Asymptotic properties of critical points for subcritical Trudinger-Moser functional

Masato Hashizume

Citation	OCAMI Preprint Series. 2021, 21-5.
Issue Date	$2021-09-09$
Type	Preprint
Textversion	Author
Rights	© Author. This is the preprint version.

From: Osaka City University Advanced Mathematical Institute http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/preprint.html

manuscript No.

(will be inserted by the editor)

Asymptotic properties of critical points for subcritical Trudinger-Moser functional

Masato Hashizume

Received: date / Accepted: date

Abstract On a smooth bounded domain we study the Trudinger-Moser functional

$$
E_{\alpha}(u):=\int_{\Omega}\left(e^{\alpha u^{2}}-1\right) d x, \quad u \in H^{1}(\Omega)
$$

for $\alpha \in(0,2 \pi)$ and its restriction $E_{\alpha} \mid \Sigma_{\lambda}$, where $\Sigma_{\lambda}:=\left\{u \in H^{1}(\Omega) \mid \int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x=1\right\}$ for $\lambda>0$. By applying the asymptotic analysis and the variational method, we obtain asymptotic behavior of critical points of $\left.E_{\alpha}\right|_{\Sigma_{\lambda}}$ both as $\lambda \rightarrow 0$ and as $\lambda \rightarrow+\infty$. In particular, we prove that when α is sufficiently small, maximizers for $\sup _{u \in \Sigma_{\lambda}} E_{\alpha}(u)$ tend to 0 in $C(\bar{\Omega})$ as $\lambda \rightarrow+\infty$.

Keywords asymptotic behavior • Neumann problem • subcritical • Trudinger-Moser inequality \cdot two dimension

Mathematics Subject Classification (2000) 35A09 • 35B38 • 35B40 • 35J15 • 35J61

1 Introduction

Let $\Omega \subset \mathbb{R}^{2}$ be a smooth bounded domain. It is well-known that there is a Sobolev embed$\operatorname{ding} W_{0}^{1, p}(\Omega) \hookrightarrow L^{2 p /(2-p)}(\Omega)$ for $p \in[1,2)$. If we look at the limiting Sobolev case $p=2$, then $H_{0}^{1}(\Omega):=W_{0}^{1,2}(\Omega) \hookrightarrow L^{q}(\Omega)$ for any $q \geq 1$, but $H_{0}^{1}(\Omega) \nLeftarrow L^{\infty}(\Omega)$. To fill in this gap, it is natural to look for the maximal growth function $g: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that

$$
\sup _{\substack{u \in H_{0}^{1}(\Omega) \\\|\nabla u\|_{2} \leq 1}} \int_{\Omega} g(u) d x<+\infty,
$$

where $\|\nabla u\|_{2}^{2}=\int_{\Omega}|\nabla u|^{2} d x$ denotes the Dirichlet norm of u. Pohozaev [12] and Trudinger [15] proved independently that the maximal growth is of exponential type and more pre-

[^0]cisely that there exists a constant α such that
$$
\sup _{\substack{u \in H_{0}^{1}(\Omega) \\\|\nabla\|_{2} \leq 1}} \int_{\Omega} e^{\alpha u^{2}} d x<+\infty .
$$

Later, this inequality was sharpened by Moser [8] as follows:

$$
\sup _{\substack{u \in H_{0}^{1}(\Omega) \tag{1}\\
\|\nabla u\|_{2} \leq 1}} \int_{\Omega} e^{\alpha u^{2}} d x\left\{\begin{array}{lll}
<C|\Omega| & \text { if } & \alpha \leq 4 \pi \\
=+\infty & \text { if } & \alpha>4 \pi
\end{array}\right.
$$

Lions [7] showed that for (1) there is a loss of compactness at the limiting exponent $\alpha=4 \pi$. But, despite the loss of compactness, the existence of a function which attains the supremum in (1) for $\alpha=4 \pi$ is shown by Carleson and Chang [1] if Ω is a unit ball. This result was extended to arbitrary bounded domains in \mathbb{R}^{2} by Flucher [3].

In the case of the whole space $\Omega=\mathbb{R}^{2}$, Ruf [13] and Li and Ruf [5] showed that for $\alpha \leq 4 \pi$

$$
\begin{equation*}
d_{\alpha}:=\sup _{\substack{u \in H^{1}\left(\mathbb{R}^{2}\right) \\ \int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq 1}} \int_{\mathbb{R}^{2}}\left(e^{\alpha u^{2}}-1\right) d x<+\infty \tag{2}
\end{equation*}
$$

and that d_{α} is attained if $\alpha=4 \pi$. It is proved by Ishiwata [4] that there exists an explicit constant $C_{\mathbb{R}^{2}}$ such that d_{α} is attained for $C_{\mathbb{R}^{2}}<\alpha<4 \pi$, while d_{α} is not attained for α small enough, by vanishing loss of compactness.

In this paper, we consider positive critical points of

$$
E_{\alpha}(u):=\int_{\Omega}\left(e^{\alpha u^{2}}-1\right) d x, \quad \alpha \in(0,2 \pi)
$$

constrained to the manifold

$$
\Sigma_{\lambda}:=\left\{u \in H^{1}(\Omega) \mid \int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) d x=1\right\},
$$

where $\lambda>0$ is a parameter. By the compactness of $\left.E_{\alpha}\right|_{\lambda}$, i.e. by the continuity of E_{α} with respect to weak convergence sequence in Σ_{λ}, there is a maximizer for $\sup _{u \in \Sigma_{\lambda}} E_{\alpha}(u)$, which is a critical point of $E_{\alpha} \mid \Sigma_{\lambda}$. Critical points of $E_{\alpha} \mid \Sigma_{\lambda}$ correspond to solutions of the nonlocal problem

$$
\begin{cases}-\Delta u+\lambda u=\frac{u e^{\alpha u^{2}}}{\int_{\Omega} u^{2} e^{2 u^{2}} d x} & \text { in } \Omega \tag{3}\\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega,\end{cases}
$$

where v is the unit outer normal to $\partial \Omega$. In addition to maximizers for $\sup _{u \in \Sigma_{\lambda}} E_{\alpha}(u)$ the constant $(\lambda|\Omega|)^{-1 / 2}$ is also a solution of (3), where $|\Omega|$ denotes the Lebesgue measure of Ω. Obviously, u is a solution of (3) if and only if $u_{\lambda}(x)=u((x-p) / \sqrt{\lambda})$ is a solution of

$$
\begin{cases}-\Delta u+u=\frac{u e^{\alpha u^{2}}}{\int_{\Omega_{\lambda}} u^{2} e^{\alpha u^{2}} d x} & \text { in } \Omega_{\lambda}, \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega_{\lambda},\end{cases}
$$

for $p \in \mathbb{R}^{2}$ and $\Omega_{\lambda}:=\{\sqrt{\lambda} x+p \mid x \in \Omega\}$. So the parameter λ means the scaling of the domain. Our aim of this paper is to study asymptotic behavior of critical points of $E_{\alpha} \mid \Sigma_{\lambda}$ both as $\lambda \rightarrow 0$ and as $\lambda \rightarrow+\infty$.

In $[10,6,11,9]$, they considered the following Neumann problem for power type nonlinearity:

$$
\begin{cases}-\varepsilon^{2} \Delta u+u=f(u) & \text { in } \Omega \tag{4}\\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

where ε is a parameter and f satisfies some conditions with $f(t)=O\left(t^{p}\right)$ as $t \rightarrow \infty$ for $p>1$. In [10], it is shown that the constant solution is the only positive solution for (4) provided that ε is sufficiently large. In the case of small ε, it is proved by $[6,11,9]$ that a solution at this least energy level for the Neumann problem possesses just one local maximum point, which lies on the boundary, and concentrates (up to subsequences) around a point where mean curvature maximizes. The method employed consists of a combination of the variational characterization of the solutions and exact estimates of the value of the energy functional based on a precise asymptotic analysis of the solutions.

To state our results, let us define the constant $I(\alpha, \lambda)$ by

$$
I(\alpha, \lambda):=\sup _{u \in \Sigma_{\lambda}} E_{\alpha}(u)
$$

for $\alpha \in(0,2 \pi)$ and $\lambda>0$. We make a remark that all maximizers for $I(\alpha, \lambda)$ are belong to $C^{2, \beta}(\bar{\Omega})$ and strictly positive in $\bar{\Omega}$. We also define I_{α} by

$$
I_{\alpha}:=\sup _{\substack{u \in H^{1}\left(\mathbb{R}_{+}^{2}\right) \\ \int_{\mathbb{R}_{+}^{2}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq 1}} \int_{\mathbb{R}_{+}^{2}}\left(e^{\alpha u^{2}}-1\right) d x
$$

where $\mathbb{R}_{+}^{2}:=\left\{x \in \mathbb{R}^{2} \mid x_{2}>0\right\}$ is the half space. Then the constant α_{*} is defined by

$$
\alpha_{*}:=\inf \left\{\alpha \in(0,2 \pi) \mid I_{\alpha}>\alpha\right\}
$$

Note that $\alpha_{*} \in(0,2 \pi)$ holds. Indeed, by the radially symmetric rearrangement $I_{\alpha}=d_{2 \alpha} / 2$ holds, where $d_{2 \alpha}$ is defined in (2) for 2α. Moreover, due to Ishiwata [4], $d_{2 \alpha}>2 \alpha$ if α is close to 2π and $d_{2 \alpha}=2 \alpha$ if α is small enough. Thus, $I_{\alpha}>\alpha$ holds if α is close to 2π and $I_{\alpha}=\alpha$ holds if α is small, which imply that $\alpha_{*} \in(0,2 \pi)$.

In this setting, we obtain the following results:
Theorem 1 Assume that $\alpha \in\left(\alpha_{*}, 2 \pi\right)$. Let u_{λ} be a maximizer of $I(\alpha, \lambda)$ for $\lambda>0$. Then the following statements hold:
(I) There exist positive constants Λ_{1}, M_{1} and M_{2} such that for any $\lambda>\Lambda_{1}$ we have

$$
M_{1} \leq \sup _{x \in \Omega} u_{\lambda}(x) \leq M_{2}
$$

(II) For λ sufficiently large, u_{λ} has a unique maximum and the maximum point lies on the boundary of Ω.
(III) For any $\varepsilon>0$, there exist positive constants R and Λ_{2} such that for any $\lambda>\Lambda_{2}$ we have

$$
u_{\lambda}(x) \leq M_{3} \varepsilon e^{-\mu_{1} \delta(x) \sqrt{\lambda}} \quad \text { for } \quad x \in \bar{\Omega} \backslash B_{R / \sqrt{\lambda}}\left(x_{\lambda}\right)
$$

where $x_{\lambda} \in \partial \Omega$ is the unique maximum point of $u_{\lambda}, \delta(x)=\min \left\{\operatorname{dist}\left(x, \partial B_{R / \sqrt{\lambda}}\left(x_{\lambda}\right), \mu_{2}\right\}\right.$ and M_{3}, μ_{1}, μ_{2} are positive constants depending only on Ω.

