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0 = QS’(.'I", 9’3 9_') - ¢(SE, 0, é)
— e“Iqb(:z:, 72 9_)6_“1 — ¢(z,0,0)
=i[el, | (2.1.13)

Let us concretely construct the representation of each generator of the supersymmetry
on the superspace. The translation P is defined as

0cP = _i[eﬂpm ¢] - iﬁ”p(Pu)éa

where p(P,) is a representation of P,. Then, we have

5€¢‘: ¢>(1L‘ +%, 0, 9-) - (25(213, 91 9)

= 0,0
= ie#(—i0,) (2.1.14)
Hence, we obtain |
p(P,) = —i0, (2.1.15)

The supercharge () is defined as

ocp = 1[(Q, 9] = —i(*p(Qa) 9,

where p(Q,) is a representation bf (). on the superspace. Then, we have

5.6 = bz — iCoB,0 + ¢, 8) — é(z, 0,8)

s ., O
— -—ZCO'“@aqu + ¢ 5@
= —3(“ {z—?— + (a”é)aau} o (2.1.16)
00°
Hence, we obtain
p(Qe) = im + (0*0)ad (2.1.17)

. The supercharge ) conjugate to Q is defined as

v b6cp =1i[CQ, ¢] = i(*p(Qs) P,
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where p(Q,) is a representation of @), on the superspace. Then, we have

E—

0¢¢p = B(x +160¢, 0,60 C) — &(z,6,0)
= i0o"C0,0 + Ca qb

= { “—z—gg-;-i- — (90'“) } P. (2.1.18)
Hence, we obtain
(@) = ~i=z — (00")ab (2119

Indeed, the anti-commuting relation between p(Q) and p(Q) is calculated as

(P(Qu), (@e)} = {ioz + (0o~ — (B0},
= -—-_2’5*(0' e )adfau
= 2(0")aap(Fy), (2.1.20)

which is certainly the anti-commuting relation between supercharges. Below we omit the
symbol p.

General superfield is expanded in terms of 8 and 6,

F(z,0,0) = f(x) + 0¢(z) + 0x(z)
+00m(z) + 00n(z) + 00"0v, ()
+ 000X(z) + 066+ (x) + 6060d(x) (2.1.21)

Therefore, the general superfield contains 16(bosonic) -+ 16(fermionic) field components. (see
the table.2.1)

Table 2.1: The component fields of the general superfield

4 complex scalars

4 ¢ fym, n, d
1 complex vector | Uy
2 (3,0) spinors b, U
" s - " ‘ LA
X, A

2 (0, 5) spinors

12
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Notice the associativity of the group elements,

g1 (92 ; 93) ~ (91 ' 92) * g3.

[Lgla Rga] =0

91,92, 33 = G

This nature means that the right action commute with the left action,

One can construct the covariant derivatives using this fact in the following. First we

consider the left action of L(e, ¢, (),

L(e,(,¢)L(x,0,0) ~ [1 —ic"P, +i(*Qq — i(*Qs)L(x, 0, 0) (2.1.22)
On the other hand, the right action becomes
L(z,0,0)L(¢,(,{) = L(zx + € — i00( + iC00,0 + (,0 + ()
' a uF | cr up N B _
~ _1 + (e* — 100*( + iCc"0)0, + ¢ 394 + 1 90 L(z,06,0)
= |14+ €9, + ¢ 9 +i(c"0),0, | + C° {2 -i(00*)0, ) | L(z, 6, 6)
I 00 00 )
= (1+¢€*D,+(*D, — (*D4)L(%,0,6). (2.1.23)
We denote the covariant derivatives as
DA — (DHJ DCI:' Da{)a
where
Du — aﬂ
I}, = 9 + i(0%0) 0
* 06 o
- 0
D; = =7 i(0cH) a0, (2.1.24)
. By definition, it is obvious that
{Da,Qs} = {Da, Qa} = {Da, Qa} = {Ds, Qz} = 0. (2.1.25)
Moreover the commutators for D’s are
_ 0 » o
N — (el (B . B i
{D,, Dy} {89“’ i(0*)s0,} + {i(0"0)a0,, pYE
= —2i(0*) a0y, (2.1.26)
{Da, Dg}= {Ds, D3} = 0. (2.1.27)
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the variation of the chiral superfield under supersymmetric transformation is

%

L 8D = 6D+ 50

= —i(Q® + i(*Q .

; = (° 9 _ i(0%0)o0, p ® + C© i — i(0c")s0, ¢ P

; o6 ks 00° g

o 00 Oy* aa¢> ,,acb aacpa ; M_a¢>

= (zCa’“Q — i(o*0 + 100" ¢ + i60"()0, P + \/_C%b( ) + QCQF( )
= 2i00"(0,® + V2(¢(y) + 2¢6F (y)
# = V209 (y) + V20*(iv2(0*() a8, A(Y) + V20 F (y)) + 2i80*V/20%0 004 (y)
= V2(9(y) + V26%(iv'2(0")aBuA(Y) + V20 F (y)) — 2V2i6°0%(6#) 30,000 (v)
= V20¥(y) + V20*(iv'2(00)aduAYy) + V20 F (y)) + 00iv/2((0*)*Btba(y),

where we used the relation

69 — 9191 <+ 9292
= 2040} |
%" — 6268 = —%e“‘@%

; Hence, the infinitesimal variations of the component field for the chiral superfield are

6A = V20, (2.1.34)
6o = iV2(0*C)aduA + V(. F, (2.1.35)
6F = ivV2((6%)*0,0,. (2.1.36)
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is the normalized D-velocity. The action S, in the nonrelativistic limit, that is v = & L

1, has the usual nonrelativistic form,

Sy -——m/\/alt2 — dx?

:—--'m/dt\/l—--—-~'v2

N /dt {%”_vﬂ _ m} | (3.1.4) i

We can rewrite the action by introducing an auxiliary coordinate e as

1 e
Sop = §V/‘d’r(e LX*X, — em?). (3.1.5)

The additional field e can be identified as the square root of a one-dimensional metric,

e = (=7 (7))7 (3.1.6)

where ~,-(7) is the one-dimensional metric. In order to see that this action S is equiv-
alent to the action Sp,, we have to eliminate the auxiliary field e by using that equation
of motion. Taking the variation of .S, for e

/ 1 ~2v
0e Sy, = 5 /(—e 2X? —m?)éde, (3.1.7)

we can obtain its equation of motion

| 1 ..
e’ = ——X, X" (3.1.8)

Hence,

1 [, 1 .\ 1 ..\2
S;p=§/d7{<_;71—§X2) X= (__;’_%_2.)(2) mz}
——m/d’r\/ ~X?
-

Sp

|

(3.1.9)

Therefore, it is understood that the actions S, and S, are classica,lly* equivalent at least.
Moreover it is easy to see that the action Spp has the same symmetries as the earlier one

Spp, 1.€. Poincare and reparameterization symmetries. A point that is better than Sy 0L
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|

id6°4 exp(—iP, X" — i0Q — i0Q)Q4 exp(iP, X7 + 10Q + i6Q))
nga,A (QA s o QbB{Q })
id6°A6*B o, 6P P, + id6*" Q;

G_ldGIQ

= —if%o*df0* P, + idAQ, (3.1.17)
G~'dG|g = i045*d0" P, + id0Q, (3.1.18)

Finally we obtain
G7YdG = i(dX* — 04T dO) P, + idAQ + idfQ (3.1.19)

Therefore the both 84 and X* — i0AT#94 are invariant under supersymmetry. In fact,
the term 64 is obviously invariant and because of

§(X* — i0ATH94) = iefT oA — T +p”
= (), (3.1.20)

so is the latter. The most straightiorward generalization of (3.1.10) is simply given by

1 . .
S = / dre™ (X" — iQATHHA)? (3.1.21)

This action is Lorentz invariant and supersymmetric and so has the full super-Poincare
symmetry. The equations of motion for e and X* are given by, respectively

p’=0, p*=0, (3.1.22)

where
p* = X* — ifATHeA, (3.1.23)

On the other hand, the equation of motion for @ is

[-pfd=0. (3.1.24)

Since (I - p)* = —p? = 0, the matrix I" - p has half the maximum possible rank. For this .
fact, halt of its components are actually decoupled from the theory. ThlS 1S a consequence

of a far from obvious additional symmetry of (3.1.21). This symmetry 1s new fermionic
symmetry, so called x symmetry.

