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EXISTENCE OF BLOWING-UP SOLUTIONS TO SOME
SCHRODINGER EQUATIONS INCLUDING NONLINEAR
AMPLIFICATION WITH SMALL INITIAL DATA

Naoyasu Kita

Abstract
We consider the existence of blowing-up solutions to some Schrédinger equations
including nonlinear amplification. The blow-up is considered in L?(R). Even though
initial data are taken so small, there exists some solutions blowing-up in finite time.
The theorem in this paper is an extension of Cazenave-Martel-Zhao’s result [2] from
the points of making the lower bound of power of nonlinearity extended and ensuring
that blowing-up solutions exist even for small initial data.

1 Introduction and Main Result

We consider the Cauchy problem of a nonlinear Schrodinger equation:

iOu = —102u+ (A + ir)|ulu, (1.1)
u(0, z) = uo(x), '

where the complex-valued unknown function u = u(t, z) is defined on (t,z) € [0,T) x RL.
In the nonlinearity, the power satisfies 2 < p < 3 and the coefficients A, k € R satisfy

k>0, (p—DIA <2¢/p k. (1.2)
In particular, the positivity of x in (1.2) implies that the nonlinearity affects as an am-
plification. To see it, we refer to the idea of Zhang [3]. If the region of x is a bounded
interval I and Dirichlet boundary condition is imposed, then it is easy to show that, for
ug € L*(R) and g # 0, the solution to (1.1) blows up in finite time. In fact, we have

MH%W) = 2Re(u(t), Opul(t))r2(n

dt
= 2wflu(t)l[f1 s
where (f,g) L2( n= [ f( I d:v is the usual L2-inner product. Applying Holder’s in-

equality : |I|®=1/2||u(t )||1£J;L(I > Ju(t )Hp+1 where |I| denotes the size of the interval,
we see that

d||u(t)||?
I (;t”L?(I) > 2/{|_]|—(p—1)/2”u()“p+1
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Solving this differential inequality, we have

||U0||L2(I)

_ 1/(p—1)’
{1 — k(p— 1)‘]|—(p—1/2)||u0||7£2(11)t}

()| z2(r) =

and we know that |lu(t)||z2;y blows up in finite time. However, this kind of estimate
holds only in the case that x belongs to the bounded interval. Once the region becomes
unbounded, the dispersion associated with —%83 will work so that the nonlinear amplifi-
cation is suppressed, and it is difficult to presume that the nonlinear amplification surely
generates a blowing-up solution. Actually when 3 < p and v is sufficiently small in H*(RR)
with zug € L*(R) also small, the solution to (1.1) exists globally in time. This is because
lu(t, z)[P~' ~ Ct~»=D/2 is integrable for large ¢, and the nonlinearity does not affect to
the behavior of the solution. This observation suggests that, if we expect the blow-up for
a small initial data, it is necessary to assume p < 3.

Our goal is to obtain blowing-up solutions to (1.1) even though the smallness is as-
sumed on the initial data.

Theorem 1.1. Let 2 < p < 3. Also let X\ and k satisfy (1.2). Then, for any p > 0, there
exists some initial data uy € L*(R) such that

(@) [luoll 2@y < p,
(17) the solution u to (1.1) with ug as the initial data satisfies

tim [u(t) sy = o0 (13)

for some T > 0.

Theorem 1.1 asserts the existence of a blowing-up solution only for some special small
initial data. It remains open whether any small initial data except for uy = 0 give rise to
the blow-up. In Theorem 1.1, the lower bound of p is required by the technical reason that
the blowing-up profile must be integrable around the blowing-up time with respect to t.
The upper bound of p is required to ensure the existence of blowing-up solution with small
initial data. Precisely speaking, we will first construct a blowing-up profile, construct a
solution to (1.1) which approaches to the profile while ¢ T T, and extend it backward in
time. In order to guarantee the decay of the solution in the negative time-direction, the
assumption of p < 3 is required.

