# Sharp Hardy-Leray inequality for solenoidal fields 

Naoki Hamamoto

| Citation | OCAMI Preprint Series. 20-1. |
| :---: | :--- |
| Issue Date | $2020-04-28$ |
| Type | Preprint |
| Textversion | Author |

From: Osaka City University Advanced Mathematical Institute https://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html

# SHARP HARDY-LERAY INEQUALITY FOR SOLENOIDAL FIELDS 

NAOKI HAMAMOTO


#### Abstract

This paper refines the former work by Costin-Maz'ya [4], who computed the best constant of Hardy-Leray inequality for solenoidal vector fields on $\mathbb{R}^{N}$ under the additional assumption of axisymmetry for $N \geq 3$. We derive the same best constant without any symmetry assumption; this is also a higher-dimensional extension of the previous work [5] in the three-dimensional case. Moreover, we provide some information about the non-attainability of the equality sign.


## 1. Introduction

Throughout this paper, $N$ denotes an integer and $N \geq 3$. From the viewpoint of standard vector calculus on $\mathbb{R}^{N}$, we study the functional inequality for vector fields together with its improvement, called the Hardy-Leray inequality.

We use bold letters to denote vectors, say $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{N}\right) \in \mathbb{R}^{N}$. The notation $\boldsymbol{x} \cdot \boldsymbol{y}=\sum_{k=1}^{N} x_{k} y_{k}$ denotes the standard inner product of two vectors, and we set $|\boldsymbol{x}|=\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}$ as the length of $\boldsymbol{x}$. By writing $\boldsymbol{u} \in C_{c}^{\infty}(\Omega)^{N}$ for any open subset $\Omega$ of $\mathbb{R}^{N}$, we mean that

$$
\boldsymbol{u}: \Omega \rightarrow \mathbb{R}^{N}, \quad \boldsymbol{x} \mapsto \boldsymbol{u}(\boldsymbol{x})=\left(u_{1}(\boldsymbol{x}), \cdots, u_{N}(\boldsymbol{x})\right)
$$

is a smooth vector field with compact support on $\Omega$.
§1.1. Preceding results and motivation. The classical Hardy-Leray inequality (or shortly H-L inequality) on $\mathbb{R}^{N}$ is given by

$$
\left(\frac{N-2}{2}\right)^{2} \int_{\mathbb{R}^{N}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}} d x \leq \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2} d x
$$

for a vector field $\boldsymbol{u}$ together with its gradient field $\nabla \boldsymbol{u}$, where the constant number $\left(\frac{N-2}{2}\right)^{2}$ is known to be sharp as the test field $\boldsymbol{u}$ runs over $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)^{N}$. This inequality was shown by J. Leray $[\underline{[ }]$ for $N=3$ along his study on the Navier-Stokes equations, as an extension of the 1-dimensional inequality by G. H. Hardy [8].

Now, we are interested in the problem whether the best constant of the H-L inequality can be changed to exceed $\left(\frac{N-2}{2}\right)^{2}$, by imposing $\boldsymbol{u}$ to be solenoidal (namely divergence-free). This is a natural question in the context of hydrodynamics, as asked by O. Costin and V. G. Maz'ya [4]; they derived the improved H-L inequality

$$
\left(\frac{N-2}{2}\right)^{2}\left(1+\frac{8}{N^{2}+4 N-4}\right) \int_{\mathbb{R}^{N}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}} d x \leq \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2} d x
$$

[^0]for solenoidal fields $\boldsymbol{u}$ with the new best constant on the left-hand side, under the additional assumption that $\boldsymbol{u}$ is axisymmetric. Here, by saying that a vector field is axisymmetric, we mean that all its components along the cylindrical coordinates depend only on the axial distance and the height. The addition of such a symmetry assumption to the solenoidal condition on $\boldsymbol{u}$ simplifies and helps the calculation of the new best constant, without affecting the "core" part: one can easily check, in the original H-L inequality, that the condition of axisymmetry alone has no effect on changing the best constant from $\left(\frac{N-2}{2}\right)^{2}$. In that sense, the axisymmetry assumption seems to play a technical rather than essential role. Hence we may also think that it can be weakened or removed, in order to get a "pure" solenoidal improvement of H-L inequality.

In view of this observation, there was an advance in the three-dimensional case: The author of the present paper, in his recent joint work [7] with F. Takahashi, proved (as a corollary of their main theorem) that the case $N=3$ of CostinMaz'ya's inequality

$$
\frac{25}{68} \int_{\mathbb{R}^{3}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}} d x \leq \int_{\mathbb{R}^{3}}|\nabla \boldsymbol{u}|^{2} d x
$$

still holds for solenoidal fields $\boldsymbol{u}$ on $\mathbb{R}^{3}$, by only assuming the azimuthal component (not the full components) of $\boldsymbol{u}$ to be axisymmetric; so to speak, they succeeded in relaxing the axisymmetry assumption. Moreover, this result was further refined in [5], where it was shown that the above inequality does hold for solenoidal fields without any symmetry assumption at all. Hence it follows that the axisymmetry assumption for $N=3$ is completely removable from the solenoidal improvement of $\mathrm{H}-\mathrm{L}$ inequality. As a matter of course, then it is expected that the same also applies to the higher dimensional case $N>3$; this is the main theme of our study.

As a side note, there is another type of improvement: it is also natural to consider the curl-free condition (in place of the solenoidal one) in the treatment of H-L inequality. Some topics related to this issue can be found in [6].
§1.2. Main result. In the same fashion as the preceding works, we concern a solenoidal improvement of the $\mathrm{H}-\mathrm{L}$ inequality with weight,

$$
\left(\gamma+\frac{N}{2}-1\right)^{2} \int_{\mathbb{R}^{N}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}}|\boldsymbol{x}|^{2 \gamma} d x \leq \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \quad(\gamma \in \mathbb{R})
$$

which includes the classical H-L inequality as the special case $\gamma=0$; historically, the case $\gamma \neq 0$ was found by Caffarelli-Kohn-Nirenberg [3] in a more generalized form.

Now, we state our main result as follows:
Theorem 1.1. Let $\boldsymbol{u} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)^{N}$ be a solenoidal field. We assume the additional condition that $\boldsymbol{u}(\mathbf{0})=\mathbf{0}$ if $\gamma \leq 1-\frac{N}{2}$. Then the inequality

$$
\begin{equation*}
C_{N, \gamma} \int_{\mathbb{R}^{N}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}}|\boldsymbol{x}|^{2 \gamma} d x \leq \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \tag{1.1}
\end{equation*}
$$

holds with the best constant $C_{N, \gamma}$ expressed as

$$
\begin{equation*}
C_{N, \gamma}=\left(\gamma+\frac{N}{2}-1\right)^{2}+\min \left\{N-1,2+\min _{\tau \geq 0}\left(\tau+\frac{4(N-1)(\gamma-1)}{\tau+N-1+\left(\gamma-\frac{N}{2}\right)^{2}}\right)\right\} \tag{1.2}
\end{equation*}
$$

Remark 1.2. Let us restrict ourselves to the case $\gamma \leq 1$ in Theorem [.D. Then the inequality (【.]), under the same assumption on $\boldsymbol{u}$, can be strengthened into

$$
\begin{equation*}
C_{N, \gamma} \int_{\mathbb{R}^{N}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}}|\boldsymbol{x}|^{2 \gamma} d x+\mathcal{R}_{N, \gamma}[\boldsymbol{u}] \leq \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \tag{1.3}
\end{equation*}
$$

for the same constant $C_{N, \gamma}=\left(\gamma+\frac{N}{2}-1\right)^{2} \frac{\left(\gamma-\frac{N}{2}\right)^{2}+N+1}{\left(\gamma-\frac{N}{2}\right)^{2}+N-1}$ as ([.2), together with the additional nonnegative term $\mathcal{R}_{N, \gamma}[\boldsymbol{u}]$ given by the expression:

$$
\begin{aligned}
\mathcal{R}_{N, \gamma}[\boldsymbol{u}]= & \int_{\mathbb{R}^{N}}\left|\boldsymbol{x} \cdot \nabla\left(|\boldsymbol{x}|^{\gamma+\frac{N}{2}-1} \boldsymbol{u}\right)\right|^{2}|\boldsymbol{x}|^{-N} d x \\
& +\frac{4(1-\gamma)(N-1)}{\left(\gamma-\frac{N}{2}\right)^{2}+N-1} \int_{\mathbb{R}^{N}}\left|(\boldsymbol{x} \cdot \nabla) \nabla_{\sigma} \triangle_{\sigma}^{-1}\left(|\boldsymbol{x}|^{\gamma+\frac{N}{2}-2} \boldsymbol{x} \cdot \boldsymbol{u}\right)\right|^{2}|\boldsymbol{x}|^{-N} d x
\end{aligned}
$$

Here $\nabla_{\sigma}$ and $\triangle_{\sigma}$ are respectively the spherical gradient and spherical Laplacian (\$2.1). Moreover, the equality sign of ([.3) is attained if and only if the equations

$$
-\triangle_{\sigma}(\boldsymbol{x} \cdot \boldsymbol{u})=(N-1) \boldsymbol{x} \cdot \boldsymbol{u} \quad \text { and } \quad\left\{\begin{array}{cl}
-\triangle_{\sigma} \boldsymbol{u}_{T}=2 \boldsymbol{u}_{T} & \text { for }(N, \gamma)=(3,1) \\
\boldsymbol{u}_{T}=\mathbf{0} & \text { otherwise }
\end{array}\right.
$$

hold on $\mathbb{R}^{N} \backslash\{\mathbf{0}\}$, where $\boldsymbol{u}_{T}$ denotes the toroidal part (§3.9) of $\boldsymbol{u}$.
As an easy consequence of this remark, it follows that the equality sign in the inequality (ㄴ.D) for $\gamma \leq 1$ is never attained by any solenoidal field $\boldsymbol{u} \not \equiv \mathbf{0}$. For $\gamma>1$, however, we do not have much knowledge about the attainability.

The proof of Theorem i. case $N=3$ was proved by applying a so-called poloidal-toroidal (or shortly PT) decomposition theorem of solenoidal fields. The PT theorem in our study, which originates from G. Backus [T] on $\mathbb{R}^{3}$, is still applicable to the case of $\mathbb{R}^{N}(N \geq 3)$, and it enables us to separate the calculation of the best constant $C_{N, \gamma}$ into two computable parts. However, some techniques on $\mathbb{R}^{3}$, employed in the previous work, is not allowed in the higher-dimensional case: we cannot use the "cross product" of vectors in general $\mathbb{R}^{N}$, and furthermore, there is no way to represent every toroidal field in terms of a single-scalar potential. To avoid such a difficulty, we derive with a simple proof the spherical zero-mean property of toroidal fields, from which one can easily deduce such as a Poincaré-type estimate.

Incidentally, we also point out that there is an advanced formalization by N. Weck [17], who gave a very general PT theorem in the framework of differential forms. Then the PT theorem in our discussion can be viewed as a simple case of his one, by identifying solenoidal fields with coclosed 1-forms. However, our approach is based on the standard vector calculus and does not need such as differential forms.

The remaining content of this paper is organized as follows: Section $\square$ reviews vector calculus on $\mathbb{R}^{N} \backslash\{\mathbf{0}\}$ in terms of radial-spherical variables. Section [ives a systematic introduction to the concept of PT fields and establishes the PT decomposition theorem on $\mathbb{R}^{N}$, together with some formulae or estimates. Section $\mathbb{T}$ gives the proof of Theorem\|.] (and Remark [.]), where we compute the best constant $C_{N, \gamma}$ by making full use of the content of Section [3].

