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ABSTRACT 

For an oriented link diagram D, the warping degree d(D) is the smallest 
number of crossing changes which are needed to obtain a monotone diagram 
from D. We show that d(D) + d( -D)+ sr(D) is less than or equal to the 
crossing number of D, where -D denotes the inverse of D and sr(D) 
denotes the number of components which have at least one self-crossing. 
Moreover, we give a necessary and sufficient condition for the equality. We 
also consider the minimal d(D) + d( -D)+ sr(D) for all diagrams D. For 
the warping degree and warp-linking degree, we show some relations to the 
linking number, unknotting number, and the splitting number. We also 
discuss the complete splitting number of a lassoed link. 
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1. INTRODUCTION 

An r-component link L is an image of a smooth embedding of the disjoint 
union of r circles into R3 . In particular, a knot K is a link of one component. 
A diagram D of a link L is a generic immersion of L to a plane enhanced 
by information on overpasses and underpasses at double points. A crossing 

point p of D is such a double point of D with information on overpass 
and underpass. The warping degree and a monotone diagram is defined by 
Kawauchi for an oriented diagram of a knot, a link [10] or a spatial graph 
[11]. The warping degree represents such a complexity of a diagram, and 
depends on the orientation of the diagram. For an oriented link diagram 
D, we say that D is monotone if we meet every crossing point as an over­
crossing first when we travel along all components of the oriented diagram 
with an order by starting from each base point. This notion is earlier 
used by Hoste (5] and by Lickorish-Millett (15] in computing polynomial 
invariants of knots and links. The warping degree d(D) of an oriented link 
diagram Dis the smallest number of crossing changes which are needed to 
obtain a monotone diagram from D in the usual way. We give the precise 
definitions of tl1e warping degree and a monotone diagram in Section 2. 
A link diagram is alternating if the crossings alternate over and under as 
we go along tl1e diagram. Let - D be the diagram D with orientations 
reversed for all components, and we call -D the inverse of D. Let c(.D) be 
the crossing number of D. We have the following theorem, which is for a 
knot diagram: 

Theorem 1.1. Let D be an oriented knot diagram which has at least one 
crossing point. Then we have 

d(D) + d( -D)+ 1 ~ c(D). 

Further, the equality holds if and only if D is an alternating diagram. 

We give the proof in Section 3. Let D be a diagram of an r-component link 
(r ~ 1). Let Di be a diagram on a knot component Li of L, and we call Di 
a component of D. A link diagram D is equilibria[ if the number of non­
self over-crossing points of Di in Di U Di is equal to the number of non-self 
under-crossing points of Di in Di U Di for every two-component sublink 
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diagram DiU DJ of D. We assume that a knot diagram is equilibria!. In 
Figure 1, the diagram D is equilibria! and D' is not equilibria! although 
D and D' represent the same link. We generalize Theorem 1.1 to a link 

D D' 

FIGURE 1 

diagram: 

Theorem 1.2. Let D be an oriented link diagram, and sr(D) the number 

of cornpor~er~ts Di such that Di has at least or~e self-cr-ossirtg. Thert 'We have 

d(D) + d( -D)+ sr(D) ~ c(D). 

Further, the equality holds if and only if D is equilibria[ and every compo-
nen,t Di of D is alternating. , 

For example, the link diagram Din Figure 2 has d(D) + d(-D) + sr(D) == 

3 + 3 + 2 = 8 == c( D). 

D 

FIGURE 2 

\ 
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Let D be a diagram of a link. Let u(D) be the unlinking number of D. As 
a lower bound for the value d(D) + d(-D) + sr(D), we have the following 
inequality: 

Theorem 1.3. We have 

2u(D) + sr(D) ~ d(D) + d( -D)+ sr(D). 

The rest of this paper is organized as follows. In Section 2, we define the 
warping degree d(D) of an oriented link diagram D. In Section 3, we prove 
Theorem 1.1. In Section 4, we define the warp-linking degree ld(D), and 
consider the value d(D) + d( -D) to prove Theorem 1.2. In Section 5, 
we show relations of the warp-linking degree and the linking number. In . 
Section 6, we apply the warping degree to a link itself. In Section 7, we 
study relations to unlinking number and crossing number. In Section 8, 
we define the splitting number and consider relations between the warping 
degree and the splitting number. In Appendix A, we show methods for 
calculating the warping degrees and the warp-linking degrees. In Appendix 
B, we discuss the complete splitting number of a lassoed link. 
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2. WARPING DEGREE OF AN ORIENTED LINK DIAGRAM 

Let L be an oriented r-component link, and D a diagram of L. We take 
a sequence a of base points ai (i = 1, 2, ... , r), where every component has 
just one base point except at crossing points. Then Da, the pair of D and 

a, is represented by Da = D!
1 

U D~2 U · · · U D~r with the order of a. A 
self-crossing point p of D~t is a warping crossing point of D~i if we meet 
the point first at the under-crossing when we go along the oriented diagram 
D~t by starting from ai ( i = 1, 2, ... , r). A crossing point p of D~1 and D~1 
is a warping crossing point between D~t and D~1 if p is the under-crossing 

of D~i (1 ::; i < j ::; r). A crossing point p of Dais a warping crossing point 
of Da if p is a warping crossing point of D~t or a warping crossing point 

between D~t and D~1 [10]. 

' 

FIGURE 3 

For example in Figure 3, p is a warping crossing point of D!
1

, and q is a 
warping crossing point between D!

1 
and D~2 • We define the warping degree 

for an oriented link diagram (10]. The warping degree of Da, denoted by 
d(Da), is the number of warping crossing points of Da. The warping degree 
of D, denoted by d(D), is the minimal warping degree d(Da) for all base 
point sequences a of D. Ozawa showed that a non-trivial link which has a 
diagram D with d(D) = 1 is a split union of a twist knot or the Hop£ link 
and r trivial knots (r ~ 0) (20]. Fung also showed that a non-trivial knot 
which has a diagram D with d(D) = 1 is a twist knot (27] . 
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For an oriented link diagram with its base point sequence Da = D!
1 

U 

D~2 U · · · U D~r, we denote by d( D~t) the number of warping crossing points 
of D~i. We denote by d( D~t, D~3 ) the number of warping crossing points 
between D~t and D~3 • By definition, we have that 

r 

i=l i<j 

Thus, the set of the warping crossing points of Dais divided into two types 
in the sense that the warping crossing point is self-crossing or not. The 
pair Da is monotone if d(Da) == 0. For example, Da depicted in Figure 4 
is monotone. 

D 

Q3 

FIGURE 4 ' 

• 

Note that a monotone diagram is a diagram of a trivial link. Hence we 
have u(D) :::; d(D), where u(D) is the unlinking number of D ([19], [28]). 
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3. WARPING DEGREE OF A KNOT DIAGRAM 

In this section, we discuss the warping degree of a knot diagram and 
prove Theorem 1.1. We first show some properties of the warping degree 
of a knot diagram. We have the following lemma: 

Lemma 3.1. Let Db be a knot diagram, with a base pozrtt b. Then, 'We have 

Before proving Lemma 3.1, we introduce a method of judging locally whether 
a crossing point of an oriented knot diagram with a base point is a warping 
crossing point or not. For an oriented knot diagram D and a base point b, 
we notice that Db is divided into c(D) + 1 arcs by cutting the base point 
and under-crossings. Then we label them along the orientation from the 
arc which has the base point as initial point as shown in Figure 5 . Every 
crossing point consists of two or three arcs. We label each crossing point 
via the indices of the arcs in the following definition. 

