Boundedness of solutions to a parabolic attraction-repulsion chemotaxis system in R²: the attractive dominant case

Toshitaka NAGAI Yukihiro SEKI Tetsuya YAMADA

Citation	OCAMI Preprint Series
Issue Date	2021-02-15
Type	Preprint
Textversion	Author
Rights	For personal use only. No other uses without permission.
Relation	The following article has been submitted to Applied Mathematics Letters. After
	it is published, it will be found at https://doi.org/10.1016/j.aml.2021.107354 .

From: Osaka City University Advanced Mathematical Institute

 $\underline{http://www.sci.osaka\text{-}cu.ac.jp/OCAMI/publication/preprint/preprint.html}$

Boundedness of solutions to a parabolic attraction-repulsion chemotaxis system in \mathbb{R}^2 : the attractive dominant case

Toshitaka NAGAI* Yukihiro SEKI[†] Tetsuya YAMADA [‡]

Abstract

We discuss the Cauchy problem for a parabolic attraction-repulsion chemotaxis system:

$$\begin{cases} \partial_t u = \Delta u - \nabla \cdot (\beta_1 u \nabla v_1) + \nabla \cdot (\beta_2 u \nabla v_2), & t > 0, \ x \in \mathbb{R}^2, \\ \partial_t v_j = \Delta v_j - \lambda_j v_j + u, & t > 0, \ x \in \mathbb{R}^2 \ \ (j = 1, 2), \\ u(0, x) = u_0(x), \ v_{j0}(0, x) = v_{j0}(x), & x \in \mathbb{R}^2 \ \ \ (j = 1, 2) \end{cases}$$

with positive constants β_j , $\lambda_j > 0$ (j=1,2) satisfying $\beta_1 > \beta_2$. In our companion paper, the authors proved the existence of global-in-time solutions for any initial data with $(\beta_1 - \beta_2) \int_{\mathbb{R}^2} u_0 \, dx < 8\pi$. In this paper, we prove that every solution stays bounded as $t \to \infty$ provided that $(\beta_1 - \beta_2) \int_{\mathbb{R}^2} u_0 \, dx < 4\pi$.

Key words: Global existence; A priori estimate; Boundedness **2020 Mathematics subject classification:** 35A01; 35B45; 35K45; 35Q92

1 Introduction

In this paper, we consider the Cauchy problem:

$$\begin{cases} \partial_t u = \Delta u - \nabla \cdot (\beta_1 u \nabla v_1) + \nabla \cdot (\beta_2 u \nabla v_2), & t > 0, \ x \in \mathbb{R}^2, \\ \partial_t v_j = \Delta v_j - \lambda_j v_j + u, & t > 0, \ x \in \mathbb{R}^2 \quad (j = 1, 2), \\ u(0, x) = u_0(x), \ v_j(0, x) = v_{j0}(x), & x \in \mathbb{R}^2 \quad (j = 1, 2), \end{cases}$$
(CP)

where β_i , λ_i (j=1,2) are positive constants and u_0 , v_{i0} are nonnegative functions satisfying

$$u_0 \ge 0, u_0 \ne 0, u_0 \in L^1 \cap L^{\infty}(\mathbb{R}^2), v_{i0} \ge 0, v_{i0}, |\nabla v_{i0}| \in L^1 \cap L^{\infty}(\mathbb{R}^2).$$

This system was proposed in [6] to describe the aggregation process of Microglia, in which functions u(t,x), $v_1(t,x)$, and $v_2(t,x)$ represent the density of Microglia, the chemical concentration of attractive, and repulsive signals, respectively.

^{*}Department of Mathematics, Hiroshima University, Higashihiroshima, 739-8526, Japan. E-mailaddress:tnagai@hiroshima-u.ac.jp

[†]Osaka City University Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585, Japan. E-mail address:seki@sci.osaka-cu.ac.jp

[‡]Course of General Education, National Institute of Technology, Fukui College, Sabae, Fukui 916-8507, Japan. E-mail address:yamada@fukui-nct.ac.jp (Corresponding author)

The Cauchy–Neumann problem (CP) on bounded domains have been studied by many researchers (cf. [1, 3, 4, 5] and references cited therein), whereas only a few results were obtained for the Cauchy problem (CP) in \mathbb{R}^2 . In what follows, the symbols for the integral over the whole space, Lebesgue spaces, and their norms are abbreviated as $\int dx := \int_{\mathbb{R}^2} dx$, $L^p := L^p(\mathbb{R}^2)$, and $\|\cdot\|_p := \|\cdot\|_{L^p}$ ($1 \le p \le \infty$), respectively. Jin–Liu [2] proved that every solution (u, v_1, v_2) to the Cauchy problem (CP) is globally bounded provided that $\beta_1 = \beta_2$. They also proved that for all 1 ,