## 2. Standard Vector Calculus on $\dot{\mathbb{R}}^{N} \cong \mathbb{R}_{+} \times \mathbb{S}^{N-1}$

In what follows, we basically use the notations

$$
\dot{\mathbb{R}}^{N}=\left\{\boldsymbol{x} \in \mathbb{R}^{N} ; \boldsymbol{x} \neq \mathbf{0}\right\} \quad \text { and } \quad \mathbb{S}^{N-1}=\left\{\boldsymbol{x} \in \mathbb{R}^{N} ;|\boldsymbol{x}|=1\right\}
$$

for the subsets of $\mathbb{R}^{N}$. We review gradient or Laplace operators acting on vector fields on $\dot{\mathbb{R}}^{N}$ and derive some basic formulae, in terms of radial-spherical variables.
§2.1. Radial-spherical decomposition of operators. From the viewpoint of differential geometry, $\dot{\mathbb{R}}^{N}$ is a smooth manifold diffeomorphic to the product of the half line $\mathbb{R}_{+}=\{r \in \mathbb{R} ; r>0\}$ and the $(N-1)$-dimensional unit sphere $\mathbb{S}^{N-1}$, which we denote by $\dot{\mathbb{R}}^{N} \cong \mathbb{R}_{+} \times \mathbb{S}^{N-1}$. Indeed, every $\boldsymbol{x} \in \dot{\mathbb{R}}^{N}$ can be uniquely written as

$$
\boldsymbol{x}=r \boldsymbol{\sigma}
$$

in terms of the radius $r>0$ and the unit vector $\boldsymbol{\sigma} \in \mathbb{S}^{N-1}$ given by

$$
\begin{equation*}
r=|\boldsymbol{x}| \quad \text { and } \quad \boldsymbol{\sigma}=\frac{\boldsymbol{x}}{|\boldsymbol{x}|} \tag{2.1}
\end{equation*}
$$

Now let $\boldsymbol{u}=\left(u_{1}, u_{2}, \cdots, u_{N}\right): \dot{\mathbb{R}}^{N} \rightarrow \mathbb{R}^{N}$ be a vector field, and let $\boldsymbol{\sigma}: \dot{\mathbb{R}}^{N} \rightarrow \mathbb{S}^{N-1}$ be the unit vector field given by the second equation of ( L. $^{\text {. }}$ ). Then there exists an unique pair of scalar field $u_{R} \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ and vector field $\boldsymbol{u}_{S} \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)^{N}$ satisfying

$$
\boldsymbol{u}=\boldsymbol{\sigma} u_{R}+\boldsymbol{u}_{S} \quad \text { and } \quad \boldsymbol{\sigma} \cdot \boldsymbol{u}_{S}=0 \quad \text { on } \dot{\mathbb{R}}^{N}
$$

which we call the radial-spherical decomposition of $\boldsymbol{u}$.
Here let us consider the following two derivative operators. The gradient operator $\nabla=\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{N}}\right)$ resp. Laplacian $\triangle=\sum_{k=1}^{N} \frac{\partial^{2}}{\partial x_{k}^{2}}$ maps every scalar field $f$ to the vector field $\nabla f$ resp. scalar field $\triangle f$. In order to extract only the spherical part of them, we introduce two derivatives: the spherical gradient $\nabla_{\sigma}$ and spherical Laplacian $\triangle_{\sigma}$ (known as the Laplace-Beltrami operator) are defined for all $f \in$ $C^{\infty}\left(\mathbb{S}^{N-1}\right)$ by the formulae

$$
\nabla_{\sigma} f=\nabla \dot{f} \quad \text { and } \quad \triangle_{\sigma} f=\triangle \dot{f} \quad \text { on } \mathbb{S}^{N-1}
$$

where $\dot{f}(\boldsymbol{x})=f(\boldsymbol{x} /|\boldsymbol{x}|)$ is the degree-zero homogeneous extension of $f$. When $\nabla_{\sigma}$ or $\triangle_{\sigma}$ acts on any $f \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$, such an operation is understood by regarding $f(\boldsymbol{x})=f(r \boldsymbol{\sigma})$ as a function of $\boldsymbol{\sigma} \in \mathbb{S}^{N-1}$ for every fixed radius $r$. Then it turns out that those operators are related by the well-known identities

$$
\begin{equation*}
\nabla=\sigma \partial_{r}+r^{-1} \nabla_{\sigma} \quad \text { and } \quad \triangle=\partial_{r}^{\prime} \partial_{r}+r^{-2} \triangle_{\sigma} \tag{2.2}
\end{equation*}
$$

Here

$$
\partial_{r}:=\boldsymbol{\sigma} \cdot \nabla=\sum_{k=1}^{N} \frac{x_{k}}{|\boldsymbol{x}|} \frac{\partial}{\partial x_{k}} \quad \text { resp. } \quad \partial_{r}^{\prime}:=\partial_{r}+\frac{N-1}{r}
$$

denotes the radial derivative resp. its skew $L^{2}$ adjoint, in the sense that

$$
\int_{\mathbb{R}^{N}} f \partial_{r} g d x=-\int_{\mathbb{R}^{N}} g \partial_{r}^{\prime} f d x
$$

holds for all $f, g \in C_{c}^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$. As a simple application of ([2.2), we get the formulae $\nabla r=\boldsymbol{\sigma}$ and

$$
\begin{equation*}
\triangle r^{\lambda}=\alpha_{\lambda} r^{\lambda-2}, \quad \text { where } \quad \alpha_{\lambda}:=\lambda(\lambda+N-2) \quad \forall \lambda \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

When the gradient or Laplace operator acts on vector fields, such an operation is componentwise: for $\boldsymbol{u} \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)^{N}$,

$$
\left.\begin{array}{rl}
\forall \boldsymbol{u} & =\left(\nabla u_{1}, \cdots, \nabla u_{N}\right) \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)^{N \times N} \\
\text { resp. } & \triangle \boldsymbol{u}
\end{array}=\left(\Delta u_{1}, \cdots, \Delta u_{N}\right) \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)^{N}, ~ 子\left(\dot{\mathbb{R}}^{N}\right)^{N},\right)
$$

and the same also applies to $\nabla_{\sigma}$ resp. $\triangle_{\sigma}$. The divergence of $\boldsymbol{u}$ is given by div $\boldsymbol{u}=$ $\nabla \cdot \boldsymbol{u}=\sum_{k=1}^{N} \partial u_{k} / \partial x_{k}$ as the trace part of the matrix field $\nabla \boldsymbol{u}$. The spherical divergence of $\boldsymbol{u}$, which we denote by $\nabla_{\sigma} \cdot \boldsymbol{u}_{S}$, is defined as the trace part of $\nabla_{\sigma} \boldsymbol{u}_{S}$. Then a direct calculation by using ( (LZ) yields

$$
\nabla_{\sigma} \cdot \boldsymbol{\sigma}=r^{-1} \nabla_{\sigma} \cdot(r \boldsymbol{\sigma})=\nabla \cdot \boldsymbol{x}-\boldsymbol{\sigma} \partial_{r} \cdot(r \boldsymbol{\sigma})=N-1
$$

from which we further get

$$
\begin{align*}
\operatorname{div} \boldsymbol{u} & =\left(\boldsymbol{\sigma} \partial_{r}+r^{-1} \nabla_{\sigma}\right) \cdot\left(\boldsymbol{\sigma} u_{R}+\boldsymbol{u}_{S}\right) \\
& =\partial_{r} u_{R}+r^{-1}\left(\nabla_{\sigma} \cdot \boldsymbol{\sigma}\right) u_{R}+r^{-1} \nabla_{\sigma} \cdot \boldsymbol{u}_{S} \\
& =\partial_{r}^{\prime} u_{R}+r^{-1} \nabla_{\sigma} \cdot \boldsymbol{u}_{S} \quad \text { on } \dot{R}^{N} \tag{2.4}
\end{align*}
$$

as a radial-spherical representation of the divergence. We can deduce from this result the following elementary fact:

Lemma 2.1. For all $f \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$, the identity

$$
\nabla_{\sigma} \cdot \nabla_{\sigma} f=\triangle_{\sigma} f \quad \text { on } \dot{\mathbb{R}}^{N}
$$

and the spherical integration by parts formula

$$
\int_{\mathbb{S}^{N-1}} \boldsymbol{u} \cdot \nabla_{\sigma} f \mathrm{~d} \sigma=-\int_{\mathbb{S}^{N-1}}\left(\nabla_{\sigma} \cdot \boldsymbol{u}_{S}\right) f \mathrm{~d} \sigma
$$

hold for all $\boldsymbol{u} \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)^{N}$. Here the integrals are taken for any fixed radius.
Proof. Since the operations are relevant to only the spherical variable $\boldsymbol{\sigma}$, it suffices to check the case where $f$ is independent of the radius $r$. Apply ( $\left.\mathbb{L}_{2} .4\right)$ to the case of the spherical gradient field $\nabla f=r^{-1} \nabla_{\sigma} f$, and we get

$$
\operatorname{div} \nabla f=r^{-2} \nabla_{\sigma} \cdot \nabla_{\sigma} f
$$

This together with $\operatorname{div} \nabla f=\triangle f=r^{-2} \triangle_{\sigma} f$ gives the first identity of the lemma. To check the integral formula, let $\zeta \in C_{c}^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ be any radially symmetric scalar field. Then integration by parts of $\left(\boldsymbol{u} \cdot \nabla_{\sigma} f\right) \zeta=\boldsymbol{u}_{S} \cdot \nabla(r f \zeta)$ yields

$$
\int_{\mathbb{R}^{N}}\left(\boldsymbol{u} \cdot \nabla_{\sigma} f\right) \zeta d x=-\int_{\mathbb{R}^{N}}\left(\operatorname{div} \boldsymbol{u}_{S}\right) r f \zeta d x=-\int_{\mathbb{R}^{N}}\left(\nabla_{\sigma} \cdot \boldsymbol{u}_{S}\right) f \zeta d x
$$

where the last equality follows from ([2.4). Since the choice of $\zeta$ is arbitrary in the radial direction, we get the desired formula, with the aid of the measure transformation formula $d x=r^{N-1} d r \mathrm{~d} \sigma$.

For later use, we also show the following:
Lemma 2.2. The identities

$$
\begin{aligned}
& \triangle_{\sigma}(\boldsymbol{\sigma} f)=\boldsymbol{\sigma}\left(\triangle_{\sigma}-N+1\right) f+2 \nabla_{\sigma} f \\
& \triangle_{\sigma} \nabla_{\sigma} f=\nabla_{\sigma} \triangle_{\sigma} f+(N-3) \nabla_{\sigma} f-2 \boldsymbol{\sigma} \triangle_{\sigma} f
\end{aligned}
$$

hold for all $f \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$.
Proof. It suffices to check the case where $f$ is independent of $r$. Then a direct calculation by using ([2.Z) together with the Leibniz rule yields

$$
\begin{aligned}
\triangle_{\sigma}(\boldsymbol{\sigma} f) & =(1 / r) \triangle_{\sigma}(r \boldsymbol{\sigma} f)=r \triangle(\boldsymbol{x} f)-r \partial_{r}^{\prime} \partial_{r}(r \boldsymbol{\sigma} f) \\
& =2 r \nabla \boldsymbol{x} \cdot \nabla f+r \boldsymbol{x} \triangle f-r \partial_{r}^{\prime}(\boldsymbol{\sigma} f) \\
& =2 r \nabla f+\boldsymbol{\sigma} \triangle_{\sigma} f-(N-1) \boldsymbol{\sigma} f \\
& =2 \nabla_{\sigma} f+\boldsymbol{\sigma}\left(\triangle_{\sigma}-N+1\right) f
\end{aligned}
$$

to get the first identity of the lemma. A similar calculation also yields

$$
\begin{aligned}
\triangle_{\sigma} \nabla_{\sigma} f & =(1 / r) \triangle_{\sigma}\left(r \nabla_{\sigma} f\right)=\left(r \triangle-r \partial_{r}^{\prime} \partial_{r}\right)\left(r \nabla_{\sigma} f\right) \\
& =r \triangle\left(\nabla\left(r^{2} f\right)-2 \boldsymbol{x} f\right)-r \partial_{r}^{\prime} \nabla_{\sigma} f \\
& =r \nabla \triangle\left(r^{2} f\right)-2 r \triangle(\boldsymbol{x} f)-(N-1) \nabla_{\sigma} f \\
& =\nabla_{\sigma}\left(\left(\triangle r^{2}\right) f+r^{2} \triangle f\right)-4 r \nabla f-2 r \boldsymbol{x} \triangle f-(N-1) \nabla_{\sigma} f \\
& =(N-3) \nabla_{\sigma} f+\nabla_{\sigma} \triangle_{\sigma} f-2 \boldsymbol{\sigma} \triangle_{\sigma} f
\end{aligned}
$$

to obtain the second identity of the lemma.

## 3. Poloidal-toroidal fields

After introducing the definition of pre-poloidal and toroidal fields on $\dot{\mathbb{R}}^{N}$, we construct the so-called PT decomposition theorem of solenoidal fields on $\mathbb{R}^{N}$, by using a generator of poloidal fields.
§3.1. Pre-poloidal fields and toroidal fields on $\dot{\mathbb{R}}^{N}$. We say that a vector field $\boldsymbol{u} \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)^{N}$ is pre-poloidal if there exist two scalar fields $f, g \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ satisfying

$$
\boldsymbol{u}=\boldsymbol{x} g+\nabla f \quad \text { on } \dot{\mathbb{R}}^{N}
$$

and we denote by $\mathcal{P}\left(\dot{\mathbb{R}}^{N}\right)$ the set of all pre-poloidal fields. Then it is clear from (ए.2) that this condition is equivalent to the existence of $f, g$ satisfying

$$
\boldsymbol{u}=\boldsymbol{\sigma} g+\nabla_{\sigma} f \quad \text { on } \dot{\mathbb{R}}^{N}
$$

By using the two equivalent conditions, one can easily check that

$$
\begin{equation*}
\left\{\zeta \boldsymbol{u}, \partial_{r} \boldsymbol{u}, \triangle \boldsymbol{u}, \triangle_{\sigma} \boldsymbol{u}\right\} \subset \mathcal{P}\left(\dot{\mathbb{R}}^{N}\right) \quad \forall \boldsymbol{u} \in \mathcal{P}\left(\dot{\mathbb{R}}^{N}\right) \tag{3.1}
\end{equation*}
$$

where $\zeta \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ is any radially symmetric scalar field. Hence the pre-poloidal property is invariant under the operations of radial multiplication, radial derivative and (spherical) Laplacian.

