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Asymptotic behavior of the least-energy solutions of a
semilinear elliptic equation with the Hardy-Sobolev
critical exponent

Masato Hashizume!

Department of Mathematics, Graduate School of Science, Osaka City University
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Abstract

We investigate the existence, the non-existence and the asymptotic behavior
of the least-energy solutions of a semilinear elliptic equation with the Hardy-
Sobolev critical exponent. In the boundary singularity case, it is known that
the mean curvature of the boundary at origin plays a crucial role on the
existence of the least-energy solutions. In this paper, we study the relation
between the asymptotic behavior of the solutions and the mean curvature at
origin.

Keywords: asymptotic behavior, boundary singularity, Hardy-Sobolev
inequality, minimization problem

1. Introduction

Let N > 3, Q c RY bounded domain with smooth boundary, 0 < s < 2,
2*(s) = 2(N — s)/(N — 2) and X be a positive parameter. In this paper
we assume that 0 € 02. We study the existence, the non-existence and the
asymptotic behavior as A — oo of the least-energy solutions of

—Au A+ Au = “‘:fcl" u>0 in )
% =0 on Of2.
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The existence of the least-energy solution of (1) is equivalent to the existence
of the minimizer for the corresponding minimization problem

2%(s)
Y (Q) = in {/(|vu|2 + x2)dz|u € Hl(Q),/ |“| e = 1} @)
) Q Q T S
Actually, if the minimizer u, for 1)), (Q) exists then vy := pé\’//\(Q)(N*Q)/(‘l*QS)u,\

is a least-energy solution of (1) and vise versa.

Minimization problems and semilinear elliptic equations on the Hardy-
Sobolev type inequality has been studied extensively by many authors. The
Dirichlet case, that is, concerning the attainability for

p?(Q) = inf {/ \Vu|*dz
Q

|u 2%(s)
u € Hy(Q), da:zl}
o |zl

is studied in [9]-[12], [14], [17]. In the interior singularity case, the remainder
term of the Hardy-Sobolev inequality is studied by [18]. The optimal Hardy-
Sobolev inequality on compact Riemannian manifold is also studied due to
[15].

In the Neumann case, we have obtained some results. In the interior
singularity case, the existence and non-existence results of the minimizer for
12\ (Q) are obtained by [13]. In the boundary singularity case, some results
are due to [5], [9] and [13]. Due to these results, the attainability for 2, ()
is different for each situation. In both the Dirichlet case and the Neumann
case, the position of 0 on €2 affects the attainability for the best constant.

There are many results on the least-energy solutions of the Neumann
problem
(3)

2—520 on Of)

{—dAu+u:up, u>0 in €,
where d > 0 is a constant. It is shown that the least-energy solution of (3)
exists by [1], [25] and so on. Moreover, by for instance [3], [4], [26], [27]
Lin-Ni’s conjecture is studied, that is, they investigate that for d sufficiently
large whether the solution of (3) is only constant or not.

The asymptotic behavior of the least-energy solutions as d — 0 is studied
particularly by [2], [19]-[23]. In the subcritical case 1 < p < (N+2)/(N —2),
the least-energy solution has only one maximum point and this point lies
on the boundary. Moreover, this maximum point approaches the boundary

point of maximum mean curvature as d — 0 and the peak is bounded from

2



above uniformly with respect to d. On the other hand, in the critical case
p=(N+2)/(N —2), it is proved that peak is at most one and blows up on
a boundary point. By [23] we know that the asymptotic behavior of the best
constant for the embedding H'(Q2) c L2N/(N=2)(Q), that is,

1
57(0) = it {1Vl + gl o € @) Dl g, =1}
as d — 0. On the asymptotic behavior of the least-energy solutions of (3)
and SY the mean curvature of 92 plays a crucial role.

Our main purpose of this paper is to investigate the asymptotic behavior
of the least-energy solutions of (1) as A — oo. In [5] and [9], the existence
of the least energy solutions of (1) is guaranteed for any A > 0 if the mean
curvature of 02 at 0 is positive. Thus it is natural that we investigate the
asymptotic behavior of the least-energy solutions of (1). However in the case
when the mean curvature at 0 is non-positive, the existence of the least-
energy solutions of (1) is not studied so far. As our second purpose of this
paper we obtain the answer of this problem through the investigation into
the asymptotic behavior.