The construction of a blowing-up solution to some Schrodinger equation with nonlinear
source term was considered by Cazenave-Martel-Zhao [2]. They treated the N-dimensional
nonlinear Scrodinger equation :

10 = —Au + ilulPu,

where (t,7) € RxRY and A = EN 02 . In their idea, a profile p(t, z) of the blowing-up

Jj=1"x;
solution was firstly determined, which is subject to the ODE :

iOpp(t, ) = il o(t, z).
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They employed, for instance, ¢(t, x) = ((p—1)[t|+ Alz|*)~/*=V for some A, k > 0, which
blows up at ¢ = 0, and solve the nonlinear Schrodinger equation in H'(RY) by setting
u(t,z) = o(t,x) + v(t,z) with v(0,2) = 0. In [2], the blow up of small initial data was
not considered. In their argument, the condition 3 < p was assumed. We extend this
restriction to 2 < p by somewhat sophisticated nonlinear estimate as well as the coefficient
of nonlinearity is generalized as in (1.2). We will not consider N-dimensional problem
since the p must be restricted into p < 1+ 2/N and the p(t,x) = O(|t|"/®~Y) shows a
non-integrable singularity if N > 2.

2 Blowing-Up Profiles

We expect that the blow-up of the solutions is caused by the nonlinearity, and so the
dispersion associated with —%82 does not work so strongly just before the blowing-up
time. This observation suggests that the blowing-up profile is subject to the ordinary
differential equation :

iohp(t, o) = (A + k)|t 2) [Pt ). (2.1)

For (2.1), we impose an initial data p(—1,2) = ¢_1(z) at each x € R, where ¢_; satisfies

(A.1) The ¢_; € C3°(R) is real valued.

(A2) 0<poa(x) < (k(p—1)"E70.

(A.3) o_i(x) = (k(p— 1))@V if and only if z = 0.

(Ad) o i(x) = (k(p—1))"YP=D(1 - 22NV @D for |z| < 1/2, where N > 0 is sufficiently

large integer.
(A5) 9 a(2) < 9a(1/2) for [a] > 172
The ODE in (2.1) is easy to slove. In fact, by (2.1), we see that
Oile(t, )" = 2xlp(t,z)[*,
which yields
Ot )"0 = —k(p - 1). (2.2)

Integrating (2.2) from —1 to t < 0, we have

i p-a(a)]
o e Dt i+ DT 2

Substitute (2.3) into the |p(¢,2)[P~" on the right hand side of (2.1). Then we notice that
it is a standard first order ODE of (¢, ), and we obtain

olt,2) = pa(2) {1 — wlp — D (@)t + 1)} (2.0

3



We call ¢(t,z) in (2.4) the blowing-up profile. By the assumption (A) on ¢_1, the ¢(, x)
blows up at ¢t = 0, and, precisely speaking, limo|¢(t,0)| = oo occurs but |p(0,x)| < oo
for x # 0. The condition (A.4) suggests that the graph of p_;(z) is so flat around z = 0,
which guarantees that the blowing-up rates of 0,p(t,z) and higher derivatives do not
violate the integrability with respect to t around ¢ = 0 when 2 < p. We will see the detail
on ¢(t,z) in next lemma.

Lemma 2.1. Let ¢_; be such as defined in the assumption (A), and let j be an integer
satisfying 0 < j < N. Then there exist some C; > 0 such that the blowing-up profile (2.4)
satisfies

(@t )| < it~/ D=/ (2.5)

for any t € (—1,0).

Proof of Lemma 2.1. Tt suffices to prove (2.5) for x € (—1/2,1/2), since the blow-
up takes place at = 0 first. By the assumption (A), ¢_i(z) = (k(p — 1))"Y/P=D(1 —
p?NYVP=1) if |2 < 1/2. Substitute it into (2.4). Then we have

plt,a) = ((p = 1)/ V(1 =)D {(t 4 1)t — f D

. . _ . N — 1 N
Applying Leibniz’ rule and regarding (1 — z?¥)/®=1) ~ 1 — 1 2N we have

Gle(ta)] < O =)D jL(1+ 12—y
j—1
+O Y 2PN (4 )2 — )T, (2.6)
k=0

Note that, for the first term of (2.6), the chain rule yields

Ot + 1) — ) T

J
< CZ Z |851x2N| . |@£2x2N’ .. |3§2x2N| . ](t + 1):62N . t|71/(p,1),g
(=1

(k1,7 10e)ESj 0

J
< O PY (1) e,
(=1

where S = {(p1, -, pe) € Ny + -+ pe = j}. We apply the similar estimate to the
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second term of (2.6). Then we have, for z € (—1/2,1/2),

