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EXISTENCE OF BLOWING-UP SOLUTIONS TO SOME
SCHRÖDINGER EQUATIONS INCLUDING NONLINEAR

AMPLIFICATION WITH SMALL INITIAL DATA

Naoyasu Kita

Abstract
We consider the existence of blowing-up solutions to some Schrödinger equations

including nonlinear amplification. The blow-up is considered in L2(R). Even though
initial data are taken so small, there exists some solutions blowing-up in finite time.
The theorem in this paper is an extension of Cazenave-Martel-Zhao’s result [2] from
the points of making the lower bound of power of nonlinearity extended and ensuring
that blowing-up solutions exist even for small initial data.

1 Introduction and Main Result

We consider the Cauchy problem of a nonlinear Schrödinger equation:{
i∂tu = −1

2
∂2

xu + (λ + iκ)|u|p−1u,
u(0, x) = u0(x),

(1.1)

where the complex-valued unknown function u = u(t, x) is defined on (t, x) ∈ [0, T )×R1.
In the nonlinearity, the power satisfies 2 < p ≤ 3 and the coefficients λ, κ ∈ R satisfy

κ > 0, (p − 1)|λ| ≤ 2
√

p κ. (1.2)

In particular, the positivity of κ in (1.2) implies that the nonlinearity affects as an am-
plification. To see it, we refer to the idea of Zhang [3]. If the region of x is a bounded
interval I and Dirichlet boundary condition is imposed, then it is easy to show that, for
u0 ∈ L2(R) and u0 6= 0, the solution to (1.1) blows up in finite time. In fact, we have

d‖u(t)‖2
L2(I)

dt
= 2Re(u(t), ∂tu(t))L2(I)

= 2κ‖u(t)‖p+1
Lp+1(I),

where (f, g)L2(I) =
∫

I
f(x)g(x)dx is the usual L2-inner product. Applying Hölder’s in-

equality : |I|(p−1)/2‖u(t)‖p+1
Lp+1(I) ≥ ‖u(t)‖p+1

L2(I) where |I| denotes the size of the interval,
we see that

d‖u(t)‖2
L2(I)

dt
≥ 2κ|I|−(p−1)/2‖u(t)‖p+1

L2(I).
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Solving this differential inequality, we have

‖u(t)‖L2(I) ≥
‖u0‖L2(I){

1 − κ(p − 1)|I|−(p−1/2)‖u0‖p−1
L2(I)t

}1/(p−1)
,

and we know that ‖u(t)‖L2(I) blows up in finite time. However, this kind of estimate
holds only in the case that x belongs to the bounded interval. Once the region becomes
unbounded, the dispersion associated with −1

2
∂2

x will work so that the nonlinear amplifi-
cation is suppressed, and it is difficult to presume that the nonlinear amplification surely
generates a blowing-up solution. Actually when 3 < p and u0 is sufficiently small in H1(R)
with xu0 ∈ L2(R) also small, the solution to (1.1) exists globally in time. This is because
|u(t, x)|p−1 ∼ Ct−(p−1)/2 is integrable for large t, and the nonlinearity does not affect to
the behavior of the solution. This observation suggests that, if we expect the blow-up for
a small initial data, it is necessary to assume p ≤ 3.

Our goal is to obtain blowing-up solutions to (1.1) even though the smallness is as-
sumed on the initial data.

Theorem 1.1. Let 2 < p ≤ 3. Also let λ and κ satisfy (1.2). Then, for any ρ > 0, there
exists some initial data u0 ∈ L2(R) such that

(i) ‖u0‖L2(R) < ρ,

(ii) the solution u to (1.1) with u0 as the initial data satisfies

lim
t↑T∗

‖u(t)‖L2(R) = ∞ (1.3)

for some T ∗ > 0.

Theorem 1.1 asserts the existence of a blowing-up solution only for some special small
initial data. It remains open whether any small initial data except for u0 = 0 give rise to
the blow-up. In Theorem 1.1, the lower bound of p is required by the technical reason that
the blowing-up profile must be integrable around the blowing-up time with respect to t.
The upper bound of p is required to ensure the existence of blowing-up solution with small
initial data. Precisely speaking, we will first construct a blowing-up profile, construct a
solution to (1.1) which approaches to the profile while t ↑ T∗, and extend it backward in
time. In order to guarantee the decay of the solution in the negative time-direction, the
assumption of p ≤ 3 is required.

The construction of a blowing-up solution to some Schrödinger equation with nonlinear
source term was considered by Cazenave-Martel-Zhao [2]. They treated the N -dimensional
nonlinear Scrödinger equation :

i∂tu = −∆u + i|u|p−1u,

where (t, x) ∈ R×RN and ∆ =
∑N

j=1 ∂2
xj

. In their idea, a profile ϕ(t, x) of the blowing-up
solution was firstly determined, which is subject to the ODE :

i∂tϕ(t, x) = i|ϕ|p−1ϕ(t, x).
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They employed, for instance, ϕ(t, x) = ((p−1)|t|+A|x|k)−1/(p−1) for some A, k > 0, which
blows up at t = 0, and solve the nonlinear Schrödinger equation in H1(RN) by setting
u(t, x) = ϕ(t, x) + v(t, x) with v(0, x) = 0. In [2], the blow up of small initial data was
not considered. In their argument, the condition 3 ≤ p was assumed. We extend this
restriction to 2 < p by somewhat sophisticated nonlinear estimate as well as the coefficient
of nonlinearity is generalized as in (1.2). We will not consider N -dimensional problem
since the p must be restricted into p ≤ 1 + 2/N and the ϕ(t, x) = O(|t|−1/(p−1)) shows a
non-integrable singularity if N ≥ 2.

