ON THE GROWTH OF HYPERBOLIC 3-DIMENSIONAL GENERALIZED SIMPLEX REFLECTION GROUPS

YOHEI KOMORI AND YURIKO UMEMOTO

Citation	OCAMI Preprint Series
Issue Date	2011
Type	Preprint
Textversion	Author
Relation	The following article has been submitted to Proceedings of the Japan Academy, Series A, Mathematical Sciences. This is not the published version. Please cite only the published version. The article has been published in final form at https://doi.org/10.3792/pjaa.88.62 .
Is version of	https://doi.org/10.3792/pjaa.88.62 .

From: Osaka City University Advanced Mathematical Institute
http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html

ON THE GROWTH OF HYPERBOLIC 3-DIMENSIONAL GENERALIZED SIMPLEX REFLECTION GROUPS

YOHEI KOMORI AND YURIKO UMEMOTO

Abstract

We prove that the growth rates of three-dimensional generalized simplex reflection groups, i.e. three-dimensional non-compact hyperbolic Coxeter groups with four generators are always Perron numbers.

1. Introduction

A convex polyhedron P of finite volume in the n-dimensional hyperbolic space \mathbb{H}^{n} is called a Coxeter polyhedron if its dihedral angles are submultiples of π. Any Coxeter polyhedron is a fundamental domain of the discrete group Γ generated by the set S consisting of the reflections with respects to its facets. We call (Γ, S) an n-dimensional hyperbolic Coxeter group. In particular when P is a (generalized) simplex of $\mathbb{H}^{n},(\Gamma, S)$ is also called a (generalized) simplex reflection group ([8]). In this situation we can define the word length $\ell_{S}(x)$ of $x \in \Gamma$ with respect to S by the smallest integer $n \geq 0$ for which there exist $s_{1}, s_{2}, \cdots, s_{n} \in S$ such that $x=s_{1} s_{2} \cdots s_{n}$. The growth function $f_{S}(t)$ of (Γ, S) is the formal power series $\sum_{k=0}^{\infty} a_{k} t^{k}$ where a_{k} is the number of elements $g \in \Gamma$ satisfying $\ell_{S}(g)=k$. It is known that the growth rate of $(\Gamma, S), \omega:=\lim \sup _{k \rightarrow \infty} \sqrt[k]{a_{k}}$ is bigger than 1 ([3]) and less than or equal to the cardinality $|S|$ of S. By means of CauchyHadamard formula, the radius of convergence R of $f_{S}(t)$ is the reciprocal of ω, i.e. $1 /|S| \leq R<1$. In practice the growth function $f_{S}(t)$ which is analytic on $|t|<R$ extends to a rational function $P(t) / Q(t)$ on \mathbb{C} by analytic continuation where $P(t), Q(t) \in \mathbb{Z}[t]$ are relatively prime. There are formulas due to Solomon and Steinberg to calculate the rational function $P(t) / Q(t)$ from the Coxeter diagram of $(\Gamma, S)([10,11]$. See also [4]).

Theorem 1. (Solomon's formula)
The growth function $f_{S}(t)$ of an irreducible spherical Coxeter group (Γ, S) can be written as $f_{S}(t)=\prod_{i=1}^{k}\left[m_{i}+1\right]$ where $[n]:=1+t+\cdots+t^{n-1}$ and $\left\{m_{1}, m_{2}, \cdots, m_{k}\right\}$ is the set of exponents of (Γ, S).

Theorem 2. (Steinberg's formula)
Let (Γ, S) be a hyperbolic Coxeter group. Let us denote the Coxeter subgroup

2010 Mathematics Subject Classification. Primary 20F55, Secondary 20F65.
Key words and phrases. growth function; Coxeter group; Perron number.
of (Γ, S) generated by the subset $T \subseteq S$ by $\left(\Gamma_{T}, T\right)$, and denote its growth function by $f_{T}(t)$. Set $\mathcal{F}=\left\{T \subseteq S: \Gamma_{T}\right.$ is finite $\}$. Then

$$
\frac{1}{f_{S}\left(t^{-1}\right)}=\sum_{T \in \mathcal{F}} \frac{(-1)^{|T|}}{f_{T}(t)}
$$

In this case, $t=R$ is a pole of $f_{S}(t)$. Hence R is a real zero of the denominator $Q(t)$ closest to the origin $0 \in \mathbb{C}$ of all zeros of $Q(t)$. Solomon's formula implies that $P(0)=1$. Hence $a_{0}=1$ means that $Q(0)=1$. Therefore $\omega>1$, the reciprocal of R, becomes a real algebraic integer whose conjugates have moduli less than or equal to the modulus of ω. If $t=R$ is the unique zero of $Q(t)$ with the smallest modulus, then $\omega>1$ is a real algebraic integer whose conjugates have moduli less than the modulus of ω : such a real algebraic integer is called a Perron number.