J
|0p(t, )] < CZ]:I:PNH-\(tﬂ)x?N_t,fl/(p—l)fe

k

+OZ|$|2N (J—k) Z|x|2N€ k. t+1)x2N_t|—1/(p—1)—Z
=

—|—C’|ac|2N It + 1)x2N — ¢V

J
_ CZ |:L,|2Nf—j . |(t + 1)1,2N . 25|—1/(p—1)—£

Jj— k
—|—C|$‘2N Z Z |x|2N£fj . |(t + 1)1,2N _ 75|71/(pfl)7£
k=1 (=1
O[NP — g YD) (2.7)

Let € = (¢t + 1)?V /|t|. Then, from (2.7), it follows that

|7/ D=ICN) oy 1/ (p—1)—t
]gota: <CZ t—%—lgﬂ/?N)g] (E+1)~/%

2NJ o |t| 1/ (p—1)=/(2N) L—j/(2N) 1/(p—1)—¢
rela S S e e -
k=1 ¢=1
2N—j ’t| Y/ -1) 1 1
+COz|2N (€ +1)~Y@=D, (2.8)

(t + 1)*1/(p+1)
Since supgsq /N (€ 4+ 1)7V/@PD=E < 0o, (2.8) yields

B o(t,z)] < Clt|7YP=D=3/CN) f 2N ||~ = D=3/ CN) L O |2N=3 . |¢|~1/(P=D)
< OO+ (1/2)% + (12N )¢~ Ve-bD-/CN) g

In the subsequent section, we will use a modified profiles o, (¢, 2) = ¢(t—v, z) for v € (0, 1]
to consider approximate solutions around the blowing-up time. Applying the analogy in
the proof of Lemma 2.1, we have some properties of ¢, (t, ).

Corollary 2.2. Let ¢ 1 be such as defined in the assumption (A). Let j be an integer
satisfying 0 < j < N, and € € (0,1]. Then there exist some C; >0, C;. >0 and § > 0
independent of v,v" € (0,1] such that

0L (t, )] < Cyft| 71/ 707/, (2.9)
02(u(t,2) = pur(t,2))] < Cjelt]~HEDTEN=(0" 4 0/%) (2.10)

for any t € (—9,0).
Proof of Corollary 2.2. By Lemma 2.1, we have

0500 (8, 7))

Cl[t — y|~H/e=-D=/2N)

<
< C|tY e -a/eN)
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and we obtain (2.9). We next consider

eu(t,z) — p(t,z) = —/t_ O (T, z)dr.

Since

P 1
(_I-HE)ﬁ_l

Orp(ra) = (k= i\ (2) {1 = K(p — D)5 (2)(t + 1)} o

we may retrace the estimate as we did in the proof of Lemma 2.1, replacing the power

(—1+ z%)lﬁ by (—1+ Z%)]ﬁ — 1. Hence we have

t
e(t.) — plt))] < [ [00.p(ra)lar
t—v

t
< C/ | =Y/ ==/ C@N) g (2.11)
t—v

The integrand is bounded by |7|~1*+¢|7 |71/ (P=D=3/CN)=e < |7 |~1+e|¢|~1/(P=1)=3/(2N)=¢ Then
we see that

t
(ot 2) — p(t,2))] < qm*@“ﬂmmf/ 7|+ dr
t—v
C: _
< ||V eD=I/ @ (1~ yF — |t]fF)
- ¢

< O |t oD e e,

Since |02(p, — ou1)| <102 (p, — ©)| + 02 (0, — )|, we obtain (2.10). O

3 A Solution Around the Blowing-Up Profile

We will construct a solution to (1.1) locally in negative time, which asymptotically tends
to p(t,z) as t 7 0. To this end, we write u(t,xz) = p(t,z) + v(t,z). Then the equation
that v = v(t, x) satisfies is

0w = —3020 — 3020 + (A + ik) (N (¢ + v) — N(p)),

(3.1)

v(0,2) =0,

where N'(u) = |u[P"'u. One may first suppose to apply the contraction mapping priciple

to (3.1) via Duhamel’s priciple. But this apprach will not work so well, since the nonlinear
estimate such as

N (e +v) =N()] < ClelP" + [v]P~ )|

contains the non-integrable singularity on |p[P~! = O(|t|™!) around ¢ = 0. Thus we need
to apply another approach so called the energy method. To derive a decay estimate of
|w(t, )| L2r) as t — —o0, we must solve (3.1) in the weighted L* space. In this section,
we will prove the next proposition.



