SHARP HARDY-LERAY INEQUALITY FOR CURL-FREE FIELDS WITH A REMAINDER TERM

NAOKI HAMAMOTO AND FUTOSHI TAKAHASHI

Citation	OCAMI Preprint Series
Issue Date	2020
Туре	Preprint
Textversion	Author
Rights	For personal use only. No other uses without permission.
Relation	The following article has been submitted to Journal of Functional Analysis. After
	it is published, it will be found at <u>https://doi.org/10.1016/j.jfa.2020.108790</u> .

From: Osaka City University Advanced Mathematical Institute

http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html

SHARP HARDY-LERAY INEQUALITY FOR CURL-FREE FIELDS WITH A REMAINDER TERM

NAOKI HAMAMOTO AND FUTOSHI TAKAHASHI

ABSTRACT. In this paper, we give a new and a simpler approach to the result in [7] concerning the best constant of Hardy-Leray inequality for curl-free fields. As a by-product, we obtain an improved inequality with a remainder term. The non-attainability of the best constant is an easy consequence of the new inequality. The proof is based on a decomposition of curl-free fields into radial and spherical parts.

1. INTRODUCTION

In this paper, we concern the classical functional inequality called the Hardy-Leray inequality for smooth vector fields and its improvement.

Let $N \in \mathbb{N}$ be an integer with $N \geq 2$ and put $\boldsymbol{x} = (x_1, \cdots, x_N) \in \mathbb{R}^N$. In the following, $C_c^{\infty}(\Omega)^N$ denotes the set of smooth vector fields

$$\boldsymbol{u} = (u_1, u_2, \cdots, u_N) : \Omega \ni \boldsymbol{x} \mapsto \boldsymbol{u}(\boldsymbol{x}) \in \mathbb{R}^N$$

having compact supports on an open subset Ω of \mathbb{R}^N .

Let γ be a real number. Then it is well known that

$$\left(\gamma + \frac{N}{2} - 1\right)^2 \int_{\mathbb{R}^N} \frac{|\boldsymbol{u}|^2}{|\boldsymbol{x}|^2} |\boldsymbol{x}|^{2\gamma} dx \le \int_{\mathbb{R}^N} |\nabla \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} dx$$

holds for any vector field $\boldsymbol{u} \in C_c^{\infty}(\mathbb{R}^N)^N$, as far as the integral on the left-hand side is finite (or equivalently $\boldsymbol{u}(\mathbf{0}) = \mathbf{0}$ for $\gamma \leq 1 - N/2$). This was first proved by J. Leray [10] when the weight $\gamma = 0$, see also the book by Ladyzhenskaya [9]. It is also known that the constant $\left(\gamma + \frac{N}{2} - 1\right)^2$ is sharp and never attained by any non-zero vector field.

In [2], Costin and Maz'ya proved that if the smooth vector fields \boldsymbol{u} are axisymmetric and subject to the divergence-free constraint div $\boldsymbol{u} \equiv 0$, then the constant $\left(\gamma + \frac{N}{2} - 1\right)^2$ can be improved and replaced by a larger one. More precisely, they proved the following:

Theorem A. (Costin-Maz'ya [2]) Let $N \ge 2$. Let $\gamma \ne 1 - N/2$ be a real number and $\mathbf{u} \in C_c^{\infty}(\mathbb{R}^N)^N$ be an axisymmetric divergence-free vector field. (If N = 2, the axisymmetric assumption is not needed). Assume that $\mathbf{u}(\mathbf{0}) = \mathbf{0}$ if $\gamma < 1 - N/2$. Then

$$C_{N,\gamma} \int_{\mathbb{R}^N} \frac{|\boldsymbol{u}|^2}{|\boldsymbol{x}|^2} |\boldsymbol{x}|^{2\gamma} dx \leq \int_{\mathbb{R}^N} |\nabla \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} dx$$

Date: June 17, 2020.

¹⁹⁹¹ Mathematics Subject Classification. Primary 26D10; Secondary 35A23.

Key words and phrases. Hardy-Leray inequality, curl-free vector fields, remainder term, the best constant.

holds with the optimal constant $C_{N,\gamma}$ given by

$$C_{N,\gamma} = \begin{cases} \left(\gamma + \frac{N}{2} - 1\right)^2 \frac{N + 1 + \left(\gamma - \frac{N}{2}\right)^2}{N - 1 + \left(\gamma - \frac{N}{2}\right)^2} & (N \ge 3, \, \gamma \le 1), \\ \left(\gamma + \frac{N}{2} - 1\right)^2 + 2 + \min_{\kappa \ge 0} \left(\kappa + \frac{4(N - 1)(\gamma - 1)}{\kappa + N - 1 + \left(\gamma - \frac{N}{2}\right)^2}\right) & (N \ge 4, \, \gamma > 1), \\ \left(\gamma + \frac{1}{2}\right)^2 + 2 & (N = 3, \, \gamma > 1), \end{cases}$$

$$C_{2,\gamma} = \begin{cases} \gamma^2 \frac{3 + (\gamma - 1)^2}{1 + (\gamma - 1)^2} & \text{if } |\gamma + 1| \le \sqrt{3}, \\ \gamma^2 + 1 & \text{otherwise.} \end{cases}$$

Note that the expression of the best constant $C_{N,\gamma}$ is slightly different from that in [2] when $N \ge 4$, but a careful checking the proof in [2] leads to the above formula in Theorem A. (See also [3, §2.1].)

Later, the first author of this paper has succeeded in removing the axisymmetric assumption in Theorem A to obtain the best constant [6, 4]. See also [8] for another improvement of [2]. We refer to [3, 5] for the Rellich-Leray inequality for divergence-free vector fields.

For curl-free vector fields, we have recently obtained the following result.

Theorem B. ([7]) Let $N \ge 2$. Let $\gamma \ne 1 - N/2$ be a real number and let $\mathbf{u} \in C_c^{\infty}(\mathbb{R}^N)^N$ be a curl-free vector field. We assume that $\mathbf{u}(\mathbf{0}) = \mathbf{0}$ if $\gamma < 1 - N/2$. Then

$$H_{N,\gamma} \int_{\mathbb{R}^N} \frac{|\boldsymbol{u}|^2}{|\boldsymbol{x}|^2} |\boldsymbol{x}|^{2\gamma} dx \leq \int_{\mathbb{R}^N} |\nabla \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} dx$$

with the optimal constant $H_{N,\gamma}$ given by

(1)
$$H_{N,\gamma} = \begin{cases} \left(\gamma + \frac{N}{2} - 1\right)^2 \frac{3(N-1) + \left(\gamma + \frac{N}{2} - 2\right)^2}{N-1 + \left(\gamma + \frac{N}{2} - 2\right)^2} & \text{if } |\gamma + \frac{N}{2}| \le \sqrt{N+1}, \\ \left(\gamma + \frac{N}{2} - 1\right)^2 + N - 1 & \text{otherwise.} \end{cases}$$

The method of the proof of Theorem B, which followed from that of Costin-Maz'ya [2], consists of the following items: A representation of curl-free vector fields in the spherical polar coordinates, a transformation of vector fields called Brezis-Vázquez-Maz'ya, the one-dimensional Fourier transform in the radial direction, and the eigenvector expansion for the Laplace-Beltrami operator in $L^2(\mathbb{S}^{N-1})$.

A main purpose of this paper is to give another and a simpler approach to Theorem B. We avoid the use of Fourier transform, in the hope of being helpful for the possible extension of the result to L^p -setting or to domains other than the whole space. As a by-product, we obtain the sharp Hardy-Leray inequality for curl-free vector fields with a remainder term, which is the main result of this paper:

Theorem 1. Let $N \geq 2$. Let $H_{N,\gamma}$ be defined in (1) and let $\boldsymbol{u} \in C_c^{\infty}(\mathbb{R}^N)^N$ be a curl-free field such that $\boldsymbol{u}(\mathbf{0}) = \mathbf{0}$ if $\gamma \leq 1 - \frac{N}{2}$. Then the inequality

(2)
$$\int_{\mathbb{R}^{N}} |\nabla \boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} \geq H_{N,\gamma} \int_{\mathbb{R}^{N}} |\boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma-2} d\boldsymbol{x} + \int_{\mathbb{R}^{N}} \left((N-1)\mathcal{E}_{N,\gamma}[\boldsymbol{u}] + \left| \boldsymbol{x} \cdot \nabla \left(|\boldsymbol{x}|^{\gamma+\frac{N}{2}-1} \boldsymbol{u} \right) \right|^{2} \right) |\boldsymbol{x}|^{-N} d\boldsymbol{x}$$

holds with the nonnegative function $\mathcal{E}_{N,\gamma}[u]$ given by

$$\mathcal{E}_{N,\gamma}[\boldsymbol{u}](\boldsymbol{x}) = \begin{cases} \left(\left(\gamma + \frac{N}{2}\right)^2 - N - 1\right)\varphi^2 + (\boldsymbol{x} \cdot \nabla\varphi)^2 & \text{for } \left|\gamma + \frac{N}{2}\right| \ge \sqrt{N+1}, \\ \frac{\left(N + 1 - \left(\gamma + \frac{N}{2}\right)^2\right)f^2 + 4(1 - \gamma)(\boldsymbol{x} \cdot \nabla\varphi)^2}{\left(\gamma + \frac{N}{2} - 2\right)^2 + N - 1} & \text{for } \left|\gamma + \frac{N}{2}\right| < \sqrt{N+1}. \end{cases}$$

Here f and φ are scalar fields defined by

$$f(\boldsymbol{x}) = \omega_{N-1}^{-1} |\boldsymbol{x}|^{\gamma + \frac{N}{2} - 1} \int_{\mathbb{S}^{N-1}} \boldsymbol{\sigma} \cdot \boldsymbol{u}(|\boldsymbol{x}|\boldsymbol{\sigma}) \mathrm{d}\boldsymbol{\sigma},$$
$$\varphi(\boldsymbol{x}) = |\boldsymbol{x}|^{\gamma + \frac{N}{2} - 2} \left(\phi(\boldsymbol{x}) - \omega_{N-1}^{-1} \int_{\mathbb{S}^{N-1}} \phi(|\boldsymbol{x}|\boldsymbol{\sigma}) \mathrm{d}\boldsymbol{\sigma} \right),$$

in terms of the scalar potential ϕ of \boldsymbol{u} (that is, $\boldsymbol{u} = \nabla \phi$), and ω_{N-1} denotes the surface measure of the unit sphere \mathbb{S}^{N-1} in \mathbb{R}^N . Moreover, the equality in (2) is realized if and only if the equation

$$\triangle_{\sigma}\varphi(r\boldsymbol{\sigma}) = (N-1)\varphi(r\boldsymbol{\sigma})$$

holds for all r > 0 and $\boldsymbol{\sigma} \in \mathbb{S}^{N-1}$, where \triangle_{σ} denotes the Laplace-Beltrami operator on \mathbb{S}^{N-1} .

