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Abstract

The goal of this paper is to define local weighted variable Sobolev spaces
of fractional order and its chracterization by wavelet. We first consider local
weighted variable Sobolev spaces by means of weak derivatives and obtain
wavelet characterization for these spaces. Using the Bessel potentials, we
next define local weighted variable Sobolev spaces of fractional order. We
show that Sobolev spaces obtained by weak derivatives and those by the
Bessel potentials coincide. We also show that local weighted variable Sobolev
spaces are closed under complex interpolation. Some examples are given
including the applications to weighted uniformly local Lebesgue spaces with
variable exponents and periodic function spaces as a byproduct, although
the exponent is constant.
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1 Introduction

Compactly supported wavelets with the proper smoothness characterize various
function spaces. In fact, we can obtain norms equivalent to those spaces by using
some square functions that involve wavelet coefficients. The first author [22] and
Kopaliani [28] have initially and independently obtained the wavelet characteri-
zations of Lebesgue spaces with variable exponents. Later the characterizations
were generalized by [25] to the Muckenhoupt weighted setting. One of the purpose
of this paper is to enlarge the class of admissible weights to handle the weights
w(x) = exp(A|x|) and w(x) = (1 + |x|)A with A ∈ R.

The theory of Lebesgue spaces with variable exponents originates from [38].
After that, Nakano investigated Lebesgue spaces with variable exponents in his
Japanese books [35, 36]. The theory of Lebesgue spaces with variable exponents
was developed after Kováčik and Rákosńık investigated Sobolev spaces with vari-
able exponents in the 1990’s [29]. Among others, Diening investigated the bound-
edness of the Hardy–Littlewood maximal operator in [13], which paved the way to
exhaustively investigate of variable exponent Lebesgue spaces. For example, Cruz-
Uribe, Fiorenza and Neugebauer further studied the boundedness of the Hardy–
Littlewood maximal operator in [8, 9]. We refer to [6, 24] as well as [41, p. 447] for
more details. Moreover, the study on generalization of the classical Muckenhoupt
weights in terms of variable exponent has been developed [5, 10]. Motivated by
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Rychkov [39], the second and fourth authors [37] defined the class of local Muck-
enhoupt weights and obtained the boundedness of the local Hardy–Littlewood
maximal operator.

In this paper, we further develop the theory of wavelets on local weighted
Lebesgue spaces with variable exponents, which is a follow-up to [37]. We seek to
characterize the spaces in terms of the inhomogeneous wavelet expansion.

In this paper, we use the following notation of a variable exponent. Let
p(·) : Rn → [1,∞) be a variable exponent. That is, p(·) : Rn → [1,∞) is a
measurable function. Additionally, let w be a weight. That is, w is a locally inte-
grable function which is positive almost everywhere. Then we define the weighted
variable Lebesgue space Lp(·)(w) to be the set of all measurable functions f such
that for some λ > 0, ∫

Rn

(
|f(x)|
λ

)p(x)
w(x) dx <∞.

The infimum of such λ is called the Lp(·)-norm of f and is denoted by ‖f‖Lp(·) .
When p(·) is the constant function p, Lp(·)(w) is simply the weighted Lebesgue
space Lp(w) with the coincidence of norms. When we investigate the boundedness
of the Hardy–Littlewood maximal operator M defined by (1.8), the following two
conditions seem standard:

(1) An exponent r(·) satisfies the local log-Hölder continuity condition if there
exists C > 0 such that

LH0 : |r(x)− r(y)| ≤ C

− log |x− y|
, x, y ∈ Rn, |x− y| ≤ 1

2
. (1.1)

The set LH0 collects all exponents r(·) which satisfy (1.1).

(2) An exponent r(·) satisfies the log-Hölder continuity condition at ∞ if there
exist C > 0 and r∞ ∈ [0,∞) such that

LH∞ : |r(x)− r∞| ≤
C

log(e+ |x|)
, x ∈ Rn. (1.2)

The set LH∞ collects all exponents r(·) which satisfy (1.2).

We also recall the theory of wavelets. We can construct compactly supported
wavelets (see [12, 31, 33, 41, 45] for example). Here and below, the wavelets and
the scaling functions are assumed to belong to Cc, which is the set of all compactly
supported continuous functions. For L ∈ N∪{0}, the set P⊥

L denotes the set of all

the measurable functions f for which (1 + | · |)Lf ∈ L1 and

∫
Rn

xαf(x)dx = 0 for

all α ∈ (N ∪ {0})n with |α| ≤ L. Such a function f satisfies moment condition of
order L. In this case, one also writes f ⊥ PL.

Choose compactly supported functions

ϕ and ψl (l = 1, 2, . . . , 2n − 1) (1.3)

so that the following conditions are satisfied:
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(1) For any J ∈ Z, the system{
ϕJ,k, ψ

l
j,k : k ∈ Zn, j ≥ J, l = 1, 2, . . . , 2n − 1

}
is an orthonormal basis of L2. Here, given a function F defined on Rn, we
write

Fj,k ≡ 2
jn
2 F (2j · −k)

for j ∈ Z and k ∈ Zn.

(2) The functions ϕ and ψl (l = 1, 2, . . . , 2n − 1) belong to P⊥
[s+1]. In addition,

they are real-valued and compactly supported with

supp(ϕ) = supp(ψl) = [0, 2N − 1]n (1.4)

for some N ∈ N.

We also define χj,k ≡ 2
jn
2 χQj,k

and χ∗
j,k ≡ 2

jn
2 χQ∗

j,k
for j ∈ Z and k =

(k1, k2, . . . , kn) ∈ Zn, where Qj,k and Q∗
j,k are the dyadic cube and its expansion

given by (1.6) and (1.7), respectively. Then using the L2-inner product 〈·, ·〉, for
f ∈ L1

loc, we define two square functions V f , Wsf by

V f ≡ V φf ≡

(∑
k∈Zn

|〈f, ϕJ,k〉χJ,k|2
) 1

2

,

Wsf ≡ Wψl

s f ≡

(
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

∣∣2js〈f, ψlj,k〉χj,k∣∣2
) 1

2

.

Here, J is a fixed integer. For the time being, we assume that s ∈ N. We consider
the case s ∈ R after Section 4.

Denote by Q the set of all compact cubes whose edges are parallel to the
coordinate axes. We mix the notions considered in [5, 10, 39] to define the local
Muckenhoupt class as follows:

Definition 1.1. Given an exponent p(·) : Rn → [1,∞) and a weight w, w ∈ Aloc
p(·)

if [w]Aloc
p(·)
≡ sup

Q∈Q,|Q|≤1

|Q|−1‖χQ‖Lp(·)(w)‖χQ‖Lp′(·)(σ) < ∞, where σ ≡ w− 1
p(·)−1 and

the supremum is taken over all cubes Q ∈ Q with volumes less than or equal to 1.

Recall that Muckenhoupt and Wheeden considered the class Ap. See [18, 43, 41]
for more about this class. Rychkov extended the class Ap to Aloc

p in [39], while
Cruz-Uribe, Fiorenza, and Neugebauer extended the class Ap to Ap(·) in [10]. The
present work mixes these two works. A remarkable difference from the classes Aloc

p(·)
and Ap(·) is that our definition restricts the cube sizes. Once we remove the volume
restriction in the supremum appearing in the definition of [w]Aloc

p(·)
, we obtain the

Ap(·)-norm.
Unlike the classes Ap and Ap(·), we can consider w(x) = exp(α|x|) for any

α ∈ R. Another typical example is w(x) = (1 + |x|)A for any A ∈ R.
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We fix s ∈ N ∪ {0} to develop the theory of local weighted variable Sobolev
spaces Lp(·),s(w). Let p(·) : Rn → [1,∞) be a variable exponent, and w be a
weight. We have defined the local weighted Lebesgue space Lp(·)(w) with variable
exponents p(·) above. If w = 1 almost everywhere, then Lp(·)(w) is a non-weighted
variable Lebesgue space, and we can write Lp(·) ≡ Lp(·)(1). Moreover, if p(·) equals
to a constant p, then Lp(·) = Lp, which is the usual Lp space. When we consider
non-weighted function spaces defined on Rn, we can simply write L2 ≡ L2(1),

L1
loc ≡ L1

loc(1), etc. We also note that Lp(·)(w) ⊂ L1
loc, provided that w− 1

p(·)−1 is
locally integrable. We define local weighted Sobolev spaces with variable exponents
by means of weak derivatives.

Definition 1.2. Let p(·) : Rn → [1,∞) be a variable exponent, w be a weight

and s ∈ N. Suppose that w− 1
p(·)−1 is locally integrable. The local weighted Sobolev

space Lp(·),s(w) is the space of all measurable functions f ∈ Lp(·)(w) satisfying that
the weak derivatives Dαf belong to Lp(·)(w) for all α ∈ (N ∪ {0})n = {0, 1, . . .}n
with |α| ≤ s.

The goal of this paper is to establish a wavelet characterization of the local
weighted Sobolev space Lp(·),s(w) with a variable exponent, which is established in
[26] for s = 0.

Theorem 1.3. Suppose that p(·) ∈ LH0∩LH∞ satisfies 1 < p− ≡ essinfx∈Rnp(x) ≤
p+ ≡ esssupx∈Rnp(x) < ∞. Let s ∈ N and w ∈ Aloc

p(·). Fix J ∈ Z arbitrarily. Then

there exists a constant C > 0 such that, for all f ∈ Lp(·),s(w),

C−1‖f‖Lp(·),s(w) ≤ ‖V f‖Lp(·)(w) + ‖Wsf‖Lp(·)(w) ≤ C ‖f‖Lp(·),s(w). (1.5)

More precisely, for all f ∈ L1
loc, we have the following two assertions:

(1) If f ∈ Lp(·),s(w), then we have (1.5).

(2) If V f +Wsf ∈ Lp(·)(w), then f ∈ Lp(·),s(w) and (1.5) holds.

We harvest a corollary, which can be obtained from the proof of Theorem 1.3.

Corollary 1.4. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let w ∈ Aloc
p(·) and s ∈ N.

Then the following two norms

‖f‖Lp(·),s(w) ≡
∑
|α|≤s

‖Dαf‖Lp(·)(w), ‖f‖Lp(·)(w) +
∑
|α|=s

‖Dαf‖Lp(·)(w)

are equivalent.

It shoudl be noted that Corollary 1.4 extends the results in [20, 23], where
Hernández and Weiss considered the case w = 1 in [20] and Izuki considered the
case where p(·) is a constant exponent. It is noteworthy that these existing results
are used for wavelet characterizations in these papers [20, 23]. The crucial point is
that the duality result is unnecessary for this characterization.
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Our result extends the one in [30] to the variable exponent setting and the
one in [25] to the local weight setting. Note that Lp(·)(w) is a subset of L1

loc since
w ∈ Aloc

p(·). See Section 2 for details.
The study of local weighted function spaces is useful since it yields some results

for function spaces such as uniformly local Lebesgue spaces and amalgam spaces.
Although weighted uniformly local Lebesgue spaces with variable exponents do not
fall directly within the scope of the function spaces dealt with in this paper, by
using an equivalent characterization, we can obtain the wavelet characterization.
Originally, uniformly local Lebesgue spaces were considered as a special case of
amalgam spaces handled in [2, 4, 16, 21, 27]. Here, in the context of weighted
Lebesgue spaces with variable exponents, we extend the notion of uniformly local
Lebesgue spaces to weighted uniformly local Lebesgue spaces with variable expo-
nents. We seek to obtain the wavelet characterization in weighted amalgam spaces
with variable exponents, in particular the one in weighted uniformly local Lebesgue
spaces with variable exponents. It is noteworthy that the atomic decomposition
considered in textbooks [41, 44] cannot be used for our discussion because there is
no canonical operator such as V f and Wsf .

The rest of this paper is organized as follows: In Section 2, we collect some pre-
liminary facts. Section 3 proves Theorem 1.3. Section 4 generalizes the definition
of Lp(·),s(w), and considers the case of s > 0 instead of s ∈ N. As applications, Sec-
tion 5 considers pointwise multipliers and diffeomorphisms and refines the complex
interpolation result obtained in Section 4. We handle local weighted Sobolev spaces
with negative smoothness in Section 6. Examples are provided in Section 7. We
present two prominent examples of exponential weights and polynomial weights.
As another example, we consider weighted uniformly local Lebesgue spaces with
variable exponents.

Herein we use the following notation:

(1) The set N0 ≡ {0, 1, . . .} consists of all non-negative integers.

(2) Let E be a set. Then we denote its indicator function by χE.

(3) A set S is a dyadic cube if

S = Qj,k ≡
n∏

m=1

[
2−jkm, 2

−j(km + 1)
]

(1.6)

for some j ∈ Z and k = (k1, k2, . . . , kn) ∈ Zn. Likewise, we define

Q∗
j,k ≡

n∏
m=1

[
2−jkm, 2

−j(km + 2N − 1)
]
, (1.7)

where N is from (1.4).

(4) Write Dj ≡ {Qj,k : k ∈ Zn} for each j ∈ Z.

(5) For j ∈ Z and k ∈ Zn, we let

χ∗
j,k = 2

jn
2 χQ∗

j,k
= 2

jn
2 χ∏n

l=1[2
−jkl,2−j(kl+2N−1)],
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where N is from (1.4). Each function χ∗
j,k is called the modified indicator

function.

(6) Let Q0 ≡
n∏

m=1

[am, bm] be a cube. A dyadic cube with respect to Q0 is the set

of the form

n∏
m=1

[
am +

km − 1

2j
(bm − am), am +

km
2j

(bm − am)

]
for some j ∈ N0 and k = (k1, k2, . . . , kn) ∈ {1, 2, 3, . . . , 2j}n. The set D(Q0)
collects all dyadic cubes with respect to a cube Q0.

(7) Given a cube Q, we denote by c(Q) the center of Q and by `(Q) the side

length of Q: Q = Q(c(Q), `(Q)) and `(Q) ≡ |Q| 1n , where |Q| denotes the
volume of the cube Q. For r > 0, we write Q(r) ≡ Q(0, r). In addition, |E|
is the Lebesgue measure for general measurable set E ⊂ Rn.

(8) The letter C denotes positive constants that may change from one occurrence
to another. Let A,B ≥ 0. Then A ≲ B means that there exists a constant
C > 0 such that A ≤ CB, where C depends only on the parameters of
importance. The symbol A ∼ B means that A ≲ B and B ≲ A occur
simultaneously.

(9) LetM be the set of all complex-valued measurable functions defined on Rn.
Likewise, for a measurable set E, let M(E) be the set of all complex-valued
measurable functions defined on E.

(10) The symbol 〈f, g〉 denotes the L2-inner product. That is,

〈f, g〉 ≡
∫
Rn

f(x)g(x) dx

for all complex-valued measurable L2-functions f, g defined on Rn. Let
Lp(Tn) be the set of all p-locally integrable functions f with period 1 for
which

‖f‖Lp(Tn) ≡
(∫

[0,1]n
|f(x)|pdx

) 1
p

<∞.

The symbol 〈f, g〉L2(Tn) stands for the L2-inner product on Tn. That is, we
write

〈f, g〉L2(Tn) ≡
∫
[0,1]n

f(x)g(x) dx

for all f, g ∈ L2(Tn). We use these symbols as long as the integral makes
sense for any couple (f, g) of measurable functions.

(11) The set P consists of all p(·) : Rn → [1,∞) such that 1 < p− ≤ p+ <∞.
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(12) Let f be a measurable function. We consider the local maximal operator
given by

M locf(x) ≡ sup
Q∈Q,|Q|≤1

χQ(x)

|Q|

∫
Q

|f(y)|dy (x ∈ Rn).

Needless to say, this is an analog of the Hardy–Littlewood maximal operator
given by

Mf(x) ≡ sup
Q∈Q

χQ(x)

|Q|

∫
Q

|f(y)|dy (x ∈ Rn). (1.8)

(13) Let K ∈ N. The operator (M loc)K is the K-fold composition of M loc.

(14) Let E be a measurable set in Rn. For a function f : E → C, f ∗ denotes its
decreasing rearrangement.

2 Preliminaries

Here, we collect preliminary facts used in this paper. Section 2.1 recalls generalized
local Calderón–Zygmund operators. We collect useful inequalities in variable expo-
nent Lebesgue spaces in Section 2.2. Section 2.3 is devoted to relations in a certain
pair of compactly supported smooth functions. We summarize the properties of
the Gamma functions in Section 2.4. We recall the definition of the complex inter-
polation functor in Section 2.5. To consider the complex interpolation of weighted
Sobolev spaces with variable exponents, we generalize the Calderón product to
vector-valued case in Section 2.6.

2.1 Generalized local Calderón–Zygmund operators

The proof of Theorem 1.3 uses the boundedness of generalized local Calderón–
Zygmund operators. Given a function space X, Xc denotes the set of all functions
f ∈ X with compact support. An L2-bounded linear operator T is a (generalized)
local Calderón–Zygmund operator (with the kernel K), if it satisfies the following
conditions:

(1) There exists K ∈ L1
loc(Rn×Rn \ {(x, x) : x ∈ Rn}) such that, for all f ∈ L2

c,

Tf(x) =

∫
Rn

K(x, y)f(y)dy for almost all x /∈ supp(f). (2.1)

(2) There exist constants γ0, D1 = D1(T ) and D2 = D2(T ) such that the two
conditions below hold for all x, y, z ∈ Rn:

(i) Local size condition:

|K(x, y)| ≤ D1|x− y|−nχ[−γ0,γ0]n(x− y) (2.2)

if x 6= y,
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(ii) Hörmander’s condition:

|K(x, z)−K(y, z)|+ |K(z, x)−K(z, y)| ≤ D2
|x− y|
|x− z|n+1

(2.3)

if 0 < 2|x− y| < |z − x|.

This is analogous to generalized singular integral operators, which requires

|K(x, y)| ≤ D1|x− y|−n (2.4)

instead of (2.2) if x 6= y. In [26], we showed that all generalized local singular
integral operators initially defined on L2 can be extended to a bounded linear
operator on Lp(·)(w) for any p(·) ∈ P ∩ LH0 ∩ LH∞ and w ∈ Aloc

p(·).

