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SIMPLICIAL 2-SPHERES OBTAINED FROM NON-SINGULAR

COMPLETE FANS

YUSUKE SUYAMA

Abstract. We prove that a simplicial 2-sphere satisfying a certain condition
is the underlying simplicial complex of a 3-dimensional non-singular complete

fan. In particular, this implies that any simplicial 2-sphere with ≤ 18 vertices
is the underlying simplicial complex of such a fan.

1. Introduction

A rational strongly convex polyhedral cone in Rn is a cone σ spanned by finitely
many vectors in Zn which does not contain any non-zero linear subspace of Rn.
A fan in Rn is a non-empty collection ∆ of such cones satisfying the following
conditions:

(1) If σ ∈ ∆, then each face of σ is in ∆;
(2) if σ, τ ∈ ∆, then σ ∩ τ is a face of each.

A fan ∆ is non-singular if any cone in ∆ is spanned by a part of a basis of Zn, and
complete if

∪
σ∈∆ σ = Rn.

A toric variety of complex dimension n is a normal algebraic variety X over C
containing (C∗)n as an open dense subset, such that the natural action of (C∗)n on
itself extends to an action on X. The category of toric varieties is equivalent to the
category of fans (see [3]). A toric variety is smooth if and only if the corresponding
fan is non-singular, and compact if and only if the fan is complete.

Given a non-singular fan ∆ with m edges spanned by v1, . . . , vm ∈ Zn, we define
its underlying simplicial complex as

{I ⊂ {1, . . . ,m} | {vi | i ∈ I} spans a cone in ∆}.

The underlying simplicial complex of an n-dimensional complete fan is a simplicial
(n− 1)-sphere, that is, a triangulation of the (n− 1)-sphere.

For n ≥ 4, a simplicial (n − 1)-sphere is not always the underlying simplicial
complex of an n-dimensional non-singular complete fan (see [2, Corollary 1.23]).
On the other hand, successive equivariant blow-ups of CP 2 produce non-singular
complete fans whose underlying simplicial complexes are all simplicial 1-spheres.
We consider the following problem:

Problem 1. Is any simplicial 2-sphere the underlying simplicial complex of a 3-
dimensional non-singular complete fan?
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No counterexamples to Problem 1 are currently known. In this paper we give
a partial affirmative answer to Problem 1. The degree of a vertex of a simplicial
2-sphere is the number of incident edges.

Theorem 2. Let K be a simplicial 2-sphere with mK vertices. We denote the
number of vertices of K with degree k by pK(k). If pK(3)+ pK(4)+18 ≥ mK , then
K is the underlying simplicial complex of a 3-dimensional non-singular complete
fan. In particular, if mK ≤ 18, then K is the underlying simplicial complex of such
a fan.

The proof is done by reducing a given simplicial 2-sphere to another one in a
collection of certain simplicial 2-spheres with minimum degree 5. For each such
simplicial 2-sphere, we use a computer to find a non-singular complete fan whose
underlying simplicial complex is the simplicial 2-sphere.

The structure of the paper is as follows: In Section 2, we give a complete list of
the simplicial 2-spheres with minimum degree 5 up to 18 vertices. In Section 3, we
prove Theorem 2.

2. The simplicial 2-spheres with minimum degree 5 up to 18 vertices

G. Brinkmann and B. D. McKay calculated the number of combinatorially dif-
ferent simplicial 2-spheres with minimum degree 5 [1]:

vertices simplicial 2-spheres simplicial 2-spheres with min. deg. 5
4 1 0
5 1 0
6 2 0
7 5 0
8 14 0
9 50 0
10 233 0
11 1,249 0
12 7,595 1
13 49,566 0
14 339,722 1
15 2,406,841 1
16 17,490,241 3
17 129,664,753 4
18 977,526,957 12

Table 1. The number of simplicial 2-spheres.

