EXISTENCE OF BLOWING-UP SOLUTIONS TO SOME SCHRÖDINGER EQUATIONS INCLUDING NONLINEAR AMPLIFICATION WITH SMALL INITIAL DATA

Naoyasu Kita

Citation	OCAMI Preprint Series. 2020, 20-2.
Issue Date	$2020-06-05$
Type	Preprint
Textversion	Author

From: Osaka City University Advanced Mathematical Institute
https://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html

EXISTENCE OF BLOWING-UP SOLUTIONS TO SOME SCHRÖDINGER EQUATIONS INCLUDING NONLINEAR AMPLIFICATION WITH SMALL INITIAL DATA

Naoyasu Kita

Abstract

We consider the existence of blowing-up solutions to some Schrödinger equations including nonlinear amplification. The blow-up is considered in $L^{2}(\mathbb{R})$. Even though initial data are taken so small, there exists some solutions blowing-up in finite time. The theorem in this paper is an extension of Cazenave-Martel-Zhao's result [2] from the points of making the lower bound of power of nonlinearity extended and ensuring that blowing-up solutions exist even for small initial data.

1 Introduction and Main Result

We consider the Cauchy problem of a nonlinear Schrödinger equation:

$$
\left\{\begin{array}{l}
i \partial_{t} u=-\frac{1}{2} \partial_{x}^{2} u+(\lambda+i \kappa)|u|^{p-1} u, \tag{1.1}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

where the complex-valued unknown function $u=u(t, x)$ is defined on $(t, x) \in[0, T) \times \mathbb{R}^{1}$. In the nonlinearity, the power satisfies $2<p \leq 3$ and the coefficients $\lambda, \kappa \in \mathbb{R}$ satisfy

$$
\begin{equation*}
\kappa>0, \quad(p-1)|\lambda| \leq 2 \sqrt{p} \kappa . \tag{1.2}
\end{equation*}
$$

In particular, the positivity of κ in (1.2) implies that the nonlinearity affects as an amplification. To see it, we refer to the idea of Zhang [3]. If the region of x is a bounded interval I and Dirichlet boundary condition is imposed, then it is easy to show that, for $u_{0} \in L^{2}(\mathbb{R})$ and $u_{0} \neq 0$, the solution to (1.1) blows up in finite time. In fact, we have

$$
\begin{aligned}
\frac{d\|u(t)\|_{L^{2}(I)}^{2}}{d t} & =2 \operatorname{Re}\left(u(t), \partial_{t} u(t)\right)_{L^{2}(I)} \\
& =2 \kappa\|u(t)\|_{L^{p+1}(I)}^{p+1},
\end{aligned}
$$

where $(f, g)_{L^{2}(I)}=\int_{I} f(x) \overline{g(x)} d x$ is the usual L^{2}-inner product. Applying Hölder's inequality : $|I|^{(p-1) / 2}\|u(t)\|_{L^{p+1}(I)}^{p+1} \geq\|u(t)\|_{L^{2}(I)}^{p+1}$ where $|I|$ denotes the size of the interval, we see that

$$
\frac{d\|u(t)\|_{L^{2}(I)}^{2}}{d t} \geq 2 \kappa|I|^{-(p-1) / 2}\|u(t)\|_{L^{2}(I)}^{p+1}
$$

2010 Mathematics Subject Classification. Primary 35Q55; Secondary 35B40.
Key Words and Phrases. nonlinear Schrödinger equation, nonlinear amplification, blowing-up solution, small initial data

Solving this differential inequality, we have

$$
\|u(t)\|_{L^{2}(I)} \geq \frac{\left\|u_{0}\right\|_{L^{2}(I)}}{\left\{1-\kappa(p-1)|I|^{-(p-1 / 2)}\left\|u_{0}\right\|_{L^{2}(I)}^{p-1} t\right\}^{1 /(p-1)}},
$$

and we know that $\|u(t)\|_{L^{2}(I)}$ blows up in finite time. However, this kind of estimate holds only in the case that x belongs to the bounded interval. Once the region becomes unbounded, the dispersion associated with $-\frac{1}{2} \partial_{x}^{2}$ will work so that the nonlinear amplification is suppressed, and it is difficult to presume that the nonlinear amplification surely generates a blowing-up solution. Actually when $3<p$ and u_{0} is sufficiently small in $H^{1}(\mathbb{R})$ with $x u_{0} \in L^{2}(\mathbb{R})$ also small, the solution to (1.1) exists globally in time. This is because $|u(t, x)|^{p-1} \sim C t^{-(p-1) / 2}$ is integrable for large t, and the nonlinearity does not affect to the behavior of the solution. This observation suggests that, if we expect the blow-up for a small initial data, it is necessary to assume $p \leq 3$.

Our goal is to obtain blowing-up solutions to (1.1) even though the smallness is assumed on the initial data.

Theorem 1.1. Let $2<p \leq 3$. Also let λ and κ satisfy (1.2). Then, for any $\rho>0$, there exists some initial data $u_{0} \in L^{2}(\mathbb{R})$ such that
(i) $\left\|u_{0}\right\|_{L^{2}(\mathbb{R})}<\rho$,
(ii) the solution u to (1.1) with u_{0} as the initial data satisfies

$$
\begin{equation*}
\lim _{t \uparrow T *}\|u(t)\|_{L^{2}(\mathbb{R})}=\infty \tag{1.3}
\end{equation*}
$$

for some $T^{*}>0$.

Theorem 1.1 asserts the existence of a blowing-up solution only for some special small initial data. It remains open whether any small initial data except for $u_{0}=0$ give rise to the blow-up. In Theorem 1.1, the lower bound of p is required by the technical reason that the blowing-up profile must be integrable around the blowing-up time with respect to t. The upper bound of p is required to ensure the existence of blowing-up solution with small initial data. Precisely speaking, we will first construct a blowing-up profile, construct a solution to (1.1) which approaches to the profile while $t \uparrow T *$, and extend it backward in time. In order to guarantee the decay of the solution in the negative time-direction, the assumption of $p \leq 3$ is required.

The construction of a blowing-up solution to some Schrödinger equation with nonlinear source term was considered by Cazenave-Martel-Zhao [2]. They treated the N-dimensional nonlinear Scrödinger equation :

$$
i \partial_{t} u=-\Delta u+i|u|^{p-1} u
$$

where $(t, x) \in \mathbb{R} \times \mathbb{R}^{N}$ and $\Delta=\sum_{j=1}^{N} \partial_{x_{j}}^{2}$. In their idea, a profile $\varphi(t, x)$ of the blowing-up solution was firstly determined, which is subject to the ODE :

$$
i \partial_{t} \varphi(t, x)=i|\varphi|^{p-1} \varphi(t, x)
$$

They employed, for instance, $\varphi(t, x)=\left((p-1)|t|+A|x|^{k}\right)^{-1 /(p-1)}$ for some $A, k>0$, which blows up at $t=0$, and solve the nonlinear Schrödinger equation in $H^{1}\left(\mathbb{R}^{N}\right)$ by setting $u(t, x)=\varphi(t, x)+v(t, x)$ with $v(0, x)=0$. In [2], the blow up of small initial data was not considered. In their argument, the condition $3 \leq p$ was assumed. We extend this restriction to $2<p$ by somewhat sophisticated nonlinear estimate as well as the coefficient of nonlinearity is generalized as in (1.2). We will not consider N-dimensional problem since the p must be restricted into $p \leq 1+2 / N$ and the $\varphi(t, x)=O\left(|t|^{-1 /(p-1)}\right)$ shows a non-integrable singularity if $N \geq 2$.

2 Blowing-Up Profiles

We expect that the blow-up of the solutions is caused by the nonlinearity, and so the dispersion associated with $-\frac{1}{2} \partial_{x}^{2}$ does not work so strongly just before the blowing-up time. This observation suggests that the blowing-up profile is subject to the ordinary differential equation :

$$
\begin{equation*}
i \partial_{t} \varphi(t, x)=(\lambda+i \kappa)|\varphi(t, x)|^{p-1} \varphi(t, x) . \tag{2.1}
\end{equation*}
$$

For (2.1), we impose an initial data $\varphi(-1, x)=\varphi_{-1}(x)$ at each $x \in \mathbb{R}$, where φ_{-1} satisfies
(A) The assumption on φ_{-1} :
(A.1) The $\varphi_{-1} \in C_{0}^{\infty}(\mathbb{R})$ is real valued.
(A.2) $0 \leq \varphi_{-1}(x) \leq(\kappa(p-1))^{-1 /(p-1)}$.
(A.3) $\varphi_{-1}(x)=(\kappa(p-1))^{-1 /(p-1)}$ if and only if $x=0$.
(A.4) $\varphi_{-1}(x)=(\kappa(p-1))^{-1 /(p-1)}\left(1-x^{2 N}\right)^{1 /(p-1)}$ for $|x|<1 / 2$, where $N>0$ is sufficiently large integer.
(A.5) $\varphi_{-1}(x) \leq \varphi_{-1}(1 / 2)$ for $|x| \geq 1 / 2$.