Proposition 2.1. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞. Let T be a generalized
local singular integral operator, and w ∈ Aloc

p(·). Then T is bounded on Lp(·) with the
norm estimate

‖T‖Lp(·)(w)→Lp(·)(w) ≲ ‖T‖L2→L2 +D1(T ) +D2(T ).

In addition to the generalized local singular integral operators considered in [26],
we need to consider another type of generalized local singular integral operators. To
track the size of the operator norms, we recall [41, Theorem 1.67] with K = n+ 2.

Proposition 2.2 (Hörmander–Mikhlin multiplier theorem). Choose ψ ∈ C∞
c (Q(4)\

Q(1)) so that
∞∑

j=−∞

ψj ≡ χRn\{0}. Assume that m ∈ Cn+2(Rn \ {0}) ∩ L∞ satisfies

Mα ≡ sup
ξ∈Rn\{0}

|ξ||α||Dαm(ξ)| <∞ (2.5)

for all |α| ≤ n+ 2.

(1) The function K ≡
∞∑

j=−∞

F−1[ψ(2−j·)m] is independent of the choice of ψ and

all the partial derivatives up to order 1 converge uniformly over any compact
set Rn \ {0}. Furthermore, for j = 1, 2, . . . , n,

|K(x)| ≲ |x|−n, |∂jK(x)| ≲ |x|−n−1 (x ∈ Rn \ {0}), (2.6)

where the implicit constants depend on {Mα}α∈N0
n, |α|≤n+2, and we can write∫

Rn

K(x)ϕ(x)dx =

∫
Rn

F−1m(x)ϕ(x)dx (2.7)

for all ϕ ∈ C∞
c (Rn \ {0}).

(2) Let 1 < p <∞. Then the L2-bounded operator

f 7→ m(D)f ≡ F−1[m · Ff ] (f ∈ L2)

extends to an Lp-bounded linear operator naturally. More precisely, if f ∈ L2

is compactly supported, then

m(D)f(x) = (2π)
n
2

∫
Rn

K(y)f(x− y)dy (2.8)

for almost all x /∈ supp(f).
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2.2 Observations on local weighted Lebesgue spaces with
variable exponents

Here, we prove Hölder’s inequality for weighted variable exponent Lebesgue spaces.

Lemma 2.3. Let w0 ∈ Aloc
p0(·) and w1 ∈ Aloc

p1(·) with p0(·), p1(·) ∈ P ∩ LH0 ∩ LH∞.

Define a weight w and a variable exponent p(·) by

w
1

p(·) = w0

1−θ
p0(·)w1

θ
p1(·) ,

1

p(·)
=

1− θ
p0(·)

+
θ

p1(·)
.

Then w ∈ Aloc
p(·) with the estimate

[w]Aloc
p(·)
≤ 2([w0]Aloc

p0(·)
)1−θ([w1]Aloc

p1(·)
)θ. (2.9)

Proof. Let Q be a cube with |Q| ≤ 1. By the definition of w,

‖χQ‖Lp(·)(w) = ‖w
1

p(·)χQ‖Lp(·) = ‖w0

1−θ
p0(·)w1

θ
p1(·)χQ‖Lp(·)

Using Hölder’s inequality, we have

‖χQ‖Lp(·)(w) ≤ 2(‖w0

1
p0(·)χQ‖Lp0(·))

1−θ(‖w1

1
p1(·)χQ‖Lp1(·))

θ.

If we take the supremum over Q, then we obtain w ∈ Aloc
p(·) with (2.9).

We use the localization principle among the other properties of variable expo-
nent Lebesgue spaces.

Proposition 2.4. [19, Theorem 2.4] Assume that p(·) ∈ P ∩ LH∞. Then for any
f ∈M, {∑

m∈Zn

(‖fχm+[0,1]n‖Lp(·))p∞

} 1
p∞

∼ ‖f‖Lp(·) .

We move on to the maximal inequality. In [37], the maximal inequality (Propo-
sition 2.5) and its vector-valued extension (Proposition 2.7) were obtained.

Proposition 2.5. [37, Theorem 1.2] Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞. Then
given any w ∈ Aloc

p(·), there exists a constant D > 0 such that ‖M locf‖Lp(·)(w) ≤
D‖f‖Lp(·)(w) for all f ∈ Lp(·)(w).

This result corresponds to the ones obtained in [5, 7].

Corollary 2.6. Let B > 2n+6 logD and write K(x) ≡ exp(−B|x|). Suppose that
p(·) ∈ P ∩ LH0 ∩ LH∞. Then given any w ∈ Aloc

p(·), there exists a constant C > 0

such that ‖K ∗ f‖Lp(·)(w) ≤ C‖f‖Lp(·)(w) for all f ∈ Lp(·)(w).

We follow the idea of [39, Lemma 2.11] for the proof.

10



Proof. Fix x ∈ Rn. We decompose

K(x) ≤ K(x)χ[−1,1]n(x) +
∞∑
j=1

K(x)χ[− 1
2
j, 1

2
j]

n
\[− 1

2
(j−1), 1

2
(j−1)]

n(x).

Since
j times︷ ︸︸ ︷

χ[0,1]n ∗ χ[0,1]n ∗ · · · ∗ χ[0,1]n(x) ≥ 2−nχ[− 1
2
(j−1), 1

2
(j−1)]

n(x)

for each j ∈ N, we obtain

K(x) ≤ χ[−1,1]n(x) +
∞∑
j=1

2jn exp

(
−1

2
Bj

) j times︷ ︸︸ ︷
χ[−1,1]n ∗ χ[−1,1]n ∗ · · · ∗ χ[−1,1]n(x)

≤ χ[−1,1]n(x) +
∞∑
j=1

exp

((
n− 1

2
B

)
j

) j times︷ ︸︸ ︷
χ[−1,1]n ∗ χ[−1,1]n ∗ · · · ∗ χ[−1,1]n(x).

As a result,

|K ∗ f(x)| ≤M locf(x) +
∞∑
j=1

exp

((
n− 1

2
B

)
j

)
(M loc)3jf(x) (x ∈ Rn).

Denote by D the constant in Proposition 2.5. Using the triangle inequality for
Lp(·)(w), we obtain

‖K ∗ f‖Lp(·)(w) ≤ ‖M locf‖Lp(·)(w) +
∞∑
j=1

exp

((
n− 1

2
B

)
j

)
‖(M loc)3jf‖Lp(·)(w)

≤ D‖f‖Lp(·)(w) +
∞∑
j=1

D3j exp

((
n− 1

2
B

)
j

)
‖f‖Lp(·)(w).

Since B > 2n+6 logD, the series converges. Thus, we obtain the desired result.

By adapting the extrapolation result in [11] to our local weight setting, the
second and fourth authors obtained the following vector-valued inequality.

Proposition 2.7. [37, Theorem 1.11] Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞. Addi-
tionally, let w ∈ Aloc

p(·) and 1 < q ≤ ∞. Then for any sequence {fj}∞j=1 ⊂M,∥∥∥∥∥∥
(

∞∑
j=1

[
M locfj

]q) 1
q

∥∥∥∥∥∥
Lp(·)(w)

≤ C

∥∥∥∥∥∥
(

∞∑
j=1

|fj|q
) 1

q

∥∥∥∥∥∥
Lp(·)(w)

. (2.10)

A natural modification is made when q =∞.

As an application of Lemma 2.7, we can prove a vector-valued inequality which
extends [40, Theorem 1.3].
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Lemma 2.8. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞. Additionally, let w ∈ Aloc
p(·).

If q ∈ (max(2, p+),∞), then for all {fj}∞j=1 ⊂ Lp(·)(w) ∩ Lq such that each fj is
supported on a cube Qj,∥∥∥∥∥∥

(
∞∑
j=1

|fj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

≲

∥∥∥∥∥∥∥
 ∞∑

j=1

(
‖fj‖Lq

|Qj|
1
q

)2

χQj

 1
2

∥∥∥∥∥∥∥
Lp(·)(w)

.

Proof. We write σ ≡ w− 1
p(·)−1 as before. We only have to show that

∫
Rn

∞∑
j=1

|fj(x)gj(x)|dx ≲

∥∥∥∥∥∥∥
 ∞∑

j=1

(
‖fj‖Lq

|Qj|
1
q

)2

χQj

 1
2

∥∥∥∥∥∥∥
Lp(·)(w)

∥∥∥∥∥∥
(

∞∑
j=1

|gj|2
) 1

2

∥∥∥∥∥∥
Lp′(·)(σ)

for all {gj}∞j=1 ⊂ Lp
′(·)(σ). Since fj is supported on Qj,∫

Rn

∞∑
j=1

|fj(x)gj(x)|dx ≤
∞∑
j=1

‖fj‖Lq‖χQj
gj‖Lq′

≤
∫
Rn

∞∑
j=1

‖fj‖Lq‖χQgj‖Lq′

|Qj|
χQj

(x)dx

≤
∫
Rn

∞∑
j=1

‖fj‖Lq

|Qj|
1
q

M [|gj|q
′
](x)

1
q′χQj

(x)dx.

By the use of Hölder’s inequality and Cauchy–Schwarz’s inequality, we have∫
Rn

∞∑
j=1

|fj(x)gj(x)|dx

≤

∥∥∥∥∥∥∥
 ∞∑

j=1

(
‖fj‖Lq

|Qj|
1
q

)2

χQj

 1
2

∥∥∥∥∥∥∥
Lp(·)(w)

∥∥∥∥∥∥
(

∞∑
j=1

M [|gj|q
′
]
2
q′

) 1
2

∥∥∥∥∥∥
Lp′(·)(σ)

.

Since q′ < min(2, (p′(·)−)), we can use the Feffereman–Stein vector-valued inequal-
ity to give the desired conclusion.

Let E ⊂ Rn be a measurable set. The set C∞
c consists of all infinitely differ-

entiable functions defined on Rn whose support is compact and contained in E.
Once we obtain the boundedness of M loc, the density of C∞

c as easily be obtained.

Corollary 2.9. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let w ∈ Aloc
p(·). Then C

∞
c

is dense in Lp(·),s(w). In particular, Lp(·),s(w) is separable.

Remark that this is an analogue of [25, Theorem 2.10] and [34].
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Proof. Owing to the Lebesgue convergence theorem obtained in [24], we only have
to approximate functions in L∞

c , which is the set of all essentially bounded functions
with compact support. Let f ∈ L∞

c . Choose a non-negative function τ ∈ C∞
c with

L1-norm 1 supported on [−1, 1]n and consider jnτ(j·) ∗ f for each j ∈ N. Then we
know that |jnτ(j·) ∗ f | ≲M locf for all j ∈ N. We also know that jnτ(j·) ∗ f(x)→
f(x) for almost all x ∈ Rn as j → ∞ by the Lebesgue differentiation theorem.
Thus, once again we can use the Lebesgue convergence theorem mentioned above
to have jnτ(j·) ∗ f → f as j →∞.

2.3 Functional equation and its application

We will use the following functional relation obtained in [41, Theorem 1.40].

Lemma 2.10. Fix L ∈ N. Then there exist real-valued functions Φ(L),Ψ(L) ∈ C∞
c

such that ∫
Rn

Φ(L)(x)dx = 1, 2nΦ(L)(2·)− Φ(L) = ∆LΨ(L), (2.11)

where ∆ denotes the Laplacian.

It can be arranged that Φ(L) and Ψ(L) are even since∫
Rn

Φ(L)(−x)dx = 1, 2nΦ(L)(−2·)− Φ(L)(−·) = ∆LΨ(L)(−·).

We set
Θ(L) = Φ(L) ∗ Φ(L), Γ(L) = Φ(L) + 2nΦ(L)(2·). (2.12)

It is noteworthy that anf ∗ g(a·) = [anf(a·)] ∗ [ang(a·)] for f, g ∈ L1 and a > 0.
In fact,

[anf(a·)] ∗ [ang(a·)](x) = a2n
∫
Rn

f(ax− ay)g(ay)dy

= an
∫
Rn

f(ax− y)g(y)dy

by a change of variables.
Here and below, we suppose that L is a multiple of 4. A direct consequence of

Lemma 2.10 is the following equalities:

Lemma 2.11. Let L ∈ N. Assume that Θ(L), Γ(L) and Ψ(L) are as above. Then,

(1) 2nΘ(L)(2·)−Θ(L) = ∆L/2Γ(L) ∗∆L/2Ψ(L).

(2) 2JnΦ(L)(2J ·) ∗ 2JnΦ(L)(2J ·) +
∞∑
j=J

4jnΓ(L)(2j·) ∗ ∆LΨ(L)(2j·) = δ in the sense

of D′.

Proof.
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(1) We calculate

2nΘ(L)(2·)−Θ(L) = 2nΦ(L)(2·) ∗ 2nΦ(L)(2·)− Φ(L) ∗ Φ(L)

= (2nΦ(L)(2·)− Φ(L)) ∗ (2nΦ(L)(2·) + Φ(L))

= Γ(L) ∗∆LΨ(L)

= ∆L/2Γ(L) ∗∆L/2Ψ(L).

(2) From (1), we have

2JnΦ(L)(2J ·) ∗ 2JnΦ(L)(2J ·) +
M∑
j=J

4jnΓ(L)(2j·) ∗∆LΨ(L)(2j·)

= 2(M+1)nΘ(L)(2M+1·).

Since {2jnΘ(L)(2j·)}∞j=1 is an approximation to identity in D′,

2JnΦ(L)(2J ·) ∗ 2JnΦ(L)(2J ·) +
∞∑
j=J

4jnΓ(L)(2j·) ∗∆LΨ(L)(2j·) = δ

in the sense of D′.

The next estimate is well known. For example, see [18].

Lemma 2.12 (Grafakos [18, p. 596]). Let µ, ν ∈ R, M,N > 0, and L ∈ N0

satisfy ν ≥ µ and N > M + L + n. Let xµ and xν be fixed points. Suppose that
φµ ∈ CL(Rn) satisfies

|Dαφµ(x)| ≤ Aα
2µ(n+L)

(1 + 2µ|x− xµ|)M
for all |α| = L.

Furthermore, suppose that φν is a measurable function satisfying∫
Rn

φν(x)(x− xν)βdx = 0 for all |β| ≤ L− 1,

and

|φν(x)| ≤ B
2νn

(1 + 2ν |x− xν |)N
,

where the former condition is supposed to be vacuous when L = 0. Then it holds∣∣∣∣∫
Rn

φµ(x)φν(x)dx

∣∣∣∣ ≤ CAα,B,L,M,N 2µn−(ν−µ)L(1 + 2µ|xµ − xν |)−M

with a constant CAα,B,L,M,N taken as

CAα,B,L,M,N ≡ B

∑
|α|=L

Aα
α!

 ωn(N −M − L)

N −M − L− n
,

where ωn denotes the volume of the unit ball in Rn.
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This estimate is useful when estimating the coupling of functions.

Lemma 2.13. Let k, k0 ∈ Z, and l, l0 ∈ {1, 2, . . . , 2n− 1}. Additionally, let α be a
multiindex with |α| = s.

(1) Unless Q∗
j0,k0

and Q∗
J,k intersect, 〈ϕJ,k, Dα[ψl0j0,k0 ]〉 = 0.

(2) Unless Q∗
j0,k0

and Q∗
j,k intersect, 〈ψlj,k, Dα[ψl0j0,k0 ]〉 = 0.

(3)
∣∣〈ϕJ,k, Dα[ψl0j0,k0 ]〉

∣∣ ≲ 2Js−
(J+j0)n

2
+Jn−(j0−J) for any integers j0 ≥ J such that

|2−Jk − 2−j0k0| ≤ 2−J+1(2N − 1).

(4)
∣∣〈ψlj,k, Dα[ψl0j0,k0 ]〉

∣∣ ≲ 2js−
(j0+j)n

2
+min(j,j0)n−|j−j0| for any integers j0, j ≥ J such

that |2−j0k0 − 2−jk| ≤ 2−min(j,j0)+1(2N − 1).

(5) There exists κ > 1 such that

|2j0n∆L/2Ψ(L)(2j0·) ∗ ψlj,k| ≲ 2−(s+1)|j−j0|+min(j,j0)nχQ(2−jk,κ2−min(j,j0)n).

Proof.

(1) This follows from the size of the support. See (1.4).

(2) This once again follows from the size of the support. See (1.4).

(3) Thanks to Lemma 2.12 with ν = j0, µ = J, L = s+ 1, and

φµ = φJ = 2
Jn
2 ϕJ,K , φν = 2

j0n
2 (Dαψl0)j0,k0 ,

we obtain∣∣〈ϕJ,k, Dα[ψl0j0,k0 ]〉
∣∣ ≲ 2j0s−

(J+j0)n
2

+Jn−(s+1)(j0−J)(1 + 2J |2−Jk − 2−j0k0|)−N

≲ 2j0s−
(J+j0)n

2
+Jn−(s+1)(j0−J)

≤ 2Js−
(J+j0)n

2
+Jn−(j0−J)

as long as |2−Jk − 2−j0k0| ≤ 2−J+1(2N − 1).

(4) Likewise, due to Lemma 2.12 with ν = j0, µ = j, L = s+ 1, and

φµ = φj = 2
jn
2 ψlj,k, φν = 2

j0n
2 (Dαψl0)j0,k0

when j ≤ j0, and thanks to Lemma 2.12 with ν = j, µ = j0 L = s+ 1, and

φµ = 2
j0n
2 (Dαψl0)j0,k0 , φν = φj = 2

jn
2 ψlj,k

when j ≥ j0, we obtain∣∣〈ψlj,k, Dα[ψl0j0,k0 ]〉
∣∣

≲ 2j0s−
(j0+j)n

2
+min(j,j0)n−(s+1)|j−j0|(1 + 2min(j,j0)|2−j0k0 − 2−jk|)−N

≲ 2j0s−
(j0+j)n

2
+min(j,j0)n−(s+1)|j−j0|

≤ 2js−
(j0+j)n

2
+min(j,j0)n−|j−j0|

as long as |2−j0k0 − 2−jk| ≤ 2−min(j,j0)+1(2N − 1).
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(5) Use Lemma 2.12 to argue similarly.