2 Blowing-Up Profiles

We expect that the blow-up of the solutions is caused by the nonlinearity, and so the
dispersion associated with −1

2
∂2

x does not work so strongly just before the blowing-up
time. This observation suggests that the blowing-up profile is subject to the ordinary
differential equation :

i∂tϕ(t, x) = (λ + iκ)|ϕ(t, x)|p−1ϕ(t, x). (2.1)

For (2.1), we impose an initial data ϕ(−1, x) = ϕ−1(x) at each x ∈ R, where ϕ−1 satisfies

(A)The assumption on ϕ−1:

(A.1) The ϕ−1 ∈ C∞
0 (R) is real valued.

(A.2) 0 ≤ ϕ−1(x) ≤ (κ(p − 1))−1/(p−1).

(A.3) ϕ−1(x) = (κ(p − 1))−1/(p−1) if and only if x = 0.

(A.4) ϕ−1(x) = (κ(p− 1))−1/(p−1)(1−x2N)1/(p−1) for |x| < 1/2, where N > 0 is sufficiently
large integer.

(A.5) ϕ−1(x) ≤ ϕ−1(1/2) for |x| ≥ 1/2.

The ODE in (2.1) is easy to slove. In fact, by (2.1), we see that

∂t|ϕ(t, x)|2 = 2κ|ϕ(t, x)|p+1,

which yields

∂t|ϕ(t, x)|−(p−1) = −κ(p − 1). (2.2)

Integrating (2.2) from −1 to t < 0, we have

|ϕ(t, x)| =
|ϕ−1(x)|

{1 − κ(p − 1)|ϕ−1(x)|p−1(t + 1)}1/(p−1)
. (2.3)

Substitute (2.3) into the |ϕ(t, x)|p−1 on the right hand side of (2.1). Then we notice that
it is a standard first order ODE of ϕ(t, x), and we obtain

ϕ(t, x) = ϕ−1(x)
{
1 − κ(p − 1)ϕp−1

−1 (x)(t + 1)
}(−1+i λ

κ
) 1

p−1 . (2.4)
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We call ϕ(t, x) in (2.4) the blowing-up profile. By the assumption (A) on ϕ−1, the ϕ(t, x)
blows up at t = 0, and, precisely speaking, limt↑0 |ϕ(t, 0)| = ∞ occurs but |ϕ(0, x)| < ∞
for x 6= 0. The condition (A.4) suggests that the graph of ϕ−1(x) is so flat around x = 0,
which guarantees that the blowing-up rates of ∂xϕ(t, x) and higher derivatives do not
violate the integrability with respect to t around t = 0 when 2 < p. We will see the detail
on ϕ(t, x) in next lemma.

Lemma 2.1. Let ϕ−1 be such as defined in the assumption (A), and let j be an integer
satisfying 0 ≤ j ≤ N . Then there exist some Cj > 0 such that the blowing-up profile (2.4)
satisfies

|∂j
xϕ(t, x)| ≤ Cj|t|−1/(p−1)−j/(2N) (2.5)

for any t ∈ (−1, 0).

Proof of Lemma 2.1. It suffices to prove (2.5) for x ∈ (−1/2, 1/2), since the blow-
up takes place at x = 0 first. By the assumption (A), ϕ−1(x) = (κ(p − 1))−1/(p−1)(1 −
x2N)1/(p−1) if |x| < 1/2. Substitute it into (2.4). Then we have

ϕ(t, x) = (κ(p − 1))−1/(p−1)(1 − x2N)1/(p−1){(t + 1)x2N − t}(−1+i λ
κ
) 1

p−1 .

Applying Leibniz’ rule and regarding (1 − x2N)1/(p−1) ∼ 1 − 1
p−1

x2N , we have

|∂j
xϕ(t, x)| ≤ C(1 − x2N)1/(p−1)|∂j

x{(t + 1)x2N − t}(−1+i λ
κ
) 1

p−1 |

+C

j−1∑
k=0

|x|2N−(j−k)|∂k
x{(t + 1)x2N − t}(−1+i λ

κ
) 1

p−1 |. (2.6)

Note that, for the first term of (2.6), the chain rule yields

|∂j
x{(t + 1)x2N − t}(−1+i λ

κ
) 1

p−1 |

≤ C

j∑
`=1

∑
(µ1,··· ,µ`)∈Sj,`

|∂µ1
x x2N | · |∂µ2

x x2N | · · · |∂µ`
x x2N | · |(t + 1)x2N − t|−1/(p−1)−`

≤ C

j∑
`=1

|x|2N`−j · |(t + 1)x2N − t|−1/(p−1)−`,

where Sj,` = {(µ1, · · · , µ`) ∈ N`; µ1 + · · · + µ` = j}. We apply the similar estimate to the
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second term of (2.6). Then we have, for x ∈ (−1/2, 1/2),

|∂j
xϕ(t, x)| ≤ C

j∑
`=1

|x|2N`−j · |(t + 1)x2N − t|−1/(p−1)−`

+C

j−1∑
k=1

|x|2N−(j−k)

k∑
`=1

|x|2N`−k · |(t + 1)x2N − t|−1/(p−1)−`

+C|x|2N−j · |(t + 1)x2N − t|−1/(p−1)

