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A CLASSIFICATION OF LEFT-INVARIANT SYMPLECTIC

STRUCTURES ON SOME LIE GROUPS

LUIS PEDRO CASTELLANOS MOSCOSO AND HIROSHI TAMARU

Abstract. We are interested in the classification of left-invariant symplectic

structures on Lie groups. Some classifications are known, especially in low
dimensions. In this paper we establish a new approach to classify (up to

automorphism and scale) left-invariant symplectic structures on Lie groups.

The procedure is based on the moduli space of left-invariant nondegenerate 2-
forms. Then we apply our procedure for two particular Lie groups of dimension
2n and give classifications of left-invariant symplectic structures on them.

1. Introduction

In geometry it is an important problem to study whether a given manifold admits
some nice geometric structures. In the setting of Lie groups, it is natural to ask
about the existence of left-invariant structures. A symplectic Lie group is a Lie
group G endowed with a left-invariant symplectic form ω (that is, a nondegenerate
closed 2-form). The geometry of symplectic Lie groups is an active field of research.
There are many interesting results on the structure of symplectic Lie groups and
some classifications in low dimensions, but the general picture is far from complete.
Conjectures about the existence of isotropic subgroups are still unsolved. Some nice
known results include

(1) Unimodular symplectic Lie groups are solvable. All symplectic Lie groups
of dimension 4 are solvable ([5]).

(2) Some of the known classification in low dimensions include: complete clas-
sification for the 4-dimensional case ([14]), filiform Lie algebras up to di-
mension 10 ([6]), most of solvable Lie algebras up to dimension 6 ([12],[4]).

(3) Completely solvable symplectic Lie groups have Lagrangian subgroups. If
dimension ≤ 6, every symplectic Lie group has a Lagrangian subgroup. All
nilpotent symplectic Lie groups of dimension ≤ 6 have a Lagrangian normal
subgroup ([1]).

In [7] we can find a novel method to find nice (e.g., Einstein or Ricci soliton)
left-invariant Riemannian metrics. The method is based on the moduli space of
left-invariant Riemannian metrics on a Lie group G. Recall that there is a corre-
spondence between left-invariant metrics on G and inner products on its Lie algebra
g. The moduli space is defined as the orbit space of the action of R×Aut(g) on the

space M̃(g) of inner products on g. An expression of the moduli space derives a
Milnor-type theorem. Milnor-type theorems, first introduced in the aforementioned
paper, can be thought as a generalization of so called Milnor frames introduced by
Milnor in his famous paper [13]. In the setting of Riemannian metrics a Milnor-type
theorem gives an orthonormal basis for each inner product ⟨, ⟩ in g, such that the
bracket relations between the elements of the basis are given in terms of a small

This work was partly supported by Osaka City University Advanced Mathematical In-

stitute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JP-

MXP0619217849). The second author was supported by JSPS KAKENHI Grant Number
19K21831.

1



2 LUIS PEDRO CASTELLANOS MOSCOSO AND HIROSHI TAMARU

number of parameters. Therefore they can be used, for example, to calculate cur-
vatures in a relatively easy way. In [10] the same ideas are used successfully in the
pseudo-Riemannian case.

It would be then natural to try to use the same ideas for symplectic Lie groups.
In a similar way as before, the study of symplectic Lie groups reduces to the study
of symplectic Lie algebras (g, ω), that is Lie algebras g endowed with nondegenerate
closed 2-forms (or equivalently two-cocycles ω ∈ Z2(g)). We study the moduli
space of left-invariant nondegenerate 2-forms, which is the orbit space of the action
of R×Aut(g) on the space Ω(g) of nondegenerate 2-forms on g. Then we derive a
procedure to obtain Milnor-type theorems. In the setting of symplectic Lie groups
a Milnor-type theorem gives a symplectic basis for each nondegenerate 2-form in
g, such that the bracket relations between the elements of the basis are given in
terms of a small number of parameters. We show how these theorems can be used
to search for 2-forms that are closed. We also use our method to show the existence
of some particular subalgebras. These ideas are developed in Section 3. We would
like to emphasize that the approach presented in this paper is different from that in
the existing literature. In addition, the method can be used, at least theoretically,
for any Lie algebra.

As a first application of this method, in Section 5, we study two particular Lie
algebras: the Lie algebra of the real hyperbolic space gRH2n , and the direct sum of
the 3-dimensional Heisenberg Lie algebra and the abelian Lie algebra h3 ⊕ R2n−3.
These Lie algebras have particularly big automorphism groups: they are parabolic
subgroups of GL(2n,R). Therefore, we expect the corresponding moduli spaces to
be small, which is a reason of our choice of these Lie algebras. In fact, in [15] Wolf
proved that for the actions of parabolic subgroups on symmetric spaces of reductive
type (which is our case), the number of orbits is finite. For the first Lie algebra,
we will show in Section 5.1 that the action considered is transitive, and thus the
moduli space consists of just one element. Correspondingly, we obtain that there
is only one symplectic structure when n = 1 and no symplectic structure if n > 1.
For the second Lie algebra we will show in Section 5.2 that the action considered
has at most five orbits (depending on n). Correspondingly, we obtain that for the
second Lie algebra there is only one symplectic structure for all n > 0. Furthermore
we show that the second Lie algebra admits Lagrangian ideals for any n > 0.