4 1 

2 3 

FIGURE 5 

Definition 3.2. Let p be a crossing point of Db which consists of an over-arc 
with the index a and the other two arcs with the index (3, r· We define the 
cutting number of pin Db, denoted by cutnb(p), by the following formula: 

' 
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{3-
p 

FIGURE 6 

Note that the cutting number is always odd. Suppose {3 is smaller than "f, 
namely 1 == {3 + 1. Then we have cutvb(p) == 2(a- {3)- 1 by substituting 
{3 + 1 for 1. Hence cut Db (p) is odd. By the definition of the warping crossing 
point, we have the following lemma: 

Lemma 3.3. A crossing point p is a warping crossing point of Db if and 

only if cutDb(p) > 0, and p is a non-warping crossing point of Db if and 

only if cut Db (p) < 0. 

' 

We prove Lemma 3.1. 

Proof of Lernma 3.1. Let (k1 , k2 , ... , kn) be the ordered set of arcs of Db, 
where ki has the index i. Let (l1 ,l2 , ... ,ln) be the ordered set of arcs of 
-Db as above. Then we notice that ki and ln+l- i are the same arc except 
the orientations fori == 1, 2, ... , n. Let p be a crossing point of Db in Figure 
6. Then we have the following equality: 

cut_Db(p) = 2(n + 1- a)- (n + 1- (3)- (n + 1- 1) 

=-(2a-fJ-!) 

= -cutDb(p). 

Therefore p is a non-warping crossing point of -Db if and only if p is a 
warping crossing point of Db· Hence we obtain that 

' 

' 
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c(D) == d(Db) +#{non-warping crossing points of Db} 

== d(Db) +#{warping crossing points of -Db} 

== d(Db) + d( -Db)· 

This completes the proof. 

We apply Lemma 3.1 to the mirror image in the following example: 

11 

D 

Example 3.4. Let Db be an oriented knot diagram with a base point b, and 
D; the mirror image of Db. Then we observe that a crossing point p is a 
non-warping crossing point of D; if and only if pis a warping crossing point 
of Db. By Lemma 3.1, p is a warping crossing point of D; if and only if p 

is a warping crossing point of -Db· Therefore we have d(D*) == d(-D). 

For two base points which are put across a crossing point, we have the 
following lemma: 

Lemma 3.5. For the base points a1 , a2 {resp. b1 , b2 ) which are put across 
an, over--crossing p {resp. under-crossing q) in Figure 7, we have d(Da2 ) = 

d(Da 1 ) + 1 (resp. d(Db2 ) = d(Db1 )- 1). 

p 
• • 7 
a I 

FIGURE 7 

q 
• 

bJ 
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Proof. Except at p, Da1 and Da2 have warping crossing points at same 
crossing points, and p is not a \varping crossing point of Da1 and p is a 
warping crossing point of Da2 • D 

By Lemma 3.5, we obtain the following lemma: 

• :t .. . 
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Lemma 3.6. Let D be an oriented alternating knot diagram. Let b be a 

base point of D which is just before an over-crossing as shown in Figure 8, 

then we have d(Db) = d(D). 

b 

FIGURE 8 

We prove Theorem 1.1. 

Proof of Theorem 1.1. For an oriented knot diagram D with c(D) 2: 1, the 
following inequality holds: 

(1) maxd(Da)- mind(Da) > 1. 
a a 

From Lemma 3.5, the equality holds if D is an alternating diagram. On 
the other hand, if the equality holds, D is an alternating diagram, namely 
there do not exist any two over-crossings or two under-crossings which are 
next to each other as shown in Figure 9 . 

I I 

FIGURE 9 

Let a and b be base points which satisfy d(Da) = d(D) and d( -Db) = 
d(-D). Then we notice that 

• 

• 
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maxd(Da) == d(Db), 
a 

because a' satisfies 

d(- Db) == mind(-Da) 
a 

and a warping crossing point of-Dais a non-warping crossing point of Da. 
Hence the inequality (1) is equivalent to the following inequality: 

and this is equivalent to 

By adding d(-Db) to each side, we have 

By Lemma 3.1 and the conditions of a and b, we obtain the following 
' 

inequality: 

d(D) + d( -D)+ 1 < c(D), 

where the equality holds if and only if D is an alternating diagram. 0 

Here is an example of Theorem 1.1. 

Example 3.7. This table lists all standard knot diagrams based on Rolfsen's 
knot table with crossing number 9 or less [21]. In this table, D(K) denotes 
the standard diagram of K with the orientation which has the smaller 
warping degree, and a knot marked with t is non-alternating . 
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K d(D(K)) d(-D(K)) 
31 1 1 
41 1 2 
5i 2 2 i = 1, 2 
6i 2 3 i = 1, 2, 3 
7· ~ 3 3 i = 1, 2, ... '6 

77 2 4 
8i 3 4 i = 1, 2, ... ' 17 
818 2 5 
819 t 3 3 
820 t 2 3 
821 t 2 2 
9i 4 4 i = 1,2, ... ,13,16,18,20,21,23,25,27,28, 

29,30,33,35,36,38,39,40 
9i 3 5 i = 14,15,17,19,22,24,26,31,32,34,37,41 
9i t 3 3 i == 42, 44, 45,46 
9i t 3 4 i = 43,49 
947 t 2 5 
948 t 2 3 

In the following lemma, we determine the warping degree of the standard 
diagram of a torus knot. , 

Lemma 3.8. Let T(p, q) be (p, q)-torus knot (0 < p < q, p and q are 
coprime) and D(p, q) the standard diagram of T(p, q) with the orientation 
as shown in Figure 10. Then we have the following: 

(1): d(D(p, q)) = d( -D(p, q)) = (p- l)(q- 1)/2, 
(2): c(D(p, q))- d(D(p, q))- d( -D(p, q)) = p- 1. 

Proof. In D(p, q), there are (p-1) over-crossings and (p-1) under-crossings 
alternately. By Lemma 3.5, a base point which is just before (p - 1) over­
crossings realizes the warping degree of the diagram. For example, base 
points a and bin Figure 10 satisfy 

""!' • .- • • ~. .. • • ; ' 

;_ • .-. ; " ;,~~· • • ' : · ·, • I • • •._ - ; ,: ,• • 

' 

d(D(p, q)a) = d(D(p, q)), 

d( -D(p, q)b) = d( -D(p, q)), 

' 
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D(5,6) b 

a 

FIGURE 10 

respectively. Considering the upside-down image of D(p, q), we have 

d(D(p, q)) == d( -D(p, q)) , 

that is, 

(2) d(D(p,q)a) == d(-D(p,q)b)· 

With respect to the crossing number of the diagram, we have 

(3) d(D(p, q)a) + d( -D(p, q)a) = c(D) = (p- 1)q 
' 

by Lemma 3.1. And by Lemma 3.5, we have the following relation 
' 

(4) d( -D(p, q)b) = d( -D(p, q)a) - (p- 1). 

By the formula (2) and (4), we have 

(5) d(D(p,q)a) = d(-D(p,q)a)- (p-1). 

And by the formula (3) and (5), we have 

2d(D(p, q)a) = (p- 1)q- (p- 1). 

Hence we obtain the warping degree 

d(D( )) = (p- l)(q- 1) p,q 2 . 