This paper is organized as follows. In Section 2 we prepare the useful
facts and some lemmas. In Section 3 we consider the asymptotic behavior
of the least-energy solution of (1). In Section 4 we consider the behavior of
,uﬁ,\f 4 (€2) as A = oo. Throughout this two sections we assume the existence of
the least-energy solutions of (1) for any €2. In section 5 we show some results
on the minimization problem of ), ().

Remark 1.1. Since the nonlinear term in (1) has a singularity at 0, solutions
are not classical solutions. Indeed, if u € H 1(Q) is a weak solution of (1)
by the elliptic regularity theory u € C% (2 \ {0}) and u € C%*(Q) (see [5],

[10]). Therefore we should regard 9/0v as the bounded linear operator from
W2P(Q) to LP(0Q) at 0.

2. Preliminaries

In this section we prepare some useful facts.

We recall that some facts about a diffeomorphism straightening a bound-
ary portion around a point P € 0f2, which was introduced in [19]-[22].
Through translation and rotation of the coordinate system we may assume
that P is the origin and inner normal to 02 at P is pointing in the direction of



the positive xy-axis. In a neighborhood N around P, there exists a smooth

function ¥ (z'), ' = (x1,...,xn_1) such that 9Q NN can be represented by

N-1
1
ay = Y(2') = 3 > i} +of|a'?)
=1

where o, ..., ay_; are the principal curvatures of 9 at P. For y € RY with
ly| sufficiently small, we define a mapping = = ®(y) = (®1(y), ..., Pn(y)) by

o) = J V) G=L. N1
! yn + () j=N.
The differential map D® is

>, o,
o 0ij — D, (v)yn o (v)
(y> o,
8_(y ) 1
Lj 1<i,j<N-1
and near y = 0

|J®(y)| = [detDP(y)| = 1 — (N — 1)H(P)yn + O(ly|?).

We write as ¥(z) = (Vi(z),..., Uy(x)) instead of the inverse map ®~*(z).
B,.(a) denotes a open ball with center a and radius r. In addition, suppose
B, = B,(0) and B}t = {y € B,|yny > 0}.

We set a function as

o) = (1+ (- 2))% ' W

Note that U(0) = 1 and U is a minimizer for

2%(s)
Ly = inf{/ Vul2de|u € DL?(RN),/ g = 1} (5)
RN RN |"L‘|8

which is the best constant for the Hardy-Sobolev inequality. For U define
the scaling function by

U(x) = e U <£> :
€
We have the following lemma regarding ), ().
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Lemma 2.1. (i) pl\(Q) is continuous and non-decreasing with respect to

A.
(ii) For any A > 0, pl\(Q) < prg/2@79/(N=9),
(iii) limy_o p2\ () = 0.
Proof. We show only part (ii).
For given ¢ € CH(QNNp) we set ¢(y) = ¢(P(y)), where N is a neighbor-
It

hood around 0 such that Q NNy = ®(B}). If ¢(y) is a radially symmetric
function, we have

1)
2 _ WN-1 N—1| 772
| wetpdr = S e

(N_ 1)7T¥ ’ N2
- H(O / NG P (r)dr

(N + DT (A

)
n / O P(r)dr, (6)

[ et =22 [ s+ [Cowvieinm @

*S 6
/ ¢?" ) Gp — N1 / PN=5132°6) (1) dr
Qﬂ/\fo |x|8 2 0
N1

~(N—1) [1 - Q(NS—I— 1)} Fié)[{(o) /0(S N5 (O gy

9
+ / O(rN=s1) 9> ), (8
0

~—

where wy_; is the surface area of a unit sphere. Set a cut-off function n(y) =
n(|y|) such that support of 7 is in Bs and n = 1 in Bjs. Choosing n(y)U.(y)



as ¢ in (6), (7) and (8) and hence we obtain

Jo(IV(nUe)[Pdz + AlnUe|?)dex

(fo e )
(%) e p1s — crH(0)e + [A (c2 + O(elloge|)) + O(e)] € (N > 5)
— (%) 2= fts — crH(0)e + [A (ca + O (Jloge| ")) + O(1)] e*[loge| (N =4)
| (%) = pus — c1H(0)e[loge| + [A (c2 + O(e)) + O(1)] € (N =3)

where ¢y, ¢y are positive constants which depend only on N. Tending € to 0
and we obtain the estimate of part (ii). O

Lemma 2.2. We have either

(i) There exist X such that for X\ > X

@ =(3)" )

(11) For all X\ the equality (9) does not hold and

i 5 = (5) (10)

A—00

where p5 is defined by (5). To prove this lemma, we prepare one propo-
sition.