20




3 Suppose that xk4%(7) denote A infinitesimal anti-commuting parameters. Note that

o

3; x” has 7 dependency. Its infinitesimal transformation is defined by

.f 0604 = il'pk”, (3.1.25)
3 §X* = ifATH604, (3.1.26)
i; Se = defi?. (3.1.27)

_T_fe-ii
s

3.1.1 Superstring action

It is easy that the point-particle action can be generalized to the string. Namely, the

bosonic string action can be defined by

o

DI o T e T o | P '
¥ T B TR R e e,

B uy

- R SRR

g 3 %e F o mﬁ-ﬁ ’:fﬁ

Sy, = _-é%'r_ /d%/—wabcwaax“abx& [3.1.28)

X 0

X

Figure 3.2: orbit of string in Minkowski spacetime

The action is diffeomorphism invariance which are the reparameterization of world-

sheet coordinates, Weyl invariance,

XMy ad) = X¥7,0),
Yop = €277 g, (3.1.29)

and D-dimensional Poincare invariance.

The energy momentum tensor is defined by the variation of the action with respect to

the metric,

5
P~ S. | (3.1.30)

Similarly for the case of the point-particle, The supersymmetric action is obtained by

Tab e

replacing 0, X* to |
" IIH = 0, XH —i64TH 5,04 (3.1.31)
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& where we used

i
% Ha

(3.2.2). After eliminating A the equation of motion (3.2.4) becomes, there-

+ fore,

i 0,0 §; + 0,0;0" $;9: = 0. (3.2.6)
%ﬁ;ﬂ‘ 1 . . -

% Let consider the O(3) sigma model as example. Introduce the light-cone variables,
= Lirta)

. .

? r = “\/E(T = O‘). (327)
’%f In this coordinates, the metric and (3.2.6) become, respectively,

b
ity

o - qw ik s
e g by T g

_(9++ 9+-\ [ O -4
g (g_+ g__) = (_ . ) , (3.2.8)

and
0+0-¢i + (0+9;0-0;)¢:i = 0. (3.2.9)

Because of

y I fﬁlf."".h:"*‘ -&4, e

$i0+¢; = $i0-¢; = 0, (3.2.10)

the 3-vector gf_; is perpendicular to both of (9+$ and 0_ 5 Moreover we can normalize 84_(1_5

: and 6_5 as follows:;

(0403)* = (0-¢:)* = 1, (3.2.11)
which are always possible if the theory is conformally invariance. In addition, suppose

that the angle between 8+5 and 0_¢ is a,

| oo s 00 + (8-8) (3.2.12)
| 046||0-¢)]
._.E Then we have the normal basis of S?,
. Thus 02 ¢; are written in terms of ¢;, 0;¢; and 0,.¢;,
85 ¢; = Ap; + BO_¢; + CO, ¢ (3.2.14)
The equations we must solve are
A= ¢;02¢; = —(0:¢:)° = —1, (3.2.15)
B+ Ccosa = 0_¢;0%¢; = 0, cosa + (0,0_¢;)0+¢; = 04 cosa, (3.2.16)
(3.2.17)

Bcecosa+ C = 8+¢;;63_¢1— = —(8%¢:)0+¢; = 0.

23



Consequently we find (3.2.14) is

Ot ,.
8_2'_@@ = "-7; = - aa_(i)z <+ cot Glfa+€¥6+¢z. '(3218)
Similarly,
0_«
63@2 = _‘gbz — Sma/8+¢ + cot @:8_&8_@. (32;19) |

Differentiating (3.2.18) with respect to £, we obtain

0_07 ¢i = 04(0-04 1)

= —0,(cos ag;)
= —0, cos ap; — cos ady @; (3.2.20)
Hence,
0_¢;0_05¢; = — cos® (3.2.21)

On the other hand,
0_¢;0_07% i = O_(0_$;05 ;) — 0> $:02 ¢

3
COS ¥ COS ¥ COS™
"——*"28__8_4_00805—{1-—( —-—-2—-————2——-— )8_;_058_* }

SN~ & Sl & SlIl X

= —sinad_0ya — cosadyad_a — {1 — cos ad,ad_a}

= —sinad_0 o —1 (3.2.22)
We get the sine-Gordon equation,
0_0;a+sina =0 (3.2.23)

Now we consider the O(NV) sigma model with the coupling to fermions by using su-
persymmetry. The real superfields ®; are expanded in terms of 6 as

0;(z,0) = @i(z) + V203 (z) + GO F,(x) (3.2.24)
The superfields ®; satisfy the condition |
&P, = 1. (3.2.25)
From the explicit calculation,
D;P; = {%‘ + vV261); + gQF@} {‘Pz + V204, +I§9F£}
= ;i + 2V 200;; + 200, F; + 2010,
= Qipi + 2V 2000, + 2000, F; — 009,10,

24



we find the conditions for component fields are

1 -
pivi =1, Yipi=0, @F;= 5%7/):5- (3.2.26)

The 2-dim. covariant spinor derivatives are given by

% 0
Dy = —— — i(7"0) o0, 3.2.27

Hence operating D, to the superfield ®;, we get

0 " _ _
Da®; = {% — i(v#0) 0 } {(,04, -+ \/59’% + 9917?;}

= V20iq + 200 F; — i(7#0) a0,0i — iV 2(7#0) 0 (88,2)
= \/§¢m + 20, F; — i('}’ue)aau‘ﬂi | \;59_9(@%)0&

Fraih = b et e y i
s NER  ER y

and its conjugation,

1?:;'-;“""5-% L P alq. L5l it o
% LJ_- P i b l"‘*‘ir :H: Sl +Hf‘ﬂ?£#ﬂ::‘:1quh‘ 1;i$;€‘.'ﬁ
"l.._l

Do®; = (Ds®;)"(7")ga (3.2.28)
= {VBUl, + WYF, + (0 s — IO b 0O (3220
' — V20 + 20aF; + 607" aBpps — —=00(: D)o (3.2.30)

V2

When we take these product, it becomes

Do®;Do®;|,, = 100v:p1; + 400 F;F; + (67"4"0)0,0:0,pi — 296’10?,@%

= 06 1{0&,90@-5“% + it @ Vi + 4FiF¢}

?‘ By using this, the supersymmetric action is given by

dfd6D,®,D, P,

R e

=5 W00 P + Ewi @ ¥ + 2F;F; (3.2.31)

3.2.2 Bosonic sigma model in general background

Moreover we can consider the string theory in general background. The action is, of

course

| 1 |
3 = — | d%¢ L .2.32
- S=o | 6L (3.2.32)

| 25






v
&

;} The Virasoro constraints are given by ®¢ =~ 0, ®; ~ 0. The Hamiltonian density vanishes

.és:_ - . . .
. weakly: H ~ 0. Using (3.2.37), we can check that the Virasoro constraints are consistent

-
&

el

R

ey

with the time evolution

Dy = —2(d1e" )Py — 8(81°) D1 — ;B — 28, P,

| 0 (3.2.40)
(I)l — —2(816 )‘1)0 - 2(8161)(1)1 - 6081(1)0 - el81(1)1*

X So we can see that there is no secondary constraint.