Remark 2. We directly see from (2) that the equation

$$\int_{\mathbb{R}^N} |\nabla \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} = H_{N,\gamma} \int_{\mathbb{R}^N} \frac{|\boldsymbol{u}|^2}{|\boldsymbol{x}|^2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x}$$

does not hold for any $\mathbf{u} \in C_c^{\infty}(\mathbb{R}^N)^N \setminus \{\mathbf{0}\}$ as far as the integral on the right-hand side is finite. Indeed, this equation together with (2) implies that the function

$$\mathbb{R}_+\times\mathbb{S}^{N-1}\ni(r,\pmb{\sigma})\mapsto r^{\gamma+\frac{N}{2}-1}\pmb{u}(r\pmb{\sigma})$$

is independent of r, which violates the finiteness of the integral unless $u \equiv 0$.

The remaining content of this paper is organized as follows: In §2, we give a quick review of some differential formulae with respect to radial-spherical variables and derive an equivalent condition to the curl-free condition for vector-fields on \mathbb{R}^N (the Poincaré lemma); there Proposition 4 gives a characterization of curl-free fields, which serves as a key tool for the proof of our main theorem. In §3 we prove Theorem 1 by making full use of Proposition 4. In §4 we prove the sharp Rellich-Leray inequality for curl-free vector fields with a remainder term, as another application of the method described in §2–§3.

2. Representation of curl-free fields in terms of radial-spherical variables

In this section, we recall the Poincaré lemma, which gives a scalar-potential representation of smooth curl-free fields on \mathbb{R}^N . By deforming this potential via Brezis-Vázquez-Maz'ya transformation, we derive another equivalent condition for test vector fields to be curl-free.

2.1. Radial-spherical variables and the Poincaré lemma. First of all, we introduce the transformation

$$\mathbb{R}_+ imes \mathbb{S}^{N-1} o \mathbb{R}^N \setminus \{\mathbf{0}\}, \quad (r, \sigma) \mapsto x = r\sigma$$

together with its inverse

$$\mathbb{R}^N \setminus \{\mathbf{0}\} \to \mathbb{R}_+ \times \mathbb{S}^{N-1}, \quad \boldsymbol{x} \mapsto (r, \boldsymbol{\sigma}) = \left(|\boldsymbol{x}|, \frac{\boldsymbol{x}}{|\boldsymbol{x}|}\right) \in \mathbb{R}_+ \times \mathbb{S}^{N-1}.$$

Let $\boldsymbol{u} = (u_1, u_2, \cdots, u_N) : \mathbb{R}^N \setminus \{\boldsymbol{0}\} \to \mathbb{R}^N$ be a vector field. Then its radial scalar component $u_R = u_R(\boldsymbol{x})$ and spherical vector part $\boldsymbol{u}_S = \boldsymbol{u}_S(\boldsymbol{x})$ are defined by the formulae

$$\boldsymbol{u} = \boldsymbol{\sigma} u_R + \boldsymbol{u}_S, \quad \boldsymbol{\sigma} \cdot \boldsymbol{u}_S = 0$$

for all $\boldsymbol{x} = r\boldsymbol{\sigma} \in \mathbb{R}^N \setminus \{\mathbf{0}\}$. In a similar way, we denote by ∂_r and ∇_{σ} the radial derivative and the spherical gradient, respectively:

$$\partial_r f = \boldsymbol{\sigma} \cdot \nabla f, \quad \nabla_{\boldsymbol{\sigma}} f = r(\nabla f)_S$$

for all $f = f(\boldsymbol{x}) \in C^{\infty}(\mathbb{R}^N \setminus \{\mathbf{0}\})$, or equivalently

(3)
$$\nabla = \boldsymbol{\sigma}\partial_r + \frac{1}{r}\nabla_{\boldsymbol{\sigma}}, \quad \boldsymbol{\sigma}\cdot\nabla_{\boldsymbol{\sigma}} = 0.$$

The Laplace operator $\triangle = \sum_{k=1}^N \partial^2 / \partial x_k^2$ is known to be represented in terms of radial-spherical variables by the formula

(4)
$$\Delta = \frac{1}{r^{N-1}} \partial_r \left(r^{N-1} \partial_r \right) + \frac{1}{r^2} \Delta_\sigma$$

where \triangle_{σ} denotes the Laplace-Beltrami operator on \mathbb{S}^{N-1} . In the following, we use a convention with some ambiguity that for smooth scalar fields and vector fields on $\mathbb{R}^N \setminus \{\mathbf{0}\}$, we think of them as functions of $\boldsymbol{\sigma} \in \mathbb{S}^{N-1}$ for $r = |\boldsymbol{x}|$ fixed, when we apply ∇_{σ} or \triangle_{σ} to them. As a simple example, the operation of (3) and (4) on the scalar field $r = |\boldsymbol{x}|$ or its powers gives

(5)
$$\nabla r = \boldsymbol{\sigma}$$
 and $\Delta r^s = \alpha_s r^{s-2}$, where $\alpha_s = s(s+N-2)$

for all $s \in \mathbb{R}$.

For later use, we prove the following lemma:

Lemma 3. For any $f \in C^{\infty}(\mathbb{S}^{N-1})$,

(6)
$$\begin{cases} \triangle_{\sigma}(\boldsymbol{\sigma}f) - \boldsymbol{\sigma} \triangle_{\sigma}f = \left(2\nabla_{\sigma} - (N-1)\boldsymbol{\sigma}\right)f, \\ \triangle_{\sigma}\nabla_{\sigma}f - \nabla_{\sigma} \triangle_{\sigma}f = \left((N-3)\nabla_{\sigma} - 2\boldsymbol{\sigma} \triangle_{\sigma}\right)f \end{cases}$$

holds for all $\boldsymbol{\sigma} \in \mathbb{S}^{N-1}$.

Proof. Take any $f \in C^{\infty}(\mathbb{S}^{N-1})$. We identify f with $\tilde{f} \in C^{\infty}(\mathbb{R}^N \setminus \{\mathbf{0}\})$ by the formula $\tilde{f}(\boldsymbol{x}) = f(\boldsymbol{\sigma})$ where $\boldsymbol{\sigma} = \frac{\boldsymbol{x}}{|\boldsymbol{x}|} \in \mathbb{S}^{N-1}$. Note that $\Delta_{\sigma}\boldsymbol{\sigma} = -(N-1)\boldsymbol{\sigma}$ since

$$0 = \Delta \boldsymbol{x} = \left(\partial_r^2 + \frac{N-1}{r}\partial_r + \frac{1}{r^2}\Delta_\sigma\right)(r\boldsymbol{\sigma}) = \frac{N-1}{r}\boldsymbol{\sigma} + \frac{1}{r}\Delta_\sigma\boldsymbol{\sigma}.$$

Thus we compute

$$\Delta_{\sigma}(\boldsymbol{\sigma} f) = (\Delta_{\sigma} \boldsymbol{\sigma}) f + \boldsymbol{\sigma} (\Delta_{\sigma} f) + 2(\nabla_{\sigma} f \cdot \nabla_{\sigma}) \boldsymbol{\sigma} = -(N-1)\boldsymbol{\sigma} f + (\Delta_{\sigma} f)\boldsymbol{\sigma} + 2\nabla_{\sigma} f,$$

where we have used $(\nabla_{\sigma} f \cdot \nabla_{\sigma}) \boldsymbol{\sigma} = (\nabla_{\sigma} f \cdot \nabla) \boldsymbol{x} = \nabla_{\sigma} f$. This proves the first identity of (6).

To prove the second identity, we note from (3) resp. (4) that $\nabla_{\sigma} f = r \nabla f$ resp. $\triangle_{\sigma} f = r^2 \triangle f$, since $f = \tilde{f}$ is independent of the radial variable r. Also recalling from $(5)_{s=1}$ the formulae $\nabla r = \boldsymbol{\sigma}$ and $\triangle r = (N-1)r^{-1}$, we have

$$(\triangle_{\sigma}\nabla_{\sigma} - \nabla_{\sigma}\triangle_{\sigma})f = r^{2}\triangle(r\nabla f) - r\nabla(r^{2}\triangle f)$$

$$= r^{2}((\triangle r)\nabla f + 2(\nabla r \cdot \nabla)\nabla f) - r(\nabla r^{2})\triangle f$$

$$= (N-1)r\nabla f + 2r^{2}\partial_{r}r^{-1}\nabla_{\sigma}f - 2r^{2}\sigma\triangle f$$

$$= (N-3)\nabla_{\sigma}f - 2\sigma\triangle_{\sigma}f,$$

as desired.

The *curl* of a vector field $\boldsymbol{u} = (u_1, \cdots, u_N) \in C^{\infty}(\mathbb{R}^N)^N$ is defined as the differential 2-form

$$\operatorname{curl} \boldsymbol{u} = d(\boldsymbol{u} \cdot d\boldsymbol{x}) = d\left(\sum_{k=1}^{N} u_k dx_k\right),$$

where d denotes the exterior differential. This can be expressed in terms of the standard Euclidean coordinates as

$$d(\boldsymbol{u} \cdot d\boldsymbol{x}) = \sum_{k=1}^{N} du_k \wedge dx_k = \sum_{j < k} \sum_{k=1}^{N} \left(\frac{\partial u_k}{\partial x_j} - \frac{\partial u_j}{\partial x_k} \right) dx_j \wedge dx_k.$$

Thus the curl-free condition $d(\boldsymbol{u} \cdot d\boldsymbol{x}) = 0$ holds if and only if

(7)
$$\frac{\partial u_k}{\partial x_j} = \frac{\partial u_j}{\partial x_k} \text{ for all } j,k \in \{1,\cdots,N\}.$$

Here we claim that any curl-free vector fields \boldsymbol{u} can be represented by

(8)
$$\boldsymbol{u}(\boldsymbol{x}) = \nabla \phi(\boldsymbol{x}), \quad \phi(\boldsymbol{x}) = \int_0^{|\boldsymbol{x}|} \frac{\boldsymbol{x}}{|\boldsymbol{x}|} \cdot \boldsymbol{u}\left(\rho \frac{\boldsymbol{x}}{|\boldsymbol{x}|}\right) d\rho \quad \text{for all} \ \boldsymbol{x} \in \mathbb{R}^N,$$

which we say that \boldsymbol{u} has the scalar potential $\phi \in C^{\infty}(\mathbb{R}^N)$. Conversely, the existence of such a potential implies $d(\boldsymbol{u} \cdot d\boldsymbol{x}) = d(\nabla \phi \cdot d\boldsymbol{x}) = dd\phi = 0$, that is, \boldsymbol{u} is curl-free.

The proof of the claim (8) is standard: For every $i \in \{1, \dots, N\}$, we have

$$\begin{split} u_i(\boldsymbol{x}) &= \int_0^1 \frac{d}{dt} \{ t u_i(t\boldsymbol{x}) \} dt = \int_0^1 \left\{ u_i(t\boldsymbol{x}) + t \sum_{j=1}^N \frac{\partial u_i(t\boldsymbol{x})}{\partial x_j} x_j \right\} dt \\ &= \int_0^1 \left\{ u_i(t\boldsymbol{x}) + t \sum_{j=1}^N \frac{\partial u_j(t\boldsymbol{x})}{\partial x_i} x_j \right\} dt \\ &= \int_0^1 \frac{\partial}{\partial x_i} \left(\sum_{j=1}^N u_j(t\boldsymbol{x}) x_j \right) dt = \frac{\partial}{\partial x_i} \int_0^1 \boldsymbol{u}(t\boldsymbol{x}) \cdot \boldsymbol{x} \, dt \qquad \forall \boldsymbol{x} \in \mathbb{R}^N, \end{split}$$

here we have used (7) in the third equality. Thus we see that $\phi(\mathbf{x}) = \int_0^1 \mathbf{u}(t\mathbf{x}) \cdot \mathbf{x} dt$ is a scalar potential of \mathbf{u} . An easy change of variables leads to (8).