The ODE in (2.1) is easy to slove. In fact, by (2.1), we see that

$$
\partial_{t}|\varphi(t, x)|^{2}=2 \kappa|\varphi(t, x)|^{p+1}
$$

which yields

$$
\begin{equation*}
\partial_{t}|\varphi(t, x)|^{-(p-1)}=-\kappa(p-1) . \tag{2.2}
\end{equation*}
$$

Integrating (2.2) from -1 to $t<0$, we have

$$
\begin{equation*}
|\varphi(t, x)|=\frac{\left|\varphi_{-1}(x)\right|}{\left\{1-\kappa(p-1)\left|\varphi_{-1}(x)\right|^{p-1}(t+1)\right\}^{1 /(p-1)}} . \tag{2.3}
\end{equation*}
$$

Substitute (2.3) into the $|\varphi(t, x)|^{p-1}$ on the right hand side of (2.1). Then we notice that it is a standard first order ODE of $\varphi(t, x)$, and we obtain

$$
\begin{equation*}
\varphi(t, x)=\varphi_{-1}(x)\left\{1-\kappa(p-1) \varphi_{-1}^{p-1}(x)(t+1)\right\}^{\left(-1+i \frac{\lambda}{\kappa}\right) \frac{1}{p-1}} \tag{2.4}
\end{equation*}
$$

We call $\varphi(t, x)$ in (2.4) the blowing-up profile. By the assumption (A) on φ_{-1}, the $\varphi(t, x)$ blows up at $t=0$, and, precisely speaking, $\lim _{t \uparrow 0}|\varphi(t, 0)|=\infty$ occurs but $|\varphi(0, x)|<\infty$ for $x \neq 0$. The condition (A.4) suggests that the graph of $\varphi_{-1}(x)$ is so flat around $x=0$, which guarantees that the blowing-up rates of $\partial_{x} \varphi(t, x)$ and higher derivatives do not violate the integrability with respect to t around $t=0$ when $2<p$. We will see the detail on $\varphi(t, x)$ in next lemma.

Lemma 2.1. Let φ_{-1} be such as defined in the assumption (A), and let j be an integer satisfying $0 \leq j \leq N$. Then there exist some $C_{j}>0$ such that the blowing-up profile (2.4) satisfies

$$
\begin{equation*}
\left|\partial_{x}^{j} \varphi(t, x)\right| \leq C_{j}|t|^{-1 /(p-1)-j /(2 N)} \tag{2.5}
\end{equation*}
$$

for any $t \in(-1,0)$.

Proof of Lemma 2.1. It suffices to prove (2.5) for $x \in(-1 / 2,1 / 2)$, since the blowup takes place at $x=0$ first. By the assumption (A), $\varphi_{-1}(x)=(\kappa(p-1))^{-1 /(p-1)}(1-$ $\left.x^{2 N}\right)^{1 /(p-1)}$ if $|x|<1 / 2$. Substitute it into (2.4). Then we have

$$
\varphi(t, x)=(\kappa(p-1))^{-1 /(p-1)}\left(1-x^{2 N}\right)^{1 /(p-1)}\left\{(t+1) x^{2 N}-t\right\}^{\left(-1+i \frac{\lambda}{\kappa}\right) \frac{1}{p-1}}
$$

Applying Leibniz' rule and regarding $\left(1-x^{2 N}\right)^{1 /(p-1)} \sim 1-\frac{1}{p-1} x^{2 N}$, we have

$$
\begin{align*}
\left|\partial_{x}^{j} \varphi(t, x)\right| \leq & C\left(1-x^{2 N}\right)^{1 /(p-1)}\left|\partial_{x}^{j}\left\{(t+1) x^{2 N}-t\right\}^{\left(-1+i \frac{\lambda}{\kappa}\right) \frac{1}{p-1}}\right| \\
& +C \sum_{k=0}^{j-1}|x|^{2 N-(j-k)}\left|\partial_{x}^{k}\left\{(t+1) x^{2 N}-t\right\}^{\left(-1+i \frac{\lambda}{k}\right) \frac{1}{p-1}}\right| \tag{2.6}
\end{align*}
$$

Note that, for the first term of (2.6), the chain rule yields

$$
\begin{aligned}
& \left|\partial_{x}^{j}\left\{(t+1) x^{2 N}-t\right\}^{\left(-1+i \frac{\lambda}{\kappa}\right) \frac{1}{p-1}}\right| \\
& \quad \leq C \sum_{\ell=1}^{j} \sum_{\left(\mu_{1}, \cdots, \mu_{\ell}\right) \in S_{j, \ell}}\left|\partial_{x}^{\mu_{1}} x^{2 N}\right| \cdot\left|\partial_{x}^{\mu_{2}} x^{2 N}\right| \cdots\left|\partial_{x}^{\mu_{\ell}} x^{2 N}\right| \cdot\left|(t+1) x^{2 N}-t\right|^{-1 /(p-1)-\ell} \\
& \quad \leq C \sum_{\ell=1}^{j}|x|^{2 N \ell-j} \cdot\left|(t+1) x^{2 N}-t\right|^{-1 /(p-1)-\ell},
\end{aligned}
$$

where $S_{j, \ell}=\left\{\left(\mu_{1}, \cdots, \mu_{\ell}\right) \in \mathbb{N}^{\ell} ; \mu_{1}+\cdots+\mu_{\ell}=j\right\}$. We apply the similar estimate to the
second term of (2.6). Then we have, for $x \in(-1 / 2,1 / 2)$,

$$
\begin{align*}
\left|\partial_{x}^{j} \varphi(t, x)\right| \leq & C
\end{align*} \sum_{\ell=1}^{j}|x|^{2 N \ell-j} \cdot\left|(t+1) x^{2 N}-t\right|^{-1 /(p-1)-\ell}, \quad+C \sum_{k=1}^{j-1}|x|^{2 N-(j-k)} \sum_{\ell=1}^{k}|x|^{2 N \ell-k} \cdot\left|(t+1) x^{2 N}-t\right|^{-1 /(p-1)-\ell} .
$$

Let $\xi=(t+1) x^{2 N} /|t|$. Then, from (2.7), it follows that

$$
\begin{align*}
\left|\partial_{x}^{j} \varphi(t, x)\right| \leq C & \sum_{\ell=1}^{j} \frac{|t|^{-1 /(p-1)-j /(2 N)}}{(t+1)^{\ell-j /(2 N)}} \xi^{\ell-j /(2 N)}(\xi+1)^{-1 /(p-1)-\ell} \\
& +C|x|^{2 N} \sum_{k=1}^{j-1} \sum_{\ell=1}^{k} \frac{|t|^{-1 /(p-1)-j /(2 N)}}{(t+1)^{\ell-j /(2 N)}} \xi^{\ell-j /(2 N)}(\xi+1)^{-1 /(p-1)-\ell} \\
& +C|x|^{2 N-j} \cdot \frac{|t|^{-1 /(p-1)}}{(t+1)^{-1 /(p+1)}}(\xi+1)^{-1 /(p-1)} . \tag{2.8}
\end{align*}
$$

Since $\sup _{\xi \geq 0} \xi^{\ell-j /(2 N)}(\xi+1)^{-1 /(p-1)-\ell}<\infty$, (2.8) yields

$$
\begin{aligned}
\left|\partial_{x}^{j} \varphi(t, x)\right| & \leq C|t|^{-1 /(p-1)-j /(2 N)}+C|x|^{2 N} \cdot|t|^{-1 /(p-1)-j /(2 N)}+C|x|^{2 N-j} \cdot|t|^{-1 /(p-1)} \\
& \leq C\left(1+(1 / 2)^{2 N}+(1 / 2)^{2 N-j}\right)|t|^{-1 /(p-1)-j /(2 N)} \cdot
\end{aligned}
$$