2.4 Gamma function and Bessel potential operators

Here, we discuss the boundedness property of (1 − t2∆)−a with 0 < t � 1 and
a ∈ C with Re(a) ≥ 0. To this end, recall the property of the Gamma function Γ
given by

Γ(z) ≡
∫ ∞

0

sz−1e−sds (Re(z) > 0).

It is noteworthy that

1

Γ(z)
= zeγz

∞∏
m=1

(
1 +

z

m

)
e−

z
m (Re(z) > 0),

where

γ = lim
n→∞

(
1

1
+

1

2
+ · · ·+ 1

n
− log n

)
.

See [18, Section1.2.2] for more details. Considering that,

lim
a→0

e2a − (1 + a)2

a2
= 1,

we set
α ≡ sup

a∈[0,1]
a−2|(1 + a)2e−2a − 1| <∞.

Let m ∈ N be fixed. Since

(1 + a)2e−2a ≤ 1 + αa2,
√

1 + a ≤ 1 +
a

2
≤ exp

(a
2

)
for all a ∈ [0, 1],√(

1 +
s

m

)2
+

t2

m2
e−

s
m ≤

√(
1 +

s

m

)2
e−

2s
m +

t2

m2

≤ 1 + α
s2

2n2
+

t2

2n2

≤ exp

(
α
s2

2n2
+

t2

2n2

)
for all s ∈ [0, 1] and t ∈ R. Consequently,

1

|Γ(s+ it)|
≤ (1 + |t|)eγ exp

(
απ2

12
+
π2t2

12

)
for all s ∈ [0, 1] and t ∈ R. Since |e(s+it)2| = es

2−t2 , we conclude

lim
t→±∞

sup
s∈[0,1]

∣∣∣∣∣ e(s+it)
2

Γ(s+ it)

∣∣∣∣∣ = 0. (2.13)
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Next, we consider Bessel potential operators. We define the inverse Fourier
transform by

F−1f(x) ≡ (2π)−
n
2

∫
Rn

f(ξ)eix·ξdξ.

for f ∈ L1. Recall that

(1− t2∆)−af = F−1

[
1

(1 + t2|ξ|2)a

]
∗ f

for f ∈ L2. Thus, the integral kernel Ka of (1 − t2∆)−a is given formally by the
following formula

Ka(x) =
1

(2π)
n
2

∫
Rn

(1 + t2|ξ|2)−aeix·ξdξ (x ∈ Rn). (2.14)

We note that

(1 + t2|ξ|2)−a =
1

Γ(a)

∫ ∞

0

sa−1e−s(1+t
2|ξ|2)ds.

Inserting this expression into the right-hand side above gives

Ka(x) =
1

(2π)
n
2 Γ(a)

∫
Rn

(∫ ∞

0

sa−1e−s(1+t
2|ξ|2)ds

)
eix·ξdξ.

Since ∫
Rn

e−st
2|ξ|2eix·ξdξ =

1

tn
√
sn

∫
Rn

e−|ξ|2e
i x
t
√
s
·ξ

dξ =

√
πn

tn
√
sn

e−
|x|2

4t2s ,

we obtain

Ka(x) =
1

2
n
2 tnΓ(a)

∫ ∞

0

sa−1−n
2 e−s−

|x|2

4t2s ds. (2.15)

Let |x| ≥ 1. Then

e−s−
|x|2

4t2s ≤ e−
1
2
s− 1

2
s− |x|2

8t2s
− 1

8t2s ≤ e−
1
2
s− |x|

2t
− 1

8t2s .

Consequently,

|Ka(x)| ≤ e−
|x|
2t

2
n
2 tn|Γ(a)|

∫ ∞

0

sRe(a)−1−n
2 e−

1
2
s− 1

8t2s ds (|x| ≥ 1) (2.16)

and ∣∣∣∣ ∂∂aKa(x)

∣∣∣∣ ≤ Ca
e−

|x|
2t

2
n
2 tn

∫ ∞

0

sRe(a)−1−n
2 e−

1
2
s− 1

8t2s log(2 + s)ds. (2.17)

Lemma 2.14. Fix 0 < t� 1.

1. Let α be a multi-index such that |α| > n. Then |xαKa(x)| ≲ (1 + |a|)|α| for
all a ∈ C with Re(a) ≥ 0.
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2. Let α be a multi-index such that |α| > n. Then |xα∇Ka(x)| ≲ (1 + |a|)|α|−1

for all a ∈ C with Re(a) ≥ 0.

Proof.

1. Thanks to (2.14), we have

(ix)αKa(x) =
1

(2π)
n
2

∫
Rn

(1 + t2|ξ|2)−a∂αξ [eix·ξ]dξ.

If we integrate by parts α times, then we obtain the desired result.

2. Similar to above.

Considering the pointwise estimates (2.16) and (2.17), we prove the bounded-
ness of the operator (1− t2∆)−a in Lp(·)(w).

Theorem 2.15. Fix 0 < t � 1. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let
w ∈ Aloc

p(·). Let a ∈ C satisfy Re(a) ≥ 0. Then the operator

f ∈ L2 7→ (1− t2∆)−af ∈ L2

extends to a bounded linear operator on Lp(·)(w) once we restrict it to Lp(·)(w)∩L2.
More precisely,

‖(1− t2∆)−af‖Lp(·)(w) ≲
(

(1 + |a|)n+2 +
1

|Γ(a)|

)
‖f‖Lp(·)(w)

for all f ∈ Lp(·)(w) with the implicit constant independent of a and f .

Proof. Thanks to Corollary 2.9, Lp(·)(w) ∩ L2 is dense in Lp(·)(w). Thus, we can
assume that f ∈ Lp(·)(w) ∩ L2. Then

‖(1− t2∆)−af‖Lp(·)(w) ≲
(∑
m∈Zn

(‖χQ0,m(1− t2∆)−af‖Lp(·)(w))
p∞

) 1
p∞

by the localization principle, Proposition 2.4. We fix m for the time being and
estimate

‖χQ0,m(1− t2∆)−af‖Lp(·)(w) (2.18)

≤ ‖χQ0,m(1− t2∆)−a[χ3Q0,mf ]‖Lp(·)(w) + ‖χQ0,m(1− t2∆)−a[χRn\3Q0,mf ]‖Lp(·)(w).

The first term in (2.18) can be controlled by boundedness of the generalized local
singular integral operators after truncating the integral kernel suitably. If we let

Laf(x) = (1− t2∆)−a[τ(x− ·)f ](x) (2.19)
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for some bump function τ ∈ C∞ satisfying χQ(4n) ≤ τ ≤ χQ(5n), then

‖χQ0,m(1− t2∆)−a[χ3Q0,mf ]‖Lp(·)(w) = ‖χQ0,mLa[χ3Q0,mf ]‖Lp(·)(w)

≲ (1 + |a|)n+2‖χ3Q0,mf‖Lp(·)(w),

where we use the estimate D1(La) +D2(La) ≲ (1 + |a|)n+2. See Lemma 2.14. For
the second term, we employ the size estimate of the kernel Ka to give

‖χQ0,m(1− t2∆)−a[χRn\3Q0,mf ]‖Lp(·)(w) ≲
1

|Γ(a)|

∥∥∥∥χQ0,m exp

(
−| · |

2t

)
∗ f
∥∥∥∥
Lp(·)(w)

.

(2.20)

Thanks to Corollary 2.6, the operator f 7→ exp
(
− |·|

2t

)
∗ f is bounded on Lp(·)(w)

as long as 0 < t� 1. Combining this fact with Proposition 2.4, (2.16) and (2.20),
we can control the second term in (2.18). Thus, (1− t2∆)−a can be extended to a
bounded linear operator in Lp(·)(w).

We harvest two corollaries.

Corollary 2.16. Let s > n + 2. Then the mapping z ∈ S 7→ (1 − t2∆)−z−s ∈
B(Lp(·)(w)) is holomorphic.

Proof. This follows from Proposition 2.1, (2.15), (2.16) and (2.17).

Corollary 2.17. Let f ∈ Lp(·)(w) and let a > n. Then lim
N→∞

(1 − N−1∆)−af = f

in the topology of Lp(·)(w).

Proof. Since a > n, Ka is a bounded function. Thus, Corollary 2.6 can be used.

2.5 Complex interpolation functors and Hirschman’s lemma

Here we will review the definition of the complex interpolation functor together
with Hirschman’s lemma. Write S ≡ {z ∈ C : 0 < Re (z) < 1} and S ≡ {z ∈ C :
0 ≤ Re (z) ≤ 1}. For j = 0, 1, set j + iR ≡ {z ∈ C : Re(z) = j}. We define the
complex interpolation functors as follows:

Definition 2.18 (Calderón’s first complex interpolation space). Suppose that X =
(X0, X1) is a compatible couple of complex Banach spaces.

(1) The space F(X0, X1) is defined as the set of all functions F : S̄ → X0 + X1

such that

(i) F is continuous on S̄ and sup
z∈S̄
‖F (z)‖X0+X1 <∞,

(ii) F is holomorphic on S,

(iii) the function t ∈ R 7→ F (j + it) ∈ Xj is bounded and continuous on R
for each j = 0, 1.
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The space F(X0, X1) is equipped with the norm

‖F‖F(X0,X1) ≡ max
j=0,1

(
sup

z∈j+iR
‖F (z)‖Xj

)
.

(2) Let θ ∈ (0, 1). The first complex interpolation space [X0, X1]θ with respect
to X = (X0, X1) is defined as the set of all functions f ∈ X0 +X1 such that
f = F (θ) for some F ∈ F(X0, X1). The norm on [X0, X1]θ is defined by

‖f‖[X0,X1]θ ≡ inf{‖F‖F(X0,X1) : f = F (θ) for some F ∈ F(X0, X1)}.

The space [X0, X1]θ is also called the Calderón’s first complex interpolation
space, or the lower complex interpolation space of (X0, X1).

Example 2.19. Let X0 = X1 = X. It is useful to note that F(X0, X0) as the set
of all the bounded and continuous functions F : S̄ → X such that F is holomorphic
on S.

Recall vector-valued Hirschman’s lemma.

Lemma 2.20 (Hirschman, [47]). Let F be a Banach space. Let F : S → F be
analytic on the open strip S and continuous on its closure such that

sup
z∈S

e−a|Im(z)| log ‖F (z)‖F ≤ A <∞ (2.21)

for some fixed A and a < π. Then, for all 0 < θ < 1,

log ‖F (θ)‖F ≤
∫
R
{log ‖F (it)‖Fµ0(t) + log ‖F (1 + it)‖Fµ1(t)} dt, (2.22)

where µj (j = 0, 1) are functions satisfying ‖µ0‖L1(R) = 1 − θ and ‖µ1‖L1(R) = θ,
respectively.

Let (X,Σ, µ) be a measure space. A Banach lattice E(µ) is a linear space of
M which carries the structure of a Banach space such that the lattice property:
f ∈ E(µ), g ∈ M, |g| ≤ |f | =⇒ g ∈ E(µ) and ‖g‖E(µ) ≤ ‖f‖E(µ) holds. The
following general lemma seems known. We can find the statement in the case of
E(µ) = Lp(µ) can be found in [1]. Here for the sake of convenience for readers we
give its proof.

Lemma 2.21. Let E(µ), E0(µ), and E1(µ) be Banach lattices such that E(µ) ↪→
E0(µ) ∩ E1(µ). Let g0, g1 ∈ E(µ). Define G(z) = |g0|1−z|g1|z for z ∈ S̄. Then
G : S̄ → E(µ) is continuous and G|S is analytic.

Proof. We content ourselves with the proof of continuity. The proof of analyticity
is similar. We write

S+ =

{
z ∈ S : 0 ≤ Re(z) <

2

3

}
, S− =

{
z ∈ S : 0 ≤ 1− Re(z) <

2

3

}
.
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Suppose that 0 ≤ Re(z),Re(w) < 2
3
. Fix N � 1. We observe

G(z)−G(w)

= (G(z)−G(w))χ[0,N−1]

(
|g0|
|g1|

)
+ (G(z)−G(w))χ[0,N)

(
|g1|
|g0|

)
,

By the triangle inequality,∥∥∥∥(G(z)−G(w))χ[0,N−1]

(
|g0|
|g1|

)∥∥∥∥
E(µ)

≤ 2
3
√
N
‖g1‖E(µ).

Meanwhile,

(G(z)−G(w))χ[0,N)

(
|g1|
|g0|

)
=

∫ z

w

G(τ) log
|g1|
|g0|

χ[0,N)

(
|g1|
|g0|

)
dτ

=

∫ z

w

G(τ)

(
|g1|
|g0|

)− 1
6
(
|g1|
|g0|

) 1
6

log
|g1|
|g0|

χ[0,N)

(
|g1|
|g0|

)
dτ.

Observe that
sup

t∈(0,N)

t
1
6 | log t| = N

1
6 logN.

Thus,

|G(z)−G(w))|χ[0,N)

(
|g1|
|g0|

)
≤ |w − z|N

1
6 logN ×

∫ 1

0

∣∣∣∣G((z − w)u− 1

6

)∣∣∣∣ du.
Thus,

|G(z)−G(w))|χ[0,N)

(
|g1|
|g0|

)
≤ |w − z|N

1
6 logN × (|g0|+ |g1|).

Consequently,

‖G(z)−G(w)‖E(µ) ≤
2

3
√
N
‖g1‖E(µ) + |w − z|N

1
6 logN × (‖g0‖E(µ) + ‖g1‖E(µ))

for all N � 1. As a result, G : S+ → E(µ) is continuous. Likewise we can
show that G : S− → E(µ) is continuous. Thus, G : S̄ = S+ ∪ S− → E(µ) is
continuous.

2.6 Banach lattices and complex interpolation

We will define vector-valued Banach lattices. Let E and A be Banach lattices over
measure spaces (X,Σ, µ) and (Y, T , ν), respectively. Define the A-valued Banach
lattice E(A) = E(A, µ) by the set of all weakly measurable A-valued functions
over X such that

‖f‖E(A,µ) = ‖‖f(·)‖A‖E(µ) <∞.
Recall that an A-valued function f on a measure space (X,Σ, µ) is said to be
weakly measurable if x∗(f) is measurable for all x∗ ∈ A∗.
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Definition 2.22. Let E0(A, µ) and E1(A, µ) be A-valued Banach lattices. Define
the Calderón product E0(A, µ)1−θE1(A, µ)θ by

E0(A, µ)1−θE1(A, µ)θ ≡ {|f0|1−θ|f1|θg : g ∈ L∞(A, µ), f0 ∈ E0(µ), f1 ∈ E1(µ)}.

For f ∈ E0(A, µ)1−θE1(A, µ)θ, define

‖f‖E0(A,µ)1−θE1(A,µ)θ

≡ inf{‖f0‖E0(µ)
1−θ‖f1‖E1(µ)

θ : f0 ∈ E0(µ), f1 ∈ E1(µ), ‖f(·)‖A ≤ |f0|1−θ|f1|θ}
= inf{‖f0‖E0(µ)

1−θ‖f1‖E1(µ)
θ : f0 ∈ E0(µ), f1 ∈ E1(µ), ‖f(·)‖A = |f0|1−θ|f1|θ}.

Remark 2.23. A weakly measurable function f : X → A belongs to the Calderón
product E0(A, µ)1−θE1(A, µ)θ if and only if there exist h0 ∈ E0(A, µ) and h1 ∈
E1(A, µ) such that ‖f(·)‖A ≤ (‖h0(·)‖A)1−θ(‖h1(·)‖A)θ. Furthermore,

‖f‖E0(A,µ)1−θE1(A,µ)θ = inf ‖h0‖1−θE0(A,µ)‖h1‖
θ
E1(A,µ),

where h0 and h1 move over the above conditions.
In fact, if there exist h0 ∈ E0(A, µ) and h1 ∈ E1(A, µ) such that ‖f(·)‖A ≤

(‖h0(·)‖A)1−θ(‖h1(·)‖A)θ, then set g ≡ 1
(∥h0(·)∥A)1−θ(∥h1(·)∥A)θ

f , f0 ≡ ‖h0(·)‖A and

f1 ≡ ‖h1(·)‖A. Then f = |f0|1−θ|f1|θg, g ∈ L∞(A, µ), f0 ∈ E0(µ) and f1 ∈ E1(µ).
Hence f ∈ E0(A, µ)1−θE1(A, µ)θ. Thus, the “if” part as well as the estimate

‖f‖E0(A,µ)1−θE1(A,µ)θ ≤ inf ‖h0‖1−θE0(A,µ)‖h1‖
θ
E1(A,µ),

is proved.
Conversely, if f has an expression: f = |f0|1−θ|f1|θg, where g ∈ L∞(A, µ),

f0 ∈ E0(µ) and f1 ∈ E1(µ), then set h0 = f0g, h1 = f1g to have h0 ∈ E0(A, µ),
h1 ∈ E1(A, µ) and

‖f(·)‖A = |f0|1−θ|f1|θ‖g(·)‖A = (‖h0(·)‖A)1−θ(‖h1(·)‖A)θ.

Thus, the “only if” part as well as the estimate

‖f‖E0(A,µ)1−θE1(A,µ)θ ≥ inf ‖h0‖1−θE0(A,µ)‖h1‖
θ
E1(A,µ),

is proved.

Note that this definition boils down to the original Calderón product by Calderón
[3] in the case where A = C. In other words, using the original Calderón product
we can say that

E0(A, µ)1−θE1(A, µ)θ = [E0(µ)1−θE1(µ)θ](A).

Here we make the following observation:

Lemma 2.24. Let E0(µ) and E1(µ) be Banach lattices. Let f ∈ E0(A, µ) ∩
E1(A, µ). Then there exists a decomposition

f = |f 0|1−θ|f 1|θg

for some g ∈ L∞(A, µ) and f 0, f 1 ∈ E0(µ) ∩ E1(µ) such that

‖g‖L∞(A,µ) = 1, ‖f 0‖E0(µ)
1−θ‖f 1‖E1(µ)

θ ≤ 4‖f‖E0(A,µ)1−θE1(A,µ)θ .
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Proof. We know that there exists a decomposition

f = |k0|1−θ|k1|θk

for some k ∈ L∞(A, µ) and (k0, k1) ∈ E0(µ)× E1(µ) such that

‖k‖L∞(A,µ) = 1, ‖k0‖E0(µ)
1−θ‖k1‖E1(µ)

θ ≤ 2‖f‖E0(µ)1−θE1(µ)θ .