2.2. Radial-spherical decomposition of curl-free fields. In the following, $\lambda \in \mathbb{R}$ denotes a fixed real number. Let \boldsymbol{u} be a curl-free field on \mathbb{R}^N , and let ϕ be its scalar potential (8). We define a new vector field \boldsymbol{v} and two scalar fields f, φ on $\mathbb{R}^N \setminus \{\mathbf{0}\}$ by the formulae

(9)
$$\begin{cases} \boldsymbol{v}(\boldsymbol{x}) = |\boldsymbol{x}|^{1-\lambda} \boldsymbol{u}(\boldsymbol{x}), \\ f(\boldsymbol{x}) = |\boldsymbol{x}|^{1-\lambda} \omega_{N-1}^{-1} \int_{\mathbb{S}^{N-1}} \boldsymbol{\sigma} \cdot \boldsymbol{u}(|\boldsymbol{x}|\boldsymbol{\sigma}) \mathrm{d}\boldsymbol{\sigma}, \\ \varphi(\boldsymbol{x}) = |\boldsymbol{x}|^{-\lambda} \left(\phi(\boldsymbol{x}) - \omega_{N-1}^{-1} \int_{\mathbb{S}^{N-1}} \phi(|\boldsymbol{x}|\boldsymbol{\sigma}) \mathrm{d}\boldsymbol{\sigma} \right) \end{cases}$$

The transformation of the field $u \mapsto v$ by the multiplication of $|x|^{1-\lambda}$ stems from an idea of Brezis-Vázquez [1] and Maz'ya [11]. Now let us denote by

$$\bar{\phi}(r) = \omega_{N-1}^{-1} \int_{\mathbb{S}^{N-1}} \phi(r\boldsymbol{\sigma}) \mathrm{d}\sigma, \quad r = |\boldsymbol{x}|$$

the spherical mean of the scalar potential ϕ in (8), together with its radial derivative

$$\frac{\partial \phi}{\partial r} = \omega_{N-1}^{-1} \int_{\mathbb{S}^{N-1}} \frac{\partial \phi}{\partial r} (r\boldsymbol{\sigma}) \mathrm{d}\boldsymbol{\sigma} = \omega_{N-1}^{-1} \int_{\mathbb{S}^{N-1}} (\boldsymbol{\sigma} \cdot \nabla \phi) (r\boldsymbol{\sigma}) \mathrm{d}\boldsymbol{\sigma}.$$

Then we see that (9) can be rewritten simply in terms of ϕ as

(10)
$$\begin{cases} \boldsymbol{v}(\boldsymbol{x}) = r^{1-\lambda} \nabla \phi(\boldsymbol{x}), \\ f(r) = r^{1-\lambda} \frac{\partial \bar{\phi}}{\partial r}, \\ \varphi(\boldsymbol{x}) = r^{-\lambda} \left(\phi(\boldsymbol{x}) - \bar{\phi}(r) \right), \end{cases}$$

and that f is a spherical mean part of $r^{1-\lambda}u_R$, while φ has zero-spherical mean. Furthermore, the scalar representation of $\boldsymbol{u}(\boldsymbol{x})$ in (8) is transformed into that of $\boldsymbol{v}(\boldsymbol{x})$ by the following computation using (10):

$$\begin{split} \boldsymbol{v} &= r^{1-\lambda} \nabla \phi \\ &= r^{1-\lambda} \left(\nabla (\phi - \bar{\phi}) + \nabla \bar{\phi} \right) \\ &= r^{1-\lambda} \left(\nabla (r^{\lambda} \varphi) + \frac{\partial \bar{\phi}}{\partial r} \boldsymbol{\sigma} \right) \\ &= r^{1-\lambda} \nabla (r^{\lambda} \varphi) + f(r) \boldsymbol{\sigma} \\ &= r^{1-\lambda} \left(\lambda r^{\lambda-1} \varphi \boldsymbol{\sigma} + r^{\lambda} \nabla \varphi \right) + f(r) \boldsymbol{\sigma} \\ &= (\lambda \varphi + f) \, \boldsymbol{\sigma} + r \nabla \varphi \\ &= (\lambda \varphi + f + \partial_t \varphi) \, \boldsymbol{\sigma} + \nabla_{\boldsymbol{\sigma}} \varphi. \end{split}$$

Here and hereafter we employ the notation $t = \log r$ which obeys the differential identities

(11)
$$\begin{cases} \partial_t = r\partial_r, \quad dt = \frac{dr}{r}, \\ r\nabla = \boldsymbol{\sigma}\partial_t + \nabla_{\boldsymbol{\sigma}}, \\ r^2 \Delta = \partial_t^2 + (N-2)\partial_t + \Delta_{\boldsymbol{\sigma}}. \end{cases}$$

In view of the above computation result, we can say that f and φ are radial and spherical scalar potentials of v, respectively.

In summary, we obtain the following proposition:

Proposition 4. Let $\lambda \in \mathbb{R}$. Then a vector field $\mathbf{u} \in C^{\infty}(\mathbb{R}^N)^N$ is curl-free if and only if there exist two scalar fields $f, \varphi \in C^{\infty}(\mathbb{R}^N \setminus \{\mathbf{0}\})$ satisfying

(12)
$$\begin{cases} f \text{ is radially symmetric and } \int_{\mathbb{S}^{N-1}} \varphi(r\boldsymbol{\sigma}) d\sigma = 0 \quad \forall r > 0, \\ \boldsymbol{v} = \boldsymbol{\sigma} \big(f + (\lambda + \partial_t) \varphi \big) + \nabla_{\!\boldsymbol{\sigma}} \varphi \qquad \text{on } \mathbb{R}^N \setminus \{ \mathbf{0} \}, \end{cases}$$

where $\mathbf{v} \in C_c^{\infty}(\mathbb{R}^N \setminus \{\mathbf{0}\})^N$ is the vector field given by the same equation $\mathbf{v} = r^{1-\lambda}\mathbf{u}$ as in (9). Moreover, such f and φ are uniquely determined and explicitly given by the equations in (9); in particular, if \mathbf{u} has a compact support on $\mathbb{R}^N \setminus \{\mathbf{0}\}$, then so do f and φ .

For later use, we give an expression of the vector field $\triangle_{\sigma} v$ in terms of the scalar potentials:

Lemma 5. Let v be as in (12). Then

Proof. By using Lemma 3 and Proposition 4, we compute

$$\begin{split} \triangle_{\sigma} \boldsymbol{v} &= \triangle_{\sigma} \left(\boldsymbol{\sigma} \left(f + (\partial_{t} + \lambda) \varphi \right) \right) + \triangle_{\sigma} \left(\nabla_{\sigma} \varphi \right) \\ &= \left(\boldsymbol{\sigma} \triangle_{\sigma} + 2\nabla_{\sigma} - (N-1) \boldsymbol{\sigma} \right) \left(f + (\partial_{t} + \lambda) \varphi \right) \\ &+ \left(\nabla_{\sigma} \triangle_{\sigma} + (N-3) \nabla_{\sigma} - 2\boldsymbol{\sigma} \triangle_{\sigma} \right) \varphi \\ &= \boldsymbol{\sigma} \left((\partial_{t} + \lambda - 2) \triangle_{\sigma} \varphi \right) - (N-1) \underbrace{\boldsymbol{\sigma} \left(f + (\partial_{t} + \lambda) \varphi \right)}_{\boldsymbol{v} - \nabla_{\sigma} \varphi} \\ &+ \nabla_{\sigma} \left(2\partial_{t} + \triangle_{\sigma} + 2\lambda + N - 3 \right) \varphi \\ &= \boldsymbol{\sigma} \left(\partial_{t} + \lambda - 2 \right) \triangle_{\sigma} \varphi \\ &+ \nabla_{\sigma} \left(2\partial_{t} + \triangle_{\sigma} + 2\lambda + 2N - 4 \right) \varphi - (N-1) \boldsymbol{v}. \end{split}$$

3. Proof of Theorem 1

We assume that the left-hand side of (2) is finite, since otherwise there is nothing to prove. Then the integrability of $|\nabla \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma}$ together with the smoothness of \boldsymbol{u} implies the existence of an integer $m > -\frac{N}{2} - \gamma$ such that

$$\nabla \boldsymbol{u}(\boldsymbol{x}) = O(|\boldsymbol{x}|^m) \quad \text{ as } |\boldsymbol{x}| \to 0.$$

Moreover, in view of the assumption that $u(\mathbf{0}) = \mathbf{0}$ if $\gamma \leq 1 - \frac{N}{2}$, we see that u satisfies

$$|\boldsymbol{x}|^{\gamma+\frac{N}{2}-1}\boldsymbol{u}(\boldsymbol{x}) = O(|\boldsymbol{x}|^{\varepsilon}) \text{ as } |\boldsymbol{x}| \to 0$$

for $\varepsilon > 0$ given by

$$\varepsilon = \begin{cases} m + \frac{N}{2} + \gamma & \text{for } \gamma \le 1 - \frac{N}{2}, \\ \gamma + \frac{N}{2} - 1 & \text{for } \gamma > 1 - \frac{N}{2}. \end{cases}$$

Hence also the scalar potential $\phi(\boldsymbol{x}) = \int_0^{|\boldsymbol{x}|} u_R(r\boldsymbol{x}/|\boldsymbol{x}|) dr$ in (8) satisfies

$$|\boldsymbol{x}|^{\gamma+\frac{N}{2}-1}\phi(\boldsymbol{x}) = O\left(|\boldsymbol{x}|^{1+\varepsilon}\right) \quad \text{as} \; |\boldsymbol{x}| \to 0.$$

Consequently, we have further obtained the integrability conditions

(14)
$$\int_{\mathbb{R}^N} |\boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma-2} dx < \infty \quad \text{and} \quad \int_{\mathbb{R}^N} \phi^2 |\boldsymbol{x}|^{2\gamma-4} dx < \infty$$

The proof of the theorem is carried out in the following steps:

3.1. Reduction to the case of compact support distinct from the origin. We can further assume that the curl-free field $\boldsymbol{u} = \nabla \phi$ is compactly supported on $\mathbb{R}^N \setminus \{\mathbf{0}\}$: Indeed, let $\{\boldsymbol{u}_n\} \subset C_c^{\infty}(\mathbb{R}^N \setminus \{\mathbf{0}\})^N$ denote the sequence of curl-free fields defined by

$$\boldsymbol{u}_n(\boldsymbol{x}) =
abla \left(\zeta \left(|\boldsymbol{x}|^{rac{1}{n}}
ight) \phi(\boldsymbol{x})
ight) \quad ext{for every} \ n \in \mathbb{N},$$

where we fix $\zeta \in C_c^{\infty}(\mathbb{R}_+)$ such that $\zeta(r) = \begin{cases} 0 & \text{for } 0 < r < 1/2 \\ 1 & \text{for } 1 \leq r \end{cases}$. Then we see that $\bigcup_{n=1}^{\infty} \text{supp } u_n$ is bounded, and that the asymptotic formulae