In the subsequent section, we will use a modified profiles $\varphi_{\nu}(t, x)=\varphi(t-\nu, x)$ for $\nu \in(0,1]$ to consider approximate solutions around the blowing-up time. Applying the analogy in the proof of Lemma 2.1, we have some properties of $\varphi_{\nu}(t, x)$.
Corollary 2.2. Let φ_{-1} be such as defined in the assumption (A). Let j be an integer satisfying $0 \leq j \leq N$, and $\varepsilon \in(0,1]$. Then there exist some $C_{j}>0, C_{j, \varepsilon}>0$ and $\delta>0$ independent of $\nu, \nu^{\prime} \in(0,1]$ such that

$$
\begin{align*}
& \left|\partial_{x}^{j} \varphi_{\nu}(t, x)\right| \leq C_{j}|t|^{-1 /(p-1)-j /(2 N)} \tag{2.9}\\
& \left|\partial_{x}^{j}\left(\varphi_{\nu}(t, x)-\varphi_{\nu^{\prime}}(t, x)\right)\right| \leq C_{j, \varepsilon}|t|^{-1 /(p-1)-j /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime \varepsilon}\right) \tag{2.10}
\end{align*}
$$

for any $t \in(-\delta, 0)$.
Proof of Corollary 2.2. By Lemma 2.1, we have

$$
\begin{aligned}
\left|\partial_{x}^{j} \varphi_{\nu}(t, x)\right| & =\left|\partial_{x}^{j} \varphi(t-\nu, x)\right| \\
& \leq C|t-\nu|^{-1 /(p-1)-j /(2 N)} \\
& \leq C|t|^{-1 /(p-1)-j /(2 N)}
\end{aligned}
$$

and we obtain (2.9). We next consider

$$
\varphi_{\nu}(t, x)-\varphi(t, x)=-\int_{t-\nu}^{t} \partial_{\tau} \varphi(\tau, x) d \tau
$$

Since

$$
\partial_{\tau} \varphi(\tau, x)=(\kappa-i \lambda) \varphi_{-1}^{p}(x)\left\{1-\kappa(p-1) \varphi_{-1}^{p-1}(x)(t+1)\right\}^{\left(-1+i \frac{\lambda}{\kappa}\right) \frac{1}{p-1}-1},
$$

we may retrace the estimate as we did in the proof of Lemma 2.1, replacing the power $\left(-1+i \frac{\lambda}{\kappa}\right) \frac{1}{p-1}$ by $\left(-1+i \frac{\lambda}{\kappa}\right) \frac{1}{p-1}-1$. Hence we have

$$
\begin{align*}
\left|\partial_{x}^{j}\left(\varphi_{\nu}(t, x)-\varphi(t, x)\right)\right| & \leq \int_{t-\nu}^{t}\left|\partial_{x}^{j} \partial_{\tau} \varphi(\tau, x)\right| d \tau \\
& \leq C \int_{t-\nu}^{t}|\tau|^{-1-1 /(p-1)-j /(2 N)} d \tau \tag{2.11}
\end{align*}
$$

The integrand is bounded by $|\tau|^{-1+\varepsilon}|\tau|^{-1 /(p-1)-j /(2 N)-\varepsilon} \leq|\tau|^{-1+\varepsilon}|t|^{-1 /(p-1)-j /(2 N)-\varepsilon}$. Then we see that

$$
\begin{aligned}
\left|\partial_{x}^{j}\left(\varphi_{\nu}(t, x)-\varphi(t, x)\right)\right| & \leq C_{j}|t|^{-1 /(p-1)-j /(2 N)-\varepsilon} \int_{t-\nu}^{t}|\tau|^{-1+\varepsilon} d \tau \\
& \leq \frac{C_{j}}{\varepsilon}|t|^{-1 /(p-1)-j /(2 N)-\varepsilon}\left(|t-\nu|^{\varepsilon}-|t|^{\varepsilon}\right) \\
& \leq C_{j, \varepsilon}|t|^{-1 /(p-1)-j /(2 N)-\varepsilon} \nu^{\varepsilon}
\end{aligned}
$$

Since $\left|\partial_{x}^{j}\left(\varphi_{\nu}-\varphi_{\nu^{\prime}}\right)\right| \leq\left|\partial_{x}^{j}\left(\varphi_{\nu}-\varphi\right)\right|+\left|\partial_{x}^{j}\left(\varphi_{\nu^{\prime}}-\varphi\right)\right|$, we obtain (2.10).

3 A Solution Around the Blowing-Up Profile

We will construct a solution to (1.1) locally in negative time, which asymptotically tends to $\varphi(t, x)$ as $t \uparrow 0$. To this end, we write $u(t, x)=\varphi(t, x)+v(t, x)$. Then the equation that $v=v(t, x)$ satisfies is

$$
\left\{\begin{array}{l}
i \partial_{t} v=-\frac{1}{2} \partial_{x}^{2} v-\frac{1}{2} \partial_{x}^{2} \varphi+(\lambda+i \kappa)(\mathcal{N}(\varphi+v)-\mathcal{N}(\varphi)) \tag{3.1}\\
v(0, x)=0
\end{array}\right.
$$

where $\mathcal{N}(u)=|u|^{p-1} u$. One may first suppose to apply the contraction mapping priciple to (3.1) via Duhamel's priciple. But this apprach will not work so well, since the nonlinear estimate such as

$$
|\mathcal{N}(\varphi+v)-\mathcal{N}(\varphi)| \leq C\left(|\varphi|^{p-1}+|v|^{p-1}\right)|v|
$$

contains the non-integrable singularity on $|\varphi|^{p-1}=O\left(|t|^{-1}\right)$ around $t=0$. Thus we need to apply another approach so called the energy method. To derive a decay estimate of $\|u(t, \cdot)\|_{L^{2}(\mathbb{R})}$ as $t \rightarrow-\infty$, we must solve (3.1) in the weighted L^{2} space. In this section, we will prove the next proposition.

Proposition 3.1. Let $2<p$, and let λ, κ satisfy (1.2). Then, for some $T_{0}<0$, there exists a unique solution $v=v(t, x)$ to (3.1) such that

$$
\begin{align*}
& v \in C\left(\left[T_{0}, 0\right] ; H^{1}(\mathbb{R})\right) \cap C^{1}\left(\left[T_{0}, 0\right) ; H^{-1}(\mathbb{R})\right), \tag{3.2}\\
& x v \in C\left(\left[T_{0}, 0\right] ; L^{2}(\mathbb{R})\right) \tag{3.3}
\end{align*}
$$

Furthermore the solution satisfies

$$
\begin{equation*}
\|v(t, \cdot)\|_{L^{2}(\mathbb{R})} \leq C|t|^{\alpha_{0}}, \quad\left\|\partial_{x} v(t, \cdot)\right\|_{L^{2}(\mathbb{R})} \leq C|t|^{\alpha_{1}} \tag{3.4}
\end{equation*}
$$

where $\alpha_{0}=1-1 /(p-1)-2 /(2 N)>0$ and $\alpha_{1}=1-1 /(p-1)-3 /(2 N)>0$ with N defined in (A.4).

To prove Proposition 3.1, we begin to consider an approximate solution for $\varphi_{\nu}(t, x)=$ $\varphi(t-\nu, x)$ with $0<\nu<1$, i.e.,

$$
\left\{\begin{array}{l}
i \partial_{t} v_{\nu}=-\frac{1}{2} \partial_{x}^{2} v_{\nu}-\frac{1}{2} \partial_{x}^{2} \varphi_{\nu}+(\lambda+i \kappa)\left(\mathcal{N}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}\left(\varphi_{\nu}\right)\right) \tag{3.5}\\
v_{\nu}(0, x)=0
\end{array}\right.
$$

Since there is no singularity at $t=0$ in $\varphi_{\nu}(t, x)$, the equation (3.5) can be solved locally in negative time by transforming it into the associated integral equation and by applying the contraction mapping principle [1]. Indeed we have a solution to (3.5) such that

$$
\begin{aligned}
& v_{\nu} \in C\left(\left[T_{\nu}, 0\right] ; H^{1}(\mathbb{R})\right) \cap C^{1}\left(\left[T_{\nu}, 0\right) ; H^{-1}(\mathbb{R})\right), \\
& x v_{\nu} \in C\left(\left[T_{\nu}, 0\right] ; L^{2}(\mathbb{R})\right),
\end{aligned}
$$

where $T_{\nu}<0$ is given by

$$
T_{\nu}=\inf \left\{T \in(-1,0) ; \sup _{T<t \leq 0}\left(\left\|v_{\nu}(t, \cdot)\right\|_{H^{1}(\mathbb{R})}+\left\|x v_{\nu}(t, \cdot)\right\|_{L^{2}(\mathbb{R})}\right)<1\right\}
$$

Lemma 3.2. Let $2<p$, and let λ, κ satisfy (1.2). Then there exists some $T_{0}<0$ such that the next three assertions hold.
(i) We have $T_{\nu} \leq T_{0}$ for any $\nu \in(0,1]$.
(ii) We have

$$
\begin{align*}
\sum_{j=0}^{1}\left\|x^{j} v_{\nu}(t, \cdot)\right\|_{L^{2}(\mathbb{R})} & \leq C|t|^{1-1 /(p-1)-2 /(2 N)} \tag{3.6}\\
\left\|\partial_{x} v_{\nu}(t, \cdot)\right\|_{L^{2}(\mathbb{R})} & \leq C|t|^{1-1 /(p-1)-3 /(2 N)} \tag{3.7}
\end{align*}
$$

for any $t \in\left[T_{0}, 0\right]$ and $\nu \in(0,1]$.
(iii) Let $\varepsilon \in\left(0, \varepsilon_{0}\right]$ with $\varepsilon_{0}>0$ sufficiently small. Then there exists some constant $C_{\varepsilon}>0$ such that

$$
\begin{align*}
& \sum_{j=1}^{1}\left\|x^{j}\left(v_{\nu}(t, \cdot)-v_{\nu^{\prime}}(t, \cdot)\right)\right\|_{L^{2}(\mathbb{R})} \leq C_{\varepsilon}|t|^{1-1 /(p-1)-2 /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime \varepsilon}\right) \tag{3.8}\\
& \quad\left\|\partial_{x}\left(v_{\nu}(t, \cdot)-v_{\nu^{\prime}}(t, \cdot)\right)\right\|_{L^{2}(\mathbb{R})} \leq C_{\varepsilon}|t|^{1-1 /(p-1)-3 /(2 N)-\varepsilon}\left(\nu^{(p-2) \varepsilon / 2}+\nu^{\prime(p-2) \varepsilon / 2}\right) \tag{3.9}
\end{align*}
$$

for any $t \in\left[T_{0}, 0\right]$ and $\nu, \nu^{\prime} \in(0,1]$.