Hence we have 

I 
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c(D(p,q))- d(D(p,q))- d(-D(p,q)) 

== (p- l)q- (p- l)(q- l) X 2 = p- 1. 
2 

This means that c(D)- d(D)- d( -D) depends only on pin this case. D 

• 

• 
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4. PROOF OF THEOREM 1.2 

In this section, we prove Theorem 1.2. We first define the warp-linking 
degree, which is like a restricted warping degree and which has relations 
to the crossing number and the linking number (see also Section 5). The 
number of non-self warping crossing points does not depend on the orien­
tation. We define the warp-linking degree of Da, denoted by ld(Da), by the 
following formula: 

r 

ld(Da) = Ld(D~, ,D~) = d(Da)- Ld(D~,), 
i < j i=l 

where D~i' D~3 are components of Da. The warp-linking degree of D, de­
noted by ld(D), is the minimal ld(Da) for all base point sequences a. It 
does not depend on any choices of orientations of components. For ex­
ample, the diagram D in Figure 11 has ld(D) = 2. A pair Da is stacked 

D E 

' 

FIGURE 11 

if ld(Da) = 0. A diagram D is stacked if ld(D) = 0. For example, the 
diagram E in Figure 11 is a stacked diagram. We remark that a similar 
notion is mentioned in (5]. Note that a monotone diagram is a stacked 
diagram. A link L is completely splittable if L has a diagram D without 
non-self crossings. We give the precise definition of complete splittable in 
Appendix B. We notice that a completely splittable link has some stacked 
diagrams. 

The non-self crossing number of D, denoted by lc(D), is the number of 
non-self crossing points of D. Remark that lc(D) is always even. For an 

l' . . . . 
4 • o ' - I 
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unordered diagram D, we assume that Di and DiU DJ denote subdiagrams 
of D with an order. We have the following relation of warp-linking degree 
and non-self crossing number. 

Lemma 4.1. We have 

ld(D) < lc~). 

Further, the equality holds if and only if D is an equilibrial diagram. 

Proof. Let a be a base point sequence of D, and a the base point sequence 
a with the order reversed. We call a the reverse of a. Since we have that 
ld(Da) + ld(Da.) = lc(D), we have the inequality ld(D) ::; lc(D)/2. Let D 
be an equilibria! diagram. Then we have ld(Da) = lc(D)/2 for every base 
point sequence a. Hence we have ld(D) = lc(D)/2. On the other hand, we 
consider the case the equality 2ld(D) = lc(D) holds. For an arbitrary base 
point sequence a of D and its reverse a, we have 

ld(Da) ~ ld(D) = lc(D) -ld(D) ~ lc(D)- ld(Da) = ld(Da.) > ld(D). 

Then we have lc(D) -ld(Da) = ld(D). Hence we have ld(Da) = ld(D) for 
every base point sequence a. Let a' = ( a1, a2, ... , ak-1, ak+ 1, ak, ak+2, ... , aT) 
be the base point sequence which is obtained from a = ( a1, a2, ... , ak, ak+I, ... , aT) 
by exchanging ak and ak+1 (k = 1, 2, ... , r -1). Then, the number of over­
crossings of Dk is equal to the number of under-crossings of Dk in the 
subdiagram Dk U Dk+1 of Da because we have ld(Da) = ld(Da' ). This 
completes the proof. 0 

We next consider the value d(D) + d( -D) for an oriented link diagram D 
and the inverse -D. We have the following proposition: 

Proposition 4.2. Let D be an oriented link diagram. The value d(D) + 
d(- D) does not depend on the orientation of D. 

Proof. Let D' be D with the same order and another orientation. Since 
we have d(Di') = d(Di) or d(Di') = d( -Di), we have d(Di') + d( -Di') = 

. . . . I 

d(D') + d( -D') for each D" and D'. Then we have 

' 

' 
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r r 

d(D') + d(-D') = L d(Di') + ld(D') + L d( -Di') + ld( -D') 
i=l i=l 

r 

= L { d(Di') + d( -Di')} + 2ld(D') 
i=l 

r 

= L {d(Di) + d(-Di)} + 2ld(D) 
i=l 

r r 

= L d(Di) + ld(D) + L d( -Di) + ld(-D) 
i=l i=l 

= d(D) + d(-D). 

D 

A link diagram is a self-crossing diagram if every component of D has at 
least one self-crossing. In other words, a diagram D of an r-component link 
L is a self-crossing diagram if sr(D) = r. We have the following lemma: 

' 

Lemma 4.3. Let D be a self-crossing diagram of an r-component link. 
Then we have 

d(D) + d( -D)+ r ~ c(D). 

Further, the eq1.tality holds if and only if D is equilibrial and every compo­
nent Di of D is alternating. 

Proof. We have 

\ 
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r r 

d(D) + d( -D)+ r = L d(Di) + ld(D) + L d( -Di) + ld( -D)+ r 
i=l i=l 

r 

= L { d(Di) + d( -Di) + 1} + 2ld(D) 
i=l 

r 

i=l 
r 

i=l 

= c(D), 

where the first inequality is obtained from Theorem 1.1, and the second 
inequality is obtained from Lemma 4.1. Hence we have the inequality. The 
equality holds if and only if D is equilibria! and every component Di of D 
is alternating which is obtained by Theorem 1.1 and Lemma 4.1. 

D 

We give an example of Lemma 4.3. 

Example 4.4. In Figure 12, there are three diagrams with 12 crossings. 
' 

The diagram D is a diagram such that any component is alternating and 
has 3 over-non-self crossings and 3 under-non-self crossings. Then we have 
d(D) + d( -D)+ r = 12 = c(D). The diagram D' is a diagram which has a 
non-alternating component diagram. Then we have d( D') + d(-D') + r = 
10 < c(D'). The diagram D" is a diagram such that a component has 
2 over-non-self crossings and 4 under-non-self crossings. Then we have 
d(D") + d( -D") + r = 10 < c(D"). 

Lemma 4.3 is only for self-crossing link diagrams. We prove Theorem 1.2 
which is for every link diagram. 

Proof of Theorem 1.2. For every component Di such that Di has no self­
crossings, we apply a Reidemeister move of type I as shown in Figure 

·/ . ·I ·I 
13. Then we obtain the diagram D~ from D~, and n~ satisfies d(D~ ) = 

• 

t · · :, • .. ..... : • • • ·.:. ~.: .. . ... : • J' 

' 

I 

• 
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D D' D" 

FIGURE 12 

RI bi 

• 

D' 

FIGURE 13 

d( -Di') = 0 == d(Di) = d( -Di) and c(Di') = 1 = c(Di) + 1. For ex­
ample the base points ai, bi in Figure 13 satisfy d(D~t) = d(Di) = 0, 
d( -Dt) = d( -Di) = 0. We remark that every Di and Di' are alternating. 
We denote by D' the diagram obtained from D by this procedure. Since 
every component has at least one self-crossing, we apply Lemma 4.3 to D'. 
Then we have 

d(D') + d( -D') + r ~ c(D'). 

And we obtain 

d(D) + d( -D)+ r ~ c(D) + (r- sr(D)). 

Hence we have 
d(D) + d( -D)+ sr(D) ~ c(D). 

The equality holds if and only if D is equilibria! and every component Di 
of D is alternating. 0 

,. . . . 
I .: . • !. h : . . > <j.~ . .~ • • . .•• 
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5. WARP-LINKING DEGREE AND LINKING NUMBER 

In this section, we consider the relation of the warp-linking degree and 
the linking number. For a crossing point p of an oriented diagram, c(p) 
denotes the sign of p, namely c(p) = + 1 if p is a positive crossing, and 
c(p) = -1 if p is a negative crossing as shown in Figure 14. For an oriented 

c:(p) = +1 c(p) == -1 

FIGURE 14 

subdiagram DiU Di (i =/= j), the linking number of Di with Di is defined 
to be 

Link(Di, Di) = ~ :L c(p). 
pEDtnDJ 

The linking number of Di with Di is independent of the diagram ( cf. [3], 
(10]). We have a relation of the warp-linking degree and the linking number 
of a link diagram in the following proposition: 

Proposition 5.1. For a link diagram D, we have the following {i} and {i 
i}. 