Theorem 2 Assume that $\alpha \in\left(0, \alpha_{*}\right)$. Let u_{λ} be a maximizer of $I(\alpha, \lambda)$ for $\lambda>0$. Then we have

$$
u_{\lambda} \rightarrow 0 \quad \text { in } \quad C^{0}(\bar{\Omega})
$$

and

$$
\int_{\Omega}\left|\nabla u_{\lambda}\right|^{2} d x \rightarrow 0, \quad \lambda \int_{\Omega} u_{\lambda}^{2} d x \rightarrow 1
$$

as $\lambda \rightarrow+\infty$.
In the case of $\alpha \in\left(\alpha_{*}, 2 \pi\right)$, there is a maximizer for I_{α}. So the situation is similar to the case of power type nonlinearity (4). For large λ, a maximizer u_{λ} has a unique maximum which located on the boundary of the domain and u_{λ} can be made arbitrarily small in the outer region $\bar{\Omega} \backslash B_{R / \sqrt{\lambda}}\left(x_{\lambda}\right)$. In addition to Theorem 1 , we derive that u_{λ} converges to some maximizer of I_{α} in some sense as $\lambda \rightarrow+\infty$, and it turns out that $\lim _{\lambda \rightarrow \infty} I(\alpha, \lambda)=I_{\alpha}$. In the case of $\alpha \in\left(0, \alpha_{*}\right), I_{\alpha}$ is not attained by vanishing loss of compactness on maximizing sequences. The situation is completely different from the case of (4). Theorem 2 asserts that the vanishing phenomena occur for sequences of maximizers. Also in the case of $\alpha \in\left(0, \alpha_{*}\right)$, it follows from Theorem 2 that $\lim _{\lambda \rightarrow \infty} I(\alpha, \lambda)=I_{\alpha}$.

In the proofs of Theorems 1 and 2, we use a diffeomorphism straighting a boundary portion around a point on $\partial \Omega$ which was introduced in $[6,11,9]$ and some results of the solution of the following equation:

$$
-\Delta w+w=L w e^{4 \pi w^{2}} \quad \text { in } \quad \mathbb{R}^{2}, \quad L \in(0,1), \quad w \in H^{1}\left(\mathbb{R}^{2}\right)
$$

Concerning the equation, it is known that all positive solutions are in $C^{2}\left(\mathbb{R}^{2}\right)$ and radially symmetric for any $L \in(0,1)$. Moreover, they and their first derivatives decay exponentially at infinity. By Ruf and Sani [14], it is proved that for each $L \in(0,1)$ there exists a solution which attains the ground state level. We use these result to reject the possibility that maximizer u_{λ} has infinitely many peak in $\bar{\Omega}$.

The following result is asymptotic behavior of positive critical points of $\left.E_{\alpha}\right|_{\Sigma_{\lambda}}$ as $\lambda \rightarrow 0$.
Theorem 3 Assume that $\alpha \in(0,2 \pi)$ and that v_{λ} is a positive critical point of $\left.E_{\alpha}\right|_{\Sigma_{\lambda}}$ for $\lambda>0$. Then we have

$$
(\lambda|\Omega|)^{\frac{1}{2}} v_{\lambda} \rightarrow 1 \quad \text { in } \quad C^{2}(\bar{\Omega})
$$

as $\lambda \rightarrow 0$.
Theorem 3 means that $v_{\lambda} /\left\|v_{\lambda}\right\|_{L^{\infty}(\Omega)} \rightarrow 1$ in $C^{2}(\bar{\Omega})$ and $(\lambda|\Omega|)^{1 / 2}\left\|v_{\lambda}\right\|_{L^{\infty}(\Omega)} \rightarrow 1$ as $\lambda \rightarrow 0$. In order to prove the theorem, we show that $\left\|v_{\lambda}\right\|_{L^{\infty}(\Omega)} \rightarrow \infty$ as $\lambda \rightarrow 0$ and use a blow-up analysis. For small λ, the situation is more delicate than the case of (4) considered in [10], and then the uniqueness of the positive critical point of $\left.E_{\alpha}\right|_{\Sigma_{\lambda}}$ is still open.

This paper is organized as follows. In Section 2, we will prove Theorems 1 and 2. By using asymptotic analysis, we will show that either "concentration at one point" or "vanishing" occurs on sequence of maximizers. In order to prove the claim, we will investigate the asymptotic behavior of maximizers in the region around concentration point as well as in the outer region. In Section 3, we will prove Theorem 3. In Section 4, the relationship between d_{α} and I_{α} will be discussed. In particular, we will show that α_{*} is the threshold dividing existence and non-existence of a maximizer for I_{α}.

2 Proofs of Theorems 1 and 2

In this section we prove Theorems 1 and 2 . In order to derive the asymptotic behavior of u_{λ}, we study a nonlocal elliptic equation and estimate $I(\alpha, \lambda)$.

Before proving Theorems 1 and 2, we recall some facts about a diffeomorphism straightening a boundary portion around a point P on $\partial \Omega$, which was introduced in $[6,11,9]$. Fix $P \in \partial \Omega$. We may assume that P is the origin and the inner normal to $\partial \Omega$ at P is pointing in the direction of the positive x_{2}-axis, here $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. In a neighborhood N of P, $\partial \Omega \cap N$ can be represented by

$$
x_{2}=\psi\left(x_{1}\right)=\frac{1}{2} \gamma x_{1}^{2}+o\left(x_{1}^{2}\right)
$$

where γ is the curvature of $\partial \Omega$ at P. Define a map $x=\Phi(y)=\left(\Phi_{1}(y), \Phi_{2}(y)\right)$ by

$$
\begin{equation*}
\Phi_{1}(y)=y_{1}-y_{2} \frac{\partial \psi}{\partial x_{1}}\left(y_{1}\right), \quad \Phi_{2}(y)=y_{2}+\psi\left(y_{1}\right) \tag{5}
\end{equation*}
$$

Since $\psi^{\prime}(0)=0$, the differential map $D \Phi$ of Φ satisfies $D \Phi(0)=I$, the identity map. Thus Φ has the inverse mapping $y=\Phi^{-1}(x)$ for small $|x|$. We write as $\Psi(x)=\left(\Psi_{1}(x), \Psi_{2}(x)\right)$ instead of $\Phi^{-1}(x)$.

For fixed $\alpha \in(0,2 \pi)$ and a sequence λ_{n} such that $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$ a maximizer of $I\left(\alpha, \lambda_{n}\right)$ is denoted by u_{n}. The maximizer $u_{n} \in \Sigma_{\lambda_{n}}$ satisfies

$$
\begin{cases}-\Delta u_{n}+\lambda_{n} u_{n}=\frac{u_{n} e^{\alpha u_{n}^{2}}}{\int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x} & \text { in } \Omega \tag{6}\\ \frac{\partial u_{n}}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

2.1 Concentration profile

Proposition 1 There exists a positive constant C_{1} such that $\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \leq C_{1}$ for sufficiently large n.

Proof Set $c_{n}:=\left\|u_{n}\right\|_{L^{\infty}(\Omega)}$ and assume that $x_{n} \in \bar{\Omega}$ satisfies $u_{n}\left(x_{n}\right)=c_{n}$. We assume that $c_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and derive a contradiction. We define r_{n} such that

$$
r_{n}^{2}=\frac{\int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x}{c_{n}^{2} e^{\alpha c_{n}^{2}}}
$$

and then, it follows that

$$
\begin{equation*}
r_{n}^{2} \leq \frac{\int_{\Omega} u_{n}^{2} d x}{c_{n}^{2}} \leq \frac{1}{\lambda_{n} c_{n}^{2}} \tag{7}
\end{equation*}
$$

If $\operatorname{dist}\left(x_{n}, \partial \Omega\right) / r_{n} \rightarrow \infty$, we define $\Omega_{n}:=\left\{\left(x-x_{n}\right) / r_{n} \mid x \in \Omega\right\}$ and

$$
\begin{cases}\phi_{n}(y):=c_{n}^{-1} u_{n}\left(r_{n} y+x_{n}\right) & y \in \Omega_{n} \\ \eta_{n}(y):=c_{n}\left(u_{n}\left(r_{n} y+x_{n}\right)-c_{n}\right) & y \in \Omega_{n}\end{cases}
$$

Then, ϕ_{n} and η_{n} satisfy

$$
-\Delta_{y} \phi_{n}+\lambda_{n} r_{n}^{2} \phi_{n}=c_{n}^{-2} \phi_{n} e^{\alpha c_{n}^{2}\left(\phi_{n}^{2}-1\right)}
$$

$$
\begin{equation*}
-\Delta_{y} \eta_{n}+\lambda_{n} r_{n}^{2} c_{n}^{2} \phi_{n}=\phi_{n} e^{\alpha\left(1+\phi_{n}\right) \eta_{n}} . \tag{8}
\end{equation*}
$$

Since $\operatorname{dist}\left(x_{n}, \partial \Omega\right) / r_{n} \rightarrow \infty$, for any $R>0$ there exists K such that $B_{R}\left(x_{n}\right) \subset \Omega_{n}$ for any $n \geq K$. Thus, by (7), the elliptic regularity theory and the maximum principle we see that

$$
\phi_{n} \rightarrow \phi_{0} \equiv 1 \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right), \quad-\Delta \phi_{0}=0 \quad \text { in } \quad \mathbb{R}^{2} .
$$

Using the behavior of ϕ_{n}, we estimate $\lambda_{n} r_{n}^{2} c_{n}^{2}$ in (8). Since $u_{n} \in \Sigma_{\lambda_{n}}$, we have

$$
\begin{aligned}
1 & \geq \lambda_{n} \int_{\Omega} u_{n}^{2} d x \geq \lambda_{n} c_{n}^{2} \int_{B_{R r_{n}}\left(x_{n}\right)}\left(\frac{u_{n}}{c_{n}}\right)^{2} d x=\lambda_{n} c_{n}^{2} r_{n}^{2} \int_{B_{R}} \phi_{n}^{2} d y \\
& =\lambda_{n} c_{n}^{2} r_{n}^{2} \int_{B_{R}}(1+o(1))^{2} d y=\lambda_{n} c_{n}^{2} r_{n}^{2}\left|B_{R}\right|(1+o(1))
\end{aligned}
$$

for any $R>0$, and thus $\lambda_{n} c_{n}^{2} r_{n}^{2} \rightarrow 0$ as $n \rightarrow \infty$. Applying the elliptic regularity theory to (8), we have

$$
\eta_{n} \rightarrow \eta_{0} \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right), \quad-\Delta \eta_{0}=e^{2 \alpha \eta_{0}} \quad \text { in } \quad \mathbb{R}^{2} .
$$

Moreover, it follows that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} e^{2 \alpha \eta_{0}} d y=\lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{B_{R}} \phi_{n}^{2} e^{\alpha\left(1+\phi_{n}\right) \eta_{n}} d y \leq \lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\int_{B_{R r_{n}}\left(x_{n}\right)} u_{n}^{2} e^{\alpha u_{n}^{2}} d x}{\int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x} \leq 1 \tag{9}
\end{equation*}
$$

and then

$$
\eta_{0}=-\frac{1}{\alpha} \log \left(1+\frac{\alpha}{4}|y|^{2}\right) .
$$

Since $\alpha<2 \pi$, by a direct computation, we have

$$
\int_{\mathbb{R}^{2}} e^{2 \alpha \eta_{0}} d y=\frac{4 \pi}{\alpha}>2
$$

But this contradicts (9). Hence c_{n} is bounded if $\operatorname{dist}\left(x_{n}, \partial \Omega\right) / r_{n} \rightarrow \infty$.
In the case of $\operatorname{dist}\left(x_{n}, \partial \Omega\right)=O\left(r_{n}\right)$, we follow [11]. One may assume that $x_{n} \rightarrow x_{0} \in$ $\partial \Omega$ by passing to a subsequence if necessary. Take the diffeomorphism $y=\Psi(x)$ which straightens a boundary portion near x_{0} as in (5). We may assume that $\Phi=\Psi^{-1}$ is defined in an open set containing the closed ball $\overline{B_{2 \kappa}}, \kappa>0$, and that $P_{n}:=\Psi\left(x_{n}\right) \in B_{\kappa}^{+}$for all n. Put

$$
v_{n}(y):=u_{n}(\Phi(y)) \quad \text { for } \quad y \in \overline{B_{2 \kappa}^{+}}
$$

and extend it to $\overline{B_{2 \kappa}}$ by reflection:

$$
\tilde{v}_{n}(y):=\left\{\begin{array}{lll}
v_{n}(y) & \text { if } & y \in \overline{B_{2 \kappa}^{+}}, \\
v_{n}\left(\left(y_{1},-y_{2}\right)\right) & \text { if } & y \in B_{2 \kappa}^{-},
\end{array}\right.
$$

where $B_{2 \kappa}^{-}:=\left\{y \in \overline{B_{2 \kappa}} \mid y_{2}<0\right\}$. Moreover, we define a scaled function $w_{n}(z)$ by

$$
w_{n}(z):=\tilde{v}_{n}\left(r_{n} z+P_{n}\right) \quad \text { for } \quad z \in \overline{B_{\kappa / r_{n}}},
$$

and then ϕ_{n} and η_{n} are defined by

$$
\begin{gathered}
\phi_{n}(z):=c_{n}^{-1} w_{n}(z), \\
\eta_{n}(z):=c_{n}\left(w_{n}(z)-c_{n}\right) .
\end{gathered}
$$