As a tool for studying the moduli space we also obtain in Section 4 a slight
modification of a decomposition theorem of symplectic matrices called symplectic
QR decomposition.

The authors would like to thank Takayuki Okuda, Akira Kubo, Yuichiro Take-
tomi, Kaname Hashimoto, Yuji Kondo and Masahiro Kawamata for helpful com-
ments.

2. Preliminaries

In this section, we recall some basic notions on left-invariant symplectic forms
on Lie groups, and Lagrangian normal subgroups.

2.1. Left-invariant symplectic 2-forms. Let G be a simply connected Lie group
with dimension 2n and g its corresponding Lie algebra. We are interested in the
space of left-invariant symplectic forms on G:{

ω(·,·) ∈
∧2

T ∗G | ωn ̸= 0, left-invariant, dω = 0

}
.

This is a subset of the set of all nondegenerate left-invariant 2-forms, denoted by

Ω (G) :=

{
ω(·,·) ∈

∧2
T ∗G | ωn ̸= 0, left-invariant

}
.

For this set we have the following natural equivalence relation.
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Definition 2.1. Let ω1,ω2 ∈ Ω(G). Then, (G,ω1) and (G,ω2) are said to be
equivalent up to automorphism (resp. equivalent up to automorphism and scale) if
there exists ϕ ∈ Aut(G) such that ϕ∗ω1 = ω2 (resp. if there exist ϕ ∈ Aut(G) and
a constant c ̸= 0 such that c · (ϕ)∗ω1 = ω2).

It is well known that the space Ω (G) can be identified with the space of nonde-
generate 2-forms on g, denoted by

Ω(g) :=

{
ω (·,·) ∈

∧2
g∗ | ωn ̸= 0

}
.

For this set we have the following natural equivalence relation.

Definition 2.2. Let ω1, ω2 ∈ Ω(g). Then, (g, ω1) and (g, ω2) are said to be equiv-
alent up to automorphism (resp. equivalent up to automorphism and scale) if there
exists ϕ ∈ Aut(g) such that ϕ∗ω1 = ω2 (resp. if there exist ϕ ∈ Aut(g) and a
constant c ̸= 0 such that c · (ϕ)∗ω1 = ω2).

When the Lie group is simply connected both notions Definition 2.1 and Defi-
nition 2.2 of equivalence coincide. This fact allows us to work at the Lie algebra
level.

Remark 2.3. If (S, ω1) and (S, ω1) are symplectic manifolds and there exists ϕ ∈
Diff(S) such that ϕ∗ω1 = ω2, then (S, ω1) and (S, ω2) are said to be symplectomor-
phically equivalent and ϕ is called a symplectomorphism. Notice that the equiv-
alence relation in Definition 2.1 (and the corresponding notion in Definition 2.2)
is stronger, but this would be the usual notion of equivalence in symplectic Lie
groups. In fact, in the context of symplectic Lie groups, the map in Definition 2.1
or Definition 2.2 is also sometimes called a symplectomorphism.

Remember that a symplectic vector space is a pair (V, ω), where V is a vector
space and ω is a nondegenerate 2-form. For every ωg ∈ Ω(g) the pair (g, ωg) is a
symplectic vector space. The next is a well known fact.

Proposition 2.4. Let ωg ∈ Ω(g), and ωG ∈ Ω(G) be the corresponding 2-form on
the Lie group. Then ωG is closed if and only if ωg satisfies, for all x, y, z ∈ g

dωg(x, y, z) := ωg(x, [y, z]) + ωg(z, [x, y]) + ωg(y, [z, x]) = 0.

A 2-form ωg ∈ Ω(g) that satisfies the previous property will be called a closed
2-form or symplectic form on the Lie algebra g.

Remark 2.5. The previous condition can be expressed in terms of the cohomology
of Lie algebras. One knows that ωg is closed if and only if ω ∈ Z2(g), where Z2(g)
is the set of 2-cocyles in the trivial representation over R.

From the theory of homogeneous spaces we also have the identification

Ω(g) ∼= GL(2n,R)/Spn(R).
Here we identify g ∼= R2n, and then the general linear group GL(2n,R) acts transi-
tively on Ω (g) by

g.ω(·,·) = ω(g−1(·),g−1(·)) ∀g ∈ GL(2n,R).
We also recall that Spn(R) is the symplectic group, that is the group of linear maps
which preserve the canonical symplectic 2-form ω0 in R2n. If {e1, . . . , e2n} is the
canonical basis in R2n and {ε1, . . . , ε2n} is the corresponding dual basis, then the
canonical symplectic 2-form is given by

ω0 := ε1 ∧ εn+1 + · · ·+ εn ∧ ε2n.

Then the group Spn(R) can be described as

Spn(R) :=
{
A ∈ GL(2n,R) | tAJA = J

}
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where J :=

(
0 In

−In 0

)
.

Remark 2.6. The symplectic group Spn(R) is itself a Lie group, but this Lie group
is not the definition of “symplectic Lie group”.

We wish to study the set Ω (g) and use Proposition 2.4 to search for 2-forms that
are closed, but this set can be rather big so we introduce the concept of the moduli
space in Section 3.

2.2. Subalgebras of symplectic Lie algebras. In this subsection, we recall the
definition of some particular subalgebras of symplectic Lie algebras and make a brief
comment about their importance. For details, we refer to [1] and references within.