Proposition 2.3. Fix ¢ > 0 sufficiently small. Then there exists a positive
constant C' = C(g) such that for u € H' ()

N L2 N /)
= Ls / < (l—l—s)/ |Vu|2d$+0/u2dx. (11)
2 o |zl Q Q




Proof of Proposition 2.3. We choose small constant 6 > 0, r > 0 and V
which is a neighborhood around 0 such that

TN = Po(x Zaw +o(|2']?), |Vio(z)| <6 on 90NV,

and {(z/,zny — ¢o)|(2/,zn) € ANV} = B
Due to [13] there exists a positive constant C' = C'(B,) such that

S\ 22
fhs </ —Sd:v> / |Vul*dz + C . (12)
e BT

By the transformation y' = 2/, yy = x5 — 1(2’) and the inequality (12),
it follows that

|u

/ 2 (5) ] 2/2*(s)
s o2 0%

anv (|22 + |zn — ho|2)*?

|/\

| 412 2/2*(s)
(3, dy)
Bt |?/|

1 2/2* (s

< 2

= (1+ (N - 1)5 +0%) / |Vul? + Cidx
QNv

where 4(y) = u(y’, yn + ¥o). On the other hand, if |z| sufficiently small
(12" + lan = vol*)*? = (|2 — 2vozn + 5)"? < (1 + Cola) ||

Now, we may assume that diamV < C;4 for some ;. Consequently taking

€ such that
1+ (N —2)d + 62

1+ CoCié

l14+e=

and we obtain

1\ 7=s w2 ) 2/2%(s)
(—) Ls (/ —Sdaz> <(1+ 5)/ |Vu|*dx + C/ u’dz.
2 anv || onv al%



In 2\ V, taking into account that |z|~* has not a singularity and we have

—S

= ORI
Ls (/ dm) <(1+ 6)/ \Vul*dz + C u?dz.
0 oV

Nk onv

The detail of calculations is in [13]. Hence we obtain (11). O

Proof of Lemma 2.2. If there exist A such that (9) holds, then by part (i)
and part (ii) of Lemma 2.1 we can prove part (i).

Assume that for all A > 0, the equality (9) does not hold. For any € > 0
and A > 0, there exist u) . such that

poa () > / Ve |*dx + )\/ uj dz — €
Q 0

We choose A = A(¢) such that A — oo as € — 0 and A > C where C' is given
in Proposition 2.3. From the above inequality and (11) we have

1\ Vo5
0< (i) pa = Hgn(Q) < 5/ Vurede +e < e(1 + p).
Q

Hence tending ¢ to 0 and we obtain the equality (10). O

By the next lemma we can see the relation between the value of p2, ()
and the existence of the minimizer of [, ().

Lemma 2.4. (i) If p)'\(Q) < ps then pl\ () is attained.
(ii) If there exist a positive constant \ such that ng\(Q) = 15 then pll\ ()
s not attained for all X > A

Proof. (i) proved by the proof of Proposition 2.1 in [5].
We prove (ii). Let A > X and uy be a minimizer of 1), (Q). Then we have

s = ,ui\jX(Q) < /(|Vu,\|2 + 2d)de < /(|Vu,\|2 + A3 dz = p (Q) < ps.
0 Q

This is a contradiction. O



3. Asymptotic behavior I

In this section and the next section we assume that the least-energy so-
lution of (1) exists.

We investigate the asymptotic behavior of the least-energy solution of (1)
as A — oo. In order to prove Theorem 3.1, we apply the strategy in [19]-[22]
to the equation (1). We assume v, is a least-energy solution of (1) and define

ay and (3 as
2

Q) = HU,\HLoo(Q) =u\(zy), Br= Oé;NJ-
Theorem 3.1. We obtain the following results;
(1) For all x € Q, vy(xz) — 0,
(i) o7 7 A = (AF) ™ = o0,
(iii) |zx] = o(B))

as A — 0o. For any e > 0 and 6 > 0 there exists a positive constant g such
that for all A > \g

o (oa(@) V()
(iv) a v ( B
() vr < 2eAT2 exp(—€(1)AZ)  in Q\ By,
where U is defined in (4), £(x) = min{no, dist(x,0Q N Bs)}, no = 1no() and

Yo = Y0(S2, €) are positive constants.