By (6), ϕ_{n} and η_{n} satisfy the following elliptic equations

$$
\begin{aligned}
& \sum_{i, j=1}^{2} a_{i j}^{n}(z) \frac{\partial^{2} \phi_{n}}{\partial z_{i} \partial z_{j}}+r_{n} \sum_{j=1}^{2} b_{j}^{n}(z) \frac{\partial \phi_{n}}{\partial z_{j}}+\lambda_{n} r_{n}^{2} \phi_{n}=c_{n}^{-2} \phi_{n} e^{\alpha c_{n}^{2}\left(\phi_{n}^{2}-1\right)}, \\
& \sum_{i, j=1}^{2} a_{i j}^{n}(z) \frac{\partial^{2} \eta_{n}}{\partial z_{i} \partial z_{j}}+r_{n} \sum_{j=1}^{2} b_{j}^{n}(z) \frac{\partial \eta_{n}}{\partial z_{j}}+\lambda_{n} r_{n}^{2} c_{n}^{2} \phi_{n}=\phi_{n} e^{\alpha\left(1+\phi_{n}\right) \eta_{n}}
\end{aligned}
$$

where $a_{i j}^{n}, b_{j}^{n}$ are defined as follows: First, put

$$
\begin{align*}
a_{i j}(y) & =\sum_{\ell=1}^{2} \frac{\partial \Psi_{i}}{\partial x_{\ell}}(\Phi(y)) \frac{\partial \Psi_{j}}{\partial x_{\ell}}(\Phi(y)) \quad 1 \leq i, j \leq 2 \tag{10}\\
b_{j}(y) & =\left(\Delta \Psi_{j}\right)(\Phi(y)) \quad 1 \leq j \leq 2 \tag{11}
\end{align*}
$$

Then set $P_{n}:=\left(p_{n}, q_{n} r_{n}\right)$ and

$$
\begin{align*}
& a_{i j}^{n}(z)= \begin{cases}a_{i j}\left(P_{n}+r_{n} z\right) & z_{2} \geq-q_{n}, \\
(-1)^{\delta_{i 2}+\delta_{j 2}} a_{i j}\left(\left(p_{n}+r_{n} z_{1},-\left(q_{n}+z_{2}\right) r_{n}\right)\right. & z_{2}<q_{n},\end{cases} \tag{12}\\
& b_{j}^{n}(z)= \begin{cases}b_{j}\left(P_{n}+r_{n} z\right) & z_{2} \geq-q_{n}, \\
(-1)^{\delta_{j 2}} b_{j}\left(\left(p_{n}+r_{n} z_{1}\right),-\left(q_{n}+z_{2}\right) r_{n}\right) & z_{2}<-q_{n},\end{cases} \tag{13}
\end{align*}
$$

where $\delta_{i j}$ is the Kronecker symbol. Using the elliptic regularity theory, we have

$$
\begin{aligned}
& \phi_{n} \rightarrow \phi_{0} \equiv 1 \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right), \quad-\Delta \phi_{0}=0 \quad \text { in } \quad \mathbb{R}^{2} \\
& \eta_{n} \rightarrow \eta_{0} \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right), \quad-\Delta \eta_{0}=e^{2 \alpha \eta_{0}} \quad \text { in } \quad \mathbb{R}^{2}
\end{aligned}
$$

We compute $\int_{\mathbb{R}^{2}} e^{2 \alpha \eta_{0}} d z$ in the same way as in (9). It follows that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} e^{2 \alpha \eta_{0}} d z=\lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty} 2 \int_{B_{R}^{+}} \phi_{n}^{2} e^{\alpha\left(1+\phi_{n}\right) \eta_{n}} d z \leq \lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{2 \int_{\Omega \cap \Phi\left(B_{R r_{n}}\left(P_{n}\right)\right)} u_{n}^{2} e^{\alpha u_{n}^{2}} d x}{\int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x} \leq 2 \tag{14}
\end{equation*}
$$

Hence, we see that

$$
\eta_{0}=-\frac{1}{\alpha} \log \left(1+\frac{\alpha}{4}|z|^{2}\right)
$$

and

$$
\int_{\mathbb{R}^{2}} e^{2 \alpha \eta_{0}} d z=\frac{4 \pi}{\alpha}
$$

But this equality and (14) contradict the hypothesis $\alpha<2 \pi$. Thus, c_{n} is bounded if $\operatorname{dist}\left(x_{n}, \partial \Omega\right)=$ $O\left(r_{n}\right)$. Consequently, in both cases, there exists a constant C_{1} such that $c_{n} \leq C_{1}$ for sufficiently large n.

Lemma 1 There exist a positive constant C_{2} such that

$$
\lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x \in\left(1, C_{2}\right)
$$

Proof Since u_{n} satisfies the equation (6) and $u_{n}>0$ in $\bar{\Omega}$, we have

$$
\lambda_{n} \int_{\Omega} u_{n} d x=\frac{\int_{\Omega} u_{n} e^{\alpha u_{n}^{2}} d x}{\int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x}>\frac{\int_{\Omega} u_{n} d x}{\int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x} .
$$

Thus, we have $\lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x>1$. Upper bound follows from Proposition 1. Indeed, assuming that C_{1} is the constant obtained in Proposition 1 and setting $C_{2}:=e^{\alpha C_{1}^{2}}$, we have

$$
\lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x \leq C_{2} \lambda_{n} \int_{\Omega} u_{n}^{2} d x \leq C_{2} .
$$

Therefore, we conclude that the lemma holds.
The next proposition follows from Theorem 2.1 in [14].
Proposition 2 For $L>1$ and $\alpha>0$ there exists a positive constant $\delta_{L, \alpha}$ such that for any $w \in H^{1}\left(\mathbb{R}^{2}\right)$ which is a solution of

$$
\begin{equation*}
-\Delta w+w=\frac{w e^{\alpha w^{2}}}{L} \text { in } \mathbb{R}^{2} \tag{15}
\end{equation*}
$$

it holds that

$$
\int_{\mathbb{R}^{2}}|\nabla w|^{2} d x \geq \delta_{L, \alpha} .
$$

Proof Assume that $L>1, \alpha>0$ and $w \in H^{1}\left(\mathbb{R}^{2}\right)$ is a solution of (15). Note that $w \in$ $C_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right)$ holds by the elliptic regularity theory. Set $\hat{w}=(\alpha / 4 \pi)^{1 / 2} w$. Then, \hat{w} is a solution of

$$
\begin{equation*}
-\Delta w+w=\frac{w e^{4 \pi w^{2}}}{L} \tag{16}
\end{equation*}
$$

and it follows from the Pohozaev identity that

$$
\begin{equation*}
\frac{1}{2} \int_{\mathbb{R}^{2}} \hat{w}^{2} d x-\frac{1}{8 \pi L} \int_{\mathbb{R}^{2}}\left(e^{4 \pi \hat{w}^{2}}-1\right) d x=0 \tag{17}
\end{equation*}
$$

By Theorem 2.1 in [14], there exists a ground state solution w_{*} of (16), that is, w_{*} is a solution of (16) such that $I\left(w_{*}\right)=c_{*, L}$, where

$$
\begin{aligned}
I(u):= & \frac{1}{2} \int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+u^{2}\right) d x-\frac{1}{8 \pi L} \int_{\mathbb{R}^{2}}\left(e^{4 \pi u^{2}}-1\right) d x, \quad u \in H^{1}\left(\mathbb{R}^{2}\right), \\
& c_{*, L}:=\inf \left\{I(u) \mid u \in H^{1}\left(\mathbb{R}^{2}\right) \backslash\{0\} \text { is a solution of }(16)\right\} .
\end{aligned}
$$

Combining the result and (17), we have

$$
0<c_{*, L} \leq I(\hat{w})=\frac{1}{2} \int_{\mathbb{R}^{2}}|\nabla \hat{w}|^{2} d x=\frac{\alpha}{8 \pi} \int_{\mathbb{R}^{2}}|\nabla w|^{2} d x .
$$

Taking $\delta_{L, \alpha}=8 \pi c_{*, L} / \alpha$, we obtain the desired lower bound.
Lemma 2 Assume that there exist positive constant ε and a point $\tilde{x}_{n} \in \bar{\Omega}$ such that $\lim _{n \rightarrow \infty} u_{n}\left(\tilde{x}_{n}\right) \geq$ ε holds. Then, there exists $\tilde{w} \in H^{1}\left(\mathbb{R}^{2}\right)$ such that
(i) \tilde{w} is radially symmetric for some point $\tilde{p} \in \mathbb{R}^{2}$,
(ii) $\partial \tilde{w} / \partial r<0$ for $r=|y-\tilde{p}|>0, y \in \mathbb{R}^{2}$,
(iii) \tilde{w} is a solution of

$$
-\Delta w+w=\frac{w e^{\alpha w^{2}}}{L} \text { in } \mathbb{R}^{2}
$$

for some $L>1$,
(iv) if $\sqrt{\lambda_{n}} \operatorname{dist}\left(\tilde{x}_{n}, \partial \Omega\right) \rightarrow \infty$ as $n \rightarrow \infty$, then we have

$$
u_{n}\left(\frac{y}{\sqrt{\lambda_{n}}}+\tilde{x}_{n}\right) \rightarrow \tilde{w} \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right)
$$

and if $\operatorname{dist}\left(\tilde{x}_{n}, \partial \Omega\right)=O\left({\sqrt{\lambda_{n}}}^{-1}\right)$, then we have

$$
u_{n}\left(\Phi\left(\frac{z}{\sqrt{\lambda_{n}}}+\Psi\left(\tilde{x}_{n}\right)\right)\right) \rightarrow \tilde{w} \quad \text { in } \quad C_{l o c}^{2}\left(\overline{\mathbb{R}_{+}^{2}}\right) .
$$

Proof In the case of $\sqrt{\lambda_{n}} \operatorname{dist}\left(\tilde{x}_{n}, \partial \Omega\right) \rightarrow \infty$, we set

$$
w_{n}:=u_{n}\left(\frac{y}{\sqrt{\lambda_{n}}}+\tilde{x}_{n}\right) \quad \text { for } \quad y \in \Omega_{\lambda_{n}}:=\left\{\sqrt{\lambda_{n}}\left(x-\tilde{x}_{n}\right) \mid x \in \Omega\right\} .
$$