In the context of symplectic Lie algebras, isotropic and Lagrangian subalgebras
are of particular importance (at the Lie group level these correspond to isotropic and
Lagrangian subgroups, respectively). Given a subspace W of a symplectic vector
space (V, ω), recall that the orthogonal space W⊥ with respect to ω is defined by

W⊥ := {v ∈ V | ω(v, w) = 0 for all w ∈ W} .

Definition 2.7. Let (g, ω) be a symplectic Lie algebra. A subalgebra l ⊂ g is said
to be isotropic (resp. Lagrangian) if it satisfies l ⊂ l⊥ (resp. l = l⊥).

For example, the theory of symplectic reduction with respect to isotropic ideals
has been used to study the structure of symplectic Lie algebras. Lie algebras that
do not have a symplectic reduction (called irreducible) or those that can be reduced
to a trivial Lie algebra (called completely reducible) are of particular interest. In
particular, a classifications exists for irreducible symplectic Lie algebras. Lagrangian
ideals also appear in connection with flat Lie algebras, as every symplectic Lie
algebra with a Lagrangian ideal can be constructed as Lagrangian extension of a
flat Lie algebra.

In low dimensions several results with respect to the existence of isotropic and
Lagrangian subalgebras are known, but in general the question is still not satisfac-
torily answered.

3. The moduli spaces

In this section, we define the moduli space of left-invariant nondegenerate 2-forms
on a Lie group, and formulate the procedure to obtain a kind of generalization of
the Milnor frames.

3.1. The definition. Consider the automorphism group of g defined by

Aut(g) := {ϕ ∈ GL(2n,R) | ϕ[·,·] = [ϕ(·), ϕ(·)]} .

Also define R× := R \ 0. Then we can consider the set

R×Aut(g) :=
{
ϕ ∈ GL(2n,R) | ϕ ∈ Aut(g), c ∈ R×} ,

which is a subgroup of GL(2n,R). Hence it naturally acts on Ω (g). We can then
consider the orbit space of this action.

Definition 3.1. The orbit space of the action of R×Aut(g) on Ω (g) will be called
the moduli space of left-invariant nondegenerate 2-forms and will be denoted by

PΩ(g) := R×Aut(g) \ Ω(g) :=
{
R×Aut(g).ω | ω ∈ Ω(g)

}
.

One can easily see that, if ω1, ω2 ∈ Ω(g) are in the same R×Aut(g)-orbit, then
they are equivalent up to automorphism and scale. Therefore there is a surjection
from the moduli space PΩ(g) onto the quotient space

Ω(g)/“up to automorphism and scale”.
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This would be not bijective, since ω and −ω are possibly not in the same R×Aut(g)-
orbit. In other words, the moduli space PΩ(g) gives a finer partition than the latter
quotient space. Note that the equivalence up to automorphism and scale preserves
the closedness of 2-forms. Therefore, in order to search closed 2-forms, we have only
to consider this quotient space, and also the moduli space.

In the latter sections, instead of studying Ω(g) directly we will focus on studying
the moduli space: we want to find orbits that correspond to closed 2-forms. As
mentioned in the introduction, inspired in [7] and [10] we introduce in the next
subsection a strategy to study the moduli space and to find the orbits of closed
2-forms.

3.2. Milnor frames procedure. Remember that given a symplectic vector space
(V, ω) with dimV = 2n, we can always choose a basis {x1, . . . , x2n} of V such that
for i < j

ω(xi, xj) =

{
1 (if j = i+ n),

0 (all other cases).

This basis is called a symplectic basis.
Remember that we denote by ω0 the canonical symplectic form on a Lie algebra

g ∼= R2n. Let {e1, . . . , e2n} denote the corresponding symplectic basis. To simplify
the notation let us denote the orbit of R×Aut(g) through ω ∈ Ω(g) by

[ω] :=
(
R×Aut(g)

)
.ω :=

{
ϕ.ω | ϕ ∈ R×Aut(g)

}
.

Definition 3.2. A subset U ⊂ GL(2n,R) is called a set of representatives of PΩ(g)
if it satisfies

PΩ(g) = {[h.ω0] | h ∈ U} .

Remark 3.3. Of course the set of representatives is not unique. In practice we want
the set of representatives to be as small as possible.

Let [[g]] denote the double coset of g ∈ GL(2n,R) defined by

[[g]] := R×Aut(g) g Sp(2n,R) :=
{
ϕgs | ϕ ∈ R×Aut(g), s ∈ Spn(R)

}
.

By standard theory of double coset spaces, we have a criterion for a set U to be a
set of representatives (we refer to [7]).

Lemma 3.4. Let U ⊂ GL(2n,R), and assume that for every g ∈ GL(2n,R) there
exists h ∈ U such that h ∈ [[g]]. Then U is a set of representatives of PΩ(g).

Now we state a theorem for obtaining Milnor type frames in the symplectic case.

Theorem 3.5. Let U be a set of representatives of PΩ(g). Then for every ω ∈ Ω(g)
there exist k > 0, ϕ ∈ Aut(g) and h ∈ U such that {ϕge1, . . . , ϕge2n} is a symplectic
basis with respect to kω.