For two and three-dimensional cocompact hyperbolic Coxeter groups, Cannon-Wagreich and Parry showed that the growth rates are Salem numbers ($[1,7]$), where a real algebraic integer $\tau>1$ is called a Salem number if τ^{-1} is an algebraic conjugate of τ and all algebraic conjugates of τ other than τ and τ^{-1} lie on the unit circle. From the definition, a Salem number is a Perron number.

Kellerhals and Perren calculated the growth functions of all four-dimensional cocompact hyperbolic Coxeter groups with at most 6 generators and showed that ω are not Salem numbers while they checked that ω are Perron numbers numerically. ([6]).

In the non-compact case, Floyd proved that the growth rates of twodimensional non-compact hyperbolic Coxeter groups are Pisot-Vijayaraghavan numbers, where a real algebraic integer $\tau>1$ is called a Pisot-Vijayaraghavan number if algebraic conjugates of τ other than τ lie in the unit disk ([2]). A Pisot-Vijayaraghavan number is also a Perron number by definition.

From these results for low-dimensional cases, Kellerhals and Perren conjectured that the growth rates of hyperbolic Coxeter groups are always Perron numbers. In the present paper, we go to the next stage: threedimensional non-compact hyperbolic Coxeter groups of finite covolume. We will show that the growth rate of a three-dimensional generalized simplex reflection group is a Perron number.

2. Denominators of growth functions

There are exactly 23 three-dimensional generalized simplex reflection groups ($[5,8]$). By means of Steinberg's formula we can calculate growth functions of them.

Proposition 1. The denominator polynomials $Q(t)$ of the growth functions $f_{S}(t)=P(t) / Q(t)$ of the 23 three-dimensional generalized simplex reflection groups (Γ, S) are as follows:

- $(t-1)\left(3 t^{2}+t-1\right)$
- $(t-1)\left(3 t^{3}+t^{2}+t-1\right)$

ON THE GROWTH OF HYPERBOLIC 3-DIMENSIONAL GENERALIZED SIMPLEX REFLECTION GROUPS

```
- \((t-1)\left(2 t^{4}+3 t^{3}+t^{2}-1\right)\)
- \((t-1)\left(t^{5}+t^{4}+t-1\right)\)
- \((t-1)\left(2 t^{5}+t^{4}+t^{2}+t-1\right)\)
- \((t-1)\left(3 t^{5}+t^{4}+t^{3}+t^{2}+t-1\right)\)
- \((t-1)\left(t^{7}+t^{6}+t^{5}+t^{4}+t^{3}-1\right)\)
- \((t-1)\left(t^{7}+t^{6}+t^{5}+t^{4}-1\right)\)
- \((t-1)\left(t^{7}+t^{6}+2 t^{5}+2 t^{4}+t^{3}+t^{2}-1\right)\)
- \((t-1)\left(t^{7}+t^{6}+2 t^{5}+t^{4}+t^{3}+t-1\right)\)
- \((t-1)\left(t^{8}+2 t^{7}+2 t^{6}+3 t^{5}+t^{4}+t^{3}-1\right)\)
- \((t-1)\left(t^{9}+t^{7}+t^{6}+t^{4}+t^{2}+t-1\right)\)
- \((t-1)\left(t^{13}+t^{12}+2 t^{11}+2 t^{10}+2 t^{9}+2 t^{8}+2 t^{7}+2 t^{6}+2 t^{5}+t^{4}+t^{3}-1\right)\)
- \((t-1)\left(t^{2}+t+1\right)\left(t^{2}+t-1\right)\)
- \((t-1)\left(t^{4}+t^{3}+t^{2}+t+1\right)\left(t^{2}+t-1\right)\)
- \((t-1)\left(t^{3}+t-1\right)\)
- \((t-1)\left(t^{4}+t^{3}+t^{2}+t+1\right)\left(t^{3}+t-1\right)\)
- \((t-1)\left(t^{4}+t^{3}+t^{2}+t-1\right)\)
- \((t-1)\left(t^{4}+t^{3}+t^{2}+t+1\right)\left(t^{4}+t^{3}+t^{2}+t-1\right)\)
- \((t-1)\left(t^{5}+t^{4}+t^{2}-1\right)\)
- \((t-1)\left(t^{5}+t^{3}+t-1\right)\)
- \((t-1)\left(t^{6}+t^{5}+t^{4}+t^{3}+t^{2}+t-1\right)\)
- \((t-1)\left(t^{10}+t^{9}+t^{8}+t^{7}+t^{6}+t^{5}+t^{4}+t^{3}+t^{2}+t-1\right)\)
```