-

e
- 3.3 AdS String
ﬂh The string living in AdSs x S° spacetime is described by the action with the multipliers,
VA
D = o d€*(L ags + Ls), (3.3.1)
& n
#  Wwhere
v
1 ]~
| Lags = —-é-anaaYP@“YQ - EA(?’]pQYPYQ -+ 1) (332)
1 1
Lg = _.inPQaaXPaaX@ + EA(T;PQYPYQ +1) (3.3.3)

Here XM M =1,2.--- .6 and Y, P=0,1,--- .5 are the embedding coordinate of R®
and R2* and the Lagrange multipliers A and A are introduced to constrain that the string
coordinates X'’s and Y'’s live in SE{ and AdSs respectively as in the last section. There

exist the constraint expressing the vanishing of the total 2-d energy-momentum tensor,

0L
Top ~ . 3.3.4
7 Shab Lo
The constraints are

?’]PQ(YPYQ =g YI;YCE) - XMXM - X;WX;M =0 (3.3.5)
nFRYpY, + XmuXj = 0. (3.3.6)

Similar for O(N) sigma model, the equations of motion are .
3""8&YP - ]\Yp = 0, ]\ — nPQB‘IYpaaYQ, (337)
00X —AXpy =0, A=0"Xpy0Xnm (3.3.8)
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The AdSs x S° superstrings in the
t generalized light-cone gauge and the

£
pred]
&

P
LJ'

Nambu-Goto-like action

4.1 string/gauge correspondence

In order to see the gauge/string correspondence, we consider the following action as an
example,

S = ng‘ /d437 tr(8,0:0" ;) + I* tr(didp;dr) + d7* tr(dididrdhn)] (4.1.1)

where the matrices (¢;)q express:N x N hermitian matrix. This theory has U(N) gauge
invariance. The quadratic term is written by

1 1
—— tr(0,¢:0"¢;) = _T((Cbi)abapau(¢j)M)5ij5ad5bc (4.1.2)

. We can understand that the propagators of the matrix valued fields is

2

((#1)ab(2)(95)ea(0) ~ 2B18556abse (4.1.3)

from (4.1.2). In order to express its matrix indices explicitly, it is useful to draw the
Feynman diagram using double line notation as in Fig.4.1.
Similarly, the vertices can be also read off from the Lagrangian (4.1.1), that is, there

exist 3-point and 4-point vertices (Fig.4.2). The both of the vertices have the same
contribution whose scale is g 2.
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Equatlon of motion (3.2.37) for X
1

VA0

Xt=k=- (Gt*P, +GtP.) (4.2.5)

. determines the Lagrange multiplier A% as

1
ho0 = — 7 (GTTP.+ G P.). (4.2.6)
K
- Equation of motion for P_
‘ I 01 3 |
0=P_=0, |— (%) ;Z/{;G__BlX“ (4.2.7)

fixes h®! up to an arbitrary function of 7:

ol — —-‘/——)-‘-G__alx F(7) 00

- B (4.2.8)

The function f(7) is arises from the residual symmetry The residual symmetry is fixed
by setting f(7) = 0. Moreover we have the Virasoro constraints, of course. Solving the
Virasoro constraint ®; = 0 gives the relation X~ = —(1/P_)P,0, X™.
Therefore, the worldsheet metric is fixed as
100 1 VA

= (G**PL+G*"P.), Rh*= S7 G-~ P01 X™ (4.2.9)

The Virasoro constraint ®; = 0 gives a quadratic equation for P.:

Gt*P{+2P_G* P, + PG+ G"’“”P P+ iG'__ (P01 X™)* 4+ AGrn1 X™01 X™ = 0.

PQ
(4.2.10)
The equations of motion for the dynamical variables in the reduced phase space are
given by

Va1 G____

sz —7.;66 Xn)ale j

. 01 B

‘Pm:all: (h )Pm*—_\/.__Gmnaan

o 1,00
: | (4.2.11)
-+ 2\/Xhoo [(amG++)P-}2- +2(8,GT")P.P_ + (8,,G™ ") P2 + (8,,G*) P, P,
A _
+_PT2'(8 G’__)(Pnc'?an)z i A(amGM)aleale -
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TR . (M)Q 2 (m)z, (4.2.20)

2 \ 1 —(22/4) 2 \1+ (y?/4)
1 1
G, = , Gy= 4.2.21
FE 7)) N CEN CRTZ) (4.2.21)
. Here
4 4
2= ("2 =) () (4.2.22)
a=1 s=1
. The coupling constant A is related to the radius R of the AdSs and S° as follows: V=
© R?/d.
| In the generalized light-cone gauge, P. is determined by the following equation
G**P? +2BP, + C =0, (4.2.23)
where B = Gt~ P_,
I -
__u C:G__PE_I_G_Z P‘12+G_yzp‘f+3
. o=1 ge==] ; : (4224)
A
+ 553G (Pad12® + Puts0ry®)’ + AG. ) (812 + AGy ) (81y°)*
- a=1 s=1

For AdS; x S°, we can take the flat Minkowski limit R — oo. In this case,
Gt*'=0+0(R™), Gt =-1+0(R™?). (4.2.25)

Therefore, in order to have a finite Minkowski limit, the sign for P, must be chosen as

P+. : (=B +egVB? - GT+(), (4.2.26)

— G

where €g is 1 for B > 0 and —1 for B < 0.

4.3 The AdSs; x S° Green-Schwarz superstring in the

generalized light-cone gauge

4.3.1 The Green-Schwarz action in the AdS; x S® background

The Green-Schwarz superstring in the flat target space was proposed in [5, 6]. General-
ization to the action for the ‘curved supergravity background was done in [63].
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Then the Lagrangian becomes
p _ A
L= VANPOXm 4 O30 4+ 'd") = VALY, S = _2.*/7.;. f dzeLm (4.4.5)

where the superscript (r) represents that the parameter A is scaled out and of course, the

constraint functions becomes

&) := GREPI P 4 Gy 0 X0, XE, (4.4.6)
¢ .= PMo X, (4.4.7)

Now we choose the generalized light-cone gauge as in the last chapter,
Xt=xr, P.=0 (— P_ = P_(0)). (4.4.8)

From the constraints (Iﬁg) = @f) = (), we obtain

(4.4.9)

C!( ) = j(P-(— ))2G +G™ P?’Ez)PT(l ) T (P(T))QtG“"‘(nga)alxm)z Ed Gmn'-ale‘aan-
(4.4.10)
Then the Lagrangian becomes
Lyt = PO X+ + pOxm (4.4.11)
The light-cone Hamiltonian is defined by
HLO = —-K,P+, (4.4.12)
because of X™ = k7. Now we consider the following redefinition:
“PD (Vo = d '-
—P_(o)do = dg, (4.4.13)
r = 7, (4.4.14)
where w is a constant. Then we obtain the reduced action
\/}: 2 by A i = |
Sred’ ot "5‘7"1'_" | d E [PmaUX -+ KP+]
VA [ ozx0 |
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where

o)) = GUNIT + GuDi X DiX" + G PV B + Grun DX DiX™, - (4.4.21)

o\ = 1D, X" + POD; X™ (4.4.22)
0 = P 4 By Dy — PUA~; — POA™ 5 X", (4.4.23)