Proposition 3.1. Let 2 < p, and let A\, k satisfy (1.2). Then, for some Ty < 0, there
exists a unique solution v = v(t,z) to (3.1) such that

v € O([To, 0] H'(R)) N C([Tp, 0); H'(R)), (32)
zv € C([Ty, 0]; LA(R)).

Furthermore the solution satisfies
[0t )2y < CJE™, (0av(t, )l 2@ < O, (3.4)

where ap =1 —-1/(p—1)—=2/2N) >0 and oy =1—-1/(p—1) = 3/(2N) > 0 with N
defined in (A.4).

To prove Proposition 3.1, we begin to consider an approximate solution for ¢, (¢, z) =
ot —v,x) with 0 < v <1, ie.,

{ iatvl/ = _%(92@1/ - _62 ()‘ + Z'%)(N(QOV + UV) - N(SOV)%

v,(0,z) = 0. (3.5)

Since there is no singularity at ¢t = 0 in ¢, (¢, x), the equation (3.5) can be solved locally
in negative time by transforming it into the associated integral equation and by applying
the contraction mapping principle [1]. Indeed we have a solution to (3.5) such that

v, € C([T,,01; H'(R)) N CX([T,,,0); H(R)),
v, € C((T,,0]; L*(R)),

where 7;, < 0 is given by
T, = (T € (=1,0); sup (Juult, Yimee) + vt Vloeo) < 1)

Lemma 3.2. Let 2 < p, and let \, k satisfy (1.2). Then there exists some Ty < 0 such
that the next three assertions hold.

(i) We have T,, < Ty for any v € (0,1].
(77) We have

ZHx vt )2 < C Y E-D=2/@N), (3.6)

100, (8, W2y < Clt=HE=D=3/E0 (3.7)
Jor any t € [Ty,0] and v € (0,1].

(i13) Lete € (0,e0] with g9 > 0 sufficiently small. Then there exists some constant C. > 0
such that

1
S e (00t ) = v Dl agey < Celt]' /002102 ) (33)

102 (v (t, ) = vir(t, ) | p2my < Celt]! /@703 @M= (=222 4y /072272) (3.9)

for any t € [Ty, 0] and v,V € (0,1].



Proof of Lemma 3.2. For the solution v, to (3.5), we have

d :
%”UVH%?(R) = _Im(ai(p'/’ UV)L2(R) + 2Im {()‘ + ZK)(N(QD,, +v,) — ./\/(QD,,), UV)LQ(R)}
= 411, (3.10)
where (f,g) fR da: denotes the inner product. By Cauchy-Schwarz’ in-

equality together with Corollary 2.2 (2.9), we see that
I> —C’|t|_1/(”_1)_2/(2N)Hvl,||Lz(R). (3.11)

Since N (¢, +v,) — N(p,) = fol OoN (o, + 0v,)dl, we have
1
Il = 2/ Im {(X + ir) (Nu(py + 0v,) v, + Na(pn + 00,)0,,v,) 12wy } d6,
0

where N, (u) = 9N (u) = B2 [ulP~t and Ny (u) = 0N (u) = 2 |ulP~3u?. Then it follows
that

1
I > ((P+1)li—(p—1)|/\+i/<a|)/ /|<,0u+9vy|p_1|vy|2dxd9.
o Jr

Since (p+ 1)k — (p — 1)|A 4+ ik > 0 due to (1.2), we see that
1 >0, (3.12)

which implies that the nonlinearity is dropped out on the right hand side of (3.10).
Plugging (3.11) and (3.12) into (3.10), we have

d
dtuu,,up > —C|t|7Y e D-2EN), (3.13)

2

Recall that 2 < p, and note that N is large enough as in (A.4). Then —1 < ——1 — 5N

and so |t|~1/(P=1)=2/CN) is integrable near t = 0. Integrating (3.13) from ¢ to 0, we see
that there exists some constant C' > 0 independent of v € (0, 1] such that , for t € (T, 0],

v, ()| pemy < Ot~/ =D=2/EN), (3.14)