$$\sup_{t>0} (1+t)^{1-1/p} \|u(t)\|_p < \infty, \tag{1.1a}$$

$$\lim_{t \to \infty} t^{1-1/p} \| u(t) - \| u_0 \|_1 G(t) \|_p = 0 \tag{1.1b}$$

as well as the same asymptotic profiles for v_1 and v_2 , where G(t) = G(x,t) denotes the usual heat kernel in \mathbb{R}^2 . For the repulsion-dominant case $\beta_1 < \beta_2$, the third author [10] has recently proven that every solution is bounded globally in time. The most delicate situation is the attraction-dominant case $\beta_1 > \beta_2$ since it is expected that the attraction can dominate over repulsive and diffusive effects, so that finite or infinite time blow-up can occur. In this case, the authors [7] have proven that every nonnegative solution with $(\beta_1 - \beta_2) \|u_0\|_1 < 8\pi$ exists globally in time. However, there is no result as to whether or not it remains bounded as $t \to \infty$. The goal of this paper is to solve this last problem under an additional condition on initial data. We are now in a position to state our main result.

Theorem 1.1. Assume $\beta_1 > \beta_2$ and

$$\int u_0 \, dx < \frac{4\pi}{\beta_1 - \beta_2}.$$

Then the nonnegative solution of (CP) exists globally in time and satisfies

$$\sup_{t>0} (\|u(t)\|_{\infty} + \|v_1(t)\|_{\infty} + \|v_2(t)\|_{\infty}) < \infty.$$
(1.2)

Remark 1.2. Once the boundedness is established, the same analysis as in [2] (which goes back to [8]) on asymptotic profile works without any change (even for $\beta_1 \neq \beta_2$), and therefore (1.1) holds as well.

2 Proof of Theorem 1.1

We first recall the following inequality, which is a crucial key to show Theorem 1.1:

Lemma 2.1 ([9, Lemma 2.3]). For $0 < \varepsilon < 1$ and nonnegative functions $g \in L^1 \cap W^{1,2}(\mathbb{R}^2)$,

$$\int g^2 dx \le \frac{1+\varepsilon}{4\pi} \left(\int g dx \right) \left(\int \frac{|\nabla g|^2}{1+g} dx \right) + \frac{2}{\varepsilon} \int g dx.$$

In what follows, let $0 < T < \infty$ and (u, v_1, v_2) be the nonnegative solution to (CP) on $[0, T] \times \mathbb{R}^2$.

Proof of Theorem 1.1. By (CP), the fact of $\int \partial_t u dx = 0$, and an integration by parts, we obtain

$$\frac{d}{dt} \int (1+u) \log(1+u) dx + \int \frac{|\nabla u|^2}{1+u} dx$$

$$= \int \nabla \cdot (\nabla u - u \nabla(\beta_1 v_1 - \beta_2 v_2)) \log(1+u) dx + \int \frac{|\nabla u|^2}{1+u} dx$$

$$= \int \nabla u \cdot \nabla(\beta_1 v_1 - \beta_2 v_2) dx - \int \nabla \log(1+u) \cdot \nabla(\beta_1 v_1 - \beta_2 v_2) dx. \tag{2.1}$$

Set

$$\psi = \beta_1 v_1 - \beta_2 v_2, \qquad h = \lambda_2 \beta_2 v_2 - \lambda_1 \beta_1 v_1,$$
 (2.2a)

$$\beta = \beta_1 - \beta_2,\tag{2.2b}$$

where β is positive by assumption. Due to (CP), we have

$$\partial_t \psi = \Delta \psi + h + \beta u. \tag{2.3}$$

Integrating by parts in (2.1) and using (2.3), we obtain, after re-grouping of terms,

$$\frac{d}{dt} \int (1+u) \log(1+u) dx + \int \frac{|\nabla u|^2}{1+u} dx$$

$$= -\beta \int u \log(1+u) dx + \int (u - \log(1+u)) h dx + \beta \int u^2 dx - \int u \partial_t \psi dx + \int \partial_t \psi \log(1+u) dx. \quad (2.4)$$

Let us write

$$-\beta \int u \log(1+u) dx = -\beta \int (1+u) \log(1+u) dx + \beta \int \log(1+u) dx.$$
 (2.5)

By use of $x \ge \log(1+x)$, Hölder's and Young's inequalities as well as mass conservation, we obtain

$$\beta \int \log(1+u) \, dx \le \beta \int u \, dx = \beta \|u_0\|_1,$$
 (2.6)

$$\int (u - \log(1+u))|h| dx \le 2\left(\int u^2 dx\right)^{1/2} \left(\int h^2 dx\right)^{1/2} \le \varepsilon \int u^2 dx + \frac{1}{\varepsilon} \int h^2 dx, \tag{2.7}$$

where the constant $\varepsilon > 0$ is arbitrary. Multiply $-\partial_t \psi/\beta$ for the both sides of (2.3) and integrate the resulted identity over \mathbb{R}^2 . An integration by parts then shows

$$-\frac{1}{\beta} \int (\partial_t \psi)^2 dx = \frac{1}{\beta} \int \nabla \psi \cdot \nabla \partial_t \psi dx - \frac{1}{\beta} \int h \partial_t \psi dx - \int u \partial_t \psi dx.$$