Let
h0 = |k0|+ 2−j‖f(·)‖A, h1 = min(|k1|, 2j‖f(·)‖A),

where j � 1. Then h0 ∈ E0(µ) and h1 ∈ E0(µ) ∩ E1(µ) with

‖h0‖E0(µ) ≤ 2‖k0‖E0(µ), ‖h1‖E1(µ) ≤ ‖k1‖E1(µ).

Likewise, for `� 1, let

f 0 = min(h0, 2ℓ‖f(·)‖A), f 1 = h1 + 2−ℓ‖f(·)‖A.

Then f 0, f 1 ∈ E0(µ) ∩ E1(µ) with ‖f 0‖E0(µ) ≤ 2‖k0‖E0(µ), ‖f 1‖E0(µ) ≤ 2‖k1‖E0(µ)

and ‖f(·)‖A ≤ |f 0|1−θ|f 1|θ. If g = 1
|f0|1−θ|f1|θ f, then we obtain the desired decom-

position.

Let (X,Σ, µ) be a measure space, and let E1(µ) and E2(µ) be Banach lattices.
Shestakov [42] showed

(E0(µ)1−θE1(µ)θ)◦(= E0(µ) ∩ E1(µ)
E0(µ)1−θE1(µ)θ

) = [E0(µ), E1(µ)]θ. (2.23)

We generalize this to the vector-valued case.

Theorem 2.25. Let (X,Σ, µ) be a measure space, A(µ) be a Banach space, and
E1(A, µ) and E2(A, µ) be Banach lattices. Then

(E0(A, µ)1−θE1(A, µ)θ)◦(≡ E0(A, µ) ∩ E1(A, µ)
E0(A,µ)1−θE1(A,µ)θ

)

= [E0(A, µ), E1(A, µ)]θ.

Proof. We show that

(E0(A, µ)1−θE1(A, µ)θ)◦ ←↩ [E0(A, µ), E1(A, µ)]θ.

Let f ∈ [E0(A, µ), E1(A, µ)]θ. Let F ∈ F(E0(A, µ), E1(A, µ)) be such that f =
F (θ). Then by Lemma 2.20

‖f‖A = ‖F (θ)‖A ≤
(

1

1− θ

∫
R
‖F (it)‖Aµ0(t)dt

)1−θ (
1

θ

∫
R
‖F (1 + it)‖Aµ1(t)dt

)θ
.

Setting

f0 ≡
1

1− θ

∫
R
‖F (it)‖Aµ0(t)dt, f1 ≡

1

θ

∫
R
‖F (1 + it)‖Aµ1(t)dt,
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we have f ∈ E0(A, µ)1−θE1(A, µ)θ and ‖f‖E0(A,µ)1−θE1(A,µ)θ ≤ ‖f‖[E0(A,µ),E1(A,µ)]θ .
We next show that

(E0(A, µ)1−θE1(A, µ)θ)◦ ↪→ [E0(A, µ), E1(A, µ)]θ.

Let f ∈ E0(A, µ)∩E1(A, µ). We claim that there exists F ∈ F(E0(A, µ), E1(A, µ))
such that F (θ) = f and

‖F‖F(E0(A,µ),E1(A,µ)) ≤ 4‖f‖E0(A,µ)1−θE1(A,µ)θ . (2.24)

Once (2.24) is proved, then this is valid for all f ∈ (E0(A, µ)1−θE1(A, µ)θ)◦, in-
cluding the assertion that [E0(A, µ), E1(A, µ)]θ ←↩ (E0(A, µ)1−θE1(A, µ)θ)◦.

Recall that f admits a decomposition

f = |g0|1−θ|g1|θh

for some h ∈ L∞(A, µ), g0, g1 ∈ E0(µ) ∩ E1(µ) such that ‖h‖L∞(A,µ) ≤ 1 and
‖g0‖E0(µ) = ‖g1‖E1(µ) ≤ 4‖f‖E0(A,µ)1−θE1(A,µ)θ due to Lemma 2.24. Let F (z) ≡
|g0|1−z|g1|zh. Then F ∈ F(E0(A, µ), E1(A, µ)) by Lemma 2.21, F (θ) = f and

‖F‖F(E0(A,µ),E1(A,µ)) ≤ 4(‖f0‖E0(µ))
1−θ(‖f1‖E1(µ))

θ.

As a result, (2.24) holds.

3 Proof of Theorem 1.3 including Corollary 1.4

Theorem 1.3 is proved by decomposing its proof into three parts. First, Section
3.1 proves the right inequality in (1.5) for f ∈ Lp(·),s(w). The key inequality is a
pointwise estimate (3.3). Section 3.2 concentrates on establishing the existence of
derivatives of f ∈ Lp(·)(w) such that V f+Wsf ∈ Lp(·)(w). In Section 3.2, we reduce
matters to the case where f is sufficiently smooth and compactly supported. At this
point, matters are reduced to establishing the left inequality for any f ∈ Cc∩P⊥

s+1

such that V f + Wsf ∈ Lp(·)(w). Section 3.3 actually considers the left inequality
in (1.5) for such f via key pointwise estimate (3.7). Finally, by reexamining the
argument in Section 3.1, we prove Corollary 1.4 in Section 3.4.

3.1 Proof of the right inequality in (1.5) for f ∈ Lp(·),s(w)

Let f ∈ Lp(·),s(w)∩L2. Choose even functions Φ(L) and Ψ(L) as described in Lemma
2.10, where L is a multiple of 4 with L� s. We can write

∆L/2 =
n∑

m=1

Pm(D)Ds
m

with some polynomials P1, P2, . . . , Pn of the order L/2− s. Accordingly, we write

Γ(L)
m = Pm(D)Γ(L),
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where Γ(L) and Θ(L) are as in (2.12). Then

f = 2JnΘ(L)(2J ·) ∗ f +
∞∑
j=J

4jn∆L/2Γ(L)(2j·) ∗∆L/2Ψ(L)(2j·) ∗ f

= 2JnΘ(L)(2J ·) ∗ f + (−1)s
n∑

m=1

∞∑
j=J

22jn−jsΓ(L)
m (2j·) ∗∆L/2Ψ(L)(2j·) ∗Ds

mf.

thanks to Lemma 2.11. Fix j0, j ∈ Z ∩ [J,∞), k ∈ Zn, and l ∈ {1, 2, . . . , 2n − 1}.
Then we estimate

2(j−j0)s+2j0n
∣∣〈Γ(L)

m (2j0·) ∗∆L/2Ψ(L)(2j0·) ∗Ds
mf, ψ

l
j,k

〉∣∣χj,k.
Recall that Ψ(L) is even. Thus, we obtain

2(j−j0)s+2j0n
∣∣〈Γ(L)

m (2j0·) ∗∆L/2Ψ(L)(2j0 ·) ∗Ds
mf, ψ

l
j,k

〉∣∣χj,k
= 2(j−j0)s+2j0n

∣∣〈Γ(L)
m (2j0·) ∗Ds

mf,∆
L/2Ψ(L)(2j0·) ∗ ψlj,k

〉∣∣χj,k.
We have

2(j−j0)s+2j0n
∣∣〈Γ(L)

m (2j0·) ∗∆L/2Ψ(L)(2j0·) ∗Ds
mf, ψ

l
j,k

〉∣∣χj,k (3.1)

≲ 2−|j−j0|+j0nM loc
[
Γ(L)
m (2j0·) ∗Ds

mf
]
χj,k

due to Lemma 2.13 (5). A similar estimate is available for 2JnΘ(L)(2J ·) ∗ f :

2js+Jn
∣∣〈Θ(L)(2J ·) ∗ f, ψlj,k

〉∣∣χj,k ≲ 2−|j−J |+JnM loc
[
Φ(L) ∗ f

]
χj,k. (3.2)

We add estimates (3.1) and (3.2) over j0 ∈ Z ∩ [J,∞). The result is:

2js
∣∣〈f, ψlj,k〉∣∣χj,k ≲ 2−|j−J |+JnM loc

[
Φ(L) ∗ f

]
χj,k

+
n∑

m=1

∞∑
j0=J

2−|j−j0|+j0nM loc
[
Γ(L)
m (2j0·) ∗Ds

mf
]
χj,k.

Due to the Cauchy–Schwarz inequality, we obtain(
2js
∣∣〈f, ψlj,k〉∣∣χj,k)2 ≲ 2−2(j−J)+2JnM loc

[
Φ(L) ∗ f

]2
χj,k

+

(
n∑

m=1

∞∑
j0=J

2−|j−j0|+j0nM loc
[
Γ(L)
m (2j0·) ∗Ds

mf
]
χj,k

)2

≲ 2−(j−J)+2JnM loc
[
Φ(L) ∗ f

]2
χj,k

+
n∑

m=1

∞∑
j0=J

2−|j−j0|+2j0nM loc
[
Γ(L)
m (2j0·) ∗Ds

mf
]2
χj,k.

If we add this inequality over j ∈ Z ∩ [J,∞), k ∈ Zn, l ∈ {1, 2, . . . , 2n − 1}, and
subsequently replace j0 in the right-hand side with j, then we obtain

(Wsf)2 ≲ 22JnM loc
[
Φ(L)(2J ·) ∗ f

]2
+

n∑
m=1

∞∑
j=J

22jnM loc
[
Γ(L)
m (2j·) ∗Ds

mf
]2
.
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If we argue similarly, we obtain

(V f)2 ≲ 22JnM loc
[
Φ(L)(2J ·) ∗ f

]2
+

n∑
m=1

∞∑
j=J

22jnM loc
[
Γ(L)
m (2j·) ∗Ds

mf
]2
.

In total, we obtain

V f +Wsf (3.3)

≲ 2JnM loc
[
Φ(L)(2J ·) ∗ f

]
+

n∑
m=1

(
∞∑
j=J

22jnM loc
[
Γ(L)
m (2j·) ∗Ds

mf
]2) 1

2

.

By the vector-valued inequality for M loc (see Proposition 2.7), we have

‖V f‖Lp(·)(w) + ‖Wsf‖Lp(·)(w)

≲ ‖2JnΦ(L)(2J ·) ∗ f‖Lp(·)(w) +
n∑

m=1

∥∥∥∥∥∥
(

∞∑
j=J

22jn
∣∣Γ(L)

m (2j·) ∗Ds
mf
∣∣2) 1

2

∥∥∥∥∥∥
Lp(·)(w)

.

(3.4)

The first term in the right-hand side can be controlled by M loc (see Proposition
2.5), while we can control the second term using the Rademacher sequence similar
to [26, §4] and the boundedness of generalized local singular integral operators.
The result is

‖V f‖Lp(·)(w) + ‖Wsf‖Lp(·)(w) ≲ ‖f‖Lp(·)(w) +
n∑

m=1

‖Ds
mf‖Lp(·)(w) ,

as required.

3.2 Reduction for the proof of (2)

We claim that we have only to prove Theorem 1.3 for f ∈ (Cc∩P⊥
s+1 ⊂)Lp(·),s(w)∩

L2.
Assume that f ∈ L1

loc satisfies V f +Wsf ∈ Lp(·)(w). Then f ∈ Lp(·)(w). Hence,
we have the wavelet decomposition for s = 0 since Theorem 1.3 with s = 0 is
proved in [26].

We set

fN ≡
∑
k∈Zn

χ[0,N ](|k|)〈f, ϕJ,k〉ϕJ,k +
2n−1∑
l=1

N∑
j=J

∑
k∈Zn

χ[0,N ](|k|)〈f, ψlj,k〉ψlj,k.

Since fN is compactly supported and s + 1-times continuously differentiable, and
each wavelet ϕJ,k and scaling function ψlJ,k belong to Cc ∩ P⊥

s+1, we see that fN ∈
Cc ∩ P⊥

s+1 ⊂ Lp(·),s(w) ∩ L2.
Assume that the two-sided inequality (1.5) holds for any f ∈ Lp(·),s(w) ∩ L2,

that is,
‖g‖Lp(·),s(w) ≲ ‖V g +Wsg‖Lp(·)(w) (3.5)
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for any g ∈ Lp(·),s(w) ∩ L2.
Then for any f ∈ Lp(·)(w) satisfying V f +Wsf ∈ Lp(·)(w), we have

‖fN‖Lp(·),s(w) ≲ ‖V fN +WsfN‖Lp(·)(w) ≤ ‖V f +Wsf‖Lp(·)(w)

where the implicit constant is independent of N . This means that {DαfN}∞N=1

forms a bounded set in Lp(·)(w) for any α with length less than or equal to s.
According to the Banach–Alaoglu theorem, there exists a subsequence {Nm}∞m=1

such that {DαfNm}∞m=1 converges weakly to a function f(α) ∈ Lp(·)(w) for such α.
In particular, since we know that fNm converges strongly to f thanks to Theorem
1.3 with s = 0, which is proved in [26], we see that f(0) = f ∈ Lp(·)(w). From the
definition of the weak topology of Lp(·)(w), we obtain∫

Rn

f(α)(x)θ(x)dx = lim
m→∞

∫
Rn

DαfNm(x)θ(x)dx

= lim
m→∞

(−1)|α|
∫
Rn

fNm(x)Dαθ(x)dx

= (−1)|α|
∫
Rn

f(x)Dαθ(x)dx

for all test functions θ ∈ C∞
c .

Thus, Dαf = f(α) in the weak sense and consequently, Dαf belongs to Lp(·)(w).
Due to the Fatou lemma, we obtain the left inequality of (1.5):

‖f‖Lp(·),s(w) ≤ lim inf
N→∞

‖fN‖Lp(·),s(w)

≲ lim
N→∞

‖V fN +WsfN‖Lp(·)(w)

≤ ‖V f +Wsf‖Lp(·)(w) <∞.

This implies that f ∈ Lp(·),s(w) and (1.5) holds.
Here and below, we suppose that f ∈ Lp(·),s(w)∩L2 to prove the left inequality

of (1.5).

3.3 Proof of the left inequality in (1.5)

We suppose that f ∈ Lp(·),s(w) ∩ L2. According to the previous section, we have
V f + Wsf ∈ Lp(·)(w). To see that ‖f‖Lp(·),s(w) ≲ ‖V f + Wsf‖Lp(·)(w), it suffices to
show that ‖V [Dαf ]‖Lp(·)(w)+‖W0[D

αf ]‖Lp(·)(w) ≲ ‖V f+Wsf‖Lp(·)(w) for any α with
|α| ≤ s, since we proved that ‖V [Dαf ]‖Lp(·)(w) + ‖W0[D

αf ]‖Lp(·)(w) ∼ ‖Dαf‖Lp(·)(w)

in [26].
Let α be a multiindex with length s. Fix j0 ∈ Z ∩ [J,∞), k0 ∈ Zn, and

l0 ∈ {1, 2, . . . , 2n − 1}. We observe∣∣〈Dαf, ψl0j0,k0〉
∣∣

=
∣∣〈f,Dα[ψl0j0,k0 ]〉

∣∣
≤
∑
k∈Zn

∣∣〈f, ϕJ,k〉〈ϕJ,k, Dα[ψl0j0,k0 ]〉
∣∣+

2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

∣∣〈f, ψlj,k〉〈ψlj,k, Dα[ψl0j0,k0 ]〉
∣∣ .
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Consequently, denoting by χ∗
j,k, the modified indicator function of χj,k, we

obtain ∣∣〈Dαf, ψl0j0,k0〉
∣∣χj0,k0 (3.6)

≲
∑
k∈Zn

|〈f, ϕJ,k〉| 2Js−Jn−
j0n
2

+Jn−(j0−J)χ∗
j0,k0

χ∗
J,k

+
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

∣∣〈f, ψlj,k〉∣∣ 2js−jn− j0n
2

+min(j,j0)n−|j−j0|χ∗
j0,k0

χ∗
j,k,

due to Lemma 2.13 (3) and (4). If we add (3.6) over j0, k0, and l0, we obtain

2n−1∑
l0=1

∞∑
j0=J

∑
k0∈Zn

(∣∣〈Dαf, ψl0j0,k0〉
∣∣χj0,k0)2

≲
2n−1∑
l0=1

∞∑
j0=J

∑
k0∈Zn

(∑
k∈Zn

|〈f, ϕJ,k〉| 2Js−Jn−
j0n
2

+Jn−(j0−J)χ∗
j0,k0

χ∗
J,k

)2

+
2n−1∑
l0=1

∞∑
j0=J

∑
k0∈Zn

(
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

∣∣〈f, ψlj,k〉∣∣ 2js−jn− j0n
2

+min(j,j0)n−|j−j0|χ∗
j0,k0

χ∗
j,k

)2

.

Since l0 moves over a finite set, we have
2n−1∑
l0=1

∞∑
j0=J

∑
k0∈Zn

(∣∣〈Dαf, ψl0j0,k0〉
∣∣χj0,k0)2

≲
∞∑

j0=J

∑
k0∈Zn

(∑
k∈Zn

|〈f, ϕJ,k〉| 2Js−(j0−J)(2− j0n
2 χ∗

j0,k0
)χ∗

J,k

)2

+
∞∑

j0=J

∑
k0∈Zn

(
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

∣∣〈f, ψlj,k〉∣∣ 2js−jn+min(j,j0)n−|j−j0|(2− j0n
2 χ∗

j0,k0
)χ∗

j,k

)2

.