Remark 3. An n-dimensional small cover of a simple n-polytope is a closed n-
manifold M with a locally standard (Z2)

n-action such that the orbit space M/(Z2)
n

is the simple polytope. It follows from Steinitz’s theorem that any simplicial 2-
sphere is the boundary of a simplicial 3-polytope. The dual of the simplicial 3-
polytope is a simple 3-polytope P . It follows from the four color theorem that P
is the orbit space of a 3-dimensional small cover. A 3-dimensional small cover of
P admits a hyperbolic structure if and only if P has no triangles or squares as
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facets, that is, the original simplicial 2-sphere has no vertices with degree 3 or 4 [2].
Table 1 shows that “most” 3-dimensional small covers do not admit any hyperbolic
structure.

We give a complete list of such simplicial 2-spheres up to 18 vertices (see Tables
2 and 3). They are labeled as

∏
k≥5 k

p(k). If there are more than one simplicial

2-spheres with the same label, then we add (i), (ii), ... to the label. Letters and ?
on vertices in Tables 2 and 3 are used in Section 3.

For each simplicial 2-sphere, we consider the subcomplex consisting of the ver-
tices with degree greater than or equal to 6 and the edges whose both endpoints
have degree greater than or equal to 6 (red vertices and edges in Tables 2 and 3).
These show that all simplicial 2-spheres in Tables 2 and 3 are distinct except 51266

(ii) and 51266 (iii) (they have the same subcomplex).
Since the subcomplexes of 51266 (ii) and 51266 (iii) are cycles, each cycle deter-

mines two subcomplexes surrounded by the cycle (see Figures 1 and 2). These are
clearly distinct.

Figure 1. Subcomplexes of 51266 (ii).

Figure 2. Subcomplexes of 51266 (iii).

So all simplicial 2-spheres in Tables 2 and 3 are distinct.
For m ≤ 18, the number of the simplicial 2-spheres with m vertices in Tables 2

and 3 agrees with the number in Table 1. So this is a complete list of the simplicial
2-spheres with minimum degree 5 up to 18 vertices.

3. Proof of the Theorem 2

Let K be a simplicial 2-sphere with mK vertices.

Lemma 4. If K is the underlying simplicial complex of a non-singular complete
fan, then a simplicial 2-sphere obtained from K by an operation (i), (ii) or Ck (k ≥
5) is also the underlying simplicial complex of such a fan (see Figure 3).
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512 51262 51263

51472 51264 (i) 51264 (ii)

5136371 51265 (i) 51265 (ii)

51265 (iii)
Table 2. The simplicial 2-spheres with minimum degree 5 up to
17 vertices.
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51682 5146272 (i) 5146272 (ii)

5146272 (iii) 5136471 (i) 5136471 (ii)

51266 (i) 51266 (ii) 51266 (iii)

51266 (iv) 51266 (v) 51266 (vi)
Table 3. The simplicial 2-spheres with minimum degree 5 and 18 vertices.
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(i)−→ (ii)−→ Ck−→
For the operation Ck, the degree of the vertex in the center of the diagram is k.

Figure 3. Operations (i), (ii) and Ck.

Proof. Suppose that the three vertices of a 2-face of K correspond to edge vectors
v1, v2, v3 ∈ Z3. Then we have det(v1, v2, v3) = 1. We assign v1 + v2 + v3 to the
new vertex made by the operation (i). The corresponding fan is non-singular and
complete since det(v1, v2, v1 + v2 + v3) = det(v2, v3, v1 + v2 + v3) = det(v3, v1, v1 +
v2 + v3) = 1. Thus the lemma holds for an operation (i) (see Figure 4).

(i)−→

Figure 4. An operation (i).

Suppose that K contains a subcomplex in Figure 5 and the vertices correspond
to edge vectors v1, v2, v3, v4 ∈ Z3 as in Figure 5. Then we have det(v1, v2, v3) =
det(v4, v3, v2) = 1. We assign v2 + v3 to the new vertex made by the operation
(ii). The corresponding fan is non-singular and complete since det(v1, v2, v2+v3) =
det(v3, v1, v2 + v3) = det(v2, v4, v2 + v3) = det(v4, v3, v2 + v3) = 1. Thus the lemma
holds for an operation (ii).

