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ON THE GROWTH OF HYPERBOLIC 3-DIMENSIONAL
GENERALIZED SIMPLEX REFLECTION GROUPS

YOHEI KOMORI AND YURIKO UMEMOTO

Abstract. We prove that the growth rates of three-dimensional gen-
eralized simplex reflection groups, i.e. three-dimensional non-compact
hyperbolic Coxeter groups with four generators are always Perron num-
bers.

1. Introduction

A convex polyhedron P of finite volume in the n-dimensional hyperbolic
space Hn is called a Coxeter polyhedron if its dihedral angles are submultiples
of π. Any Coxeter polyhedron is a fundamental domain of the discrete
group Γ generated by the set S consisting of the reflections with respects
to its facets. We call (Γ, S) an n-dimensional hyperbolic Coxeter group. In
particular when P is a (generalized) simplex of Hn, (Γ, S) is also called a
(generalized) simplex reflection group ([8]). In this situation we can define
the word length ℓS(x) of x ∈ Γ with respect to S by the smallest integer
n ≥ 0 for which there exist s1, s2, · · · , sn ∈ S such that x = s1s2 · · · sn.
The growth function fS(t) of (Γ, S) is the formal power series

∑∞
k=0 akt

k

where ak is the number of elements g ∈ Γ satisfying ℓS(g) = k. It is known
that the growth rate of (Γ, S), ω := lim supk→∞ k

√
ak is bigger than 1 ([3])

and less than or equal to the cardinality |S| of S. By means of Cauchy-
Hadamard formula, the radius of convergence R of fS(t) is the reciprocal
of ω, i.e. 1/|S| ≤ R < 1. In practice the growth function fS(t) which is
analytic on |t| < R extends to a rational function P (t)/Q(t) on C by analytic
continuation where P (t), Q(t) ∈ Z[t] are relatively prime. There are formulas
due to Solomon and Steinberg to calculate the rational function P (t)/Q(t)
from the Coxeter diagram of (Γ, S) ([10, 11]. See also [4]).

Theorem 1. (Solomon’s formula)
The growth function fS(t) of an irreducible spherical Coxeter group (Γ, S)
can be written as fS(t) =

∏k
i=1[mi + 1] where [n] := 1 + t + · · · + tn−1 and

{m1,m2, · · · ,mk} is the set of exponents of (Γ, S).

Theorem 2. (Steinberg’s formula)
Let (Γ, S) be a hyperbolic Coxeter group. Let us denote the Coxeter subgroup
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of (Γ, S) generated by the subset T ⊆ S by (ΓT , T ), and denote its growth
function by fT (t). Set F = {T ⊆ S : ΓT is finite }. Then

1
fS(t−1)

=
∑
T∈F

(−1)|T |

fT (t)
.

In this case, t = R is a pole of fS(t). Hence R is a real zero of the denomi-
nator Q(t) closest to the origin 0 ∈ C of all zeros of Q(t). Solomon’s formula
implies that P (0) = 1. Hence a0 = 1 means that Q(0) = 1. Therefore ω > 1,
the reciprocal of R, becomes a real algebraic integer whose conjugates have
moduli less than or equal to the modulus of ω. If t = R is the unique zero of
Q(t) with the smallest modulus, then ω > 1 is a real algebraic integer whose
conjugates have moduli less than the modulus of ω: such a real algebraic
integer is called a Perron number.

For two and three-dimensional cocompact hyperbolic Coxeter groups,
Cannon-Wagreich and Parry showed that the growth rates are Salem num-
bers ([1, 7]), where a real algebraic integer τ > 1 is called a Salem number
if τ−1 is an algebraic conjugate of τ and all algebraic conjugates of τ other
than τ and τ−1 lie on the unit circle. From the definition, a Salem number
is a Perron number.

Kellerhals and Perren calculated the growth functions of all four-dimensional
cocompact hyperbolic Coxeter groups with at most 6 generators and showed
that ω are not Salem numbers while they checked that ω are Perron numbers
numerically. ([6]).

In the non-compact case, Floyd proved that the growth rates of two-
dimensional non-compact hyperbolic Coxeter groups are Pisot-Vijayaraghavan
numbers, where a real algebraic integer τ > 1 is called a Pisot-Vijayaraghavan
number if algebraic conjugates of τ other than τ lie in the unit disk ([2]). A
Pisot-Vijayaraghavan number is also a Perron number by definition.

From these results for low-dimensional cases, Kellerhals and Perren con-
jectured that the growth rates of hyperbolic Coxeter groups are always
Perron numbers. In the present paper, we go to the next stage: three-
dimensional non-compact hyperbolic Coxeter groups of finite covolume. We
will show that the growth rate of a three-dimensional generalized simplex
reflection group is a Perron number.

2. Denominators of growth functions

There are exactly 23 three-dimensional generalized simplex reflection groups
([5, 8]). By means of Steinberg’s formula we can calculate growth functions
of them.