 $\begin{aligned} \boldsymbol{u}_n(\boldsymbol{x}) &= \zeta(|\boldsymbol{x}|^{\frac{1}{n}})\boldsymbol{u}(\boldsymbol{x}) + \boldsymbol{\sigma} \, n^{-1} |\boldsymbol{x}|^{\frac{1}{n}-1} \zeta'(|\boldsymbol{x}|^{\frac{1}{n}}) \phi(\boldsymbol{x}) \\ &= \boldsymbol{u}(\boldsymbol{x}) + o(1)\boldsymbol{u}(\boldsymbol{x}) + O(1/n) |\boldsymbol{x}|^{-1} \phi(\boldsymbol{x}), \\ \nabla \boldsymbol{u}_n(\boldsymbol{x}) &= \nabla \boldsymbol{u}(\boldsymbol{x}) + o(1) \nabla \boldsymbol{u}(\boldsymbol{x}) + O(1/n) \boldsymbol{\sigma} |\boldsymbol{x}|^{-1} \boldsymbol{u}(\boldsymbol{x}) + O(1/n) \boldsymbol{\sigma} \boldsymbol{\sigma} |\boldsymbol{x}|^{-2} \phi(\boldsymbol{x}) \end{aligned}$

hold as $n \to \infty$. Therefore, taking the L^2 integration on both sides gives

$$\begin{split} &\int_{\mathbb{R}^N} |\boldsymbol{u}_n|^2 |\boldsymbol{x}|^{2\gamma-2} dx = \int_{\mathbb{R}^N} |\boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma-2} dx + o(1), \\ &\int_{\mathbb{R}^N} |\nabla \boldsymbol{u}_n|^2 |\boldsymbol{x}|^{2\gamma} dx = \int_{\mathbb{R}^N} |\nabla \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} dx + o(1), \end{split}$$

thanks to the integrability conditions (14). This result shows that the integrals in the inequality (2) can be approximated by curl-free fields with compact support on $\mathbb{R}^N \setminus \{\mathbf{0}\}.$

3.2. Calculation of the integrals in the Hardy-Leray inequality. In the rest of the present section, we choose

(15)
$$\lambda = 2 - \frac{N}{2} - \gamma$$

in view of $\S 2.2$. Then, with respect to the measure

(16)
$$|\boldsymbol{x}|^{2\gamma} dx = r^{2\gamma+N-1} dr \mathrm{d}\sigma = r^{4-2\lambda} \frac{dr}{r} \mathrm{d}\sigma = r^{4-2\lambda} dt \mathrm{d}\sigma,$$

the L^2 integration of $u(x)/|x| = r^{\lambda-2}v$ can be expressed in terms of f and φ (in Proposition 4) as

(17)
$$\int_{\mathbb{R}^{N}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} = \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} |\boldsymbol{v}|^{2} dt d\sigma$$
$$= \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left((f + \partial_{t}\varphi + \lambda\varphi)^{2} + |\nabla_{\sigma}\varphi|^{2} \right) dt d\sigma$$
$$= \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(f^{2} + (\partial_{t}\varphi)^{2} + \lambda^{2}\varphi^{2} + |\nabla_{\sigma}\varphi|^{2} \right) dt d\sigma,$$

where the last equality follows from the integration by parts together with the support compactness and $\int_{\mathbb{S}^{N-1}} \varphi \, \mathrm{d}\sigma = 0$. On the other hand, the integration of $|\nabla \boldsymbol{u}|^2 = |\partial_r \boldsymbol{u}|^2 + r^{-2} |\nabla_{\sigma} \boldsymbol{u}|^2$ with respect to the measure (16) yields

(18)
$$\int_{\mathbb{R}^{N}} |\nabla \boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} = \int_{\mathbb{R}^{N}} \left(|\partial_{r} \boldsymbol{u}|^{2} + r^{-2} |\nabla_{\sigma} \boldsymbol{u}|^{2} \right) |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x}$$
$$= \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} \left(\left| \partial_{r} (r^{\lambda-1} \boldsymbol{v}) \right|^{2} + r^{-2} |\nabla_{\sigma} (r^{\lambda-1} \boldsymbol{v})|^{2} \right) r^{4-2\lambda} dt \, \mathrm{d}\sigma$$
$$= \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} \left(\left| (\lambda - 1) \boldsymbol{v} + \partial_{t} \boldsymbol{v} \right|^{2} + |\nabla_{\sigma} \boldsymbol{v}|^{2} \right) dt \, \mathrm{d}\sigma$$
$$= \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} \left((\lambda - 1)^{2} |\boldsymbol{v}|^{2} + |\partial_{t} \boldsymbol{v}|^{2} \right) dt \, \mathrm{d}\sigma + \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} |\nabla_{\sigma} \boldsymbol{v}|^{2} dt \, \mathrm{d}\sigma.$$

To evaluate the last integral, let us take the L^2 -inner product of $\triangle_{\sigma} \boldsymbol{v}$ in (13) and $\boldsymbol{v} = \boldsymbol{\sigma} (f + (\partial_t + \lambda)\varphi) + \nabla_{\sigma} \varphi$; then integration by parts gives

$$\begin{aligned}
& (19) \\
& \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} |\nabla_{\sigma} \boldsymbol{v}|^{2} dt \, \mathrm{d}\sigma = -\iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \boldsymbol{v} \cdot (\triangle_{\sigma} \boldsymbol{v}) dt \, \mathrm{d}\sigma \\
& = -\iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(f + (\partial_{t} + \lambda)\varphi \right) (\partial_{t} + \lambda - 2) \triangle_{\sigma}\varphi \, dt \, \mathrm{d}\sigma \\
& + \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(-\nabla_{\sigma}\varphi \cdot \nabla_{\sigma} \left(2\partial_{t} + \triangle_{\sigma} + 2\lambda + 2N - 4\right)\varphi + (N - 1)|\boldsymbol{v}|^{2} \right) dt \, \mathrm{d}\sigma \\
& = \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left((\triangle_{\sigma}\varphi)^{2} + (\lambda^{2} - 4\lambda - 2N + 4)|\nabla_{\sigma}\varphi|^{2} \right) dt \, \mathrm{d}\sigma \\
& + \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(|\partial_{t}\nabla_{\sigma}\varphi|^{2} + (N - 1)|\boldsymbol{v}|^{2} \right) dt \, \mathrm{d}\sigma.
\end{aligned}$$

Here we note that the spectrum of $-\triangle_{\sigma}$ is given by the set

$$\{\alpha_{\nu} = \nu(N + \nu - 2) ; \nu \in \mathbb{N} \cup \{0\}\},\$$

and hence the estimate

$$\frac{1}{\int_{\mathbb{S}^{N-1}} \varphi^2 \mathrm{d}\sigma} \int_{\mathbb{S}^{N-1}} \left((\Delta_{\sigma} \varphi)^2 + (\lambda^2 - 4\lambda - 2N + 4) |\nabla_{\sigma} \varphi|^2 \right) \mathrm{d}\sigma$$

$$\geq \min_{\nu \in \mathbb{N}} \left\{ \alpha_{\nu}^2 + (\lambda^2 - 4\lambda - 2N + 4) \alpha_{\nu} ; \nu \in \mathbb{N} \right\}$$

$$= \alpha_1^2 + (\lambda^2 - 4\lambda - 2N + 4) \alpha_1$$

$$= (N-1) \left((\lambda - 2)^2 - N - 1 \right)$$

holds for all $\varphi \in C^{\infty}(\mathbb{S}^{N-1}) \setminus \{0\}$ such that $\int_{\mathbb{S}^{N-1}} \varphi \, \mathrm{d}\sigma = 0$. Also by using $\int_{\mathbb{S}^{N-1}} \partial_t \varphi \, \mathrm{d}\sigma = 0$, we have the estimate

$$\int_{\mathbb{S}^{N-1}} |\nabla_{\sigma}(\partial_t \varphi)|^2 \mathrm{d}\sigma \ge (N-1) \int_{\mathbb{S}^{N-1}} |\partial_t \varphi|^2 \mathrm{d}\sigma$$

as an $L^2(\mathbb{S}^{N-1})$ version of the Poincaré inequality. Combine the above two estimates with the right-hand side of (19), and we obtain

$$\iint_{\mathbb{R}\times\mathbb{S}^{N-1}} |\nabla_{\sigma} \boldsymbol{v}|^2 dt \,\mathrm{d}\sigma \ge (N-1) \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(|\boldsymbol{v}|^2 + \left((\lambda-2)^2 - N - 1 \right) \varphi^2 + (\partial_t \varphi)^2 \right) dt \,\mathrm{d}\sigma$$

to evaluate the last integral in (18); hence we get

(20)
$$\int_{\mathbb{R}^{N}} |\nabla \boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma} dx$$
$$\geq \left((\lambda - 1)^{2} + N - 1 \right) \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} |\boldsymbol{v}|^{2} dt \, \mathrm{d}\sigma + \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} |\partial_{t} \boldsymbol{v}|^{2} dt \, \mathrm{d}\sigma$$
$$+ (N - 1) \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} \left(\left((\lambda - 2)^{2} - N - 1 \right) \varphi^{2} + (\partial_{t} \varphi)^{2} \right) dt \, \mathrm{d}\sigma.$$

Here the equality holds if and only if $-\triangle_{\sigma}\varphi = \alpha_{1}\varphi$; note that this equation also produces for $\partial_{t}\varphi$ the same equation $-\triangle_{\sigma}(\partial_{t}\varphi) = \alpha_{1}(\partial_{t}\varphi)$ since ∂_{t} and \triangle_{σ} commutes.

To further proceed, we have the following two cases according to the sign of $(\lambda - 2)^2 - N - 1$:

3.3. The case $|\lambda - 2| \ge \sqrt{N+1}$. Discarding the last two integrals in (20) and recalling the first equation of (17), we get the Hardy–Leray inequality

$$\int_{\mathbb{R}^N} |\nabla \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} \ge H_{N,\gamma} \int_{\mathbb{R}^N} \frac{|\boldsymbol{u}|^2}{|\boldsymbol{x}|^2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x}$$

for curl-free fields \boldsymbol{u} , with the constant

$$H_{N,\gamma} = (\lambda - 1)^2 + N - 1 = \left(\gamma + \frac{N}{2} - 1\right)^2 + N - 1.$$

To show that this number is the best possible, let us choose the sequence of curl-free fields $\{\boldsymbol{u}_n = r^{\lambda-1}\boldsymbol{v}_n\}_{n\in\mathbb{N}} \subset C_c^{\infty}(\mathbb{R}^N \setminus \{\mathbf{0}\})^N$ by the formula

$$\boldsymbol{v}_n = \boldsymbol{\sigma} h\Big(rac{t}{n}\Big) \qquad \left(ext{or equivalently } \boldsymbol{u}_n(\boldsymbol{x}) = \boldsymbol{x} |\boldsymbol{x}|^{\lambda-2} h\Big(\log |\boldsymbol{x}|^{rac{1}{n}} \Big)
ight)$$

for all $(t, \boldsymbol{\sigma}) \in \mathbb{R} \times \mathbb{S}^{N-1}$, where $h \in C_c^{\infty}(\mathbb{R})$ such that $h \neq 0$. Then, noticing that the triplet $(\boldsymbol{u}, \boldsymbol{v}, \varphi) = (\boldsymbol{u}_n, \boldsymbol{v}_n, 0)$ attains the equality of the inequality (20), we get

$$\frac{\int_{\mathbb{R}^N} |\nabla \boldsymbol{u}_n|^2 |\boldsymbol{x}|^{2\gamma} dx}{\int_{\mathbb{R}^N} |\boldsymbol{u}_n|^2 |\boldsymbol{x}|^{2\gamma-2} dx} = H_{N,\gamma} + \frac{\int_{\mathbb{R}\times\mathbb{S}^{N-1}} |\partial_t \boldsymbol{v}_n|^2 dt \,\mathrm{d}\sigma}{\int_{\mathbb{R}\times\mathbb{S}^{N-1}} |\boldsymbol{v}_n|^2 dt \,\mathrm{d}\sigma} = H_{N,\gamma} + \frac{1}{n^2} \frac{\int_{\mathbb{R}} (h'(t))^2 dt}{\int_{\mathbb{R}} (h(t))^2 dt} \longrightarrow H_{N,\gamma} \quad \text{as} \ n \to \infty,$$

which proves the best possibility of $H_{N,\gamma}$.