= C

j∑
`=1

|x|2N`−j · |(t + 1)x2N − t|−1/(p−1)−`

+C|x|2N

j−1∑
k=1

k∑
`=1

|x|2N`−j · |(t + 1)x2N − t|−1/(p−1)−`

+C|x|2N−j · |(t + 1)x2N − t|−1/(p−1) (2.7)

Let ξ = (t + 1)x2N/|t|. Then, from (2.7), it follows that

|∂j
xϕ(t, x)| ≤ C

j∑
`=1

|t|−1/(p−1)−j/(2N)

(t + 1)`−j/(2N)
ξ`−j/(2N)(ξ + 1)−1/(p−1)−`

+C|x|2N

j−1∑
k=1

k∑
`=1

|t|−1/(p−1)−j/(2N)

(t + 1)`−j/(2N)
ξ`−j/(2N)(ξ + 1)−1/(p−1)−`

+C|x|2N−j · |t|−1/(p−1)

(t + 1)−1/(p+1)
(ξ + 1)−1/(p−1). (2.8)

Since supξ≥0 ξ`−j/(2N)(ξ + 1)−1/(p−1)−` < ∞, (2.8) yields

|∂j
xϕ(t, x)| ≤ C|t|−1/(p−1)−j/(2N) + C|x|2N · |t|−1/(p−1)−j/(2N) + C|x|2N−j · |t|−1/(p−1)

≤ C(1 + (1/2)2N + (1/2)2N−j)|t|−1/(p−1)−j/(2N). 2

In the subsequent section, we will use a modified profiles ϕν(t, x) = ϕ(t−ν, x) for ν ∈ (0, 1]
to consider approximate solutions around the blowing-up time. Applying the analogy in
the proof of Lemma 2.1, we have some properties of ϕν(t, x).

Corollary 2.2. Let ϕ−1 be such as defined in the assumption (A). Let j be an integer
satisfying 0 ≤ j ≤ N , and ε ∈ (0, 1]. Then there exist some Cj > 0, Cj,ε > 0 and δ > 0
independent of ν, ν ′ ∈ (0, 1] such that

|∂j
xϕν(t, x)| ≤ Cj|t|−1/(p−1)−j/(2N), (2.9)

|∂j
x(ϕν(t, x) − ϕν′(t, x))| ≤ Cj,ε|t|−1/(p−1)−j/(2N)−ε(νε + ν ′ε) (2.10)

for any t ∈ (−δ, 0).

Proof of Corollary 2.2. By Lemma 2.1, we have

|∂j
xϕν(t, x)| = |∂j

xϕ(t − ν, x)|
≤ C|t − ν|−1/(p−1)−j/(2N)

≤ C|t|−1/(p−1)−j/(2N),
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and we obtain (2.9). We next consider

ϕν(t, x) − ϕ(t, x) = −
∫ t

t−ν

∂τϕ(τ, x)dτ.

Since

∂τϕ(τ, x) = (κ − iλ)ϕp
−1(x)

{
1 − κ(p − 1)ϕp−1

−1 (x)(t + 1)
}(−1+i λ

κ
) 1

p−1
−1

,

we may retrace the estimate as we did in the proof of Lemma 2.1, replacing the power
(−1 + iλ

κ
) 1

p−1
by (−1 + iλ

κ
) 1

p−1
− 1. Hence we have

|∂j
x(ϕν(t, x) − ϕ(t, x))| ≤

∫ t

t−ν

|∂j
x∂τϕ(τ, x)|dτ

≤ C

∫ t

t−ν

|τ |−1−1/(p−1)−j/(2N)dτ. (2.11)

The integrand is bounded by |τ |−1+ε|τ |−1/(p−1)−j/(2N)−ε ≤ |τ |−1+ε|t|−1/(p−1)−j/(2N)−ε. Then
we see that

|∂j
x(ϕν(t, x) − ϕ(t, x))| ≤ Cj|t|−1/(p−1)−j/(2N)−ε

∫ t

t−ν

|τ |−1+εdτ

≤ Cj

ε
|t|−1/(p−1)−j/(2N)−ε(|t − ν|ε − |t|ε)

≤ Cj,ε|t|−1/(p−1)−j/(2N)−ενε.

Since |∂j
x(ϕν − ϕν′)| ≤ |∂j

x(ϕν − ϕ)| + |∂j
x(ϕν′ − ϕ)|, we obtain (2.10). 2

3 A Solution Around the Blowing-Up Profile

We will construct a solution to (1.1) locally in negative time, which asymptotically tends
to ϕ(t, x) as t ↑ 0. To this end, we write u(t, x) = ϕ(t, x) + v(t, x). Then the equation
that v = v(t, x) satisfies is{

i∂tv = −1
2
∂2

xv − 1
2
∂2

xϕ + (λ + iκ)(N (ϕ + v) −N (ϕ)),
v(0, x) = 0,

(3.1)

where N (u) = |u|p−1u. One may first suppose to apply the contraction mapping priciple
to (3.1) via Duhamel’s priciple. But this apprach will not work so well, since the nonlinear
estimate such as

|N (ϕ + v) −N (ϕ)| ≤ C(|ϕ|p−1 + |v|p−1)|v|

contains the non-integrable singularity on |ϕ|p−1 = O(|t|−1) around t = 0. Thus we need
to apply another approach so called the energy method. To derive a decay estimate of
‖u(t, ·)‖L2(R) as t → −∞, we must solve (3.1) in the weighted L2 space. In this section,
we will prove the next proposition.
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Proposition 3.1. Let 2 < p, and let λ, κ satisfy (1.2). Then, for some T0 < 0, there
exists a unique solution v = v(t, x) to (3.1) such that

v ∈ C([T0, 0]; H1(R)) ∩ C1([T0, 0); H−1(R)), (3.2)

xv ∈ C([T0, 0]; L2(R)). (3.3)

Furthermore the solution satisfies

‖v(t, ·)‖L2(R) ≤ C|t|α0 , ‖∂xv(t, ·)‖L2(R) ≤ C|t|α1 , (3.4)

where α0 = 1 − 1/(p − 1) − 2/(2N) > 0 and α1 = 1 − 1/(p − 1) − 3/(2N) > 0 with N
defined in (A.4).