A vector field $\boldsymbol{u} \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)^{N}$ is said to be toroidal if it is spherical and divergencefree:

$$
\left.\begin{array}{c}
\boldsymbol{x} \cdot \boldsymbol{u}=\operatorname{div} \boldsymbol{u}=0 \\
\text { or equivalently } \quad u_{R}=\nabla_{\sigma} \cdot \boldsymbol{u}=0
\end{array}\right\} \text { on } \dot{\mathbb{R}}^{N} .
$$

We denote by $\mathcal{T}\left(\dot{\mathbb{R}}^{N}\right)$ the set of all toroidal fields; then the same invariant property (ㅈ.ᅦ) also applies to the case of toroidal fields $\mathcal{T}\left(\dot{\mathbb{R}}^{N}\right)$ (in place of $\mathcal{P}\left(\dot{\mathbb{R}}^{N}\right)$ ). Here let us show that every toroidal field has zero spherical mean:

$$
\begin{equation*}
\int_{\mathbb{S}^{N-1}} \boldsymbol{u}(r \boldsymbol{\sigma}) \mathrm{d} \sigma=0 \quad \forall r>0, \quad \forall \boldsymbol{u} \in \mathcal{T}\left(\dot{\mathbb{R}}^{N}\right) \tag{3.2}
\end{equation*}
$$

To this end, let $\zeta \in C_{c}^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ be any radially symmetric scalar field with compact support on $\dot{\mathbb{R}}^{N}$. We set $\boldsymbol{w}:=\zeta \boldsymbol{u}$ and notice that $\boldsymbol{w} \in \mathcal{T}\left(\dot{\mathbb{R}}^{N}\right)$; then integration by parts of the $k$-th component of $\boldsymbol{w}$ yields

$$
\int_{\mathbb{R}^{N}} u_{k} \zeta d x=\int_{\mathbb{R}^{N}} w_{k} d x=-\int_{\mathbb{R}^{N}} x_{k} \frac{\partial w_{k}}{\partial x_{k}} d x=\sum_{j \neq k} \int_{\mathbb{R}^{N}} x_{k} \frac{\partial w_{j}}{\partial x_{j}} d x=0
$$

for all $k=1,2, \cdots, N$; where the third equality follows from $\operatorname{div} \boldsymbol{w}=0$. Since the choice of $\zeta$ is arbitrary in the radial direction, we arrive at $\int_{\mathbb{S}^{N-1}} u_{k} \mathrm{~d} \sigma=0$ and hence (3.2), with the aid of the measure transformation formula $d x=r^{N-1} d r \mathrm{~d} \sigma$.

The following lemma summarizes some basic properties of the sets (or spaces) of pre-poloidal fields and toroidal fields:

Lemma 3.1. All pre-poloidal fields are $L^{2}\left(\mathbb{S}^{N-1}\right)$-orthogonal to all toroidal fields, in the sense that

$$
\int_{\mathbb{S}^{N-1}} \boldsymbol{v} \cdot \boldsymbol{w} \mathrm{~d} \sigma=\int_{\mathbb{S}^{N-1}} \nabla \boldsymbol{v} \cdot \nabla \boldsymbol{w} \mathrm{~d} \sigma=0
$$

for all $\boldsymbol{v} \in \mathcal{P}\left(\dot{\mathbb{R}}^{N}\right)$ and $\boldsymbol{w} \in \mathcal{T}\left(\dot{\mathbb{R}}^{N}\right)$, where the integrals are taken for any radius. Moreover, these fields satisfy

$$
\left\{\zeta \boldsymbol{v}, \partial_{r} \boldsymbol{v}, \triangle_{\sigma} \boldsymbol{v}\right\} \subset \mathcal{P}\left(\dot{\mathbb{R}}^{N}\right) \quad \text { and } \quad\left\{\zeta \boldsymbol{w}, \partial_{r} \boldsymbol{w}, \triangle_{\sigma} \boldsymbol{w}\right\} \subset \mathcal{T}\left(\dot{\mathbb{R}}^{N}\right)
$$

where $\zeta \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ is any radially symmetric scalar field; namely, the two spaces $\mathcal{P}\left(\dot{\mathbb{R}}^{N}\right)$ and $\mathcal{T}\left(\dot{\mathbb{R}}^{N}\right)$ are invariant under the operations of $\zeta$, $\partial_{r}$ and $\triangle_{\sigma}$.

Proof. It suffices to check the orthogonality formulae. The pre-poloidal property of $\boldsymbol{v}$ says that $\boldsymbol{v}=\boldsymbol{\sigma} g+\nabla_{\sigma} f$ for some $f, g \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$, and hence

$$
\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \nabla_{\sigma} f
$$

follows from the spherical property $w_{R}=0$ of the toroidal field $\boldsymbol{w}$. Then integration by parts yields

$$
\int_{\mathbb{S}^{N-1}} \boldsymbol{v} \cdot \boldsymbol{w} \mathrm{~d} \sigma=-\int_{\mathbb{S}^{N-1}}\left(\nabla_{\sigma} \cdot \boldsymbol{w}\right) f \mathrm{~d} \sigma=0
$$

due to $\nabla_{\sigma} \cdot \boldsymbol{w}=0$. This proves the first orthogonality formula. To prove the second, by using ( $\mathbb{L 2} .2)$ and Lemma [2.T, integration by parts yields

$$
\begin{aligned}
\int_{\mathbb{S}^{N-1}} \nabla \boldsymbol{v} \cdot \nabla \boldsymbol{w} \mathrm{~d} \sigma & =\int_{\mathbb{S}^{N-1}}\left(\partial_{r} \boldsymbol{v} \cdot \partial_{r} \boldsymbol{w}+r^{-2} \nabla_{\sigma} \boldsymbol{v} \cdot \nabla_{\sigma} \boldsymbol{w}\right) \mathrm{d} \sigma \\
& =\int_{\mathbb{S}^{N-1}} \partial_{r} \boldsymbol{v} \cdot \partial_{r} \boldsymbol{w} \mathrm{~d} \sigma-r^{-2} \int_{\mathbb{S}^{N-1}} \boldsymbol{v} \cdot \triangle_{\sigma} \boldsymbol{w} \mathrm{d} \sigma=0
\end{aligned}
$$

where the last equality follows by applying the first orthogonality formula to the fields $\left\{\partial_{r} \boldsymbol{v}, \boldsymbol{v}\right\} \subset \mathcal{P}\left(\dot{\mathbb{R}}^{N}\right)$ and $\left\{\partial_{r} \boldsymbol{w}, \triangle_{\sigma} \boldsymbol{w}\right\} \subset \mathcal{T}\left(\dot{\mathbb{R}}^{N}\right)$.
$\S 3.2$. PT decomposition of solenoidal fields on $\mathbb{R}^{N}$. A vector field is said to be solenoidal if it is divergence-free. In view of \$3.1, all toroidal fields are solenoidal, while pre-poloidal fields are not necessarily so; we say that a pre-poloidal field is poloidal whenever it is solenoidal.

Now let $\boldsymbol{u} \in C^{\infty}\left(\mathbb{R}^{N}\right)^{N}$ be a solenoidal field smoothly defined on the entire space $\mathbb{R}^{N}$. Notice that the surface integral of $\boldsymbol{u}$ over $\mathbb{S}^{N-1}$ gives

$$
\int_{\mathbb{S}^{N-1}} \boldsymbol{\sigma} \cdot \boldsymbol{u} \mathrm{~d} \sigma=0 \quad \text { (for any radius) }
$$

by use of Gauss' divergence theorem; hence the scalar field $u_{R}=\boldsymbol{\sigma} \cdot \boldsymbol{u}$ has zero spherical mean. Then it is well known that the Poisson-Beltrami equation

$$
\triangle_{\sigma} f=u_{R} \quad \text { on } \dot{\mathbb{R}}^{N}
$$

has an unique solution $f \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ with zero spherical mean; we denote such a solution by $f=\triangle_{\sigma}^{-1} u_{R}$, and we call it the poloidal potential of $\boldsymbol{u}$. To understand this naming, let us introduce the second-order derivative operator

$$
\begin{equation*}
\boldsymbol{D}:=\boldsymbol{\sigma} \triangle_{\sigma}-r \partial_{r}^{\prime} \nabla_{\sigma} \tag{3.3}
\end{equation*}
$$

which we call the poloidal generator. It maps every scalar field to a poloidal field on $\dot{\mathbb{R}}^{N}$; indeed, it is clear that $\boldsymbol{D} f \in \mathcal{P}\left(\dot{\mathbb{R}}^{N}\right)$ for every $f \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$, and that $\operatorname{div} \boldsymbol{D}=\partial_{r}^{\prime} \triangle_{\sigma}-\partial_{r}^{\prime} \nabla_{\sigma} \cdot \nabla_{\sigma}=0$ follows from (ए.4). Moreover,

$$
\boldsymbol{u}-\boldsymbol{D} \triangle_{\sigma}^{-1} u_{R}=\boldsymbol{u}_{S}+\nabla_{\sigma} \triangle_{\sigma}^{-1}\left(r \partial_{r}^{\prime} u_{R}\right)
$$

is a toroidal field whenever $\boldsymbol{u}$ is solenoidal. Hence we have obtained the following:
Proposition 3.2 (PT theorem). Let $\boldsymbol{u} \in C^{\infty}\left(\mathbb{R}^{N}\right)^{N}$ be a solenoidal field. Then there exists an unique pair of poloidal-toroidal fields $\left(\boldsymbol{u}_{P}, \boldsymbol{u}_{T}\right) \in \mathcal{P}\left(\dot{\mathbb{R}}^{N}\right) \times \mathcal{T}\left(\dot{\mathbb{R}}^{N}\right)$ satisfying

$$
\boldsymbol{u}=\boldsymbol{u}_{P}+\boldsymbol{u}_{T} \quad \text { on } \dot{\mathbb{R}}^{N} .
$$

Here the poloidal part of $\boldsymbol{u}$ has the explicit expression $\boldsymbol{u}_{P}=\boldsymbol{D} f$ in terms of the poloidal potential $f=\triangle_{\sigma}^{-1} u_{R}$ and the poloidal generator ([3.31).

For later use, we show some $L^{2}\left(\mathbb{S}^{N-1}\right)$-deviation estimates for a perturbation of poloidal potential by radial multiplication:

Lemma 3.3. Let $f \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$. Then there exists some $C>0$ depending only on $N$ such that the inequalities

$$
\begin{aligned}
& C \int_{\mathbb{S}^{N-1}}|\boldsymbol{D}(\zeta f)-\zeta \boldsymbol{D} f|^{2} \mathrm{~d} \sigma \leq\left(r \zeta^{\prime}\right)^{2} \int_{\mathbb{S}^{N-1}}|\boldsymbol{D} f|^{2} \mathrm{~d} \sigma \\
& C \int_{\mathbb{S}^{N-1}}|\nabla \boldsymbol{D}(\zeta f)-\zeta \nabla \boldsymbol{D} f|^{2} \mathrm{~d} \sigma \leq\left(\left(r \zeta^{\prime}\right)^{2}+\left(r^{2} \zeta^{\prime \prime}\right)^{2}\right) \int_{\mathbb{S}^{N-1}} \frac{|\boldsymbol{D} f|^{2}}{r^{2}} \mathrm{~d} \sigma
\end{aligned}
$$

hold for any radially symmetric scalar field $\zeta \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ together with the notation for its radial derivatives $\zeta^{\prime}=\partial_{r} \zeta$ and $\zeta^{\prime \prime}=\partial_{r}^{2} \zeta$. Here the integrals are taken for every fixed radius.