3.4. The case $|\lambda - 2| < \sqrt{N+1}$. By using the $L^2(\mathbb{S}^{N-1})$ -Poincaré inequality and equation (17), we have

$$\iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \varphi^2 dt \,\mathrm{d}\sigma \leq \frac{1}{\lambda^2 + \alpha_1} \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(\lambda^2 \varphi^2 + |\nabla_{\sigma}\varphi|^2\right) dt \,\mathrm{d}\sigma$$
$$= \frac{1}{\lambda^2 + N - 1} \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(|\boldsymbol{v}|^2 - \left(f^2 + (\partial_t \varphi)^2\right)\right) dt \,\mathrm{d}\sigma,$$

where the first equality holds if and only if $-\triangle_{\sigma}\varphi = \alpha_{1}\varphi$. Combining this estimate with (20) and noting that $(\lambda - 2)^{2} - N - 1 < 0$, we get

$$\begin{split} &\int_{\mathbb{R}^N} |\nabla \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} dx \\ &\geq \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \Big(\left((\lambda-1)^2 + N - 1 \right) |\boldsymbol{v}|^2 + |\partial_t \boldsymbol{v}|^2 + (N-1)(\partial_t \varphi)^2 \Big) dt \, \mathrm{d}\sigma \\ &\quad - \frac{(N-1)\left(N+1-(\lambda-2)^2\right)}{\lambda^2 + N - 1} \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \Big(|\boldsymbol{v}|^2 - \left(f^2 + (\partial_t \varphi)^2\right) \Big) dt \, \mathrm{d}\sigma \\ &= \frac{(\lambda-1)^2(\lambda^2 + 3(N-1))}{\lambda^2 + N - 1} \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} |\boldsymbol{v}|^2 dt \, \mathrm{d}\sigma + \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} |\partial_t \boldsymbol{v}|^2 dt \, \mathrm{d}\sigma \\ &\quad + (N-1) \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \Big(\frac{N+1-(\lambda-2)^2}{\lambda^2 + N - 1} f^2 + \frac{4(\lambda + \frac{N}{2} - 1)}{\lambda^2 + N - 1} (\partial_t \varphi)^2 \Big) dt \, \mathrm{d}\sigma, \end{split}$$

where the first equality holds if and only if $-\Delta_{\sigma}\varphi = \alpha_{1}\varphi$. In the same way as before, discard the last two integrals in (21) and recall the first equation of (17); then the Hardy-Leray inequality for curl-free fields

$$\int_{\mathbb{R}^N} |\nabla \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} \ge H_{N,\gamma} \int_{\mathbb{R}^N} \frac{|\boldsymbol{u}|^2}{|\boldsymbol{x}|^2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x}$$

holds with the constant $H_{N,\gamma}$ given by

$$H_{N,\gamma} = \frac{(\lambda - 1)^2 (\lambda^2 + 3(N - 1))}{\lambda^2 + N - 1} = \left(\gamma + \frac{N}{2} - 1\right)^2 \frac{\left(\gamma + \frac{N}{2} - 2\right)^2 + 3(N - 1)}{\left(\gamma + \frac{N}{2} - 2\right)^2 + N - 1}.$$

To show that this $H_{N,\gamma}$ is sharp, let us choose the sequence of curl-free fields $\{u_n = r^{\lambda-1}v_n\}_{n\in\mathbb{N}} \subset C_c^{\infty}(\mathbb{R}^N \setminus \{\mathbf{0}\})^N$ by the formulae

$$\begin{cases} \boldsymbol{v}_n = \boldsymbol{\sigma}(\partial_t + \lambda)\varphi_n + \nabla_{\!\boldsymbol{\sigma}}\varphi_n & \left(\text{or equivalently } \boldsymbol{u}_n(\boldsymbol{x}) = \nabla\left(|\boldsymbol{x}|^\lambda\varphi_n(\boldsymbol{x})\right)\right) \\ \varphi_n = h\left(\frac{t}{n}\right)Y_1(\boldsymbol{\sigma}), \end{cases}$$

for all $(t, \boldsymbol{\sigma}) \in \mathbb{R} \times \mathbb{S}^{N-1}$, where $h \in C_c^{\infty}(\mathbb{R}) \setminus \{0\}$ and where $Y_1 \in C^{\infty}(\mathbb{S}^{N-1})$ denotes the eigenfunction of $-\Delta_{\sigma}$ associated with the eigenvalue $\alpha_1 = N - 1$. Then a straightforward calculation yields

$$\begin{aligned} \frac{\int_{\mathbb{R}\times\mathbb{S}^{N-1}} (\partial_t \varphi_n)^2 dt \,\mathrm{d}\sigma}{\int_{\mathbb{R}\times\mathbb{S}^{N-1}} |\boldsymbol{v}_n|^2 dt \,\mathrm{d}\sigma} &= \frac{\int_{\mathbb{R}\times\mathbb{S}^{N-1}} ((\lambda^2 + \alpha_1)\varphi_n^2 + (\partial_t \varphi_n)^2) dt \,\mathrm{d}\sigma}{\int_{\mathbb{R}\times\mathbb{S}^{N-1}} |(\lambda^2 + \alpha_1)(h(t))^2 + n^{-2}(h'(t))^2) dt} & \xrightarrow[(n \to \infty)]{} 0, \\ &= \frac{\int_{\mathbb{R}} ((\lambda^2 + \alpha_1)(h(t))^2 + n^{-2}(h'(t))^2) dt}{\int_{\mathbb{R}} ((\lambda^2 + \alpha_1)(\partial_t \varphi_n)^2 + (\partial_t^2 \varphi_n)^2) dt \,\mathrm{d}\sigma} \\ &= \frac{\int_{\mathbb{R}\times\mathbb{S}^{N-1}} |\boldsymbol{v}_n|^2 dt \,\mathrm{d}\sigma}{\int_{\mathbb{R}\times\mathbb{S}^{N-1}} ((\lambda^2 + \alpha_1)(h(t))^2 + n^{-4}(h''(t))^2) dt} & \xrightarrow[(n \to \infty)]{} 0. \end{aligned}$$

Since the quadruple $(\boldsymbol{u}, \boldsymbol{v}, \varphi, f) = (\boldsymbol{u}_n, \boldsymbol{v}_n, \varphi_n, 0)$ attains the equality in (21), the above calculation directly gives

$$\begin{split} \frac{\int_{\mathbb{R}^N} |\nabla \boldsymbol{u}_n|^2 |\boldsymbol{x}|^{2\gamma} dx}{\int_{\mathbb{R}^N} |\boldsymbol{u}_n|^2 |\boldsymbol{x}|^{2\gamma-2} dx} \\ &= H_{N,\gamma} + \frac{\int_{\mathbb{R} \times \mathbb{S}^{N-1}} \left(|\partial_t \boldsymbol{v}_n|^2 dt \, \mathrm{d}\sigma + \frac{4(N-1)(\lambda + \frac{N}{2} - 1)}{\lambda^2 + N - 1} (\partial_t \varphi_n)^2 \right) dt \, \mathrm{d}\sigma}{\int_{\mathbb{R} \times \mathbb{S}^{N-1}} |\boldsymbol{v}_n|^2 dt \, \mathrm{d}\sigma} \\ &\longrightarrow H_{N,\gamma} \quad \text{as} \quad n \to \infty, \end{split}$$

which proves the sharpness of $H_{N,\gamma}$.

3.5. Conclusion of the proof of Theorem 1. In view of the inequalities (20) and (21), we have already proved in §3.3 and §3.4 that every curl-free field $\boldsymbol{u} \in C_c^{\infty}(\mathbb{R}^N \setminus \{\mathbf{0}\})^N$ satisfies the inequality

$$\int_{\mathbb{R}^{N}} |\nabla \boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} \ge H_{N,\gamma} \int_{\mathbb{R}^{N}} |\boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma-2} d\boldsymbol{x} + \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} |\partial_{t}\boldsymbol{v}|^{2} dt \,\mathrm{d}\sigma + (N-1) \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \mathcal{E}_{N,\gamma}[\boldsymbol{u}] dt \,\mathrm{d}\sigma$$

with the constant $H_{N,\gamma}$ in Theorem B and the remainder function $\mathcal{E}_{N,\gamma}[u]$ given by

$$\mathcal{E}_{N,\gamma}[\boldsymbol{u}](\boldsymbol{x}) = \begin{cases} \left((\lambda - 2)^2 - N - 1 \right) \varphi^2 + (\partial_t \varphi)^2 & \text{for } |\lambda - 2| \ge \sqrt{N+1}, \\ \frac{N+1 - (\lambda - 2)^2}{\lambda^2 + N - 1} f^2 + \frac{4(\lambda + \frac{N}{2} - 1)}{\lambda^2 + N - 1} (\partial_t \varphi)^2 & \text{for } |\lambda - 2| < \sqrt{N+1}. \end{cases}$$

Moreover, the equality in the above integral inequality holds if and only if $-\Delta_{\sigma}\varphi = \alpha_1\varphi$. Finally, restoring the notations

$$\lambda = 2 - \frac{N}{2} - \gamma, \quad \partial_t = \boldsymbol{x} \cdot \nabla, \quad dt \, \mathrm{d}\sigma = |\boldsymbol{x}|^{-N} dx, \quad \boldsymbol{v} = |\boldsymbol{x}|^{\gamma + \frac{N}{2} - 1} \boldsymbol{u},$$

we complete the proof.

4. A proof of the sharp Rellich-Leray inequality for curl-free fields

The same approach to prove Theorem 1 can also be applied to treat other inequalities involving higher-order derivatives. The following sharp Rellich-Leray inequality for curl-free fields was first proven in [7].