Proposition 1. The denominator polynomials Q(t) of the growth functions
fS(t) = P (t)/Q(t) of the 23 three-dimensional generalized simplex reflection
groups (Γ, S) are as follows:

• (t − 1)(3t2 + t − 1)
• (t − 1)(3t3 + t2 + t − 1)
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• (t − 1)(2t4 + 3t3 + t2 − 1)
• (t − 1)(t5 + t4 + t − 1)
• (t − 1)(2t5 + t4 + t2 + t − 1)
• (t − 1)(3t5 + t4 + t3 + t2 + t − 1)
• (t − 1)(t7 + t6 + t5 + t4 + t3 − 1)
• (t − 1)(t7 + t6 + t5 + t4 − 1)
• (t − 1)(t7 + t6 + 2t5 + 2t4 + t3 + t2 − 1)
• (t − 1)(t7 + t6 + 2t5 + t4 + t3 + t − 1)
• (t − 1)(t8 + 2t7 + 2t6 + 3t5 + t4 + t3 − 1)
• (t − 1)(t9 + t7 + t6 + t4 + t2 + t − 1)
• (t−1)(t13 + t12 +2t11 +2t10 +2t9 +2t8 +2t7 +2t6 +2t5 + t4 + t3 −1)
• (t − 1)(t2 + t + 1)(t2 + t − 1)
• (t − 1)(t4 + t3 + t2 + t + 1)(t2 + t − 1)
• (t − 1)(t3 + t − 1)
• (t − 1)(t4 + t3 + t2 + t + 1)(t3 + t − 1)
• (t − 1)(t4 + t3 + t2 + t − 1)
• (t − 1)(t4 + t3 + t2 + t + 1)(t4 + t3 + t2 + t − 1)
• (t − 1)(t5 + t4 + t2 − 1)
• (t − 1)(t5 + t3 + t − 1)
• (t − 1)(t6 + t5 + t4 + t3 + t2 + t − 1)
• (t − 1)(t10 + t9 + t8 + t7 + t6 + t5 + t4 + t3 + t2 + t − 1)

We remark that the factor (t − 1) appears in every denominator of fS(t)
because of the fact that 1/fS(1) = χ(Γ) = 0 in the odd-dimensional case
due to a result of Serre ([9]).

3. Main result

Theorem 3. The growth rate of a three-dimensional generalized simplex
reflection group is a Perron number.

In Table 1 below, we show the distributions of poles of fS(t) for a partic-
ular case of three-dimensional generalized simplex reflection groups.

By Proposition 1, the following lemma is sufficient to prove the theorem.

Lemma 1. Consider the polynomial of degree n ≥ 2

g(t) =
n∑

k=1

akt
k − 1,

where ak is a non-negative integer. We also assume that the greatest common
divisor of {k ∈ N | ak ̸= 0} is 1. Then there is a real number r0, 0 < r0 < 1
which is the unique zero of g(t) having the smallest absolute value of all zeros
of g(t).

Proof. Let us put h(t) =
∑n

k=1 akt
k. Note that g(t) = 0 if and only if

h(t) = 1.
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(Step1) Observe h(0) = 0, h(1) > 1, and h(t) is strictly monotone in-
creasing where t is in the open interval (0, 1). From the intermediate value
theorem, there exists the unique real number r0 in (0, 1) such that h(r0) = 1.

(Step2) Suppose there exists a complex number z whose absolute value is
less than r0 and satisfying the condition h(z) = 1. Denote z = reiθ where
0 < r < r0 and 0 6 θ < 2π. Then

1 = |h(z)| = |
n∑

k=1

ak(reiθ)k| ≤
n∑

k=1

|(akr
k)eikθ| =

n∑
k=1

akr
k = h(r) < h(r0) = 1,

which is a contradiction. Hence r0 has the smallest absolute value of all
zeros of g(t).

(Step3) Consider a complex number z whose absolute value is equal to
r0. Set z = r0e

iθ and 0 6 θ < 2π. Then 1 =
∑n

k=1 akr
k
0eikθ implies

1 =
n∑

k=1

akr
k
0 cos kθ ≤

n∑
k=1

akr
k
0 = 1

Hence cos kθ = 1 for any k ∈ N with ak ̸= 0. The assumption that the
greatest common divisor of {k ∈ N | ak ̸= 0} is 1 means that θ = 0.
Therefore z = r0, and we conclude that r0 is the unique zero of g(t) having
the smallest absolute value of all zeros of g(t). ¤

Coxeter diagram

fS(t)
(t+1)3(t2+1)(t2−t+1)(t2+t+1)

(t−1)(t8+2t7+2t6+3t5+t4+t3−1)

poles of fS(t)
-1.5 -1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Table 1.

4. Remark

By Proposition 1, the next lemma shows that some growth rates of three-
dimensional generalized simplex reflection groups are not only Perron num-
bers but also Pisot-Vijayaraghavan numbers (see Table 2 below).
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Coxeter diagram

fS(t)
(t+1)3(t2+1)(t2−t+1)

(t−1)(t6+t5+t4+t3+t2+t−1)

poles of fS(t) -1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Table 2.

Lemma 2. For n ≥ 2, the polynomial g(t) =
∑n

k=1 tk − 1 has the unique
zero in the unit disk {t ∈ C | |t| < 1} and does not have zeros on the unit
circle |t| = 1.

Proof. Define h1(t) = tn+1, h2(t) = −2t + 1, and

h(t) = h1(t) + h2(t) = tn+1 − 2t + 1 = (t − 1)g(t).

Then for any 1/2 < r < 1 sufficiently close to 1, h(r) < 0. Any complex
number t on the circle {t ∈ C | |t| = r} satisfies

|h1(t)| = |tn+1| = rn+1 < 2r − 1 ≤ |2t − 1| = |h2(t)|.

Because h2(t) has the unique zero t = 1/2 in the disk |t| < r, it follows from
Rouché’s theorem that h(t) also has the unique zero in the disk |t| < r. Since
this holds for any r < 1 sufficiently close to 1, it means that h(t), hence g(t)
has the unique zero in the unit disk |t| < 1. Finally we show that g(t) does
not have zeros on the unit circle |t| = 1. Suppose there exists θ ∈ R such
that g(eiθ) = 0. Then h(eiθ) = 0 implies that 1 = |ei(n+1)θ| = |2eiθ − 1|.
Hence eiθ = 1, which contradicts to g(1) ̸= 0. Therefore g(t) has the unique
zero in the unit disk {t ∈ C | |t| < 1} and does not have zeros on the unit
circle |t| = 1. ¤
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