We remark that the factor $(t-1)$ appears in every denominator of $f_{S}(t)$ because of the fact that $1 / f_{S}(1)=\chi(\Gamma)=0$ in the odd-dimensional case due to a result of Serre ([9]).

3. Main Result

Theorem 3. The growth rate of a three-dimensional generalized simplex reflection group is a Perron number.

In Table 1 below, we show the distributions of poles of $f_{S}(t)$ for a particular case of three-dimensional generalized simplex reflection groups.

By Proposition 1, the following lemma is sufficient to prove the theorem.
Lemma 1. Consider the polynomial of degree $n \geq 2$

$$
g(t)=\sum_{k=1}^{n} a_{k} t^{k}-1
$$

where a_{k} is a non-negative integer. We also assume that the greatest common divisor of $\left\{k \in \mathbb{N} \mid a_{k} \neq 0\right\}$ is 1 . Then there is a real number $r_{0}, 0<r_{0}<1$ which is the unique zero of $g(t)$ having the smallest absolute value of all zeros of $g(t)$.

Proof. Let us put $h(t)=\sum_{k=1}^{n} a_{k} t^{k}$. Note that $g(t)=0$ if and only if $h(t)=1$.
(Step1) Observe $h(0)=0, h(1)>1$, and $h(t)$ is strictly monotone increasing where t is in the open interval $(0,1)$. From the intermediate value theorem, there exists the unique real number r_{0} in $(0,1)$ such that $h\left(r_{0}\right)=1$.
(Step2) Suppose there exists a complex number z whose absolute value is less than r_{0} and satisfying the condition $h(z)=1$. Denote $z=r e^{i \theta}$ where $0<r<r_{0}$ and $0 \leqslant \theta<2 \pi$. Then
$1=|h(z)|=\left|\sum_{k=1}^{n} a_{k}\left(r e^{i \theta}\right)^{k}\right| \leq \sum_{k=1}^{n}\left|\left(a_{k} r^{k}\right) e^{i k \theta}\right|=\sum_{k=1}^{n} a_{k} r^{k}=h(r)<h\left(r_{0}\right)=1$, which is a contradiction. Hence r_{0} has the smallest absolute value of all zeros of $g(t)$.
(Step3) Consider a complex number z whose absolute value is equal to r_{0}. Set $z=r_{0} e^{i \theta}$ and $0 \leqslant \theta<2 \pi$. Then $1=\sum_{k=1}^{n} a_{k} r_{0}^{k} e^{i k \theta}$ implies

$$
1=\sum_{k=1}^{n} a_{k} r_{0}^{k} \cos k \theta \leq \sum_{k=1}^{n} a_{k} r_{0}^{k}=1
$$

Hence $\cos k \theta=1$ for any $k \in \mathbb{N}$ with $a_{k} \neq 0$. The assumption that the greatest common divisor of $\left\{k \in \mathbb{N} \mid a_{k} \neq 0\right\}$ is 1 means that $\theta=0$. Therefore $z=r_{0}$, and we conclude that r_{0} is the unique zero of $g(t)$ having the smallest absolute value of all zeros of $g(t)$.

Coxeter diagram	$\frac{(t+1)^{3}\left(t^{2}+1\right)\left(t^{2}-t+1\right)\left(t^{2}+t+1\right)}{(t-1)\left(t^{8}+2 t^{7}+2 t^{6}+3 t^{5}+t^{4}+t^{3}-1\right)}$
$f_{S}(t)$	
poles of $f_{S}(t)$	

Table 1.