Theorem C. ([7]) Let $u \in C_c^{\infty}(\mathbb{R}^N \setminus \{0\})^N$ be a curl-free vector field. Then the inequality

(22)
$$R_{N,\gamma} \int_{\mathbb{R}^N} \frac{|\boldsymbol{u}|^2}{|\boldsymbol{x}|^4} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} \le \int_{\mathbb{R}^N} |\Delta \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x}$$

holds with the best constant $R_{N,\gamma}$ given by

(23)
$$R_{N,\gamma} = \min\left\{ \left(\alpha_{\gamma-\frac{N}{2}} - N + 1\right)^2, \min_{\nu \in \mathbb{N}} \frac{\left(\gamma + \frac{N}{2} - 1\right)^2 + \alpha_{\nu}}{\left(\gamma + \frac{N}{2} - 3\right)^2 + \alpha_{\nu}} \left(\alpha_{\gamma-\frac{N}{2}-1} - \alpha_{\nu}\right)^2 \right\}$$

in terms of the same notation $\alpha_s = s(s+N-2)$ as in (5).

In this section, we prove the following improvement of Theorem C.

Theorem 6. Let $R_{N,\gamma}$ be the same as in (23). Then the inequality (22) can be further improved to be

$$\int_{\mathbb{R}^N} |\Delta \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} \ge R_{N,\gamma} \int_{\mathbb{R}^N} \frac{|\boldsymbol{u}|^2}{|\boldsymbol{x}|^4} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} + c_{N,\gamma} \int_{\mathbb{R}^N} |\boldsymbol{x} \cdot \nabla \left(|\boldsymbol{x}|^{\gamma + \frac{N}{2} - 2} \boldsymbol{u} \right) |^2 |\boldsymbol{x}|^{-N} d\boldsymbol{x}$$

for some positive constant $c_{N,\gamma} > 0$.

As a direct consequence of this fact, the equality sign of inequality (22) is never attained by any non-zero curl-free field u.

Proof. Let $\boldsymbol{u} \in C_c^{\infty}(\mathbb{R}^N \setminus \{\mathbf{0}\})^N$ be a curl-free field. Applying the replacement (24) $\gamma \longmapsto \gamma - 1$

to equation (15), we choose

$$\lambda = 3 - N/2 - \gamma.$$

By this choice, let us calculate the integrals in inequality (22): Apply the replacement (24) to the equations in (17), and we have

$$\begin{split} \int_{\mathbb{R}^N} \frac{|\boldsymbol{u}|^2}{|\boldsymbol{x}|^4} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} &= \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} |\boldsymbol{v}|^2 dt \, \mathrm{d}\sigma \\ &= \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} \left(f^2 + (\partial_t \varphi)^2 + \lambda^2 \varphi^2 + |\nabla_{\sigma} \varphi|^2 \right) dt \, \mathrm{d}\sigma \\ &= \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} \left(f^2 + \varphi \left(\lambda^2 - \partial_t^2 - \Delta_{\sigma} \right) \varphi \right) dt \, \mathrm{d}\sigma, \end{split}$$

where the last equality follows from integration by parts together with the support compactness. Also we notice that the condition (12) in Proposition 4 is invariant under the following replacement of the triplet:

(25)
$$(\boldsymbol{v}, f, \varphi) \longmapsto (\partial_t^k \boldsymbol{v}, \partial_t^k f, \partial_t^k \varphi)$$

for k = 1, 2. Hence we have

(26)
$$\iint_{\mathbb{R}\times\mathbb{S}^{N-1}} |\partial_t^k \boldsymbol{v}|^2 dt \,\mathrm{d}\sigma = \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left((\partial_t^k f)^2 + \varphi \left(\lambda^2 - \partial_t^2 - \Delta_\sigma\right) (-\partial_t^2)^k \varphi \right) dt \,\mathrm{d}\sigma.$$

On the other hand, with the aid of (11), we have

$$\Delta \boldsymbol{u} = \Delta (r^{\lambda-1}\boldsymbol{v}) = (\Delta r^{\lambda-1})\boldsymbol{v} + 2\left((\nabla r^{\lambda-1}) \cdot \nabla \right) \boldsymbol{v} + r^{\lambda-1} \Delta \boldsymbol{v} = \alpha_{\lambda-1} r^{\lambda-3} \boldsymbol{v} + 2(\lambda-1) r^{\lambda-3} \partial_t \boldsymbol{v} + r^{\lambda-3} \left(\partial_t^2 + (N-2) \partial_t + \Delta_\sigma \right) \boldsymbol{v} = r^{\lambda-3} \left(\alpha_{\lambda-1} \boldsymbol{v} + (2\lambda + N - 4) \partial_t \boldsymbol{v} + \partial_t^2 \boldsymbol{v} + \Delta_\sigma \boldsymbol{v} \right),$$

where in the second line we have used the same formula $\Delta r^{\lambda-1} = \alpha_{\lambda-1}r^{\lambda-3}$ as in $(5)_{s=\lambda-1}$. Then the L^2 integration (by parts) of this result yields

$$(27) \int_{\mathbb{R}^{N}} |\Delta \boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} = \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} |\alpha_{\lambda-1} \boldsymbol{v} + (2\lambda + N - 4)\partial_{t} \boldsymbol{v} + \partial_{t}^{2} \boldsymbol{v} + \Delta_{\sigma} \boldsymbol{v}|^{2} dt \, \mathrm{d}\sigma$$
$$= \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} |\partial_{t}^{2} \boldsymbol{v}|^{2} dt \, \mathrm{d}\sigma + \left((N-2)^{2} + 2\alpha_{\lambda-1}\right) \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} |\partial_{t} \boldsymbol{v}|^{2} dt \, \mathrm{d}\sigma$$
$$+ 2 \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} |\nabla_{\sigma} \partial_{t} \boldsymbol{v}|^{2} dt \, \mathrm{d}\sigma + \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} |\Delta_{\sigma} \boldsymbol{v} + \alpha_{\lambda-1} \boldsymbol{v}|^{2} dt \, \mathrm{d}\sigma,$$

where the second equality follows from the identity $(2\lambda + N - 4)^2 - 2\alpha_{\lambda-1} = (N-2)^2 + 2\alpha_{\lambda-1}$. To calculate the second last integral in (27), we apply the replacement (25) to the equation in (19):

(28)
$$\iint_{\mathbb{R}\times\mathbb{S}^{N-1}} |\partial_t \nabla_{\sigma} \boldsymbol{v}|^2 dt \,\mathrm{d}\sigma$$
$$= \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(\begin{array}{c} (\Delta_{\sigma}\partial_t \varphi)^2 + |\nabla_{\sigma}\partial_t^2 \varphi|^2 + ((\lambda-2)^2 - 2N) |\nabla_{\sigma}\partial_t \varphi|^2 \\ + (N-1)|\partial_t \boldsymbol{v}|^2 \end{array} \right) dt \,\mathrm{d}\sigma$$
$$= \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(\begin{array}{c} \varphi \Big(-\Delta_{\sigma}^2 \partial_t^2 - \Delta_{\sigma} \partial_t^4 + ((\lambda-2)^2 - 2N) \Delta_{\sigma} \partial_t^2 \Big) \varphi \\ + (N-1) \Big((\partial_t f)^2 + \varphi \left(\lambda^2 - \partial_t^2 - \Delta_{\sigma} \right) \left(-\partial_t^2 \varphi \right) \right) \end{array} \right) dt \,\mathrm{d}\sigma.$$

Also to calculate the last integral in (27), let us compute from (13) and (12) that

$$\begin{split} \triangle_{\sigma} \boldsymbol{v} + \alpha_{\lambda-1} \boldsymbol{v} \\ &= \boldsymbol{\sigma} \big(\partial_t + \lambda - 2 \big) \triangle_{\sigma} \varphi + \nabla_{\sigma} \big(2 \partial_t + \triangle_{\sigma} + 2(\lambda + N - 2) \big) \varphi \\ &+ \big(\alpha_{\lambda-1} - (N - 1) \big) \big(\boldsymbol{\sigma} \big(f + (\partial_t + \lambda) \varphi \big) + \nabla_{\sigma} \varphi \big) \\ &= \boldsymbol{\sigma} \Big((\triangle_{\sigma} + \alpha_{\lambda-1} - N + 1) \partial_t \varphi + (\lambda - 2) \triangle_{\sigma} \varphi + (\alpha_{\lambda-1} - N + 1) (f + \lambda \varphi) \Big) \\ &+ \nabla_{\sigma} \big(2 \partial_t + \triangle_{\sigma} + \alpha_{\lambda} \big) \varphi, \end{split}$$

here we have used $\alpha_{\lambda-1} - (N-1) + 2(\lambda + N - 2) = \alpha_{\lambda}$ in the second equality. Hence the L^2 integration by parts of this result yields

$$(29) \qquad \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left| \Delta_{\sigma} \boldsymbol{v} + \alpha_{\lambda-1} \boldsymbol{v} \right|^{2} dt \, \mathrm{d}\sigma \\ = \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left| \begin{array}{c} (\Delta_{\sigma} + \alpha_{\lambda-1} - N + 1)\partial_{t}\varphi \\ + (\lambda - 2)\Delta_{\sigma}\varphi + (\alpha_{\lambda-1} - N + 1)(f + \lambda\varphi) \end{array} \right|^{2} dt \, \mathrm{d}\sigma \\ + \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left| \nabla_{\sigma} \left(2\partial_{t} + \Delta_{\sigma} + \alpha_{\lambda} \right) \varphi \right|^{2} dt \, \mathrm{d}\sigma \\ = \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(\begin{array}{c} \left((\Delta_{\sigma} + \alpha_{\lambda-1} - N + 1)\partial_{t}\varphi \right)^{2} + 4 |\partial_{t}\nabla_{\sigma}\varphi|^{2} \\ + |(\lambda - 2)\Delta_{\sigma}\varphi + (\alpha_{\lambda-1} - N + 1)\lambda\varphi|^{2} \\ + |\nabla_{\sigma}\Delta_{\sigma}\varphi + \alpha_{\lambda}\nabla_{\sigma}\varphi|^{2} + (\alpha_{\lambda-1} - N + 1)^{2}f^{2} \end{array} \right) dt \, \mathrm{d}\sigma \\ = \iint_{\mathbb{R}\times\mathbb{S}^{N-1}} \left(\begin{array}{c} \varphi \left((\Delta_{\sigma} + \alpha_{\lambda-1} - N + 1)^{2} - 4\Delta_{\sigma} \right) (-\partial_{t}^{2}\varphi) \\ + \varphi ((\lambda - 2)^{2} - \Delta_{\sigma}) (\Delta_{\sigma} + \alpha_{\lambda})^{2}\varphi \\ + (\alpha_{\lambda-1} - N + 1)^{2}f^{2} \end{array} \right) dt \, \mathrm{d}\sigma. \end{aligned}$$

Substitute (26), (28) and (29) into (27), and after some lengthy algebraic calculations, we obtain