>‘<E in 2N Bg,s,

Lemma 3.2. There exist a positive constant C' which is independent of A
such that

4

N-—-2
ay

A

Proof. For simplicity, we write v = vy and a = «a, for each. Cy, C,Cy, Cs
are positive constants which depends only on domain 2. We have

v

|zl

> C.

/ VoVedr + / vodr < o (972 da (13)
Q 0
for all ¢ € H'(Q) satisfying ¢ > 0. For 8 > 1, we define a function H €
C'([0,00)) by setting H(t) = t* and G(t) := [, |H'(s)|*ds = %tw_l. We
easily find that

vG'(v) > G(v). (14)

9



Replacing ¢ in (13) by G(v) we have
/VUVG<U)dI+)\/ vG(v)dr < a2*(8)2/ vG(U)da:
Q 0 ;

| z]?

The chain rule, the definition of G and (14) yield

!/
/ H(v)%dz < o¥'®) Mdz (15)

/ \VH (v)2dz + A5
Q

For )\ ; > 1, by the Hardy-Sobolev inequality it follows that

H(v)>®) GO (2
N (/Q de) S/Q|VH(U)|2dZE+/\26_1/QH(’U)Qd:L‘ (16)

where £ () == inf { [,,(|Vul* + v*)dz|u € H(Q), [, |u

2(8)/|z|*dz = 1}. Since
H(w) =", vH'(v) =B’ (17)
Combining (15), (16) and (17) we have
1 2

HUH%?(sm(Q,\xrsdx) <Cja e ﬂﬁﬁ””lim(ﬁlw\*sd@

Form =0,1,2,--- we define f,,41 = (2*(s)/2)™, then we have
2
||U||L2*(S)5m+1(g |x|7sd$)

1 2
it (2°(5)=2) 5 Furt
< ) a it Bri1 101l L2610 o))

* lﬁ
_ HC2 2*( )/2)t *(s)— 2)W (27(5>> @ HUHLZ(Q,|JJ|_de)' (18)

Note that




Tending m — oo in (18), and thus

2% ) *2*(3) *
Jo]|2, < Cra® 73 (S)‘2||U||%2(Q,|x\—3dx) = Cho” (S)HU”%Q(Q,M_SdI)'

Using the Holder inequality we have

) 02 02 5/2 ) 1-s/2
vllz2(0,0/-sde) = /Q%diﬂ < (/Q W) (/Qv dx)
1-s/2
< Oy (/ vgdx) .
Q

1 1-s/2
< ¥ -2 (/ ’Ude)
CiCy — Q

Consequently

Therefore we obtain

Lemma 3.3.

|[zal = O(B))
Proof. Step 1. First of all, we show that d(xy, Q) = O(f,). We assume that

d(xy, 082
lim W00 (19)
A—00 6/\
and derive a contradiction. Assume that )y is positive increasing sequence
such that A\; — oo as k — oo. By the assumption of (19) we may take a
positive constant R such that

N-—s

1
|Br(0)] > §SN(Q)_IMSZ‘S and x), +0,.2 €Q forall ze Bsg(0) (20)

11



where |Bg(0)] is N-dimensional volume of Bg(0) and

/ ]u\%d:c = 1}
Q

is the best constant of the critical Sobolev embedding. We set

SN(Q) = inf{/Q(Wu\? +u?)dz

Uy (xAk + /BAkZ)

wy(2) = z € Bsp(0).
)y,
Since vy, € C?.(Q\ {0}) 7, satisfies
w2*(s)—l
—Awg + \F2wy, = k—s in B3g(0).

B)\k Tz

Note that from (19) and Lemma 3.2

AeBa, — C, ‘—+z Szo(l) as k—oo for ze€ Bsgeg. (21)

B
By using the elliptic regularity theory there exists w such that

w € C*(Bg(0)), wp —w in C?*(Bgr(0))
and
—Aw+Cw=0 in Bg(0).

In addition 0 < w(z) < 1 in Bg(0) and w(0) = 1 since 0x(0) = 1. By the
strong maximum principle w = 1. But

|Br(0)] = / w¥7dz = lim w, ?dz = lim UFdl‘
Bgr(0

k=20 ) B(0) 00 By, r(aay)

)
< lim /U,\k 2dr < lim Sy(Q)” /(\Vv?\k + 03, ) dx
0

QO k—o0
N—s
—s

I -1, 22—
= 5o ps

which contradicts the choice of R in (20).
Step 2. To end of the proof of this lemma we show that

xzy A x forall xe 02\ {0}.