Note that ¢,(t, ) is compactly supported. Then the similar estimate to derive (3.14) is
applied to ||zv,(t)||L2(r), and we have, for ¢t € (7,,0],

20, () || 2y < CJt|' M= D=2/CN), (3.15)
We next consider the estimate of ||0,v,(t)||22(r). We see, formally, that

d
a”axvuuiqm = —Im(ai%,axvu)m(m

+2Im {()\ + ZFL) (&E./\/’(go,, + Uz/) — 81./\/’(801/)7 axUV)LQ(R)}
11+ 1V. (3.16)



By Cauchy-Schwarz’ inequality together with Corollary 2.2 (2.9), we see that

17 > —C|t|_1/(p_1)_3/(2N) ||8IUI/HL2(]R)' (317)
Since
azN(SOV + Ul/) - am-/\/’(spu) = Nu((py + Uu)ﬁzvu +Nﬂ<<;0u + Uu)azv_u
"’(NU(‘PV +v,) — Nu(@ﬂ))azwu
+(Nﬂ(901/ + Uu) - Nﬂ(gpu))ax@
and

|Nu(90v +v,) _Nu(SOV>| + |Nﬂ(9011 +v,) _Nﬂ(@l/)‘ < C<|90V|p_2 + |vl,|p_2)|v,,|,

we have

IV > ((p+ s —(p— DA +ixl) / 0y + 0, P By, Pda
R
_C/(‘¢V’p2+ |v,,|p’2)\v,,\|8x<p,,||8xvl,]dx. (3-18>
R

By (1.2), we have (p + 1)k — (p — 1)|\ 4+ ix| > 0, and so the first tern on the right hand
side of (3.18) is dropped out. Applying Corollary 2.2 (2.9) to (3.18), we have
IV = Ot o, || 2y |00l 2 sy
—Clt| =m0, 1756 1 g H@ CAIPETEY
Ot~ Mo, || 2y 10000 | 2wy

2 2
—Clt| 1/(p—1)-1/(2N) H V||p/ R)”ax V||Z£/2(R (3.19)

v

Note here that, to deduce the last inequality in (3.19), the Gagliardo-Nirenberg inequality :
v ,,HL2<p He S CHUVH]ZQ(R 1|0 v,,HL2 (r) Was applied. Plugging (3.17) and (3.19) into (3.16),
and making use of (3.14), we have, for ¢t € [T,,0),

d 2 2)—1
0z > —Cle| 7O TEN — O Y EN o, [720 0, |1
Since ||vy||r2@®) < C and ||0, v,,HLZ/(% < C(1 + |02y 22(r)) due to Young’s inequality,

the above inequality turns out to be

d
vz > —Cl~ TN — ORI TEN 0,0, | 2y

Then Gronwall’s inequality yields, for ¢ € [T,,0),
1050, () || L2y < C|t|F 1/ @~ D=3/CN) (3.20)

where the constant C' does not depend on v € (0, 1]. Combining (3.14), (3.15) and (3.20),
we see that

Hvy(t>”H1(R)+Hxvy( )HL2 < C(|t|1 1/(p—1)—2/( 2N)+|t|1 1/(p—1)— 3/(2N))
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Assume that T, — 0 as v | 0. Then, taking ¢t = T, in the above and recalling the
definition of 7T,, we have

1< C|T,,|1‘1/(P‘1)‘2/(2N) + O|Ty|1—1/(p—1)—3/(2]\7)'

This is a contradiction, since 1 — zﬁ — % > 0 for large N. Hence there exists some

To < 0 such that T, < Ty for any v € (0, 1], and the proof for (i), (ii) is complete.
We are next going to prove (iii). We have

d

dtva UV’H%%R) = —Im(83 (e, — @v), vy — V) L2(R)

+2Im { (A + k) (N (0 + 1) = N(@0), 00 — 00) 12(w)
—2Im { (A + ik) (N (0 + vur) = N (001), vy — U0 ) 12wy b
= V4+VI-VI. (3.21)

By Corollary 2.2 (2.10), we have
V> _C«w71/(P*1)*2/(2N)75(Vs + VIE)HUV _ UZ//HLQ(R)' (3.22>

Since N(p, +v,) = N(p,) = fol{./\/u(goy + 0v,)v, + Na(p, + 0v,)7, }dO ete., we see that