Proof. The proof is similar to [7], Theorem 2.4. Take ω ∈ Ω(g). Let ω0 be the
canonical symplectic form on g. From the definition of a set of representatives there
exists h ∈ U such that [ω] = [h.ω0]. Hence, there exist c ∈ R× and ϕ ∈ Aut(g) such
that ω = (cϕh).ω0. Then we can easily check that {ϕhe1, . . . , ϕhe2n} is a symplectic
basis with respect to c2ω. Note that k := c2 > 0, which completes the proof. □

The basis obtained in this theorem will be called Milnor frames. Notice that if
U has a small number of parameters, the bracket relations of the Milnor frames will
also be given in terms of a small set of parameters. In such cases, it becomes much
easier to search for closed 2-forms inside of Ω(g). In the same way Milnor frames
can also be useful to search for isotropic or Lagrangian subalgebras. We will show
the previous procedure in two concrete examples in Section 5. Before working some
concrete examples we introduce a tool that will be useful to calculate a smaller set
of representatives and to obtain nice Milnor frames.
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4. QR symplectic decomposition

In order to obtain a nice set of representatives, it is useful to have general results
for decomposing matrices using symplectic matrices. Some of the known results can
be seen in [2] and [3]. In this section we obtain a slight modification.

First of all we set up some notations. We denote by Ma×b(R) the set of all a× b
real matrices, by Ik the k× k identity matrix, and by tM the transpose of a matrix
M .

For M ∈ M2n×2n(R) we frequently use block decompositions. In most of the
matrices we use in this paper the size of each block can be understood from the
shape of the matrix, if confusion is possible we will describe explicitly the size of
the blocks. Also recall that P ∈ GL(n,R) is called a permutation matrix if it
induces a permutation among the elements in the standard basis {e1, . . . , en}. For
each permutation σ ∈ Sn of degree n, we denote the corresponding permutation

matrix by P
(n)
σ , if there is no possible confusion we will simply denote it by Pσ or

P . For example, the permutation matrix corresponding to the cyclic permutation
(n, n− 1, . . . , 2, 1) is given by

P
(n)
(n,n−1,...,2,1) =

 In−1

1

 .

We here make a list of well-known symplectic matrices in terms of the block
decompositions.

Proposition 4.1. The next 2n× 2n matrices are symplectic:

(1) Type 1 (
In C
0 In

)
or

(
In 0
C In

)
with C = tC .

(2) Type 2 (
A 0
0 tA−1

)
for any A ∈ GL(n,R) .

(3) Type 3(
P 0
0 P

)
for any permutation matrix P ∈ GL(n,R).

Note that Type 3 is just a special case of Type 2 because tP−1
σ = Pσ, but we

write it separately because we use it frequently. The next lemma gives a key step
to obtain our decomposition theorem.

Lemma 4.2. For all M ∈ GL(2n,R), there exists a symplectic matrix S ∈ Spn(R)
such that the left-upper n× n block of MS is nonsingular.

Proof. Take any M ∈ GL(2n,R), and denote its block decomposition by

M =

(
A B
C D

)
,(4.1)

where A,B,C,D are n× n matrices. Let r := rank(A). If r = n, then it is enough
to put S := I2n. Assume that r < n. Then we have only to show that there exists
S ∈ Spn(R) such that the left-upper n× n block of MS has rank bigger than r.

First of all, since r = rank(A) < n, it follows from linear algebra that there exist
g1, g2 ∈ GL(n,R) such that

g1Ag2 =

(
Ir 0
0 0

)
.(4.2)
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We define the following matrices:

K :=

(
g1 0
0 In

)
∈ GL(2n,R), S1 :=

(
g2 0

0 tg−1
2

)
∈ Spn(R).(4.3)

Then one can directly see that

M1 := KMS1 =


Ir 0 ∗ ∗
0 0 α β
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 ,(4.4)

where α ∈ Mn−r×r(R) and β ∈ Mn−r×n−r(R).
We here claim that we can assume β ̸= 0 without loss of generality. In order to

prove this, assume β = 0. Then one has α ̸= 0, since M1 is nonsingular. Therefore
there exists γ ∈ Mr×n−r(R) such that αγ ̸= 0. We define a symplectic matrix of
Type 2 by

S2 :=


Ir 0
−tγ In−r

Ir γ
0 In−r

 ∈ Spn(R).(4.5)

A direct calculation yields that

M1S2 =


Ir 0 ∗ ∗
0 0 α αγ
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .(4.6)

Recall that αγ ̸= 0, which completes the proof of the claim.
We assume β ̸= 0 from now on. Let us consider a symplectic matrix of Type 1

defined by

S3 :=


Ir

In−r

Ir
In−r In−r

 ∈ Spn(R).(4.7)

Then one can directly see that

M2 := M1S3 =


Ir 0 ∗ ∗
0 β α β
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .(4.8)

Since β ̸= 0, the rank of the left-upper block of M2 is bigger than r. This is also
true for

K−1M2 = K−1M1S3 = K−1(KMS1)S3 = M(S1S3),(4.9)

since the multiplication by K−1 does not change the rank of the left-upper block.
This completes the proof. □

We are now in the position to give our decomposition theorem. Recall that a
matrix T = (tij) ∈ Mn×n(R) is said to be strictly lower triangular (resp. lower
triangular) if tij = 0 holds for all i ≤ j (resp. i < j ).