Then, w_{n} is a solution of

$$
-\Delta w+w=\frac{w e^{\alpha w^{2}}}{\lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x} .
$$

Since $\sqrt{\lambda_{n}} \operatorname{dist}\left(\tilde{x}_{n}, \partial \Omega\right) \rightarrow \infty$, for any $R>0$ there exists K such that $B_{R}\left(\tilde{x}_{n}\right) \subset \Omega_{\lambda_{n}}$ for any $n \geq K$. By Lemma 1 and the elliptic regularity theory, there exists \tilde{w} such that

$$
w_{n} \rightarrow \tilde{w} \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right)
$$

and \tilde{w} is a solution of

$$
-\Delta w+w=\frac{w e^{\alpha w^{2}}}{L} \quad \text { in } \quad \mathbb{R}^{2}, \quad L \in\left[1, C_{2}\right] .
$$

Moreover,

$$
\int_{\mathbb{R}^{2}}\left(|\nabla \tilde{w}|^{2}+\tilde{w}^{2}\right) d x=\lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{B_{R}}\left(\left|\nabla w_{n}\right|^{2}+w_{n}^{2}\right) d x \leq \lim _{n \rightarrow \infty} \int_{\Omega}\left(\left|\nabla u_{n}\right|^{2}+\lambda_{n} u_{n}^{2}\right) d x=1,
$$

and then

$$
\tilde{w} \in H^{1}\left(\mathbb{R}^{2}\right)
$$

Since $\tilde{w} \in C_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right) \cap H^{1}\left(\mathbb{R}^{2}\right)$, using the Pohozaev identity, we have

$$
\frac{1}{2} \int_{\mathbb{R}^{2}}\left[\tilde{w}^{2}-\frac{1}{\alpha L}\left(e^{\alpha \tilde{w}^{2}}-1\right)\right] d x=0
$$

which implies $L>1$. Since u_{n} is positive in $\bar{\Omega}$, we see that \tilde{w} is positive in \mathbb{R}^{2}. Hence, \tilde{w} is radially symmetric for some point in \mathbb{R}^{2} and $\partial \tilde{w} / \partial r<0$ for $r>0$.

In the case of $\operatorname{dist}\left(\tilde{x}_{n}, \partial \Omega\right)=O\left({\sqrt{\lambda_{n}}}^{-1}\right)$, we may assume that $\tilde{x}_{n} \rightarrow \tilde{x}_{0} \in \partial \Omega$ as $n \rightarrow \infty$ after passing to a subsequence. We use the diffeomorphism $y=\Psi(x)$ which straightens a boundary portion near $\tilde{x}_{0} \in \partial \Omega$. For $\kappa>0$, put

$$
v_{n}(y):=u_{n}(\Phi(y)) \quad \text { for } \quad y \in \overline{B_{2 \kappa}^{+}},
$$

$$
\begin{aligned}
& \tilde{v}_{n}(y):=\left\{\begin{array}{lll}
v_{n}(y) & \text { if } y \in \overline{B_{2 \kappa}^{+}}, \\
v_{n}\left(\left(y_{1},-y_{2}\right)\right) & \text { if } y \in B_{2 \kappa}^{-},
\end{array}\right. \\
& w_{n}(z):=\tilde{v}_{n}\left(\frac{z}{\sqrt{\lambda_{n}}}+\tilde{P}_{n}\right) \quad \text { for } \quad z \in \overline{B_{\kappa \sqrt{\lambda_{n}}}},
\end{aligned}
$$

where $\tilde{P}_{n}:=\Psi\left(\tilde{x}_{n}\right) \in B_{\kappa}^{+}$. Set $a_{i j}, b_{j}$ as in (10), (11), and then $a_{i j}^{n}, b_{j}^{n}$ are defined as (12), (13) with replacing r_{n} and P_{n} by ${\sqrt{\lambda_{n}}}^{-1}$ and $\tilde{P}_{n}=\left(\tilde{p}_{n}, \tilde{q}_{n} / \sqrt{\lambda_{n}}\right)$, respectively. In the setting, w_{n} satisfies

$$
\sum_{i, j=1}^{2} a_{i j}^{n}(z) \frac{\partial^{2} w_{n}}{\partial z_{i} \partial z_{j}}+\sqrt{\lambda_{n}^{-1}} \sum_{j=1}^{2} b_{j}^{n}(z) \frac{\partial w_{n}}{\partial z_{j}}+w_{n}=\frac{w_{n} e^{\alpha w_{n}^{2}}}{\lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x} .
$$

Thus, by Lemma 1 and the elliptic regularity theory, we have

$$
w_{n} \rightarrow \tilde{w} \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right), \quad-\Delta \tilde{w}+\tilde{w}=\frac{\tilde{w} e^{\alpha \tilde{w}^{2}}}{L} \quad \text { in } \quad \mathbb{R}^{2}, \quad L \in\left[1, C_{2}\right] .
$$

Computing in the same way as in the case of $\sqrt{\lambda_{n}} \operatorname{dist}\left(\tilde{x}_{n}, \partial \Omega\right) \rightarrow \infty$, we derive that $\tilde{w} \in$ $H^{1}\left(\mathbb{R}^{2}\right), L>1, \tilde{w}$ is radially symmetric and $\partial \tilde{w} / \partial r<0$ for $r>0$.

Lemma 3 The followings are equivalent.
(i) There exists a positive constant C_{3} such that $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \geq C_{3}$.
(ii) $\lim _{n \rightarrow \infty} \lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x>1$.
(iii) There exists positive constant δ such that $\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x \geq \delta$.

Proof First, we prove the equivalence of (i) and (ii). Set $L=\lim _{n \rightarrow \infty} \lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x$. Assume that (i) holds. Then applying Lemma 2 to a maximum point of u_{n}, we derive $L>1$ by Lemma 2 (iii).

Suppose that (ii) holds. Assuming the contrary that $c_{n}:=\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \rightarrow 0$, we derive a contradiction. Under the assumption, it follows that

$$
\begin{equation*}
L=\lim _{n \rightarrow \infty} \lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x \leq \lim _{n \rightarrow \infty}\left(1+C c_{n}^{2}\right) \lambda_{n} \int_{\Omega} u_{n}^{2} d x \leq 1 \tag{18}
\end{equation*}
$$

for some positive constant C, which is a contradiction. Hence we have $c_{n} \geq C_{3}$ for some positive constant C_{3}.

Next, we show (iii) under the assumption (i). We apply Lemma 2 to a maximum point $x_{n} \in \bar{\Omega}$. If $\sqrt{\lambda_{n}} \operatorname{dist}\left(x_{n}, \partial \Omega\right) \rightarrow \infty$, by Lemma 2, there exists $w_{0} \in H^{1}\left(\mathbb{R}^{2}\right)$ such that the conditions of Lemma 2 hold. Then, we have

$$
\int_{\mathbb{R}^{2}}\left|\nabla w_{0}\right|^{2} d x=\lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{B_{R / \sqrt{\lambda_{n}}}\left(x_{n}\right)}\left|\nabla u_{n}\right|^{2} d x \leq \lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x .
$$

Moreover, it follows from Proposition 2 that $\int_{\mathbb{R}^{2}}\left|\nabla w_{0}\right|^{2} d x \geq \delta_{L, \alpha}$. Hence $\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x \geq$ $\delta_{L, \alpha}$ holds.

In the case of $\operatorname{dist}\left(x_{n}, \partial \Omega\right)=O\left({\sqrt{\lambda_{n}}}^{-1}\right)$, by Lemma 2, there exists $w_{0} \in H^{1}\left(\mathbb{R}^{2}\right)$ such that the conditions of Lemma 2 hold and

$$
\frac{1}{2} \int_{\mathbb{R}^{2}}\left|\nabla w_{0}\right|^{2} d x \leq \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x+o(1) .
$$

This and Proposition 2 yield that $\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x \geq \delta_{L, \alpha} / 2$ holds. Consequently, in both cases, we obtain $\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x \geq \delta$ with $\delta=\delta_{L, \alpha} / 2$.

Finally, we prove (i) under the assumption (iii). Assuming the contrary that that $c_{n}:=$ $\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$, we derive a contradiction. Combining Lemma 1 and (18), we have

$$
1 \leq L \leq \lim _{n \rightarrow \infty}\left(1+C c_{n}^{2}\right) \lambda_{n} \int_{\Omega} u_{n}^{2} d x \leq 1
$$

for some positive constant C, and thus

$$
\lim _{n \rightarrow \infty} \lambda_{n} \int_{\Omega} u_{n}^{2} d x=1
$$

Since $u_{n} \in \Sigma_{\lambda_{n}}$ we have

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x=0
$$

which is a contradiction. Therefore, we conclude that c_{n} is bounded from below.
Lemma 4 Assume that there exists a positive constant C_{3} such that $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \geq C_{3}$. Set $k_{0}:=\left[2 \delta_{L, \alpha}^{-1}\right]$ which is the largest integer less than or equal to $2 \delta_{L, \alpha}^{-1}$, where $\delta_{L, \alpha}$ is obtained in Proposition 2. Then there exist at most k_{0} sequences $\left\{x_{n}^{i}\right\} \subset \bar{\Omega}, i=1, \cdots, k_{0}$ such that
(i) for each i there exists a positive constant ε_{i} such that

$$
\lim _{n \rightarrow \infty} u_{n}\left(x_{n}^{i}\right) \geq \varepsilon_{i}
$$

(ii) $\lim _{n \rightarrow \infty} \sqrt{\lambda_{n}}\left|x_{n}^{i}-x_{n}^{j}\right|=\infty$ if $i \neq j$.

Proof Assume that $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \geq C_{3}$ for some positive constant C_{3}. By Lemma 3, it holds that $\lim _{n \rightarrow \infty} \lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x>1$. Set $L:=\lim _{n \rightarrow \infty} \lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x$ and $k_{0}:=\left[2 \delta_{L, \alpha}^{-1}\right]$. We assume the contrary that there exist $\left(k_{0}+1\right)$ sequences $\left\{x_{n}^{i}\right\} \subset \bar{\Omega}, i=1, \cdots, k_{0}+1$ such that (i) and (ii) hold and derive a contradiction. Since $\left\{x_{n}^{i}\right\}$ satisfies (i) we can apply Lemma 2 to x_{n}^{i}. By Proposition 2 and Lemma 2, for each i it follows that

$$
\frac{\delta_{L, \alpha}}{2} \leq \int_{A_{R, n}^{i}}\left|\nabla u_{n}\right|^{2} d x+o_{n}(1)+o_{R}(1)
$$

where $o_{n}(1) \rightarrow 0$ as $n \rightarrow \infty, o_{R}(1) \rightarrow 0$ as $R \rightarrow \infty$ which is independent of n and

$$
A_{R, n}^{i}= \begin{cases}B_{R / \sqrt{\lambda_{n}}}\left(x_{n}^{i}\right) & \text { if } \quad \sqrt{\lambda_{n}} \operatorname{dist}\left(x_{n}^{i}, \partial \Omega\right) \rightarrow \infty \tag{19}\\ \Omega \cap \Phi\left(B_{R / \sqrt{\lambda}_{n}}\left(\Psi\left(x_{n}^{i}\right)\right)\right) & \text { if } \quad \operatorname{dist}\left(x_{n}^{i}, \partial \Omega\right)=O\left({\sqrt{\lambda_{n}}}^{-1}\right)\end{cases}
$$

It follows from (ii) and the condition $u_{n} \in \Sigma_{\lambda_{n}}$ that

$$
\begin{aligned}
\frac{\left(k_{0}+1\right) \delta_{L, \alpha}}{2} & \leq \sum_{i=1}^{k_{0}+1} \int_{A_{R, n}^{i}}\left|\nabla u_{n}\right|^{2} d x+o_{n}(1)+o_{R}(1) \\
& =\int_{\cup_{i=1}^{k_{0}+1} A_{R, n}^{i}}\left|\nabla u_{n}\right|^{2} d x+o_{n}(1)+o_{R}(1) \\
& \leq \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x+o_{n}(1)+o_{R}(1) \\
& \leq 1+o_{n}(1)+o_{R}(1)
\end{aligned}
$$

But, this inequality contradicts the definition of k_{0}. Hence, we conclude that the lemma holds.

