sublinks of a spatial handcuff graph

(Proposition 3.1). Lastly, we show they are linearly independent.

Notice that the above monomorphism Vn/Vn−1 → A∗
n is actually surjective [24]

(Proposition 5.1); for the knot case, such a theorem is known as the Kontsevich theorem

[1, 5, 18, 19, 29]. However, we do not use this fact. Koike [17] and Sugita [28] have

given a basis of An for the theta curve of order ≤ 4 and the spatial handcuff graph of

order ≤ 3, respectively, which eventually gave a basis of Vn/Vn−1.

This paper is organized as follows: In Secs. 2–5, we briefly explain a finite type

invariant for a spatial handcuff graph, including the space of chord diagrams. In Sec. 6,

we give a spanning set for An, n ≤ 3. In Secs. 7 and 8, we give a basis for Vn/Vn−1,

n ≤ 3, which allows us to give a basis of An (Corollary 8.2).

2. Spatial handcuff graph

Two spatial handcuff graphs Φ and Φ′ are equivalent if there is an orientation pre-

serving homeomorphism h of S3 such that h(Φ) = Φ′ and h|Φ : Φ → Φ′ is orientation

preserving. If two spatial handcuff graphs are equivalent, then they are related by a

finite sequence of the five moves (I)–(V) on diagrams as shown in Fig. 2; see [16, 30].

They are called generalized Reidemeister moves for spatial graphs.

3. Finite type invariant

A singular spatial handcuff graph is the image of an oriented handcuff graph under

an immersion into S3 whose only singularities are transverse double points. We assume

that a double point on a singular spatial handcuff graph is a rigid (or flat) vertex.

Let v be an invariant of a spatial handcuff graph in S3, which takes values in the

rational numbers Q. We may extend it to a singular spatial handcuff graph via the
2



(I)

(II)

(III)

(IV)

(V)

Figure 2. Generalized Reidemeister moves for a spatial trivalent graph.

Vassiliev skein relation:

v(Φx) = v(Φx+)− v(Φx−), (3.1)

where Φx is a spatial handcuff graph with x a double point and Φx+ , Φx− are ones

obtained from Φx by replacing x by a positive crossing x+ and a negative crossing x−,

respectively. Then v is a finite type invariant of order ≤ n if v(Φ) = 0 for an arbitrary

singular spatial handcuff graph Φ that has more than n double point. If v is of order

≤ n but not of order ≤ n− 1, then v is called a finite type invariant of order n.

Denote by Vn the vector space consisting of all finite type invariants for a spatial

handcuff graph of order ≤ n. There is a filtration:

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · · (3.2)
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Note that the finite type invariants form an algebra, that is, the product of a finite

type invariant of order m and one of n is a finite type invariant of order m+n; cf. [13,

Sec. 4].

The Conway polynomial∇(L) ∈ Z[z] [7], and the Jones polynomial V (L; t) ∈ Z[t±1/2]

[8] are invariants for an unordered oriented link L, which are defined by the following

formulas:

∇(O) = 1; (3.3)

∇(L+)−∇(L−) = z∇(L0); (3.4)

V (O; t) = 1; (3.5)

t−1V (L+; t)− tV (L−; t) =
(
t1/2 − t−1/2

)
V (L0; t); (3.6)

where O is the unknot and L+, L−, L0 are three links that are identical except near

one point where they are as in Fig. 3. We denote by an(L) the coefficient of zn of the

Conway polynomial ∇(L).

DDD D

CCC

LLL L

L                              L                             L                              L

L+ L− L0

Figure 3. A skein triple.

For a spatial handcuff graph Φ having two loops e1 and e2, we use the following

notations:

• λ(Φ)k denotes the kth power of the linking number of e1 and e2; λ(Φ)k =

lk(e1, e2)
k,

• a2[i](Φ) = a2(ei) (i = 1, 2),

• a3(Φ) = a3(e1 ∪ e2),

• V (3)[i](Φ) denotes the 3rd derivative of the Jones polynomial of ei evaluated at

t = 1 (i = 1, 2); V (3)[i](Φ) = V (3)(ei; 1),

which we also simply denote by λk, a2[i], a3, V (3)[i], respectively. Then they are finite

type invariants for a spatial handcuff graph.

Proposition 3.1.