Proof. A direct calculation by using the Leibniz rule gives

$$
\begin{align*}
& \boldsymbol{D}(\zeta f)-\zeta \boldsymbol{D} f=-r \zeta^{\prime} \nabla_{\sigma} f  \tag{3.4}\\
& \nabla \boldsymbol{D}(\zeta f)-\zeta \nabla \boldsymbol{D} f=\boldsymbol{\sigma} \zeta^{\prime} \boldsymbol{D} f-\boldsymbol{\sigma}\left(r \zeta^{\prime}\right)^{\prime} \nabla_{\sigma} f-r \zeta^{\prime} \nabla \nabla_{\sigma} f \tag{3.5}
\end{align*}
$$

where the second identity follows by taking the gradient of the first. We aim to estimate these two fields. First of all, The $L^{2}\left(\mathbb{S}^{N-1}\right)$ integration of ( $\mathbf{B . 4}$ ) yields

$$
\int_{\mathbb{S}^{N-1}}|\boldsymbol{D}(\zeta f)-\zeta \boldsymbol{D} f|^{2} \mathrm{~d} \sigma=\left(r \zeta^{\prime}\right)^{2} \int_{\mathbb{S}^{N-1}}\left|\nabla_{\sigma} f\right|^{2} \mathrm{~d} \sigma \leq \frac{\left(r \zeta^{\prime}\right)^{2}}{N-1} \int_{\mathbb{S}^{N-1}}|\boldsymbol{D} f|^{2} \mathrm{~d} \sigma
$$

Here the last inequality follows by combining

$$
\left|\triangle_{\sigma} f\right|=|\boldsymbol{\sigma} \cdot \boldsymbol{D} f| \leq|\boldsymbol{D} f|
$$

with the spectral estimate

$$
\int_{\mathbb{S}^{N-1}}\left|\nabla_{\sigma} f\right|^{2} \mathrm{~d} \sigma \leq \frac{1}{N-1} \int_{\mathbb{S}^{N-1}}\left(\triangle_{\sigma} f\right)^{2} \mathrm{~d} \sigma
$$

which can be easily verified by using the spherical harmonics expansion of $f$. Therefore, we have proved the first inequality of the lemma. To prove the second, we begin to estimate the last term of (3.5): the identity

$$
\left|\nabla \nabla_{\sigma} f\right|^{2}=\left|\partial_{r} \nabla_{\sigma} f\right|^{2}+r^{-2}\left|\nabla_{\sigma} \nabla_{\sigma} f\right|^{2}
$$

follows from (ए.2), and integration by parts on both sides gives

$$
\begin{aligned}
\int_{\mathbb{S}^{N-1}} & \left|\nabla \nabla_{\sigma} f\right|^{2} \mathrm{~d} \sigma=\int_{\mathbb{S}^{N-1}}\left(\left|\partial_{r} \nabla_{\sigma} f\right|^{2}-r^{-2} \nabla_{\sigma} f \cdot \triangle_{\sigma} \nabla_{\sigma} f\right) \mathrm{d} \sigma \\
& =\int_{\mathbb{S}^{N-1}}\left(\left|\nabla_{\sigma} \partial_{r} f\right|^{2}-r^{-2} \nabla_{\sigma} f \cdot \nabla_{\sigma}\left(\triangle_{\sigma}+N-3\right) f\right) \mathrm{d} \sigma \quad(\text { due to Lemma [.Z }) \\
& =\int_{\mathbb{S}^{N-1}}\left(\left|\nabla_{\sigma} \partial_{r}^{\prime} f-\frac{N-1}{r} \nabla_{\sigma} f\right|^{2}+r^{-2}\left(\left(\triangle_{\sigma} f\right)^{2}+(N-3)\left|\nabla_{\sigma} f\right|^{2}\right)\right) \mathrm{d} \sigma \\
& =\int_{\mathbb{S}^{N-1}}\left(\left|r^{-1}(\boldsymbol{D} f)_{S}-\frac{N-1}{r} \nabla_{\sigma} f\right|^{2}+r^{-2}\left((\boldsymbol{\sigma} \cdot \boldsymbol{D} f)^{2}+(N-3)\left|\nabla_{\sigma} f\right|^{2}\right)\right) \mathrm{d} \sigma \\
& \lesssim \frac{1}{r^{2}} \int_{\mathbb{S}^{N-1}}\left(|\boldsymbol{D} f|^{2}+\left|\triangle_{\sigma} f\right|^{2}\right) \mathrm{d} \sigma \lesssim \frac{1}{r^{2}} \int_{\mathbb{S}^{N-1}}|\boldsymbol{D} f|^{2} \mathrm{~d} \sigma
\end{aligned}
$$

where the notation " $\lesssim$ " means that

$$
x \lesssim y \quad: \Longleftrightarrow \quad x \leq C y \quad \text { for some constant } C>0 \text { depending only on } N
$$

as a transitive relation between two nonnegative real numbers. By using this result, the $L^{2}\left(\mathbb{S}^{N-1}\right)$ integration of (5.5) yields

$$
\begin{aligned}
\int_{\mathbb{S}^{N-1}} & |\nabla \boldsymbol{D}(\zeta f)-\zeta \nabla \boldsymbol{D} f|^{2} \mathrm{~d} \sigma=\int_{\mathbb{S}^{N-1}}\left|\boldsymbol{\sigma} \zeta^{\prime} \boldsymbol{D} f-\boldsymbol{\sigma}\left(r \zeta^{\prime}\right)^{\prime} \nabla_{\sigma} f-r \zeta^{\prime} \nabla \nabla_{\sigma} f\right|^{2} \mathrm{~d} \sigma \\
& \lesssim\left(\zeta^{\prime}\right)^{2} \int_{\mathbb{S}^{N-1}}|\boldsymbol{D} f|^{2} \mathrm{~d} \sigma+\left(\left(r \zeta^{\prime}\right)^{\prime}\right)^{2} \int_{\mathbb{S}^{N-1}}\left|\triangle_{\sigma} f\right|^{2} \mathrm{~d} \sigma+\left(r \zeta^{\prime}\right)^{2} \int_{\mathbb{S}^{N-1}}\left|\nabla \nabla_{\sigma} f\right|^{2} \mathrm{~d} \sigma \\
& \lesssim\left(\left(r \zeta^{\prime}\right)^{2}+\left(r^{2} \zeta^{\prime \prime}\right)^{2}\right) \int_{\mathbb{S}^{N-1}} \frac{|\boldsymbol{D} f|^{2}}{r^{2}} \mathrm{~d} \sigma
\end{aligned}
$$

to arrive at the desired result.

## 4. Proof of main theorem

In the following, we always assume that the test solenoidal fields $\boldsymbol{u}$ satisfy

$$
\boldsymbol{u} \not \equiv \boldsymbol{0} \quad \text { and } \quad \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x<\infty
$$

since otherwise there is nothing to prove. This integrability together with the smoothness of $|\nabla \boldsymbol{u}|^{2}$ tells us that there must be an integer $k>-\gamma-\frac{N}{2}$ such that $\nabla \boldsymbol{u}=O\left(|\boldsymbol{x}|^{k}\right)$ as $|\boldsymbol{x}| \rightarrow 0$. Then, by using the "additional condition" stated in Theorem I...], we get $\boldsymbol{u}=O\left(|\boldsymbol{x}|^{k+1}\right)$ for $\gamma \leq 1-\frac{N}{2}$, and hence

$$
\int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x<\infty
$$

due to the support compactness of $\boldsymbol{u}$ on $\mathbb{R}^{N}$.
$\S 4.1$. Reduction to the case of PT fields with compact support on $\dot{\mathbb{R}}^{N}$. Recall that the formula $\boldsymbol{u}=\boldsymbol{u}_{P}+\boldsymbol{u}_{T}$ in Proposition 32 is an $L^{2}\left(\mathbb{S}^{N-1}\right)$-direct sum in the sense of Lemma [.]. Then the ratio of the two integrals in inequality (ㄸ.ᅦ), which we simply call the $H$-L quotient, can be expressed as

$$
\frac{\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x}{\int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x}=\frac{\int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{P}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x+\int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{T}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x}{\int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{P}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x+\int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{T}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x}
$$

Taking the infimum on both sides over the test solenoidal fields $\boldsymbol{u}$, we get

$$
\begin{equation*}
C_{N, \gamma}=\inf _{\operatorname{div} \boldsymbol{u} \equiv 0} \frac{\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x}{\int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x}=\min \left\{C_{P, N, \gamma}, C_{T, N, \gamma}\right\} \tag{4.1}
\end{equation*}
$$

as the best constant of $\mathrm{H}-\mathrm{L}$ inequality for solenoidal fields, in terms of the notation

$$
\begin{aligned}
C_{P, N, \gamma} & :=\inf _{\substack{\boldsymbol{u} P \neq \mathbf{0} \\
\operatorname{div} \boldsymbol{O} \equiv 0}} \frac{\int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{P}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x}{\int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{P}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x}=\inf _{\boldsymbol{u} \in \mathcal{P}} \frac{\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x}{\int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x} \\
\operatorname{resp.} \quad C_{T, N, \gamma}: & : \inf _{\substack{\boldsymbol{u} \boldsymbol{u}_{T} \neq \mathbf{0}, \operatorname{div} \boldsymbol{u}=0}} \frac{\int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{T}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x}{\int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{T}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x}=\inf _{\boldsymbol{u} \in \mathcal{T}} \frac{\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x}{\int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x}
\end{aligned}
$$

denoting the best constant of H-L inequality for poloidal resp. toroidal fields. Here the abbreviation " $\boldsymbol{u} \in \mathcal{P}$ " resp. " $\boldsymbol{u} \in \mathcal{T}$ " on the right-hand side means that $\boldsymbol{u}$ is poloidal resp. toroidal (as well as $\boldsymbol{u} \not \equiv \mathbf{0}$ ). Therefore, the computation of $C_{N, \gamma}$ is reduced to that of the individual $C_{P, N, \gamma}$ and $C_{T, N, \gamma}$.

To compute the best constants, we can further assume that all the test solenoidal fields are compactly supported on $\dot{\mathbb{R}}^{N}$, for the following reason: Let $f \in C^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ be the poloidal potential of any solenoidal field $\boldsymbol{u}$, and hence we have

$$
\boldsymbol{u}=\boldsymbol{u}_{P}+\boldsymbol{u}_{T}, \quad \boldsymbol{u}_{P}=\boldsymbol{D} f
$$

Define $\left\{\boldsymbol{u}_{n}\right\}_{n \in \mathbb{N}} \subset C_{c}^{\infty}\left(\dot{\mathbb{R}}^{N}\right)^{N}$ as a sequence of solenoidal fields by the formula

$$
\boldsymbol{u}_{n}=\boldsymbol{D}\left(\zeta_{n} f\right)+\zeta_{n} \boldsymbol{u}_{T} \quad \forall n \in \mathbb{N}
$$

where $\left\{\zeta_{n}\right\}_{n \in \mathbb{N}} \subset C_{c}^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ are radially symmetric scalar fields given by

$$
\zeta_{n}(\boldsymbol{x})=\zeta_{0}\left(|\boldsymbol{x}|^{\frac{1}{n}}\right) \quad \forall \boldsymbol{x} \in \mathbb{R}^{N}, \quad \forall n \in \mathbb{N}
$$

for some 1-variable smooth function $\zeta_{0} \in C^{\infty}\left(\mathbb{R}_{+}\right)$with compact support on $\mathbb{R}_{+}$ such that $\zeta_{0}(1)=1$. Then a direct calculation by applying Lemma 3.3 to $\zeta=\zeta_{n}$ yields

$$
\begin{aligned}
& C \int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{n}-\zeta_{n} \boldsymbol{u}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x \leq \int_{\mathbb{R}^{N}}\left(r \zeta_{n}^{\prime}\right)^{2}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x \\
& C \int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{n}-\zeta_{n} \nabla \boldsymbol{u}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x \leq \int_{\mathbb{R}^{N}}\left(\left(r \zeta_{n}^{\prime}\right)^{2}+\left(r^{2} \zeta_{n}^{\prime \prime}\right)^{2}\right)|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x
\end{aligned}
$$

for some constant $C>0$ depending only on $N$. Notice on the right-hand sides that the radial factors have the estimates

$$
\begin{aligned}
& \left|r \zeta_{n}^{\prime}\right|=\left|\frac{1}{n} r^{\frac{1}{n}} \zeta_{0}^{\prime}\left(r^{\frac{1}{n}}\right)\right| \leq \frac{C}{n} \\
& \left|r^{2} \zeta_{n}^{\prime \prime}\right|=\left|\frac{1}{n}\left(\frac{1}{n}-1\right) r^{\frac{1}{n}} \zeta_{0}^{\prime}\left(r^{\frac{1}{n}}\right)+\frac{1}{n^{2}} r^{\frac{2}{n}} \zeta_{0}^{\prime \prime}\left(r^{\frac{1}{n}}\right)\right| \leq \frac{C}{n}
\end{aligned}
$$

for some constant $C>0$ depending only on $\zeta_{0}$, and hence we have

$$
\left.\begin{array}{l}
\int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{n}-\zeta_{n} \boldsymbol{u}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x \rightarrow 0, \\
\int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{n}-\zeta_{n} \nabla \boldsymbol{u}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x \rightarrow 0
\end{array}\right\} \quad \text { as } n \rightarrow \infty
$$