Lemma 5 Assume that there exists a positive constant C_{3} such that $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \geq C_{3}$. Fix $k<+\infty$ as the largest integer m such that m sequences $\left\{x_{n}^{i}\right\} \subset \bar{\Omega}, i=1, \cdots, m$ satisfy the followings:
(i) for each i there exists a positive constant ε_{i} such that $\lim _{n \rightarrow \infty} u_{n}\left(x_{n}^{i}\right) \geq \varepsilon_{i}$,
(ii) if $m \geq 2, \lim _{n \rightarrow \infty} \sqrt{\lambda_{n}}\left|x_{n}^{i}-x_{n}^{j}\right|=\infty$ for $i \neq j$,
such a k exists thanks to Lemma 4. In addition to the assumptions, for each i take $w_{i} \in$ $H^{1}\left(\mathbb{R}^{2}\right)$ satisfying the conditions of Lemma 2 with replacing \tilde{x}_{n} by x_{n}^{i}, such w_{i} is also exists by the condition (i). Then, we have

$$
\begin{gather*}
\tau_{i}:=\int_{X_{i}}\left(\left|\nabla w_{i}\right|^{2}+w_{i}^{2}\right) d x \leq 1, \quad \sum_{i=1}^{k} \tau_{i} \leq 1, \tag{20}\\
\lim _{n \rightarrow \infty} \lambda_{n} I\left(\alpha, \lambda_{n}\right) \leq \sum_{i=1}^{k} \int_{X_{i}}\left(e^{\alpha w_{i}^{2}}-1\right) d x+\alpha\left(1-\sum_{i=1}^{k} \tau_{i}\right), \tag{21}
\end{gather*}
$$

where

$$
X_{i}:= \begin{cases}\mathbb{R}^{2} & \text { if } \quad \sqrt{\lambda_{n}} \operatorname{dist}\left(x_{n}^{i}, \partial \Omega\right)=\infty, \\ \mathbb{R}_{+}^{2} & \text { if } \quad \operatorname{dist}\left(x_{n}^{i}, \partial \Omega\right)=O\left({\sqrt{\lambda_{n}}}^{-1}\right) .\end{cases}
$$

Proof It follows that

$$
\begin{align*}
1 & =\lim _{n \rightarrow \infty} \int_{\Omega}\left(\left|\nabla u_{n}\right|^{2}+\lambda_{n} u_{n}^{2}\right) d x \\
& =\lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty}\left[\sum_{i=1}^{k} \int_{A_{R, n}^{i}}\left(\left|\nabla u_{n}\right|^{2}+\lambda_{n} u_{n}^{2}\right) d x+\int_{\Omega \backslash\left(\cup_{i=1}^{k} A_{R, n}^{i}\right)}\left(\left|\nabla u_{n}\right|^{2}+\lambda_{n} u_{n}^{2}\right) d x\right] \\
& =\sum_{i=1}^{k} \int_{X_{i}}\left(\left|\nabla w_{i}\right|^{2}+w_{i}^{2}\right) d x+\lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{\Omega \backslash\left(\cup_{i=1}^{k} A_{R, n}^{i}\right)}\left(\left|\nabla u_{n}\right|^{2}+\lambda_{n} u_{n}^{2}\right) d x, \tag{22}
\end{align*}
$$

where $A_{R, n}^{i}$ is defined in (19). Thus, we obtain (20). Similarly, we observe that

$$
\begin{align*}
\lim _{n \rightarrow \infty} \lambda_{n} I\left(\alpha, \lambda_{n}\right) & =\lim _{R \rightarrow \infty} \lim _{n \rightarrow \infty} \lambda_{n}\left[\sum_{i=1}^{k} \int_{A_{R, n}^{i}}\left(e^{\alpha u_{n}^{2}}-1\right) d x+\int_{\Omega \backslash\left(\cup_{i=1}^{k} A_{R, n}^{i}\right)}\left(e^{\alpha u_{n}^{2}}-1\right) d x\right] \\
& =\sum_{i=1}^{k} \int_{X_{i}}\left(e^{\alpha w_{i}^{2}}-1\right) d x+\lim _{R \rightarrow \infty n \rightarrow \infty} \lim _{n} \int_{\Omega \backslash\left(\cup_{i=1}^{k} A_{R, n}^{i}\right)}\left(e^{\alpha u_{n}^{2}}-1\right) d x . \tag{23}
\end{align*}
$$

Here, in order to obtain (21), we prove the following estimate:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{x \in \Omega \backslash\left(\cup_{i=1}^{k} A_{R, n}^{i}\right)} u_{n}(x)=o_{R}(1), \tag{24}
\end{equation*}
$$

where $o_{R}(1) \rightarrow 0$ as $R \rightarrow \infty$.
Take any sequence $\left\{P_{n}^{R}\right\} \subset \overline{\Omega \backslash\left(\cup_{i=1}^{k} A_{R, n}^{i}\right)}$. If P_{n}^{R} satisfies $\lim _{n \rightarrow \infty} \sqrt{\lambda_{n}}\left|P_{n}^{R}-x_{n}^{i}\right|=\infty$ for all $i=1, \cdots, k$, then it holds that $u_{n}\left(P_{n}^{R}\right) \rightarrow 0$ as $n \rightarrow \infty$ by the definition of k. Thus, we may assume that $\left|P_{n}^{R}-x_{n}^{i}\right|=O\left({\sqrt{\lambda_{n}}}^{-1}\right)$ for some i. In addition to this, since $\left\{P_{n}^{R}\right\} \subset$
$\overline{\Omega \backslash\left(\cup_{i=1}^{k} A_{R, n}^{i}\right)}$, we see that $\left|P_{n}^{R}-x_{n}^{i}\right| \geq \kappa R / \sqrt{\lambda_{n}}$ for $\kappa>0$. Hence, after passing to a subsequence, there exists P_{0}^{R} such that

$$
\begin{array}{cl}
\lim _{n \rightarrow \infty} \sqrt{\lambda_{n}}\left(P_{n}^{R}-x_{n}^{i}\right)=P_{0}^{R}, \quad \lim _{R \rightarrow \infty}\left|P_{0}^{R}\right|=\infty \quad \text { if } \quad \sqrt{\lambda_{n}} \operatorname{dist}\left(x_{n}^{i}, \partial \Omega\right)=\infty, \\
\lim _{n \rightarrow \infty} \sqrt{\lambda_{n}}\left(\Psi\left(P_{n}^{R}\right)-\Psi\left(x_{n}^{i}\right)\right)=P_{0}^{R}, \quad \lim _{R \rightarrow \infty}\left|P_{0}^{R}\right|=\infty \quad & \text { if } \quad \operatorname{dist}\left(x_{n}^{i}, \partial \Omega\right)=O\left({\sqrt{\lambda_{n}}}^{-1}\right) .
\end{array}
$$

Recall that by Lemma 2,

$$
\begin{gathered}
u_{n}\left(\frac{y}{\sqrt{\lambda_{n}}}+x_{n}^{i}\right) \rightarrow w_{i} \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right) \quad \text { if } \quad \sqrt{\lambda_{n}} \operatorname{dist}\left(x_{n}^{i}, \partial \Omega\right)=\infty, \\
u_{n}\left(\Phi\left(\frac{z}{\sqrt{\lambda_{n}}}+\Psi\left(x_{n}^{i}\right)\right)\right) \rightarrow w_{i} \quad \text { in } \quad C_{l o c}^{2}\left(\overline{\mathbb{R}_{+}^{2}}\right) \quad \text { if } \quad \operatorname{dist}\left(x_{n}^{i}, \partial \Omega\right)=O\left({\sqrt{\lambda_{n}}}^{-1}\right),
\end{gathered}
$$

and then we have

$$
u_{n}\left(P_{n}^{R}\right) \rightarrow w_{i}\left(P_{0}^{R}\right)
$$

as $n \rightarrow \infty$. We observe that $w_{i}(x) \rightarrow 0$ as $|x| \rightarrow \infty$ since $w_{i} \in H^{1}\left(\mathbb{R}^{2}\right)$. Thus it holds that $\lim _{n \rightarrow \infty} u_{n}\left(P_{n}^{R}\right)=o_{R}(1)$. Consequently, we obtain (24).

Set $\tau_{i}=\int_{X_{i}}\left(\left|\nabla w_{i}\right|^{2}+w_{i}^{2}\right) d x$ for each i. It follows from (22) and (24) that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{\Omega \backslash\left(\cup_{i=1}^{k} A_{R, n}^{i}\right)}\left(e^{\alpha u_{n}^{2}}-1\right) d x \\
= & \left(1+o_{R}(1)\right) \lim _{n \rightarrow \infty} \lambda_{n} \int_{\Omega \backslash\left(\cup_{i=1}^{k} A_{R, n}^{i}\right)} \alpha u_{n}^{2} d x \\
\leq & \alpha\left(1+o_{R}(1)\right) \lim _{n \rightarrow \infty} \int_{\Omega \backslash\left(\cup_{i=1}^{k} A_{R, n}^{i}\right)}\left(\left|\nabla u_{n}\right|^{2}+\lambda_{n} u_{n}^{2}\right) d x \\
= & \alpha\left(1+o_{R}(1)\right)\left(1-\sum_{i=1}^{k} \tau_{i}+o_{R}(1)\right) .
\end{aligned}
$$

Combining the estimate and (23), we derive (21). Consequently, we obtain the desired estimates.

