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Information geometry in a global setting

Atsuhide MORI

Abstract. We begin a global study of information geometry. In this article, we
describe the geometry of normal distributions by means of positive and negative

contact structures associated to the suspension Anosov flows on Sol3-manifolds.

1. Introduction

Information geometry is basically a local study of a parameter space of a
family of probability distributions by means of differential geometry (see [1]).
We begin a global study of this object. In this article, we restrict ourselves
to the case of normal distributions. Then the parameter space is the upper
half-plane H = {(m, s) ∈ R2 | s > 0} with a certain non-Kähler metric and a
non-metric connection, where m denotes the mean and s the standard deviation.
The background of the metric and the connection is a certain potential function
D on H × H. On the other hand, we know that the product H × H is for
parametrizing abelian surfaces. Precisely, the quotient of the product H × H
under the action of a Hilbert modular group is a non-compact singular complex
surface which parametrizes the isomorphism classes of complex abelian surfaces
with a real multiplication structure. Its topology was studied by Hirzebruch [4].
He took the quotient M of H×H under the action of a semi-direct product ZnZ2

of lattices of R and R2 which acts on H×H freely and properly discontinuously.
Then the neighborhoods of∞ form the end model for a Hilbert modular surface.
From contact topological point of view, M ∪ {∞} is the cone with positive
and negative symplectic structures whose base M0 is a Sol3-manifold with the
positive and negative contact structures associated to the suspension Anosov
flow (see [6] and §4 below for the precise meaning). Now the result of this article
can be summarized as follows.

i) (The model in §3.) We describe the information geometry of H by
introducing a self-correspondence F ⊂ H×H which identifies the con-
volution operation for the probability densities in each factor of H×H
to the Bayesian learning for those in the other factor.

ii) (The propositions in §5.) The action of Z n Z2 preserves the metric
and the connection on each factor of H × H. The sum (resp. the
difference) of the natural area forms descends to the positive (resp.
negative) symplectic structure on the quotient M . The surface F is
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a Lagrangian correspondence which descends to a densely immersed
Lagrangian submanifold L(⊂ M0) ⊂ M with respect to the negative
symplectic structure. Further L is decomposed into Legendrian sub-
manifolds of M0 with respect to the positive contact structure.

iii) (Theorem 1.) We can take a contact Hamiltonian flow on the preimage
of M0 such that

a) the surface F is an invariant submanifold,
b) the push-forward of the induced flow on F to each of the factors

of H × H is tangent to a foliation whose leaves are geodesics for
the non-metric connection, and

c) the iterations of convolutions along the foliation of the first factor
correspond to those of Bayesian learnings along the foliation of
the second factor under F .

Note that we could take a similar contact flow just partially on the quotient. In-
deed the contact Hamiltonian function for the flow in c) is the inverse coefficient
of variance m/s on the first factor which is not preserved under the Z2-action
(but preserved under the Z-action). We raise open problems concerning the geo-
metric characterization of the potential function D on H × H and the relation
between abelian varieties and pairs of normal distributions (§6).

2. Information geometry

In a smooth setting of parametric statistics, we consider an open set U ⊂ Rn

and a positive function p on R× U with the normality condition∫ ∞
−∞

p(x,X)dx ≡ 1.

Each point X ∈ U presents a random variable with probability density pX(x) =
p(x,X). We consider the relative entropy

D(X,Y ) =

∫ ∞
−∞

pX(x)

(
log

1

pY (x)
− log

1

pX(x)

)
dx

for (X,Y ) ∈ U×U as a fundamental potential. It defines a separating premetric
1 on U , which is called the Kullback-Leibler divergence in information geometry.
Using the tensor notation only in this section, we define the Fisher metric g and

1A premetric or prametric on a set U is a non-negative function on U × U which vanishes
along the diagonal set. If it is positive elsewhere, we say that it is separating. Each value of a

premetric is called a distance.
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the e(xponential)-connection ∇ by the cubic approximation

D(X,X + ∆X) ≈ 1

2!

∑
i,j

gij∆X
i∆Xj

+
1

3!

∑
i,j,k

(∂igjk + Γjk,i)∆X
i∆Xj∆Xk

(
or D(X + ∆X,X) ≈ 1

2!