λ(Φ)k ∈ Vk, (3.7)

a2[i](Φ) ∈ V2, (3.8)

a3(Φ), V (3)[i](Φ) ∈ V3. (3.9)
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In fact, according to Stanford [26], a finite type invariant of a 2-component link

e1 ∪ e2 or a knot ei (i = 1, 2) is a finite type invariant for Φ. Bar-Natan [1] has shown

the coefficient of the Conway polynomial of a link L is a finite type invariant for a link

L. Birman and Lin [4] proved that the Jones polynomial of a knot can be interpreted

as an infinite sequence of finite type knot invariants, and Stanford [27] generalized this

for a link. See also [13, 14].

Remark 3.2. For a 2-component link L, a1(L) = lk(L); see [15, p. 13]. For a knot K,

V (2)(K; 1) = −6a2(K); see [22, 23].

The following is an immediate consequence of Eq. (3.1); cf. [2, (10d)], [27, Sec. 5].

Proposition 3.3. The value of a finite type invariant of each singular spatial handcuff

graph in Fig. 4 is zero; in Fig. 4(a) the squares contain the whole diagram away from

the singular crossing.

(a) (b)

Figure 4

Besides this, a finite type invariant satisfies other important equations.

Proposition 3.4. A finite type invariant satisfies the relations as shown in Fig. 5,

where the equations signify the numerical equality of values of the invariant on these

singular spatial handcuff graphs.

The relation given in Fig. 5(a) is known as the 4-term relation in the case of a

knot. The proof is the same as the knot case; see [4], [6, 1.1.3]. The relations given

in Figs. 5(b) and (c), which are called the vertex relations, are obtained from the

generalized Reidemeister move (V) in Fig. 2.

4. Chord diagram of a singular spatial handcuff graph

Let H be an oriented handcuff graph as in Fig. 1. Consider a singular spatial

handcuff graph with n double points as the mapping Φ : H → S3. Then join all

the pairs of the preimages of every double point of Φ(H) with n dashed arcs. The

resulting configuration C is called the chord diagram of order n, or n-chord diagram,
5



(a)

(b)

(c)

Figure 5

of the singular spatial handcuff graph Φ(H); see [10, Sec. 4] for a theta curve. We

say that Φ(H) respects the chord diagram C. Since a handcuff graph is trivalent,

Proposition 1.1 in [27] implies the following, which generalizes the case of knots; see

Lemma 1 in [2], Proposition 1 in [3]:

Proposition 4.1. Two singular spatial handcuff graphs with n double points become

equivalent after an appropriate series of crossing changes if and only if they respect the

same chord diagram of order n.

In particular, any spatial handcuff graph becomes trivial after an appropriate series

of crossing changes. Thus if v is a finite type invariant of order zero, then v(Φ) = v(U)

for any spatial handcuff graph Φ, where U denotes the unknotted spatial handcuff

graph, that is, U is a planar handcuff graph in S3. Namely, we have:

Proposition 4.2. A finite type invariant of order zero for a spatial handcuff graph is

a constant map.

The singular spatial handcuff graphs as shown in Figs. 4(a), (b) respect the chord

diagrams shown in Figs. 6(a), (b), respectively, where the squares contain the whole

chord diagram away from the chord shown. We call such chord diagrams inadmissible.

A chord diagram is called admissible if it is not inadmissible.
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e1 e2

e3

P1 P2

(a) (b)

Figure 6. Inadmissible chord diagrams.

Let us suppose we have made a list of the distinct admissible chord diagrams of

order j, αj
i ; 1 ≤ i ≤ rj, j = 2, 3, . . . , and chosen, for each αj

i , a singular spatial

handcuff graph M j
i respecting it. By Proposition 4.1, using a resolution tree, we can

calculate the value of a finite type invariant of a singular spatial handcuff graph; cf. [3,

Proposition 2], [4, Proof of Theorem 2.4]:

Proposition 4.3. Let v be a finite type invariant of order ≤ m, and Φn a singular

spatial handcuff graph respecting an admissible chord diagram of order n, αn
p , n ≤ m.

Then

v(Φn) ≡ v(Mn
p ),

where “≡” means equality up to a Z-linear combination of v(M j
i ), 1 ≤ i ≤ rj, n + 1 ≤

j ≤ m. In particular, if m = n, then “≡” is “=”, and so the v-value of a singular

spatial handcuff graph with n double points depends only on its chord diagram.