12



We assume that there exists a point zo € 02\ {0} such that |z)—zo| = O(5))
and derive a contradiction.

By translation and rotation of the coordinate system we may consider
the equation

lao+x|® (22)
85’3 =0 on 0f).
and x) — 0, where ay € 002\ {0}. Set \y — 0o and z,, — 0 as k — oo. For

d small sufficiently put v, (v) = va, (®(y)) for y € E;:; and

A =+
o {wk(y) Yy € Bys
Un, = ,

2(3)1
{AUA—i—)\m w0

A

—+
o (Y, —yn) (Y, —yn) € By
We define a function wy, (k=1,2,...) by

() = 2ot )

where Qx, = W(zy,) = (65, On 1 Bn)> On/Br. = Qoo = (dh,aX) as
k — oco. By Step 1, |Qu| < 00.
We take a positive constant R such that

|Br(0)] > Sy (Q)'pr

in the same way as Step 1. Set a function & as

D((qh, + 2)Bn — (@, +28)0x) (2 < —q3))-

Then w;, satisfies

_Z aj;(

’Ljf

A B5/5/\k

0
ﬁ)\kZbk ﬂ‘i‘)\kﬁ)\kwk ‘(l0+§k|8

in Br(0)\ {znv = —qy. }, where af;, b} is defined as follows (there definitions
is same as those in Step 2 in the sectlon 4 in [22]):

W) = g @0 W) TSN @
) = (BW)@() 1SN 21

13



Then define

k(z) = {aij(QAk + Ba.2) N> =g,

K (=128 F0N i ((gh, + 2) B, —(@h, + 2v)Br.) 2 < 4d,
bk<z> _ {b](Q)\k + ﬁ)\k'z) ZN Z _qﬁ\\;7

7 (=1)2Vb;((dh, + 2)Brne, —(an. + 2n)Bx)  2v < =,

By applying the elliptic regularity theory in [22] and arguing in the same
manner as in Step 1 we have

w € C*(Bg(0)), wp —w in C?*(Bg(0))

and w = 1. It follows that

k—o0

2N N—s
Br(0)| = wizdy < lim 2 | v 2dz < Sy (Q) ' pd .
B Q Mk
R

This contradicts the choice of R. O

Proof of Theorem 3.1 (ii), (iii), (iv). We can see x5 — 0 from Lemma 3.3.
Put £ — oo and define A, 2y, , Uz, Uy,, @, Wi and & respectively as those
in Step 2 of the proof of Lemma 3.3. w;, satisfies

al w o ORwy, N N ) wz*(s)fl
Z; a’z]('z) 82182’] + B)\k ; 7 (Z) @zj + kﬁ)\kwk ‘;Tk‘s
’ k

in Bas/g, (0)\ {on = —qy }. By the definition of & we have [&/8),] —

Qoo + 2.
For any L > 0 and some r > N/2 by the Holder inequality we have

T

w2*(s)71
BL(*QOO) ‘K‘

By applying the elliptic regularity theory in [22] there exists a function w
such that

w e C2<BL<_QOO>\{_QOO})= Wy — W In Co’a(BL(_QOO))QHI(BL(_QOO))'

14



Moreover, w satisfies w(0) = 1 and w € DY?(RY). In fact

/ VulPd: < /(|Vw|2+0w2)dz
RN RN

= lim (IVw|* + Cw?)dz

L—oo By

L—o00 k—o0

< lim lim 2/(|Vvk|2+)\kv,3)dx
Q

IA
=
@ 1o

|

where C'is defined in (21). Thus

we CE MR\ {-Qx}), wp—w in CP*RY)NHL (RY).

loc

If C'# 0 w is a weak solution of

w2*(s)—1
~Aw+Cw=————— in R,
Qoo + 2)[°
Define the function f: RM \ {—Q.} x R — R by
|u 2*(3)72u
flz,u) = ——— —Cu.
) =R

Then we can see w and f satisfy the all conditions of Claim 5.3 in [8] and
hence from the claim we can C' = 0. Furthermore we have

2*(8) UQ*(S)
/ _ Y 5 < lim 2/ M
rY |(Qoo + 2)[° k—oo Jo |z]®

= MS ‘

Hence w is a minimizer of ug. Since 0 < w < 1 and w(0) = 1, we obtain
w = U and Q = 0. Therefore part (ii) and (iii) is proved.
For z € B(;//B)\k we set

@Na (BMZ) _

We(z) = ~ (26)

k

15



Then since Q»,/f, — 0 as k — oo we have

Wy — U in CEYRNYN HE(RY)

as k — oo. Hence part (iv) is obtained.