Theorem 4.3. For all M ∈ GL(2n,R), there exist a symplectic matrix S ∈ Spn(R)
and a strictly lower triangular matrix T ∈ Mn×n(R) such that

MS =

(
In T
∗ ∗

)
.
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Proof. Take any M ∈ GL(2n,R). One then knows by Lemma 4.2 that there exists
S1 ∈ Spn(R) such that the left-upper n × n block of MS1 is nonsingular. Denote
by A ∈ GL(n,R) the left-upper block of MS1, that is,

M1 := MS1 =

(
A ∗
∗ ∗

)
.(4.10)

Then, by using a symplectic matrix of Type 2, we can transform M1 into

M2 := M1

(
A−1 0
0 tA

)
=

(
In B
∗ ∗

)
.(4.11)

For the block B, there exists a symmetric matrix C ∈ Mn×n(R) such that C + B
is strictly lower triangular. Hence, by using a symplectic matrix of Type 1, we can
transform M2 into

M3 := M2

(
In C
0 In

)
=

(
In C +B
∗ ∗

)
,(4.12)

which completes the proof. □

Our result is a modification of the so called QR unitary decomposition (see for
example [2] Theorem 2) as follows.

Remark 4.4 (Unitary QR decomposition). For any A ∈ M2n×2n(R), there always
exists a decomposition of the form A = RQ, where

Q ∈ Spn(R) ∩O(2n,R), R =

(
R11 R12

∗ ∗

)
,

with R11 being lower triangular and R12 strictly lower triangular.

Notice that in our case we are not restricted to unitary matrices and that the
matrix we want to decompose is always nonsingular.

5. Examples

5.1. The Lie group GRH2n . This group is the semidirect product of the abelian
group R and R2n−1, where R acts on R2n−1 by t.x := etx (t ∈ R, x ∈ R2n−1). The
corresponding Lie algebra of this group is gRH2n ∼= R2n = Span{e1, . . . , e2n}, with
bracket relations given by [e1, ek] = ek where k = 2, . . . , 2n. For this Lie algebra it
is known that (see [9])

R×Aut(gRH2n) =




∗ 0 · · · 0
∗
... ∗
∗

 ∈ GL(2n,R)

 ,(5.1)

where the size of this block decomposition is (1, 2n− 1).

Proposition 5.1. The action of R×Aut(gRH2n) on Ω(gRH2n) is transitive. A set
of representatives U for this action is given by

U = {I2n} .

Proof. Take any g ∈ GL(2n,R). By Theorem 4.3 there exists a matrix S ∈ Spn(R)
such that

[[g]] ∋ gS =

(
In T
∗ ∗

)
=: g1,(5.2)
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where T is strictly lower triangular. Hence one has g1 ∈ R×Aut (gRH2n), and also
g−1
1 ∈ R×Aut (gRH2n). This shows that

[[g]] ∋ g−1
1 g1 = I2n,(5.3)

which completes the proof. □

Theorem 5.2 (Milnor-type). For all ω ∈ Ω(gRH2n), there exist t > 0 and a sym-
plectic basis {x1, . . . , x2n} ⊂ gRH2n with respect to tω such that

[x1, xk] = xk for k = 2, . . . , 2n.

Proof. By Proposition 5.1, a set of representatives U for the action of R×Aut(gRH2n)
on Ω(gRH2n) is given just by the identity I2n. Take any ω ∈ Ω(gRH2n). Then, by
Theorem 3.5 there exists ϕ ∈ Aut(gRH2n) such that {x1 := ϕe1, . . . , xn := ϕen} is
symplectic with respect to tω. Hence, we only have to check the bracket relations
among them:

[x1, xk] = [ϕe1, ϕek] = ϕ[e1, ek] = ϕek = xk for k = 2, . . . , 2n.

This completes the proof. □

Now we can use Proposition 2.4 to search for closed 2-forms.

Corollary 5.3. Let ω ∈ Ω(gRH2n). Then dω = 0 if and only if n = 1.

Proof. For any ω ∈ Ω(gRH2n), we can find a symplectic basis {x1, . . . , x2n} with
respect to tω such that the bracket relation are given by Theorem 5.2. Notice that
when using the Milnor frames obtained in Theorem 5.2 to search for symplectic
forms, the parameter t has no effect on the condition of Proposition 2.4. Therefore,
we can take t = 1 without loss of generality.

If n = 1 we automatically have dω = 0. If n > 1 we have n + 2 ≤ 2n and
xn+2 ∈ gRH2n . Hence

dω(x1, x2, xn+2) = ω(x2, [xn+2, x1]) + ω(xn+2, [x1, x2])

= −2ω(x2, xn+2) = −2 ̸= 0.

Therefore, no closed 2-form corresponds to this case. This completes the proof. □

In terms of the above symplectic basis, one can easily see that l := Span {x2}
defines a Lagrangian ideal of gRH2n .

5.2. The Lie group H3 × R2n−3. This group is the direct product of the 3-
dimensional Heisenberg Lie group H3 and the abelian Lie group R2n−3. Denote
by h3 and R2n−3 the corresponding Lie algebras of H3 and R2n−3, respectively.
Then the corresponding Lie algebra of H3 × R2n−3 is

h3 ⊕ R2n−3 ∼= R2n = Span{e1, . . . , e2n}

with bracket relations given by [e1, e2] = e2n. For this Lie algebra we have that (see
[9])

R×Aut
(
h3 ⊕ R2n−3

)
=





∗ ∗ 0 · · · 0 0
∗ ∗ 0 · · · 0 0
∗ ∗ 0
...