Since $\partial_t (|\nabla \psi|^2) = 2\nabla \psi \cdot \nabla(\partial_t \psi)$, a similar argument to the one used to derive (2.7) shows

$$-\int u\partial_t \psi \, dx = -\frac{1}{\beta} \int (\partial_t \psi)^2 \, dx - \frac{1}{2\beta} \frac{d}{dt} \left(\int |\nabla \psi|^2 \, dx \right) + \frac{1}{\beta} \int h \partial_t \psi \, dx$$

$$\leq -\frac{3}{4\beta} \int (\partial_t \psi)^2 \, dx - \frac{1}{2\beta} \frac{d}{dt} \left(\int |\nabla \psi|^2 \, dx \right) + \frac{1}{\beta} \int h^2 \, dx. \tag{2.8}$$

Since $\sqrt{x} \ge \log(1+x)$, it follows by Hölder's and Young's inequalities as well as mass conservation that

$$\int \partial_t \psi \log(1+u) \, dx \le \int u^{1/2} |\partial_t \psi| \, dx$$

$$\le ||u_0||_1^{1/2} \left(\int (\partial_t \psi)^2 \, dx \right)^{1/2}$$

$$\le \frac{1}{4\beta} \int (\partial_t \psi)^2 \, dx + \beta ||u_0||_1. \tag{2.9}$$

Putting (2.4)–(2.9) together, we have

$$\frac{d}{dt} \left(\int (1+u) \log(1+u) \, dx + \frac{1}{2\beta} \int |\nabla \psi|^2 \, dx \right) + \int \frac{|\nabla u|^2}{1+u} \, dx + \frac{1}{2\beta} \int (\partial_t \psi)^2 \, dx
\leq -\beta \int (1+u) \log(1+u) \, dx + (\beta+\varepsilon) \int u^2 \, dx + 2\beta \|u_0\|_1 + C_1(\varepsilon) \int h^2 \, dx.$$
(2.10)

Due to (2.3) and an integration by parts, we readily obtain

$$\frac{1}{4}\frac{d}{dt}\left(\int \psi^2 dx\right) + \frac{1}{2}\int |\nabla \psi|^2 dx = \frac{1}{2}\int h\psi dx + \frac{\beta}{2}\int u\psi dx$$

$$\leq \frac{1}{4}\int \left(h^2 + \psi^2\right) dx + \varepsilon \int u^2 dx + \frac{\beta^2}{16\varepsilon}\int \psi^2 dx, \tag{2.11}$$

where Young's inequality has been used as well. Adding the inequality (2.11) to (2.10) and $(\beta/4) \int \psi^2 dx$ to the both sides of the resulted inequality yields that

$$\frac{d}{dt} \left(\int (1+u) \log(1+u) \, dx + \frac{1}{2\beta} \int |\nabla \psi|^2 \, dx + \frac{1}{4} \int \psi^2 \, dx \right)
+ \beta \int (1+u) \log(1+u) \, dx + \frac{1}{2} \int |\nabla \psi|^2 \, dx + \int \frac{|\nabla u|^2}{1+u} \, dx + \frac{1}{2\beta} \int (\partial_t \psi)^2 \, dx + \frac{\beta}{4} \int \psi^2 \, dx
\leq (\beta + 2\varepsilon) \int u^2 \, dx + 2\beta \|u_0\|_1 + C_1(\varepsilon) \int h^2 \, dx + C_2(\varepsilon) \int \psi^2 \, dx.$$

This is rewritten as

$$\frac{d}{dt}\mathcal{F} + \beta\mathcal{F} + \frac{1}{2\beta} \int (\partial_t \psi)^2 dx + \int \frac{|\nabla u|^2}{1+u} dx \le (\beta + 2\varepsilon) \int u^2 dx + \mathcal{G}(\varepsilon)$$
 (2.12)

with

$$\mathcal{F} := \int (1+u)\log(1+u) \, dx + \frac{1}{2\beta} \int |\nabla \psi|^2 \, dx + \frac{1}{4} \int \psi^2 \, dx,$$

$$\mathcal{G}(\varepsilon) := 2\beta \|u_0\|_1 + C_1(\varepsilon) \int h^2 \, dx + C_2(\varepsilon) \int \psi^2 \, dx. \tag{2.13}$$