Proof of Lemma 3.2. For the solution v_{ν} to (3.5), we have

$$
\begin{align*}
\frac{d}{d t}\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{2} & =-\operatorname{Im}\left(\partial_{x}^{2} \varphi_{\nu}, v_{\nu}\right)_{L^{2}(\mathbb{R})}+2 \operatorname{Im}\left\{(\lambda+i \kappa)\left(\mathcal{N}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}\left(\varphi_{\nu}\right), v_{\nu}\right)_{L^{2}(\mathbb{R})}\right\} \\
& \equiv I+I I \tag{3.10}
\end{align*}
$$

where $(f, g)_{L^{2}(\mathbb{R})}=\int_{\mathbb{R}} f(x) \overline{g(x)} d x$ denotes the inner product. By Cauchy-Schwarz' inequality together with Corollary 2.2 (2.9), we see that

$$
\begin{equation*}
I \geq-C|t|^{-1 /(p-1)-2 /(2 N)}\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})} \tag{3.11}
\end{equation*}
$$

Since $\mathcal{N}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}\left(\varphi_{\nu}\right)=\int_{0}^{1} \partial_{\theta} \mathcal{N}\left(\varphi_{\nu}+\theta v_{\nu}\right) d \theta$, we have

$$
I I=2 \int_{0}^{1} \operatorname{Im}\left\{(\lambda+i \kappa)\left(\mathcal{N}_{u}\left(\varphi_{\nu}+\theta v_{\nu}\right) v_{\nu}+\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+\theta v_{\nu}\right) \overline{v_{\nu}}, v_{\nu}\right)_{L^{2}(\mathbb{R})}\right\} d \theta
$$

where $\mathcal{N}_{u}(u)=\partial_{u} \mathcal{N}(u)=\frac{p+1}{2}|u|^{p-1}$ and $\mathcal{N}_{\bar{u}}(u)=\partial_{\bar{u}} \mathcal{N}(u)=\frac{p-1}{2}|u|^{p-3} u^{2}$. Then it follows that

$$
I I \geq((p+1) \kappa-(p-1)|\lambda+i \kappa|) \int_{0}^{1} \int_{\mathbb{R}}\left|\varphi_{\nu}+\theta v_{\nu}\right|^{p-1}\left|v_{\nu}\right|^{2} d x d \theta
$$

Since $(p+1) \kappa-(p-1)|\lambda+i \kappa| \geq 0$ due to (1.2), we see that

$$
\begin{equation*}
I I \geq 0 \tag{3.12}
\end{equation*}
$$

which implies that the nonlinearity is dropped out on the right hand side of (3.10). Plugging (3.11) and (3.12) into (3.10), we have

$$
\begin{equation*}
\frac{d}{d t}\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})} \geq-C|t|^{-1 /(p-1)-2 /(2 N)} \tag{3.13}
\end{equation*}
$$

Recall that $2<p$, and note that N is large enough as in (A.4). Then $-1<-\frac{1}{p-1}-\frac{2}{2 N}$ and so $|t|^{-1 /(p-1)-2 /(2 N)}$ is integrable near $t=0$. Integrating (3.13) from t to 0 , we see that there exists some constant $C>0$ independent of $\nu \in(0,1]$ such that, for $t \in\left(T_{\nu}, 0\right]$,

$$
\begin{equation*}
\left\|v_{\nu}(t)\right\|_{L^{2}(\mathbb{R})} \leq C|t|^{1-1 /(p-1)-2 /(2 N)} \tag{3.14}
\end{equation*}
$$

Note that $\varphi_{\nu}(t, x)$ is compactly supported. Then the similar estimate to derive (3.14) is applied to $\left\|x v_{\nu}(t)\right\|_{L^{2}(\mathbb{R})}$, and we have, for $t \in\left(T_{\nu}, 0\right]$,

$$
\begin{equation*}
\left\|x v_{\nu}(t)\right\|_{L^{2}(\mathbb{R})} \leq C|t|^{1-1 /(p-1)-2 /(2 N)} \tag{3.15}
\end{equation*}
$$

We next consider the estimate of $\left\|\partial_{x} v_{\nu}(t)\right\|_{L^{2}(\mathbb{R})}$. We see, formally, that

$$
\begin{align*}
\frac{d}{d t}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{2}= & -\operatorname{Im}\left(\partial_{x}^{3} \varphi_{\nu}, \partial_{x} v_{\nu}\right)_{L^{2}(\mathbb{R})} \\
& +2 \operatorname{Im}\left\{(\lambda+i \kappa)\left(\partial_{x} \mathcal{N}\left(\varphi_{\nu}+v_{\nu}\right)-\partial_{x} \mathcal{N}\left(\varphi_{\nu}\right), \partial_{x} v_{\nu}\right)_{L^{2}(\mathbb{R})}\right\} \\
\equiv & I I I+I V \tag{3.16}
\end{align*}
$$

By Cauchy-Schwarz' inequality together with Corollary 2.2 (2.9), we see that

$$
\begin{equation*}
I I I \geq-C|t|^{-1 /(p-1)-3 /(2 N)}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})} \tag{3.17}
\end{equation*}
$$

Since

$$
\begin{aligned}
\partial_{x} \mathcal{N}\left(\varphi_{\nu}+v_{\nu}\right)-\partial_{x} \mathcal{N}\left(\varphi_{\nu}\right)= & \mathcal{N}_{u}\left(\varphi_{\nu}+v_{\nu}\right) \partial_{x} v_{\nu}+\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+v_{\nu}\right) \partial_{x} \overline{v_{\nu}} \\
& +\left(\mathcal{N}_{u}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{u}\left(\varphi_{\nu}\right)\right) \partial_{x} \varphi_{\nu} \\
& +\left(\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}\right)\right) \partial_{x} \overline{\varphi_{\nu}}
\end{aligned}
$$

and

$$
\left|\mathcal{N}_{u}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{u}\left(\varphi_{\nu}\right)\right|+\left|\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}\right)\right| \leq C\left(\left|\varphi_{\nu}\right|^{p-2}+\left|v_{\nu}\right|^{p-2}\right)\left|v_{\nu}\right|,
$$

we have

$$
\begin{gather*}
I V \geq((p+1) \kappa-(p-1)|\lambda+i \kappa|) \int_{\mathbb{R}}\left|\varphi_{\nu}+v_{\nu}\right|^{p-1}\left|\partial_{x} v_{\nu}\right|^{2} d x \\
-C \int_{\mathbb{R}}\left(\left|\varphi_{\nu}\right|^{p-2}+\left|v_{\nu}\right|^{p-2}\right)\left|v_{\nu}\left\|\partial_{x} \varphi_{\nu}\right\| \partial_{x} v_{\nu}\right| d x . \tag{3.18}
\end{gather*}
$$

By (1.2), we have $(p+1) \kappa-(p-1)|\lambda+i \kappa| \geq 0$, and so the first tern on the right hand side of (3.18) is dropped out. Applying Corollary 2.2 (2.9) to (3.18), we have

$$
\begin{align*}
I V \geq & -C|t|^{-1-1 /(2 N)}\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})} \\
& -C|t|^{-1 /(p-1)-1 /(2 N)}\left\|v_{\nu}\right\|_{L^{2(p-1)}(\mathbb{R})}^{p-1}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})} \\
\geq & C|t|^{-1-1 /(2 N)}\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})} \\
& -C|t|^{-1 /(p-1)-1 /(2 N)}\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{p / 2}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{p / 2} . \tag{3.19}
\end{align*}
$$