... ∗
...

∗ ∗ 0
∗ ∗ ∗ · · · ∗ ∗


∈ GL(2n,R)


,(5.4)

where the size of this block decomposition is (2, 2n− 3, 1). In order to obtain a set
of representatives, we start with a calculation related to permutation matrices.
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Lemma 5.4. For any matrix of permutation Pσ, we can select

K1 :=


P

(2)
σ1

P
(n−2)
σ2

 , K2 :=

 P
(n−1)
σ3

1


such that

K2Pσ
tK1 ∈ {P(n,n−1,...,2,1), In}.

Proof. Let Pσ be a permutation matrix. Recall that each column vector of Pσ

coincides with some ek. First of all we consider the case that the matrix Pσ is of
the form

Pσ =


∗ ∗ 0 · · · 0

 .

We can select a matrix K1 of the above form such that

P ′
σ = Pσ

tK1 =


1 0 0 · · · 0

 .

Then there exists a matrix K2 such that K2P
′
σ = P(n,n−1,...,2,1).

We next consider the remaining case, that is,

Pσ =


0 0 ∗ · · · ∗

 .

In a similar way as the first case, we select a matrix K1 such that

P ′
σ = Pσ

tK1 =


0 · · · 0 1

 .

Finally we select a matrix K2 such that K2P
′
σ = In, which completes the proof. □

In terms of the above lemma, we study double cosets. The following lemma gives
a key step to obtain a set of representatives.

Lemma 5.5. For any g ∈ GL(2n,R), there exist P ∈ {In, P (n)
(n,n−1,...,2,1)} and a

strictly lower triangular matrix T such that

[[g]] ∋
(

In T
0 P

)
.(5.5)

Proof. Take g ∈ GL(2n,R). By Theorem 4.3 there exists a matrix S ∈ Spn(R)
which changes the left-upper block to In, that is,

[[g]] ∋ gS =

(
In ∗
C ∗

)
=: g1.(5.6)

By using a certain matrix in R×Aut
(
h3 ⊕ R2n−3

)
, we have

[[g]] ∋
(

In 0
−C In

)(
In ∗
C ∗

)
=

(
In ∗
0 D

)
=: g2.

Note that the matrix D is nonsingular. Then, by a result known as “LPU de-
composition” ([8] Theorem 3.5.11), there exist a lower triangular matrix L and an
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upper matrix triangular matrix U such that P ′ := LDU is a permutation matrix.
Therefore, we have

[[g]] ∋
(

tU
L

)
g2

(
tU−1

U

)
=

(
In ∗
0 P ′

)
=: g3.

For the permutation matrix P ′, we can choose K1 and K2 given in Lemma 5.4 such

that P := K2P
tK1 ∈ {In, P (n)

(n,n−1,...,2,1)}. Note that(
K1

K2

)
∈ R×Aut

(
h3 ⊕ R2n−3

)
,

because of the forms of K1 and K2. Hence, we have

[[g]] ∋
(

K1

K2

)
g3

(
K−1

1
tK1

)
=

(
In ∗
0 P

)
=: g4.

Finally, by the same way as in the proof of Theorem 4.3, we can use a symplectic
matrix S′ of Type 1 to transform g4 into the desired form

[[g]] ∋ g4S
′ =

(
In T
0 P

)
,

where T is strictly lower triangular. This completes the proof. □

We are now in the position to give a set of representatives for the action of
R×Aut

(
h3 ⊕ R2n−3

)
. In fact, it consists of two or five points, depending on n.

Proposition 5.6. A set of representatives U for the action of R×Aut(h3 ⊕R2n−3)
on Ω(h3 ⊕R2n−3) is given by the matrices (2) if n = 2, and by the matrices (1)–(3)
if n > 2:

(1)I2n + kE2,n+1, (2)

(
In 0
0 P(n,1,...,n−1)

)
+ kE2,n+1

(3)

(
In 0
0 P(n,1,...,n−1)

)
+ E3,n+1,

where k ∈ {0, 1}.

Proof. Take any g ∈ GL(2n,R). It is enough to show that [[g]] contains one of the
matrices (1)–(3) if n > 2 and one of the matrices (2) if n = 2. By Lemma 5.5, there

exist P ∈ {In, P (n)
(n,n−1,...,2,1)} and a strictly lower triangular matrix T such that

(5.7) [[g]] ∋
(

In T
0 P

)
=: g1.

We consider two cases according to the choice of P , and some subcases.

Case 1: P = P
(n)
(n,n−1,...,2,1). We write the matrix T ∈ Mn×n(R) as

T =

(
0 0
∗ T ′

)
,

where T ′ ∈ M(n−1)×(n−1)(R) is strictly lower triangular. We define some matrices:

A :=

(
0 0

−T ′ 0

)
∈ Mn×n(R), D :=

(
In A
0 In

)
∈ R×Aut

(
h3 ⊕ R2n−3

)
.

We use the matrix D to transform the matrix g1 into

[[g]] ∋ Dg1 =

(
In T +AP
0 P

)
=: g2.