(30)
$$\int_{\mathbb{R}^{N}} |\Delta \boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} = (26)_{k=2} + \left((N-2)^{2} + 2\alpha_{\lambda-1} \right) (26)_{k=1} + 2 \times (28) + (29)$$
$$= \iint_{\mathbb{R} \times \mathbb{S}^{N-1}} \left(\varphi Q_{1}(-\partial_{t}^{2}, -\Delta_{\sigma})\varphi + fQ_{0}(-\partial_{t}^{2})f \right) dt \, \mathrm{d}\sigma,$$

where $Q_1(\cdot, \cdot)$ and $Q_0(\cdot)$ are the polynomials given by

$$(31) \quad Q_{1}(\tau,\alpha) = (\lambda^{2} + \tau + \alpha) \tau^{2} + ((N-2)^{2} + 2\alpha_{\lambda-1}) (\lambda^{2} + \tau + \alpha) \tau + 2(\alpha^{2}\tau + \alpha\tau^{2} + ((\lambda-2)^{2} - 2N) \alpha\tau + (N-1)(\lambda^{2} + \tau + \alpha)\tau) + ((-\alpha + \alpha_{\lambda-1} - N + 1)^{2} + 4\alpha) \tau + ((\lambda-2)^{2} + \alpha)(-\alpha + \alpha_{\lambda})^{2} = (\tau + \alpha + (\lambda - 2)^{2}) \begin{pmatrix} (\tau + \alpha + \lambda^{2}) (\tau + \alpha + (\lambda + N - 2)^{2}) \\- (2\lambda + N - 2)^{2}\alpha \end{pmatrix}, (32) \quad Q_{0}(\tau) = \tau^{2} + ((N-2)^{2} + 2\alpha_{\lambda-1}) \tau + 2(N-1)\tau + (\alpha_{\lambda-1} - N + 1)^{2} = (\tau + (\lambda - 2)^{2}) (\tau + (\lambda + N - 2)^{2}).$$

Therefore, we get

$$(33) \qquad \frac{\int_{\mathbb{R}^N} |\Delta \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} dx}{\int_{\mathbb{R}^N} |\boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma-4} dx} = \frac{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} \left(\varphi Q_1(-\partial_t^2, -\Delta_\sigma)\varphi + fQ_0(-\partial_t^2)f\right) dt \,\mathrm{d}\sigma}{\iint_{\mathbb{R} \times \mathbb{S}^{N-1}} \left(\varphi(\lambda^2 - \partial_t^2 - \Delta_\sigma)\varphi + f^2\right) dt \,\mathrm{d}\sigma}$$

as far as $u \not\equiv 0$.

From now on, we evaluate the right-hand side of (33). We apply to φ and f the 1-D Fourier transformation with respect to t: we set

$$\widehat{\varphi}(\tau, \boldsymbol{\sigma}) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{i\tau t} \varphi(e^{t}\boldsymbol{\sigma}) dt, \quad \widehat{f}(\tau) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{i\tau t} f(e^{t}\boldsymbol{\sigma}) dt$$

for $(\tau, \sigma) \in \mathbb{R} \times \mathbb{S}^{N-1}$. Furthermore, we apply to $\hat{\varphi}$ the spherical harmonics expansion:

$$\widehat{\varphi}(\tau, \boldsymbol{\sigma}) = \sum_{\nu \in \mathbb{N}} \widehat{\varphi_{\nu}}(\tau) Y_{\nu}(\boldsymbol{\sigma}), \qquad \left\{ \begin{array}{l} -\Delta_{\sigma} Y_{\nu} = \alpha_{\nu} Y_{\nu}, \\ \alpha_{\nu} = \nu(\nu + N - 2) \quad \forall \nu \in \mathbb{N}, \end{array} \right.$$

with the normalization $\int_{\mathbb{S}^{N-1}} |Y_{\nu}(\boldsymbol{\sigma})|^2 d\boldsymbol{\sigma} = 1$. Substituting these formulae into (33) and noticing the $L^2(\mathbb{R})$ isometry of the Fourier transformation, we have (34)

$$\frac{\int_{\mathbb{R}^N} |\Delta \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} dx}{\int_{\mathbb{R}^N} |\boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma-4} dx} = \frac{\sum_{\nu \in \mathbb{N}} \int_{\mathbb{R}} Q_1(\tau^2, \alpha_{\nu}) |\widehat{\varphi_{\nu}}(\tau)|^2 d\tau + \omega_{N-1} \int_{\mathbb{R}} Q_0(\tau^2) |\widehat{f}(\tau)|^2 d\tau}{\sum_{\nu \in \mathbb{N}} \int_{\mathbb{R}} (\lambda^2 + \tau^2 + \alpha_{\nu}) |\widehat{\varphi_{\nu}}(\tau)|^2 d\tau + \omega_{N-1} \int_{\mathbb{R}} |\widehat{f}(\tau)|^2 d\tau}$$
$$\geq \min\left\{ \inf_{\nu \in \mathbb{N}} \inf_{\tau \in \mathbb{R}} \frac{Q_1(\tau^2, \alpha_{\nu})}{\lambda^2 + \tau^2 + \alpha_{\nu}}, \inf_{\tau \in \mathbb{R}} Q_0(\tau^2) \right\}$$
$$= \min\left\{ \min\left\{ \min_{\nu \in \mathbb{N}} \frac{Q_1(0, \alpha_{\nu})}{\lambda^2 + \alpha_{\nu}}, Q_0(0) \right\}.$$

Here the last equality follows from that in view of (31) and (32) the functions

$$\frac{Q_1(\tau,\alpha_\nu)}{\lambda^2 + \tau + \alpha_\nu} = \left(\tau + \alpha_\nu + (\lambda - 2)^2\right) \left(\tau + \alpha_\nu \left(1 - \frac{(2\lambda + N - 2)^2}{\lambda^2 + \tau + \alpha_\nu}\right) + (\lambda + N - 2)^2\right)$$

and $Q_0(\tau)$ are monotonically increasing in $\tau \in [0, \infty)$ for each $\nu \in \mathbb{N}$. Therefore, we have proved the Rellich-Leray inequality for curl-free fields (22):

$$\int_{\mathbb{R}^N} |\Delta \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} dx \ge R_{N,\gamma} \int_{\mathbb{R}^N} |\boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma-4} dx$$

holds with the constant $R_{N,\gamma}$ given by

$$R_{N,\gamma} = \min\left\{\min_{\nu \in \mathbb{N}} \frac{Q_1(0, \alpha_{\nu})}{\lambda^2 + \alpha_{\nu}}, Q_0(0)\right\}$$

= $\min\left\{\min_{\nu \in \mathbb{N}} \frac{(\lambda - 2)^2 + \alpha_{\nu}}{\lambda^2 + \alpha_{\nu}} (\alpha_{\lambda} - \alpha_{\nu})^2, (\alpha_{\lambda - 1} - N + 1)^2\right\}$
= $\min\left\{\min_{\nu \in \mathbb{N}} \frac{(\gamma + \frac{N}{2} - 1)^2 + \alpha_{\nu}}{(\gamma + \frac{N}{2} - 3)^2 + \alpha_{\nu}} (\alpha_{\gamma - \frac{N}{2} - 1} - \alpha_{\nu})^2, (\alpha_{\gamma - \frac{N}{2}} - N + 1)^2\right\}.$

Now, we prove the sharpness of $R_{N,\gamma}$. For this purpose, we choose $\nu_0 \in \mathbb{N} \cup \{0\}$ to be such that

$$\left\{ \begin{array}{l} \nu_0 = 0, \quad \text{if } \min\left\{\min_{\nu \in \mathbb{N}} \frac{Q_1(0, \alpha_{\nu})}{\lambda^2 + \alpha_{\nu}}, \ Q_0(0)\right\} = Q_0(0), \\ \min_{\nu \in \mathbb{N}} \frac{Q_1(0, \alpha_{\nu})}{\lambda^2 + \alpha_{\nu}} = \frac{Q_1(0, \alpha_{\nu_0})}{\lambda^2 + \alpha_{\nu_0}}, \quad \text{otherwise,} \end{array} \right.$$

and define the sequence of vector fields $\{u_n = r^{\lambda-1}v_n\}_{n\in\mathbb{N}} \subset C_c^{\infty}(\mathbb{R}^N \setminus \{\mathbf{0}\})^N$ by the formulae

$$\boldsymbol{v}_n = \left\{ egin{array}{ll} \boldsymbol{\sigma} f_n & ext{if} \ \
u_0 = 0, \ \ \boldsymbol{\sigma} (\partial_t + \lambda) \varphi_n +
abla_{\sigma} \varphi_n & ext{otherwise.} \end{array}
ight.$$

Here

$$egin{aligned} & f_n(m{x}) = h\left(rac{\log|m{x}|}{n}
ight) & ext{if} \ \
u_0 = 0, \ & arphi_n(m{x}) = h\left(rac{\log|m{x}|}{n}
ight)Y_{
u_0}(m{x}/|m{x}|) & ext{otherwise}, \end{aligned}$$

with $h \in C_c^{\infty}(\mathbb{R}) \setminus \{0\}$, and $Y_{\nu_0} \in C^{\infty}(\mathbb{S}^{N-1})$ denotes the eigenfunction of $-\Delta_{\sigma}$ associated with the eigenvalue $\alpha_{\nu_0} = \nu_0(\nu_0 + N - 2)$. Notice from Proposition 4 that \boldsymbol{u}_n is curl-free. Then applying the formula (33) to $(\boldsymbol{u}, f, \varphi) = (\boldsymbol{u}_n, f_n, 0)$ or $(\boldsymbol{u}, f, \varphi) = (\boldsymbol{u}_n, 0, \varphi_n)$ gives

$$\frac{\int_{\mathbb{R}^N} |\Delta \boldsymbol{u}_n|^2 |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x}}{\int_{\mathbb{R}^N} |\boldsymbol{u}_n|^2 |\boldsymbol{x}|^{2\gamma-4} d\boldsymbol{x}} = \begin{cases} \frac{\int_{\mathbb{R}} h(\frac{t}{n}) Q_0(-\partial_t^2) h(\frac{t}{n}) dt}{\int_{\mathbb{R}} (h(\frac{t}{n}))^2 dt} & \text{if } \nu_0 = 0, \\ \frac{\int_{\mathbb{R}} h(\frac{t}{n}) Q_1(-\partial_t^2, \alpha_{\nu_0}) h(\frac{t}{n}) dt}{\int_{\mathbb{R}} h(\frac{t}{n}) (\lambda^2 - \partial_t^2 + \alpha_{\nu_0}) h(\frac{t}{n}) dt} & \text{otherwise.} \end{cases}$$

Passing to $n \to \infty$, we get

$$\frac{\int_{\mathbb{R}^N} |\Delta \boldsymbol{u}_n|^2 |\boldsymbol{x}|^{2\gamma} dx}{\int_{\mathbb{R}^N} |\boldsymbol{u}_n|^2 |\boldsymbol{x}|^{2\gamma-4} dx} = O(1/n^2) + \begin{cases} Q_0(0) & \text{if } \nu_0 = 0\\ \frac{Q_1(0, \alpha_{\nu_0})}{\lambda^2 + \alpha_{\nu_0}} & \text{otherwise} \end{cases}$$
$$\longrightarrow R_{N,\gamma},$$

which shows the desired sharpness of $R_{N,\gamma}$.