Note here that, to deduce the last inequality in (3.19), the Gagliardo-Nirenberg inequality : $\left\|v_{\nu}\right\|_{L^{2(p-1)(\mathbb{R})}}^{2(p-1)} \leq C\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{p}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{p-2}$ was applied. Plugging (3.17) and (3.19) into (3.16), and making use of (3.14), we have, for $t \in\left[T_{\nu}, 0\right)$,

$$
\frac{d}{d t}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})} \geq-C|t|^{-1 /(p-1)-3 /(2 N)}-C|t|^{-1 /(p-1)-1 /(2 N)}\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{p / 2}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{(p / 2)-1}
$$

Since $\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})} \leq C$ and $\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{(p / 2)-1} \leq C\left(1+\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})}\right)$ due to Young's inequality, the above inequality turns out to be

$$
\frac{d}{d t}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})} \geq-C|t|^{-1 /(p-1)-3 /(2 N)}-C|t|^{-1 /(p-1)-1 /(2 N)}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})}
$$

Then Gronwall's inequality yields, for $t \in\left[T_{\nu}, 0\right)$,

$$
\begin{equation*}
\left\|\partial_{x} v_{\nu}(t)\right\|_{L^{2}(\mathbb{R})} \leq C|t|^{1-1 /(p-1)-3 /(2 N)} \tag{3.20}
\end{equation*}
$$

where the constant C does not depend on $\nu \in(0,1]$. Combining (3.14), (3.15) and (3.20), we see that

$$
\left\|v_{\nu}(t)\right\|_{H^{1}(\mathbb{R})}+\left\|x v_{\nu}(t)\right\|_{L^{2}(\mathbb{R})} \leq C\left(|t|^{1-1 /(p-1)-2 /(2 N)}+|t|^{1-1 /(p-1)-3 /(2 N)}\right)
$$

Assume that $T_{\nu} \rightarrow 0$ as $\nu \downarrow 0$. Then, taking $t=T_{\nu}$ in the above and recalling the definition of T_{ν}, we have

$$
1 \leq C\left|T_{\nu}\right|^{1-1 /(p-1)-2 /(2 N)}+C\left|T_{\nu}\right|^{1-1 /(p-1)-3 /(2 N)} .
$$

This is a contradiction, since $1-\frac{1}{p-1}-\frac{3}{2 N}>0$ for large N. Hence there exists some $T_{0}<0$ such that $T_{\nu} \leq T_{0}$ for any $\nu \in(0,1]$, and the proof for $(i),(i i)$ is complete.

We are next going to prove (iii). We have

$$
\begin{align*}
\frac{d}{d t}\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}^{2}= & -\operatorname{Im}\left(\partial_{x}^{2}\left(\varphi_{\nu}-\varphi_{\nu}\right), v_{\nu}-v_{\nu^{\prime}}\right)_{L^{2}(\mathbb{R})} \\
& +2 \operatorname{Im}\left\{(\lambda+i \kappa)\left(\mathcal{N}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}\left(\varphi_{\nu}\right), v_{\nu}-v_{\nu^{\prime}}\right)_{L^{2}(\mathbb{R})}\right\} \\
& -2 \operatorname{Im}\left\{(\lambda+i \kappa)\left(\mathcal{N}\left(\varphi_{\nu^{\prime}}+v_{\nu^{\prime}}\right)-\mathcal{N}\left(\varphi_{\nu^{\prime}}\right), v_{\nu}-v_{\nu^{\prime}}\right)_{L^{2}(\mathbb{R})}\right\} \\
\equiv & V+V I-V I^{\prime} . \tag{3.21}
\end{align*}
$$

By Corollary 2.2 (2.10), we have

$$
\begin{equation*}
V \geq-C|t|^{-1 /(p-1)-2 /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime} \varepsilon\right)\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})} . \tag{3.22}
\end{equation*}
$$

Since $\mathcal{N}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}\left(\varphi_{\nu^{\prime}}\right)=\int_{0}^{1}\left\{\mathcal{N}_{u}\left(\varphi_{\nu}+\theta v_{\nu}\right) v_{\nu}+\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+\theta v_{\nu}\right) \overline{v_{\nu}}\right\} d \theta$ etc., we see that

$$
\begin{aligned}
& V I-V I^{\prime} \\
& =2 \operatorname{Im} \int_{0}^{1}\left(\mathcal{N}_{u}\left(\varphi_{\nu}+\theta v_{\nu}\right)\left(v_{\nu}-v_{\nu^{\prime}}\right)-\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+\theta v_{\nu}\right) \overline{\left(v_{\nu}-v_{\nu^{\prime}}\right)}, v_{\nu}-v_{\nu^{\prime}}\right)_{L^{2}(\mathbb{R})} d \theta \\
& \quad+2 \operatorname{Im} \int_{0}^{1}\left(\left\{\mathcal{N}_{u}\left(\varphi_{\nu}+\theta v_{\nu}\right)-\mathcal{N}_{u}\left(\varphi_{\nu^{\prime}}+\theta v_{\nu^{\prime}}\right)\right\} v_{\nu^{\prime}}, v_{\nu}-v_{\nu^{\prime}}\right)_{L^{2}(\mathbb{R})} d \theta \\
& \quad+2 \operatorname{Im} \int_{0}^{1}\left(\left\{\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+\theta v_{\nu}\right)-\mathcal{N}_{\bar{u}}\left(\varphi_{\nu^{\prime}}+\theta v_{\nu^{\prime}}\right)\right\} \overline{\nu_{\nu^{\prime}}}, v_{\nu}-v_{\nu^{\prime}}\right)_{L^{2}(\mathbb{R})} d \theta \\
& \geq \quad((p+1) \kappa-(p-1)|\lambda+i \kappa|) \int_{0}^{1} \int_{\mathbb{R}}\left|\varphi_{\nu}+\theta v_{\nu}\right|^{p-1}\left|v_{\nu}-v_{\nu^{\prime}}\right|^{2} d x d \theta \\
& \quad-C\left(\left\|\varphi_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|\varphi_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\right) \\
& \left.\quad \times\left(\left\|\varphi_{\nu}-\varphi_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}\left\|v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}+\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}\right)\left\|v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}\right)\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})} .
\end{aligned}
$$

By $(p+1) \kappa-(p-1)|\lambda+i \kappa| \geq 0$ due to (1.2) and the Gagliardo-Nirenberg inequality $\left\|v_{\nu}\right\|_{L^{\infty}(\mathbb{R})} \leq C\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{1 / 2}\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})}^{1 / 2}$, we see that

$$
\begin{align*}
& V I-V I^{\prime} \\
& \geq-C\left(|t|^{-1 /(p-1)-2 /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime \varepsilon}\right)+|t|^{-5 /(4 N)}\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}\right) \\
& \quad \times\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})} . \tag{3.23}
\end{align*}
$$

Plugging (3.22) and (3.23) into (3.21), we have

$$
\frac{d}{d t}\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})} \geq-C|t|^{-1 /(p-1)-2 /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime \varepsilon}\right)-C|t|^{-5 /(4 N)}\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}
$$

Then Gronwall's inequality yields

$$
\begin{equation*}
\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})} \leq-C|t|^{1-1 /(p-1)-2 /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime \varepsilon}\right) \tag{3.24}
\end{equation*}
$$

The estimate for $\left\|x\left(v_{\nu}-v_{\nu^{\prime}}\right)\right\|_{L^{2}(\mathbb{R})}$ similarly follows, and we have

$$
\begin{equation*}
\left\|x\left(v_{\nu}-v_{\nu^{\prime}}\right)\right\|_{L^{2}(\mathbb{R})} \leq-C|t|^{1-1 /(p-1)-2 /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime \varepsilon}\right) . \tag{3.25}
\end{equation*}
$$

Finally we are going to consider the estimate of $\left\|\partial_{x}\left(v_{\nu}-v_{\nu^{\prime}}\right)\right\|_{L^{2}(\mathbb{R})}$. We have

$$
\begin{align*}
& \frac{d}{d t}\left\|\partial_{x}\left(v_{\nu}-v_{\nu^{\prime}}\right)\right\|_{L^{2}(\mathbb{R})}^{2} \\
&=-\operatorname{Im}\left(\partial_{x}^{3}\left(\varphi_{\nu}-\varphi_{\nu}\right), \partial_{x}\left(v_{\nu}-v_{\nu^{\prime}}\right)\right)_{L^{2}(\mathbb{R})} \\
&+2 \operatorname{Im}\left\{(\lambda+i \kappa)\left(\partial_{x} \mathcal{N}\left(\varphi_{\nu}+v_{\nu}\right)-\partial_{x} \mathcal{N}\left(\varphi_{\nu}\right), \partial_{x}\left(v_{\nu}-v_{\nu^{\prime}}\right)\right)_{L^{2}(\mathbb{R})}\right\} \\
&-2 \operatorname{Im}\left\{(\lambda+i \kappa)\left(\partial_{x} \mathcal{N}\left(\varphi_{\nu^{\prime}}+v_{\nu^{\prime}}\right)-\partial_{x} \mathcal{N}\left(\varphi_{\nu^{\prime}}\right), \partial_{x}\left(v_{\nu}-v_{\nu^{\prime}}\right)\right)_{L^{2}(\mathbb{R})}\right\} \\
& \equiv V I I+V I I I-V I I I I^{\prime} . \tag{3.26}
\end{align*}
$$