(ii)−→

Figure 5. An operation (ii).

Suppose that K contains a subcomplex in Figure 6 and the vertices correspond
to edge vectors v, v1, . . . , vk ∈ Z3 as in Figure 6. Then we have det(v, vi, vi+1) = 1
for any i = 1, . . . , k, where vk+1 = v1. For each i = 1, . . . , k, we assign v + vi
to the new vertex between v and vi, which is made by the operation Ck. The
corresponding fan is non-singular and complete since det(v, v + vi, v + vi+1) =
det(vi, v + vi+1, v + vi) = det(vi, vi+1, v + vi+1) = 1 for any i = 1, . . . , k. Thus the
lemma holds for an operation Ck. This completes the proof. �
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Ck−→

Figure 6. An operation Ck.

Now we prove Theorem 2 by induction on mK . The tetrahedron is the only
simplicial 2-sphere with 4 vertices, which is the underlying simplicial complex of
the fan of CP 3. Assume that mK ≥ 5.

(1) The case where there exists a vertex with degree 3. All adjacent vertices
have degree greater than or equal to 4, since, if two vertices with degree 3 are
adjacent, then K must be the tetrahedron, which contradicts mK ≥ 5. Thus we
can perform an inverse operation of (i) and we get a simplicial 2-sphere K ′. We
see that pK′(3) + pK′(4) ≥ pK(3) + pK(4)− 1. So we have pK′(3) + pK′(4) + 18 ≥
pK(3) + pK(4) + 18− 1 ≥ mK − 1 = mK′ . K ′ is the underlying simplicial complex
of a non-singular complete fan by the induction hypothesis. Hence K is also the
underlying simplicial complex of such a fan by Lemma 4.

(2) The case where there does not exist a vertex with degree 3 and there exists a
vertex with degree 4. Since all adjacent vertices have degree greater than or equal
to 4, we can perform an inverse operation of (ii) and we get a simplicial 2-sphere
K ′. We see that pK′(3) + pK′(4) ≥ pK(3) + pK(4)− 1. The same argument as (1)
implies that K is the underlying simplicial complex of a non-singular complete fan.

(3) The case where there does not exist a vertex with degree 3 or 4. The Euler
relation implies that

∑
k≥3(6 − k)pK(k) = 12 (see [3, p.190]). This shows that

K must have a vertex with degree 5. Since mK ≤ pK(3) + pK(4) + 18 = 18 by
assumption, K falls into 22 types in Tables 2 and 3.

Suppose that K has a vertex v with degree k ≥ 5 such that any vertex adjacent
to v has degree 5, and any vertex adjacent to a vertex adjacent to v has degree
greater than or equal to 5. Then we can perform an inverse operation of Ck and we
get a simplicial 2-sphereK ′. SincemK′ = mK−k < 18 ≤ pK′(3)+pK′(4)+18, K ′ is
the underlying simplicial complex of a non-singular complete fan by the induction
hypothesis. Hence K is also the underlying simplicial complex of such a fan by
Lemma 4.

Each of 512, 51265 (i) and 5146272 (i) has such a vertex for k = 5; each of 51262,
51263, 51264 (i), 51265 (iii) and 5136471 (ii) has such a vertex for k = 6; each of
51472, 5136371 and 5146272 (ii) has such a vertex for k = 7; 51682 has such a vertex
for k = 8 (these vertices are indicated by ? in Tables 2 and 3). So they are the
underlying simplicial complexes of non-singular complete fans.