. . . 
-..! .....:~: . . .... ~·~-~~ .. : . ·. : i .... :·:.: ... · . ., . 

(i): We have 

:L ILink(Di, Di)l ::; ld(D). 
i<j 

Further, the equality holds if and only if non-self under-crossings 
of Di in DiU Di are all positive or all negative with an orientation 
for every subdiagram Di U Di (i < j) with an order which realizes 
the warp-linking degree. 

• 

• 

I 

• 
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(ii): We have 

(6) L ILink(Di, Di)l = ld(D) (mod 2). 
i<j 

Proof. (i): For a subdiagram DiU Di (i < j) with d(Di, Di) = m, 

•, . . . .. . . . ' .-.. ,:, .. ·. : · t· .. · ... ·· --: .. ··.·~ . . · 
M ... . .... ~ ~- ~ • • I . .... 

we show that 

Let Pt, P2, ... , Pm be the warping crossing points between Di and 
Di, and c(Pt),c(p2), ... , c(Pm) the signs of them. Since a stacked 
diagram is a diagram of a completely splittable link, we have 

by applying crossing changes at p1 , p2 , ... , Pm for Di U D1 . Then 
we have 

Hence we obtain 

L ILink(Di, Di)l ~ ld(D). 
i<j 

The equality holds if and only if non-self under-crossings of Di in 
' 

DiU D1 are all positive or all negative with an orientation for every 
subdiagram DiU Di ( i < j) with an order which realizes the warp­
linking degree. 

(ii): By the above equality (7), we observe that Link(Di, Di) = 
c(PI) + c(P2) + · · · + c(Pm) = c(qi) + c(q2) + · · · + c(qn), where 
Pk (resp. qk) is a non-self under-crossing (resp. over-crossing) of 
Di in Diu Di, ld(Di u Di) = m and lc(Di u Di) = m + n. A 
similar fact is also mentioned in [21]. We have 

Link(Di, Di) = c(PI) + c(P2) + · · · + c:(pm) 

= m (mod 2) 

= d(Di, Di). 

Hence we have the modular equality 

' 

I 

• 
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L ILink(Di, D1)i = ld(D) (mod 2). 
i<j 

D 

Example 5.2. In Figure 15, D has (0, 2, 3), E has (0, 2, 2), and F has 
(4, 4, 4), where (l, m, n) of D denotes that L:i<j ILink(Di, D1)1 = l, ld(D) = 

m, and lc(D)/2 = n. 

D E F 

FIGURE 15 

The total linking number of an oriented link Lis defined to be L:i<j Link(Di, D1) 
with a diagram and an order. We have the following corollary: 

D 

FIGURE 16 

• 

' 

I 
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Corollary 5.3. We have 
r 

LLink(Di,Di) = L{c(pk)IPk: a non-self warping crossing point of Da}, 
i<j k=l 

where a is a base point sequence of D. 

Corollary 5.3 is useful in calculating the total linking number of a diagram. 
For example in Figure 16, the diagram D with 4 components and 11 crossing 
points has ld(D) = 4. We have that the total linking number of D is 0 by 
summing the signs of only 4 crossing points. 

I 

' 

I 
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6. To A LINK INVARIANT 

In this section, we consider the minimal d(D) +d(-D), d(D) +d( -D)+ 
sr(D) and ld(D) for minimal crossing diagrams D for an oriented link L. 
We define e( L) as follows: 

e(L) = min{d(D) + d(-D)ID: a diagram of L with c(D) = c(L)}, 

where c(L) denotes the crossing number of L. In the case where L is a 
non-trivial knot K, we have the following theorem: 

Theorem 6.1. Let K be a non-trivial knot. We have the following (1) and 
(2). 

(1): We have 

e(K) + 1 ~ c(K). 

Further, the equality holds if and only if K is a prime alternating 
knot. 

(2): For any positive integer n, there exists a prime knot K such that 

c(K)- e(K) = n. 

Proof. First, we show the equality of (1). By Theorem 1.1, we have the 
equality · 

(8) d(D) + d( -D)+ 1 = c(D) 

if and only if D is an alternating diagram. If K is a prime alternating 
knot, then minimal crossing diagrams of K are alternating (17]. Hence we 
have the equality by considering the minimum of the equality (8). On the 
other hand, if K is a non-prime alternating knot, then there is a minimal 
crossing non-alternating diagram so that e(K) + 1 < c(K) [16]. Next, we 
look to c(T(p, q))- e(T(p, q)) for the (p, q)-torus knot T(p, q) (0 < p < q) 
to prove (2). Schubert mentioned in [22) (cf.[18)) that 

c(T(p, q)) = (p- 1)q. 

Ozawa showed in [20] that the ascending number of T(p, q), which is equal 
to the minimal warping degree for all diagrams of T(p, q) and all orienta­
tions, is (p- l)(q- 1)/2. Then we have 

\ 

' 

I 



e(T(p, q)) = (p -l);q- 1) + (p- 1);q- 1) = (p- 1)(q- 1) 

because d(D(p, q)) = d( -D(p, q)). Hence we have 

c(T(p, q))- e(T(p, q)) = (p- 1)q- (p- l)(q- 1) = p- 1. 

We next define c* ( L) and e* ( L) as follows: 

c* ( L) == min { c( D) I D : a self-crossing diagram of L}, 

27 

D 

e*(L) = min{d(D)+d(-D)jD: a self-crossing diagram of L with c(D) == c*(L)}. 

As a generalization of Theorem 6.1, we have the following theorem: 

Theorem 6.2. For an r-component link L, we have 

e*(L) + r ~ c*(L). 

Further, the equality holds if and only if every self-crossing diagram D of L 
with c(D) = c*(L) is equilibrial and every component Di of Dis alternating. 

Proof. Let D be a self-crossing diagram of L with c(D) == c*(D). We 
assume that D satisfies the equality d(D) +d(-D) = e*(L). Then we have 

' 

e*(L) +r = d(D) +d(-D) +r 
r r 

= Ld(Di) + ld(D) + Ld(-Di) + ld(-D) + r 
i=l i=l 

r 

= L{d(Di) + d(-Di) + 1} + 2ld(D) 
i=l 

r 

:::; L c(Di) + 2ld(D) 
i=l 

r 

:::; L c(Di) + lc(D) 
i=l 

= c(D) = c*(L), 

where the first inequality is obtained by Theorem 1.1, and the second in­
equality is obtained by Lemma 4.1. If D has a non-alternating component 

' · 

' 

I 
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Di, or D has a diagram Di U D1 such that the number of over-crossings 
of Di is not equal to the number of under-crossings of Di, then we have 
e*(L) +r < c*(L). On the other hand, the equality holds if Dis equilibria! 
and every component Di of D is alternating. 0 

We have the following example: 

Example 6.3. For non-trivial prime alternating knots £ 1, £ 2 , ... , Lr (r 2:: 2), 
we have a non-splittable link L by performing ni-full twists for every Li 
and £i+l (i = 1, 2, ... , r) with Lr+l = £ 1 as shown in Figure 17, where we 
assume that n 1 and nr have the same sign. 