Using the Cauchy-Schwarz inequality and
∞∑
j=J

2−jn+min(j,j0)n−|j−j0| ≤
∞∑

j=−∞

2−jn+min(j,j0)n−|j−j0| <∞,

we obtain
2n−1∑
l0=1

∞∑
j0=J

∑
k0∈Zn

(∣∣〈Dαf, ψl0j0,k0〉
∣∣χj0,k0)2

≲
∞∑

j0=J

∑
k0∈Zn

∑
k∈Zn

(
|〈f, ϕJ,k〉| 2Js−(j0−J)(2− j0n

2 χ∗
j0,k0

)χ∗
J,k

)2
+

∞∑
j0=J

∑
k0∈Zn

2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

(∣∣〈f, ψlj,k〉∣∣ 2js−jn+min(j,j0)n−|j−j0|(2− j0n
2 χ∗

j0,k0
)χ∗

j,k

)2
≲
∑
k∈Zn

(
|〈f, ϕJ,k〉|χ∗

J,k

)2
+

2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

(
2js
∣∣〈f, ψlj,k〉∣∣χ∗

j,k

)2
.
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We can incorporate the term for 〈Dαf, ϕJ,k〉. The result is∑
k∈Zn

(
|〈Dαf, ϕJ,k〉|χ∗

J,k

)2
+

2n−1∑
l0=1

∞∑
j0=J

∑
k0∈Zn

(∣∣〈Dαf, ψl0j0,k0〉
∣∣χj0,k0)2

≲
∑
k∈Zn

(
|〈f, ϕJ,k〉|χ∗

J,k

)2
+

2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

(
2js
∣∣〈f, ψlj,k〉∣∣χ∗

j,k

)2
.

Consequently, we have a pointwise estimate

V [Dαf ] +W0[D
αf ] ≲ V f +Wsf. (3.7)

Thus, by Theorem 1.3 with s = 0, we obtain that f ∈ Lp(·),s(w).

3.4 Proof of Corollary 1.4

It is trivial that

‖f‖Lp(·),s(w) ≥ ‖f‖Lp(·)(w) +
∑
|α|=s

‖Dαf‖Lp(·)(w).

For the opposite inequality, simply combine the left inequality in (1.5) with (3.4).

4 Fractional local weighted Sobolev spaces with

variable exponents

This section considers the local weighted Sobolev space Lp(·),s(w) with a variable
exponent for s > 0. As a preliminary step, Section 4.1 defines Lp(·),s(w). Section
4.2 investigates the complex interpolation to the minimum. By using this key
tool, we extend Theorem 1.3 for s > 0 in Section 4.3. Sections 4.4 and 4.5 refine
the wavelet decomposition obtained above. To loosen the postulate on ϕ and ψ
Section 4.4 investigates the atomic decomposition. We try to decrease the order
of the smoothness and the moment. Section 4.5 provides further refinement based
on [17, 32] and the Haar function, which is a fundamental function that is useful
to characterize function spaces.

4.1 Bessel potential operator (1− t2∆)−a with 0 < t� 1 and
Re(a) ≥ 0

First, we define the Sobolev space Lp(·),s(w) with a positive fractional order s.

Definition 4.1 (Sobolev spaces with variable exponents defined by the Bessel
potential). Fix 0 < t� 1. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let w ∈ Aloc

p(·).
For s ≥ 0, define

Lp(·),s(w) ≡ {g ∈ Lp(·)(w) : g = (1− t2∆)−
s
2f for some f ∈ Lp(·)(w)}.

If g = (1− t2∆)−
s
2f ∈ Lp(·),s(w) for some f ∈ Lp(·)(w), then define

‖g‖Lp(·),s(w) ≡ ‖f‖Lp(·)(w).
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If 0 < t1, t2 <∞ and a > 0, then (1− t12∆)a(1− t22∆)−a is a generalized local
singular integral operator. Hence, the definition of Lp(·),s(w) is independent of t.

Thanks to Theorem 2.15, Lp(·),s(w) is nested: Lp(·),s0(w) ⊂ Lp(·),s1(w) for s0 >
s1 > 0.

Note that the space Lp(·),s(w) with s ∈ N has two different definitions. One
is from the weak derivative in D′, and the other is from the Bessel potential. We
show that they coincide with the equivalence of norms.

Theorem 4.2. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let w ∈ Aloc
p(·). Then the

two definitions of Lp(·),s(w) coincide for all s ∈ N.

Proof. Similar to Theorem 2.15, we can show that Dα(1 − t2∆)−
s
2 is bounded on

Lp(·)(w) as long as |α| ≤ s. This means that, as long as |α| ≤ s, Dαg ∈ Lp(·)(w)
is defined by the Bessel potential for any g ∈ Lp(·),s(w). Thus, the space Lp(·),s(w)
which is defined by the Bessel potential is included in the one defined by the partial
derivative.

Conversely, let f ∈ Lp(·)(w) be such that Dαf ∈ Lp(·)(w) for any multiindex α
with |α| ≤ s. We choose a finite collection of polynomials {Pk}k∈K of degree less
than or equal to s so that

(1 + t2|ξ|2)s =
∑
k∈K

Pk(ξ)
2.

Then

f ∈ Lp(·)(w) 7→ Pk

(
1

i
D

)
(1− t2∆)−

s
2f ∈ Lp(·)(w)

is a bounded linear operator, and we have a decomposition

f = (1− t2∆)−
s
2

∑
k∈K

Pk

(
1

i
D

)
(1− t2∆)−

s
2

[
Pk

(
1

i
D

)
f

]
,

meaning that f is a member in the Sobolev space Lp(·),s(w) by the Bessel potential.

We investigate the lifting property of weighted Sobolev spaces with variable
exponents.

Proposition 4.3. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞. Let w ∈ Aloc
p(·) and s1 >

s2 ≥ 0. Then (1− t2∆)
s2−s1

2 is an isomorphism from Lp(·),s2(w) to Lp(·),s1(w).

Proof. It is clear that (1− t2∆)
s2−s1

2 is a bijection from Lp(·),s2(w) to Lp(·),s1(w) in

view of the definitions of Lp(·),s2(w) and Lp(·),s1(w). The operator (1− t2∆)
s2−s1

2 is

also injective, since (1− t2∆)[s1+1](1− t2∆)−[s1+1]− s2−s1
2 (1− t2∆)

s2−s1
2 = idLp(·),s2 (w).
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4.2 Complex interpolation I

We show that Lp(·),s(w) with any s > 0 has a wavelet characterization.
We start by calculating the first complex interpolation.

Proposition 4.4. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let w ∈ Aloc
p(·). Addi-

tionaly, let s0, s1, s and θ satisfy s0, s1, s ≥ 0, 0 < θ < 1 and s = (1 − θ)s0 + θs1.
Then

[Lp(·),s0(w), Lp(·),s1(w)]θ = Lp(·),s(w).

Proof. We may assume s0 6= s1. Otherwise, there is nothing to prove since s = s0 =
s1. We may also assume s0 > s1 by symmetry. Let F ∈ F(Lp(·),s0(w), Lp(·),s1(w)).
We aim to show that F (θ) ∈ Lp(·),s(w).

Fix t as in Theorem 2.15. We define

GN(z) = e(z−θ)
2

(1− t2∆)
s1−s0

2
z[(1−N−1∆)−s0−s1−n−2[F (z)] (z ∈ S̄, N ∈ N).

Fix N � 1 and (a, b) ∈ [0, 1]× R. We write out ‖GN(a+ bi)‖Lp(·),s0 (w) in full:

‖GN(a+ bi)‖Lp(·),s0 (w)

= e(a−θ)
2−b2

∥∥∥(1− t2∆)
s1−s0

2
(a+bi)(1−N−1∆)−s0−s1−n−2[F (a+ bi)]

∥∥∥
Lp(·),s0 (w)

.

If we employ Theorem 2.15, then

‖GN(a+ bi)‖Lp(·),s0 (w)

≲ e−b
2

(
(1 + |b|)n+2 +

1

|Γ(a+ bi)|

)∥∥(1−N−1∆)−s0−s1−n−2[F (a+ bi)]
∥∥
Lp(·),s0 (w)

.

From (2.13),

‖GN(a+ bi)‖Lp(·),s0 (w) ≲
∥∥(1−N−1∆)−s0−s1−n−2[F (a+ bi)]

∥∥
Lp(·),s0 (w)

=
∥∥∥(1−N−1∆)−s0−s1−n−2(1− t2∆)

s0
2 [F (a+ bi)]

∥∥∥
Lp(·)(w)

.

Then thanks to Theorem 2.15

‖GN(a+ bi)‖Lp(·),s0 (w) ≲
∥∥∥(1− t2∆)

s0
2 [F (a+ bi)]

∥∥∥
Lp(·)(w)

= ‖F (a+ bi)‖Lp(·),s0 (w)

with the implicit constant independent of N . Meanwhile

z ∈ S̄ 7→ e(z−θ)
2

(1− t2∆)
s1−s0

2
z(1−N−1∆)−s0−s1−n−2 ∈ B(Lp(·)(w))

is bounded and continuous on S̄ due to Theorem 2.15 and holomorphic in S due
to Corollary 2.16. Consequently, it follows from Theorem 2.15 that

GN ∈ F(Lp(·),s0(w), Lp(·),s0(w)).
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From Example 2.19

GN(θ) = (1− t2∆)
s1−s0

2
θ[(1−N−1∆)−s0−s1−n−2F (θ)] ∈ Lp(·),s0(w),

and

‖(1− t2∆)
s1−s0

2
θ[(1−N−1∆)−s0−s1−n−2F (θ)]‖Lp(·),s0 (w) ≲ ‖f‖[F(Lp(·),s0 (w),Lp(·),s0 (w))]θ

with the implicit constant independent of N . Hence

(1−N−1∆)−s0−s1−n−2F (θ) ∈ Lp(·),s(w)

and
‖(1−N−1∆)−s0−s1−n−2F (θ)‖Lp(·),s(w) ≲ ‖f‖[F(Lp(·),s0 (w),Lp(·),s0 (w))]θ

with the implicit constant independent of N . Meanwhile, Corollary 2.17 yields
(1 − N−1∆)−s0−s1−n−2F (θ) → F (θ) as N → ∞. Similar to Section 3.2, we
conclude F (θ) ∈ Lp(·),s(w) using the Banach–Alaoglu theorem. Consequently
[Lp(·),s0(w), Lp(·),s1(w)]θ ⊂ Lp(·),s(w).

Conversely, we let f ∈ Lp(·),s(w), so that f = (1−t2∆)−
s
2 g for some g ∈ Lp(·)(w).

We have a decomposition

g0 = (1−N0
−1∆)−4ng, gk = (1−Nk

−1∆)−4ng−(1−Nk−1
−1∆)−4ng, g =

∞∑
k=0

gk,

where {Nk}∞k=0 is an increasing sequence of integers such that

∞∑
k=1

‖gk‖Lp(·)(w) ≤ 2‖g‖Lp(·)(w).

Define
Fk(z) = e(z−θ)

2

(1− t2∆)
s0−s1

2
(z−θ)− s

2 gk

for each k ∈ N and z ∈ S̄. Then Fk ∈ F(Lp(·),s0(w), Lp(·),s1(w)) with

‖Fk‖F(Lp(·),s0 (w),Lp(·),s1 (w)) ≲ ‖gk‖Lp(·)(w)

due to Theorem 2.15 and Corollary 2.16. Consequently

f =
∞∑
k=0

Fk(θ) ∈ [Lp(·),s0(w), Lp(·),s1(w)]θ.

4.3 Wavelet characterization of Lp(·),s(w) with s > 0

We characterize Lp(·),s(w) in terms of the wavelet coefficients for any s > 0 by
means of the complex interpolation and Theorem 1.3, which considers the case of
s ∈ N.
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According to Theorem 1.3, it is useful to define the space f
p(·),s
2 (w) for s ∈ R

which is the set of all sequences {λj,k}j∈Z∩[J,∞),k∈Zn satisfying

‖{λj,k}j∈Z∩[J,∞),k∈Zn‖
f
p(·),s
2 (w)

=

∥∥∥∥∥∥∥
 ∞∑

j=J

∣∣∣∣∣2js ∑
k∈Zn

λj,kχj,k

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp(·)(w)

<∞.

We define

f̃
p(·),s
2 (w) = {{λk}k∈Zn ∪ {λlj,k}j∈Z∩[J,∞),k∈Zn,l∈{1,2,...,2n−1} :

{λlj,k}j∈Z∩[J,∞),k∈Zn ∈ f
p(·),s
2 (w) for all l = 0, 1, . . . , 2n − 1},

where it is understood that

λ0j,k =

{
λk (j = J),

0 (otherwise).

Theorem 1.3 asserts that

Ψ = Ψφ,ψl

: f ∈ Lp(·),s(w)

7→ {〈ϕJ,k, f〉}k∈Zn ∪ {〈ψlj,k, f〉}j∈Z∩[J,∞),k∈Zn,l=1,2,...,2n−1 ∈ f̃
p(·),s
2 (w)

and

Φ = Φφ,ψl

: {λk}k∈Zn ∪ {λlj,k}j∈Z∩[J,∞),k∈Zn,l∈{1,2,...,2n−1} ∈ f̃
p(·),s
2 (w)

7→
∑
k∈Zn

λkϕJ,k +
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

λlj,kψ
l
j,k ∈ Lp(·),s(w)

are bounded linear operators for s ∈ N. Furthermore, by the property of wavelets

Φ(Ψf) = f (4.1)

for all f ∈ Lp(·),s(w).
To show that the space Lp(·),s(w) with s ∈ (0,∞) \ N is realized as a complex

interpolation, we need the following lemma.

Lemma 4.5. Let s > 0 and suppose that we have two couples (ϕ, ψl) and (ϕ̃, ψ̃l), l =
1, 2, . . . , 2n − 1 of C [s+1]-functions as in (1.3). Then for all f ∈ L1

loc,

‖V φ̃f‖Lp(·)(w) + ‖W ψ̃l

s f‖Lp(·)(w) ∼ ‖V φf‖Lp(·)(w) + ‖Wψl

s f‖Lp(·)(w).

Proof. It suffices to show

‖V φ̃f‖Lp(·)(w) + ‖W ψ̃l

s f‖Lp(·)(w) ≲ ‖V φf‖Lp(·)(w) + ‖Wψl

s f‖Lp(·)(w)

by symmetry. We content ourselves with the proof of

‖W ψ̃l

s f‖Lp(·)(w) ≲ ‖V φf‖Lp(·)(w) + ‖Wψl

s f‖Lp(·)(w),
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since the proof of ‖V φ̃f‖Lp(·)(w) ≲ ‖V φf‖Lp(·)(w) + ‖Wψl

s f‖Lp(·)(w) is similar.
Let j0 ≥ J , k0 ∈ Zn, and l0 = 1, 2, . . . , 2n − 1 be fixed. We calculate

|〈ψ̃l0j0,k0 , f〉|

≤
∑
k∈Zn

|〈ψ̃l0j0,k0 , ϕJ,k〉| · |〈f, ϕJ,k〉|+
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

|〈ψ̃l0j0,k0 , ψ
l
j,k〉| · |〈f, ψlj,k〉|.

The moment condition yields

|〈ψ̃l0j0,k0 , f〉|

≲
∑
k∈Zn

χ[0,2−J+1(2N−1)](|2−Jk − 2−j0k0|)2− (J+j0)n
2

+Jn−(j0−J)[s+1]|〈f, ϕJ,k〉|

+
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

χ[0,21−min(j,j0)(2N−1)](|2−jk − 2−j0k0|)

× 2− (j+j0)n
2

+min(j,j0)n−|j0−j|[s+1]|〈f, ψlj,k〉|,

where we also employed Lemma 2.13 (3) and (4). Consequently

2j0s|〈ψ̃l0j0,k0 , f〉|χj0,k0
≲
∑
k∈Zn

2j0s−
(J+j0)n

2
+Jn−(j0−J)[s+1]|〈f, ϕJ,k〉|χ∗

j0,k0
χ∗
J,k

+
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

2j0s−
(j+j0)n

2
+min(j,j0)n−|j0−j|[s+1]|〈f, ψlj,k〉|χ∗

j0,k0
χ∗
j,k

=
∑
k∈Zn

2−(j0−J)([s+1]−s)2Jn+Js−
(J+j0)n

2 |〈f, ϕJ,k〉|χ∗
j0,k0

χ∗
J,k

+
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

2−|j0−j|([s+1]−s)2js−
(j+j0)n

2
+min(j,j0)n|〈f, ψlj,k〉|χ∗

j0,k0
χ∗
j,k.

If we add this estimate over k0 ∈ Zn, then∑
k0∈Zn

2j0s|〈ψ̃l0j0,k0 , f〉|χj0,k0

≲
∑
k∈Zn

2−(j0−J)([s+1]−s)2Jn+Js−
(J+j0)n

2 |〈f, ϕJ,k〉|χ∗
J,k

+
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

2−|j0−j|([s+1]−s)2js−
(j+j0)n

2
+min(j,j0)n|〈f, ψlj,k〉|χ∗

j,k

≲
∑
k∈Zn

2−(j0−J)([s+1]−s)2Jn+Js−
(J+j0)n

2 |〈f, ϕJ,k〉|χ∗
J,k

+

(
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

2−2|j0−j|([s+1]−s)22js|〈f, ψlj,k〉|2χ∗
j,k

) 1
2

.
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The last inequality uses the Cauchy–Schwartz inequality. Next, we take the `2-
norm over j0 ≥ J , which gives

∞∑
j0=J

(∑
k0∈Zn

2j0s|〈ψ̃l0j0,k0 , f〉|χj0,k0

)2

≲
∑
k∈Zn

|〈f, ϕJ,k〉|χ∗
J,k +

(
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

22js|〈f, ψlj,k〉|2χ∗
j,k

) 1
2

.

Thus, we obtain W ψ̃l

s f ≲ V φf+Wψl

s f, which yields (3.7) and the desired result.

Theorem 4.6. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and w ∈ Aloc
p(·). Let s > 0 and

Ψ = Ψφ,ψl
: f ∈ Lp(·)(w) 7→ Ψ(f) = Ψφ,ψl

(f) ∈ f̃
p(·),0
2 (w) be the wavelet coefficient

operator with ϕ, ψl ∈ C [s+1]. Then f ∈ Lp(·)(w) belongs to Lp(·),s(w) if and only if
Wsf = Wψl

s f ∈ Lp(·)(w).