Applying Lemma 2.1 with g = u, we obtain

$$\int u^2 dx \le \frac{1+\varepsilon}{4\pi} \|u_0\|_1 \int \frac{|\nabla u|^2}{1+u} dx + C_3(\varepsilon) \|u_0\|_1. \tag{2.14}$$

Due to our assumption $||u_0||_1 < 4\pi/\beta$, there exists a small constant $\varepsilon = \varepsilon_0 > 0$ such that

$$(\beta + 2\varepsilon_0) \frac{1 + \varepsilon_0}{4\pi} ||u_0||_1 < 1.$$
 (2.15)

We deduce from (2.12), (2.14), and (2.15) that

$$\frac{d}{dt}\mathcal{F} + \beta \mathcal{F} \le \mathcal{G}(\varepsilon_0) + C_3(\varepsilon_0) \|u_0\|_1. \tag{2.16}$$

We now estimate each term that constitutes \mathcal{G} (cf. (2.13)). By standard computations, one may rewrite equations $\partial_t v_j = \Delta v_j - \lambda_j v_j + u$ (j = 1, 2) to equivalent integral equations. Applying the L^p - L^q estimates (q = 1 or q = p) for the heat semigroup to the resulted equations, we then obtain

$$||v_j(t)||_p \le e^{-\lambda_j t} ||e^{t\Delta}v_{j0}||_p + \int_0^t e^{-\lambda_j (t-s)} ||e^{(t-s)\Delta}u(s)||_p \, ds \le C(||v_{j0}||_p, \lambda_j, ||u_0||_1)$$

for any $1 \le p < \infty$, j = 1, 2, 0 < t < T. Therefore quantities $\|\psi(t)\|_2$ and $\|h(t)\|_2$ (cf. (2.2a)) are bounded by a positive constant depending only on $\beta_1, \beta_2, \lambda_1, \lambda_2, \|u_0\|_1, \|v_{10}\|_2$, and $\|v_{20}\|_2$. Hence the application of Gronwall's inequality to (2.16) shows that

$$\mathcal{F}(t) \le \mathcal{F}(0)e^{-\beta t} + C(\beta_1, \beta_2, \lambda_1, \lambda_2, \varepsilon_0, \|u_0\|_1, \|v_{10}\|_2, \|v_{20}\|_2)$$
(2.17)

for 0 < t < T. Since the uniform bound (2.17) with respect to T is in hand, a standard iteration argument (cf. [5, Section 3]) yields a uniform bound on $\sup_{0 < t < T} \|u(t)\|_{\infty}$. Consequently, the nonnegative solution to (CP) may be extended globally in time and

$$\sup_{t>0} \|u(t)\|_{\infty} < \infty. \tag{2.18}$$

The combination of (2.18) and the L^{∞} - L^{∞} estimate for the heat semigroup readily yields uniform bounds for $||v_1(t)||_{\infty}$ and $||v_2(t)||_{\infty}$, whence (1.2). The proof is now complete.

Acknowledgement. The second author was partly supported by Grant-in-Aid for scientific research (18K03373) and by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).

References

- [1] T. Cieślak, K. Fujie, Some remarks on well–posedness of the higher–dimensional chemorepulsion system, Bull. Pol. Acad. Sci. Math. **67** (2019) 165–178.
- [2] H. Y. Jin, Z. Liu, Large time behavior of the full attraction–repulsion Keller–Segel system in the whole space, Appl. Math. Lett. 47 (2015) 13–20.
- [3] H. Y. Jin, Z.A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations **260** (2016) 162–196.
- [4] K. Lin, C. Mu, Global existence and convergence to steady states for an attraction—repulsion chemotaxis system, Nonlinear Anal. Real World Appl. **31** (2016) 630–642.

- [5] D. Liu, Y. Tao, Global boundedness in a fully parabolic attraction–repulsion chemotaxis model, Math. Methods Appl. Sci. **38** (2015) 2537–2546.
- [6] M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogilner, Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection? Bull. Math. Biol. **65** (2003) 693–730.
- [7] T. Nagai, Y. Seki, T. Yamada, Global existence of solutions to a parabolic attraction-repulsion chemotaxis system in \mathbb{R}^2 : the attractive dominant case, submitted.
- [8] T. Nagai, R. Syukuinn, M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in \mathbb{R}^n , Funkcial. Ekvac. **46** (2003), 383–407.
- [9] T. Nagai, T. Yamada, Boundedness of solutions to the Cauchy problem for an attraction-repulsion chemotaxis system in two-dimensional space, Rend. Istit. Mat. Univ. Trieste, **52**(2020), 1–19 (electronic preview).
- [10] T. Yamada, Global existence and boundedness of solutions to a parabolic attraction—repulsion chemotaxis system in \mathbb{R}^2 : the repulsive dominant case, preprint.