∑
i,j

gij∆X
i∆Xj

+
1

3!

∑
i,j,k

(∂igjk + ∂jgki − Γij,k)∆Xi∆Xj∆Xk
)

of a small distance, where the coefficients in the expression(s) are supposed to
be symmetric, eg., ∂igjk + Γjk,i = ∂jgki + Γki,j . The coefficients Γij,k of the
e-connection all vanish for an exponential family

pX(x) = exp

(
n∑

i=1

Xifi(x) + f0(x)− ν(X)

)
,

hence the name. Here fi(x) are any functions and ν(X) the normalizer. We also
consider the linear combinations of the e-connection and the metric connection.
For example, the m(ixture)-connection Γ∗jk,i = ∂jgki − Γij,k satisfies Γ∗ij,k = 0

for any mixture pX(x) =

n∑
l=0

X lql(x) of n+ 1 probability densities ql(x), where

X1, . . . , Xn > 0 and X0 = 1−X1 − · · · −Xn > 0. See the book [1] for more on
information geometry.

Hereafter we restrict ourselves to the case of the normal distributions,
namely we put

p(m,s)(x) =
1√
2πs

exp

(
− (x−m)2

2s2

)
for (m, s) ∈ H = R×R>0. Then the Kullback-Leibler divergence is expressed as

D((m, s), (m′, s′))

=

∫ ∞
−∞

1√
2πs

exp

(
− (x−m)2

2s2

){
− (x−m)2

2s2
+

(x−m′)2

2(s′)2
− log

s

s′

}
dx

= −1

2
+

s2

2(s′)2
+ 0 +

(m′ −m)2

2(s′)2
− log

s

s′
.

It is easy to read the Fisher metric g and the e-connection ∇ from the cubic
approximation

D((m+ ∆m, s+ ∆s), (m, s)) ≈ 1

2

∆m2 + 2∆s2

s2
− 1

3

∆s3

s3
.
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Namely,

g =
dm2 + 2ds2

s2
, Γ12,1 = Γ21,1 =

−2

s3
, Γ22,2 =

−6

s3
,

and the other coefficients Γij,k vanish. Note that the normal distributions

form an exponential family parametrized by

(
m

s2
,
−1

2s2

)
. This implies that the

geodesics for the e-connection are the horizontal lines, the vertical half-lines, and
the upper semi-parabolas. On the other hand, the geodesics for the m-connection
are vertical half-lines and upper semi-circles, which coincide with those for the

Poincaré metric
dm2 + 1ds2

s2
(6= g).

3. The basic model

Let (m, s,M, S) denote the coordinate system of H × H. Take the corre-
spondence

F : M = −m
s2

and S =
1

s(
⇔ m

s
+
M

S
= 0 and sS = 1

)
and regard it as a submanifold of H × H. For any point (m, s,M, S) in H × H,
we put

f(s,m, S,M) =

(
M

S
+ exp(−h)

m

s

)2

+ exp(−2h)− 1 + 2h

2
,

where h = − log(sS).

Proposition 1. Suppose that under the correspondence F a point (m′, s′)
of the first factor of H × H is identified with the point (M,S) of the second
factor, i.e., (m′, s′,M, S) ∈ F . Then the function f(m, s,M, S) presents the
Kullback-Leibler divergence D((m, s), (m′s′)).

Proof.

2f

(
s,m,

1

s′
,
−m′

(s′)2

)
=

(
−m′

s′
+
s

s′
· m
s

)2

+
s2

(s′)2
− 1− 2 log

s

s′

= 2D((m, s), (m′, s′))

�

We define the product (m, s)∗(m′, s′) on the first factor of H×H by putting

(m, s) ∗ (m′s′) =
(
m+m′,

√
s2 + (s′)2

)
.

It represents the convolution of probability density functions

p(m,s)∗(m′,s′)(x) = (p(m,s) ∗ p(m,s))(x).
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We define another product (M,S) · (M ′, S′) on the second factor by putting

(M,S) · (M ′, S′) =

(
M(S′)2 + (M ′)S2

S2 + (S′)2
,

√
S2(S′)2

S2 + (S′)2

)
.

This represents the normalized pointwise product

p(M,S)·(M ′,S′) = p(M,S)(x) · p(M ′,S′)(x)
/∫ ∞
−∞

p(M,S)(x) · p(M ′,S′)(x)dx.