Proposition 3 It holds that

$$
\lim _{n \rightarrow \infty} \lambda_{n} I\left(\alpha, \lambda_{n}\right) \geq I_{\alpha}
$$

where I_{α} is defined by

$$
I_{\alpha}:=\sup _{\substack{u \in H^{1}\left(\mathbb{R}_{+}^{2}\right) \\ \int_{\mathbb{R}_{+}^{2}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq 1}} \int_{\mathbb{R}_{+}^{2}}\left(e^{\alpha u^{2}}-1\right) d x .
$$

Proof Without loss of generality, we may assume that $0 \in \partial \Omega$ and $\Omega \subset \mathbb{R}_{+}^{2}$. Let $\left\{w_{\ell}\right\} \subset$ $H^{1}\left(\mathbb{R}_{+}^{2}\right)$ be a maximizing sequence of I_{α} and set

$$
W_{\ell}(x):=w_{\ell}\left(\sqrt{\lambda_{n}} x\right) .
$$

Since $\int_{\mathbb{R}_{+}^{2}}\left(\left|\nabla w_{\ell}\right|^{2}+w_{\ell}^{2}\right) d x=1$, we have

$$
\int_{\Omega}\left(\left|\nabla W_{\ell}\right|^{2}+\lambda_{n} W_{\ell}^{2}\right) d x \leq \int_{\mathbb{R}_{+}^{2}}\left(\left|\nabla W_{\ell}\right|^{2}+\lambda_{n} W_{\ell}^{2}\right) d x=\int_{\mathbb{R}_{+}^{2}}\left(\left|\nabla w_{\ell}\right|^{2}+w_{\ell}^{2}\right) d x=1 .
$$

Then, it follows that

$$
I\left(\alpha, \lambda_{n}\right) \geq \int_{\Omega}\left(e^{\alpha W_{\ell}^{2}}-1\right) d x \geq \int_{\Omega \cap B_{R / \sqrt{n}}}\left(e^{\alpha W_{\ell}^{2}}-1\right) d x=\lambda_{n}^{-1} \int_{\Omega_{\lambda_{n}} \cap B_{R}}\left(e^{\alpha w_{\ell}^{2}}-1\right) d x,
$$

where $\Omega_{\lambda_{n}}:=\left\{\sqrt{\lambda_{n}} x \mid x \in \Omega\right\}$. The smoothness of the boundary of Ω gives

$$
\lim _{n \rightarrow \infty} \lambda_{n} I\left(\alpha, \lambda_{n}\right) \geq \int_{B_{R}^{+}}\left(e^{\alpha w_{\ell}^{2}}-1\right) d x
$$

Letting $R \rightarrow \infty$ and $\ell \rightarrow \infty$, we conclude that

$$
\lim _{n \rightarrow \infty} \lambda_{n} I\left(\alpha, \lambda_{n}\right) \geq I_{\alpha} .
$$

2.2 Proof of Theorem 1 completed

Now, we are in position to prove Theorem 1. In the case of $\alpha>\alpha_{*}$ it holds that $I_{\alpha}>\alpha$ and I_{α} is attained. First, we prove that (I). Assuming that $\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$, we derive a contradiction. In this case, it follows that

$$
\lim _{n \rightarrow \infty} \lambda_{n} I\left(\alpha, \lambda_{n}\right)=\lim _{n \rightarrow \infty} \lambda_{n} \int_{\Omega}\left(e^{\alpha u_{n}^{2}}-1\right) d x \leq \lim _{n \rightarrow \infty}\left(\alpha+C\left\|u_{n}\right\|_{L^{\infty}(\Omega)}^{2}\right) \lambda_{n} \int_{\Omega} u_{n}^{2} d x \leq \alpha<I_{\alpha}
$$

for some positive constant C. But, this contradicts Proposition 3. Hence, there exists a positive constant M_{1} such that $\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \geq M_{1}$. This fact and Proposition 1 yield (I).

Next, we prove (II). Since Theorem 1 (I) holds, we can use Lemma 5. By Lemma 5 and Proposition 3, we have

$$
\begin{equation*}
I_{\alpha} \leq \sum_{i=1}^{k} \int_{X_{i}}\left(e^{\alpha w_{i}^{2}}-1\right) d x+\alpha\left(1-\sum_{i=1}^{k} \tau_{i}\right) \tag{25}
\end{equation*}
$$

where X_{i}, w_{i}, τ_{i} are defined in Lemma 5 . For each i, since the function $e^{s}-1$ is convex, we have

$$
\begin{equation*}
\int_{X_{i}}\left(e^{\alpha w_{i}^{2}}-1\right) d x \leq \tau_{i} \int_{X_{i}}\left(e^{\alpha \frac{w_{i}^{2}}{\tau_{i}}}-1\right) d x \leq \tau_{i} \sup _{\substack{w \in H^{1}\left(X_{i}\right) \\ \int_{X_{i}}\left(|\nabla w|^{2}+w^{2}\right) d x=1}} \int_{X_{i}}\left(e^{\alpha w^{2}}-1\right) d x . \tag{26}
\end{equation*}
$$

If $X_{i}=\mathbb{R}^{2}$, by the convexity of $e^{s}-1$ we have

$$
\begin{equation*}
\sup _{\substack{u \in H^{1}\left(\mathbb{R}^{2}\right) \\ \int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+u^{2}\right) d x=1}} \int_{\mathbb{R}^{2}}\left(e^{\alpha u^{2}}-1\right) d x=2 I_{\alpha / 2} \leq I_{\alpha} . \tag{27}
\end{equation*}
$$

Thus, (25), (26), (27) and the inequality $I_{\alpha}>\alpha$ yield

$$
\begin{equation*}
I_{\alpha} \leq \sum_{i=1}^{k} \int_{X_{i}}\left(e^{\alpha w_{i}^{2}}-1\right) d x+\alpha\left(1-\sum_{i=1}^{k} \tau_{i}\right) \leq \sum_{i=1}^{k} \tau_{i} I_{\alpha}+\left(1-\sum_{i=1}^{k} \tau_{i}\right) I_{\alpha}=I_{\alpha} . \tag{28}
\end{equation*}
$$

Hence, all inequalities in (28) become equalities. Since I_{α} is attained, the inequality in (27) becomes strict inequality. Thus $X_{i} \neq \mathbb{R}^{2}$, and $X_{i}=\mathbb{R}_{+}^{2}$. Moreover, equality of (26) holds if and only if $\tau_{i}=1$ and w_{i} is a maximizer of I_{α} for some i. These conditions give the equality in (28). Consequently, $k=1, X_{1}=\mathbb{R}_{+}^{2}$ and w_{1} is a maximizer of I_{α}.

In order to prove that u_{n} has a unique maximum, we use the following lemma which is introduced in [11].
Lemma 6 Let $\xi_{*} \in C^{2}\left(\overline{B_{a}}\right)$ be a radial function satisfying $\xi_{*}^{\prime}(0)=0$ and $\xi_{*}^{\prime \prime}(r)<0$ for $0 \leq r \leq a$. Then there exists a $\delta>0$ such that if $\xi \in C^{2}\left(\overline{B_{a}}\right)$ satisfies $(i) \nabla \xi(0)=0$ and (ii) $\left\|\xi-\xi_{*}\right\|_{C^{2}\left(\overline{B_{a}}\right)} \leq \delta$, then $\nabla \xi \neq 0$ for $x \neq 0$.
Let x_{n} be a maximum point of u_{n} with $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. Computing in the same way as the proof of (24), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{x \in \Omega \backslash \Phi\left(B_{R / \sqrt{\lambda_{n}}}\left(\Psi\left(x_{n}\right)\right)\right)} u_{n}(x)=o_{R}(1) \tag{29}
\end{equation*}
$$

where $o_{R}(1) \rightarrow 0$ as $R \rightarrow \infty$. Thus, all maximum points are located in $\Omega \cap \Phi\left(B_{R / \sqrt{\lambda_{n}}}\left(\Psi\left(x_{n}\right)\right)\right)$ for large $R>0$ and n. Take the diffeomorphism $y=\Psi(x)$ which straightens a boundary portion near x_{0} and define $P_{n}=\Psi\left(x_{n}\right)=\left(p_{n}, q_{n} / \sqrt{\lambda_{n}}\right)$. Then, set

$$
w_{n}^{1}= \begin{cases}u_{n}\left(\Phi\left(\frac{z}{\sqrt{\lambda_{n}}}+P_{n}\right)\right) & \text { if } \quad z_{2} \geq-q_{n} \\ u_{n}\left(\Phi\left(\frac{z_{1}}{\sqrt{\lambda_{n}}}+p_{n},-\frac{z_{2}+q_{n}}{\sqrt{\lambda_{n}}}\right)\right) & \text { if } \quad z_{2}<-q_{n}\end{cases}
$$

by the reflection. Since $z=0$ is a maximum point of $w_{n}^{1}, z=\left(0,-2 q_{n}\right)$ is also maximum point of w_{n}^{1}. Computing in the same way as in the proof of Lemma 2, we have $w_{n}^{1} \rightarrow w_{1}$ in $C_{l o c}^{2}\left(\mathbb{R}^{2}\right)$. Applying Lemma 6 in the Ball $\overline{B_{R}}$ for large $R>0$, we deduce that $q_{n}=0$ for large n. Similarly, if $z=(p, 0)$ is also a maximum point, then we have $p=0$ by Lemma 6. Consequently, u_{n} has a unique maximum point and the maximum point is located on the boundary for large n.

To end the proof of Theorem 1, we estimate u_{n} on the outside of $B_{R / \sqrt{\lambda_{n}}}\left(x_{n}\right)$. For fixed R, there exist positive constants R_{1}, R_{2} such that

$$
\Omega \cap B_{R_{1} / \sqrt{\lambda_{n}}}\left(x_{n}\right) \subset \Omega \cap \Phi\left(B_{R / \sqrt{\lambda_{n}}}\left(\Psi\left(x_{n}\right)\right)\right) \subset \Omega \cap B_{R_{2} / \sqrt{\lambda_{n}}}\left(x_{n}\right)
$$

Thus, by (29), u_{n} satisfies

$$
\sup _{x \in \Omega \backslash B_{R_{2} / \sqrt{\lambda_{n}}}\left(x_{n}\right)} u_{n}(x) \rightarrow o_{R}(1)
$$

as $n \rightarrow \infty$. Since u_{n} satisfies (6) and $\lim _{n \rightarrow \infty} \lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x>1$, we have

$$
\frac{1}{\lambda_{n}} \Delta u_{n}-\left(1-\frac{e^{\alpha u_{n}^{2}}}{\lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x}\right) u_{n}=0, \quad 1-\frac{e^{\alpha u_{n}^{2}}}{\lambda_{n} \int_{\Omega} u_{n}^{2} e^{\alpha u_{n}^{2}} d x}>0 \quad \text { in } \quad \Omega \backslash B_{R_{2} / \sqrt{\lambda_{n}}}\left(x_{n}\right)
$$

for large n. To prove (III), we use the following proposition which is introduced in [2].
Proposition 4 (Lemma 4.2 in [2]) Assume that $\varepsilon>0$ and \mathscr{A} is a domain. Let ϕ be a C^{2} function satisfying $L \phi:=\varepsilon^{2} \partial_{i}\left(a_{i k} \partial_{k} \phi\right)+q(x, \varepsilon) \phi=0$ in \mathscr{A}, with $q(x, \varepsilon)<-a<0$ in \mathscr{A}. Then there exists a positive constant $\mu=\mu\left(a_{i k}, a, \mathscr{A}\right)$ such that

$$
|\phi(x)| \leq 2(\sup |\phi(x)|) e^{-\frac{\mu \delta}{\varepsilon}}
$$

where $\delta(x)=\operatorname{dist}(x, \partial \mathscr{A})$.

In the interior of $\Omega \backslash B_{R_{2} / \sqrt{\lambda_{n}}}\left(x_{n}\right)$, we can apply Proposition 4 to u_{n} directly. In the neighborhood around $\partial \Omega \backslash B_{R_{2} / \sqrt{\lambda_{n}}}\left(x_{n}\right)$, defining \hat{w}_{n} as the extension of u_{n} by taking the diffeomorphism straightening a boundary portion at each point of $\partial \Omega$ and the reflection, we apply Proposition 4 to \hat{w}_{n}. Hence we obtain (III). Consequently, the proof of Theorem 1 is completed.

2.3 Proof of Theorem 2

Assuming the contrary that $\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \geq \varepsilon>0$ for large n, we derive a contradiction. Under the assumption, we can use Lemma 5, and the inequality (25) holds. In the case of $\alpha \in$ $\left(0, \alpha_{*}\right), I_{\alpha}=\alpha$ and I_{α} is not attained. Moreover, we see that $d_{\alpha}=\alpha$ and d_{α} is not attained. Thus, in (26), the second inequality becomes strict inequality for any i. The strict inequality and (25) yield

$$
I_{\alpha}<\sum_{i=1}^{k} \tau_{i} I_{\alpha}+\alpha\left(1-\sum_{i=1}^{k} \tau_{i}\right)=I_{\alpha}
$$

which is a contradiction. Hence, we obtain $\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$. By Lemma 3, we have

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x=0
$$

and thus

$$
\lim _{n \rightarrow \infty} \lambda_{n} \int_{\Omega} u_{n}^{2} d x=1-\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x=1 .
$$

Consequently, we conclude that Theorem 2 holds.