' ... "-e: 
~-

••• 

FIGURE 17 
' 

Note that we do not change the type of knot components Li. Let D be a 
diagram of L with c(D) = c(L). Then we notice that Dis a self-crossing 
diagram with c(D) = c*(L). We also notice that D is equilibria! and 
every component Di of D is alternating because lc(Di U D1) = 2lnil and 
Link(Di,D1) = ni, andlc(D1UDr) = 2lnt+nrl andLink(D1,Dr) = n1+nr 
in the case where r = 2. Hence we have e*(L) + r = c*(L) in this case. 

We have the following corollary: 

Corollary 6.4. Let L be an r-component link whose all components are 
non-trivial. Then we have 

e(L) + r::; c(L). 

~ • ••• <(• ... " 

' 

I 
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Further, the equality holds if and only if every diagram D of L with c(D) = 
c( L) is equilibria[ and every component Di of D is alternating. 

Proof. Since every diagram D of L is a self-crossing diagram, we have 
e(L) = e*(L) and c(L) == c*(L). D 

We also consider the minimal d(D)+d( -D)+sr(D) and the minimal sr(D) 
for diagrams D of L in the following formulae: 

f(L) == min{d(D) + d(-D) + sr(D)ID: a diagram of L}, 

sr(L) = min{sr(D)jD: a diagram of L}. 

Note that the value f(L) and sr(L) also do not depend on the orientation 
of L. Jin and Lee mentioned in [6] that every link has a diagram which 
restricts to a minimal crossing diagram for each component. Then we have 
the following proposition: 

Proposition 6.5. The value sr(L) is equal to the number of non-trivial 
knot components of L. 

The following corollary is directly obtained from Theorem 1.2. 

' 

Corollary 6.6. We have 

f(L) ::; c(L ). 

Proof. For a diagram D with c(D) == c(L), we have 

f(L)::; d(D) + d(-D) + sr(D)::; c(D) = c(L), 

where the second inequality is obtained by Theorem 1.2. 0 

We have the following question: 

Question 6.7. When does the equality f(L) = c(L) hold? 

\ 

. ·. . : . < ~ • . . . ~ . 
·~-~-.,.14.. ........ + .-\: •. ...:.or . .. ,. J ·~ ... • ~- •.. __ .,.., 
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Example 6.8. In Figure 18, there are two link diagrams D and E. We 
assume that JJ (resp. E) is a diagra1n of a link L (resp. l\1). We have 
.f(TJ) = ~(T1) == 5 because we have d(D) + d(-n) + .~r(D) == 2 + 2 + 1 and 
we know d(D~) ~ u(31) = 1; ld(D) 2:: 1; and sr(D) 2:: sr(L) = 1, where 

. 
D1 is any diagram of 31 . On the other hand~ we have that f(M) < c(A1) 
beca11se .f(M) ~ d(R) + d(-R) + sr(R) == 3 + 3 + 1 == 7 < 10 == r,(M). 

D E 

The non-self crossing number lc( L) of a link L is the minimal non-self 
crossing number lc(D) for all diagrams D of L. With respect to the warp­
linking degree, we define le( T1) as follows: 

le(L) = min{ld(D)ID: a diagram of L with lc(D) = lc(L)}. 

We remark that lsplit(L) ~ le(L), where lsplit(L) is the linking complete 
splitting number of L which is defined in Section 8. A link L is equilibria[ 
if all diagrams D of L with lc( D) == lc( L) arc cq1tilihrial. We have the 
following theorem: 

Theorem 6.9. We have 
le(L) ~ lc~L). 

Fu1·tltc1·, tltc cq·uality ltolds ·if a1td o1tly ·if L is cq·uilib1 .. ial. 

Proof. If L is equilibria}, i.e., every D with lc(D) = lc(L) is equilibria!, 
then every n satisfies that ld(n) == lc(n)j2 by Lemma 4.1. Then we 
have le(L) = ld(D) = lc(D)/2 = lc(L)/2. On the other hand: if the 
equality le(L) = lc(L)/2 holds, then every diagram D with lc(D) = lc(L) 

' 

I 



satisfies le(L) = lc(D)/2 = lc(L)/2. Since le(L) ::; ld(D) 
we have ld(U) = lc(JJ)/2 which means that lJ is equilibria!. 
equilibrial. 

31 

~ lc(D)/2, 
Hence Lis 

D 

In the following example, we disc11ss le(T,) of the Whitehead link J,. 

Exmrtple 6.10. Let L be tl1e Wltiteltead li11k. Tl1e tl1ree diagratrls ir1 Figure 
19 represent the Whitehead link respectively. Since L = L1 U £ 2 is non­
trivial and has Link{L1

, L2
) = 0 and lc(L) ~ 4, L has lc(L) = 4. Let 

v == U 1 u U 2 be a liliililrlal 11011-self crossittg diagraiil of L. We Ilote tllat 
D is not a stacked diagram because L is not splittable. Therefore D 1 has 
even h11t non-zero number of non-self over-crossing points, that is, D 1 has 
two non-self over-crossing points and two non-self under-crossing points. 
Hence D is equilibrial, and L is equilibria!. By Theorem 6.9, we have 

le(L) = lc(L)/2 = 2. 

' 

FIGl .. RE 19 
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7. RELATIONS OF WARPING DEGREE. UNLINKING Nl.MBER AND 
' 

CROSSING NUMBER 

In this section, we study several relations of the warping degree, the 
unknotting number or Ulllinking number, and the crossing 11umber. Let I D I 
be D witl1 orict1tatior1 forgotte11. We dcfir1c the Irrinirr1al warping degree of 
D for all orientations as follows: 

d(IDI) :== min{d(D)ID: IDf with an orientation}. 

Note that the minimal d(IDI) for all diagrams D of L is equal to the as­
cending number a(TJ) [20]: 

a( L) == 111in { d(l VI) I D : a diagra111 of L}. 

Let E be a knot diagram, and D a diagram of a11 r-component link. We 
review tl1c rclatiotl of tltc Utlkt1ottir1g llUlilbcr u( E) ( rcsJJ. tl1c Uttlir1kir1g 
number u(D)) and the crossing nllmber c(E) (resp. c(D)) of E (resp. D). 
The following inequalities are well-known [19]: 

(9) 

(10) 

u(E) < c(E) - 1 
- 2 ' 

c{D) 
n(D) $ 

2 
. 

' 

Moreover, Taniyama mentioned the following conditions [ 28]: 

The necessary condition for the equality of (9) is that E is a reduced alter­
nating diagram of some {2, p)-torus lmot, or R is a diagram with c( R) == 1. 
The necessary condition for the equality of {10) is that every Di is a simple 
closed curve on § 2 and every subdiagram DiuDi is an alternating diagram. 

Hanaki and Kanadome characterized the link diagrams D which satisfy 
u(D) = (c(D)- 1)/2 as follows [4]: 

Let D = D1 u D2 u · · · u Dr be a diagram of an r-component link. Then 
we have 

• 

u(IJ) = c(D) - 1 
2 

I 
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if and only if exactly one of D 1 , D 2 , ... , Dr is a redt1ced alternating diagra.1n 
of a {2,p)-torus knot, the other components are simple closed curves on § 2 , 

and the non-self crossings of the subdiagram ni u Di are all positive, all 
negative, or empty for each i =f j. In addition, they showed that any 
minimal crossing diagram D of a link L with u(L) = (c(L)- 1)/2 satisfies 
11, ( n) == ( c( n) - 1) 12. 

Abe, Hanaki and Higa study the knot diagrams D which satisfy 

u(D) = c(D)- 2. 
2 

Let D be a knot diagram with u(D) = (c(D) - 2)/2. They showed in 
[1] that for any crossing point p of n, one of the components of Dp is a 
red11ced alternating diagram of a (2,p)-torus knot and the other component 
of Dp has no self-crossings, where DP is the diagram obtained from D 
by smoothing at p. In addition, they showed that any minimal crossing 
diagram D of a lmot K with u(K) = (c(K) - 2)/2 satisfies the above 
condition. 