By Corollary 2.2 (2.10), we have

$$
\begin{equation*}
V I I \geq-C|t|^{-1 /(p-1)-3 /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime \varepsilon}\right)\left\|\partial_{x}\left(v_{\nu}-v_{\nu^{\prime}}\right)\right\|_{L^{2}(\mathbb{R})} \tag{3.27}
\end{equation*}
$$

Since $\partial_{x} \mathcal{N}\left(\varphi_{\nu}+v_{\nu}\right)=\mathcal{N}_{u}\left(\varphi_{\nu}+v_{\nu}\right) \partial_{x}\left(\varphi_{\nu}+v_{\nu}\right)+\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+v_{\nu}\right) \overline{\partial_{x}\left(\varphi_{\nu}+v_{\nu}\right)}$ and $\partial_{x} \mathcal{N}\left(\varphi_{\nu}\right)=$ $\mathcal{N}_{u}\left(\varphi_{\nu}\right) \partial_{x} \varphi_{\nu}+\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}\right) \overline{\bar{\partial}_{x} \varphi_{\nu}}$ etc., it follows that

$$
\begin{align*}
& V I I I-V I I I^{\prime} \\
& \geq 2 \operatorname{Im}\left\{(\lambda+i \kappa)\left(\mathcal{N}_{u}\left(\varphi_{\nu}+v_{\nu}\right) \partial_{x} w-\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+v_{\nu}\right) \overline{\partial_{x} w}, \partial_{x} w\right)_{L^{2}(\mathbb{R})}\right\} \\
& - \\
& -C\left|\left(\left\{\mathcal{N}_{u}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{u}\left(\varphi_{\nu^{\prime}}+v_{\nu^{\prime}}\right)\right\} \partial_{x} v_{\nu^{\prime}}, \partial_{x} w\right)_{L^{2}(\mathbb{R})}\right| \\
& - \\
& -C\left|\left(\left\{\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{\bar{u}}\left(\varphi_{\nu^{\prime}}+v_{\nu^{\prime}}\right)\right\} \overline{\partial_{x} v_{\nu^{\prime}}}, \partial_{x} w\right)_{L^{2}(\mathbb{R})}\right| \\
& \quad-C\left|\left(\left\{\mathcal{N}_{u}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{u}\left(\varphi_{\nu}\right)\right\} \partial_{x}\left(\varphi_{\nu}-\varphi_{\nu^{\prime}}\right), \partial_{x} w\right)_{L^{2}(\mathbb{R})}\right| \\
& \quad-C\left|\left(\left\{\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}\right)\right\} \overline{\partial_{x}\left(\varphi_{\nu}-\varphi_{\nu^{\prime}}\right)}, \partial_{x} w\right)_{L^{2}(\mathbb{R})}\right| \tag{3.28}\\
& \\
& \quad-C\left|\left(\mathcal{M}_{1}\left(\varphi_{\nu}, \varphi_{\nu^{\prime}}, v_{\nu}, v_{\nu^{\prime}}\right) \partial_{x} \varphi_{\nu^{\prime}}, \partial_{x} w\right)_{L^{2}(\mathbb{R})}\right| \\
& \quad-C\left|\left(\mathcal{M}_{2}\left(\varphi_{\nu}, \varphi_{\nu^{\prime}}, v_{\nu}, v_{\nu^{\prime}}\right) \overline{\partial_{x} \varphi_{\nu^{\prime}}}, \partial_{x} w\right)_{L^{2}(\mathbb{R})}\right|,
\end{align*}
$$

where $w=v_{\nu}-v_{\nu^{\prime}}$ and

$$
\begin{aligned}
& \mathcal{M}_{1}\left(\varphi_{\nu}, \varphi_{\nu^{\prime}}, v_{\nu}, v_{\nu^{\prime}}\right)=\mathcal{N}_{u}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{u}\left(\varphi_{\nu}\right)-\mathcal{N}_{u}\left(\varphi_{\nu^{\prime}}+v_{\nu^{\prime}}\right)+\mathcal{N}_{u}\left(\varphi_{\nu^{\prime}}\right), \\
& \mathcal{M}_{2}\left(\varphi_{\nu}, \varphi_{\nu^{\prime}}, v_{\nu}, v_{\nu^{\prime}}\right)=\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}\right)-\mathcal{N}_{\bar{u}}\left(\varphi_{\nu^{\prime}}+v_{\nu^{\prime}}\right)+\mathcal{N}_{\bar{u}}\left(\varphi_{\nu^{\prime}}\right) .
\end{aligned}
$$

Note that

$$
\begin{align*}
& 2 \operatorname{Im}\left\{(\lambda+i \kappa)\left(\mathcal{N}_{u}\left(\varphi_{\nu}+v_{\nu}\right) \partial_{x} w-\mathcal{N}_{\bar{u}}\left(\varphi_{\nu}+v_{\nu}\right) \overline{\partial_{x} w}, \partial_{x} w\right)_{L^{2}(\mathbb{R})}\right\} \\
&=((p+1) \kappa-(p-1)|\lambda+i \kappa|) \int_{\mathbb{R}}\left|\varphi_{\nu}+v_{\nu}\right|^{p-1}\left|\partial_{x} w\right|^{2} d x \\
& \geq 0, \tag{3.29}\\
&\left|\mathcal{N}_{u}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}_{u}\left(\varphi_{\nu^{\prime}}+v_{\nu^{\prime}}\right)\right| \\
& \leq C\left(\left\|\varphi_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|\varphi_{\nu^{\prime}}^{p}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\right) \\
& \quad \times\left(\left|\varphi_{\nu}-\varphi_{\nu^{\prime}}\right|+\left|v_{\nu}-v_{\nu^{\prime}}\right|\right) . \tag{3.30}
\end{align*}
$$

We rewrite \mathcal{M}_{1} in such a way that

$$
\begin{align*}
& \mathcal{M}_{1}\left(\varphi_{\nu}, \varphi_{\nu^{\prime}}, v_{\nu}, v_{\nu^{\prime}}\right) \\
&= \int_{0}^{1} \mathcal{N}_{u u}\left(\varphi_{\nu}+\theta v_{\nu}\right) v_{\nu} d \theta+\int_{0}^{1} \mathcal{N}_{u \bar{u}}\left(\varphi_{\nu}+\theta v_{\nu}\right) \overline{v_{\nu^{\prime}}} d \theta \\
&-\int_{0}^{1} \mathcal{N}_{u u}\left(\varphi_{\nu^{\prime}}+\theta v_{\nu^{\prime}}\right) v_{\nu^{\prime}} d \theta-\int_{0}^{1} \mathcal{N}_{u \bar{u}}\left(\varphi_{\nu^{\prime}}+\theta v_{\nu^{\prime}}\right) \overline{\varphi_{\nu^{\prime}}} d \theta \\
&= \int_{0}^{1} \mathcal{N}_{u u}\left(\varphi_{\nu}+\theta v_{\nu}\right)\left(v_{\nu}-v_{\nu^{\prime}}\right) d \theta+\int_{0}^{1} \mathcal{N}_{u \bar{u}}\left(\varphi_{\nu}+\theta v_{\nu}\right) \overline{\left(v_{\nu}-v_{\nu^{\prime}}\right)} d \theta \\
&+\int_{0}^{1}\left(\mathcal{N}_{u u}\left(\varphi_{\nu}+\theta v_{\nu}\right)-\mathcal{N}_{u u}\left(\varphi_{\nu^{\prime}}+\theta v_{\nu^{\prime}}\right)\right) v_{\nu^{\prime}} d \theta \\
&+\int_{0}^{1}\left(\mathcal{N}_{u \bar{u}}\left(\varphi_{\nu}+\theta v_{\nu}\right)-\mathcal{N}_{u \bar{u}}\left(\varphi_{\nu^{\prime}}+\theta v_{\nu^{\prime}}\right)\right) \overline{v_{\nu^{\prime}}} d \theta \tag{3.31}
\end{align*}
$$

where $\mathcal{N}_{u u}(u)=\partial_{u}^{2} \mathcal{N}(u)$ and $\mathcal{N}_{u \bar{u}}(u)=\partial_{\bar{u}} \partial_{u} \mathcal{N}(u)$. Apply, for instance, the simple inequalities:

$$
\left|\mathcal{N}_{u u}\left(\varphi_{\nu}+\theta v_{\nu}\right)\right| \leq C\left(\left\|\varphi_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\right)
$$

and

$$
\left|\mathcal{N}_{u u}\left(\varphi_{\nu}+\theta v_{\nu}\right)-\mathcal{N}_{u u}\left(\varphi_{\nu^{\prime}}+\theta v_{\nu^{\prime}}\right)\right| \leq C\left(\left\|\varphi_{\nu}-\varphi_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\right)
$$

to (3.31). Then we have

$$
\begin{align*}
\left|\mathcal{M}_{1}\left(\varphi_{\nu}, \varphi_{\nu^{\prime}}, v_{\nu}, v_{\nu^{\prime}}\right)\right| \leq & C\left(\left\|\varphi_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\right)\left|v_{\nu}-v_{\nu^{\prime}}\right| \\
& +C\left(\left\|\varphi_{\nu}-\varphi_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\right)\left|v_{\nu^{\prime}}\right| . \tag{3.32}
\end{align*}
$$