Here I*I_Sf:) = Pf) — g) A¢ 511*;*5" and I := P, The generalized light-cone gauge is
Xt=kr, P.=0 (— P_=P_(0)). (4.4.24)
The Virasoro constraint Gﬁ{g) = 0 yields the following quadratic equation

1 o | | (4.4.25)
F - G__(P{D1X™)? + Gn D1 X ™D, X™ = 0,
(P "
which gives a solution
P = PN 98 4 1D, (4.4.26)
Here
(4.4.27)
with ep = sign(GT~P_) and
(IS o G—;(PET)')Z _
(4.4.28)
1 _, —(T)_,D a . p(r)D S\ 2 . a\2 : 8\ 2
- RO PD PP+ .Y D + 6,3 (D)

By taking the generalized light-cone gauge and by substituting the solutions of the Vira-
soro constraints into the action, we have

v2)

S =22 [ ¢ (POX™ + PO 4 kP - o0x%). (4.4.29)
with
r) O\T : 3 T)A— T) AT n
8y = P\ + B,0,9% — PDA-4 _ prpgm _xm (4.4.30)
Let us consider the redefinition of the worldsheet coordinates,
“PO(o)o = ds * (4431
=L : (4.4.31)
T = ¥, (4.4.32)
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- Under the target space metric ansatz (4.5.4), the momenta P_ conjugate to X~ is
. given by
P_ = -V R%G_ 9;X". (4.5.8)

- The generalized light-cone gauge is given by the following two conditions:3

X+ = gr, P_ = v Dw = const (4.5.9)

- which fix the world-sheet diffeomorphism.

- 4.5.2 From the first-order form to the standard Lagrangian

The reduced action in the generalized light-cone gauge is given by (using the notation of
Ref. [1])

St = o / a2 (P X™ — Hic), (4.5.10)
where
HLC — -—fGP_|_. (4.5.11)

This is the first-order Lagrangian, £ = L(X™, P,,), written in terms of the transverse
coordinates X™ and their conjugate momenta F,,. Here, P, is a solution of the equation

Gt P2 + 2V MG P, +C =0, (4.5.12)
where |
C = MG + AG oy X™0, X" + K™ P, P, (4.5.13)
K";m =G+ -L%G__alealX”. (4.5.14)
Explicitly, P, is given by
3 Gt~

P,

= =7 VMG )22 - GHC - Vwe (4.5.15)

where € = *1.

3QOriginally, the second condition was given by 8;(P-) = 0 in the generalized light-cone gauge. The
most general solution is P_ = P_(o0). However, without loss of generality, we can set P_ to a constant
by redefining the world-sheet space variable o and the conjugate momenta such that P_(c)do = P/ do’

with P’ constant, as shown in the section 4.4. Therefore, we adopt the condition P_ = const. as one of
the gauge conditions. '
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Now, let us convert this first-order Lagrangian into the standard form. The equations

of motion for P,

vield the following relations:

: 9P,
Xm. r__._'=03
-1 K@P;;,@

e/ A (G2 — GHHC X™ = kK™P,,

It is convenient to introduce J;; and G;; as

Joo :

Then, we have

52
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g?lj = GmnazX moX ‘n,’

Let K, be the inverse of K™":

Kmn — Gmn =

c'{_)2

G*ﬂ)

J11 =

Ji1 + 611

j@l = t710 = 03

i,j=0,1.

(Glm@r o1 X m' )( Gn@f 31X n )

bl & %VAQQ(GJr“)Q - GHC Ko X™.

By substituting this relation into (4.5.13), we obtain

C = M°G™™ + A\Gi1 + = (W (GT)? = GT0O) Ky X™X™.

Then, we have

(] =

Note that the relation

e G

KmnX™X" =

+ AGn + Qw?/K)(GH )P K XX

1+ (1/82)GH K pp X™ X"

Ju1 + G

holds. Then, after some calculations, we find

AwQ(G“L")Q oty G++C g

K2

]
£

Assuming det(J;; + G;;) < 0, we have

Mw?(GT)

2 _GH(C =&

det(Tij + Giy)

J11G00 + detf‘(g_/_ij )

(J11 + gu)?-

(4.5.16)

(4.5.17)

(4.5.18)

(4.5.19)

(4.5.20)

(4.5.21)

(4.5.22)

(4.5.23)

(4.5.24)

(4.5.25)

(45.26)

althnr @B S 1 M v
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where €' = sign(x(J1; + G11)).
- Let J;; be the matrix defined by

Jij 1= Jig T B, (4.5.27)

~and JY be its inverse. It is seen that

- 1 - det(J:; + Gij) ~
Kmn X" = ———Gmn | (J11 + X" - G0 X" = ————L G, J¥0: X".
J11 + Y11 [( 1+ Gu) Y10, } Ji1 + 611 ’
(4.5.28)
Then, we finally obtain
P = —e€'/=\det(Ji;) Grn 93, X (4.5.29)

By substituting this expression into the first-order form of the action, we find the reduced
Lagrangian in the generalized light-cone gauge.

Let us summarize the above results. The Lagrangian of the bosonic sigma model in
the generalized light-cone gauge is given by

1

Sred = — | d%€ L1, (4.5.30)
2T _
where o
Lic= -—86’\/ — A det(tjij -+ gg‘,j) .y \/)\—Iiwa——l_:-. (4.5.31)
Here, we have
K2 w2
Too = e a = e " Jo1=J10 =0, Gii = Gmn®, X™3; X", (4.5.32)

4.5.3 Rederivation of the reduced Lagrangian

In this subsection, we rederive the reduced Lagrangian (4.5.31) without employing the
. first-order formalism.

Here, let us start from the Lagrangian (4.5.2). We decompose it as follows:
L=L+ Lo, (4.5.33)

. 1 .
£1 — ——%\/Xh”Gab@iX“c'?ij, Eg = -"‘é'\/XhUGmna;Xmann. (4534)

" The generalized light-cone gauge conditions are given by
Xt=kr,' P_= —\/XhOJG_,anX“ = v Aw = const. (4.5.35)
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We interpret the second condition as the following relation for X™:

01
( k ) X~ — —— — kh® (_Ci-_;_-_:_) . (4.5.36)

A 7200 . G

Then, after some calculations, we find
Ly=L+P_ X", (4.5.37)

where

L *\/_mw(G+”) \/_

G__ hOOG_m
g . - (4.5.38)
o -\/_hODG++ \/;\- hg; (alX-)Q T \/Xw (hOO) O X"

Note that P_X~ is a total T-derivative term. Then, we use £ as the Lagrangian in the
generalized light-cone gauge.

In L7, the field X~ appears only through the form of 0; X~. The field 9; X~ plays the
role of an auxiliary field. The equations of motion for 8; X~ give

W hOl

81}{" = _G___'

(4.5.39)

Substituting this solution into £/, we obtain

/ G &) w
L) = vV kw (Gi_) — —\/—hOOG++ — _\/—huG____ (4.5.40)

Let us introduce a world-sheet symmetric tensor 7;; as

2 w?
Joo = ot Jh1 = o Jo1 = Jio := 0. (4.5.41)
The reduced action now has the form
L' =L+ Lo |
=V (gi:) N %‘/Xhij(jéj + Gij), P
where
Gij = Grun0; X™0; X™. (4.5.43)

Because the world-sheet diffeomorphism is fixed by the light-cone gauge conditions
(4.5.35), the quantities h¥ are determined by solving the equations of. motion for h¥:

h = 44/~ det(J;;) J9, (4.5.44)
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Above, we have used the 16-component notation for the Weyl spinors. A spinor wit
upper index o represents a Weyl spinor with positive chirality.

The constant matrix p in the Wess-Zumino term is given by

OTo1234 — (gﬂ . ﬁ) . (4.6.7)
Q—....