By adding to (9), we have the following corollary: 

Corollary 7 .1. For a knot diagram E, we have 

u(E) ~ d( El) ~ c(E;- 1
. 

Further, if we have 

u(E) = d(\EI) = c(E;-
1

, 

' 

then R is a reduced alternating diagram of some (2, p)-torus knot, or R is 
a diagram with c( E) = 1. 

By adding to (10), we have the following corollary. 

Corollary 7. 2. (i): For an r-component link diagram D, we have 

11.( D) ~ d(\ Dl) ~ c(~). 

I 
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(ii): We have 

u(D) :::; d(IDI) = c(~) 
if and only if every Di is a simple closed curve on §:l and the 
number of over-crossings of Di is equal to the number of under­
crossin,gs of Di in, C'lJC'f1J S'ltbdiagram, Di U Di for each, i =/= j. 

(iii): If we have 

-u(D) = d(IDI) = c(~), 

then every Di is a simple closed curve on § 2 and for each pair i, 
j, the subdiagram Vi U Vi is an alternating diagram. 

Proof. (i): The eqt1ality u(D) ~ d(IDI) holds because u(D) ~ d(D) 

(11) 

(12) 

holds for every oriented diagram. We show that d(IDI) ~ c(JJ)/2. 
Let n be an oriented diagram which satisfies 

r 

d(n) = Ld(ni) + ld(n) = d(jnl). 
i=l 

Then D also satisfies 

d(Di) S c(~i) 

for every component n·i bee a use of the orientation of D. By Lemma 
4.1, we have 

ld( D) :::; lc~). 

Then we have 

i=l i=l 

by {11) mtd (12). Hertce we obtairt tl1e i11equality 

d(l nl) S c(~). 

I 
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(14) 

(15) 

(16) 
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(ii): Suppose that the equality d(IDI) = c(D)/2 holds. Then the 
equalities 

ld(D) = lc( n) 
2 

hold by {11) and {12), where D has an orientation such that d(D) = 
d(JD{). The equality (13) is equivalent to that c(Di) = 0 for every 
Di. We prove tltis by art irtdireet proof. We assurrte tl1at c( Vi) > 0 

for a component Di. In this case, we have the inequality 

by Theorem 1.1 since Di has a self-crossing. We also have 

d(Di) = d(-Di) = c(Di) 
2 

becatlse d(Di) ~ d( -Di) and {13). By sttbstituti11g (16) for {15), 
we have 

. . 
c(Dz) + 1 ~ c(D'l). 

This implies that the assumption c(Di) > 0 is contradiction. There­
fore every Di is a simple closed curve. The inequality' (14) is equiv­
alerlt to tltat t}te IlUlilber of over-crossittgs of Vi is equal to t}te 
number of under-crossings of Di in every subdiagram DiU Di for 
each i =f j by Lemma 4.1. On the other hand, suppose that every 
Di is a siiil}Jle closed curve, artd tl1e tlUIItber of over-crossi11gs of Di 

is equal to the number of under-crossings of Di in every subdiagram 
Di U Di for each i =f j, then we have 

d(IDI) = ld(D) = lc(D) = c(D). 
2 2 

(iii): This holds by Corollary 7.2{i) and above Taniyama's condition. 
0 

' 
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Let K be a knot, and L an r-component link. Let u(K) be the unknotting 
number of K ~ and 11,( TJ) be the unlinking number of TJ. The following 
ineqltalities are also well-known [19]: 

(17) u(K) ~ c(K;- 1, 

{18) 

The following conditions are mentioned by Taniyama [28]: 

The necessary condition for the equality of (17) is that K is a (2, p )-torus 
knot (p:odd,:f ±1). The necessary condition for the equality of (18) is that 
TJ has a diagram n such that every ni is a simple closed curve on § 2 and 
every subdiagrrun Dt u D3 is an alternating diagram. 

lly adding to (17) and Theorem 6.1, we have the following corollary: 

Corollary 7.3. (i): We h.a7JC 

u(K) < e(K) < c(K) - 1. 
- 2 - 2 

' 

(ii): We have 

u(K) < e(K) = r.(K) -1 
- 2 2 

if artd ortly 'if K is a pri1ne alte17tatirtg krtot. 

(iii): If we have 

(K) = e(K) = c(K)- 1 
u 2 2 ' 

then/( is a (2,p}-torus knot (p:odd,=l ±1). 

By adding to {18), we have the following corollary: 

I 
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Corollary 7.4. For a diagram of an unoriented r-component link, we have 

u(L) < e(L) < c(L). 
- 2 - 2 

Further, if the equalityu(L) = e(L)/2 = c(L)/2 holds, then Lhasa diagram 
D = lJ l U TJ2 U · · · U TJr S'llCh, that e1Jery Di is a sim,ple closed C'llT'Ve on. § 2 

and for each pair i, j, the subdiagram D1, U D1 is an alternating diagram. 

Proof. We prove the ineqliality u(L) ~ e(L)/2. Let D be a minimal cross­
ing diagram of L which satisfies e(L) = d(D) + d(-D). Then we obtain 

e(TJ) = d(n) + d(-TJ) 2: 2u(D) 2: 2u(TJ). 

The condition for the equality is due to above Taniyama's condition. 0 

/ 
/ 

' 

' 

I 
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8. RELATION OF WARPING DEGREE AND SPLITTING NUMBER 

In this section, we define the splitting n1rmhcr and consider relations 
of the warping degree and the complete splitting number. The splitting 
number (resp. complete splitting number) of D, denoted by Split(D) (resp. 
split (D)), is tl1c SIIlallcst IlUIIlhcr of crossi11g cl1at1gcs wl1it·l1 arc 11ccdcd to 

obtain a diagram of a splittable (resp. completely splittable) link from D. 
The splitting nmnber of a link which is the minimal Split( D) for all dia­
gratrls D is dcfit1cd by Adarr1s [2]. Tl1c lirtkirtg splitt·irtg rt·urrtbeT ( rcs}J. lirtk­
ing complete splitting number) of D, denoted by lSplit(D) (resp. lsplit(D)), 
is the smallest number of crossing changes at non-self crossings which are 
11eeded to obtai11 a diagratrl of a splittable (resp. cotr1pletely splittable) lir1l{ 
from D. In Appendix B, we also discuss the complete splitting number of 
a link. We have the following propositions: 

Proposition 8.1. 

(ii): We have 

(i): We h,ave 

split(D) ::; d(IDI). 

lc(D) c(D) 
split (D) ::;; lsplit (D) ::;; ld( D) ::;; 

2 
::;; 

2 
·, 

We give examples of Proposition 8.1. 

Exar11ple 8.2. Tl1e diagratrl lJ i11 Figure 20 l1~ split(V) = 2 < d(IIJf) = 3. 

The diagram E in Figure 20 has split(E) = d(IEI) = 3. 

Example 8.3. The diagram Din Figure 21 has split(D) = 1 < lsplit(D) = 

2. Tl1c diagratrl E itl Figure 21 l1as split(E) = lsplit(E) = 2. 

Example 8.4. The diagram D in Figtrre 22 has lsplit(D) = 3 < ld(D) = 5. 
The diagram E in Figure 22 has lsplit{E) = ld(E) = 5. 