= 2Im [ (Nu(ew +0v,) (v, — vy) — Na(pw + 0v,) (v, — vir), vy — ) 2y d0
1
—|—2hn/ ({Nulpy + v,) = Nou(our + Ovyr) upr, vy — vpr) 2wy d0
0
1
+2Tm / (N (0 + 00,) — Nl + 00, Y07, 0y — 000) 20y 6
0

1
> (p+1)r—=(p—1A+ m!)/ / o, + 0v, [P v, — v, |*dxdd

_C<H(10VHIZ;O(R + [low Iz R) + [lon |7 R) + [Jowr HLOO(R )

X(llew = bwllee@ llovll 2@ + [lvw = vurll 2@ l[ow [ e @) l1vw = virll 2Ry

By (p+ 1)k — (p— 1)|>\ + ik| > 0 due to (1.2) and the Gagliardo-Nirenberg inequality

vy || oo ®) < C||v,,|\ H@x ,,HL2 (R) We see that
VIi-vI
> —C(Jt]VEITCNE 0 1)) 4 [t o, — o 2wy
XHUV — UV’||L2(R)' (323)

Plugging (3.22) and (3.23) into (3.21), we have

d /(1) _ _
EHUV — UV’HLZ(R) Z —C|t| 1/(p=1)=2/(2N) 6(1/6 + V/E) — C|t| 5/(4N)||UV — UV’HLZ(R)

Then Gronwall’s inequality yields

vy — vl o) < —CJt]i~Y/E-D-2/CN)=e (2 e, (3.24)
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The estimate for ||z(v, — v,)||L2(r) similarly follows, and we have
2(v, — v || 2@y < —Ct| /P72 EN== (e 4 =), (3.25)

Finally we are going to consider the estimate of ||0,(v, — vy)||z2®). We have

d
EH@:(UV - Uu’)||2L2(R)

= —Im(afé(% — 0u), 0z (v, — Uu’))LQ(R)
+2Im { (A +ir) (0N () +v,) = BN (01), 0:(v) = v0)) 12() }
—2Im { (A + i8) (N (00 + Vi) = DN (1), B0y — 100)) 2wy }
= VII+VIII-VIII. (3.26)

By Corollary 2.2 (2.10), we have
VII > —C|t’_1/([)_1)_3/(2N)_6(V6 + 1/5)||8m(v,, . Uv’)HL?(R)- (3'27>

Since N (¢, + v,) = Nou(@n + 1,)05 (¢ + 1) + Na(@w +1,)0: (¢ + v,) and N () =
Nou(0,)0p0, + Na(p,) 0w, ete., it follows that

VII[I -VIII
> 2lm {(/\ + k) (Nu(py + 1) Do — Na(p, + v,) 05w, aa:w)L2(R)}
—Cl({Nu(py +v0) = Nulpw 4+ 00) 0000, Opw) L2 ()|
—C|({Na(py +v,) — Nalpw + Uu/)}%, aa:w)Lz(]R)’
—C|({Nulw + 1) = Nul90)}02(0r — @), Op0) L2(w) |
—Cl({Nalpy + vy) = Na(@)}0:(0r — @ur), 0ow) L2(w)|
—C|(Mi(pw, vV, V1) Orprr, OW) L2(w) |
—C|(Ma(y, 00, Uy, V), D) 2wy, (3.28)

where w = v, — v, and

Ml(gpm SOVUUIMUV/) = Nu(gpu + UV) _Nu(gpu) _Nu<§01/’ + /Ul//) +Nu(901/’)a
MQ(QOIM QOV/,’U,/,’UV/) - Nﬁ(@y + Ul/) _Nﬁ(@y) _Nﬁ,(SOl/’ + Uu’) +Nﬁ(¢u’)-

Note that

2Im {()‘ + Z'%)(Nu(gpl/ + Uu)axw - NE(SOV + Uu)ax_wa 8xw)L2(R)}
— ((p+ )k — (p— DA+ ix]) / o0 + 0, [P0, Pda
R

>0, (3.29)
WNulpy + 1) = Nulpur + vu)]
< Cllenllfimy + e llmy + @ + 0w 17s))
X(ly = @ur] + vy = vu]). (3.30)
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We rewrite M; in such a way that
MI(SDIM Pyt Uy, UV’)
1 1
= / Ny + 0v,)v,db + / Noalp, + 0v,)v,,db
0 0