Lemma 3.4. We assume that u € H'(Q) satisfy that u > 0 and

—Au < “2|;‘i_1 in Q
g—“ =0 on 0f).
v

(27)

Then for any r > 0 there exist positive constants = u(Q) and C = C(8,r)

such that for any Q € RN we have

1

,U/Z*(S) 2% (s)
sup  wy(z) <C (/ —de>
2€QNB(Q) QN B2, (Q) ||

provided that

2*(s)
/ ¢ —dx < pu.
QNB4r(Q) |z

(28)

Proof. We prove Lemma 3.4 in the same way as the strategy of the proof of

Lemma 2.13 in [20] .

]

Proof of Theorem 3.1 (i). From Lemma 2.1, if uy is a minimizer for z[,(Q)
then |lux|/z2) = O(1/A). Thus we have uy(xz) — 0 a.e. in €. Since vy =

MQA(Q)(N_Q)M_QS)UA we have vy(z) — 0 a.e. in Q.

For all x € 2, there exists a positive constant s such that 0 ¢ €2
We have
)20
lim a— )

A—ro0 QN By () |'I|S

By Lemma 3.4 we obtain

2 2
ua(z) < sup  wu(x) <C Ay < C A
z€QNBg () QNBak () |I|S QNBay(z) ’x|s

as A — oo.

16

N By (z).

dr — 0



Proof of Theorem 3.1 (iv). For all ¢ > 0 and § > 0 by part (i) there ex-
ists A\g > 0 such that vy(z) < ein Q\ Bs for all A > ). We set w, =
N~(N=2)/(4=25)4)\ then w, satisfies

1 w2*(s)—1 .
—XAUJ)\ + wy = >\|17T in Q
88& =0 on Of).

14

For wy, we use the strategy in the proof of Theorem 2.3 (iii) in [22]. Hence
Theorem 3.1 (v) is proved. O
4. Asymptotic behavior 11

In this section, we consider the asymptotic behavior of ufj 1(€2). Suppose
vy is a least-energy solution of (1). Define for f € H' ()

Jo(IVfI? + A f?)dx
‘f|2*(s) 2/2%(s) "
(fn EE dm)

Theorem 4.1. Assume that N > 5. There exist positive constants Cy and
Cy such that as A — 00

QAx(f) =

2—s
N—s

O = Qu(en) = (5) e CLHOE + Ca™A 4 o).

where ¢ = O(1/X) and H(0) is the mean curvature at 0.

Proof. The approaches to prove Theorem 4.1 is very close to those in [23].
Therefore we omit the proof of Lemma 4.2 and Lemma 4.6.

Suppose that A is a neighborhood around 0 satisfying QNNy = ®(BJ).
For y € B put 0y and 9 as in Step 2 of the proof of Lemma 3.3. By using
(23) and (24) we define an elliptic operator L by

where



R 16) av 2 0,
bj(z) = {(_1)5”5].(2/’ —2N)Bx) zy < 0.

Since v, is a least-energy solution of (1) 0, satisfies

172*(8)_1
—Loa+ 2 = S Ok (29)
a.e. in Bys. Set
oY
(Vo,V / ( ) JO|dy,
6.94), ZB S 0)) 17y

(0,9), = (Vo, Vi), + A PY|J@[dy,

B;s(0)

Vol = (Vo, Vo), oIk = (6. 0),-

From Theorem 3.1, we have
. ~ 112 N=s . ~ . ~
Jim 933 = Jim x| Ry =0, i [ VU, =0

Define the projection P : H'(Bs;) — H}(Bs) by u = Pv such that
Lu = L.

By the definition of L if v(y/,yn) = v(v/, —yn) then u(y', yn) = u(y', —yn).
We set
h)\ZU)\—PU,\, (ZSEZUE_PUE

and we can see by part (v) of Theorem 3.1 and the maximum principle
0<hy=0(E"Y") inB;.

We can see

Let

M = {cPU|c € Ry, 0 <e <1}, dist(u, M) = inf u— o]y,
€

18



and 5
ee.) = {o € @0, P, = (0, 5 Puc) 0},
A
We obtain the following lemma.