We see that a normalized pointwise product presents a Bayesian learning as
follows. Suppose that we have a prior probability density p(x) and a likelihood
q(x) of a new data. The likelihood q(x) is the conditional probability density of
the data under p(x). Then we obtain the posterior probability density p(x)q(x)/r
from Bayes’ rule, where r is the probability of the data. Since r does not depend

on x, we see that it is the normalizer

∫ ∞
−∞

p(x)q(x)dx.

Proposition 2. The above correspondence F on H×H identifies the prod-
uct ∗ on the first factor (resp. the second factor) with the product · on the second
factor (resp. the first factor).

Proof. Let (m, s,M, S) and (m′, s′,M ′, S′) be two points on F . Then we
have √

S2(S′)2

S2 + (S′)2
=

1√
s2 + (s′)2

and

M(S′)2 + (M ′)S2

S2 + (S′)2
=

−m
s2

1

(s′)2
− m′

(s′)2
1

s2

1

s2
+

1

(s′)2

=
−(m+m′)

s2 + (s′)2
.

Further F is invariant under the interchange of the order of the product H ×
H. �

Thus the correspondence F defines a Fourier-like transformation on H, hence
the notation.

4. Contact/foliation topology of Sol3-manifolds

We recall contact/foliation topology of certain T 2-bundles. First we should
notice that contact structure is soft enough to interest topologists since Gray’s
stability [3] says that any smooth homotopy of a contact structure on a closed
(i.e., compact borderless) manifold can be realized as an isotopy of the man-
ifold. Further the symplectization of a contact structure is well-defined up to
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isotopy which preserves the R-fibers. Note also that many foliators imagines con-
tact topology as a “discretization” of foliation theory at least in 3-dimensional
case. Honda [5] completed the isotopy classification of contact structures on T 2-
bundles essentially in this spirit (precisely, by using convex surfaces instead of
holonomy of leaves). Let A ∈ SL(2,Z) be the monodromy map of a T 2-bundle.
In the case where trA > 2, the T 2-bundle possesses a canonical pair (ξ+, ξ−)
of positive and negative contact structures associated to the suspension Anosov
flow. Several authors studied the isotopy classes of these contact structures in
terms of Honda’s classification. Kasuya [6], without appealing to the classifica-
tion, related the contact structures ξ± to Hirzebruch’s construction [4] of a cusp.
Hereafter we use relevant part of his description of the contact structures ξ±.
We notice that he also related it to Ryo Furukawa’s observation concerning the
toric construction of contact submanifold of S5 in [9].

It is well-known that any element A of SL(2,Z) with trA > 2 is conjugate

to a positive word of

[
1 1
0 1

]
and

[
1 0
1 1

]
. Thus we can take a map

Z/rZ 3 k 7→ bk ∈ Z≥2
not identically 2 such that A is conjugate to[

sk tk
uk vk

]−1
=

([
bk+r−1 1
−1 0

] [
bk+r−2 1
−1 0

]
· · ·
[
bk 1
−1 0

])−1
.

Indeed we have[
1 0
1 1

]−1([
1 1
0 1

] [
1 0
1 1

]bk−2)[ 1 0
1 1

]
=

[
bk 1
−1 0

]
.

Of course, one may start with a given recurring sequence bk ≥ 2 since the trace
of the above composition map is greater than 2 unless identically bk = 2. The
continued fraction

wk = bk −
1

bk+1 −
1

bk+2 + · · ·
is a quadratic irrational number satisfying

tkwk
2 − (sk − vk)wk − uk = 0.

We have 0 < wk < 1 < wk, where wk denotes the other solution of the quadratic
equation (i.e., the irrational conjugate of ω). Put c = log(w1 · · ·wr). Take any
(large) positive constant K > 0 to fix the vectors[

x1
x2

]
=

[
1 −1
w1 −w1

]−1 [
K
0

]
and [

y1
y2

]
=

[
1 −1
w1 −w1

]−1 [
0
K

]
.
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Then we define the quotient manifold M(x, y, c) = H×H/ ∼ by the equivalences

(m, s,M, S) ∼ (ecm, ecs, e−cs, e−cS),

(m, s,M, S) ∼ (m+ x1, s,M + x2, S),

and
(m, s,M, S) ∼ (m+ y1, s,M + y2, S)

for any (m, s,M, S) ∈ H×H. Note that the map

(m, s,M, S) 7→ (ecm, ecs, e−cs, e−cS)

preserves the lattice on themM -plane generated by x = (x1, x2) and y = (y1, y2).
Thus M(x, y, c) is a 4-manifold diffeomorphic to a T 2-bundle over the open
annulus S1 × R.