1 1
—/ Nl + v, ) v, dl — / Noualpw + 0v,)p,do
0 0
1 1
= / Ny + 0v,) (v, — v,)dO + / Nualp, + 0v,) (v, — v,/ )dO
0 0
1
+/ (Nuw(py + 0v,) — N (o0 + 0v,0))v,d6
0

1
—l—/ (Nua(@w + 0v,) — Nua (o + 0v,))0,,d0 (3.31)
0

where N, (u) = 9°N(u) and Nz(u) = 9;0,N (u). Apply, for instance, the simple in-
equalities :

|NuU<‘PV +0v,)| < (||90V|| R) + ”UV“LOO R))

and
Naw (9 + 00,) = Now(pur + 00,0)| < Clllw — o gy + o — v 521gy)
0 (3.31). Then we have
(Mi(pur 00,00, 0)] < CllulB2gy + o lh2e)low — v
+C(|liow - WHMR) + ||vy vl da)low]. (3.32)

Plugging (3.29), (3.30) and (3.32) into (3.28), and making use of the similar estimates for
Nz and My, we see that

VIII -VIII
> —Clllelli<im + llowllfm + oo lfe + o)
x([ley = 901/ /| oo ®) + Hvu V|| oo @) )| Oavir || L2y | Oaw | L2y
—Clleu ey + loulfm)llonll 2@ 102 (20 = @)l L@ |10xw]l 2wy
—C(llew ey + ||Uu||Loo(R Now = vl 2@ |0 o] oo ) [| Oz w | L2 )
—Cllew = pulliiey + low = vl g o | 2@ 10000 | oo ) || 820 | 2wy

Applying Corollary 2.2 to ¢,, ¢, and ¢, — ¢,/, (3.6) - (3.8) to v,, v, and v, — v, we
have

VIII -VIII
> _O(|t|—1/(P—1)—3/(2N)—6(V5 + V/a) + |t|—3/(2N)||UV _ vy,||Loo(R))||axw||L2(R)
_Cm—1/(p—1)—3/(2N)—s(Ve _|_V15)Ha w||L2
—C\t|’1/(7”*1)*3/(2]\[)*(?*2)5( (P=2)e 4 1/(p—2) 2 N Oww]| z2my
CW 2/(p=1)=3/@2N) ||UV - Uy || R)Ha w||L2(R (3.33)
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Apply Gagliardo-Nirenberg’s inequality : || f||zem®) < C’||f||1/2 wll0:fll2m®) to [lv, —
Uy || oo (r)- Then we have

IN

1/2
Cllvy = vur || oty 192 (00 — vu0) | g

>~ CH/UV - /UV/HLQ(R)(Hax’UVHLQ(R) —+ Haﬁvvl/’HLQ(R))l/Q
< C|t|1—1/(p—1)—5/(4N)—a/2(Va/z + 1/5/2)7

||UZ, — UV’”LOO(R)

A

where (3.7) and (3.8) were used. Plugging the above inequality to (3.33), we see that

VIII-VIIT
S R e (O (Y 7R (9
_C|t|1—1/(p—1)—11/(4N)—5/2(V€/2 + V/a/2)||8 w||L2

—C|t| Y/ P=D=3/CN)=(p=2)e (1, (=22 1 /(=22 | 5 W[ L2y
_C|t‘prfl/(pfl)*(Sp%)/(4N)*(p72)s/2( (p=2)e/2 | /(p=2)e )Ha wHL2

> _C|t|—1/(p—1)—3/(2N)—8(,/(p—2)a/2 + /2 5/2)||5xw||L2(R) (3.34)

for sufficiently large N and sufficiently small . Plugging (3.27) and (3.34) into (3.26), we
have

d
A RO e
> _C’t‘71/(p71)73/(2N)75(V(p*Q)E/Q_|_V/(p72)5/2).