It should be noted that V f ∈ Lp(·)(w) since the case of s = 0 is already covered
in [26].

Proof. We may assume that s ∈ (0,∞) \N. Otherwise, Theorem 4.6 is covered by

Theorem 1.3. First, assume that the collection ϕ̃, ψ̃l, l = 1, 2, . . . , 2n − 1 satisfies
the requirements in (1.3) with [s + 1] replaced by [s + 2]. Here, we keep in mind
that (1.3) requires that ϕ, ψl ∈ Cm+1 for the function space Lp(·),m with m ∈ N.

Since we know that Ψφ̃,ψ̃l
is an isomorphism from Lp(·)(w) to f̃

p(·),0
2 (w) and from

Lp(·),[s+1](w) to f̃
p(·),[s+1]
2 (w) by the complex interpolation, we see that Ψφ̃,ψ̃l

is an

isomorphism from Lp(·),s(w) to f̃
p(·),s
2 (w).

Since the expressions

‖V φ̃f‖Lp(·)(w) + ‖W ψ̃l

s f‖Lp(·)(w), ‖V φf‖Lp(·)(w) + ‖Wψl

s f‖Lp(·)(w)

are equivalent due to Lemma 4.5 as long as the collection ϕ, ψl satisfies the re-
quirements in (1.3), it follows that f ∈ Lp(·)(w) belongs to Lp(·),s(w) if and only if

W ψ̃l

s f ∈ Lp(·)(w), or equivalently, Wψl

s f ∈ Lp(·)(w).

4.4 Atomic decomposition

Fix J ∈ Z.

Definition 4.7. Let s ∈ R, j ∈ Z∩ (J,∞), and k ∈ Zn. Suppose that the integers
K,L ∈ Z satisfy K ≥ 0 and L ≥ −1.

1. A function a ∈ CK is an atom centered at QJ,k if the following differential
inequality holds:

|∂αa| ≤ χ3QJ,k
, |α| ≤ K. (4.2)
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2. A function a ∈ CK∩P⊥
L is an atom centered at Qj,k if it satisfies the following

differential inequality:

|∂αa| ≤ 2
jn
2
+j|α|χ3Qj,k

, |α| ≤ K. (4.3)

Theorem 4.8. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and w ∈ Aloc
p(·). Let s > 0.

Suppose that we have atoms aν,m centered at Qν,m for each ν ∈ Z ∩ [J,∞) and
m ∈ Zn. Additionally, let

λ ≡ {λν,m}ν∈Z∩[J,∞),m∈Zn ⊂ C

satisfy ∥∥∥∥∥∥∥
 ∞∑
ν=J

∣∣∣∣∣2νs ∑
m∈Zn

λν,mχν,m

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp(·)(w)

<∞.

Then

f ≡
∞∑
ν=J

∑
m∈Zn

λν,maν,m

converges in Lp(·),s(w) and satisfies

‖f‖Lp(·),s(w) ≲

∥∥∥∥∥∥∥
 ∞∑
ν=J

∣∣∣∣∣2νs ∑
m∈Zn

λν,mχν,m

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp(·)(w)

.

Proof. We can assume that λν,m = 0 if ν + |m| � 1 by the truncation argument.
Thus, we can concentrate on the norm estimate. The proof of the convergence of
the series defining f follows immediately if this norm estimate is valid at least for
the type above of sequences.

We prove

‖V f +Wsf‖Lp(·)(w) ≲

∥∥∥∥∥∥∥
 ∞∑
ν=J

∣∣∣∣∣2νs ∑
m∈Zn

λν,mχν,m

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp(·)(w)

.

Since V f is easier to handle thanWsf , we concentrate onWsf . Let l = 1, 2, . . . , 2n−
1 be fixed. Write

δ(j, ν, k,m) ≡ χ[0,2−min(j,ν)D](|2−νm− 2−jk|)

for some large constant D > 0.
As long as D is sufficiently large, we have

|〈aν,m, ψlj,k〉| ≲ 2− ν+j
2
n−|ν−j|[s+1]+min(j,ν)nδ(j, ν, k,m).
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Thus

∞∑
j=J

22js
∑
k∈Zn

|〈f, ψlj,k〉|2χj,k

=
∞∑
j=J

22js
∑
k∈Zn

∣∣∣∣∣
∞∑
ν=J

∑
m∈Zn

λν,m〈aν,m, ψlj,k〉

∣∣∣∣∣
2

χj,k

≲
∞∑
j=J

22js
∑
k∈Zn

(
∞∑
ν=J

∑
m∈Zn

|λν,m|
∣∣〈aν,m, ψlj,k〉∣∣

)2

χj,k

≲
∞∑
j=J

22js
∑
k∈Zn

(
∞∑
ν=J

∑
m∈Zn

|λν,m|2− ν+j
2
n−|ν−j|[s+1]+min(j,ν)nδ(j, ν, k,m)

)2

χj,k

≲
∞∑
j=J

∑
k∈Zn

(
∞∑
ν=J

∑
m∈Zn

|λν,m|2− ν+j
2
n−|ν−j|([s+1]−s)−s|ν−j|+sj+min(j,ν)nδ(j, ν, k,m)

)2

χj,k.

Arithmetic shows

−ν + j

2
n− |ν − j|([s+ 1]− s)− s|ν − j|+ sj + min(j, ν)n

≤


sν +

ν

2
n− (ν − j)([s+ 1] + n)− j

2
n (if ν ≥ j),

sν +
ν

2
n− (j − ν)([s+ 1]− s)− j

2
n (if ν ≤ j).

We also note that

∑
m∈Zn

2νs2
ν
2
n|λν,m|δ(j, ν, k,m)χQj,k

≲M loc

[∑
m∈Zn

2νsλν,mχν,m

]
χQj,k

.

By virtue of these observations, we obtain

∞∑
j=J

22js
∑
k∈Zn

|〈f, ψlj,k〉|2χj,k

≲
∞∑
j=J

∑
k∈Zn

(
∞∑
ν=J

2−|j−ν|([s+1]−s)
∑
m∈Zn

|λν,m|2sν+
ν
2
nδ(j, ν, k,m)χQj,k

)2

≲
∞∑
j=J

∑
k∈Zn

(
∞∑
ν=J

2−|j−ν|([s+1]−s)M loc

[∑
m∈Zn

2νsλν,mχν,m

]
χQj,k

)2

.

A geometric observation shows that∑
k∈Zn

χQj,k
= 1
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for all j ∈ Z. By the Cauchy–Schwartz inequality for the summation over ν and
j, we obtain

∞∑
j=J

22js
∑
k∈Zn

|〈f, ψlj,k〉|2χj,k

≲
∞∑
j=J

(
∞∑
ν=J

2−|j−ν|([s+1]−s)M loc

[∑
m∈Zn

2νsλν,mχν,m

])2

≲
∞∑
j=J

(
∞∑
ν=J

2−|j−ν|([s+1]−s)

) ∞∑
ν=J

2−|j−ν|([s+1]−s)

(
M loc

[∑
m∈Zn

2νsλν,mχν,m

])2


∼
∞∑
j=J

∞∑
ν=J

2−|j−ν|([s+1]−s)

(
M loc

[∑
m∈Zn

2νsλν,mχν,m

])2

∼
∞∑
ν=J

(
M loc

[∑
m∈Zn

2νsλν,mχν,m

])2

,

where we change the order of the summation in the last inequality. Finally, taking
the Lp(·)(w)-norm, we obtain the desired result.

4.5 Characterization by Haar wavelets

Here, we demonstrate the Haar-wavelet characterization. See [17, 32] for more
information on some recent research. We define

hM = χ[0, 1
2
) − χ[ 1

2
,1), hF = χ[0,1).

The functions hM and hF are called the Haar wavelet and the Haar scaling function,
respectively.

We set
{M,F}n∗ ≡ {M,F}n \ {(F, F, . . . , F )}.

Haar wavelets on Rn are defined by the usual tensor product procedure:

HG
j,k ≡ ⊗nr=1h

Gr
j,kr

for j ∈ Z ∩ [J,∞),

G = (G1, . . . , Gn) ∈ Gj =

{
{M,F}n (j = J),

{M,F}n∗ (j > J)

and
k = (k1, k2, . . . , kn) ∈ Zn.

In our next theorem, we show that HG
j,k can be substituded for ψlj,k and ϕJ,k.
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Theorem 4.9. Let s ∈ [0, 1
max(2,p+)

). Then, for all f ∈ Lp(·),s(w),∥∥∥∥∥∥∥
 ∞∑

j=J

∑
G∈Gj

∣∣∣∣∣2js ∑
k∈Zn

〈f,HG
j,k〉HG

j,k

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp(·),s(w)

≲ ‖f‖Lp(·),s(w). (4.4)

Proof. We will justify that we may assume f ∈ Lp(·),s(w) ∩ L2. In fact, thanks to
Theorem 4.8, the space Lp(·),s(w)∩L2 is dense in Lp(·),s(w). Thus, for f ∈ Lp(·),s(w),
we can choose {fl}∞l=1 ⊂ Lp(·),s(w) ∩ L2 such that fl → f in Lp(·),s(w). Suppose
that we have proved (4.4) for any f ∈ Lp(·),s(w) ∩ L2. Then we have∥∥∥∥∥∥∥

 ∞∑
j=J

∑
G∈Gj

∣∣∣∣∣2js ∑
k∈Zn

〈fl, HG
j,k〉HG

j,k

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp(·),s(w)

≲ ‖fl‖Lp(·),s(w).

Then by Fatou’s lemma and lim
l→∞
〈fl, HG

j,k〉 = 〈f,HG
j,k〉, we have∥∥∥∥∥∥∥

 ∞∑
j=J

∑
G∈Gj

∣∣∣∣∣2js ∑
k∈Zn

〈f,HG
j,k〉HG

j,k

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp(·),s(w)

≤ lim inf
k→∞

∥∥∥∥∥∥∥
 ∞∑

j=J

∑
G∈Gj

∣∣∣∣∣2js ∑
k∈Zn

〈fl, HG
j,k〉HG

j,k

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp(·),s(w)

.

Since ‖fl‖Lp(·),s(w) → ‖f‖Lp(·),s(w) as l→∞, (4.4) holds for any f ∈ Lp(·),s(w).

Let f ∈ Lp(·),s(w) ∩ L2 here and below. Let

f =
∞∑
j=J

∑
k∈Zn

∑
G∈Gj

〈f,HG
j,k〉HG

j,k

be the wavelet decomposition. We may assume that the sum is finite using the
simple truncation procedure. Then

f =
∞∑
j=J

∑
k,m∈Zn

∑
G∈Gj

〈f,HG
j,k〉 · 〈HG

j,k, ϕJ,m〉ϕJ,m

+
∞∑

j,ν=J

∑
k,m∈Zn

∑
G∈Gj

2n−1∑
l=1

〈f,HG
j,k〉 · 〈HG

j,k, ψ
l
ν,m〉ψlν,m.

Write

µl,G,1ν,m ≡
∞∑
j=ν

∑
k∈Zn

〈f,HG
j,k〉 · 〈HG

j,k, ψ
l
ν,m〉,

µl,G,2ν,m ≡
ν−1∑
j=J

∑
k∈Zn

〈f,HG
j,k〉 · 〈HG

j,k, ψ
l
ν,m〉,

µl,Gν,m ≡ µl,G,1ν,m + µl,G,2ν,m .
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We estimate

|µl,G,1ν,m | ≲
∞∑
j=ν

∑
k∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩≠0

2
n
2
(ν−j)|〈f,HG

j,k〉|.

We fix a small constant ε that is specified in the end of the proof. Note that
〈HG

j,k, ψ
l
ν,m〉 = O(2

n
2
(ν−j)). As a result,

(|µl,G,1ν,m |χν,m)2 ≲


∞∑
j=ν

∑
k∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩̸=0

2
n
2
(ν−j)|〈f,HG

j,k〉|χν,m


2

≲
∞∑
j=ν

2(n−ε)(ν−j)

 ∑
k∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩̸=0

|〈f,HG
j,k〉|χν,m


2

≲
∞∑
j=ν

2−5ε(ν−j)

 ∑
k∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩≠0

2
jn
2 |〈f,HG

j,k〉|
(1 + |2j · −k|)n+2ε

χQν,m


2

≲
∞∑
j=ν

2−5ε(ν−j)

 ∑
k∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩≠0

2
jn
2 |〈f,HG

j,k〉|M loc[χQj,k
](x)

n+ε
n


2

χQν,m .

Thus, by the vector-valued maximal inequality for M loc,

∞∑
ν=J

∑
m∈Zn

∑
G∈Gj

2n−1∑
l=1

µl,G,1ν,m ψlν,m

≲
∞∑
ν=J

∑
m∈Zn

∞∑
j=ν

2−5ε(ν−j)

 ∑
k∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩≠0

2
jn
2 |〈f,HG

j,k〉|M loc[χQj,k
](x)

n+ε
n


2

χQν,m .

we can control the first term.
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Next, we consider the second term. We calculate

∑
m∈Zn

(|µl,G,2ν,m |χν,m)2 ≲
∑
m∈Zn

ν−1∑
j=J

22(ν−j)ε−(ν−j)n
∑
k∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩≠0

(|〈f,HG
j,k〉|χν,m)2

=
∑
k∈Zn

ν−1∑
j=J

22(ν−j)ε−(ν−j)n
∑
m∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩≠0

(|〈f,HG
j,k〉|χν,m)2

≤
∑
k∈Zn

ν−1∑
j=J

22ε(ν−j)
∑
m∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩̸=0

(2
jn
2 |〈f,HG

j,k〉|χQν,m)2.

Thus, if we write aGj,k ≡ 2js+
jn
2 〈f,HG

j,k〉, then we obtain{
∞∑
ν=J

∑
m∈Zn

(2νs|µl,G,2ν,m |χµ,m)2

} 1
2

≲


∞∑
ν=J

∑
k∈Zn

ν−1∑
j=J

22(ν−j)(s+ε)
∑
m∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩≠0

(|aGj,k|χQν,m)2


1
2

=


∞∑
j=J

∑
k∈Zn

|aGj,k|2
∞∑

ν=j+1

22(ν−j)(s+ε)
∑
m∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩̸=0

χQν,m


1
2

.

Taking the Lp(·)(w)-norm, we obtain∥∥∥∥∥∥
{

∞∑
ν=J

∑
m∈Zn

(2νs|µl,G,2ν,m |χν,m)2

} 1
2

∥∥∥∥∥∥
Lp(·)(w)

≲

∥∥∥∥∥∥∥∥∥∥


∞∑
j=J

∑
k∈Zn

|aGj,k|2
∞∑

ν=j+1

22(ν−j)(s+ε)
∑
m∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩≠0

χQν,m


1
2

∥∥∥∥∥∥∥∥∥∥
Lp(·)(w)

.

Given a measurable function F , we write

m
(q)
Q (F ) =

‖F‖Lq(Q)

|Q|
1
q

.
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Using Lemma 2.8, we deduce∥∥∥∥∥∥
{

∞∑
ν=J

∑
m∈Zn

(2νs|µl,G,2ν,m |χν,m)2

} 1
2

∥∥∥∥∥∥
Lp(·)(w)

≲

∥∥∥∥∥∥∥∥∥∥


∞∑
j=J

∑
k∈Zn

|aGj,k|2
∞∑

ν=j+1

22(ν−j)(s+ε)m
(q)
DQj,k

 ∑
m∈Zn,

⟨HG
j,k,ψ

l
ν,m⟩≠0

χQν,m

χDQj,k


1
2

∥∥∥∥∥∥∥∥∥∥
Lp(·)(w)

≲

∥∥∥∥∥∥
{

∞∑
j=J

∑
k∈Zn

|aGj,k|2
∞∑

ν=j+1

2(ν−j)(2s+2ε−1/q)χDQj,k

} 1
2

∥∥∥∥∥∥
Lp(·)(w)

.

Since s < 1
max(2,p+)

, we can choose q > max(2,p+)
2

and ε > 0 such that s + ε < 1
2q

.
Thus∥∥∥∥∥∥

{
∞∑
ν=J

∑
m∈Zn

(2νs|µl,G,2ν,m |χν,m)2

} 1
2

∥∥∥∥∥∥
Lp(·)(w)

≲

∥∥∥∥∥∥
{

∞∑
j=J

∑
k∈Zn

|aGj,k|2χDQj,k

} 1
2

∥∥∥∥∥∥
Lp(·)(w)

,

proving Theorem 4.9.

5 Key theorems to more applications

Here, we are interested in applications of wavelet decomposition and complex in-
terpolation. Section 5.1 considers pointwise multiplication. As an application of
Section 5.1 and wavelet characterization, Section 5.2 considers a variant of the com-
pact embedding. Section 5.3 deals with diffeomorphisms. Section 5.4 generalizes
Proposition 4.4.

5.1 Pointwise multipliers

For m = 0, 1, 2, . . ., define Bm to be the set of all f ∈ Cm with bounded partial
derivatives up to order m. If s ∈ N0, then any h ∈ Bs induces the bounded
pointwise multiplication Mh by the Leibnitz rule. We generalize this fact to s > 0.

Theorem 5.1. Suppose that p(·) ∈ P ∩LH0∩LH∞, and let (s, w) ∈ ((0,∞)\N)×
Aloc
p(·). Then for all h ∈ B[s+1], mapping Mh : f ∈ Lp(·),s(w) 7→ h · f ∈ Lp(·),s(w) is

bounded.

Proof. As mentioned above, Mh is bounded on Lp(·),[s](w) and Lp(·),[s+1](w). Hence,
we can interpolate these estimates to have the desired result using Proposition
4.4.
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5.2 Compact embedding

We consider the Rellich–Kondrachev-type compact embedding. Let s0 > s1 > 0.
Then Lp(·),s0(w) ⊂ Lp(·),s1(w). Thus, it makes sense to consider the embedding
operator ι : Lp(·),s0(w) ↪→ Lp(·),s1(w). After suitably truncating the functions, we
can prove the Rellich–Kondrachev-type compact embedding resuit.

Theorem 5.2. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let w ∈ Aloc
p(·). Then for

s0 > s1 > 0 and h ∈ C [s0+1] with compact support, the operator Mh ◦ ι is a compact
operator.