IR

Here, C is the charge conjugation matrix.

4.6.1 ~k-symmetry fixing

Let us decompose each of the two 16-component Weyl spinors into two 8-component

SO(4) x SO(4) spinors:
"gte\ o H+a |
% = " /oW R 4.6.8
(9-‘1) (Q—Q) ( )

where a =1,2,...,8, &¢=1,2,....8, a=1,2,...,8 and & = T,?,,g

We first fix the k-symmetry by setting §~¢ = §~% = (. In the 32-component notation,
these conditions are equivalent to the condition I'"© = 0. To simplify expressions, we
combine the remaining fermionic coordinates as

: gre 5 .
(%) = jra | =% Ly 2 Lo 1D (4.6.9)

Let M? be a 16 x 16 matrix,

M2 = ((Mz)fﬁ (M2)aﬁ) | (4.6.10)
(M%) (M?)%
whose elements are constructed only from the fermionic variables:
(M2)75 = 2 (0*90) (07 0)s — (0" )*(F*" o),
(MQ)aB _ __;_(9+,Yab)a(9+,yabg)5 n "12"(9+7a’b’)a(9+7arbf9)53
(M) = 5(0%78) (07 0)s — 30 1a) (G2 o),
(M) = =50 0205 + 20 1) O %0). (46.11)

Here, we have a,b=1,2,3,4, o’,/ = 5,6, 7, 8.
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For later convenience, let us introduce the following matrices:

cosh M — 115 _ ((Kl]_)aﬁ (Klg)ag) sinh M _ ((Lll)aﬁ (ng)

W
M? (K21)%  (K22)%3 M (L)% (L22)%)
(4.6.12)
Now, the k-symmetry fixed action in the AdSs x S° can be written as [1]
1 \/' ij m n 1\/_ ij & 3
ﬁGS == """2" )\h GmEDEX""“DJX—"I— 'é' )\6 B&BDZ\IJ Djl]:j y (4613)
- where m,n=20,1,...,9, &,B =1,2...,16. The target space metric G,,, is the bosonic
AdSs x S° metric, chosen as follows:
ds® = ds% s, + dsss = Grpd XBdX2 = Gd X*dX® 4+ Gpd X™d X", (4.6.14)
The AdSs-part metric is chosen as
ds o = — L+ (22/4)) dt* + G f:(dz‘”")2 (4.6.15)
AdSs 1— (22/4) z L, , 6.
and the S°-part metric is chosen as
- (v*/4))’ “‘
- d? dy®)?, 4.6.16
where { .
G, = —————, G, = —————. 4.6.17
Ty R e 7 ad
Here, we have - -
| 4 4
2= (9 v =) W) (4.6.18)
a=l s=1
We choose the coordinates X as follows:
1
X*=—(t £ ), X% =g" X418 = o 4.6.19
\/5( ) J ( )
The metric for the longitudinal directions G (a,b = %) is given by
11+ 9\ | 1 (1= (2/4)\°
=G _ = —= | — - ———=] 4.6.20
Gar =G 2 (1 - (z2/4)) HEANEN I ( )
G o L(LEE/Y L (1= (4.6:21)
T 2\ — (22/4) 2 \1+ (v2/4)) o

Wi e e e e b i e e e, el

AL | ol R W



N e
bl

For Gy, (Mmy,n =1,2,...,8), we have
Gab = Gzé:aba ‘G4+s,4—{-s’ = Gy(ss,.s’ 9 Ga,4+s — 0, (4622

where a,b=1,2,3,4and s,s’ = 1,2, 3, 4. Let us denote the inverse of Gmpn by GRZ, Not
that 0/0X= are Killing vectors. |

The derivatives D; in (4.6.13) are given by

D1X+ et @X*‘,

DiX~ = 8,X™ + A 4D;¥%

DiX™ = 0;.X™ + (A™,aD; ¥¥) X™,

D% = ;0% + (A%,;8,X )0, (4.6.23)

where & = (o, @), & = 1,2,...,16, and a, & = 1,2,...,8. The terms A~ in D; X~ are
given by

A—a - 2\/51 :(+7+K11)0: .n (9+7+K21)a I
A" g = 2\/51 1(9 Y+K12)a + (‘9+7+K22)&- : (4--24)
where
| 1 r % [ 1g 0
(Y+)ap = 5 ((’7’0)25{ + (’)’g)g,g) = (0 O) - (4.6.25)

The terms A™,; in D, X™ = (Di2%, D;y®) are given by

Aabcz = —2 'Z(§+7abQKll)a — T'(9+'7arb=QK21)a:
Apg = —2 _r(g*’Y{ab@Kw)& e (9+7&69K22)&:

), (4.6.26)
A4+Saa 5 O,
4+ | [, = ol ; ~ / |
A s+(4+8")a = _(9+74+8’4+8 0K11)o — T(9+’Y4+S’4+S 0K31)q |
4+ _ o [(a+ 4 A4s’ / 1
A (44 eya = 2 _(9+’)’ T 0K 19) s — (0T Fedss 0K2)a | - (4.6.27)

The terms A%; in D;¥® = (D,g+e D,6%) are given by

: Y 1 o Qo &
\/5(%9);3&, A% = E(%Q)a Az =A%=0. (4.6.28)
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The fields B,; in the Wess-Zumino term in (4.6.13) are defined by

where

Wy = (14 (2°/4))(1 = (¥*/4))0ap — 2°Y* (VaVa+50)as] |

(1= (22/4))(1 + (3/4))
- 4.6.2 Generalized light-cone gauge

. Now let us consider the relevant part of (4.6.13),
1 2
El .— —5\/XthGabDiXaDij.

The generalized light-cone gauge is chosen as

Xt = kT, L., = —\/XhOiG_?aDiX“ —: v/ \w = const.

From the second equation, we have

_ W G+_ h01 _
D()X — _hOOG___ el PY (G____) (hOO) D1X

OF
T - - | W G+_ hOl -
X = —-A &DO\IIQ" —-—— hOOG__ — (G__) (hOO) D]_X
El — 5’1 e P__X—,
= s (g) + VAwA= Dol
00 K
- _\/_h G++ + \/_hoog___
i . h01
_\/‘ 5 (D1 X7)? + Vw (hm) 'DIX
Now, D; X~ is an auxiliary field. By solving the equations of motion, we obtain
' whﬂl
’ D1 X~ =— :
, 1 G-

o7

(4.6.29)

(4.6.30)

(4.6.31)

(4.6.32)

(4.6.33)

(4.6.34)

(4.6.35)

(4.6.36)

(4.6.37)
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Substitution of this relation into £ yields

L) = +V I kw (g )+\/_wA s Do ™

1 \/_hao (éi) - _\/‘hn (éi) (4.6.38)

We define

2 2
K W
Joo = "

= G++ D) l711 = G Y
The GS action in the generalized light-cone gauge is given by

Jor = J10 := 0. (4.6.39)

as = ““/_hw( Jij + Gij) + \/_E”B 3D ¥°D; v

+ vV kw (f}*_‘:) + VAwA D0, (4.6.40)

where

gfgj — Gmn’DszD:,X'"’ (4641)

Then, removing A", we finally obtain the GS Lagrangian in the AdSs x S° in the gener-
alized light-cone gauge:

, 1
g = + 5V By Dy v D; 17
Gy
+ Vkw ( G+ ) + VWA~ 5Dy . (4.6.42)

Here, we have

o N NS 11{’ e | & ] - —
Do = §,6t — T500(en0%)", DY = a0 +%5i,@(m+e+)a, (4.6.43)

DiX™ = 0;X™ + (A™ s D; ¥ X ™, (4.6.44)

This is the main result of this paper. It can be rewritten as follows:

H. —)\ det(Jm + gzgj + VA kw (ng")

- - Faluls AAT TPL .
- VREID, g | sinh M WS;thM
- M M

+12V2X w7y 45 (-——__.__) Do, (4.6.45)

v TR i



‘where

sinh MT _ sinh M] ‘sinh MT7 7 "sinh M 1°
[ e Bl vl AR X (4.6.46)
sinh MT] 7 [sinhM]? W..s 0
= , Wei=| " : 4.6.47

o 0 (7+)a:5 . 0 lg
Was = (('Y-i—)aﬁ 0 ) - (13 0) | (4648

In contract to ordinary Nambu-Goto actions, we have chosen the sign before the square
root term to be positive. This comes from the requirement that the action must have the
correct flat-space limit. Indeed, the Lagrangian (4.6.45) goes to the correct x-symmetry
fixed light-cone gauge Lagrangian in the limit.