5. Space of chord diagrams

We denote by D the Q-linear space spanned by chord diagrams for a handcuff graph,

which is naturally graded by the number of chords. We denote by Dn the subspace

of D that is spanned by the chord diagrams of order n. We consider the four kinds

of relations in D and Dn as shown in Fig. 7; (FI) the framing independence relation,

(4T) the 4-term relation, (VE) the vertex-edge relation, and (RV) the relation induced

from the generalized Reidemeister move (V). There is also the relation (3T), which is

implied from the relations (4T) and (FI). We consider the quotient space of Dn modulo

the relations (FI), (4T), (VE), (RV), which we denote by An.

There is a natural map Vn → A∗
n sending every finite type invariant of order n to the

corresponding linear function on An, which induces a monomorphism Vn/Vn−1 → A∗
n.

Moreover, this map is surjective, that is, for a spatial handcuff graph, the “Kontsevich

Theorem” also holds; Jun Murakami and Ohtsuki [24] have shown the following (over

the field of complex numbers C, and for any spatial trivalent graph). However, we do

not use that Vn/Vn−1 → A∗
n is surjective.

Proposition 5.1. The space Vn/Vn−1 is isomorphic to the space A∗
n of linear functions

on chord diagrams of order n modulo the relations (FI), (4T), (VE), (RV).
7



(F1) = 0

= 0
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(4T)

= 0

!""""""""""""""""""""""#""""""""""""""""""""""!

=                                +

+                                =

(VE)

= 0

!""""""""""""""""""""""#""""""""""""""""""""""!

=                                +

+                                =

=  0

=                                                                +

=                                                                +

(RV)

= 0

= 0

!""""""""""""""""""""""#""""""""""""""""""""""!

!""""""""""""""""""""""#""""""""""""""""""""""#

(3T)

= 0

= 0

!""""""""""""""""""""""#""""""""""""""""""""""!

!""""""""""""""""""""""#""""""""""""""""""""""#

Figure 7. Relations for chord diagrams.

For the space An, we give some lemmas, which we will use in Sec. 6. Let α be a chord

diagram of order n. If the number of the endpoints of chords on the edge ei is ki (i = 1,

2, 3), then we call α a chord diagram of type (k1, k2, k3), whence 2n = k1 + k2 + k3.

Lemma 5.2. Let α be an n-chord diagram of type (k1, k2, k3) with k3 > 0. Then α is

a linear combination of the chord diagrams of type (k1 + j, k2 + k3 − j, 0) in An with

0 ≤ j ≤ k3.
8



Proof. Using the relation (VE), α is a linear combination of the chord diagrams of

type (k1 + 1, k2, k3 − 1) (or of type (k1, k2 + 1, k3 − 1). So by induction we obtain the

result. �

Lemma 5.3. Let α be an n-chord diagram of type (k1, k2, k3). If either k1 = 0, k3 > 0

or k2 = 0, k3 > 0, then α = 0 in An.

Proof. Suppose that k1 = 0, k3 > 0. Using the relation (VE), we have:

α = !"""                             !=!"""                             ! −!"""                             !. (5.1)

Since the last two chord diagrams are the same, we have α = 0 in An. �

For an order n chord diagram α of type (2n, 0, 0) (resp. (0, 2n, 0)), we denote by

R1(α) (resp. R2(α)) the chord diagram for a circle obtained from α by deleting the

edges e2 and e3 (resp. e1 and e3).

Lemma 5.4. Let α, α′ ∈ Dn be of type (2n, 0, 0) (resp. (0, 2n, 0)). If R1(α) = R1(α
′)

(resp. R2(α) = R2(α
′)), then α = α′ in An.

Proof. For example, this lemma claims that the following equality holds:

= = (5.2)

Let us prove the first equality of Eq. (5.2). By the relation (VE) we have

= + . (5.3)

Since = 0 by Lemma 5.3, we obtain the result. �

6. Chord diagrams of order ≤3

In this section, we give a spanning set for each of A1, A2, and A3.

There is only one admissible chord diagram of order one α1 as shown in Fig. 8, and

so A1 is spanned by α1.

Figure 8. The admissible chord diagram of order one, α1.

Lemma 6.1. The space A2 is spanned by the chord diagrams β1, β2, β3 as shown in

Fig. 9.
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e1 e2

e3

P1 P2

β1 β2 β3

Figure 9. Spanning set for A2.