To prove Proposition 3.1, we begin to consider an approximate solution for ϕν(t, x) =
ϕ(t − ν, x) with 0 < ν < 1, i.e.,{

i∂tvν = −1
2
∂2

xvν − 1
2
∂2

xϕν + (λ + iκ)(N (ϕν + vν) −N (ϕν)),
vν(0, x) = 0.

(3.5)

Since there is no singularity at t = 0 in ϕν(t, x), the equation (3.5) can be solved locally
in negative time by transforming it into the associated integral equation and by applying
the contraction mapping principle [1]. Indeed we have a solution to (3.5) such that

vν ∈ C([Tν , 0]; H1(R)) ∩ C1([Tν , 0); H−1(R)),

xvν ∈ C([Tν , 0]; L2(R)),

where Tν < 0 is given by

Tν = inf{T ∈ (−1, 0); sup
T<t≤0

(‖vν(t, ·)‖H1(R) + ‖xvν(t, ·)‖L2(R)) < 1}.

Lemma 3.2. Let 2 < p, and let λ, κ satisfy (1.2). Then there exists some T0 < 0 such
that the next three assertions hold.

(i) We have Tν ≤ T0 for any ν ∈ (0, 1].

(ii) We have

1∑
j=0

‖xjvν(t, ·)‖L2(R) ≤ C|t|1−1/(p−1)−2/(2N), (3.6)

‖∂xvν(t, ·)‖L2(R) ≤ C|t|1−1/(p−1)−3/(2N) (3.7)

for any t ∈ [T0, 0] and ν ∈ (0, 1].

(iii) Let ε ∈ (0, ε0] with ε0 > 0 sufficiently small. Then there exists some constant Cε > 0
such that

1∑
j=1

‖xj(vν(t, ·) − vν′(t, ·))‖L2(R) ≤ Cε|t|1−1/(p−1)−2/(2N)−ε(νε + ν ′ε), (3.8)

‖∂x(vν(t, ·) − vν′(t, ·))‖L2(R) ≤ Cε|t|1−1/(p−1)−3/(2N)−ε(ν(p−2)ε/2 + ν ′(p−2)ε/2) (3.9)

for any t ∈ [T0, 0] and ν, ν ′ ∈ (0, 1].
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Proof of Lemma 3.2. For the solution vν to (3.5), we have

d

dt
‖vν‖2

L2(R) = −Im(∂2
xϕν , vν)L2(R) + 2Im

{
(λ + iκ)(N (ϕν + vν) −N (ϕν), vν)L2(R)

}
≡ I + II, (3.10)

where (f, g)L2(R) =
∫

R f(x)g(x)dx denotes the inner product. By Cauchy-Schwarz’ in-
equality together with Corollary 2.2 (2.9), we see that

I ≥ −C|t|−1/(p−1)−2/(2N)‖vν‖L2(R). (3.11)

Since N (ϕν + vν) −N (ϕν) =
∫ 1

0
∂θN (ϕν + θvν)dθ, we have

II = 2

∫ 1

0

Im
{
(λ + iκ)(Nu(ϕν + θvν)vν + Nū(ϕν + θvν)vν , vν)L2(R)

}
dθ,

where Nu(u) = ∂uN (u) = p+1
2
|u|p−1 and Nū(u) = ∂ūN (u) = p−1

2
|u|p−3u2. Then it follows

that

II ≥ ((p + 1)κ − (p − 1)|λ + iκ|)
∫ 1

0

∫
R
|ϕν + θvν |p−1|vν |2dxdθ.

Since (p + 1)κ − (p − 1)|λ + iκ| ≥ 0 due to (1.2), we see that

II ≥ 0, (3.12)

which implies that the nonlinearity is dropped out on the right hand side of (3.10).
Plugging (3.11) and (3.12) into (3.10), we have

d

dt
‖vν‖L2(R) ≥ −C|t|−1/(p−1)−2/(2N). (3.13)

Recall that 2 < p, and note that N is large enough as in (A.4). Then −1 < − 1
p−1

− 2
2N

and so |t|−1/(p−1)−2/(2N) is integrable near t = 0. Integrating (3.13) from t to 0, we see
that there exists some constant C > 0 independent of ν ∈ (0, 1] such that , for t ∈ (Tν , 0],

‖vν(t)‖L2(R) ≤ C|t|1−1/(p−1)−2/(2N). (3.14)

Note that ϕν(t, x) is compactly supported. Then the similar estimate to derive (3.14) is
applied to ‖xvν(t)‖L2(R), and we have, for t ∈ (Tν , 0],

‖xvν(t)‖L2(R) ≤ C|t|1−1/(p−1)−2/(2N). (3.15)

We next consider the estimate of ‖∂xvν(t)‖L2(R). We see, formally, that

d

dt
‖∂xvν‖2

L2(R) = −Im(∂3
xϕν , ∂xvν)L2(R)

+2Im
{
(λ + iκ)(∂xN (ϕν + vν) − ∂xN (ϕν), ∂xvν)L2(R)