Precisely, we take the function h = − log(sS) on H × H ⊂ C × C. It is

strictly plurisubharmonic since the Hessian diag

(
1

4s2
,

1

4S2

)
is clearly positive

definite. Now we shift our ground to consider, instead of the complex structure
Jstd, the exact symplectic structure dλ+ with fixed primitive

λ+ = −dJ∗stddh =
dm

s
+
dM

S
= exp

(
h+ t

2

)
dm+ exp

(
h− t

2

)
dM,

where t = log
S

s
. The above strong pseudo-convexity is expressed as dh(X) > 0

for the vector field X which is defined by ιXdλ+ = λ+. The flow foliation of X
carries the holonomy invariant transverse contact structure which is defined by
the 1-form λ+. Conversely the symplectic manifold H×H is the symplectization
of the section {h = 0} whose R-fibers are the flow lines of X. The function h
descends to the quotient M(x, y, c), so that the 0-level set is a closed contact
3-manifold M0(x, y, c). Then M(x, y, c) is the symplectization of M0(x, y, c).
The function t also descends to M(x, y, c), so that its restriction to the section
M0(x, y, c) defines a T 2-bundle projection to the circle R/2cZ. The T 2-fiber is the
quotient of the mM -plane by the lattice generated by x and y. The monodromy

map

[
ec 0
0 e−c

]
with respect to the fundamental basis of the mM -plane can

also be written as

[
s1 t1
u1 v1

]−1
∈ SL(2,Z) with respect to the T 2-basis {x, y}.

This finally leads us to shift our ground to consider the contact structure ξ+ on
the T 2-bundle with monodromy A.

We can take the global frame (e1, e2, e3) of TM0(x, y, c) by putting

e1 = e−t/2∂m, e2 = et/2∂M , and e3 = 2∂t.

It satisfies the sol3-relations

[e1, e2] = 0, [e3, e1] = −e1, and [e3, e2] = e2.

The dual coframe (e∗1, e
∗
2, e
∗
3) satisfies the corresponding relations

de∗3 = 0, de∗1 = −e∗1 ∧ e3, and de∗2 = e∗2 ∧ e∗3,
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where

e∗1 = et/2dm, e∗2 = e−t/2dM, and e∗3 = dt/2.

We call M0(x, y, c) the Sol3-manifold associated to A. The suspension Anosov
flow is the flow generated by e3. Since it contracts e1 and expands e2, the 1-
forms α± = e∗1 ± e∗2 define a pair of positive and negative contact structures
ξ±, which we call the bi-contact structure associated to the flow. (This ξ+
coincides with the above one, hence we use the same notation.) The suspension
Anosov flow drifts the positive and negative contact structures toward the stable
Anosov foliation defined by the equation e∗1 = 0. Further we have the negative
symplectic form dλ− on M(x, y, c) which is the symplectization of the negative
contact structure ξ−, where

λ− = eh/2(e∗1 − e∗2) = exp

(
h+ t

2

)
dm− exp

(
h− t

2

)
dM

We have the following contact 5-manifold which is crucial in contemporary con-
tact topology since it shows how to generalize the classical propeller construction
of 3-dimensional contact structure to higher dimensions so that the propeller
keeps its relation to convex (hyper)surface theory especially to Giroux torsion
(see [10] and [7]). Take η = e∗1 + cos θe∗2 + sin θdϕ on M0(x, y, c)×S1×R, where
θ ∈ S1 and ϕ ∈ R are the coordinates. It defines a positive contact structure
since

η ∧ (dη)2 = (e∗1 + cos θe∗2 + sin θdϕ)

∧ (e∗3 ∧ e∗1 − sin θdθ ∧ e∗2 + cos θe∗2 ∧ e∗3 + cos θdθ ∧ dϕ)2

= (4 cos4 θ + 2 sin2 θ)e∗1 ∧ e∗2 ∧ e∗3 ∧ dθ ∧ dϕ > 0.