Proof. By Lemma 5.2 the chord diagram of type (i, j, k) with k > 0 is a linear combi-

nation of the chord diagrams of type (i′, j′, 0) in A2. So A2 is spanned by the chord

diagrams β1, β2, β3 together with β4 =

e1 e2

e3

P1 P2

. However, by the relations (3T)

and (VE) we have:

β4 = β3 + = β3, (6.1)

completing the proof. �

Lemma 6.2. The space A3 is spanned by the chord diagrams γi, i = 1, . . . , 6, as shown

in Fig. 10.

γ1 γ2 γ3

γ4 γ5 γ6

Figure 10. Spanning set for A3.

The proof of Lemma 6.2 is divided into Sublemmas 6.3–6.8.

Sublemma 6.3. In addition to γ1, there are 3 admissible chord diagrams of type

(6, 0, 0), γ11, γ12, γ13 as shown in Fig. 11, which satisfy in A3:

γ11 = γ12 = γ13; (6.2)

γ1 = 2γ13. (6.3)

10



γ11 γ12 γ13

Figure 11. Admissible chord diagrams of type (6, 0, 0).

Proof. Eq. (6.2) follows from Lemma 5.2. Using the relation (T3), we have

γ1 = γ11 + γ12 = 2γ13, (6.4)

completing the proof. �

Similarly, we have:

Sublemma 6.4. In addition to γ2, there are 3 admissible chord diagrams of type

(0, 6, 0), γ21, γ22, γ23 as shown in Fig. 12, which satisfy in A3:

γ21 = γ22 = γ23; (6.5)

γ2 = 2γ23. (6.6)

γ21 γ22 γ23

Figure 12. Admissible chord diagrams of type (0, 6, 0).

Sublemma 6.5. In addition to γ5, there are 7 admissible chord diagrams of type

(4, 2, 0) or type (2, 4, 0), γ5i, i = 1, . . . , 7, as shown in Fig. 13, which satisfy in A3:

γ5i = γ5 (i = 1, . . . , 7). (6.7)

Proof. Using the relations (VE) and (RV), we hav e

γ5 =gamma5= +gamma5= = γ53. (6.8)

Similarly, we can prove γ5 = γ51 = γ52. Next, using the relation (T3), we have

γ5 = γ54. Similarly, we can prove γ51 = γ57, γ52 = γ56, and γ53 = γ55. This completes

the proof. �
11



gamma5=

γ5 γ51 γ52 γ53

γ54 γ55 γ56 γ57

Figure 13. Admissible chord diagrams of type (4, 2, 0) or (2, 4, 0) .

Sublemma 6.6. In addition to γ3, there are 4 admissible chord diagrams of type

(5, 1, 0), γ3i, i = 1, . . . , 4, as shown in Fig. 14, which satisfy in A3:

γ3i = γ3 (i = 1, . . . , 4). (6.9)

γ31 γ32 γ33 γ34

Figure 14. Admissible chord diagrams of type (5, 1, 0).

Proof. Using the relation (4T), we have

γ5 − γ51

=

gamma5=

gamma53= −

gamma5=

gamma53= =

gamma5=

gamma53= −

gamma5=

gamma53=

= γ31 − γ32 = γ34 − γ3. (6.10)

Since γ5 = γ51 by Sublemma 6.5, we obtain γ31 = γ32, γ34 = γ3. Similarly, we obtain

γ33 = γ34, γ32 = γ3. This completes the proof. �

Similarly way, we have:

Sublemma 6.7. In addition to γ4, there are 4 admissible chord diagrams of type

(1, 5, 0), γ4i, i = 1, . . . , 4, as shown in Fig. 15, which satisfy in A3:

γ4i = γ4 (i = 1, . . . , 4). (6.11)

12



γ41 γ42 γ43 γ44

Figure 15. Admissible chord diagrams of type (1, 5, 0).

Sublemma 6.8. In addition to γ6, there are 5 admissible chord diagrams of type

(3, 3, 0), γ6i, i = 1, . . . , 6, as shown in Fig. 16, which satisfy in A3:

γ61 = γ62 = γ6; (6.12)

γ63 = γ64 = γ65 = γ5 + γ6. (6.13)

γ61 γ62 γ63

γ64 γ65

Figure 16. Admissible chord diagrams of type (3, 3, 0).

Proof. By the relation (VE) and (RV), we have

γ61 = + = γ6. (6.14)

Similarly, we have γ62 = γ6, obtaining Eq. (6.12).