The Lagrangian (4.6.45) will serves as a starting point for developing the various limits
and investigating the quantum fluctuations.

4.7 Flat-limit of the Lagrangian

4.7.1 Flat-space limit

In the subsection 4.5.2 and 4.5.3, we found the bosonic Lagrangian in the generalized
light-cone gauge in the standard form, which is written by

Gt~ | G+HC 1 Gt w
ELC — \/-A-WG_*__*— \/7_ m (1 + EEG++A) — \/Xﬁl G+t ; (471)

‘where
A= KnpX™X" (4.7.2)

with f f
(1/0?)G (Gt 1 X™ ) (Cro Oy X™)
1+ (1/w2)G___Gk¢81X"’81X‘ |

In this section, we treat the flat-space limit. To do this, we consider the rescaling

Kmn " Gmn — (473)

coordinates

: CSC iJSC
¥ et —— e 4‘ .4
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Figure 4.3: AdSs x S°

where ¢ and 1 express the height from the equatorial plane which are respectively described
by t and @3 of AdSs and S° as show in Figure 4.3. Then some elements of the target

space metric is rescaled as

G, £ v Gyf . B
Ge=G__=—5, Gy==25 CG.=4; (4.7.5)
and A and C are respectively
1 1 sc 4 : Gsc o' Gsc,,,a ra ) 2
A = __RE . GZC(:QS)Q 4 Gi"(éa)z . Gi W { + }
L 1+ == {G*_(¢ ) + G (2*)}
= R—Zi\:ﬂc (476)
and
C 1 G—- 2__|_G!S/C( 33)2+G36( ia,)2 %;(G+-)2Asc
R? 14+ 572GEF A
= R*C,.. (4.7.7)
| GTr( . 1 G, -
(o ey Y (g 478
Thus we obtain the following bosnic light-cone Lagrangian,
kwGT™ G"‘““C 1 K G
= — i e T —
R2 l_ 9 G+_ i G++ G++ ‘G+_-
iy § . S . 2
ol I_R 'iwg-s-}j {1 2R* (G+-)2w 5 Csc }{1 Re 2 Asc}“meG:c_i_}
1 1 1 1, ] “ |
NS e e Lans J T —— - \ i A
C}f! K’WG E.sz (G+_)2 CSC mg ASC_ ) (4.7*?) |
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- where

Ase ~ G3H(3°)? + GS°(3%)?, (4.7.10)

2
Cse ~ WG + G(y*)? + G2(2°)? + = (G*™)2As,. (4.7.11)

K2

Now the remaining elements of the target space metric and its determinant can be ex-
panded with respect to R ~ \i as

_ e 9y
G+_ = ]. "'——"‘QRQ( - 'I)SC) ]., (4712)
A Mo
det(Ggp) = (1 + Ei)(_l + —EE) =1, (4.7.13)
[
= s e e e o
- e~ ! (4.7.14)

Hence we obtain finally the Lagrangian under R — oo

1 1 sc(, 8 sc( za 1 | sC(, IS sef Jla | P
£LC ~ ——RW {Gy (y )2 T Gz (Z )2} o 'QUQ'{Gy (y )2 + Gz (Z )2} o 'Z"Gsc

o | 2K2 _
(4.7.15)

The last term in eq.(4.7.15) yields the mass terms. Now note that there exist the param-
eters K and w which were introduced on the occasion when gauge-fixing (4.4.8). So let
choose these parameters as

k=—A"9R, w=ATiRk. (4.7.16)
That is, |
P_=Vw = \ik — . (4.7.17)

Then we obtain the following Lagrangian in this limit:

]' -8 SC( . a SCf..'3 sc( . ja
Lo ~ 5= {Gy ()" + G (3*)" - Gy (y*)* — G*(z")*}

1 ¥ C m n
= — =GB X9, X", (4.7.18)

in whice we introduced 2-d Minkowski metric

-1 0
(17:5) = ( o 1) . \ (4.7.19)

Moreover, we can get the Lagrangians in various flat-like limit by considering rescaling of
string coordinates. As follows, it is shown that we obtain the correct Lagrangian in the
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flat-space limit. from (4.7.18).

Flat limat
In this case, we have to do the rescaling of string coordinates,

X™ = "1X™ (4.7.20)
Then the scaled metric becomes
. (%1, 0 . _
where we used
n2, ~ 4, (2 o~z (4.7.22)

Hence the light-cone Lagrangian becomes

1 ij M VN

Also let us rescale the fermionic fields as follows:

s (ST-i85),  a=12,...8 (4724

Taking A — oo, and ignoring (divergent) surface terms, the GS Lagrangian in the
generalized light-cone gauge arrives at

/flat __ mY -a m, VG T o o' Q. « Qo 7 O
o = 1 mzzl {[(a@X Y — (8,X )z] +/2if }_1‘; ;[Sl (Bo+81)S%+ 5 (ao—-al)sg]. (4.7.25)

This is the correct form of the Green-Schwarz action in the light-cone gauge.












-p—> X- X+
<>
(a)
(b)
(¢) b0 —. 30 —e———>0
(@) ( B) ()

Figure 5.4: A state of the closed string, which has two localized excitations with oppo-
site momenta propagating aling the string. (a) Worldsheet picture of the two localized
excitations. (b) Spacetime description of the configurations. The symbols («), (3) and -
() correspond to these in (c¢). (¢) The shape of the configuration at a given time t. the
red anid blue parts in (a) are locally the same as in Fig.5.3; i.e. the parts are folded and
connected by two lines. Althought at (o) and (), the two excitations exist at a mutually
different position of the string worldsheet, at (), these exist at the same position.

Now because of

= ——r, (5.1.8)

where we took the range of o to be from —r to r. we obtain

7i8
r=——P . 5.1.9
" -t

Thus it is understood that the size of the worldsheet is related to the momentum and the
energy by
r~E+J. |  (5.1.10)

Hence, we can understand that the limit of an infinite string correspon(i to the limit taking
the energy and the momentum to infinity. But the fact that J 1s very large means that
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Then the S? part of the metric can be written as

(ds®)s2 = (1 —n°)depy + 7— pe (5.1.16)
Choosing £ = tan { or
L
4 .
COS 7Y = . siny = : 0.1.17)
Ty L (5-1.17)
Additionally, we also take the parameterization of the metric of AdSs
4 ¢ N\ 12
(ds?) aass = cosh® vdt? + dy* + sinh® v Z d (%—) : (5.1.18)
i=1 L -
From AdSy coordinates, only time coordinate is chosen,
(¢, 21, 20, 23, 24) = (t, 0,0,0,0). (5.1.19)
Then the R; part of the metric can be written as
(ds?) g5, — (ds*)g, = —dt’ (5.1.20)

We obtain the parametrization of the metric quoted in the text. The giant magnon
solution is respected by 1 = ngm (0 — v7), or ¥* = §,1y", y* = yYym(o — v7) and its energy
integal is given below in eq.(5.1.33).