}
≡ III + IV. (3.16)
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By Cauchy-Schwarz’ inequality together with Corollary 2.2 (2.9), we see that

III ≥ −C|t|−1/(p−1)−3/(2N)‖∂xvν‖L2(R). (3.17)

Since

∂xN (ϕν + vν) − ∂xN (ϕν) = Nu(ϕν + vν)∂xvν + Nū(ϕν + vν)∂xvν

+(Nu(ϕν + vν) −Nu(ϕν))∂xϕν

+(Nū(ϕν + vν) −Nū(ϕν))∂xϕν

and

|Nu(ϕν + vν) −Nu(ϕν)| + |Nū(ϕν + vν) −Nū(ϕν)| ≤ C(|ϕν |p−2 + |vν |p−2)|vν |,

we have

IV ≥ ((p + 1)κ − (p − 1)|λ + iκ|)
∫

R
|ϕν + vν |p−1|∂xvν |2dx

−C

∫
R
(|ϕν |p−2 + |vν |p−2)|vν ||∂xϕν ||∂xvν |dx. (3.18)

By (1.2), we have (p + 1)κ − (p − 1)|λ + iκ| ≥ 0, and so the first tern on the right hand
side of (3.18) is dropped out. Applying Corollary 2.2 (2.9) to (3.18), we have

IV ≥ −C|t|−1−1/(2N)‖vν‖L2(R)‖∂xvν‖L2(R)

−C|t|−1/(p−1)−1/(2N)‖vν‖p−1

L2(p−1)(R)
‖∂xvν‖L2(R)

≥ C|t|−1−1/(2N)‖vν‖L2(R)‖∂xvν‖L2(R)

−C|t|−1/(p−1)−1/(2N)‖vν‖p/2

L2(R)‖∂xvν‖p/2

L2(R). (3.19)

Note here that, to deduce the last inequality in (3.19), the Gagliardo-Nirenberg inequality :

‖vν‖2(p−1)

L2(p−1)(R)
≤ C‖vν‖p

L2(R)‖∂xvν‖p−2
L2(R) was applied. Plugging (3.17) and (3.19) into (3.16),

and making use of (3.14), we have, for t ∈ [Tν , 0),

d

dt
‖∂xvν‖L2(R) ≥ −C|t|−1/(p−1)−3/(2N) − C|t|−1/(p−1)−1/(2N)‖vν‖p/2

L2(R)‖∂xvν‖(p/2)−1

L2(R) .

Since ‖vν‖L2(R) ≤ C and ‖∂xvν‖(p/2)−1

L2(R) ≤ C(1 + ‖∂xvν‖L2(R)) due to Young’s inequality,
the above inequality turns out to be

d

dt
‖∂xvν‖L2(R) ≥ −C|t|−1/(p−1)−3/(2N) − C|t|−1/(p−1)−1/(2N)‖∂xvν‖L2(R).

Then Gronwall’s inequality yields, for t ∈ [Tν , 0),

‖∂xvν(t)‖L2(R) ≤ C|t|1−1/(p−1)−3/(2N), (3.20)

where the constant C does not depend on ν ∈ (0, 1]. Combining (3.14), (3.15) and (3.20),
we see that

‖vν(t)‖H1(R) + ‖xvν(t)‖L2(R) ≤ C(|t|1−1/(p−1)−2/(2N) + |t|1−1/(p−1)−3/(2N)).
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Assume that Tν → 0 as ν ↓ 0. Then, taking t = Tν in the above and recalling the
definition of Tν , we have

1 ≤ C|Tν |1−1/(p−1)−2/(2N) + C|Tν |1−1/(p−1)−3/(2N).

This is a contradiction, since 1 − 1
p−1

− 3
2N

> 0 for large N . Hence there exists some

T0 < 0 such that Tν ≤ T0 for any ν ∈ (0, 1], and the proof for (i), (ii) is complete.
We are next going to prove (iii). We have

d

dt
‖vν − vν′‖2

L2(R) = −Im(∂2
x(ϕν − ϕν), vν − vν′)L2(R)

+2Im
{
(λ + iκ)(N (ϕν + vν) −N (ϕν), vν − vν′)L2(R)

}
−2Im

{
(λ + iκ)(N (ϕν′ + vν′) −N (ϕν′), vν − vν′)L2(R)

}
≡ V + V I − V I ′. (3.21)

By Corollary 2.2 (2.10), we have

V ≥ −C|t|−1/(p−1)−2/(2N)−ε(νε + ν ′ε)‖vν − vν′‖L2(R). (3.22)

Since N (ϕν + vν) −N (ϕν′) =
∫ 1

0
{Nu(ϕν + θvν)vν + Nū(ϕν + θvν)vν}dθ etc., we see that

V I − V I ′

= 2Im

∫ 1

0

(Nu(ϕν + θvν)(vν − vν′) −Nū(ϕν + θvν)(vν − vν′), vν − vν′)L2(R)dθ

+2Im

∫ 1

0

({Nu(ϕν + θvν) −Nu(ϕν′ + θvν′)}vν′ , vν − vν′)L2(R)dθ

+2Im

∫ 1

0

({Nū(ϕν + θvν) −Nū(ϕν′ + θvν′)}vν′ , vν − vν′)L2(R)dθ

≥ ((p + 1)κ − (p − 1)|λ + iκ|)
∫ 1

0

∫
R
|ϕν + θvν |p−1|vν − vν′|2dxdθ

−C(‖ϕν‖p−2
L∞(R) + ‖ϕν′‖p−2

L∞(R) + ‖vν‖p−2
L∞(R) + ‖vν′‖p−2

L∞(R))

×(‖ϕν − ϕν′‖L∞(R)‖vν′‖L2(R) + ‖vν − vν′‖L2(R)‖vν′‖L∞(R))‖vν − vν′‖L2(R).