Next, by the relation (3T), we have

γ63 = γ61 + = γ61 + γ53 = γ6 + γ5, (6.15)

where we use Sublemmas 6.5 and 6.8. Similarly, we obtain γ64 = γ65 = γ6 + γ5. This

completes the proof. �
13



Proof of Lemma 6.2. By Lemma 5.2, A3 is spanned by the chord diagrams of type

(k, 6− k, 0) with k = 0, 1, . . . , 6. Then by Sublemmas 6.3–6.8 the result follows. �

7. Finite type invariants of order ≤2

First, we give a table of spatial handcuff graphs in Fig. 17 (cf. [20, 21]), and their

invariants in Table 1, where T1!, T2! are mirror images of T1, T2, respectively. We will

use them in Secs. 7 and 8.

H+ H− T1 T2

42
1 52

1 TH1 TH2

Figure 17. Spatial handcuff graphs.

Let M1, M2
i (i = 1, 2, 3) be the singular spatial handcuff graphs as shown in Fig. 18

respecting the order one or two chord diagrams α1, βi, respectively.

M1 M2
1 M2

2 M2
3

Figure 18. Singular handcuff graphs of order 1 or 2.

14



Table 1

Handcuff graphs U H+ H− T1 T2 T1! T2! 42
1 52

1 TH1 TH2

λ 0 1 −1 0 0 0 0 2 0 1 1

a2[1] 0 0 0 1 0 1 0 0 0 1 0

a2[2] 0 0 0 0 1 0 1 0 0 0 1

λ2 0 1 1 0 0 0 0 4 0 1 1

V (3)[1]/18 0 0 0 −1 0 3 0 0 0 −1 0

V (3)[2]/18 0 0 0 0 −1 0 3 0 0 0 −1

λ3 0 1 −1 0 0 0 0 8 0 1 1

a3 0 0 0 0 0 0 0 0 −1 1 1

λa2[1] 0 0 0 0 0 0 0 0 0 1 0

λa2[2] 0 0 0 0 0 0 0 0 0 0 1

Using the Vassiliev skein relation (3.1), we have:[
v(M1) v(M2

1 ) v(M2
2 ) v(M2

3 )
]

=
[
v(U) v(H+) v(H−) v(T1) v(T2)

]


−1 −1 −1 −2

1 0 0 1

0 0 0 1

0 1 0 0

0 0 1 0


, (7.1)

where H+, H−, T1, T2 are spatial handcuff graphs as shown in Fig. 17.

Theorem 7.1. (i) Let v be a finite type invariant of order ≤ 1 for a spatial handcuff

graph. Then

v(Φ) = A + Bλ(Φ), (7.2)

where A = v(U) and B = v(M1).

(ii) The space V1/V0 has a basis {λ}.
15



Proof. Since there is only one admissible chord diagram of order one, α1 (Fig 8), by

Proposition 4.3, we have

v(Φ) = v(U) + pv(M1) (7.3)

for some integer p. Then by Eq. (7.1), we have

v(Φ) = (1− p)v(U) + pv(H+), (7.4)

and so we have

λ(Φ) = (1− p)λ(U) + pλ(H+) = p. (7.5)

This completes the proof. �

Theorem 7.2. (i) Let v be a finite type invariant of order ≤ 2 for a spatial handcuff

graph. Then

v(Φ) = A + Bλ(Φ) +
∑
i=1,2

Cia2[i](Φ) + C3λ(Φ)2, (7.6)

where

A = v(U), B = v(M1)− 1

2
v(M2

2 ), Ci = v(M2
i ) (i = 1, 2), C3 =

1

2
v(M2

3 ),

(ii) The space V2/V1 has a basis {a2[1], a2[2], λ2}.

Proof. From Proposition 4.3 and Lemma 6.1, we have

v(Φ) = v(U) +
[
v(M1) v(M2

1 ) v(M2
2 ) v(M2

3 )
]


p

q1

q2

q3


(7.7)

for some integers p, qi. Then
λ(Φ)

a2[1](Φ)

a2[2](Φ)

λ(Φ)2


=


1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 2




p

q1

q2

q3


, (7.8)
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and so we have

v(Φ) = v(U) +
[
v(M1) v(M2

1 ) v(M2
2 ) v(M2

3 )
]


1 0 0 0

0 1 0 0

0 0 1 0

−1
2

0 0 1
2




λ(Φ)

a2[1](Φ)

a2[2](Φ)

λ(Φ)2


,

(7.9)

obtaining (i). Since Eq. (7.8) assures that a2[1], a2[2], λ2 are linearly independent in

V2/V1, we obtain (ii). �

8. Finite type invariants of order ≤ 3

Let M3
i (i = 1, . . . , 6) be the singular spatial handcuff graph as shown in Fig. 19

respecting the chord diagram γi of order 3.