In order to obtain further improvement, we recall that the two integrals in (22) can be expressed in terms of φ and f (in Proposition 4) as

$$\int_{\mathbb{R}^N} |\Delta \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} = \sum_{\nu \in \mathbb{N}} \int_{\mathbb{R}} Q_1(\tau^2, \alpha_\nu) |\widehat{\varphi_\nu}(\tau)|^2 d\tau + \omega_{N-1} \int_{\mathbb{R}} Q_0(\tau^2) |\widehat{f}(\tau)|^2 d\tau,$$
$$\int_{\mathbb{R}^N} |\boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma-4} d\boldsymbol{x} = \sum_{\nu \in \mathbb{N}} \int_{\mathbb{R}} (\lambda^2 + \tau^2 + \alpha_\nu) |\widehat{\varphi_\nu}(\tau)|^2 d\tau + \omega_{N-1} \int_{\mathbb{R}} |\widehat{f}(\tau)|^2 d\tau$$

for $\lambda = 3 - N/2 - \gamma$, together with the polynomials Q_1 and Q_0 given by (31) and (32). Also recall the expression $R_{N,\gamma} = \min\left\{\min_{\nu \in \mathbb{N}} \frac{Q_1(0,\alpha_{\nu})}{\lambda^2 + \alpha_{\nu}}, Q_0(0)\right\}$ of the best constant of the inequality (22) and let $\nu_1 \in \mathbb{N}$ be such that

$$\frac{Q_1(0,\alpha_{\nu_1})}{\lambda^2+\alpha_{\nu_1}}=\min_{\nu\in\mathbb{N}}\frac{Q_1(0,\alpha_{\nu})}{\lambda^2+\alpha_{\nu}}.$$

Then the difference between the both sides of (22) has the following estimate:

$$\begin{split} &\int_{\mathbb{R}^{N}} |\Delta \boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} - \min\left\{\frac{Q_{1}(0,\alpha_{\nu_{1}})}{\lambda^{2}+\alpha_{\nu_{1}}},Q_{0}(0)\right\} \int_{\mathbb{R}^{N}} |\boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} \\ &\geq \int_{\mathbb{R}^{N}} |\Delta \boldsymbol{u}|^{2} |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} \\ &\quad -\frac{Q_{1}(0,\alpha_{\nu_{1}})}{\lambda^{2}+\alpha_{\nu_{1}}} \sum_{\nu \in \mathbb{N}} \int_{\mathbb{R}} (\tau^{2}+\lambda^{2}+\alpha_{\nu}) |\widehat{\varphi_{\nu}}(\tau)|^{2} d\tau - Q_{0}(0) \,\omega_{N-1} \int_{\mathbb{R}} |\widehat{f}(\tau)|^{2} d\tau \\ &= \sum_{\nu \in \mathbb{N}} \int_{\mathbb{R}} \left(Q_{1}(\tau^{2},\alpha_{\nu}) - \frac{Q_{1}(0,\alpha_{\nu_{1}})}{\lambda^{2}+\alpha_{\nu_{1}}} (\tau^{2}+\lambda^{2}+\alpha_{\nu})\right) |\widehat{\varphi_{\nu}}(\tau)|^{2} \\ &\quad + \omega_{N-1} \int_{\mathbb{R}} \left(Q_{0}(\tau^{2}) - Q_{0}(0)\right) |\widehat{f}(\tau)|^{2} d\tau \\ &\geq c_{1,N,\gamma} \sum_{\nu \in \mathbb{N}} \int_{\mathbb{R}} (\lambda^{2}+\tau^{2}+\alpha_{\nu})\tau^{2} |\widehat{\varphi_{\nu}}(\tau)|^{2} d\tau + c_{0,N,\gamma} \,\omega_{N-1} \int_{\mathbb{R}} \tau^{2} |\widehat{f}(\tau)|^{2} d\tau \\ &\geq \min\left\{c_{1,N,\gamma}, \ c_{0,N,\gamma}\right\} \int_{\mathbb{R}} \left(\sum_{\nu \in \mathbb{N}} (\lambda^{2}+\tau^{2}+\alpha_{\nu})\tau^{2} |\widehat{\varphi_{\nu}}(\tau)|^{2} + \omega_{N-1}\tau^{2} |\widehat{f}(\tau)|^{2}\right) d\tau \\ &= \min\left\{c_{1,N,\gamma}, \ c_{0,N,\gamma}\right\} \int_{\mathbb{R}^{N}} |\partial_{t}\boldsymbol{v}|^{2} r^{-N} dx, \end{split}$$

where we have defined the two constants $c_{0,N,\gamma}$ and $c_{1,N,\gamma}$ by

$$c_{0,N,\gamma} = \inf_{\tau \in \mathbb{R} \setminus \{0\}} \frac{Q_0(\tau^2) - Q_0(0)}{\tau^2} = Q'_0(0) = (\lambda - 2)^2 + (\lambda + N - 2)^2$$
$$= N^2/2 + 2(1 - \gamma)^2 > 0,$$
$$c_{1,N,\gamma} = \inf_{\nu \in \mathbb{N}} \inf_{\tau \in \mathbb{R} \setminus \{0\}} \frac{1}{\tau^2} \left(\frac{Q_1(\tau^2, \alpha_{\nu})}{\tau^2 + \lambda^2 + \alpha_{\nu}} - \frac{Q_1(0, \alpha_{\nu_1})}{\lambda^2 + \alpha_{\nu_1}} \right).$$

Hence it suffices to show $c_{1,N,\gamma} > 0$. To this end, notice that

$$c_{1,N,\gamma} \ge \inf_{\nu \in \mathbb{N}} \inf_{\tau \in \mathbb{R} \setminus \{0\}} \frac{1}{\tau^2} \left(\frac{Q_1(\tau^2, \alpha_{\nu})}{\tau^2 + \lambda^2 + \alpha_{\nu}} - \frac{Q_1(0, \alpha_{\nu})}{\lambda^2 + \alpha_{\nu}} \right) = \inf_{\nu \in \mathbb{N}} \inf_{\tau \ge 0} Q_2(\tau, \alpha_{\nu})$$

for the rational polynomial $Q_2(\cdot, \cdot)$ defined by the following algebraic calculation:

$$\begin{aligned} Q_2(\tau, a) &= \frac{1}{\tau} \left(\frac{Q_1(\tau, a)}{\tau + \lambda^2 + a} - \frac{Q_1(0, a)}{\lambda^2 + a} \right) \\ &= \frac{4(1 - \lambda)(2\lambda + N - 2)^2 a}{(\lambda^2 + a)(\tau + \lambda^2 + a)} + 2\left(\lambda + \frac{N}{2} - 2\right)^2 + \frac{N^2}{2} + 2a + \tau \\ &= \frac{16(1 - \lambda)(2 - \gamma)^2 a}{(\lambda^2 + a)(\tau + \lambda^2 + a)} + c_{0,N,\gamma} + 2a + \tau. \end{aligned}$$

In order to further estimate $Q_2(\tau, \alpha_{\nu})$ for $\tau \geq 0$ and $\nu \in \mathbb{N}$, let us consider the following two cases: for $\lambda \leq 1$, it is clear that $Q_2(\tau, \alpha_{\nu}) \geq c_{0,N,\gamma} + 2\alpha_{\nu}$. For $\lambda > 1$, since it is clear that $Q_2(\tau, \alpha_{\nu})$ is monotone increasing in τ , we have

$$Q_{2}(\tau, \alpha_{\nu}) \geq Q_{2}(0, \alpha_{\nu}) = -\frac{16(\lambda - 1)(2 - \gamma)^{2}\alpha_{\nu}}{(\lambda^{2} + \alpha_{\nu})^{2}} + c_{0,N,\gamma} + 2\alpha_{\nu}$$

$$\geq -\frac{16(\lambda - 1)(2 - \gamma)^{2}\alpha_{\nu}}{4\lambda^{2}\alpha_{\nu}} + c_{0,N,\gamma} + 2\alpha_{\nu}$$

$$\geq -(2 - \gamma)^{2} + c_{0,N,\gamma} + 2\alpha_{\nu}$$

$$= \gamma^{2} + N^{2}/2 + 2(\alpha_{\nu} - 1) \geq N^{2}/2 + 2(\alpha_{1} - 1),$$

where the inequalities in the second and third lines follow from

$$(\lambda^2 + \alpha_{\nu})^2 \ge 4\lambda^2 \alpha_{\nu}$$
 and $-(\lambda - 1)/\lambda^2 \ge -1/4.$

Hence it turns out that $\inf_{\nu \in \mathbb{N}} \inf_{\tau \geq 0} Q_2(\tau, \alpha_{\nu}) > 0$, and hence that $c_{1,N,\gamma} > 0$. Therefore, we have obtained the inequality

$$\int_{\mathbb{R}^N} |\Delta \boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} - R_{N,\gamma} \int_{\mathbb{R}^N} |\boldsymbol{u}|^2 |\boldsymbol{x}|^{2\gamma} d\boldsymbol{x} \ge c_{N,\gamma} \int_{\mathbb{R}^N} |\boldsymbol{x} \cdot \nabla \left(|\boldsymbol{x}|^{\gamma + \frac{N}{2} - 1} \boldsymbol{u} \right) |^2 |\boldsymbol{x}|^{-N} d\boldsymbol{x}$$

for $c_{N,\gamma} = \min\{c_{0,N,\gamma}, c_{1,N,\gamma}\} > 0$. The proof of Theorem 6 is now complete, although the constant $c_{N,\gamma}$ is not ensured to be optimal.

Acknowledgments.

The second author (F.T.) was supported by JSPS Grant-in-Aid for Scientific Research (B), No.19H01800. This work was partly supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849)).

N. HAMAMOTO AND F. TAKAHASHI

References

- H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Revista Matemática de la Universidad Complutense de Madrid 10 (1997), no. 2, 443–469.
- [2] O. Costin and V. G. Maz'ya, Sharp Hardy-Leray inequality for axisymmetric divergence-free fields, Calculus of Variations and Partial Differential Equations 32 (2008), no. 4, 523–532.
- [3] N. Hamamoto, Sharp Rellich-Leray inequality for axisymmetric divergence-free vector fields, Calculus of Variations and Partial Differential Equations 58 (2019), no. 4, Paper No. 149, 23 pp.
- [4] _____, Sharp Hardy-Leray inequality for solenoidal fields, OCAMI Preprint Series (2020).
- [5] _____, Sharp Rellich-Leray inequality with a radial power weight for solenoidal fields, OCAMI Preprint Series (2020).
- [6] _____, Three-dimensional sharp Hardy-Leray inequality for solenoidal fields, Nonlinear Analysis 191 (2020), 111634, 14 pp.
- [7] N. Hamamoto and F. Takahashi, Sharp Hardy-Leray and Rellich-Leray inequalities for curlfree vector fields, Mathematische Annalen (2019), to appear.
- [8] _____, Sharp Hardy-Leray inequality for three-dimensional solenoidal fields with axisymmetric swirl, Communications on Pure & Applied Analysis **19** (2020), no. 6, 3209–3222.
- [9] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Mathematics and its Applications, vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969, Translated from the Russian by Richard A. Silverman and John Chu.
- [10] J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, Journal de Mathématiques Pures et Appliquées 12 (1933), 1–82 (French).
- [11] V. G. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, second, revised and augmented ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Springer, Heidelberg, 2011.

OSAKA CITY UNIVERSITY ADVANCED MATHEMATICAL INSTITUTE, 3-3-138 SUGIMOTO, SUMIYOSHI-KU, OSAKA 558-8585, JAPAN *E-mail address*: yhjyoe@yahoo.co.jp (N.Hamamoto) *E-mail address*: futoshi@sci.osaka-cu.ac.jp (F.Takahashi)