Lemma 4.2. Suppose that N > 5. Then for X sufficiently large dist(Puvy, M)
is attained by cyPU., where ¢ = ¢(\). Moreover,

——>1 and ¢y — 1

B

as A — o0.

By this lemma we may write
PUA :C)\PUg—f—w;\

where wy € E(g, ) satisfying ||wy|[x = o(1), [|Puxll3 = A||PU|3 + |lwall3-
Thus
Vy = C)\PUE + wy + h)\.

We investigate the detail of the estimates for w.

Lemma 4.3. We assume that N > 5 and € = () is given in Lemma 4.2.
Then there exists o > 0 and Ao such that for all w € E(g,\) and X\ > Ay we
have

(2(s) — 1+ 0) / UE@Tumdy < 2.

Proof. Suppose the above lemma does not hold. Then there exist sequences
An = 00, {w,} C E(en, M) such that

(s)-2 2
(2°(s) — 1+ o(1)) /B %m@uy > Jlwnl?,

where ¢, = (). We may assume that ||w,||, = 1 without loss of generality.
Define ¢, (z) = eV 2)/2wn(5nz) for z € Bs/e,. Then we have

U2* 2w2

‘<I>(5nz |

1< (2(s) — 1+ 0(1))/ "D (e, 2)|d (30)

Bé/sn €n

19



On the other hand we have

L= fnl,
> 3 [ o) (5200520 ) ety r [ wiipolay
T N Ay " Dy, By
> (o) [ [VhuaPd: (31)
Bé/sn
and
o= 2,

2N
> C(/ wrf’_2|D<I>|dy)
Bs
2N

= C(1+0(1))< wéVde> N :

B&/an
Therefore after passing to a subsequence we have

Vn — Voo weakly in D2(RY), and 4, — s strongly in L2 _(RY).

loc loc

U>> S0 @)
A=1 L2(RN)

We can see that

0

<vwooa VU>L2(RN) = 07 <vwooa Vv (5

Moreover from (30) and (31) it follows that

2*(s)—2,/,2
/ Vipoo|*dz < 1 < (2°(s) — 1)/ wdz,
RN - |Z|S
and hence o y
o VP2 gy, (33

2% (8)—2,/2 —
fRN G S

|21®

However, (32) and (33) contradict the following lemma.
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Lemma 4.4 ([24]). We consider the eigenvalue problem:
~Ap=pZ "y i RV,
¢ € DVAH(RY).

Then the first two eigenvalues of (34) are py = 1, us = 2*(s) — 1 and the

corresponding eitgenfunction 1y and 1y satisfy

d
Ug}
e=1

Yy € span{U.} and 1y € span {d_g

(34)

respectively.

[]

Recall that Lhy = 0 and hy, = O(c7V*). Multiplying (29) by wy and
integrating on Bs by parts, we have

_ exPU, + hy +wy)* )~
ol + Ol = | X Doy

B; [@(y)l°
For the right hand side we have
(exPU, + hy + w/\)f‘(s)ﬂ
/Bé [@(y)l°

i PUgZ*(s)fl
= & (s) 1/ —M|Dq>|dy
Bs 1D (y)l*

() -ng 0 [ 5]

where o = min {3,2*(s)}. Thus we have

2 De|dy

PUQ*(S)—QWQ -
= ADB|dy + O([lwnlIS + Y lwall)

. wea [ PUZ®72,2
lonll2 — (2°(s) — 1) )2 / PO 3 payjay
)

@(y)]
() PUZ 1, _
= GO [ B Daldy + Ol + e el (35)
5 12()]
Since 0 < PU, < U, and from Lemma 4.3 we have
2(s) —1+o0 PUZ ",
2
w} = 22— " (1+o0 1))/ N Dd|dy
|| ||)\ o ( ( B, |(I)(y)|s
O |wa ). (36)

21



Set
(fB o 2 ( >

) 2/2(s)

Lemma 4.5.

Qr(vn) = 2175 Q,\(CPU)

2 N—s
2—s

1\ ¥=s _N-2 PUZ* s)—1
—(1+o(1)) (5) s / 2 Da|dy
Bs

D(y)[*
+O(e™Mwallx)-

Proof. From Theorem 3.1 it follows

Vouy|? + Midx
Qi(vn) = Jorny V00 e 0@

o \TTE
me o d

= L Ou() + O willy) (37)

2N75

Since vy = c\PU. + wy + h) we have
15Al13 = lexPUL|3 + wal3 + O(e™Y?).