Plugging (3.29), (3.30) and (3.32) into (3.28), and making use of the similar estimates for $\mathcal{N}_{\bar{u}}$ and \mathcal{M}_{2}, we see that

$$
\begin{aligned}
& V I I I-V I I I^{\prime} \\
& \qquad \quad-C\left(\left\|\varphi_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|\varphi_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\right) \\
& \quad \times\left(\left\|\varphi_{\nu}-\varphi_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}+\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}\right)\left\|\partial_{x} v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \\
& \quad-C\left(\left\|\varphi_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\right)\left\|v_{\nu}\right\|_{L^{2}(\mathbb{R})}\left\|\partial_{x}\left(\varphi_{\nu}-\varphi_{\nu^{\prime}}\right)\right\|_{L^{\infty}(\mathbb{R})}\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \\
& \quad-C\left(\left\|\varphi_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\right)\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}\left\|\partial_{x} \varphi_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \\
& \quad-C\left(\left\|\varphi_{\nu}-\varphi_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}+\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\right)\left\|v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}\left\|\partial_{x} \varphi_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} .
\end{aligned}
$$

Applying Corollary 2.2 to $\varphi_{\nu}, \varphi_{\nu^{\prime}}$ and $\varphi_{\nu}-\varphi_{\nu^{\prime}}$, (3.6) - (3.8) to $v_{\nu}, v_{\nu^{\prime}}$ and $v_{\nu}-v_{\nu^{\prime}}$, we have

$$
\begin{align*}
V I I I & -V I I I^{\prime} \\
\geq & -C\left(|t|^{-1 /(p-1)-3 /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime \varepsilon}\right)+|t|^{-3 /(2 N)}\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}\right)\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \\
& -C|t|^{-1 /(p-1)-3 /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime \varepsilon}\right)\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \\
& -C|t|^{-1 /(p-1)-3 /(2 N)-(p-2) \varepsilon}\left(\nu^{(p-2) \varepsilon}+\nu^{\prime(p-2) \varepsilon}\right)\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \\
& -C|t|^{1-2 /(p-1)-3 /(2 N)}\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})}^{p-2}\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} . \tag{3.33}
\end{align*}
$$

Apply Gagliardo-Nirenberg's inequality : $\|f\|_{L^{\infty}(\mathbb{R})} \leq C\|f\|_{L^{2}(\mathbb{R})}^{1 / 2}\left\|\partial_{x} f\right\|_{L^{2}(\mathbb{R})}$ to $\| v_{\nu}-$ $v_{\nu^{\prime}} \|_{L^{\infty}(\mathbb{R})}$. Then we have

$$
\begin{aligned}
\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{\infty}(\mathbb{R})} & \leq C\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}^{1 / 2}\left\|\partial_{x}\left(v_{\nu}-v_{\nu^{\prime}}\right)\right\|_{L^{2}(\mathbb{R})}^{1 / 2} \\
& \leq C\left\|v_{\nu}-v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}^{1 /}\left(\left\|\partial_{x} v_{\nu}\right\|_{L^{2}(\mathbb{R})}+\left\|\partial_{x} v_{\nu^{\prime}}\right\|_{L^{2}(\mathbb{R})}\right)^{1 / 2} \\
& \leq C|t|^{1-1 /(p-1)-5 /(4 N)-\varepsilon / 2}\left(\nu^{\varepsilon / 2}+\nu^{\varepsilon / 2}\right),
\end{aligned}
$$

where (3.7) and (3.8) were used. Plugging the above inequality to (3.33), we see that

$$
\begin{align*}
V I I I & -V I I I^{\prime} \\
\geq & -C|t|^{-1 /(p-1)-3 /(2 N)-\varepsilon}\left(\nu^{\varepsilon}+\nu^{\prime \varepsilon}\right)\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \\
& -C|t|^{1-1 /(p-1)-11 /(4 N)-\varepsilon / 2}\left(\nu^{\varepsilon / 2}+\nu^{\prime \varepsilon / 2}\right)\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \\
& -\left.C|t|\right|^{-1 /(p-1)-3 /(2 N)-(p-2) \varepsilon}\left(\nu^{(p-2) \varepsilon}+\nu^{\prime(p-2) \varepsilon}\right)\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \\
& -C|t|^{p-2-1 /(p-1)-(5 p-4) /(4 N)-(p-2) \varepsilon / 2}\left(\nu^{(p-2) \varepsilon / 2}+\nu^{\prime(p-2) \varepsilon / 2}\right)\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \\
\geq & -C|t|^{-1 /(p-1)-3 /(2 N)-\varepsilon}\left(\nu^{(p-2) \varepsilon / 2}+\nu^{\prime(p-2) \varepsilon / 2}\right)\left\|\partial_{x} w\right\|_{L^{2}(\mathbb{R})} \tag{3.34}
\end{align*}
$$

for sufficiently large N and sufficiently small ε. Plugging (3.27) and (3.34) into (3.26), we have

$$
\begin{aligned}
& \frac{d}{d t}\left\|\partial_{x}\left(v_{\nu}-v_{\nu^{\prime}}\right)\right\|_{L^{2}(\mathbb{R})} \\
& \quad \geq-C|t|^{-1 /(p-1)-3 /(2 N)-\varepsilon}\left(\nu^{(p-2) \varepsilon / 2}+\nu^{\prime(p-2) \varepsilon / 2}\right)
\end{aligned}
$$

Integrating from t to 0 , we have

$$
\begin{align*}
& \left\|\partial_{x}\left(v_{\nu}-v_{\nu^{\prime}}\right)\right\|_{L^{2}(\mathbb{R})} \\
& \quad \leq C|t|^{1-1 /(p-1)-3 /(2 N)-\varepsilon}\left(\nu^{(p-2) \varepsilon / 2}+\nu^{\prime(p-2) \varepsilon / 2}\right) \tag{3.35}
\end{align*}
$$

This completes the proof of Lemma 3.2.
Proof of Proposition 3.1 By Lemma 3.2 (3.8) and (3.9), there exists a limit $\lim _{\nu \downarrow 0} v_{\nu}=v$ in $C\left(\left[T_{0}, 0\right] ; H^{1}(\mathbb{R})\right)$ and in the weghted $L^{2}(\mathbb{R})$. Also we see that

$$
\begin{array}{r}
-\frac{1}{2} \partial_{x}^{2} v_{\nu}-\frac{1}{2} \partial_{x}^{2} \varphi_{\nu}+(\lambda+i \kappa)\left(\mathcal{N}\left(\varphi_{\nu}+v_{\nu}\right)-\mathcal{N}\left(\varphi_{\nu}\right)\right) \\
\xrightarrow{\nu \downarrow 0}-\frac{1}{2} \partial_{x}^{2} v-\frac{1}{2} \partial_{x}^{2} \varphi+(\lambda+i \kappa)(\mathcal{N}(\varphi+v)-\mathcal{N}(\varphi))
\end{array}
$$

holds in $C\left(\left[T_{0}, \tau\right] ; H^{-1}(\mathbb{R})\right)$ for any $\tau \in\left(T_{0}, 0\right)$. It follows that $\lim _{\nu \downarrow 0} \partial_{t} v_{\nu}=\partial_{t} v$ in $C\left(\left[T_{0}, 0\right) ; H^{-1}(\mathbb{R})\right)$, and hence $v \in C^{1}\left(\left[T_{0}, 0\right) ; H^{-1}(\mathbb{R})\right)$. The uniqueness follows by deriving $\left\|v_{1}-v_{2}\right\|_{L^{2}(\mathbb{R})}=0$.

4 Proof of Theorem 1.1

We need to prolong the solution $u=\varphi+v$ backward in negative time. It is easy to guess that the size of the solution tends to 0 as $t \rightarrow-\infty$, since the nonlinear amplification (i.e.,
$\kappa>0)$ works as the dissipation in negative time direction. However this observation fails when $3<p$ since the dispersion caused by $-(1 / 2) \partial_{x}^{2}$ breaks down the nonlinearity. Hence the condition $p \leq 3$ is required to ensure $\lim _{t \rightarrow-\infty}\|u(t)\|_{L^{2}(\mathbb{R})}=0$.