by using the integrability $\int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x<\infty$. Since the dominated convergence theorem says that

$$
\zeta_{n} \boldsymbol{u} \rightarrow \boldsymbol{u} \quad \text { resp. } \quad \zeta_{n} \nabla \boldsymbol{u}_{n} \rightarrow \nabla \boldsymbol{u} \quad(n \rightarrow \infty)
$$

holds in $L^{2}\left(|\boldsymbol{x}|^{2 \gamma-2} d x\right)$ resp. $L^{2}\left(|\boldsymbol{x}|^{2 \gamma} d x\right)^{N}$, we obtain

$$
\int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{n}-\boldsymbol{u}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x \rightarrow 0 \quad \text { and } \quad \int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{n}-\nabla \boldsymbol{u}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x \rightarrow 0
$$

through the $L^{2}$-triangle inequality. Therefore, the two integrals in H-L inequality for solenoidal fields on $\mathbb{R}^{N}$ can be approximated by those with compact support on $\dot{\mathbb{R}}^{N}$.
$\S 4.2$. Estimation for poloidal fields: evaluation of $C_{P, N, \gamma}$. Throughout this subsection, $\boldsymbol{u}$ is a assumed to be poloidal with compact support on $\dot{\mathbb{R}}^{N}$. Notice from Proposition [3.2] that

$$
\boldsymbol{u}=\boldsymbol{u}_{P}=\boldsymbol{D} f=\boldsymbol{\sigma} \triangle_{\sigma} f-r \partial_{r}^{\prime} \nabla_{\sigma} f \quad \text { on } \dot{\mathbb{R}}^{N}
$$

for the poloidal potential $f=\triangle_{\sigma}^{-1} u_{R}$. Now, let us transform $\boldsymbol{u}$ resp. $f$ into a vector field $\boldsymbol{v}$ resp. scalar field $g$ by the formula

$$
\left.\begin{array}{rl} 
& \boldsymbol{v}(\boldsymbol{x}):=|\boldsymbol{x}|^{\gamma+\frac{N}{2}-1} \boldsymbol{u}(\boldsymbol{x})  \tag{4.2}\\
\text { resp. } & g(\boldsymbol{x}):=|\boldsymbol{x}|^{\gamma+\frac{N}{2}-1} f(\boldsymbol{x})=\triangle_{\sigma}^{-1} v_{R}(\boldsymbol{x})
\end{array}\right\} \quad \forall \boldsymbol{x} \in \dot{\mathbb{R}}^{N}
$$

which stems from an idea of Brezis-Vázquez [ $Z \mathbf{Z}]$. Then $\boldsymbol{v}$ can be expressed in terms of $g$ by the following calculation:

$$
\begin{align*}
\boldsymbol{v} & =r^{\gamma+\frac{N}{2}-1} \boldsymbol{D}\left(r^{1-\gamma-\frac{N}{2}} g\right)=\boldsymbol{\sigma} \triangle_{\sigma} g-r^{\gamma+\frac{N}{2}} \partial_{r}^{\prime} \nabla_{\sigma}\left(r^{1-\gamma-\frac{N}{2}} g\right) \\
& =\boldsymbol{\sigma} \triangle_{\sigma} g-\nabla_{\sigma}\left(\left(r \partial_{r}+\frac{N}{2}-\gamma\right) g\right) \\
& =\boldsymbol{\sigma} \triangle_{\sigma} g-\nabla_{\sigma}\left(\left(\partial_{t}-\gamma+\frac{N}{2}\right) g\right) . \tag{4.3}
\end{align*}
$$

Here and hereafter we employ the notation $t:=\log |\boldsymbol{x}|$, which serves as an alternative radial coordinate obeying the differential chain rule:

$$
\begin{equation*}
\partial_{t}=r \partial_{r}=\boldsymbol{x} \cdot \nabla, \quad d t=r^{-1} d r \tag{4.4}
\end{equation*}
$$

Taking the derivatives of (4.3) also yields the calculation:

$$
\begin{align*}
\partial_{t} \boldsymbol{v}= & \boldsymbol{\sigma} \triangle_{\sigma} \partial_{t} g-\nabla_{\sigma}\left(\left(\partial_{t}-\gamma+\frac{N}{2}\right) \partial_{t} g\right),  \tag{4.5}\\
\triangle_{\sigma} \boldsymbol{v}= & \triangle_{\sigma}\left(\boldsymbol{\sigma} \triangle_{\sigma} g\right)-\triangle_{\sigma} \nabla_{\sigma}\left(\left(\partial_{t}-\gamma+\frac{N}{2}\right) g\right) \\
= & \boldsymbol{\sigma}\left(\triangle_{\sigma}^{2} g-(N-1) \triangle_{\sigma} g\right)+2 \nabla_{\sigma} \triangle_{\sigma} g \\
& +2 \boldsymbol{\sigma} \triangle_{\sigma}\left(\left(\partial_{t}-\gamma+\frac{N}{2}\right) g\right)-\nabla_{\sigma}\left(\triangle_{\sigma}+N-3\right)\left(\left(\partial_{t}-\gamma+\frac{N}{2}\right) g\right) \\
= & \boldsymbol{\sigma} \triangle_{\sigma}^{2} g+\boldsymbol{\sigma}\left(2 \partial_{t}-2 \gamma-N+4\right) \triangle_{\sigma} g+(N-3) \boldsymbol{\sigma} \triangle_{\sigma} g \\
& +\nabla_{\sigma}\left(\left(-\partial_{t}+\gamma-\frac{N}{2}+2\right) \triangle_{\sigma} g\right)-(N-3) \nabla_{\sigma}\left(\left(\partial_{t}-\gamma+\frac{N}{2}\right) g\right) \\
= & \boldsymbol{\sigma}\left(\triangle_{\sigma}^{2} g+2 \partial_{t} \triangle_{\sigma} g-2\left(\gamma+\frac{N}{2}-2\right) \triangle_{\sigma} g\right) \\
& +\nabla_{\sigma}\left(\left(-\partial_{t}+\gamma-\frac{N}{2}+2\right) \triangle_{\sigma} g\right)+(N-3) \boldsymbol{v} \tag{4.6}
\end{align*}
$$

where the equality in the third line follows by using Lemma [2.2. On the other hand, to express in terms of $\boldsymbol{v}$ the integrals in (ㄸ.ᅦ), we have the following calculation:

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x=\int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2}|\boldsymbol{x}|^{-N} d x  \tag{4.7}\\
& \begin{aligned}
& \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x=\int_{\mathbb{R}^{N}}\left|\nabla\left(r^{1-\gamma-\frac{N}{2}} \boldsymbol{v}\right)\right|^{2} r^{2 \gamma} d x \\
&=\int_{\mathbb{R}^{N}}\left|\left(1-\gamma-\frac{N}{2}\right) r^{-\gamma-\frac{N}{2}} \boldsymbol{\sigma} \boldsymbol{v}+r^{1-\gamma-\frac{N}{2}} \nabla \boldsymbol{v}\right|^{2} r^{2 \gamma} d x \\
&=\int_{\mathbb{R}^{N}}\left(\left(\gamma+\frac{N}{2}-1\right)^{2}|\boldsymbol{v}|^{2}+\left(1-\gamma-\frac{N}{2}\right) r \partial_{r}|\boldsymbol{v}|^{2}+|r \nabla \boldsymbol{v}|^{2}\right) r^{-N} d x \\
&=\left(\gamma+\frac{N}{2}-1\right)^{2} \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x+\int_{\mathbb{R}^{N}}|r \nabla \boldsymbol{v}|^{2} r^{-N} d x
\end{aligned}
\end{align*}
$$

where the last equality follows from the first and the support compactness of $\boldsymbol{v}$ on $\dot{\mathbb{R}}^{N}$. In particular, taking the ratio of (4.8) to (4.7) gives

$$
\begin{equation*}
\frac{\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x}{\int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x}=\left(\gamma+\frac{N}{2}-1\right)^{2}+\frac{\int_{\mathbb{R}^{N}}|r \nabla \boldsymbol{v}|^{2} r^{-N} d x}{\int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r^{-N} d x} . \tag{4.9}
\end{equation*}
$$

Hence the evaluation of the H-L quotient is further reduced to that of the quotient on the right-hand side. To this end, let us compute in terms of $g$ the $L^{2}$ integrals of $\boldsymbol{v}$ and $r \nabla \boldsymbol{v}$. First of all, with respect to the measure

$$
\begin{equation*}
r^{-N} d x=d t \mathrm{~d} \sigma \quad \text { over } \quad \dot{\mathbb{R}}^{N} \cong \mathbb{R} \times \mathbb{S}^{N-1} \tag{4.10}
\end{equation*}
$$

the $L^{2}$ integration by parts of (4.3) and (4.5) yields

$$
\begin{align*}
\int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r^{-N} d x & =\iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\left(\left(\triangle_{\sigma} g\right)^{2}+\left|\left(\partial_{t}-\gamma+\frac{N}{2}\right) \nabla_{\sigma} g\right|^{2}\right) d t \mathrm{~d} \sigma \\
& =\iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\left(\left(\triangle_{\sigma} g\right)^{2}+\left|\partial_{t} \nabla_{\sigma} g\right|^{2}+\left(\gamma-\frac{N}{2}\right)^{2}\left|\nabla_{\sigma} g\right|^{2}\right) d t \mathrm{~d} \sigma \tag{4.11}
\end{align*}
$$

by using the support compactness of $g$. Next, in order to compute the $L^{2}$ integral of $\nabla_{\sigma} \boldsymbol{v}$, taking the scalar product of (4.3) and (4.6) yields

$$
\begin{aligned}
-\boldsymbol{v} \cdot\left(\triangle_{\sigma} \boldsymbol{v}\right)= & -\left(\triangle_{\sigma} g\right)\left(\triangle_{\sigma}^{2} g+2 \partial_{t} \triangle_{\sigma} g-2\left(\gamma+\frac{N}{2}-2\right) \triangle_{\sigma} g\right) \\
& +\left(\left(\partial_{t}-\gamma+\frac{N}{2}\right) \nabla_{\sigma} g\right) \cdot \nabla_{\sigma}\left(\left(-\partial_{t}+\gamma-\frac{N}{2}+2\right) \triangle_{\sigma} g\right)-(N-3)|\boldsymbol{v}|^{2}
\end{aligned}
$$

Then integration by parts on both sides with respect to the measure (4.10) gives

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}\left|\nabla_{\sigma} \boldsymbol{v}\right|^{2} r^{-N} d x=-(N-3) \int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r^{-N} d x \\
&+\iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\binom{-\left(\triangle_{\sigma} g\right)\left(\triangle_{\sigma}^{2} g+2 \partial_{t} \triangle_{\sigma} g-2\left(\gamma+\frac{N}{2}-2\right) \triangle_{\sigma} g\right)}{+\left(\left(-\partial_{t}+\gamma-\frac{N}{2}\right) \triangle_{\sigma} g\right)\left(-\partial_{t}+\gamma-\frac{N}{2}+2\right) \triangle_{\sigma} g} d t \mathrm{~d} \sigma \\
&=-(N-3) \int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r^{-N} d x \\
&+\iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\binom{-\left(\triangle_{\sigma} g\right) \triangle_{\sigma}^{2} g+2\left(\gamma+\frac{N}{2}-2\right)\left(\triangle_{\sigma} g\right)^{2}}{+\left(\partial_{t} \triangle_{\sigma} g\right)^{2}+\left(\gamma-\frac{N}{2}\right)\left(\gamma-\frac{N}{2}+2\right)\left(\triangle_{\sigma} g\right)^{2}} d t \mathrm{~d} \sigma \\
&=-(N-3) \int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r^{-N} d x+4(\gamma-1) \iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\left(\triangle_{\sigma} g\right)^{2} d t \mathrm{~d} \sigma \\
&+\iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\left(\left|\nabla_{\sigma} \triangle_{\sigma} g\right|^{2}+\left(\partial_{t} \triangle_{\sigma} g\right)^{2}+\left(\gamma-\frac{N}{2}\right)^{2}\left(\triangle_{\sigma} g\right)^{2}\right) d t \mathrm{~d} \sigma \tag{4.13}
\end{align*}
$$

where the second equality follows again from the support compactness. To further proceed, let us consider separately the two cases $\gamma \leq 1$ and $\gamma>1$.
§4.2.1. The case $\gamma \leq 1$. In order to estimate the last two integrals in (4.13), we express the spherical harmonics expansion of $g$ as

$$
g=\sum_{\nu \in \mathbb{N}} g_{\nu}, \quad-\triangle_{\sigma} g_{\nu}=\alpha_{\nu} g_{\nu} \quad(\forall \nu \in \mathbb{N})
$$