On the other hand,

_2%(s) 2/2%(s)
/ 2\ |Dold
y
Bs 12(y)]°

) (PU YOy Py 2/2°(5)-1
- </ T 'D‘D'dy> 56\ 0T v

/ 2*(s) (cPU)* W1y  ZWE =D (o prr)? (=2
X
Bs

2

[ (y)*

\D<I>|dy

+O([wrll +eY™).
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Hence we obtain

QA(U)\)
1 ~
= 22——3Q)\(CPU8) 1+ (1+0(1))
N-—s
PUs Ho)- w
O e Lok @) -1 i, a1 DIy
P i 2 2% (s) *(s)
lePUN e, P2 ¢ [, POl | DD dy
+O(J|wallf + ™M |wall).
Using (35), (36), (37), cx =1+ o(1), and
PUZ" N
lim PU52=11H1/ © DOy =y
A—)oo” ||)\ oo B, |(P(y)|s| | Y H
we obtain
1 ~
Qr(vn) = —=Qx(cPU)
2N75
1 % _N-2 PUQ*s—lw/\
—(1+o0(1 (—) LLs 25/ N Dd|dy
( (1)) 5 T |D®|
O([lwallf + €™ wallx)-
O
Lemma 4.6.
_ O(e+Xe?) (N>7)
=0(e™) + -
loxlla = O(e™*) {O()xe) (N =5,6).
and
P 2% (s)— 1 O 2 )\2 4 N>7
/ U 2 pajay — { O A (V=)
B P o(Ae?) (N =5,6),
Hence
1 - _/x O (g2 + \%e) (N>T7)
= PU)+ O +
Or(o) = T2z @u(ePU) + O {O(Ag2) (N =5,6).
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To end the proof of Theorem 4.1 we calculate Qy(cPU). Note that v
exists and

Qa(vy) < (%) = i (38)

when Q satisfies H(0) > 0. We replacing ¢y PU. by ¢ in (6), (7) and (8).
Consequently by using (38) we have

Qx(vy) = (1) o f1s — C1H(0)e + Code? + 0o(Xe?), e=0 G) ,

5. Minimization problem

Theorem 5.1. Assume that N > 5 and Q satisfies H(0) < 0. Then there
exist Ax = A\(Q) such that

(i) If 0 < X < X, then pl\(Q) is attained.
(it) If X > X, then (i) (Q) is not attained.

Proof. By Theorem 4.1 the minimizer of uY () does not exist for A suf-
ficiently large (if the minimizer exists, p),(Q) > ps /2379 (N=5) and this
contradicts (ii) in Lemma 2.1). Thus there exists A, = \.(Q2) such that part
(i) of Lemma 2.2 holds true as A = \,. Consequently from Lemma 2.4 we
can prove (i) and (ii) immediately. O

The following theorem holds for all domains (we don’t require the condi-
tion of the mean curvature at 0).

Theorem 5.2. There exist \g > 0 such that if A < \g then the minimizer of
12\ (Q) is unique.

Proof. In order to prove this theorem we argue in the same way as [27].
Assume that vy is a least-energy solution of (1). Then

2 () By
/U’\ d:)::,uév)\(Q)%—)O as A —0.
o |zl ’

From Lemma 3.4 we have |[v;|[z~@) — 0 as A = 0.
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Set \; = 0 as i — oo. Let u;,v; be the least-energy solutions of (1)
when A = \; such that ||u; — v;[|z~q) # 0. Define A; = [Ju; — v;[| (@) and
2 = A7 (u; — v;). Then z; satisfies 0 < z; < 1in €, ||| Lee () = 1, and

ug*(s)—l_vg*(s)—l .
—AZZ + )\Zi = sz mn Q,
% =0 on 0N
v

Note that by the mean value theorem, we can see that

2(s)=1 _ 2%(s)-1

(u; — vg)|x|®

U .
—0 as 17— oo.

Thus by the elliptic regularity theory there exists zg € C%*(€) N H' () such
that z; — 2o in C%*(Q) N H(Q) and

%20 — () on Of).

{—AZO =0 in €,
ov

Hence 2y = 1 since ||| =) = 1 for all 4.
On the other hand, since u; and v; are solutions of (1) we have

2%(s)—=2 2*(3)—2
/ Y Vi w;v;dx = 0.
Q

Since u; > 0 and v; > 0 we see u; — v; changes the sign for all . This is a
contradiction. O
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