3 Proof of Theorem 3

In this section, we fix $\alpha \in(0,2 \pi)$ and v_{λ} denotes a positive critical point of $\left.E_{\alpha}\right|_{\Sigma_{\lambda}}$ for $\lambda>0$. Then v_{λ} is a solution of

$$
\begin{cases}-\Delta v+\lambda v=\frac{v e^{\alpha v^{2}}}{\int_{\Omega} 2^{2} e^{2 v^{2}} d x} & \text { in } \Omega, \tag{30}\\ \frac{\partial v}{\partial v}=0 & \text { on } \partial \Omega .\end{cases}
$$

We first prove the following proposition:
Proposition 5 For any positive solution v of (30) it holds that

$$
\inf _{x \in \Omega} v(x) \leq\left(\lambda_{n}|\Omega|\right)^{-\frac{1}{2}} \leq \sup _{x \in \Omega} v(x) .
$$

Moreover, one of the inequalities becomes equality if and only if $v \equiv \lambda|\Omega|^{-1 / 2}$, which is equivalent to that all equalities hold.

Proof Since $v>0$, multiplying (30) by v^{-1} and integrating over Ω, we have

$$
-\int_{\Omega} \frac{|\nabla v|^{2}}{v^{2}} d x+\lambda|\Omega|=\frac{\int_{\Omega} e^{\alpha v^{2}} d x}{\int_{\Omega} v^{2} e^{\alpha v^{2}} d x} .
$$

We see that

$$
\begin{equation*}
\int_{\Omega} \frac{|\nabla v|^{2}}{v^{2}} d x \geq 0, \quad \frac{\int_{\Omega} e^{\alpha v^{2}} d x}{\int_{\Omega} v^{2} e^{\alpha v^{2}} d x} \geq\left(\sup _{x \in \Omega} v(x)\right)^{-2} \tag{31}
\end{equation*}
$$

and then we have

$$
(\lambda|\Omega|)^{-\frac{1}{2}} \leq \sup _{x \in \Omega} v(x)
$$

The equalities hold on the estimates (31) if and only if v is a constant, and hence $v \equiv$ $(\lambda|\Omega|)^{-1 / 2}$.

Multiplying (30) by v and integrating over Ω, we see that

$$
\int_{\Omega}\left(|\nabla v|^{2}+\lambda v^{2}\right) d x=1
$$

Thus,

$$
\begin{equation*}
1=\int_{\Omega}\left(|\nabla v|^{2}+\lambda v^{2}\right) d x \geq \lambda \int_{\Omega} v^{2} d x \geq \lambda|\Omega|\left(\inf _{x \in \Omega} v(x)\right)^{2} \tag{32}
\end{equation*}
$$

Hence the estimate

$$
\inf _{x \in \Omega} v(x) \leq(\lambda|\Omega|)^{-\frac{1}{2}}
$$

follows immediately. In (32), all equalities hold if and only if $v \equiv(\lambda|\Omega|)^{-1 / 2}$. Consequently, we conclude that the proposition holds.

In the following, let λ_{n} be a sequence such that $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$ and let $v_{n}:=v_{\lambda_{n}}$. In addition to the setting, assume that $x_{n} \in \bar{\Omega}$ is a maximum point of v_{n} and set

$$
c_{n}=\sup _{x \in \Omega} v_{n}(x), \quad \underline{c_{n}}=\inf _{x \in \Omega} v_{n}(x) .
$$

Lemma 7 We have

$$
\frac{e^{\alpha c_{n}^{2}}}{\int_{\Omega} v_{n}^{2} e^{\alpha v_{n}^{2}} d x} \rightarrow 0
$$

as $n \rightarrow \infty$.
Proof Assuming the contrary that there exists a positive constant ε such that

$$
\frac{e^{\alpha c_{n}^{2}}}{\int_{\Omega} v_{n}^{2} e^{\alpha v_{n}^{2}} d x} \geq \varepsilon
$$

holds, we derive a contradiction. Define r_{n} such that

$$
r_{n}^{2}=\frac{\int_{\Omega} v_{n}^{2} e^{\alpha \nu_{n}^{2}} d x}{c_{n}^{2} e^{\alpha c_{n}^{2}}}
$$

and by the assumption, we have

$$
\begin{equation*}
r_{n}^{2} \leq \frac{1}{\varepsilon c_{n}^{2}}=O\left(c_{n}^{-2}\right) \tag{33}
\end{equation*}
$$

We follow the proof of Proposition 1.

If dist $\left(x_{n}, \partial \Omega\right) / r_{n} \rightarrow \infty$, we define $\Omega_{n}:=\left\{\left(x-x_{n}\right) / r_{n} \mid x \in \Omega\right\}$ and

$$
\begin{cases}\phi_{n}(y):=c_{n}^{-1} v_{n}\left(r_{n} y+x_{n}\right) & y \in \Omega_{n}, \\ \eta_{n}(y):=c_{n}\left(v_{n}\left(r_{n} y+x_{n}\right)-c_{n}\right) & y \in \Omega_{n} .\end{cases}
$$

Then, ϕ_{n} and η_{n} satisfy

$$
\begin{gathered}
-\Delta_{y} \phi_{n}+\lambda_{n} r_{n}^{2} \phi_{n}=c_{n}^{-2} \phi_{n} e^{\alpha c_{n}^{2}\left(\phi_{n}^{2}-1\right)}, \\
-\Delta_{y} \eta_{n}+\lambda_{n} r_{n}^{2} c_{n}^{2} \phi_{n}=\phi_{n} e^{\alpha\left(1+\phi_{n}\right) \eta_{n}} .
\end{gathered}
$$

By (33), the elliptic regularity theory and the maximum principle we see that

$$
\phi_{n} \rightarrow \phi_{0} \equiv 1 \quad \text { in } \quad C_{\text {loc }}^{2}\left(\mathbb{R}^{2}\right), \quad-\Delta \phi_{0}=0 \quad \text { in } \quad \mathbb{R}^{2} .
$$

Then, since $\lambda_{n} \rightarrow 0$, we have

$$
\eta_{n} \rightarrow \eta_{0} \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right), \quad-\Delta \eta_{0}=e^{2 \alpha \eta_{0}} \quad \text { in } \quad \mathbb{R}^{2}
$$

Moreover, computing in the same way as in (9), we derive that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} e^{2 \alpha \eta_{0}} d y \leq 1, \tag{34}
\end{equation*}
$$

and then

$$
\eta_{0}=-\frac{1}{\alpha} \log \left(1+\frac{\alpha}{4}|y|^{2}\right) .
$$

Since $\alpha<2 \pi$, by a direct computation, we have

$$
\int_{\mathbb{R}^{2}} e^{2 \alpha \eta_{0}} d y=\frac{4 \pi}{\alpha}>2
$$

But this contradicts (34).
In the case of dist $\left(x_{n}, \partial \Omega\right)=O\left(r_{n}\right)$, we may assume that $x_{n} \rightarrow x_{0} \in \partial \Omega$ by passing to a subsequence if necessary. Put

$$
\tilde{v}_{n}(y):=v_{n}(\Phi(y)) \quad \text { for } \quad y \in \overline{B_{2 \kappa}^{+}}
$$

for $\kappa>0$ and

$$
\hat{v}_{n}(y):=\left\{\begin{array}{lll}
\tilde{v}_{n}(y) & \text { if } & y \in \overline{B_{2 \kappa}^{+}}, \\
\tilde{v}_{n}\left(\left(y_{1},-y_{2}\right)\right) & \text { if } & y \in B_{2 \kappa}^{-} .
\end{array}\right.
$$

Moreover, set $P_{n}:=\Psi\left(x_{n}\right)=\left(p_{n}, q_{n} r_{n}\right)$, and define $w_{n}(z)$ by

$$
w_{n}(z):=\hat{v}_{n}\left(r_{n} z+P_{n}\right) \quad \text { for } \quad z \in \overline{B_{\kappa / r_{n}}} .
$$

Then, ϕ_{n} and η_{n} are defined by

$$
\begin{gathered}
\phi_{n}(z):=c_{n}^{-1} w_{n}(z), \\
\eta_{n}(z):=c_{n}\left(w_{n}(z)-c_{n}\right) .
\end{gathered}
$$

Set $a_{i j}, b_{j}$ as in (10), (11), and then $a_{i j}^{n}, b_{j}^{n}$ are defined by (12), (13). Since v_{n} is a solution of (30) for λ_{n}, ϕ_{n} and η_{n} satisfy the elliptic equations

$$
\sum_{i, j=1}^{2} a_{i j}^{n}(z) \frac{\partial^{2} \phi_{n}}{\partial z_{i} \partial z_{j}}+r_{n} \sum_{j=1}^{2} b_{j}^{n}(z) \frac{\partial \phi_{n}}{\partial z_{j}}+\lambda_{n} r_{n}^{2} \phi_{n}=c_{n}^{-2} \phi_{n} e^{\alpha c_{n}^{2}\left(\phi_{n}^{2}-1\right)},
$$

$$
\sum_{i, j=1}^{2} a_{i j}^{n}(z) \frac{\partial^{2} \eta_{n}}{\partial z_{i} \partial z_{j}}+r_{n} \sum_{j=1}^{2} b_{j}^{n}(z) \frac{\partial \eta_{n}}{\partial z_{j}}+\lambda_{n} r_{n}^{2} c_{n}^{2} \phi_{n}=\phi_{n} e^{\alpha\left(1+\phi_{n}\right) \eta_{n}}
$$

Using the elliptic regularity theory, we have

$$
\begin{aligned}
& \phi_{n} \rightarrow \phi_{0} \equiv 1 \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right), \quad-\Delta \phi_{0}=0 \quad \text { in } \quad \mathbb{R}^{2} \\
& \eta_{n} \rightarrow \eta_{0} \quad \text { in } \quad C_{l o c}^{2}\left(\mathbb{R}^{2}\right), \quad-\Delta \eta_{0}=e^{2 \alpha \eta_{0}} \quad \text { in } \quad \mathbb{R}^{2}
\end{aligned}
$$

We compute $\int_{\mathbb{R}^{2}} e^{2 \alpha \eta_{0}} d z$ in the same way as in (14). It follows that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} e^{2 \alpha \eta_{0}} d z \leq 2 \tag{35}
\end{equation*}
$$

Hence, we see that

$$
\eta_{0}=-\frac{1}{\alpha} \log \left(1+\frac{\alpha}{4}|z|^{2}\right)
$$

and then by direct computation

$$
\int_{\mathbb{R}^{2}} e^{2 \alpha \eta_{0}} d z=\frac{4 \pi}{\alpha}
$$

But this equality and (35) contradict the hypothesis $\alpha<2 \pi$. Consequently, it holds that

$$
\lim _{n \rightarrow \infty} \frac{e^{\alpha c_{n}^{2}}}{\int_{\Omega} v_{n}^{2} e^{\alpha v_{n}^{2}} d x}=0
$$

Proof (Proof of Theorem 3 completed) Set $\xi_{n}=v_{n} / c_{n}$. Since v_{n} is a solution of (30) for λ_{n}, ξ_{n} satisfies

$$
\begin{cases}-\Delta \xi_{n}+\lambda_{n} \xi_{n}=\frac{\xi_{n} e^{\alpha v_{n}^{2}}}{\int_{\Omega} v_{n}^{2} e^{\alpha v_{n}^{2}} d x} & \text { in } \Omega \\ \frac{\partial \xi_{n}}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

By Lemma 7 and the elliptic regularity theory, we have

$$
\begin{equation*}
\xi_{n} \rightarrow \xi_{0} \quad \text { in } \quad C^{2}(\bar{\Omega}) \tag{36}
\end{equation*}
$$

and ξ_{0} satisfies

$$
\begin{cases}-\Delta \xi_{0}=0 & \text { in } \Omega \\ \frac{\partial \xi_{0}}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

Thus, ξ_{0} is a constant. Since $\left\|\xi_{0}\right\|_{L^{\infty}(\Omega)}=1$, we deduce that $\xi_{0} \equiv 1$.
To end the proof of Theorem 3, we prove

$$
\begin{equation*}
c_{n}\left(\lambda_{n}|\Omega|\right)^{\frac{1}{2}} \rightarrow 1 \tag{37}
\end{equation*}
$$

By Proposition 5, (36) and $\xi_{0} \equiv 1$ we have

$$
1+o(1) \leq \underline{c_{n}} c_{n}^{-1} \leq\left(\lambda_{n}|\Omega|\right)^{-\frac{1}{2}} c_{n}^{-1} \leq 1
$$

which implies (37). Consequently, employing (36), (37) and the fact that $\xi_{0} \equiv 1$ again, we conclude that Theorem 3 holds.