Integrating from ¢ to 0, we have

10: (v = vur)l[ 2R
< QY= N (=2 4 f(p=2)2/2), (3.35)

This completes the proof of Lemma 3.2. O

Proof of Proposition 3.1 By Lemma 3.2 (3.8) and (3.9), there exists a limit lim, g v, = v
in C([Ty,0]; H'(R)) and in the weghted L*(R). Also we see that

1 1
Lo, - Lo, i, 4 0) - M)
v 1 1
=50 = S0+ (A iR) (W (e +v) = N ()
holds in C([Tp, 7]; H"Y(R)) for any 7 € (Tp,0). It follows that lim,o v, = O in

C([Ty,0); H(R)), and hence v € C*([T,0); H'(R)). The uniqueness follows by de-

riving |[v1 — va|p2r) = 0. O

4 Proof of Theorem 1.1

We need to prolong the solution u = ¢ + v backward in negative time. It is easy to guess
that the size of the solution tends to 0 as t — —o0, since the nonlinear amplification (i.e.,
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k> 0) works as the dissipation in negative time direction. However this observation fails
when 3 < p since the dispersion caused by —(1/2)9? breaks down the nonlinearity. Hence
the condition p < 3 is required to ensure lim;_,_o ||u(t)|| 2@) = 0.

Proposition 4.1. Let 1 < p < 3 and A\ &k satisfy (1.2). Let u(Ty,-) € H'(R) and
zu(Ty, ) € LA(R). Then the solution u = u(t,z) to (1.1) exists globally in negative time.
Furthermore we have

oo |¢)-1/3 _
[t )o@ < C{ (log £ p=3), (4.1)

HCAWE-D-172 (2 < < 3)
fort € (—o0, Tp).
Proof of Proposition 4.1. By (1.1), we see that

d
Sl = Fllullih ey

Applying Holder’s inequality : HuHiI;(R) < lullpt (R)||u||if(1R), we have

|| 1%
EHUHH(R) =
H 7%

Next apply (scale-invariant) Cauchy-Schwarz’ inequality : |[ul|L1(®) < CHqu/ ZR) qu||2/22R)

Then we have

(3p+1)/
unpm

Since zu = Ju + itd,u where J = x — it0,, it follows that

d
£||U||L2(R)

d lull "2
—|Jul|Z2 @) > 02 (4.2)
dt | Ju ||(Lpa(R)/ + =2 Opu| L2 ()
We here note that
d .
EH@qu%z(R) = 2Im {(\ + ir) (N (w)Opu + Ng(w)Opu, u) r2(r) }
> (o D= (o= DA+ i) [ [ 0.uPda
R
> 0.
Then we have, for ¢t € (—o0, Tp],
[0:u(t, 2w < [[u(To, )| L2(w)- (4.3)
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Also, noting that the operator J and i9,+302 commute and applying JN (u) = N, (u)Ju—
Na(u)Ju, we see that

d . —_—
%HJUH%Q(R) = 2Im {(\ +ir)(Nau(w) Ju — Na(u) Ju, u) 2w }

> ((p+ Ve~ (0= DA+ in]) [ fu T
R
> 0,
and so we have
HJU(t, ')HLQ(R) § Hm'LL<T0, ) — iTgaxU(To, ')HLQ(R)' (44)

Plugging (4.3) and (4.4) into (4.2), we see that, for t € (—o0, Tp],
||u||L2 ® = Ct” (= 1)/QH % 3p+1)/2

which is equivalent to

2 d —3(p—1)/2 (p—
oy i 2 Crv (9

Integrating (4.5) from ¢ to Ty, we have

-4
UMRfmmR+0bagg (p=3),
Hu( )”L2 < 3(p—1) 5, \  30-1 (46>
(It s+ o™~ =) 7 @ <p<s)
This completes the proof of Proposition 4.1. O

Proof of Theorem 1.1. By Proposition 3.1, there exists a solution to (1.1) in [T, 0]
such as u(t,z) = ¢(t,z) + v(t,z) where p(t,z) denotes a blowing-up profile determined
in § 2 and v(t,z) satisfies v(0,2) = 0. Since u(Ty, ) € H'(R) and zu(Ty, ) € L*(R),
Proposition 4.1 is applied, and so we have a solution such that lim, . [|u(t)||z2®) = 0.
This means that, for any p > 0, there exists some 7 < 0 such that ||u(7,-)||L2®) < p.
Take u(7,x) = up(z) as a initial data of (1.1), and consider the positive time direction.
Then, from the translation-invariance of (1.1) with respect to ¢ and the uniqueness of the
solution in H*(R), it follows that the solution u blows up at some T*(= |7]). O
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