I 



39 

D E 

FIGl'.RE 20 

D E 

FIGCRE 21 

' 

D 

{ 

FIGl.RE 22 

We raise the following question: 

I 
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Question 8.5. When does the eqllality 

or 

hold? 

' 

split( D) == d( l Dl), 

split(D) = lsplit(D) 

lsplit( n) = ld( n) 

' 

I 
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APPENDIX A 

In this appendix, we show methods for ralc11lating the warping degrees 
and warp-linking degrees by using matrices. First, we give a method for 
calculating the warping degree d(D) of an oriented knot diagram D. Let 
a be a base poi11t of D. We can obtai11 tl1c warpi11g degree d(Da) of Da 
by counting the warping crossing points easily. Let [ D a] be the seqllence 
of some "o" and "u" , which is obtained as follows. When we go along the 
oriettted diagrarr1 D fi·orr1 a, we write dowt1 "o~~ ( resJJ. "u") if we reach a 
crossing point as an over-crossing (resp. under-crossing) in ntlmerical order. 

We next perform a normalization to [Da] by deleth1g the subsequence "ou" 
repeatedly, to obtai11 tlte 11orrrtalized sequertce L DaJ. Tl1e11 we l1ave 

1 
d(D) = d(Da)- 2:LDaJ, 

where ~LDaJ denotes the number of entries in LDaJ. Thus, we obtain the 
warpirtg degree d(JJ) of LJ. l11 tlte followirtg exatrtple, we fir1d tl1e warpittg 

degree of a knot diagram by using the above algorithm. 

Exarrtple 8.6. For tl1e orie11ted kttot diagratrt lJ a11d tl1e ba~e poi11t a i11 

Figure 23, we have d(Da) = 4 and [Da] = [oouuouuouuouoouoou]. By 
normalizing [Da], we obtain LDaJ = [uuoo]. Hence we find the warping 
degree of V as follows: 

J 

1 
d(D) = 4 - - X 4 = 2. 

2 

D 

a 

FIGl .. RE 23 

' 
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For some types of knot diagram, this algorithm is useful il1 formulating the 
warping degree or looking into its properties. We show a property of an 
oriented diagram of a pretzel knot of odd type in the following example: 

Exatttple 8.7. Let lJ = P(et'lt1,c2'1t2 , ... ,cm'ltm) be atl orie11ted pretzel kr1ot 

diagram of odd type {Ei E +1, -1, ni, m: odd> 0) , where the orientation is 
given as shown in Figure 24. We take base points a, b in Figure 24. Then 
we have 

and 

~LDaJ = ~l-DbJ· 
Hence we have d(D) = d( -D) in this case. In particular, if Dis alternating 
i.e. c-1 = c:2 = · · · =em = ±1, then we have 

d(D) = c(D) - !. 
2 2 

P(5,3,3) 
a 

b 

FIGCRE 24 

' 

We next consider how to calculate the warp-linking degree ld( n) by using 
matrices. For a link diagram D and a base point sequence a of D, we define 
a11 r-square matrix M(D.) = (mi;) by the following rule: 

J 
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Q2 

-
/ / 

Da Db 

• For i =f j, mij is the number of crossings of Di a.11d D1 which are 
11nder-crossings of Di. 

• Fori= j, mij = d(D.i). 

We show an example. 

Example 8.8. For Da and Db in Figure 25, we have 

0 1 0 
1 0 0 , M(Dh) == 
2 2 0 

0 2 2 
0 0 1 
0 1 0 

• 

' 

We note that ld( Da) is obtained by s1rmming the 11pper triang11lar entries 
of M(Da); that is 

ld(Da) = L Tnij, 

i<j 

and we notice that 

d(Da) = L mij, 

i~j 

where mij is an entry of l\1(Da) (i,j = 1,2, ... ,r). For the base point 
scquctlcc a' = (a 1 , a2, ... , ak+ 1 , ak, ... , ar) wl1icl1 is o btairtcd frorrt a base 
point sequence a by exchanging ak and ak+l (k = 1, 2, ... ~ r - 1), the 
matrix lvi(Da') is obtained as follows: 

M(Da') = PkA1(Da)Pk"1
, 

· . 

I 

.. 
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where 

1 
• 

• 
• 

0 1 
1 0 

1 for (i,j) = (k; k + 1), (k + 1, k) 
; m ,ii = and(i,j) = (i~ i)(i =f k~ k + 1), 

0 otherwise . 
• 

• 
• 

1 

With respect to the warp-linking degree, we have 

ld( Da') == ld( Va) - 'ITtkk+l + '1TLk+1k, 

where mkk 1 1, mk 1 lk are entries of !vi ( Da). To enumerate the permtltation of 
the order of a= (a1 , a2 , •.. , ar ), we consider a matrix Q = pr-l pr-2 • •• P 2 P 1 , 

where pn denotes Pn Pn+ 1 · · · Pkn { n, ~ kn ~ r - 1) or the identity matrix 
Er. Since Q depends on the choices of k1L (n = 1, 2, ... , r - 1), we also 
denote Q by Qk, where k = (k1, k2 , ... , kr-1) (n ::; kn ::; r) and we regard 
pn == Rr in the case kn == r. Hence we obtain the following form11la: 

ld(D) = ~{2: miilmii: an entry of QkM(Da)Qk 1}. 

i<j 

Thus, we obtain the warping degree of an oriented link diagram by summing 
the warping degrees d(IJi) (i = 1, 2, ... , r·) and the warp-linking degree 
ld(D). 

' 

• 

\ 

I 
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APPENDIX B 

In this appendix, we disc11ss the complete splitting n11mber of a lassoed 
link. 

8.1. Introduction. The splittability of a link is one of the basic conc<'pts 
in knot theory. For example~ the splittability interacts with polynomial in­
variants: the Alexander polynomial and the Conway polynomial take zero 
for a splittablc link. Jones polynomial and skein polynomial have spC'cific 
formlilae with respect to the split stlm. Moreover, the splittabilities of 
links or spatial graphs are studied and applied to other subjects: chem­
istry. biology. psycl1ology, etc. For cxatilJJlc, Kawaucl1i proposed a IItodcl of 
prion proteins as a spatial graph [8], and Yoshida studied its splittability 
which concerns with the study of prion diseases: mad cow disease, scrapie, 
Creutzfeldt-Jakob disease, etc. [13]. Artotlter exarrtple is about a IIlodel of 
human mind which is also proposed by Kawauchi [7], [8]; by considering 
one's mind as a knot and by considering a mind relation of n persons as an 
1t-cotrlpotletlt littk, tl1e IIlodels ''tr1it1d kttots'' a11d "tt1i11d li11ks" are studied. 
The splittability of a link corresponds to the "self-releasability" of a mind 
link. 