We show that the rest of simplicial 2-spheres 51264 (ii), 51265 (ii), 5146272 (iii),
5136471 (i) and 51266 (i)–(vi) are the underlying simplicial complexes of non-singular
complete fans with a computer aid. We assign vectors to the vertices as in Table 4.
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They determine complete fans and it can be checked that all fans are non-singular
by calculation.

vertex 51264 (ii) 51265 (ii) 5146272 (iii), 5136471 (i), 51266 (i)
a (1, 0, 0) (1, 0, 0) (0,−1, 0)
b (0, 1, 0) (1, 0, 1) (1,−1, 0)
c (0, 0, 1) (2,−1, 1) (0,−1, 1)
d (−1, 2,−1) (3, 0,−1) (−1,−1, 1)
e (0,−1,−1) (2, 1,−1) (−1,−1, 0)
f (1, 0,−1) (1, 1, 0) (−1,−1,−1)
g (1,−1, 0) (1,−1, 1) (0,−1,−1)
h (1,−1, 1) (2, 0,−1) (1, 0, 0)
i (−1, 0, 1) (1, 1,−1) (0, 0, 1)
j (−1, 1, 0) (0, 1, 0) (−1, 0, 1)
k (−1, 1,−1) (0, 0, 1) (−1, 0,−1)
l (0,−2,−1) (0,−1, 1) (0, 0,−1)
m (1,−1,−1) (2,−1, 0) (0, 1,−1)
n (0,−1, 1) (1, 0,−1) (1, 1, 0)
o (0,−1, 0) (0, 1,−1) (0, 1, 1)
p (0,−2, 1) (−1, 1, 0) (−1, 0, 0)
q (−1, 0, 0) (−1, 1,−1)
r (0, 1, 0)

vertex 51266 (ii) 51266 (iii) 51266 (iv) 51266 (v) 51266 (vi)
a (1, 0, 0) (1, 0, 0) (1, 0, 0) (0,−1, 0) (0,−1, 0)
b (3, 0,−1) (3, 0,−1) (3, 0,−1) (−1, 1,−1) (−1, 0,−1)
c (2, 1,−1) (2, 1,−1) (2, 1,−1) (0,−2,−1) (0,−2,−1)
d (1, 1, 0) (1, 1, 0) (1, 1, 0) (1,−1,−1) (1,−1,−1)
e (3, 0, 1) (1, 0, 1) (1, 0, 1) (0,−1, 1) (0,−1, 1)
f (3,−1, 1) (3,−1, 1) (2,−1, 1) (−1, 0, 1) (−1, 0, 1)
g (2, 0,−1) (2, 0,−1) (2, 0,−1) (−1, 1, 0) (−1, 1, 0)
h (1, 1,−1) (1, 1,−1) (1, 1,−1) (0,−1,−1) (0,−1,−1)
i (0, 1, 0) (0, 1, 0) (0, 1, 0) (1, 0,−1) (1, 0,−1)
j (1, 0, 1) (0, 0, 1) (0, 0, 1) (1,−1, 0) (1,−1, 0)
k (1,−1, 1) (1,−1, 1) (1,−1, 1) (1,−1, 1) (1,−1, 1)
l (2,−1, 1) (2,−1, 1) (3,−1, 0) (0, 0, 1) (0, 0, 1)
m (1, 0,−1) (1, 0,−1) (1, 0,−1) (−1, 2, 0) (−1, 2, 2)
n (−1, 1, 0) (0, 1,−1) (0, 1,−1) (−1, 2,−1) (−2, 2,−1)
o (0, 0, 1) (−1, 1, 0) (−1, 1, 0) (0, 1, 2) (0, 1, 2)
p (0,−1, 1) (0,−1, 1) (0,−1, 1) (0, 1, 1) (0, 1, 1)
q (2,−1, 0) (2,−1, 0) (2,−1, 0) (−1, 2,−2) (−1, 1,−1)
r (−1, 0, 0) (−1, 0, 0) (−1, 0, 0) (0, 1, 0) (0, 1, 0)

Table 4. Assigning vectors to the vertices.

For example, we show that 5146272 (iii) is the underlying simplicial complex of a
non-singular complete fan. Vectors in Table 4 determine a 3-dimensional complete
fan. Its underlying simplicial complex is illustrated in Figure 7, which confirms that
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there are no overlaps among the 3-dimensional cones. Calculating determinants,
say det(a, b, c) = 1, we see that every cone is non-singular.

Figure 7. 5146272 (iii).
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