We divide the hypersurface {ϕ = 0} into two regions Σ± according to the sign of
sin θ. Then the restrictions of the 2-form dη on±intΣ± are symplectic structures,
where −intΣ− denotes intΣ− with reversed orientation. We can see that ±intΣ±

are symplectomorphic to each other by switching the sign of θ-coordinate. We
further divide the region Σ+ into two regions Σ+

+ and Σ+
− according to the sign

of cos θ. The following observation fits the scope of [8].

Proposition 3. intΣ+
+ × R (resp. intΣ+

− × R) is contactomorphic to
ker(λ+ + dϕ) (resp. ker(λ− + dϕ)) on M(x, y, c)× R (resp. −M(x, y, c)× R).

Proof. We have
η

sin θ
= e(H+T )/2dm± e(H−T )/2dM + dϕ,

where H = log
| cos θ|
sin2 θ

and T = t− log | cos θ|. �

Namely, we consider the symplectic manifold intΣ+ as the result of the
next procedure expressing that scope. The 4-manifold M(x, y, c) with the con-
formal class of the positive symplectic structure dλ+ and its orientation-reversion
−M(x, y, c) with the conformal class of the positive symplectic structure dλ− are
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pasted together so as to be realized as the symplectic region intΣ+ along the
Levi-flat ends each of which is expressed as {h = +∞} ≈M0(x, y, c) and carries
the stable Anosov foliation e∗1 = 0. This can be viewed as the interchange of
the sign of the bi-contact structure at the limit of the Anosov flow via the sta-
ble foliation. That is why we consider the positive symplectic structure dλ+ as
paired with the negative one dλ− on M(x, y, c). (This idea also comes from the
topology of Hirzebruch-Inoue or hyperbolic Inoue surfaces.)

5. Results

Now we investigate the model in §3 in the light of the description in §4.

Proposition 4. The correspondence F and the function f are invariant
under the monodromy map (m, s,M, S) 7→ (ecm, ecs, e−cs, e−cS).

Proof. The monodromy map preserves the inverse coefficients of variance
m

s
and

M

S
, and the strictly plurisubharmonic function h = − log(sS). �

Proposition 5. The symplectic structure

dλ+ =
dm ∧ ds
s2

+
dM ∧ dS

S2
,

the sum of Fisher metrics

g =
dm2 + 2ds2

s2
+
dM2 + 2dS2

S2
,

and the almost complex structure

J : ∂m 7→
1√
2
∂s, ∂M 7→

1√
2
∂S

on H × H(3 (m, s,M, S)) satisfy g(·, ·) =
√

2dλ+(·, J ·) and descend to the quo-
tient M(x, y, c).

Proof. We have √
2dλ+(∂m,

1√
2
∂s) =

1

s2

and √
2dλ+(∂s,−

√
2∂m) =

2

s2
.

The rest is clear. �

Proposition 6. The “Fourier” correspondence F ⊂ (H × H, dλ+) is a
smooth surface contained in the contact-type hypersurface H = {sS = 1} with
positive contact structure kerα+. It is the union of Legendrian lines

{eT/2m+ e−T/2M = 0 and t = T} (T ∈ R).

These lines descend to the quotient M0(x, y, c) of H as Legendrian curves which
form a dense immersion of the surface F .
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Proof. We see that

et/2m+ e−t/2M = 0 ⇔ m

s
+
M

S
= 0.

Together with sS = 1, this defines F . The Legendrian lines for T = T0 + 2c and
T = T0 descend to the same Legendrian immersed curve on (M0(x, y, c), kerα+),
which is either closed or dense in the toral fiber {t = T} ⊂M0(x, y, c) depending
on whether the slope −eT is rational or irrational with respect to the basis {x, y}.

�

Proposition 7. We have a negative symplectic structure

dλ− =
dm ∧ ds
s2

− dM ∧ dS
S2

on H×H, with respect to which the surface F is a Lagrangian correspondence.