Proof. Let Φ,Ψ be as in Section 4.3. For j0 ≥ J , we define Tj0 : f̃
p(·),s
2 (w) →

f̃
p(·),s
2 (w) to be the truncation operator given by

Tj0({λk}k∈Zn ∪ {λlj,k}j∈Z∩[J,∞),k∈Zn,l∈{1,2,...,2n−1})

= {λk}k∈Zn ∪ {χ[J,j0](j)λ
l
j,k}j∈Z∩[J,∞),k∈Zn,l∈{1,2,...,2n−1}.

Denote by ιf : f̃
p(·),s0
2 (w)→ f̃

p(·),s1
2 (w) the natural embedding. Set Pj0 ≡ Φ◦Tj0 ◦Ψ.

Then thanks to Theorem 4.6, ‖ι− Pj0‖Lp(·),s0 (w)→Lp(·),s1 (w) ≲ 2−j0(s0−s1) since ‖ιf −
Tj0‖f̃p(·),s02 (w)→f̃

p(·),s1
2 (w)

≲ 2−j0(s0−s1). Hence, it follows from Theorem 5.1 that

‖Mh ◦ ι−Mh ◦ Pj0‖Lp(·),s0 (w)→Lp(·),s1 (w) ≲ 2−j0(s0−s1).

Thus, Mh ◦ ι is realized as the norm limit of the operators {Mh ◦ Pj0}∞j0=J with a
finite rank. Hence Mh ◦ ι is a compact operator.

5.3 Diffeomorphism

A CM -diffeomorphism ψ : Rn → Rn is said to be regular if ψ and its inverse belong
to BM .

Theorem 5.3. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let (s, w) ∈ ((0,∞) \
Z)×Aloc

p(·). Then for all regular C [s+1]-diffeomorphisms ψ : Rn → Rn that preserves

Lp(·)(w), composition mapping f ∈ Lp(·),s(w) 7→ f ◦ ψ ∈ Lp(·),s(w) is bounded.

If s ∈ N0, then any h ∈ Bs induces composition mapping.

Proof. It is clear that f ∈ Lp(·),[s](w) 7→ f ◦ψ ∈ Lp(·),[s](w) and f ∈ Lp(·),[s+1](w) 7→
f ◦ ψ ∈ Lp(·),[s+1](w) are bounded. Hence, we can interpolate these estimates to
have the desired result.

5.4 Complex interpolation II

We obtain the complex interpolation as a direct consequence of Theorem 2.25.

Proposition 5.4. Suppose that p0(·), p1(·), p(·) ∈ P∩LH0∩LH∞. Let (w0, w1, w) ∈
Aloc
p0(·) × Aloc

p1(·) × Aloc
p(·), s0, s1, s and θ satisfy s0, s1, s ≥ 0, 0 < θ < 1 and s =

(1− θ)s0 + θs1, respectively. In addition, assume that

w
1

p(·) = w0

1−θ
p0(·)w1

θ
p1(·) ,

1

p(·)
=

1− θ
p0(·)

+
θ

p1(·)
.
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Then [̃f
p0(·),s0
2 (w0), f̃

p1(·),s1
2 (w1)]θ = f̃

p(·),s
2 (w).

Proof. According to [15, Theorem 7.1.2], (Lp0(·))1−θ(Lp1(·))θ = Lp(·). Since f ∈
Lp(·)(w) if and only if fw

1
p(·) ∈ Lp(·), (Lp0(·)(w0))

1−θ(Lp1(·)(w1))
θ = Lp(·)(w). This

still needs to be combined with Theorem 2.25.

Using Proposition 5.4 and the mappings Φ and Ψ, we obtain the following
conclusion:

Theorem 5.5. Suppose that p0(·), p1(·), p(·) ∈ P ∩ LH0 ∩ LH∞. Let (w0, w1, w) ∈
Aloc
p0(·)×A

loc
p1(·)×A

loc
p(·). Additionally, let s0, s1, s and θ satisfy s0, s1, s ≥ 0, 0 < θ < 1

and s = (1− θ)s0 + θs1, respectively. Assume that

w
1

p(·) = w0

1−θ
p0(·)w1

θ
p1(·) ,

1

p(·)
=

1− θ
p0(·)

+
θ

p1(·)
.

Then [Lp(·),s0(w0), L
p(·),s1(w1)]θ = Lp(·),s(w).

Proof. Let f ∈ [Lp(·),s0(w0), L
p(·),s1(w1)]θ. Then Ψ(f) ∈ [̃f

p0(·),s0
2 (w0), f̃

p1(·),s1
2 (w1)]θ =

f̃
p(·),s
2 (w). Thus, f = Φ ◦Ψ(f) ∈ Lp(·),s(w). Conversely, we let f ∈ Lp(·),s(w). Then

Ψ(f) ∈ f̃
p(·),s
2 (w) = [̃f

p0(·),s0
2 (w0), f̃

p1(·),s1
2 (w1)]θ. Thus, it follows that f = Φ◦Ψ(f) ∈

[Lp(·),s0(w0), L
p(·),s1(w1)]θ.

6 Sobolev space Lp(·),s(w) with s < 0

By virture of the duality, we define Lp(·),s(w) for s ∈ R, especially for s < 0. Section
6.1, gives its definition and investigate the duality. Section 6.2 expands Section 5.
We mimic the proof of the corresponding theorems or use the results in Section 5.

Recall that we write σ ≡ w− 1
p(·)−1 .

6.1 Definition of the Sobolev space Lp(·),s(w) with s < 0

Definition 6.1. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞. Let w ∈ Aloc
p(·) and s < 0.

Then define Lp(·),s(w) to be the dual space of Lp
′(·),−s(σ).

Let s < 0. Since Lp
′(·),−s(σ) is embedded into Lp

′(·)(σ),

ι : f ∈ Lp(·)(w) 7→
[
g ∈ Lp′(·),−s(σ) 7→

∫
Rn

g(x)f(x)dx ∈ C
]

is a well-defined injective linear mapping. Thus, ι embeds Lp(·)(w) into Lp(·),s(w).
The next proposition shows that Lp(·),s(w) is embedded into D′.

Proposition 6.2. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let w ∈ Aloc
p(·) and

s ∈ R. Then Lp(·),s(w) ↪→ D′ for s ∈ R.

Proof. For s < 0, since D ⊂ Lp
′(·),−s(σ), we only take a duality. Otherwise, the

proof is simpler.
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Next, we shall consider the some characterizations of Lp(·),s(w) for s < 0. To

this end, we recall the sequence space f̃
p(·),s
2 (w) (Section 4.3) and investigate its

duality.

Proposition 6.3. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞. Let w ∈ Aloc
p(·) and s < 0.

We define the coupling

〈λ, λ∗〉 =
∑
k∈Zn

λkλ
∗
k +

2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

λlj,kλ
l ∗
j,k

for
λ = {λk}k∈Zn ∪ {λlj,k}j∈Z∩[J,∞),k∈Zn,l∈{1,2,...,2n−1} ∈ f̃

p(·),s
2 (w)

and
λ∗ = {λ∗k}k∈Zn ∪ {λl ∗j,k}j∈Z∩[J,∞),k∈Zn,l∈{1,2,...,2n−1} ∈ f̃

p′(·),−s
2 (σ).

Then f̃
p′(·),−s
2 (σ) is canonically embedded into the dual space of f̃

p(·),s
2 (w) via the

coupling

λ∗ ∈ f̃
p′(·),−s
2 (σ) 7→ [λ ∈ f̃

p(·),s
2 (w) 7→ 〈λ, λ∗〉 ∈ C].

Proof. First, we check the well-definedness of the coupling for λ ∈ f̃
p(·),s
2 (w) and λ ∈

f̃
p′(·),−s
2 (σ): We need to check that two series defining 〈λ, λ∗〉 converge absolutely.

We concentrate on the second term. The first term can be handled by the same way.
Moreover, thanks to the triangle inequality and finiteness of l, we only estimate
for fixed l. By the orthonomality of χj,k,

∞∑
j=J

∑
k∈Zn

∣∣λlj,kλl ∗j,k∣∣ =

∫
Rn

∞∑
j=J

2
jn
2

∑
k∈Zn

∣∣λlj,kλl ∗j,kχj,k(x)
∣∣ dx

=

∫
Rn

∞∑
j=J

2js
∑
k∈Zn

∣∣λlj,kχj,k(x)
∣∣ · 2−js

∑
k′∈Zn

∣∣λl ∗j,k′χj,k′(x)
∣∣ dx.

Using the Cauchy–Schwartz inequality and the Hölder inequality, we have

∞∑
j=J

∑
k∈Zn

∣∣λlj,kλl ∗j,k∣∣
≤
∫
Rn

 ∞∑
j=J

∣∣∣∣∣2js ∑
k∈Zn

λlj,kχj,k(x)

∣∣∣∣∣
2
 1

2
 ∞∑

j=J

∣∣∣∣∣2−js
∑
k′∈Zn

λl ∗j,k′χj,k′(x)

∣∣∣∣∣
2
 1

2

dx

≤

∥∥∥∥∥∥∥
 ∞∑

j=J

∣∣∣∣∣2js ∑
k∈Zn

λlj,kχj,k

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp(·)(w)

∥∥∥∥∥∥∥
 ∞∑

j=J

∣∣∣∣∣2−js
∑
k′∈Zn

λl ∗j,k′χj,k′

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp′(·)(σ)

= ‖λ‖
f
p(·),s
2 (w)

‖λ∗‖
f
p′(·),−s
2 (σ)

. (6.1)

Thus, the coupling is well defined.

Finally, by the inequality (6.1), f̃
p′(·),−s
2 (σ) is embedded into the dual space of

f̃
p(·),s
2 (w).
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Moreover, we can show that the dual space of f̃
p(·),s
2 (w) is embeded into f̃

p′(·),−s
2 (σ).

The case p(·) is constant is considered in [32, 46].

Proposition 6.4. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞. Let w ∈ Aloc
p(·) and s < 0.

For all λ̃ ∈
(
f̃
p(·),s
2 (w)

)∗
, we can represent it uniquely as

λ̃(λ) =
∑
k∈Zn

λkλ
∗
k +

2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

λljkλ
l ∗
jk (= 〈λ, λ∗〉)

for all
λ = {λk}k∈Zn ∪ {λlj,k}j∈Z∩[J,∞),k∈Zn,l∈{1,2,...,2n−1} ∈ f̃

p(·),s
2 (w),

where
λ∗ = {λ∗k}k∈Zn ∪ {λl ∗j,k}j∈Z∩[J,∞),k∈Zn,l∈{1,2,...,2n−1} ∈ f̃

p′(·),−s
2 (σ).

Moreover, we obtain the norm equivalence

‖λ∗‖
f̃
p′(·),−s
2 (σ)

∼ ‖λ̃‖.

Before we move on the proof, we prepare a notation. The space Lp(·)(w, `2) is
the set of all sequences of measurable functions {f lj}j∈Z∩[J,∞),l=0,...,2n−1 satisfying

∥∥{f lj}∥∥Lp(·)(w,ℓ2)
=

∥∥∥∥∥∥
(

2n−1∑
l=0

∞∑
j=J

|f lj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

<∞.

The proof of this proposition follows the method in [32, 46].

Proof. Note that for simplisity, we denote λ = {λljk}j∈Z∩[J,∞),k∈Zn,l=0,...,2n−1, where
it is understood that

λ0j,k =

{
λk (j = J),

0 (otherwise).

Let λ̃ ∈
(
f̃
p(·),s
2 (w)

)∗
. Define the map T : f̃

p(·),s
2 (w) → Lp(·)(w, `2), which

assigns λ = {λljk}j,k,l 7→ {f lj}j,l, where

f lj ≡ 2js
∑
k∈Zn

λljkχj,k.

Here and below, we omit the range where j, k and l move in the elements such as
{λljk}j,k,l. Then, we calculate

∥∥{f lj}j,l∥∥Lp(·)(w,ℓ2)
=

∥∥∥∥∥∥
(

2n−1∑
l=0

∞∑
j=J

|f lj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

=

∥∥∥∥∥∥∥
2n−1∑

l=0

∞∑
j=J

∣∣∣∣∣2js ∑
k∈Zn

λljkχj,k

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp(·)(w)

.
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Thus, T is an isometry. By the Hahn–Banach Theorem, there exists Λ ∈
(
Lp(·)(w, `2)

)∗
such that Λ ◦ T = λ̃ and ‖Λ‖ = ‖λ̃‖. Since we know that

(
Lp(·)(w, `2)

)∗
=

Lp
′(·)(σ, `2), there exists g = {glj}j,l ∈ Lp

′(·)(σ, `2) such that

Λ(f) = 〈f, g〉, ‖Λ‖ = ‖g‖Lp′(·)(σ,ℓ2)

for any f ≡ {f lj}j,l ∈ Lp(·)(w, `2), where

〈f, g〉 =
2n−1∑
l=0

∞∑
j=J

∫
Rn

f lj(x)glj(x)dx

We define the projection P : Lp(·)(w, `2)→ f̃
p′(·),−s
2 (σ) by

P
(
{hlj}j,l

)
= {λl ∗jk}j,k,l =

{∫
Rn

2jshlj(y)χj,k(y)dy

}
j,k,l

for some {hlj}j,l ∈ Lp(·)(w, `2). Then, there is a positive number N such that∥∥P ({hlj}j,l)∥∥f̃p′(·),−s
2 (σ)

=

∥∥∥∥∥∥∥
2n−1∑

l=0

∞∑
j=J

∣∣∣∣∣2−js
∑
k∈Zn

(∫
Rn

2jshlj(y)χj,k(y)dy

)
χj,k

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
Lp′(·)(σ)

≲

∥∥∥∥∥∥
(

2n−1∑
l=0

∞∑
j=J

∣∣∣(M loc
)N [

hlj
]∣∣∣2) 1

2

∥∥∥∥∥∥
Lp′(·)(σ)

≲

∥∥∥∥∥∥
(

2n−1∑
l=0

∞∑
j=J

∣∣hlj∣∣2
) 1

2

∥∥∥∥∥∥
Lp′(·)(σ)

.

Thus, P is continuous.
Combining these ovservations, we can justify the change of the order of the

summation and integration to have

λ̃(λ) = Λ(T (λ)) =
2n−1∑
l=0

∞∑
j=J

∫
Rn

f lj(x)glj(x)dx

=
2n−1∑
l=0

∞∑
j=J

∫
Rn

glj(x)
∑
k∈Zn

λljk2
jsχj,k(x)dx

=
2n−1∑
l=0

∞∑
j=J

∑
k∈Zn

λljk2
js

∫
Rn

gℓj(x)χj,k(x)dx

=
2n−1∑
l=0

∞∑
j=J

∑
k∈Zn

λljkλ
l ∗
jk = 〈λ, λ∗〉.
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Finally, we conclude the proof of the norm equivalence keeping in mind Propo-
sition 6.3 as follows:

‖λ∗‖
f̃
p′(·),−s
2 (σ)

= ‖P
(
glj
)
‖
f̃
p′(·),−s
2 (σ)

≲ ‖glj‖Lp(·)(w,ℓ2) = ‖Λ‖ = ‖λ̃‖.

Theorem 6.5. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let w ∈ Aloc
p(·). Let

s < 0. Then Ψ : f ∈ Lp(·),s(w) 7→ Ψ(f) ∈ f̃
p(·),s
2 (w) and Φ : λ ∈ f̃

p(·),s
2 (w) 7→

Φ(λ) ∈ Lp(·),s(w) are continuous linear operators satisfying Φ ◦ Ψ(f) = f for all
f ∈ Lp(·),s(w).

Proof. Let λ∗ ∈ f̃
p′(·),−s
2 (σ). Then 〈Ψ(f), λ∗〉 = 〈f,Φ(λ∗)〉 due to the orthogonality

of wavelets. Since Φ : f̃
p′(·),−s
2 (σ) → Lp

′(·),−s(σ) is a bounded linear operator, it

follows that Ψ : f ∈ Lp(·),s(w) → Ψ(f) ∈ f̃
p(·),s
2 (w) is a continuous linear operator.

Similarly, Φ : λ ∈ f̃
p(·),s
2 (w)→ Φ(λ) ∈ Lp(·),s(w) is a continuous linear operator.

Finally, we verify the equality. Let g ∈ Lp′(·),−s(σ) be arbitrary. Then

〈Φ ◦Ψ(f), g〉 = 〈Ψ(f),Ψ(g)〉 = 〈f,Φ ◦Ψ(g)〉 = 〈f, g〉,

proving that f = Φ ◦Ψ(f).

Corollary 6.6. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞ and w ∈ Aloc
p(·). Let s < 0.

Then C∞
c is dense in Lp(·),s(w).

Proof. Thanks to Theorem 6.5, we have only to approximate ϕJ,k and ψlj,k. This

is achieved by a routine mollification procedure since Lp(·)(w) is continuously em-
bedded into Lp(·),s(w).

Next, we investigate the duality.

Theorem 6.7. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞. Let w ∈ Aloc
p(·) and s < 0.

Then Lp
′(·),−s(σ) is the dual space of Lp(·),s(w) via the coupling

f ∈ Lp′(·),−s(σ) 7→ [g ∈ Lp(·),s(w) 7→ g(f) = 〈g, f〉 ∈ C].

Proof. By the definition of the duality Lp(·),s(w)-Lp
′(·),−s(σ), Lp

′(·),−s(σ) is embed-
ded into the dual space of Lp(·),s(w). Thus, we have to show the reverse inclusion.

Let L : Lp(·),s(w)→ C be a continuous linear mapping. Then L◦Φ : f̃
p(·),s
2 (w) 7→ C

is a continuous linear mapping. Thus, by Propositions 6.3 and 6.4, there exists

λ∗ ∈ f̃
p′(·),−s
2 (σ) such that L ◦ Φ(λ) = 〈λ, λ∗〉 for all λ ∈ f̃

p(·),s
2 (w). Since

L(f) = L ◦ Φ ◦Ψ(f) = 〈Ψ(f), λ∗〉 = 〈f,Φ(λ∗)〉 (f ∈ Lp(·),s(w)),

it follows that Φ(λ∗) ∈ Lp′(·),−s(σ) is the element, which realizes L.
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6.2 Applications

We can upgrade Theorems 5.1, 5.2, 5.3 and 5.5 to the case where s ∈ R. The case
of s > 0 is already covered in Theorems 5.1, 5.2, 5.3 and 5.5. Hence, we are mainly
interested in the case when s < 0.