By (p + 1)κ − (p − 1)|λ + iκ| ≥ 0 due to (1.2) and the Gagliardo-Nirenberg inequality

‖vν‖L∞(R) ≤ C‖vν‖1/2

L2(R)‖∂xvν‖1/2

L2(R), we see that

V I − V I ′

≥ −C(|t|−1/(p−1)−2/(2N)−ε(νε + ν ′ε) + |t|−5/(4N)‖vν − vν′‖L2(R))

×‖vν − vν′‖L2(R). (3.23)

Plugging (3.22) and (3.23) into (3.21), we have

d

dt
‖vν − vν′‖L2(R) ≥ −C|t|−1/(p−1)−2/(2N)−ε(νε + ν ′ε) − C|t|−5/(4N)‖vν − vν′‖L2(R).

Then Gronwall’s inequality yields

‖vν − vν′‖L2(R) ≤ −C|t|1−1/(p−1)−2/(2N)−ε(νε + ν ′ε). (3.24)
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The estimate for ‖x(vν − vν′)‖L2(R) similarly follows, and we have

‖x(vν − vν′)‖L2(R) ≤ −C|t|1−1/(p−1)−2/(2N)−ε(νε + ν ′ε). (3.25)

Finally we are going to consider the estimate of ‖∂x(vν − vν′)‖L2(R). We have

d

dt
‖∂x(vν − vν′)‖2

L2(R)

= −Im(∂3
x(ϕν − ϕν), ∂x(vν − vν′))L2(R)

+2Im
{
(λ + iκ)(∂xN (ϕν + vν) − ∂xN (ϕν), ∂x(vν − vν′))L2(R)

}
−2Im

{
(λ + iκ)(∂xN (ϕν′ + vν′) − ∂xN (ϕν′), ∂x(vν − vν′))L2(R)

}
≡ V II + V III − V III ′. (3.26)

By Corollary 2.2 (2.10), we have

V II ≥ −C|t|−1/(p−1)−3/(2N)−ε(νε + ν ′ε)‖∂x(vν − vν′)‖L2(R). (3.27)

Since ∂xN (ϕν + vν) = Nu(ϕν + vν)∂x(ϕν + vν) +Nū(ϕν + vν)∂x(ϕν + vν) and ∂xN (ϕν) =
Nu(ϕν)∂xϕν + Nū(ϕν)∂xϕν etc., it follows that

V III − V III ′

≥ 2Im
{
(λ + iκ)(Nu(ϕν + vν)∂xw −Nū(ϕν + vν)∂xw, ∂xw)L2(R)

}
−C|({Nu(ϕν + vν) −Nu(ϕν′ + vν′)}∂xvν′ , ∂xw)L2(R)|
−C|({Nū(ϕν + vν) −Nū(ϕν′ + vν′)}∂xvν′ , ∂xw)L2(R)|
−C|({Nu(ϕν + vν) −Nu(ϕν)}∂x(ϕν − ϕν′), ∂xw)L2(R)|
−C|({Nū(ϕν + vν) −Nū(ϕν)}∂x(ϕν − ϕν′), ∂xw)L2(R)|
−C|(M1(ϕν , ϕν′ , vν , vν′)∂xϕν′ , ∂xw)L2(R)|
−C|(M2(ϕν , ϕν′ , vν , vν′)∂xϕν′ , ∂xw)L2(R)|, (3.28)

where w = vν − vν′ and

M1(ϕν , ϕν′ , vν , vν′) = Nu(ϕν + vν) −Nu(ϕν) −Nu(ϕν′ + vν′) + Nu(ϕν′),

M2(ϕν , ϕν′ , vν , vν′) = Nū(ϕν + vν) −Nū(ϕν) −Nū(ϕν′ + vν′) + Nū(ϕν′).

Note that

2Im
{
(λ + iκ)(Nu(ϕν + vν)∂xw −Nū(ϕν + vν)∂xw, ∂xw)L2(R)

}
= ((p + 1)κ − (p − 1)|λ + iκ|)

∫
R
|ϕν + vν |p−1|∂xw|2dx

≥ 0, (3.29)

|Nu(ϕν + vν) −Nu(ϕν′ + vν′)|
≤ C(‖ϕν‖p−2

L∞(R) + ‖ϕν′‖p−2
L∞(R) + ‖vν‖p−2

L∞(R) + ‖vν′‖p−2
L∞(R))

×(|ϕν − ϕν′ | + |vν − vν′|). (3.30)
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We rewrite M1 in such a way that

M1(ϕν , ϕν′ , vν , vν′)