Proof. The tangent space of F is expressed as

TF = 〈s∂m − S∂M ,m∂m + s∂s −M∂M − S∂S〉.
Then we have

dm ∧ ds(s∂m,m∂m + s∂s)

s2
− dM ∧ dS(−S∂M ,−M∂M − S∂S)

S2
= 1− 1 = 0.

�

The correspondence F also satisfies the next interesting property.

Proposition 8. We call a geodesic for the e-connection an e-geodesic.
Any e-geodesic on the first factor of H×H corresponds to an e-geodesic on the
second factor via F , and vice-versa.

Proof. We have

S(k1s
2 + k2m+ k3) = s(k3S

2 + k2M + k1) = 0,

where ki are any constants. �

The next theorem shows that a certain contact flow describes Bayesian
learning processes.

Theorem 1. The contact Hamiltonian vector field Y of the restriction of

the inverse coefficient of variation
m

s
to the hypersurface {sS = 1} ⊂ H × H

with respect to α+ is expressed as

Y =
m

s
e1 −

1

2
e3 = m∂m −

1

2
(S∂S − s∂s)|{sS=1}.

It is tangent to the surface F . Let Yi denote the push-forward of the restriction
Y |F to the i-th factor of H×H (i = 1, 2). Then the flow of Y1 comes out of the
origin (0, 0) ∈ H along the half-parabolic (or half-liner) e-geodesics, and the flow
of Y2 goes into the M -axis {S = 0} ⊂ H along the vertical half-liner e-geodesics.
The former can be discretized into the iterations of convolutions and therefore
the latter into those of Bayesian learnings.
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Proof. The interior product ιY d

(
m

s
+
M

S

)
=

1

2

(
m

s
+
M

S

)
vanishes

along F . The Lie derivative of α+ is LY α+ =
1

2
α+. The Hamiltonian function

is ιY α+ =
m

s
. The rest is easy. �

Remark 1. Let α be a positive contact form on an oriented 3-manifold
M0, i.e., a 1-form satisfying α∧dα > 0. Then the 2-form d(ehα) on the product
R ×M0 = M (h ∈ R) defines the symplectic structure as the symplectization
of the contact structure. Given a function H on M0, we can define the contact
Hamiltonian vector field Y for H as the well-defined push-forward of the usual

Hamiltonian vector field Ỹ for the function H̃ = ehH to M0. Then we have
α(Y ) = H. Note that Y is contact, i.e., it preserves the contact structure kerα
since LỸ e

hα = ιỸ d(ehα) + dιỸ (ehα) = −d(ehH) + d(ehH) = 0. From the
non-integrability of the contact structure kerα, we see that a contact vector field
Y ′ with α(Y ′) = 0 must be zero. Thus any contact vector field is a contact

Hamiltonian vector field. If we fix H̃ and change the section of the R-fibration of
M , we obtain another pair of contact form efα and contact Hamiltonian function
e−fH on the base manifold M0 which defines the same contact Hamiltonian
vector field Y . This means that, for a fixed contact structure, each contact form
presents an isomorphism between the space of functions and the space of contact
vector fields as well as a section of the symplectization.

6. Problems

Since information geometry concerns parameter spaces with geometric struc-
tures, it would have some relation to moduli theory. This was one of the starting
points of this research. In the present, we have no intrinsic relation between the
pairs of normal distributions and abelian surfaces.

Problem 1. Is there any number theoretical relation between two normal
distributions which enables us to relate the pair to an abelian surface with real
multiplication ?

The other starting point was the following splitting result proved in [8] (see
also [2]): A non-singular flow on a closed 3-manifold is projectively Anosov if
and only if it is simultaneously tangent to a mutually transverse pair of positive
and negative contact structures, i.e., to a bi-contact structure. In order to con-
sider the topology of the mixed parameter space, as a closed manifold or as a
space with non-trivial topology, we have to know how to split it into individual
parameter spaces. This motivates us to consider Anosov flows. However, this
kind of hyperbolicity usually makes the dynamics chaotic under the compactness
of the space (like Arnold’s cat map). Thus it is reasonable to consider quotient
manifolds of an already split space. The author is trying to find another example
than the pair of normal distributions from this point of view.
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There are still questionable points on our own model in this article. For
example,

Problem 2. Is there any geometrical reason for taking the particular func-
tion f ?

The author consider them as future tasks and raises the above one as an
open problem.
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