M3
1 M3

2 M3
3

M3
4 M3

5 M3
6

Figure 19. Singular handcuff graphs of order 3.

Using the Vassiliev skein relation (3.1), we have:[
v(M3

1 ) v(M3
2 ) v(M3

3 ) v(M3
4 ) v(M3

5 ) v(M3
6 )

]
= hZ, (8.1)
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where

h =



v(U)

v(H+)

v(H−)

v(T1)

v(T2)

v(T1!)

v(T2!)

v(42
1)

v(52
1)

v(TH1)

v(TH2)



T

, Z =



0 0 1 1 1 3

0 0 −1 −1 0 −3

0 0 0 0 0 −1

1 0 −1 0 0 0

0 1 0 −1 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 1 0 0 0

0 0 0 1 0 0



(8.2)

with H+, H−, T1, T2, 42
1, 52

1, TH1, TH2 are spatial handcuff graphs as shown in Fig. 17.

Here XT means the transpose of X.

Theorem 8.1. (i) Let v be a finite type invariant of order ≤ 3 for a spatial handcuff

graph. Then

v(Φ) = A + Bλ(Φ) +
∑
i=1,2

Cia2[i](Φ) + C3λ(Φ)2

+
∑
i=1,2

DiV
(3)[i](Φ)/18 + D3λ(Φ)3 + D4a3(Φ) +

∑
i=5,6

Diλ(Φ)a2[i− 4](Φ), (8.3)
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where

A = v(U); (8.4)

B = v(M1)− 1

2
v(M2

2 )− 1

6
v(M3

6 ); (8.5)

Ci = v(M2
i )− 1

4
v(M3

1 ) (i = 1, 2); (8.6)

C3 =
1

2
v(M2

3 ); (8.7)

Di = −1

4
v(M3

1 ) (i = 1, 2); (8.8)

D3 = −1

6
v(M3

6 ); (8.9)

D4 = v(M3
5 ); (8.10)

Di = −1

4
v(M3

i−2)− v(M3
5 ) (i = 5, 6); (8.11)

(ii) The space V3/V2 has a basis {V (3)[1], V (3)[2], λ3, a3, λa2[1], λa2[2] }.

Proof. From Proposition 4.3 and Lemmas 6.1 and 6.2, we have

v(Φ) = v(U) + mx, (8.12)

where

m =
[
v(M1), v(M2

1 ), v(M2
2 ), v(M2

3 ), v(M3
1 ), · · · , v(M3

6 )
]

(8.13)

x =
[
p, q1, q2, q3, r1, · · · , r6

]T

(8.14)

with p, qi, rj rational numbers; notice Eqs. (6.3) and (6.6). Then using Table 1 and

Eq. (8.2), we have:

I = Y x, (8.15)
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where

I =



λ(Φ)

a2[1](Φ)

a2[2](Φ)

λ(Φ)2

V (3)[1](Φ)/18

V (3)[2](Φ)/18

λ(Φ)3

a3(Φ)

λa2[1](Φ)

λa2[2](Φ)



, Y =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 2 0 0 0 0 0 0

0 −1 0 0 −4 0 0 0 0 0

0 0 −1 0 0 −4 0 0 0 0

1 0 0 0 0 0 0 0 0 6

0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0



,

(8.16)

and so we have

v(Φ) = v(U) + mY −1I, (8.17)

with

Y −1 =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

−1/2 0 0 1/2 0 0 0 0 0 0

0 −1/4 0 0 −1/4 0 0 0 0 0

0 0 −1/4 0 0 −1/4 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 −1 −1

−1/6 0 0 0 0 0 −1/6 0 0 0



,

(8.18)

obtaining (i). Since Eqs. (8.15) and (8.16) assure that V (3)[1], V (3)[2], λ3, a3, λa2[1],

λa2[2] are linearly independent in V3/V2, we obtain (ii). �
20



Theorems 7.1, 7.2, 8.1 imply the following, which is the main theorem of [28]:

Corollary 8.2. The spaces A1, A2,A3 have the bases as follows:

A1 = 〈α1 〉; (8.19)

A2 = 〈 β1, β2, β3 〉; (8.20)

A3 = 〈 γ1, . . . , γ6 〉. (8.21)
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