Proposition 4.1. Let $1<p \leq 3$ and λ, κ satisfy (1.2). Let $u\left(T_{0}, \cdot\right) \in H^{1}(\mathbb{R})$ and $x u\left(T_{0}, \cdot\right) \in L^{2}(\mathbb{R})$. Then the solution $u=u(t, x)$ to (1.1) exists globally in negative time. Furthermore we have

$$
\|u(t, \cdot)\|_{L^{2}(\mathbb{R})} \leq C \begin{cases}(\log |t|)^{-1 / 3} & (p=3) \tag{4.1}\\ |t|^{-(2 / 3)(1 /(p-1)-1 / 2)} & (2<p<3)\end{cases}
$$

for $t \in\left(-\infty, T_{0}\right]$.
Proof of Proposition 4.1. By (1.1), we see that

$$
\frac{d}{d t}\|u\|_{L^{2}(\mathbb{R})}^{2}=\kappa\|u\|_{L^{p+1}(\mathbb{R})}^{p+1}
$$

Applying Hölder's inequality : $\|u\|_{L^{2}(\mathbb{R})}^{2 p} \leq\|u\|_{L^{p+1}(\mathbb{R})}^{p+1}\|u\|_{L^{1}(\mathbb{R})}^{p-1}$, we have

$$
\frac{d}{d t}\|u\|_{L^{2}(\mathbb{R})} \geq \kappa \frac{\|u\|_{L^{2}(\mathbb{R})}^{2 p}}{\|u\|_{L^{1}(\mathbb{R})}^{p-1}}
$$

Next apply (scale-invariant) Cauchy-Schwarz' inequality : $\|u\|_{L^{1}(\mathbb{R})} \leq C\|u\|_{L^{2}(\mathbb{R})}^{1 / 2}\|x u\|_{L^{2}(\mathbb{R})}^{1 / 2}$. Then we have

$$
\frac{d}{d t}\|u\|_{L^{2}(\mathbb{R})} \geq C \frac{\|u\|_{L^{2}(\mathbb{R})}^{(3 p+1) / 2}}{\|x u\|_{L^{2}(\mathbb{R})}^{(p-1) / 2}}
$$

Since $x u=J u+i t \partial_{x} u$ where $J=x-i t \partial_{x}$, it follows that

$$
\begin{equation*}
\frac{d}{d t}\|u\|_{L^{2}(\mathbb{R})}^{2} \geq C \frac{\|u\|_{L^{2}(\mathbb{R})}^{(3 p+1) / 2}}{\|J u\|_{L^{2}(\mathbb{R})}^{(p-1) / 2}+t^{(p-1) / 2}\left\|\partial_{x} u\right\|_{L^{2}(\mathbb{R})}} \tag{4.2}
\end{equation*}
$$

We here note that

$$
\begin{aligned}
\frac{d}{d t}\left\|\partial_{x} u\right\|_{L^{2}(\mathbb{R})}^{2} & =2 \operatorname{Im}\left\{(\lambda+i \kappa)\left(\mathcal{N}_{u}(u) \partial_{x} u+\mathcal{N}_{\bar{u}}(u) \overline{\partial_{x} u}, u\right)_{L^{2}(\mathbb{R})}\right\} \\
& \geq((p+1) \kappa-(p-1)|\lambda+i \kappa|) \int_{\mathbb{R}}|u|^{p+1}\left|\partial_{x} u\right|^{2} d x \\
& \geq 0
\end{aligned}
$$

Then we have, for $t \in\left(-\infty, T_{0}\right]$,

$$
\begin{equation*}
\left\|\partial_{x} u(t, \cdot)\right\|_{L^{2}(\mathbb{R})} \leq\left\|u\left(T_{0}, \cdot\right)\right\|_{L^{2}(\mathbb{R})} \tag{4.3}
\end{equation*}
$$

Also, noting that the operator J and $i \partial_{t}+\frac{1}{2} \partial_{x}^{2}$ commute and applying $J \mathcal{N}(u)=\mathcal{N}_{u}(u) J u-$ $\mathcal{N}_{\bar{u}}(u) \overline{J u}$, we see that

$$
\begin{aligned}
\frac{d}{d t}\|J u\|_{L^{2}(\mathbb{R})}^{2} & =2 \operatorname{Im}\left\{(\lambda+i \kappa)\left(\mathcal{N}_{u}(u) J u-\mathcal{N}_{\bar{u}}(u) \overline{J u}, u\right)_{L^{2}(\mathbb{R})}\right\} \\
& \geq((p+1) \kappa-(p-1)|\lambda+i \kappa|) \int_{\mathbb{R}}|u|^{p+1}|J u|^{2} d x \\
& \geq 0
\end{aligned}
$$

and so we have

$$
\begin{equation*}
\|J u(t, \cdot)\|_{L^{2}(\mathbb{R})} \leq\left\|x u\left(T_{0}, \cdot\right)-i T_{0} \partial_{x} u\left(T_{0}, \cdot\right)\right\|_{L^{2}(\mathbb{R})} \tag{4.4}
\end{equation*}
$$

Plugging (4.3) and (4.4) into (4.2), we see that, for $t \in\left(-\infty, T_{0}\right]$,

$$
\frac{d}{d t}\|u\|_{L^{2}(\mathbb{R})}^{2} \geq C t^{-(p-1) / 2}\|u\|_{L^{2}(\mathbb{R})}^{(3 p+1) / 2}
$$

which is equivalent to

$$
\begin{equation*}
-\frac{2}{3(p-1)} \frac{d}{d t}\|u\|_{L^{2}(\mathbb{R})}^{-3(p-1) / 2} \geq C t^{-(p-1) / 2} \tag{4.5}
\end{equation*}
$$

Integrating (4.5) from t to T_{0}, we have

$$
\|u(t, \cdot)\|_{L^{2}(\mathbb{R})} \leq \begin{cases}\left(\left\|u\left(T_{0}, \cdot\right)\right\|_{L^{2}(\mathbb{R})}^{-3}+C \log \frac{|t|}{\left|T_{0}\right|}\right)^{-\frac{1}{3}} & (p=3) \tag{4.6}\\ \left(\left\|u\left(T_{0}, \cdot\right)\right\|_{L^{2}(\mathbb{R})}^{-\frac{3(p-1)}{2}}+C\left(|t|^{\frac{3-p}{2}}-\left|T_{0}\right|^{\frac{3-p}{2}}\right)\right)^{-\frac{2}{3(p-1)}} & (2<p<3)\end{cases}
$$

This completes the proof of Proposition 4.1.
Proof of Theorem 1.1. By Proposition 3.1, there exists a solution to (1.1) in $\left[T_{0}, 0\right]$ such as $u(t, x)=\varphi(t, x)+v(t, x)$ where $\varphi(t, x)$ denotes a blowing-up profile determined in $\S 2$ and $v(t, x)$ satisfies $v(0, x)=0$. Since $u\left(T_{0}, \cdot\right) \in H^{1}(\mathbb{R})$ and $x u\left(T_{0}, \cdot\right) \in L^{2}(\mathbb{R})$, Proposition 4.1 is applied, and so we have a solution such that $\lim _{t \rightarrow-\infty}\|u(t)\|_{L^{2}(\mathbb{R})}=0$. This means that, for any $\rho>0$, there exists some $\tau<0$ such that $\|u(\tau, \cdot)\|_{L^{2}(\mathbb{R})}<\rho$. Take $u(\tau, x)=u_{0}(x)$ as a initial data of (1.1), and consider the positive time direction. Then, from the translation-invariance of (1.1) with respect to t and the uniqueness of the solution in $H^{1}(\mathbb{R})$, it follows that the solution u blows up at some $T^{*}(=|\tau|)$.

Acknowledgement. N. Kita would like to express his appreciation to Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University for giving him opportunities to participate in the joint research activity titled "Reaction Diffusion Equations and Nonlinear Dispersive Equations" organized on 20-22 of February, 2019. He could obtain a chance for the collaboration with the other authors of this article. N. Kita also appreciates the spacial support of Osaka City University Advanced Mathematical Institute, MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849, for giving him a chance to organize a joint research on reaction diffusion equations and nonlinear dispersive equations.

References

[1] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
[2] T. Cazenave, Y. Martel and L. Zhao, Finite-time blowup for a Schrödinger equation with nonlinear source term, Amer. Inst. Math. Sci. 39 (2019), 1171-1183.
[3] J. Zhang, On the finite-time behaviour for nonlinear Schrödinger equations, Comm. Math. Phys. 162 (1994), 249-260.

Faculty of Advanced Science and Technology, Kumamoto University
Kurokami 2-39-1, Kumamoto, 860-8555 Japan
E-mail address: nkita@kumamoto-u.ac.jp