Theorem 6.8. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let (s, w) ∈ R × Aloc
p(·).

Then for all h ∈ B[|s|+1], the pointwise multiplication Mh : f ∈ Lp(·),s(w) 7→ h · f ∈
Lp(·),s(w) is bounded.

Proof. Simply employ 〈h·f, g〉 = 〈f, h·g〉 for f ∈ Lp(·),s(w) and g ∈ Lp′(·),−s(σ).

Theorem 6.9. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let w ∈ Aloc
p(·). Then

for 0 > s0 > s1 and h ∈ C [|s1|+1] with compact support, the operator Mh ◦ ι :
Lp(·),s0(w)→ Lp(·),s1(w) is a compact operator.

Proof. Simply go through the same argument as Theorem 5.2.

Theorem 6.10. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞, and let (s, w) ∈ R × Aloc
p(·).

Then for all regular C [|s|+2]-diffeomorphisms ψ : Rn → Rn that preserves Lp(·)(w),
the composition mapping f ∈ Lp(·),s(w) 7→ f ◦ ψ ∈ Lp(·),s(w) is bounded.

Proof. Let s < 0. Let f ∈ D. Observe that∫
Rn

f(ψ(x))g(x)dx =

∫
Rn

f(x)g(ψ−1(x))|det(Dψ)|−1dx.

Since | det(Dψ)|−1 = ± det(Dψ)−1 is a B[−s+1]-function, we can use Theorems 5.3
and 6.8.

If we reexamine the argument in the proof of Theorem 5.5, we obtain the
complex interpolation.

Theorem 6.11. The conclusion of Theorem 5.5 remains valid if we merely assume
s0, s1 ∈ R.

7 Examples

Finally, we will provide some examples. In addition to the examples of w ∈ Ap or
more generally w ∈ Aloc

p , we can consider w(x) = exp(A|x|) and w(x) = (1 + |x|)A
with A ∈ R as we mentioned in Section 1. Section 7.1 investigates the former,
while Section 7.2 considers latter. Section 7.3 is oriented to an application rather
than an example. We define weighted uniformly local Lebesgue spaces with variable
exponents and easily develop the theory of wavelet decomposition as an application
of the results in this paper. Although we consider the case where p(·) is a constant
exponent, Section 7.4 shows the periodic case as an application of the class Aloc

p .
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7.1 wn(x) = eA|x|, A ∈ R
Since we need to work on Rn and Rn−1 at the same time, we add subscript n to w
and write wn instead of w. We prove a trace theorem. We define the trace operator
Tr by

Tr : f ∈ C∞
c = C∞

c (Rn) 7→ f(·′, 0n) ∈ C∞
c (Rn−1).

Theorem 7.1. Let wn(x) = eA|x|, x ∈ Rn for A > 0. Let s > 1
2
. Then Tr :

L2,s(wn) 7→ L2,s− 1
2 (wn−1) is extended to a bounded linear surjective operator.

Proof. It is sufficient to consider the corresponding trace result in the level of

sequences. Consider Tr : f̃2,s2 (wn) 7→ f̃
2,s− 1

2
2 (wn−1) given by

Tr({λk}k∈Zn ∪ {λlj,k}j∈Z∩[J,∞),k∈Zn,l∈{1,2,...,2n−1})

= {λ(k′,0n)}k′∈Zn−1 ∪ {λlj,(k′,0n)}j∈Z∩[J,∞),k′∈Zn−1,l∈{1,2,...,2n−1}.

We claim that this is a well-defined and bounded linear operator by proving the
corresponding inequality for sequences. We set

I =

∥∥∥∥∥∥∥
 ∞∑

j=J

∣∣∣∣∣2j(s− 1
2)

∑
k′∈Zn−1

λj,(k′,0n)χj,k′

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
L2(wn−1)

for {λj,k}j∈Z∩[J,∞),k∈Zn . We observe

I ∼

∥∥∥∥∥∥∥
 ∞∑

j=J

∣∣∣∣∣2js ∑
k′∈Zn−1

λj,(k′,0n)χj,(k′,0)

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
L2(wn)

since wn−1(x
′) ∼ wn(x′, a) for all a ∈ [0, 2−J ] and x′ ∈ Rn−1. Since∥∥∥∥∥∥∥

 ∞∑
j=J

∣∣∣∣∣2js ∑
k′∈Zn−1

λj,(k′,0n)χj,(k′,0)

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
L2(wn)

≤

∥∥∥∥∥∥∥
 ∞∑

j=J

∣∣∣∣∣2js ∑
k∈Zn

λj,kχj,k

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
L2(wn)

,

we obtain

I ≲

∥∥∥∥∥∥∥
 ∞∑

j=J

∣∣∣∣∣2js ∑
k∈Zn

λj,kχj,k

∣∣∣∣∣
2
 1

2

∥∥∥∥∥∥∥
L2(wn)

.

If we employ this inequality, Tr is obtained as a bounded linear operator.
Similarly, by examining the sequence space, we can show that Tr is a surjective

operator.

We can also consider the case where w(x) = exp(Ap(x)|x|) for some A > 0.
In addition to the analogies to Proposition 6.2 and Theorem 7.1, we can show the
lifting property.
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Proposition 7.2. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞ and A,B, s ∈ R. Let
w(x) ≡ exp(Ap(x)|x|) and v(x) ≡ exp(Bp(x)|x|), x ∈ Rn. Set u(x) ≡ exp((A −
B)
√

1 + |x|2), x ∈ Rn. Then f ∈ Lp(·),s(w) 7→ u · f ∈ Lp(·),s(v) is a bounded linear
operator.

We can also consider the case where w(x) = exp(Ap(x)|x|) for some A > 0.
In addition to the analogies to Proposition 6.2 and Theorem 7.1, we can show the
lifting property.

Proof. The proof is similar to Theorem 5.3. We may assume that s ∈ N. In this
case, this assertion follows from the Leibniz rule.

7.2 w(x) = (1 + |x|)A, A ∈ R
Next, we consider the case of polynomials, that is, w(x) = (1 + |x|)A. Remark that
w ∈ A∞ if and only if A > −n. However, if we work within the framework of local
weights, any value of A ∈ R is available.

Proposition 7.3. Suppose that p(·) ∈ P ∩LH0∩LH∞, and let A, s ∈ R. We write
w(x) ≡ (1 + |x|)A, x ∈ Rn. Then Lp(·),s(w) ↪→ S ′.

Proof. Simply observe, for f ∈ Lp(·),s(w) and ϕ ∈ S, when s ≥ 0,

‖fϕ‖L1 ≲ ‖f‖Lp(·)(w) · ‖ϕ‖Lp′(·)(σ) ≲ ‖f‖Lp(·),s(w) sup
x∈Rn

(1 + |x|)
A

p−−1
+n+1|ϕ(x)|.

Meanwhile, when s < 0,

|〈f, ϕ〉| ≤ ‖f‖Lp(·),s(w) · ‖ϕ‖Lp′(·),−s(σ) ≲ ‖f‖Lp(·),s(w) sup
x∈Rn

(1 + |x|)
A

p−−1
+n+1|ϕ(x)|.

Thus, we obtain the desired result.

Analogous to Proposition 7.2, we can show the lifting property.

Proposition 7.4. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞ and s, A,B ∈ R. Let

w(x) = (1+ |x|)A, v(x) = (1+ |x|)B and m(x) = (
√

1 + |x|2)
A−B
p∞ for x ∈ Rn. Then

Mm : f ∈ Lp(·),s(w) 7→ m · f ∈ Lp(·),s(v) is a bounded linear operator.

Proof. The proof is similar to Theorem 5.3 and Proposition 7.2, since m(x) ∼
(
√

1 + |x|2)
A−B
p(x) . We may assume that s ∈ N. In this case, this assertion follows

from the Leibniz rule.

Although the Fefferman–Stein vector-valued inequality for this function space
is not available if A ≤ −n, it is useful to obtain the vector-valued inequality for
the η-function as in [14]. To this end, we prove a simple estimate.

Lemma 7.5. Let p(·) ∈ P ∩ LH0 ∩ LH∞, w ∈ Aloc
p(·), and A,B ∈ R. Write

w(x) = (1 + |x|)A. Assume B > |A|
p∞

+ n. Then the convolution operator

f ∈ Lp(·)(w) 7→ (1 + | · |)−B ∗ f ∈ Lp(·)(w)

is bounded.
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Proof. We may assume that f is non-negative. Simply observe

(1 + | · |)−B ∗ f · (1 + | · |)
A

p∞ ≲ (1 + | · |)−B+
|A|
p∞ ∗ [(1 + | · |)

A
p∞ f ]

≲M [(1 + | · |)
A

p∞ f ].

Thus, we can use the Lp(·)-boundedness of M .

Corollary 7.6. Let p(·) ∈ P ∩ LH0 ∩ LH∞, w ∈ Aloc
p(·), and A,B ∈ R. Write

w(x) ≡ (1 + |x|)A, x ∈ Rn. Assume B > |A|
p∞

+ n. Then∥∥∥∥∥∥
(

∞∑
j=1

22jn|(1 + 2j| · |)−B ∗ fj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

≲

∥∥∥∥∥∥
(

∞∑
j=1

|fj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

. (7.1)

Proof. We devide the left-hand side of (7.1) into two parts:

I =

∥∥∥∥∥∥
(

∞∑
j=1

22jn|(1 + χ[−1,1]n2j| · |)−B ∗ fj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

II =

∥∥∥∥∥∥
(

∞∑
j=1

22jn|(1 + χRn\[−1,1]n2j| · |)−B ∗ fj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

For I, using the Feffereman–Stein type vector-valued inequality [37, Theorem 1.11]∥∥∥∥∥∥
(

∞∑
j=1

M locfj
2

) 1
2

∥∥∥∥∥∥
Lp(·)(w)

≲

∥∥∥∥∥∥
(

∞∑
j=1

|fj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

,

we can obtain desired estimate. Thus, we only have to show

II ≲

∥∥∥∥∥∥
(

∞∑
j=1

|fj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

,

or equivalently,∥∥∥∥∥∥
(

∞∑
j=1

22j(n−B)|(1 + | · |)−B ∗ fj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

≲

∥∥∥∥∥∥
(

∞∑
j=1

|fj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

. (7.2)

Estimate (7.2) is a consequence of Lemma 7.5 and the triangle inequality:∥∥∥∥∥∥
(

∞∑
j=1

22j(n−B)|(1 + | · |)−B ∗ fj|2
) 1

2

∥∥∥∥∥∥
Lp(·)(w)

≤
∞∑
j=1

22j(n−B)
∥∥(1 + | · |)−B ∗ fj

∥∥
Lp(·)(w)

.

As mentioned, once Corollary 7.6 is proved, we can argue similar to [14, Theo-
rem 3.4] to demonstrate various results.
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7.3 Weighted uniformly local Lebesgue spaces with vari-
able exponents

Let p(·) ∈ P ∩ LH0 ∩ LH∞ and w ∈ Aloc
p(·). Then the weighted uniformly local

Lebesgue space L
p(·)
uloc(w) with a variable exponent is defined to be all f ∈ L1

loc

for which the norm ‖f‖
L
p(·)
uloc(w)

= sup
m∈Zn

‖χQ0,mf‖Lp(·)(w) is finite. This is a natural

extension of the uniformly local Lebesgue space Lpuloc, which considers a substitute
of L∞. If we replace the supremum by the `r-norm, then the weighted amalgam
space (`r, L

p(·)
uloc(w)) with a variable exponent is obtained as an extension of the

amalgam space (`r, Lp) considered in [2, 4, 16, 21, 27]. Although our results are
applicable to amalgam spaces, to simplify the argument, we consider uniformly
local Lebesgue spaces with variable exponents.

For w ∈ Aloc
p(·), we write wm(x) = w(x)(1+|x−m|)−p+(1+n). Then by the triangle

inequality, we can check that

‖f‖
L
p(·)
uloc(w)

∼ sup
m∈Zn

‖f‖Lp(·)(wm). (7.3)

Likewise, for s ∈ N, the weighted uniformly local Sobolev space L
p(·),s
uloc (w) with a

variable exponent is defined to be all f ∈ L1
loc for which ∂αf ∈ L

p(·)
uloc(w) for all

|α| ≤ s. The norm of f ∈ Lp(·),suloc (w) is defined by ‖f‖
L
p(·),s
uloc (w)

=
∑

|α|≤s
‖∂αf‖

L
p(·)
uloc(w)

.

We present an application of the wavelet characterization.

Theorem 7.7. Suppose that p(·) ∈ P ∩ LH0 ∩ LH∞ and w ∈ Aloc
p(·). Let s ∈ N0.

Then the function f ∈ L1
loc belongs to L

p(·),s
uloc (w) if and only if V f+Wsf ∈ Lp(·)uloc(w).

Proof. We note that f ∈ L
p(·),s
uloc (w) if and only if ∂αf ∈ L

p(·)
uloc(w) for all |α| ≤ s

by definition. This is equivalent to sup
|α|≤s

sup
m∈Zn

‖∂αf‖Lp(·)(wm) <∞ by (7.3), which is

also equivalent to sup
m∈Zn

‖V f +Wsf‖Lp(·)(wm) <∞ thanks to Theorem 1.3. If we use

(7.3) once again, we obtain the desired conclusion.

Note that using the interpolation and duality results, we have same conclusion
for s ∈ R.

As an application of the weights considered in this paper, we can characterize
various function spaces. Below is an example of Morrey spaces with constant
exponent.

Example 7.8. Let 1 ≤ q ≤ p ≤ ∞. For an Lqloc-function f , its Morrey norm is
defined by

‖f‖Mp
q
≡ sup

(x,r)∈Rn+1
+

|B(x, r)|
1
p
− 1

q

(∫
B(x,r)

|f(y)|qdy
) 1

q

. (7.4)

The Morrey space Mp
q is the set of all f ∈ Lqloc for which ‖f‖Mp

q
<∞. Note that

‖f‖Mp
q
∼ sup

(x,r)∈Rn+1
+

|B(x, r)|
1
p
− 1

q ‖f‖Lq((MχB(x,r))
θ)
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as long as 1− 1
p
< θ < 1. Because of this fact, a similar argument can be used to

obtain the wavelet characterization for Morrey spaces.
A passage to Morrey spaces with variable exponents can be performed. We

omit further details.

7.4 Periodic function spaces

Although the exponent p(·) must be constant in this subsection, it seems useful to
discuss periodic function spaces. Let Lp(Tn) be the set of all p-locally integrable
functions f with period 1 for which

‖f‖Lp(Tn) =

(∫
[0,1]n
|f(x)|pdx

) 1
p

<∞.

Similarly, for s ∈ N, Lp,s(Tn) is the set of all functions f ∈ Lp(Tn) for which
the weak derivative ∂αf exists and belongs to Lp(Tn) as long as the multiindex α
satisfies |α| ≤ s. The norm is given by

‖f‖Lp,s(Tn) =
∑
|α|≤s

‖∂αf‖Lp(Tn).

If a constant p(·) is periodic and satisfies the global log-Hölder condition, then p(·)
must be constant. Thus, we assume that p(·) is a constant here. The following
observation is the starting point of Section 7.4.

Lemma 7.9. Let w(x) = (1 + |x|)−n−1 ∼MχQ0,0(x)
n+1
n for x ∈ Rn. Then for any

1 ≤ p ≤ ∞, Lp(Tn) ↪→ Lp(w) and

‖f‖Lp(Tn) ∼ ‖f‖Lp(w).

Proof. Simply use
∑
m∈Zn

(1 + |m|)−n−1 <∞.

Let s ∈ N ∪ {0}. In view of Lemma 7.9, for f ∈ Lp,s(Tn), we have the wavelet
expansion

f =
∑
k∈Zn

〈f, ϕJ,k〉ϕJ,k +
∞∑
j=J

∑
k∈Zn

2n−1∑
l=1

〈f, ψlj,k〉ψlj,k,

where the convergence occurs in Lp(w) and consequently, in Lp(Tn). Assume that
J is so large that the support of each ϕJ,k is contained in a cube with side-length
1/3. Fix such J . We set

ΦJ,k =
∑

k′≡k (mod 2JZn)

ϕJ,k

and
Ψl
j,k =

∑
k′≡k (mod 2jZn)

ψlj,k
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for k ∈ Z, j = J, J + 1, . . . and l = 1, 2, . . . , 2n − 1. Then, as in [45, Proposition
2.21], we have an orthogonal decomposition

f =
∑

k∈Zn∩[0,2J )n
〈f,ΦJ,k〉L2(Tn)ΦJ,k +

∞∑
j=J

∑
k∈Zn∩[0,2j)n

2n−1∑
l=1

〈f,Ψl
j,k〉L2(Tn)Ψ

l
j,k.

Hence, we can easily obtain the wavelet decomposition for periodic functions.

Corollary 7.10. Let 1 < p <∞, s ∈ N ∪ {0} and let f ∈ Lp(Tn). Set

VTnf = V φ
Tnf ≡

 ∑
k∈Zn∩[0,2J )n

∣∣〈f,ΦJ,k〉L2(Tn)χJ,k
∣∣2 1

2

Ws,Tnf = Wψl

s,Tnf ≡

2n−1∑
l=1

∞∑
j=J

∑
k∈Zn∩[0,2j)n

∣∣2js〈f,Ψl
j,k〉L2(Tn)χj,k

∣∣2 1
2

.

Then f ∈ Lp,s(Tn) if and only if VTnf +Ws,Tnf ∈ Lp(Tn). If this is the case, then
‖f‖Lp,s(Tn) ∼ ‖VTnf‖Lp(Tn) + ‖Ws,Tnf‖Lp(Tn).
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