4. Remark

By Proposition 1, the next lemma shows that some growth rates of threedimensional generalized simplex reflection groups are not only Perron numbers but also Pisot-Vijayaraghavan numbers (see Table 2 below).

Coxeter diagram	$\frac{(t+1)^{3}\left(t^{2}+1\right)\left(t^{2}-t+1\right)}{(t-1)\left(t^{6}+t^{5}+t^{4}+t^{3}+t^{2}+t-1\right)}$
$f_{S}(t)$	
poles of $f_{S}(t)$	

Table 2.
Lemma 2. For $n \geq 2$, the polynomial $g(t)=\sum_{k=1}^{n} t^{k}-1$ has the unique zero in the unit disk $\{t \in \mathbb{C}||t|<1\}$ and does not have zeros on the unit circle $|t|=1$.

Proof. Define $h_{1}(t)=t^{n+1}, h_{2}(t)=-2 t+1$, and

$$
h(t)=h_{1}(t)+h_{2}(t)=t^{n+1}-2 t+1=(t-1) g(t) .
$$

Then for any $1 / 2<r<1$ sufficiently close to $1, h(r)<0$. Any complex number t on the circle $\{t \in \mathbb{C}||t|=r\}$ satisfies

$$
\left|h_{1}(t)\right|=\left|t^{n+1}\right|=r^{n+1}<2 r-1 \leq|2 t-1|=\left|h_{2}(t)\right| .
$$

Because $h_{2}(t)$ has the unique zero $t=1 / 2$ in the disk $|t|<r$, it follows from Rouchés theorem that $h(t)$ also has the unique zero in the disk $|t|<r$. Since this holds for any $r<1$ sufficiently close to 1 , it means that $h(t)$, hence $g(t)$ has the unique zero in the unit disk $|t|<1$. Finally we show that $g(t)$ does not have zeros on the unit circle $|t|=1$. Suppose there exists $\theta \in \mathbb{R}$ such that $g\left(e^{i \theta}\right)=0$. Then $h\left(e^{i \theta}\right)=0$ implies that $1=\left|e^{i(n+1) \theta}\right|=\left|2 e^{i \theta}-1\right|$. Hence $e^{i \theta}=1$, which contradicts to $g(1) \neq 0$. Therefore $g(t)$ has the unique zero in the unit disk $\{t \in \mathbb{C}||t|<1\}$ and does not have zeros on the unit circle $|t|=1$.

5. ACKNOWLEDGEMENT

The first author was partially supported by Grant-in-Aid for Scientific Research(C) (19540194), Ministry of Education, Science and Culture of Japan. The second author was partially supported by the JSPS Institutional Program for Young Researcher Overseas Visits " Promoting international young researchers in mathematics and mathematical sciences led by OCAMI ". They thank the referee for her (or his) helpful comments.

References

[1] J. W. Cannon, P. Wagreich, Growth functions of surface groups, Math. Ann. 293 (1992), 239-257.
[2] W. Floyd, Growth of planar Coxeter groups, P.V. numbers, and Salem numbers, Math. Ann. 293 (1992), 475-43.
[3] P. de la Harpe, Groupes de Coxeter infinis non affines, Exposition. Math 5 (1987), 91-96.
[4] G. J. Heckman, The volume of hyperbolic Coxeter polytopes of even dimension, Indag. Math. (N.S.) 6 (1995), 189-196.
[5] J. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 1990.
[6] R. Kellerhals, G. Perren, On the growth of cocompact hyperbolic Coxeter groups, European J. Combin. 32 (2011), 1299-1316.
[7] W. Parry, Growth series of Coxeter groups and Salem numbers, J. Algebra 154 (1993), 406-415.
[8] J. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, 1994.
[9] J.-P. Serre, Cohomologie des groupes discrets, Prospects Math., Ann. Math. Stud. 70, 77-169, 1971.
[10] L. Solomon, The orders of the finite Chevalley groups, J. Algebra 3(1966), 376-393.
[11] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80(1968).

Osaka City University Advanced Mathematical Institute and Department of Mathematics, Osaka City University, 558-8585, Osaka, Japan

E-mail address: komori@sci.osaka-cu.ac.jp
Department of Mathematics, Osaka City University, 558-8585, Osaka, Japan E-mail address: yuriko.ummt.77@gmail.com