by using the same notation $\alpha_{\nu}=\nu(\nu+N-2)$ as in (2.3). Then a direct calculation gives the following estimate:

$$
\begin{aligned}
4(\gamma-1) & \int_{\mathbb{S}^{N-1}}\left(\triangle_{\sigma} g\right)^{2} \mathrm{~d} \sigma+\int_{\mathbb{S}^{N-1}}\left(\left|\nabla_{\sigma} \triangle_{\sigma} g\right|^{2}+\left(\gamma-\frac{N}{2}\right)^{2}\left(\triangle_{\sigma} g\right)^{2}\right) \mathrm{d} \sigma \\
& =\sum_{\nu \in \mathbb{N}} \alpha_{\nu}\left(\alpha_{\nu}^{2}+\left(\gamma-\frac{N}{2}\right)^{2} \alpha_{\nu}+4(\gamma-1) \alpha_{\nu}\right) g_{\nu}^{2} \\
& \geq \sum_{\nu \in \mathbb{N}} \alpha_{1}\left(\alpha_{\nu}^{2}+\left(\gamma-\frac{N}{2}\right)^{2} \alpha_{\nu}+4(\gamma-1) \alpha_{\nu}\right) g_{\nu}^{2} \\
& \geq \sum_{\nu \in \mathbb{N}} \alpha_{1}\left(\alpha_{\nu}^{2}+\left(\gamma-\frac{N}{2}\right)^{2} \alpha_{\nu}+4(\gamma-1) \frac{\left(\gamma-\frac{N}{2}\right)^{2} \alpha_{\nu}+\alpha_{\nu}^{2}}{\left(\gamma-\frac{N}{2}\right)^{2}+\alpha_{1}}\right) g_{\nu}^{2} \\
& =\alpha_{1}\left(1-\frac{4(1-\gamma)}{\left(\gamma-\frac{N}{2}\right)^{2}+\alpha_{1}}\right) \sum_{\nu \in \mathbb{N}}\left(\alpha_{\nu}^{2}+\left(\gamma-\frac{N}{2}\right)^{2} \alpha_{\nu}\right) g_{\nu}^{2} \\
& =\alpha_{1}\left(1-\frac{4(1-\gamma)}{\left(\gamma-\frac{N}{2}\right)^{2}+\alpha_{1}}\right) \int_{\mathbb{S}^{N-1}}\left(\left(\triangle_{\sigma} g\right)^{2}+\left(\gamma-\frac{N}{2}\right)^{2}\left|\nabla_{\sigma} g\right|^{2}\right) \mathrm{d} \sigma
\end{aligned}
$$

Here the second inequality follows from that the coefficients of $g_{\nu}^{2}$ are all nonnegative, and the third inequality follows from $\gamma \leq 1$; notice that both the equalities in these inequalities are simultaneously attained if and only if $g_{\nu}=0 \quad \forall \nu \geq 2$, namely
$-\triangle_{\sigma} g=\alpha_{1} g$. Considering also the spherical harmonics expansion of $\partial_{t} g$, we have the estimate:

$$
\int_{\mathbb{S}^{N-1}}\left(\partial_{t} \triangle_{\sigma} g\right)^{2} \mathrm{~d} \sigma \geq \alpha_{1} \int_{\mathbb{S}^{N-1}}\left|\partial_{t} \nabla_{\sigma} g\right|^{2} \mathrm{~d} \sigma
$$

Combine the above two estimates with the right-hand side of ( 4.1 .31 ), and we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left|\nabla_{\sigma} \boldsymbol{v}\right|^{2} r^{-N} d x \\
& \geq \alpha_{1}\left(1-\frac{4(1-\gamma)}{\left(\gamma-\frac{N}{2}\right)^{2}+\alpha_{1}}\right) \iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\left(\left(\triangle_{\sigma} g\right)^{2}+\left(\gamma-\frac{N}{2}\right)^{2}\left|\nabla_{\sigma} g\right|^{2}\right) d t \mathrm{~d} \sigma \\
&+\alpha_{1} \iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\left|\partial_{t} \nabla_{\sigma} g\right|^{2} d t \mathrm{~d} \sigma-(N-3) \int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r^{-N} d x \\
&=\left(2-\frac{4(1-\gamma) \alpha_{1}}{\left(\gamma-\frac{N}{2}\right)^{2}+\alpha_{1}}\right) \int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r^{-N} d x+\frac{4(1-\gamma) \alpha_{1}}{\left(\gamma-\frac{N}{2}\right)^{2}+\alpha_{1}} \int_{\mathbb{R}^{N}}\left|\partial_{t} \nabla_{\sigma} g\right|^{2} r^{-N} d x
\end{aligned}
$$

by use of (4.Tl) (and (4.TI)) . Add $\int_{\mathbb{R}^{N}}\left|\partial_{t} \boldsymbol{v}\right|^{2} r^{-N} d x$ to both sides, and we get

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}|r \nabla \boldsymbol{v}|^{2} r^{-N} d x & =\int_{\mathbb{R}^{N}}\left(\left|\partial_{t} \boldsymbol{v}\right|^{2}+\left|\nabla_{\sigma} \boldsymbol{v}\right|^{2}\right) r^{-N} d x \\
& \geq\left(2-\frac{4(1-\gamma) \alpha_{1}}{\left(\gamma-\frac{N}{2}\right)^{2}+\alpha_{1}}\right) \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x+\mathcal{R}_{N, \gamma}[\boldsymbol{u}]
\end{aligned}
$$

to estimate the last integral in (4.8). Here we have defined

$$
\mathcal{R}_{N, \gamma}[\boldsymbol{u}]:=\int_{\mathbb{R}^{N}}\left|\partial_{t} \boldsymbol{v}\right|^{2} r^{-N} d x+\frac{4(1-\gamma) \alpha_{1}}{\left(\gamma-\frac{N}{2}\right)^{2}+\alpha_{1}} \int_{\mathbb{R}^{N}}\left|\partial_{t} \nabla_{\sigma} g\right|^{2} r^{-N} d x
$$

as a nonnegative functional; it coincides with that given in Remark $\mathbb{L} .2$, as one can easily check by recalling (4.2) and (4.4). Therefore, we have obtained the inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \geq C_{P, N, \gamma} \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x+\mathcal{R}_{N, \gamma}[\boldsymbol{u}] \tag{4.14}
\end{equation*}
$$

together with the constant number

$$
C_{P, N, \gamma}=\left(\gamma+\frac{N}{2}-1\right)^{2}+2-\frac{4(1-\gamma) \alpha_{1}}{\left(\gamma-\frac{N}{2}\right)^{2}+\alpha_{1}}=\left(\gamma+\frac{N}{2}-1\right)^{2} \frac{\left(\gamma-\frac{N}{2}\right)^{2}+N+1}{\left(\gamma-\frac{N}{2}\right)^{2}+N-1}
$$

where the equality of (4.14) holds if and only if $-\triangle_{\sigma} g=\alpha_{1} g$ or equivalently $-\triangle_{\sigma} u_{R}=\alpha_{1} u_{R}$ on $\dot{\mathbb{R}}^{N}$.
$\S 4.2 .2$. The case $\gamma>1$. In a similar way as the previous case, a calculation by using the spherical harmonics expansion of $g$ yields

$$
\begin{aligned}
\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} & \left(\left|\nabla_{\sigma} \triangle_{\sigma} g\right|^{2}+\left(\partial_{t} \triangle_{\sigma} g\right)^{2}+\left(\gamma-\frac{N}{2}\right)^{2}\left(\triangle_{\sigma} g\right)^{2}\right) d t \mathrm{~d} \sigma \\
& \geq \alpha_{1} \iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\left(\left(\triangle_{\sigma} g\right)^{2}+\left|\partial_{t} \nabla_{\sigma} g\right|^{2}+\left(\gamma-\frac{N}{2}\right)^{2}\left|\nabla_{\sigma} g\right|^{2}\right) d t \mathrm{~d} \sigma \\
& =(N-1) \int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r^{-N} d x
\end{aligned}
$$

to estimate the last integral in (4. 3 ) ; hence we get

$$
\int_{\mathbb{R}^{N}}\left|\nabla_{\sigma} \boldsymbol{v}\right|^{2} r^{-N} d x \geq 2 \int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r^{-N} d x+4(\gamma-1) \iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\left(\triangle_{\sigma} g\right)^{2} d t \mathrm{~d} \sigma,
$$

where the equality holds if and only if $-\triangle_{\sigma} g=\alpha_{1} g$ on $\dot{\mathbb{R}}^{N}$. This estimate together with the equations (4.17) and (4.12) further yields

$$
\begin{align*}
& \frac{\int_{\mathbb{R}^{N}}|r \nabla \boldsymbol{v}|^{2} r^{-N} d x}{\int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r r^{-N} d x}=\frac{(4.12)+\int_{\mathbb{R}^{N}}\left|\nabla_{\sigma} \boldsymbol{v}\right|^{2} r^{-N} d x}{(4.11)} \\
& \quad \geq 2+\frac{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\binom{\left(\partial_{t} \triangle_{\sigma} g\right)^{2}+\left|\partial_{t}^{2} \nabla_{\sigma} g\right|^{2}+\left(\gamma-\frac{N}{2}\right)^{2}\left|\partial_{t} \nabla_{\sigma} g\right|^{2}}{+4(\gamma-1)\left(\triangle_{\sigma} g\right)^{2}} d t \mathrm{~d} \sigma}{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}}\left(\left(\triangle_{\sigma} g\right)^{2}+\left|\partial_{t} \nabla_{\sigma} g\right|^{2}+\left(\gamma-\frac{N}{2}\right)^{2}\left|\nabla_{\sigma} g\right|^{2}\right) d t \mathrm{~d} \sigma} \\
& \quad=2+\frac{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} g\left(-\partial_{t}^{2} \triangle_{\sigma}^{2}-\partial_{t}^{4} \triangle_{\sigma}+\left(\gamma-\frac{N}{2}\right)^{2} \partial_{t}^{2} \triangle_{\sigma}+4(\gamma-1) \triangle_{\sigma}^{2}\right) g d t \mathrm{~d} \sigma}{\iint_{\mathbb{R}^{\prime} \times \mathbb{S}^{N-1}} g\left(\triangle_{\sigma}^{2}+\partial_{t}^{2} \triangle_{\sigma}-\left(\gamma-\frac{N}{2}\right)^{2} \triangle_{\sigma}\right) g d t \mathrm{~d} \sigma} \\
& \quad=2+\frac{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} g Q_{1}\left(-\partial_{t}^{2},-\triangle_{\sigma}\right) g d t \mathrm{~d} \sigma}{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} g Q_{0}\left(-\partial_{t}^{2},-\triangle_{\sigma}\right) g d t \mathrm{~d} \sigma}, \tag{4.15}
\end{align*}
$$

where we have defined the two polynomials $Q_{0}$ and $Q_{1}$ by the formulae

$$
\begin{aligned}
& Q_{1}(\tau, \alpha):=\tau \alpha^{2}+\tau^{2} \alpha+\left(\gamma-\frac{N}{2}\right)^{2} \tau \alpha+4(\gamma-1) \alpha^{2} \\
& Q_{0}(\tau, \alpha):=\tau \alpha+\alpha^{2}+\left(\gamma-\frac{N}{2}\right)^{2} \alpha
\end{aligned}
$$