In the classical analysis, it is regitimate to restrict ourselves to y* = ds1y* = 9,19,

Pys = 051Fy, 2* = 0. From the relevant part of the light-cone Hamiltonian density Hyc
in ¥ 2.3 of [1], we obtain the classical Hamiltonian density Hyc,

. —Gruw+e/(Grw)r - G0,

Fre = — o+ Hice=—kP, (5.1.21)
where ), :
nw Y 1 n? =
a2 Tty 3" (B0w) + 5 (0w) (5.1.22)
and
G e G — i ]. 2 2 —_ 2
Ge= {0 & =51, (BB (5.1.23)
G_+3c G-—-*,c 2\2— 772 772

(5.1.245).



In order to find the corresponding reduced action functional of v, ¥/, 7 via the first-order
formalism, we go back to express P, in terms of y, v/, ¥, via

. aHLC',c
Y:))
! 2 2
1 —n%\/2w? — nt (%) y°P,
= KEg—m—————— (5.1.25)
W?n?,/2 — -:%yQPyg
Inverting this, we obtain
2&)4 2
Fy = 9012 2 2\ ¥t 2 yz-z 2 2),/72)’ (5.1.26)
2wiA(1 — 1) + y? (w2 — K2(1 = n?)y?)

and

. VA |
Sely, ¥, 9] = ~or d*¢(Pyy — Hrc)

VA =2, V2

= — [ dodT { —Kw -+ 2%w4(1 — % )y? + n* (W2y? — k(1 — n?)y"?
o RS yne (1 —=n*)y* +n* (w?y (1—n?)y")
1

== dodtL(y,vy',9).

(5.1.27)
Substituting the ansatz y = y(o — v7) and hence y = —vy’ into eq.(5.1.27), we obtain a

mechanical Lagrangian L™(y,vy’; v), regarding y' as time derivative of y;

2 =2 2 —
L™ (y,y'sv) = v {—nwn 5 F \/_‘KJ‘ Ve (l—n*)y* - (1 -2 - ?72)77431’2} :

where
U7 = —v”. (5.1.29)

Because we regarded the space coordinate o of the string worldsheet as a new “time”, the

Hamiltonian is conserved with respect of ¢. From the mechanical Lagrangian £™¢¢, we
get

Fmec — yfl-[y _ Jmec




where IIY is the “conjugate momentum” of Yy, given by

o 0L VAl (=B (g g
Ay’ ly] 2w?(1 —n?)y? — (1 - 3% —n?)y'n* o

Note that the mechanical Hamiltonian H™¢¢ is constant along the string and the end
points of the giant magnon solution lie in the equator of S?. Thus we can conclude , by
the estimation of the Hamiltonian at the end points of the solution, |

Hmec

il

0, (5.1.32)

for the giant magnon. From this equation we obtain

p_2W(-m) v

Y P _2F (1= =) (5.1.33)
and
7 2
P, = I“«”z’ﬁ—ﬁ%ﬂ‘ (5.1.34)
Then the light-cone Hamiltonian become
Hrc = F,y — 1Yy + H™ec
el =) (5.1.35)

2-m)1-9—1)
Coming back to the original light-cone, it is now possible to the light-cone energy such
that dispersion relation,

i ™ VA d
Erc = o doHrc| = —7;-/ B zzly’HLO = \/2/\%\/1 — 22,  (5.1.36)
| _m ¢ y
g.m. g.m.
V2 , )
P, = ——m do P,y = 2 arccos?. (5.1.37)
Hence

P sol

Fro= \/2)\—,-?— sin
27

(5.1.38)

5.1.2 Giant magnon solution in “flat space” limit
From eq.(5.1.33), the giant magnon equation can be written to that with only 7 as

| w? 21__ 2\ 2
;(3177)2=__7.)__(____7?_l__ !

= PR 5.1.39
2(1 _ 3]23) ] v 2 e nz ( ) -
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| In order to consider the near flat space limit, we introduce the scaled variables 7,,. Then,
- the equation (5.1.39) becomes

K
(Binpe)? = O o (5.1.40)
Taking simply the limit, A — 0o, we have

Then, we obtain, by using y = —vy/

Tlsc = Tlo = const. (5.1.42)

Because the strings which describe giant magnon solution must satisfy n = 0 at the edges,
it is found that the solution is

Nse = 0. (5.1.43)

Hence, the giant magnon solution has the whole on the line corresponding to the equator
of S? in the flat-space limit.

On the other hand, notice that there is another non-trivial limit; i.e. we are interested
in the limit,

A— oo  with A\*(1—v?) fixed, (5.1.44)
in which the right hand side of (5.1.40) does not vanish. Now, we define & as
A% (1 —0?) = k2 (5.1.45)

Then, the eq.(5.1.40) with A — oo becomes

(5.1.46)

Therfore, we obtain

s .dnsc K
\/k‘2 — 72 = /(—:-—-—da. (5.1.47)
/ sc \/5 |

_ After the replacements,
‘Nse = ksinf and t=tan-—, (5_1_48)
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Let us turn to the rescaling of the bosonic field variables. Noticing the

factor which is present in , we rescale

i —= nsc)\ﬂza
ot
iJ == ysc)\ %y
where vy, and 7. are related by
1. 3 a

y

A%Psol — —\/5/ dO’Py’y!

/3 vi—®? g,
_9 2/ P
0 layzl' yl

M 2
~ 2 —_—

e

/‘v’ 1—"1'32}\%

i

. A
=k,

%] 5

(1 _— ’52) — ”73.::

1 —-9%~2

(5.2.23)
(5.2.24)

(5.2.25)

(5.2.26)

reproducing the scaling limit proposed above. Let us now obtain the light-cone Hamilto-

nian density in the scaling variables, we obtain

1 A | 1 1 1
Him = = | — PSCQ—I—GSC' I \2 ol 2 -E‘,Q— Pch_Gsc I \2
LC 9 _sz(:( J ) Y (ysc) _J 4)\% Nse | G;c( Y ) 7] (ysc)
1 1 772 -_ 1 (PSC)2 4 GSC(y! )2_ i L. 9,
16A% sC L G;c Yy Yy scC -

~4 .

Henee, we find

-

. _@HLC?)

y'SC aP;c
1 1 , 1 . 1 , 17 1
- pse _ 2 P-SC___ 2 _= 2
Gsc Y 2A%nSCGSC (7 4A%nSCGsc Gsc( y)

y L Y

Inverting this expression iteratively, we obtain

1

DS 8Cs se 'f- 1 . SC ﬂ
P’yc = Gy Ysc lﬁ_ns%cGy Yse |1 — "2"G§c(ysc)2 fai L (y;C)z + O (

N3 |
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A

)

ﬂ

(5.2.27)

(5.2.28)

(5.2.29)

(5.2.30)
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Appendix A

Metrics of Various Spaces

A.1 S? Metric

In this section, let us reproduce the S? metric by considering S* space as that embedded
into R3. The R® metric is

(ds®)gs = dz° + dz3 + dz;. (A.1.1)
On the other hand, the S? is defined by
z$ + 25 + 73 = 1. (A.1.2)

Now we introduce 1 and 3 as follows:

V1 — 1% = x1 + ixo,

Then eq.(A.1.2) is automatically satisfied. Noting that
(——1'\/_2—=2d7) ~- ’Z\/]. — ?-']_2.dg03) Ei(“93 — dﬂ?l + idIBQ, (A14)
— 7N
( —\/'in_'idn — 14/ 1 — nngog) €3 = dx; — idzo, (A.1.5)
ik

we get

— (———L—dn +i4y/1 — nzdcpg) (———n—‘-—dn — 14/ 1 — nQdcpg)

Voer- Vi
2 ,L
=g ﬁ nzdn? + (1 — n)dy3 (A.1.6)
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One choice of the matrices ¢® is the following {72]:

ol =Ty Q@ To @ o ® To,
2 . . 1

23 —TQ®T2®7'1® sy
3 _ e Do 1

0° =Ty R Ty XT3 2,
04=’Tg®12®7’2®ﬁa
0’ =T Q 1y QT ® T,
0 1

g =T9 R T X lg @ 7o,
0'7:’7'2@7'3@1272)
8 ﬁ q

g =Tl'®12®12®]—23
9

0 =131, ® 15 ® ls.