=

∫ 1

0

Nuu(ϕν + θvν)vνdθ +

∫ 1

0

Nuū(ϕν + θvν)vν′dθ

−
∫ 1

0

Nuu(ϕν′ + θvν′)vν′dθ −
∫ 1

0

Nuū(ϕν′ + θvν′)ϕν′dθ

=

∫ 1

0

Nuu(ϕν + θvν)(vν − vν′)dθ +

∫ 1

0

Nuū(ϕν + θvν)(vν − vν′)dθ

+

∫ 1

0

(Nuu(ϕν + θvν) −Nuu(ϕν′ + θvν′))vν′dθ

+

∫ 1

0

(Nuū(ϕν + θvν) −Nuū(ϕν′ + θvν′))vν′dθ (3.31)

where Nuu(u) = ∂2
uN (u) and Nuū(u) = ∂ū∂uN (u). Apply, for instance, the simple in-

equalities :

|Nuu(ϕν + θvν)| ≤ C(‖ϕν‖p−2
L∞(R) + ‖vν‖p−2

L∞(R))

and

|Nuu(ϕν + θvν) −Nuu(ϕν′ + θvν′)| ≤ C(‖ϕν − ϕν′‖p−2
L∞(R) + ‖vν − vν′‖p−2

L∞(R))

to (3.31). Then we have

|M1(ϕν , ϕν′ , vν , vν′)| ≤ C(‖ϕν‖p−2
L∞(R) + ‖vν‖p−2

L∞(R))|vν − vν′|

+C(‖ϕν − ϕν′‖p−2
L∞(R) + ‖vν − vν′‖p−2

L∞(R))|vν′|. (3.32)

Plugging (3.29), (3.30) and (3.32) into (3.28), and making use of the similar estimates for
Nū and M2, we see that

V III − V III ′

≥ −C(‖ϕν‖p−2
L∞(R) + ‖ϕν′‖p−2

L∞(R) + ‖vν‖p−2
L∞(R) + ‖vν′‖p−2

L∞(R))

×(‖ϕν − ϕν′‖L∞(R) + ‖vν − vν′‖L∞(R))‖∂xvν′‖L2(R)‖∂xw‖L2(R)

−C(‖ϕν‖p−2
L∞(R) + ‖vν‖p−2

L∞(R))‖vν‖L2(R)‖∂x(ϕν − ϕν′)‖L∞(R)‖∂xw‖L2(R)

−C(‖ϕν‖p−2
L∞(R) + ‖vν‖p−2

L∞(R))‖vν − vν′‖L2(R)‖∂xϕν′‖L∞(R)‖∂xw‖L2(R)

−C(‖ϕν − ϕν′‖p−2
L∞(R) + ‖vν − vν′‖p−2

L∞(R))‖vν′‖L2(R)‖∂xϕν′‖L∞(R)‖∂xw‖L2(R).

Applying Corollary 2.2 to ϕν , ϕν′ and ϕν − ϕν′ , (3.6) - (3.8) to vν , vν′ and vν − vν′ , we
have

V III − V III ′

≥ −C(|t|−1/(p−1)−3/(2N)−ε(νε + ν ′ε) + |t|−3/(2N)‖vν − vν′‖L∞(R))‖∂xw‖L2(R)

−C|t|−1/(p−1)−3/(2N)−ε(νε + ν ′ε)‖∂xw‖L2(R)

−C|t|−1/(p−1)−3/(2N)−(p−2)ε(ν(p−2)ε + ν ′(p−2)ε)‖∂xw‖L2(R)

−C|t|1−2/(p−1)−3/(2N)‖vν − vν′‖p−2
L∞(R)‖∂xw‖L2(R). (3.33)
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Apply Gagliardo-Nirenberg’s inequality : ‖f‖L∞(R) ≤ C‖f‖1/2

L2(R)‖∂xf‖L2(R) to ‖vν −
vν′‖L∞(R). Then we have

‖vν − vν′‖L∞(R) ≤ C‖vν − vν′‖1/2

L2(R)‖∂x(vν − vν′)‖1/2

L2(R)

≤ C‖vν − vν′‖1/2

L2(R)(‖∂xvν‖L2(R) + ‖∂xvν′‖L2(R))
1/2

≤ C|t|1−1/(p−1)−5/(4N)−ε/2(νε/2 + ν ′ε/2),

where (3.7) and (3.8) were used. Plugging the above inequality to (3.33), we see that

V III − V III ′

≥ −C|t|−1/(p−1)−3/(2N)−ε(νε + ν ′ε)‖∂xw‖L2(R)

−C|t|1−1/(p−1)−11/(4N)−ε/2(νε/2 + ν ′ε/2)‖∂xw‖L2(R)

−C|t|−1/(p−1)−3/(2N)−(p−2)ε(ν(p−2)ε + ν ′(p−2)ε)‖∂xw‖L2(R)

−C|t|p−2−1/(p−1)−(5p−4)/(4N)−(p−2)ε/2(ν(p−2)ε/2 + ν ′(p−2)ε/2)‖∂xw‖L2(R)

≥ −C|t|−1/(p−1)−3/(2N)−ε(ν(p−2)ε/2 + ν ′(p−2)ε/2)‖∂xw‖L2(R) (3.34)

for sufficiently large N and sufficiently small ε. Plugging (3.27) and (3.34) into (3.26), we
have

d

dt
‖∂x(vν − vν′)‖L2(R)

≥ −C|t|−1/(p−1)−3/(2N)−ε(ν(p−2)ε/2 + ν ′(p−2)ε/2).