In order to evaluate (4.5), we now introduce the 1-D Fourier transformation

$$
g(\boldsymbol{x})=g\left(e^{t} \boldsymbol{\sigma}\right) \longmapsto \widehat{g}(\tau, \boldsymbol{\sigma})=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i \tau t} g\left(e^{t} \boldsymbol{\sigma}\right) d t
$$

in the radial direction, which commutes with the spherical derivatives and changes $t$-derivative into an imaginary scalar multiplication: $\widehat{\partial_{t} g}=i \tau \widehat{g}, i=\sqrt{-1}$. Then, by expressing the spherical harmonics expansion of $\widehat{g}$ as

$$
\widehat{g}=\sum_{\nu \in \mathbb{N}} \widehat{g}_{\nu}, \quad-\triangle_{\sigma} \widehat{g}_{\nu}=\alpha_{\nu} \widehat{g}_{\nu} \quad(\forall \nu \in \mathbb{N})
$$

the $L^{2}(\mathbb{R})$ isometry of the Fourier integration yields the following estimate:

$$
\begin{aligned}
&\left.\frac{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} g Q_{1}\left(-\partial_{t}^{2}\right.}{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} g Q_{0}\left(-\Delta_{t}^{2}\right)},-\triangle_{\sigma}\right) g d t \mathrm{~d} \sigma \\
& \geq \inf _{\tau \in \mathbb{R}} \inf _{\nu \in \mathbb{N}} \frac{Q_{1}\left(\tau^{2}, \alpha_{\nu}\right)}{\sum_{\nu=1}^{\infty} \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} Q_{1}\left(\tau^{2}, \alpha_{\nu}\right)\left|\widehat{g}_{\nu}\right|^{2} d \tau \mathrm{~d} \sigma} \inf _{\nu \times \mathbb{S}^{N-1}} Q_{0}\left(\tau^{2}, \alpha_{\nu}\right)\left|\widehat{g}_{\nu}\right|^{2} d \tau \mathrm{~d} \sigma \\
&=\inf _{\tau \geq 0} \inf _{\nu \in \mathbb{N}}\left(\tau+\frac{4(\gamma-1) \alpha_{\nu}}{\tau+\alpha_{\nu}+\left(\gamma-\frac{N}{2}\right)^{2}}\right) \\
& Q_{0}\left(\tau, \alpha_{\nu}\right) \\
&=\min _{\tau \geq 0} \frac{Q_{1}\left(\tau, \alpha_{1}\right)}{Q_{0}\left(\tau, \alpha_{1}\right)}=\min _{\tau \geq 0}\left(\tau+\frac{4 \alpha_{1}(\gamma-1)}{\tau+\alpha_{1}+\left(\gamma-\frac{N}{2}\right)^{2}}\right),
\end{aligned}
$$

where the second last equality follows by using $\gamma>1$. Combine this result with ( 4.15 ), and we obtain

$$
\frac{\int_{\mathbb{R}}|r \nabla \boldsymbol{v}|^{2} r^{-N} d x}{\int_{\mathbb{R}^{N}}|\boldsymbol{v}|^{2} r^{-N} d x} \geq 2+\min _{\tau \geq 0}\left(\tau+\frac{4(N-1)(\gamma-1)}{\tau+N-1+\left(\gamma-\frac{N}{2}\right)^{2}}\right)
$$

to evaluate the quotient on the right-hand side of (4.4); therefore, the inequality

$$
\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \geq C_{P, N, \gamma} \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x
$$

holds with the constant number

$$
\begin{equation*}
C_{P, N, \gamma}=\left(\gamma+\frac{N}{2}-1\right)^{2}+2+\min _{\tau \geq 0}\left(\tau+\frac{4(N-1)(\gamma-1)}{\tau+N-1+\left(\gamma-\frac{N}{2}\right)^{2}}\right) \tag{4.16}
\end{equation*}
$$

§4.3. Optimality of $C_{P, N, \gamma}$. It follows from $\$ 4.2 .1$ and $\$ 4.2 .2$ that the inequality

$$
\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \geq C_{P, N, \gamma} \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x
$$

together with the constant number

$$
\begin{aligned}
& C_{P, N, \gamma}=\left(\gamma+\frac{N}{2}-1\right)^{2}+2+\min _{\tau \geq 0} \frac{Q_{1}\left(\tau, \alpha_{1}\right)}{Q_{0}\left(\tau, \alpha_{1}\right)} \\
& \text { where } \quad \frac{Q_{1}\left(\tau, \alpha_{1}\right)}{Q_{0}\left(\tau, \alpha_{1}\right)}=\tau+\frac{4(N-1)(\gamma-1)}{\tau+N-1+\left(\gamma-\frac{N}{2}\right)^{2}},
\end{aligned}
$$

holds for all poloidal fields $\boldsymbol{u}$ in $C_{c}^{\infty}\left(\dot{\mathbb{R}}^{N}\right)^{N}$, regardless of the case $\gamma \leq 1$ or $\gamma>1$. Let us show that this number is the best possible. To do so, choose $\tau_{\gamma} \geq 0$ to satisfy

$$
\min _{\tau \geq 0} \frac{Q_{1}\left(\tau, \alpha_{1}\right)}{Q_{0}\left(\tau, \alpha_{1}\right)}=\frac{Q_{1}\left(\tau_{\gamma}^{2}, \alpha_{1}\right)}{Q_{0}\left(\tau_{\gamma}^{2}, \alpha_{1}\right)}
$$

Define $\left\{g_{n}\right\}_{n \in \mathbb{N}} \subset C_{c}^{\infty}\left(\dot{\mathbb{R}}^{N}\right)$ as a sequence of scalar fields by

$$
g_{n}(\boldsymbol{x})=g_{n}\left(e^{t} \boldsymbol{\sigma}\right)=\zeta\left(\frac{t}{n}\right) \sigma_{1} \cos \left(\tau_{\gamma} t\right) \quad \forall n \in \mathbb{N}, \forall \boldsymbol{x} \in \dot{\mathbb{R}}^{N}
$$

where $\boldsymbol{\sigma}=\left(\sigma_{1}, \cdots, \sigma_{N}\right)=\boldsymbol{x} /|\boldsymbol{x}| \in \mathbb{S}^{N-1}$ and $t=\log |\boldsymbol{x}| \in \mathbb{R}$, and where $\zeta: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function $\not \equiv 0$ with compact support on $\mathbb{R}$; notice that the $g_{n}$ satisfies the eigenequation

$$
-\triangle_{\sigma} g_{n}=\alpha_{1} g_{n} \quad \text { on } \dot{\mathbb{R}}^{N} \quad(\forall n \in \mathbb{N})
$$

since $-\triangle_{\sigma} \sigma_{1}=\alpha_{1} \sigma_{1}$. In this setting, define $\left\{\boldsymbol{v}_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{P}\left(\dot{\mathbb{R}}^{N}\right)$ by

$$
\boldsymbol{v}_{n}=r^{\gamma+\frac{N}{2}-1} \boldsymbol{D}\left(r^{1-\gamma-\frac{N}{2}} g_{n}\right) \quad \forall n \in \mathbb{N}
$$

in terms of the poloidal generator, and apply the same calculation in (4.15) to the case $\boldsymbol{v}=\boldsymbol{v}_{n}$ :

$$
\frac{\int_{\mathbb{R}^{N}}\left|r \nabla \boldsymbol{v}_{n}\right|^{2} r^{-N} d x}{\int_{\mathbb{R}^{N}}\left|\boldsymbol{v}_{n}\right|^{2} r^{-N} d x}=2+\frac{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} g_{n} Q_{1}\left(-\partial_{t}^{2}, \alpha_{1}\right) g_{n} d t \mathrm{~d} \sigma}{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} g_{n} Q_{0}\left(-\partial_{t}^{2}, \alpha_{1}\right) g_{n} d t \mathrm{~d} \sigma}
$$

thanks to the above eigenequation. In order to compute the quotient on the righthand side, notice that the 1-D Fourier integration of $g_{n}$ yields

$$
\begin{aligned}
\widehat{g_{n}}(\tau, \boldsymbol{\sigma}) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i \tau t} g_{n}\left(e^{t} \boldsymbol{\sigma}\right) d t=\frac{\sigma_{1}}{\sqrt{2 \pi}} \int_{\mathbb{R}} \zeta\left(\frac{t}{n}\right) \frac{e^{-i\left(\tau-\tau_{\gamma}\right) t}+e^{-i\left(\tau+\tau_{\gamma}\right) t}}{2} d t \\
& =\frac{n \sigma_{1}}{2 \sqrt{2 \pi}} \int_{\mathbb{R}} \zeta(t)\left(e^{-i n\left(\tau-\tau_{\gamma}\right) t}+e^{-i n\left(\tau+\tau_{\gamma}\right) t}\right) d t \\
& =\frac{n \sigma_{1}}{2}\left(\widehat{\zeta}\left(n\left(\tau-\tau_{\gamma}\right)\right)+\widehat{\zeta}\left(n\left(\tau+\tau_{\gamma}\right)\right)\right) .
\end{aligned}
$$

By using this formula, the $L^{2}(\mathbb{R})$ isometry of the Fourier integration yields the following calculation:

$$
\begin{array}{r}
\frac{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} g_{n} Q_{1}\left(-\partial_{t}^{2}, \alpha_{1}\right) g_{n} d t \mathrm{~d} \sigma}{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} g_{n} Q_{0}\left(-\partial_{t}^{2}, \alpha_{1}\right) g_{n} d t \mathrm{~d} \sigma}=\frac{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} Q_{1}\left(\tau^{2}, \alpha_{1}\right)\left|\widehat{g_{n}}\right|^{2} d \tau \mathrm{~d} \sigma}{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} Q_{0}\left(\tau^{2}, \alpha_{1}\right)\left|\widehat{g_{n}}\right|^{2} d \tau \mathrm{~d} \sigma} \\
=\frac{\int_{\mathbb{R}} Q_{1}\left(\tau^{2}, \alpha_{1}\right)\binom{\left|\widehat{\zeta}\left(n\left(\tau-\tau_{\gamma}\right)\right)\right|^{2}+\left|\widehat{\zeta}\left(n\left(\tau+\tau_{\gamma}\right)\right)\right|^{2}}{+2 \operatorname{Re}\left(\overline{\widehat{\zeta}\left(n\left(\tau-\tau_{\gamma}\right)\right)} \widehat{\zeta}\left(n\left(\tau+\tau_{\gamma}\right)\right)\right)} d \tau}{\int_{\mathbb{R}} Q_{0}\left(\tau^{2}, \alpha_{1}\right)\binom{\left|\widehat{\zeta}\left(n\left(\tau-\tau_{\gamma}\right)\right)\right|^{2}+\left|\widehat{\zeta}\left(n\left(\tau+\tau_{\gamma}\right)\right)\right|^{2}}{+2 \operatorname{Re}\left(\overline{\widehat{\zeta}\left(n\left(\tau-\tau_{\gamma}\right)\right)} \widehat{\zeta}\left(n\left(\tau+\tau_{\gamma}\right)\right)\right)} d \tau} \\
=\frac{\int_{\mathbb{R}}\binom{\left(Q_{1}\left(\left(\tau_{\gamma}+\frac{\tau}{n}\right)^{2}, \alpha_{1}\right)+Q_{1}\left(\left(\tau_{\gamma}-\frac{\tau}{n}\right)^{2}, \alpha_{1}\right)\right)|\widehat{\zeta}(\tau)|^{2} d \tau}{+2 \operatorname{Re}\left(Q_{1}\left(\left(\tau_{\gamma}+\frac{\tau}{n}\right)^{2}, \alpha_{1}\right) \widehat{\widehat{\zeta}(\tau)} \widehat{\zeta}\left(\tau+2 n \tau_{\gamma}\right)\right)} d \tau}{\int_{\mathbb{R}}\left(\begin{array}{l}
\left(Q_{0}\left(\left(\tau_{\gamma}+\frac{\tau}{n}\right)^{2}, \alpha_{1}\right)+Q_{0}\left(\left(\tau_{\gamma}-\frac{\tau}{n}\right)^{2}, \alpha_{1}\right)\right)|\widehat{\zeta}(\tau)|^{2} d \tau \\
+2 \operatorname{Re}\left(Q_{0}\left(\left(\tau_{\gamma}+\frac{\tau}{n}\right)^{2}, \alpha_{1}\right) \widehat{\left.\widehat{\zeta}(\tau) \widehat{\zeta}\left(\tau+2 n \tau_{\gamma}\right)\right)}\right) d \tau \\
\longrightarrow
\end{array}\right.} \begin{array}{l}
Q_{1}\left(\tau_{\gamma}^{2}, \alpha_{1}\right) \int_{\mathbb{R}}|\zeta(\tau)|^{2} d \tau \\
Q_{0}\left(\tau_{\gamma}^{2}, \alpha_{1}\right) \int_{\mathbb{R}}|\zeta(\tau)|^{2} d \tau
\end{array} \frac{Q_{1}\left(\tau_{\gamma}^{2}, \alpha_{1}\right)}{Q_{0}\left(\tau_{\gamma}^{2}, \alpha_{1}\right)} \quad \text { as } n \rightarrow \infty .
\end{array}
$$

Here the convergence in the last line follows by using

$$
\begin{aligned}
\int_{\mathbb{R}} Q_{j}\left(\left(\tau_{\gamma}+\frac{\tau}{n}\right)^{2}, \alpha_{1}\right) \overline{\widehat{\zeta}(\tau)} \widehat{\zeta}\left(\tau+2 n \tau_{\gamma}\right) d \tau \\
\underset{(n \rightarrow \infty)}{\longrightarrow}\left\{\begin{array}{cl}
0 & \text { if } \tau_{\gamma} \neq 0 \\
Q_{j}\left(\tau_{\gamma}^{2}, \alpha_{1}\right) \int_{\mathbb{R}}|\zeta(\tau)|^{2} d \tau & \text { if } \tau_{\gamma}=0
\end{array}\right.
\end{aligned}
$$

for both $j=0$ and $j=1$; this fact is ensured by that $\widehat{\zeta}$ is rapidly decreasing. Combine the results above, and consequently

$$
\frac{\int_{\mathbb{R}^{N}}\left|r \nabla \boldsymbol{v}_{n}\right|^{2} r^{-N} d x}{\int_{\mathbb{R}^{N}}\left|\boldsymbol{v}_{n}\right|^{2} r^{-N} d x} \underset{(n \rightarrow \infty)}{\longrightarrow} 2+\frac{Q_{1}\left(\tau_{\gamma}^{2}, \alpha_{1}\right)}{Q_{0}\left(\tau_{\gamma}^{2}, \alpha_{1}\right)}=2+\min _{\tau \geq 0} \frac{Q_{1}\left(\tau, \alpha_{1}\right)}{Q_{0}\left(\tau, \alpha_{1}\right)}
$$