Here 7, (k = 1,2, 3) are the Pauli matrices.

The charge conjugation matrix C is chosen as

{. { 0 ]
O = ( 1’5) .
o 0

The chirality matrix in D = 9 + 1 is defined by

|

L:=71...7°

Any 32-component spinor can be written as

[ 6«
O = :
Xe

A Weyl spinor with positive chirality, ['© = 40, is given by

°=s)

and a Weyl spinor with negative chirality, [© = —©, is given by

o= ()

ST |
. 0 ~ 116

(B.1.5) |

(B.1.6) .

(B.1.7)

(B.1.8)

(B.1.9)

In the 16-component notation, a spinor 82 (y,) with upper (lower) index a represents a

Weyl spinor with positive (negative) chlra;hnty.
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In this Majorana-Weyl representation, the matrix p is given by

012345 _ [ Qap 0

(0ap) = 1@ @M ®T, () =LONROTHLRTs (B.1.12)

An antisymmetric product of I'’s is denoted by

ab\a
red — rlardl — (('7’ )% y ) . (B.1.13)

B.2 Indices

We use the following conventions for the various indices in AdSs x S°.

(i) The world-sheet indices, 2, = 0, 1:

=7, f=0 =1
(ii) The curved bosonic indices, m,n =0,1,...,9:
m=(a,m)=(a,a,8): a=%x,m=1,2,...,8,a=1,2,3,4,s58=1,2,3,4

Xa, - za, X4+s — ys_

e

1
"\'/'—'2'(?5 + ),

X2 X0=t, X9=(p} X+ =

Also, o’,b =5,6,7,8: X% = y"*"‘"’f‘.
(iii) The local Lorentz indices, a¢,b =0,1,...,9:

Neb = diag(—1,+1,...,+1).

(iv) The indices for Weyl spinors, o, 3,a,6 =1,2,...,16.
The bar over o and 3 has no physical meaning. It is occasionally used to distinguish

a complex Weyl spinor from its conjugate:

_ 1 1
=7 73

Here #'2 (I = 1,2) are Majorana-Weyl spinors: (6'¢)* = §'2.

6« ' +if%2), 6% = —(0'® —if"2).

87






Appendix C
Details on the induced vielbein

The psu(2, 2|4) generators are given by

N o~ e P o~

Po=(PiPy), JTi=-Ji Tyy=-Jysr Qu Qa (C.0.1)

where ¢ = 0,1,2,....9, a,b = 0.1,2,3.4, a',b' = 5,6,7,8,9, o = 1,2,....16, &

~

1,2,...,16. The bosonic generators are chosen to be anti-Hermitian and (@Q)T = @
The non-zero commutation relations are given by

—

-C:I_.

|Ps, By = J, [Pats Py) = —dsis (C.0.2)
[ as JE)E;J - n&BPE _ n&épf;? [Pﬁ.’? JBIC“:I: — 5&’B’P6’ - 5&’6’PB;, (COS)
-~ ~ ] ~ L] A~ ]_ i
[Qt_l_v Pt_l] — 5(79_9).@_?'@.{1! | [ atal = _'2'(7_QQ)Q;‘Q§3 (C05)
[Qg_s Jaﬁ] = 5(7"&6)2‘@' B [Qg..s Jaf&] &= '2;'(755'5!)9_2@_{5‘_3 (0-0-6)
~- 1 gl o 1 o]
@_@_1 ‘]ab] = 5(7ab)éﬁ ok @Q, Jaff,,] - 2(70’6’)@'_3 A (C07)
{Qa, @} = ~2i(79)agFa + (**0)agTas — (V** 0)ag i (C.0.8)

Py = %(ﬁo + Py), Y+ = '1‘(’70 £ 7¥9) (C.0.9)
_ (Y+)as 0 _ lg 0 _ 0 0 — 0 0
T L B I N R I (R
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Let

COShM . ]-16 _ (Kll)cjﬁ (Klg)aﬁ SinhM s (Lll)ag (ng)aﬂ“
M? (Kn)%  (Kx»)%)/ M (L21)%s  (La2)%3
(C.0.22)
The induced vielbeins are calculated as follows:
= et 9 X +er DX,
S . 1 e
M= T
1
E{'l_’-s — D‘L Sa
C T T (g2 s
Ef* =U% ((LuDif*)’ + (L1aDi6 ")) , (€023)
E;% =V% ((LuDi%)’ + (L12Di61)°)
E;* =T% ((LuDi6")° + (LDi*)*) .
—_;& — V_B ((L21D19 )B g (LQZD'LQ )B) )
where
e, = = ’(1.: <z2/4_1) + (;__—__w_w)
+"’ 2 5 1 = (ZQ/ ) AL+ (y2/4) i | (0024)
. 1 1+(z2/4)) . (1— (y2/4))'
T2 (\1-(2/e)) T\1+ (/4]
ge, = 8%+ 1/ 4)2°9° (YaVats)5) 7%, = (6%5 4 (1/4)2°Y° (Va¥a+s)*5)
(1— (22/4)"% (1 + (12/4))"/? (1—(22/4))2 (1+ (92/4))(1é20 -
vo, - _Ti2000)% Hivluse)l®s e 12060% — 4°(100)%
"7 21— (/4P (1 + 12/4) 2(1— (2/4)) (1 + (4% 4301'/5 26)
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r ey
-

-

DX~ = 8,X™ +2v2i [(0+ 74 Ki1)a + (0774 K21)a) Dib™
+ 24/2i [(§+7+K 12)a + '(9+7+K22)a] D;6%,
Dyt = 82 — 22 [(F* 10K 1)e — (077P0K1)a) D™
— 22p [(9+’)’abQK12 a (9+’)’abQK22)c“i]l D0,
Dy’ = 0iy° + 2y ir(§+’}’4*3’4+3f oK11)a — (07754 9K2l)a:_ Do (C.0.27)

+ 2y [ (BTN 0K 9)s + (0174 0K)a | DB,

L

D, = 0,07 + -—l—(§+7+ 0)*0; X

V2

By comparing with (4.3.9), we can read off A™4, A™,4, A%;. For example,
A-cu — 2\/51 Z[(é+’}/_|_K11)a + (9+’7.+K21)a] . (0028)
A&@ —— 2‘\/-2-1 [(§+’}’+K12>@ -+ (9+'}/+K22)55] . (0029)

The fields B 63 in the Wess-Zumino term are read off from

- -
—€" B, 5(Z)D;¥*D; ¥’
2 % : (C.0.30)

|
+
e
|
+
™D
|
2
Q
|
5
o —

. p r i
== ew’(E;-aQa;@Ej . + L a’Q@BEﬂ' P E; Qf“EEj i Capt

Qur convention for the Levi-Civita symbol is €’ = 1.
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