Integrating from t to 0, we have

‖∂x(vν − vν′)‖L2(R)

≤ C|t|1−1/(p−1)−3/(2N)−ε(ν(p−2)ε/2 + ν ′(p−2)ε/2). (3.35)

This completes the proof of Lemma 3.2. 2

Proof of Proposition 3.1 By Lemma 3.2 (3.8) and (3.9), there exists a limit limν↓0 vν = v
in C([T0, 0]; H1(R)) and in the weghted L2(R). Also we see that

−1

2
∂2

xvν −
1

2
∂2

xϕν + (λ + iκ)(N (ϕν + vν) −N (ϕν))

ν↓0→ −1

2
∂2

xv − 1

2
∂2

xϕ + (λ + iκ)(N (ϕ + v) −N (ϕ))

holds in C([T0, τ ]; H−1(R)) for any τ ∈ (T0, 0). It follows that limν↓0 ∂tvν = ∂tv in
C([T0, 0); H−1(R)), and hence v ∈ C1([T0, 0); H−1(R)). The uniqueness follows by de-
riving ‖v1 − v2‖L2(R) = 0. 2

4 Proof of Theorem 1.1

We need to prolong the solution u = ϕ + v backward in negative time. It is easy to guess
that the size of the solution tends to 0 as t → −∞, since the nonlinear amplification (i.e.,
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κ > 0) works as the dissipation in negative time direction. However this observation fails
when 3 < p since the dispersion caused by −(1/2)∂2

x breaks down the nonlinearity. Hence
the condition p ≤ 3 is required to ensure limt→−∞ ‖u(t)‖L2(R) = 0.

Proposition 4.1. Let 1 < p ≤ 3 and λ, κ satisfy (1.2). Let u(T0, ·) ∈ H1(R) and
xu(T0, ·) ∈ L2(R). Then the solution u = u(t, x) to (1.1) exists globally in negative time.
Furthermore we have

‖u(t, ·)‖L2(R) ≤ C

{
(log |t|)−1/3 (p = 3),
|t|−(2/3)(1/(p−1)−1/2) (2 < p < 3)

(4.1)

for t ∈ (−∞, T0].

Proof of Proposition 4.1. By (1.1), we see that

d

dt
‖u‖2

L2(R) = κ‖u‖p+1
Lp+1(R).

Applying Hölder’s inequality : ‖u‖2p
L2(R) ≤ ‖u‖p+1

Lp+1(R)‖u‖
p−1
L1(R), we have

d

dt
‖u‖L2(R) ≥ κ

‖u‖2p
L2(R)

‖u‖p−1
L1(R)

.

Next apply (scale-invariant) Cauchy-Schwarz’ inequality : ‖u‖L1(R) ≤ C‖u‖1/2

L2(R)‖xu‖1/2

L2(R).
Then we have

d

dt
‖u‖L2(R) ≥ C

‖u‖(3p+1)/2

L2(R)

‖xu‖(p−1)/2

L2(R)

.

Since xu = Ju + it∂xu where J = x − it∂x, it follows that

d

dt
‖u‖2

L2(R) ≥ C
‖u‖(3p+1)/2

L2(R)

‖Ju‖(p−1)/2

L2(R) + t(p−1)/2‖∂xu‖L2(R)

. (4.2)

We here note that

d

dt
‖∂xu‖2

L2(R) = 2Im
{
(λ + iκ)(Nu(u)∂xu + Nū(u)∂xu, u)L2(R)

}
≥ ((p + 1)κ − (p − 1)|λ + iκ|)

∫
R
|u|p+1|∂xu|2dx

≥ 0.

Then we have, for t ∈ (−∞, T0],

‖∂xu(t, ·)‖L2(R) ≤ ‖u(T0, ·)‖L2(R). (4.3)
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Also, noting that the operator J and i∂t+
1
2
∂2

x commute and applying JN (u) = Nu(u)Ju−
Nū(u)Ju, we see that

d

dt
‖Ju‖2

L2(R) = 2Im
{
(λ + iκ)(Nu(u)Ju −Nū(u)Ju, u)L2(R)

}
≥ ((p + 1)κ − (p − 1)|λ + iκ|)

∫
R
|u|p+1|Ju|2dx

≥ 0,

and so we have

‖Ju(t, ·)‖L2(R) ≤ ‖xu(T0, ·) − iT0∂xu(T0, ·)‖L2(R). (4.4)

Plugging (4.3) and (4.4) into (4.2), we see that, for t ∈ (−∞, T0],

d

dt
‖u‖2

L2(R) ≥ Ct−(p−1)/2‖u‖(3p+1)/2

L2(R) ,

which is equivalent to

− 2

3(p − 1)

d

dt
‖u‖−3(p−1)/2

L2(R) ≥ Ct−(p−1)/2. (4.5)

Integrating (4.5) from t to T0, we have

‖u(t, ·)‖L2(R) ≤


(
‖u(T0, ·)‖−3

L2(R) + C log |t|
|T0|

)− 1
3

(p = 3),(
‖u(T0, ·)‖

− 3(p−1)
2

L2(R) + C(|t| 3−p
2 − |T0|

3−p
2 )

)− 2
3(p−1)

(2 < p < 3).
(4.6)

This completes the proof of Proposition 4.1. 2

Proof of Theorem 1.1. By Proposition 3.1, there exists a solution to (1.1) in [T0, 0]
such as u(t, x) = ϕ(t, x) + v(t, x) where ϕ(t, x) denotes a blowing-up profile determined
in § 2 and v(t, x) satisfies v(0, x) = 0. Since u(T0, ·) ∈ H1(R) and xu(T0, ·) ∈ L2(R),
Proposition 4.1 is applied, and so we have a solution such that limt→−∞ ‖u(t)‖L2(R) = 0.
This means that, for any ρ > 0, there exists some τ < 0 such that ‖u(τ, ·)‖L2(R) < ρ.
Take u(τ, x) = u0(x) as a initial data of (1.1), and consider the positive time direction.
Then, from the translation-invariance of (1.1) with respect to t and the uniqueness of the
solution in H1(R), it follows that the solution u blows up at some T ∗(= |τ |). 2
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