By a direct calculation of T +AP , one can express g2 as

(5.8) g2 =

(
In 0
0 P

)
+ x2E2,n+1 + · · ·+ xnEn,n+1.
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We here consider the following three subcases.
Subcase 1–(i): x2 ̸= 0. In this case, we can transform x2 into 1 as follows. Define

the following two diagonal matrices:

V1 := E1,1 + (1/x2)E2,2 + E3,3 + · · ·+ En,n, V2 = P (tV −1
1 )tP.

Then we can take matrices which makes x2 into 1, that is,

[[g]] ∋
(

V1

V2

)
g2

(
V −1
1

tV1

)
=

(
In 0
0 P

)
+ E2,n+1 + x3E3,n+1 + · · ·+ xnEn,n+1 =: g3.

Now define the matrices:

T1 := In − x3E3,2 − · · · − xnEn,2 ∈ Mn×n(R), T2 := P (tT−1
1 )tP.

We can take matrices that eliminate the rest of parameters in g3, that is,

(5.9) [[g]] ∋
(

T1

T2

)
g3

(
T−1
1

tT1

)
=

(
In 0
0 P

)
+ E2,n+1.

This coincides with the matrix (2) of k = 1 in the statement of this proposition.
Subcase 1–(ii): x2 = 0 and n = 2. In this case we immediately obtain

(5.10) g2 =

(
I2 0
0 P(2,1)

)
,

which coincides with the matrix (2) of k = 0 in the statement of this proposition.
Subcase 1–(ii): x = 0 and n > 2. Given a vector t(x3, . . . , xn), it is well known

that there exists a matrix U ∈ GL(n− 2,R) such that

U · t(x3, . . . , xn) =
t(k, 0, . . . , 0),

where k ∈ {0, 1}. Define the matrices:

H1 :=

(
I2

U

)
∈ GL(n,R), H2 := P (tH−1

1 )tP.

Now we can consider the transformation

[[g]] ∋
(

H1

H2

)
g2

(
H−1

1
tH1

)
=: g3.

The effect of the previous transformation is just the action of U on the vector
t(x3, . . . , xn). Therefore one has

(5.11) g3 =

(
In 0
0 P

)
+ kE3,n+1,

where k ∈ {0, 1}. This coincides with the matrix (2) of k = 0, or with the matrix
(3) in the statement of this proposition.

Case 2: P = In. We consider the following two subcases.
Subcase 2–(i): n = 2. We show that this case is equivalent to Case 1. We have

g1 =

(
I2 T
0 I2

)
.

Define the matrices:

R =

(
P(2,1)

I2

)
∈ R×Aut

(
h3 ⊕ R1

)
, S =

(
P(2,1)

P(2,1)

)
∈ Sp2(R).

Now we can consider the transformation

[[g]] ∋ Rg1S =

(
I2 ∗
0 P(2,1)

)
=: g2.
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In a similar way to the final part of Lemma 5.5 we can use a symplectic matrix S′

of Type 1 to transform g2 into

[[g]] ∋ g2S
′ =

(
In T
0 P(2,1)

)
,

where T is strictly lower triangular. This matrix corresponds to Case 1. Therefore,
for the case of n = 2, we have obtained a set of representatives consisting of two
points.

Subcase 2–(ii): n > 2. We start from the matrix g1, and consider the matrix
T = (ti,j) ∈ Mn×n(R). Let us put

T ′ := T − t2,1E2,1.

Since T is lower triangular, one has

D′ :=

(
In −T ′

0 In

)
∈ R×Aut

(
h3 ⊕ R2n−3

)
.

We use the matrix D′ to transform the matrix g2 into

[[g]] ∋ D′g1 = I2n + t2,1E2,n+1 =: g2.

Finally, in a similar way to Case 1, if t2,1 ̸= 0 we can transform it easily into 1.
After this transformation we obtain

(5.12) [[g]] ∋ I2n + kE2,n+1,

where k ∈ {0, 1}. This coincides with the matrix (1) in the statement of this
proposition, which completes the proof. □

Given this set of representatives we can give a Milnor-type theorem.

Theorem 5.7 (Milnor-type). For all ω ∈ Ω(h3 ⊕ R2n−3), there exist t > 0, k ∈
{0, 1} and a symplectic basis {x1, . . . , x2n} of h3 ⊕ R2n−3 with respect to tω such
that the bracket relations are given by one of the following:

(1) [x1, x2] = x2n, [x1, xn+1] = kx2n (for n > 2),
(2) [x1, x2] = xn+1 − kx2, [x1, xn+1] = kxn+1 − k2x2, or
(3) [x1, x2] = xn+1 − x3 (for n > 2).

Proof. Let {e1, . . . , e2n} be the canonical basis of h3⊕R2n−3, whose bracket relation
is given by [e1, e2] = e2n. In Proposition 5.6 we obtained a set of representatives U
for the action of R×Aut(h3⊕R2n−3) on Ω(h3⊕R2n−3). Take any ω ∈ Ω(h3⊕R2n−3).
Then it follows from Theorem 3.5 that there exist u ∈ U, t > 0 and ϕ ∈ Aut(h3 ⊕
R2n−3) such that {x1 := ϕue1, . . . , xn := ϕuen} is symplectic with respect to tω.
Hence, we only have to check the bracket relations among them. We study each
case corresponding to the five matrices in U case by case.