4 Appendix

Define

$$
I_{\alpha}:=\sup _{\substack{u \in H^{1}\left(\mathbb{R}_{+}^{2}\right) \\ \int_{\mathbb{R}_{+}^{2}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq 1}} \int_{\mathbb{R}_{+}^{2}}\left(e^{\alpha u^{2}}-1\right) d x, \quad d_{\beta}:=\sup _{\substack{u \in H^{1}\left(\mathbb{R}^{2}\right) \\ \int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq 1}} \int_{\mathbb{R}^{2}}\left(e^{\beta u^{2}}-1\right) d x .
$$

In this section, we summarize the properties of I_{α} and d_{β}. By Ishiwata [4], it is proved that $d_{\beta} \geq \beta$ for all $\beta \in(0,4 \pi)$. Moreover, it is proved that if β is close to 4π, then $d_{\beta}>\beta$ and d_{β} is attained, while if β is sufficiently small, then $d_{\beta}=\beta$ and d_{β} is not attained.

The following relationship between I_{α} and d_{β} holds.
Proposition 6 For $\alpha \in(0,2 \pi)$, we have $I_{\alpha}=d_{2 \alpha} / 2$. Moreover, attainability of I_{α} is equivalent to that of $d_{2 \alpha}$.

Proof Let $u_{n} \in H^{1}\left(\mathbb{R}_{+}^{2}\right)$ be a maximizing sequence of I_{α} and let $\tilde{u}_{n} \in H^{1}\left(\mathbb{R}_{+}^{2}\right)$ denote the extension of u_{n} by the reflection. It holds that

$$
\int_{\mathbb{R}^{2}}\left(\left|\nabla \tilde{u}_{n}\right|^{2}+\tilde{u}_{n}^{2}\right) d x=2 \int_{\mathbb{R}_{+}^{2}}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right) d x \leq 2 .
$$

Then, we have

$$
\begin{aligned}
I_{\alpha} & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}_{+}^{2}}\left(e^{\alpha u_{n}^{2}}-1\right) d x \\
& \leq \sup _{\substack{u \in H^{1}\left(\mathbb{R}^{2}\right) \\
\int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq 2}} \frac{1}{2} \int_{\mathbb{R}^{2}}\left(e^{\alpha u^{2}}-1\right) d x \\
& =\frac{1}{2} \sup _{\substack{u \in H^{1}\left(\mathbb{R}^{2}\right) \\
\int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq 1}} \int_{\mathbb{R}^{2}}\left(e^{2 \alpha u^{2}}-1\right) d x \\
& =\frac{1}{2} d_{2 \alpha} .
\end{aligned}
$$

By virtue of the radially symmetric rearrangement, we can assume that maximizing sequence of $d_{2 \alpha}$ is a radially symmetric, nonnegative function. Thus,

$$
\begin{aligned}
d_{2 \alpha} & =\sup _{\substack{u \in H^{1}\left(\mathbb{R}^{2}\right) \\
\int_{\mathbb{R}^{2}}\left(|\nabla u|^{2}+u^{2}\right) d x \leq 1}} \int_{\mathbb{R}^{2}}\left(e^{2 \alpha u^{2}}-1\right) d x \\
& \leq \sup _{\substack{u \in H^{1}\left(\mathbb{R}^{2}\right)}} 2 \int_{\mathbb{R}_{+}^{2}}\left(e^{2 \alpha u^{2}}-1\right) d x \\
& \leq 2 \sup _{\mathbb{R}_{+}^{2}\left(|\nabla u|^{2}+u^{2}\right) d x \leq \frac{1}{2}} \operatorname{sut}_{\substack{1 \\
\int_{\mathbb{R}_{+}^{2}}\left(|\nabla u|^{2}+\mathbb{R}^{2}\right)}} \int_{\left.\mathbb{R}_{+}^{2}\right) d x \leq 1}\left(e^{\alpha u^{2}}-1\right) d x \\
& =2 I_{\alpha}
\end{aligned}
$$

Hence, we have $I_{\alpha}=d_{2 \alpha} / 2$.

If u_{*} is a maximizer of I_{α}, then the extension of u_{*} by the reflection is a maximizer of $d_{2 \alpha}$. Conversely, if v_{*} is a maximizer of d_{β}, then $\left.v_{*}\right|_{\mathbb{R}_{+}^{2}}$ is a maximizer of $I_{\beta / 2}$. Thus, the existence of a maximizer for I_{α} is equivalent to that for $d_{2 \alpha}$.

Proposition 7 Assume that

$$
\alpha_{*}=\inf \left\{\alpha \in(0,2 \pi) \mid I_{\alpha}>\alpha\right\} .
$$

Then, we have $\alpha_{*} \in(0,2 \pi)$, and
(i) for $\alpha \in\left(\alpha_{*}, 2 \pi\right)$ it holds that $I_{\alpha}>\alpha$ and I_{α} is attained,
(ii) for $\alpha \in\left(0, \alpha_{*}\right)$, it holds that $I_{\alpha}=\alpha$ and I_{α} is not attained.

Proof Define

$$
\begin{equation*}
\beta_{*}:=\inf \left\{\beta \in(0,4 \pi) \mid d_{\beta}>\beta\right\} . \tag{38}
\end{equation*}
$$

By the results of Ishiwata [4], we see that $\beta_{*} \in(0,4 \pi)$. In order to prove the proposition it suffices to show that (i)' if $\beta \in\left(\beta_{*}, 4 \pi\right)$, then $d_{\beta}>\beta$ and d_{β} is attained and (ii)' if $\beta \in$ $\left(0, \beta_{*}\right)$, then $d_{\beta}=\beta$ and d_{β} is not attained. Indeed, for such $\beta_{*}, \alpha_{*}=\beta_{*} / 2$ and α_{*} satisfies (i) and (ii) of the proposition by Proposition 6.

First, we prove that if $d_{\tilde{\beta}}>\tilde{\beta}$ for some $\tilde{\beta}$, then $d_{\beta}>\beta$ and d_{β} is attained for any $\beta \in[\tilde{\beta}, 4 \pi)$. Since $d_{\tilde{\beta}}>\tilde{\beta}$, we can show the existence of a maximizer \tilde{u} for $d_{\tilde{\beta}}$ by applying Section 2.3 in [4]. Hence, since the function $e^{s}-1$ is convex, we have

$$
d_{\beta} \geq \int_{\mathbb{R}^{2}}\left(e^{\beta \tilde{u}^{2}}-1\right) d x \geq \frac{\beta}{\tilde{\beta}} \int_{\mathbb{R}^{2}}\left(e^{\tilde{\beta} \tilde{u}^{2}}-1\right) d x=\frac{\beta}{\tilde{\beta}} d_{\tilde{\beta}}>\beta
$$

Applying Section 2.3 in [4] again, we obtain the existence of a maximizer for d_{β}. Thus, $d_{\beta}>\beta$ and d_{β} is attained for any $\beta \in[\tilde{\beta}, 4 \pi)$.

Next, we prove that if $d_{\hat{\beta}}=\hat{\beta}$ for some $\hat{\beta}$, then $d_{\beta}=\beta$ and d_{β} is not attained for all $\beta \in(0, \hat{\beta})$. Assume the contrary that d_{β} is attained by u for some $\beta \in(0, \hat{\beta})$. Then, we have

$$
d_{\hat{\beta}} \geq \int_{\mathbb{R}^{2}}\left(e^{\hat{\beta} u^{2}}-1\right) d x>\frac{\hat{\beta}}{\beta} \int_{\mathbb{R}^{2}}\left(e^{\beta u^{2}}-1\right) d x=\frac{\hat{\beta}}{\beta} d_{\beta} \geq \hat{\beta}
$$

which is a contradiction. Hence, $d_{\beta}=\beta$ and d_{β} is not attained for all $\beta \in(0, \hat{\beta})$.
Finally, we set β_{*} as in (38). Then, by the definition of $\beta_{*}, d_{\beta_{*}}=\beta_{*}$ and $d_{\beta}>\beta$ for any $\beta \in\left(\beta_{*}, 4 \pi\right)$, and hence β_{*} satisfies (i)' and (ii)'. Consequently, by Proposition $6, \alpha_{*}=$ $\beta_{*} / 2 \in(0,2 \pi)$ holds and α_{*} satisfies (i) and (ii).

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 19K14571. This work was partly supported by Osaka City University Advanced Mathematical Institute: MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849.

References

1. L. Carleson, S.-Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser. (French summary) Bull. Sci. Math. (2) 110 (1986), no. 2, 113-127.
2. P. C. Fife, Semilinear elliptic boundary value problems with small parameters. Arch. Rational Mech. Anal. 52 (1973), 205-232.
3. M. Flucher, Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 67 (1992), no. 3, 471-497.
4. M. Ishiwata, Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in \mathbb{R}^{N}. (English summary) Math. Ann. 351 (2011), no. 4, 781-804.
5. Y. Li, B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{n}. (English summary) Indiana Univ. Math. J. 57 (2008), no. 1, 451-480.
6. C.-S. Lin, W.-M. Ni, I. Takagi, Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations 72 (1988), no. 1, 1-27.
7. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoamericana 1 (1985), no. 1, 145-201.
8. J. Moser, A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1970/71), 1077-1092.
9. W.-M. Ni, I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70 (1993), no. 2, 247-281.
10. W.-M. Ni, I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. Trans. Amer. Math. Soc. 297 (1986), no. 1, 351-368.
11. W.-M. Ni, I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44 (1991), no. 7, 819-851.
12. S. I. Pohozaev, The Sobolev Embedding in the Case $p l=n$, Proc. Tech. Sci. Conf. on Adv. Sci. Research 1964-1965, Mathematics Section, Moskov. Ènerget. Inst. Moscow, 1965, 158-170.
13. B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{2}. (English summary) J. Funct. Anal. 219 (2005), no. 2, 340-367.
14. B. Ruf, F. Sani, Ground states for elliptic equations in \mathbb{R}^{2} with exponential critical growth. (English summary) Geometric properties for parabolic and elliptic PDE's, 251-267, Springer INdAM Ser., 2, Springer, Milan, 2013.
15. N. S. Trudinger, On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 171967 473483.

[^0]: Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, 739-8527, Japan
 E-mail: mhashizume@hiroshima-u.ac.jp