Therefore, it turns out from (4..9) that the sequence of poloidal fields

$$
\boldsymbol{u}_{n}=r^{1-\gamma-\frac{N}{2}} \boldsymbol{v}_{n}=\boldsymbol{D}\left(r^{1-\gamma-\frac{N}{2}} g_{n}\right) \quad(n=1,2, \cdots)
$$

satisfies

$$
\frac{\int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{n}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x}{\int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{n}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x} \rightarrow C_{P, N, \gamma} \quad(n \rightarrow \infty)
$$

as the desired optimality of $C_{P, N, \gamma}$.
§4.4. Estimation for toroidal fields: evaluation and optimality of $C_{T, N, \gamma}$. In this subsection, $\boldsymbol{u}$ is assumed to be toroidal with compact support on $\dot{\mathbb{R}}^{N}$. Let $\boldsymbol{v}$ be the toroidal field given by the same transformation

$$
\boldsymbol{v}(\boldsymbol{x})=|\boldsymbol{x}|^{\gamma+\frac{N}{2}-1} \boldsymbol{u}(\boldsymbol{x}) \quad\left(\forall \boldsymbol{x} \in \dot{\mathbb{R}}^{N}\right)
$$

as the first formula of (4.2). Applying the same calculation as in (4.7) and (4.8), we have

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x= & \left(\gamma+\frac{N}{2}-1\right)^{2} \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \\
& +\int_{\mathbb{R}^{N}}\left|\partial_{t} \boldsymbol{v}\right|^{2} r^{-N} d x+\int_{\mathbb{R}^{N}}\left|\nabla_{\sigma} \boldsymbol{u}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x
\end{aligned}
$$

On the other hand, recall from ( $\mathbf{B 2}$ ) that every toroidal field has zero spherical mean; then, considering the spherical harmonics expansion of (every component of) the toroidal field $\boldsymbol{u}$, we easily get the Poincaré type inequality

$$
\begin{aligned}
& \int_{\mathbb{S}^{N-1}}\left|\nabla_{\sigma} \boldsymbol{u}\right|^{2} \mathrm{~d} \sigma \geq \alpha_{1} \int_{\mathbb{S}^{N-1}}|\boldsymbol{u}|^{2} \mathrm{~d} \sigma \quad \text { (for any radius), } \\
\text { and hence } & \int_{\mathbb{R}^{N}}\left|\nabla_{\sigma} \boldsymbol{u}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x \geq \alpha_{1} \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x
\end{aligned}
$$

where the equality is attained if and only if $-\triangle_{\sigma} \boldsymbol{u}=\alpha_{1} \boldsymbol{u}$ on $\dot{\mathbb{R}}^{N}$. Combine this integral inequality with the above integral equation, and we get

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \geq C_{T, N, \gamma} \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x+\int_{\mathbb{R}^{N}}\left|\partial_{t} \boldsymbol{v}\right|^{2} r^{-N} d x \tag{4.17}
\end{equation*}
$$

together with the constant number

$$
\begin{equation*}
C_{T, N, \gamma}=\left(\gamma+\frac{N}{2}-1\right)^{2}+N-1 \tag{4.18}
\end{equation*}
$$

where the equality in (4.J7) is attained if and only if $-\triangle_{\sigma} \boldsymbol{u}=\alpha_{1} \boldsymbol{u}$ on $\dot{\mathbb{R}}^{N}$. In particular, we get the Hardy-Leray inequality

$$
\int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \geq C_{T, N, \gamma} \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x
$$

for toroidal fields. To show that the constant number given by (4.18) is the best possible in this inequality, we set

$$
\boldsymbol{v}_{0}(\boldsymbol{x}):=\left(-x_{2}, x_{1}, 0, \cdots, 0\right) \quad \forall \boldsymbol{x} \in \dot{\mathbb{R}}^{N}
$$

as a toroidal field satisfying the eigenequation

$$
-\triangle_{\sigma} \boldsymbol{v}_{0}=\alpha_{1} \boldsymbol{v}_{0} \quad \text { on } \dot{\mathbb{R}}^{N} .
$$

In this setting, define $\left\{\boldsymbol{v}_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{\boldsymbol{u}_{n}\right\}_{n \in \mathbb{N}}$ as two sequences of toroidal fields by

$$
\left.\begin{array}{l}
\boldsymbol{v}_{n}(\boldsymbol{x})=\zeta\left(\frac{\log |\boldsymbol{x}|}{n}\right) \boldsymbol{v}_{0}(\boldsymbol{x} /|\boldsymbol{x}|) \\
\boldsymbol{u}_{n}(\boldsymbol{x})=|\boldsymbol{x}|^{1-\gamma-\frac{N}{2}} \boldsymbol{v}_{n}(\boldsymbol{x})
\end{array}\right\} \quad \forall \boldsymbol{x} \in \dot{\mathbb{R}}^{N}, \forall n \in \mathbb{N},
$$

where $\zeta: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function $\not \equiv 0$ with compact support on $\mathbb{R}$. Now apply (4.I7) to the case $\boldsymbol{u}=\boldsymbol{u}_{n}$; then, thanks to the above eigenequation, we get

$$
\int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{n}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x=C_{T, N, \gamma} \int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{n}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x+\int_{\mathbb{R}^{N}}\left|\partial_{t} \boldsymbol{v}_{n}\right|^{2} r^{-N} d x \quad(\forall n \in \mathbb{N})
$$

Dividing both sides by $\int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{n}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x=\int_{\mathbb{R}^{N}}\left|\boldsymbol{v}_{n}\right|^{2} r^{-N} d x$, we obtain

$$
\begin{aligned}
\frac{\int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{n}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x}{\int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{n}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x} & =C_{T, N, \gamma}+\frac{\int_{\mathbb{R}^{N}}\left|\partial_{t} \boldsymbol{v}_{n}\right|^{2} r^{-N} d x}{\int_{\mathbb{R}^{N}}\left|\boldsymbol{v}_{n}\right|^{2} r^{-N} d x} \\
& =C_{T, N, \gamma}+\frac{\int_{\mathbb{R}}\left(n^{-1} \zeta^{\prime}(t / n)\right)^{2} d t}{\int_{\mathbb{R}^{\prime}}(\zeta(t / n))^{2} d t} \longrightarrow C_{T, N, \gamma} \quad(n \rightarrow \infty)
\end{aligned}
$$

as the desired the optimality of $C_{T, N, \gamma}$.
$\S 4.5$. Conclusion of the proof of main theorem and its remark. Substituting (4.16) and (4.58) into (4.1), we get

$$
\begin{aligned}
C_{N, \gamma} & =\min \left\{C_{P, N, \gamma}, C_{T, N, \gamma}\right\} \\
& =\left(\gamma+\frac{N}{2}-1\right)^{2}+\min \left\{2+\min _{\tau \geq 0}\left(\tau+\frac{4(N-1)(\gamma-1)}{\tau+N-1+\left(\gamma-\frac{N}{2}\right)^{2}}\right), N-1\right\}
\end{aligned}
$$

as the desired best constant ([.2) of the inequality (ㄴ.ᅦ) for all solenoidal fields $\boldsymbol{u}$.
Moreover, for the case $\gamma \leq 1$, we get the additional term of $\mathrm{H}-\mathrm{L}$ inequality in the following way: Notice from a direct computation that

$$
C_{N, \gamma}=C_{P, N, \gamma} \quad \text { and } \quad \begin{cases}C_{P, N, \gamma}=C_{T, N, \gamma} & \text { for }(N, \gamma)=(3,1) \\ C_{P, N, \gamma}<C_{T, N, \gamma} & \text { otherwise }\end{cases}
$$

By using this fact, the calculation of (4.ل4) $\boldsymbol{u}_{\boldsymbol{u}=\boldsymbol{u}_{P}}$ plus (4.J) $\boldsymbol{u}_{\boldsymbol{u}=\boldsymbol{u}_{T}}$ gives

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x=\int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{P}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x+\int_{\mathbb{R}^{N}}\left|\nabla \boldsymbol{u}_{T}\right|^{2}|\boldsymbol{x}|^{2 \gamma} d x \\
& \geq C_{P, N, \gamma} \int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{P}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x+C_{T, N, \gamma} \int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{T}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x \\
&+\mathcal{R}_{N, \gamma}\left[\boldsymbol{u}_{P}\right]+\int_{\mathbb{R}^{N}}\left|\partial_{t}\left(|\boldsymbol{x}|^{\gamma+\frac{N}{2}-1} \boldsymbol{u}_{T}\right)\right|^{2} r^{-N} d x \\
&= C_{N, \gamma} \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x+\left(C_{T, N, \gamma}-C_{P, N, \gamma}\right) \int_{\mathbb{R}^{N}}\left|\boldsymbol{u}_{T}\right|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x+\mathcal{R}_{N, \gamma}[\boldsymbol{u}] \\
& \geq C_{N, \gamma} \int_{\mathbb{R}^{N}}|\boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma-2} d x+\mathcal{R}_{N, \gamma}[\boldsymbol{u}]
\end{aligned}
$$

to arrive at the desired inequality $(\mathbb{L} .3)$. Here the second resp. last equality sign is attained if and only if

$$
-\triangle_{\sigma} u_{R}=\alpha_{1} u_{R} \quad \text { and } \quad-\triangle_{\sigma} \boldsymbol{u}_{T}=\alpha_{1} \boldsymbol{u}_{T} \quad \text { on } \dot{\mathbb{R}}^{N}
$$

resp. if and only if

$$
\boldsymbol{u}_{T} \equiv \mathbf{0} \quad \text { or } \quad(N, \gamma)=(3,1) ;
$$

hence both the equality signs are simultaneously attained if and only if

$$
-\triangle_{\sigma} u_{R}=\alpha_{1} u_{R} \quad \text { and } \quad\left\{\begin{array}{cl}
-\triangle_{\sigma} \boldsymbol{u}_{T}=2 \boldsymbol{u}_{T} & \text { for }(N, \gamma)=(3,1) \\
\boldsymbol{u}_{T}=\mathbf{0} & \text { otherwise }
\end{array} \quad \text { on } \dot{\mathbb{R}}^{N}\right.
$$

which gives the same attainability condition as in Remark ‥2. The proof of Theorem $\mathbb{\square}$ and its remark is now complete.

## Acknowledgments

This research was partly supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) 19H01800 (F. Takahashi). Additionally, this work was partly supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).

## References

[1] G. E. Backus, A class of self-sustaining dissipative spherical dynamos, Annals of Physics 4 (1958), no. 4, 372-447.
[2] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Revista Matemática de la Universidad Complutense de Madrid 10 (1997), no. 2, 443-469.
[3] L. A. Caffarelli, R. V. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Mathematica 53 (1984), no. 3, 259-275.
[4] O. Costin and V. G. Maz'ya, Sharp Hardy-Leray inequality for axisymmetric divergence-free fields, Calculus of Variations and Partial Differential Equations 32 (2008), no. 4, 523-532.
[5] N. Hamamoto, Three-dimensional sharp Hardy-Leray inequality for solenoidal fields, Nonlinear Analysis 191 (2020), 111634, 14 pp.
[6] N. Hamamoto and F. Takahashi, Sharp Hardy-Leray and Rellich-Leray inequalities for curlfree vector fields, Mathematische Annalen (2019).
[7] , Sharp Hardy-Leray inequality for three-dimensional solenoidal fields with axisymmetric swirl, Communications on Pure \& Applied Analysis 19 (2020), no. 6, 3209-3222.
[8] G. H. Hardy, Note on a theorem of Hilbert, Mathematische Zeitschrift 6 (1920), no. 3-4, 314-317.
[9] J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, Journal de Mathématiques Pures et Appliquées 12 (1933), 1-82 (French).
[10] N. Weck, The poloidal toroidal decomposition of differential forms, Analysis 17 (1997), no. 23, 265-285.

Osaka City University Advanced Mathematical Institute
3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
E-mail address: yhjyoe@yahoo.co.jp (N. Hamamoto)


[^0]:    2010 Mathematics Subject Classification. Primary 35A23; Secondary 26D10.
    Key words and phrases. Hardy-Leray inequality, Solenoidal, Poloidal, Toroidal, Spherical harmonics, Best constant.