Case 1: we consider the case of u = I2n + kE2,n+1 with k ∈ {0, 1} and n > 2,
which corresponds to the matrices (1) in Proposition 5.6. In this case one has

uei =

{
ke2 + en+1 (i = n+ 1),

ei (i ̸= n+ 1).

Therefore, among {ue1, . . . , ue2n}, the only possible nonzero bracket relations are

[ue1, ue2] = [e1, e2] = e2n = ue2n,

[ue1, uen+1] = [e1, ke2 + en+1] = kue2n.

By applying the automorphism ϕ to both sides, we obtain

[x1, x2] = [ϕue1, ϕue2] = ϕ[ue1, ue2] = ϕue2n = xn,

[x1, xn+1] = [ϕue1, ϕuen+1] = ϕ[ue1, uen+1] = ϕkue2n = kx2n.

Therefore the bracket relations are given by (1) in the statement of this theorem.



14 LUIS PEDRO CASTELLANOS MOSCOSO AND HIROSHI TAMARU

Case 2: we consider the case of(
In 0
0 P(n,1,...,n−1)

)
+ kE2,n+1 (with k ∈ {0, 1}),

which corresponds to the matrices (2) in Proposition 5.6. In this case one has

uei =


ei (i ≤ n),

ke2 + e2n (i = n+ 1),

ei−1 (i > n+ 1).

Therefore, among {ue1, . . . , ue2n}, the only possible nonzero bracket relations are

[ue1, ue2] = [e1, e2] = e2n = uen+1 − kue2,

[ue1, uen+1] = [e1, ke2 + en+1] = kuen+1 − k2ue2.

By applying the automorphism ϕ to both sides, we obtain the bracket relations
given by (2) in the statement of this theorem.

Case 3: we consider the case of n > 2 and(
In 0
0 P(n,1,...,n−1)

)
+ E3,n+1,

which corresponds to the matrices (3) in Proposition 5.6. In this case one has

uei =


ei (i ≤ n),

e3 + e2n (i = n+ 1),

ei−1 (i > n+ 1).

Therefore, among {ue1, . . . , ue2n}, the only possible nonzero bracket relations are

[ue1, ue2] = [e1, e2] = e2n = uen+1 − ue3.

By applying the automorphism ϕ to both sides, we obtain the bracket relations
given by (3). This completes the proof. □

Now we can use Proposition 2.4 to search for closed 2-forms and, obtain the
existence and uniqueness result as follows.

Corollary 5.8. There exists a unique symplectic structure on h3 ⊕ R2n−3 up to
automorphism and scale. In fact, ω ∈ Ω(h3 ⊕ R2n−3) satisfies dω = 0 if and only
if there there exist t > 0 and a symplectic basis {x1, . . . , x2n} ⊂ h3 ⊕ R2n−3 with
respect to tω such that

[x1, x2] = xn+1.

Proof. For any ω ∈ Ω(h3⊕R2n−3) we can find a symplectic basis {x1, . . . , x2n} with
respect to tω such that the bracket relations are given by (1)–(3) in Theorem 5.7.
As we did in Proposition 5.3 we take t = 1, without loss of generality. We check
the closed condition for each case.

Bracket relations (1). In this case we have n > 2, and

[x1, x2] = x2n, [x1, xn+1] = kx2n.

Note that [x1, xn] = 0 since n ̸= 2. Then one can see that

dω(x1, x2, xn) = ω(x1, [x2, xn]) + ω(xn, [x1, x2]) + ω(x2, [xn, x1])

= ω(xn, x2n) = 1 ̸= 0.

Therefore, no closed 2-form corresponds to this case.
Bracket relations (2). Recall that it satisfies

[x1, x2] = xn+1 − kx2, [x1, xn+1] = kxn+1 − k2x2.

One can easily see that

dω(x1, xn+1, xn+2) = ω(xn+2, [x1, xn+1]) = k2.
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Hence we have only to consider the case of k = 0. In this case, the bracket relations
reduce to

[x1, x2] = xn+1.

For this bracket relations it is easy to check that dω = 0. In particular, for each
j ∈ {3, . . . , 2n}, we have

dω(x1, x2, xj) = ω(xj , [x1, x2]) = ω(xj , xn+1) = 0.

This bracket corresponds to a closed 2-form, as desired.
Bracket relations (3). In this case we have n > 2, and

[x1, x2] = xn+1 − x3.

Then one can easily see that

dω(x1, x2, xn+3) = ω(xn+3, [x1, x2]) = 1 ̸= 0.

Therefore, no closed 2-form corresponds to this case. This completes the proof. □

In terms of the above symplectic basis, one can easily see the existence of a La-
grangian normal subgroup in H3×R2n−3, equipped with a left-invariant symplectic
structure.

Corollary 5.9. For every symplectic structure on h3 ⊕ R2n−3 there exists a La-
grangian ideal.

Proof. Let ω be a symplectic structure on h3⊕R2n−3. Then by Corollary 5.8, there
exist t > 0 and a symplectic basis {x1, . . . , x2n} with respect to tω such that

[x1, x2] = xn+1.

Define l = {x2, . . . , xn, xn+1}. Then one can easily check that l is a Lagrangian
ideal. □
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