For a two-component link, Adams defined the splitting number which 
represents how distant the link is from a splittable link [2]. In this paper; 
we define for ann-component link L (n = 2, 3, 4, ... ) the complete splitting 
number split{£) which represents how distant the link is from 'a completely 
split table link. The unlinking number 11.( T1) of a link T1 is the minimal 
number of crossing changes in any diagram of L which are needed to obtain 
the trivial link L. Si11ce a trivial link is completely splittable, we have 
split ( T1) ~ 'IL( T1). LR..'tsoing is a crossing-changing and loop-adding local 
move as shown in Figure 26 (we give the precise definitions of completely 
splittable, complete splitting number, and a lassoi11g i11 Subsection 8.2). 
For any r-componcnt link L == L1 U L2 U ... U Lr (r == 1, 2, 3, ... ) with 
the Conway polynomial V(L) =F 0, there are £-iterated lassoings from L 
to an algebraically completely splittable link L* with V(L*) =f 0 where 
i == Ei<i JLink(Li~ Li)l (we define an algebraically completely splittahle 
link in Subsection 8.2). For any s-component link K = K 1 U K 2 U ... U K 8 

(s ~ 1) with V(K) =f 0, there are (L + u)-iterated lassoings from K to 
an algebraically completely splittable link L with trivial components such 

• 

r 

f 
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lassoing 
p 

/ 

FIGCRE 26 

that \l(T,) f: 0 where f.== Ei<i ITJink(Ki, K1)J and 11. == E:_1 1l(Ki). In 
this appe11dLx, we show the following theorem: 

Theorem 8.9. An.1J lin,k TJ obtainPA from. an.1J s-com.pon.en,t lin,k K = K1 U 

K 2 U ... U Ks (s = 1, 2, 3, ... ) with \l(K) f 0 by r-iterated lassoings (r = 
0~ 1, 2, ... ) satisfies 

r + split(K) ~ split(L) ~ r + s- 1. 

We have the following corollaries: ' 

Corollary 8 .. 10. For any s-component link K = K 1 U K 2 U ... U Ks · 
(." == 1, 2~ 3, ... ) with split( K) = s - 1, and any integer r ~ f. + 'll where 
f = Ei<J fLink(Ki,Ki)l and u = E:=l u(Ki), there are r-iterated las­
soings from K to an algebraically completely splittable link L with trivial 
compon,en.ts S'ltch that split ( TJ) == r + s - 1. 

Corollary 8 .11. Let K be a kn,ot. Let TJ be a lin.k 'llJh,ich, is obtain, FA from, 
K by r-iterated lassoings (r = 1, 2, 3, ... ). Then L has split(£)= r. 

' 

I 
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We define a component-lassoing to be the lassoing at a self-crossing point 
of a diagram. We have the following corollary: 

Corollary 8.12. E1JC'f1J lin,k L obtain,cd from, a kn.ot K b11 r-itcratrA com.poncn.t­
lassoings (r = 1, 2, 3, ... ) is an (r +I)-component algebraically completely 
splittable link with split ( L) = r. 

7~ 

FIGCRE 27 

For e..xample~ the link 7~ depicted in Figure 27 which is a link obtai11ed 
from a trefoil knot by a single co1nponent-lassoing, has the li11king number 
1.;ero Md split(7~) == 1. We also remark that 1t{7~) == 2 (cf. (14]). Adams 
also showed in [2] that there is a two-component link: each component of 
which is trivial, but such that its splitting number is less than its unlinking 
n11mher, like the link 7~. We show in S11hscction 8.5 that for any intcg~r 
r > 0 a.nd any knot K with Nakanishi's index e(K) > 2r~ any link L 
obtained from K by r-iterated lassoings is a link such that split(£) < u(L), 
i.~ .. Lis non-trivial by any r crossing changes. 

8.2. Complete splitting number. Let TJ = l11 U 1,2 U · · · U TJr be a 
link consisting of stlblinks Li (i = 1, 2, ... , r). A lillk L is splittable into 
£ 1 , L2 , ... , Lr if there exist mutually disjoint 3-balls Bi ( i = 1, 2, ... , r) in 
.. 93 such that T,i c Ri. For example, the link M in Figure 28 is splittable 
into M1 and M2 whereas the link N is not split table into N 1 and N 2 • A 
link L is splittable if L is splittable into subdiagrams L1 and L2 , where 

I 
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L = L1 U L2, L1, L2 =f ¢. For example, the link M i11 Figure 28 is a 
splittable link. 

M N 

A lir1l{ L is corrtpletely splittable if L is splittable ir1to all tl1e k11ot coii!po­

nents of L. In particlllar; a knot is assllmed as a non-splittable link but 
a completely splittable link. A link L is algebraically completely splittable 
if every two lo1ot coiil}Jonents Ki at1d Ki of L ltave tl1e lir1kir1g IlUI11ber 

Link( Ki, Ki) = 0. For example, the link E in the left hand of Figure 29 is 
not completely splittable but algebraically it is completely splittable. 

' 

F 

-

The complete splitting number split( n) of a linl{ diagram n is the minimal 
number of crossing changes which are needed to obtain a diagram of a 
completely splittable link from D. For example, the link diagram Fin the 

• 

' · 
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right hand in Figure 29 has split(F) = 1. As a relation to the warp-linking 
degree ld(V) of lJ, we have split(D) :::; ld(D). The complete splitting 
number split ( TJ) of a link T~ is the minimal number of crossing changes in 
any diagram of the link which are needed to obtain a completely splittable 
link. 
Let p be a crossing point of a link diagram n. We p11t a l~~so aro11nd p, 

i.e.= we apply a crossing change at p, and add a loop alternately around 
the crossing as shown in Figure 26. Then, we obtai11 another link diagram 
D'. The diagram D' is said to he obtained from D hy la.~soin._q at p. Let L' 
be the link which has the diagram D'. The link L' is said to be obtained 
from L by a lassoing. For example= we obtai11 the Borromean ring from the 
Hop£ linl{ by a lassoing (sec Fig1rrc 30). 

lassoing 
,. 

FIGCRE 30 

' 

A linl{ L' is said to be obtained from L by r-itcrated lassoin~_qs if L' is 
obtained from L by lassoings r times iteratively. For example, the link L in 
Figure 31 is a link obtai11ed from a trivial knot by two-iterated lassoings. 
Since a la.~soing depends on the choice of a crossing point and the choice 
of a diagram of the link, we may have many types of link by a lassoing. 

8.3. Conway polynomial and Alexander polynomial. In this subsec­
tion, we study the Conway polynomials and the Alexander polynomials of 
lassoed links. Let \1 ( L; z) be the Conway polynomial of a link L with an 
orientation. We have the following lemma: 

Lemma 8.13. We have 

• 

I 
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lasso-
• mg 

lasso-
• tog 

~ ;z 

%5 ;z 

/ 
/ 

/' 
/ 

L 

; z ' 

; z ' 

; z . 

Proof. We obtain the first eq11ality by the sl<:ein relations in Fig11re 32. 
The other equalities are sbnilarly obtained. 0 

. I 

I 
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? ZV(D.;z)-z(V(D;z)+zV(Do;z)+z2V(D,·z)) 

=z(V(D.;z)-V(D;z)-zV(Do;z))-z3V(D;z) 
=-z3V(D;z) 

+,/' ~ 
V(D;z)+zV(Do;z) 

ZV(D+;Z) +z2V(D;z) 
/ _____...... 

-? \ 

V(Do;z)+ zV(D;z) 

II II II -l 

0 V(D;z) 
II II 

_/ 
/ 

V(Do;z) V(D;z) 

FIGt'.RE 32 

. 
Example 8.14. The link diagram Din Fig11re 33 is obtained from a diagram 
of a trefoil knot by 2-iterated lassoings. Then we have V(L) = z3 x z3 x 
V' (31) = z6 (1 + z2), where L is a link represented by D, and 31 is a trefoil 
la1ot. 

\ 

f 

I 
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D 

FTGt'"RR 33 

We remark that for a link L' with V ( L') = 0, there are no lassoi11gs from 
L' to L witl1 V' ( L) =/= 0. We l1ave tltc following corollary: 

Corollary 8.15. Let L be a link obtained from a link L' with \i'(L') =I= 0, in 
particular from any knot K, by r-iterated lassoings (r = 1, 2, 3~ ... ). Then 
11Je ha1Je v ( r~) f= 0. 

Let A be the integral Laurent poly11omial ring, i.e., A = Z[t, t- 1
]. With 

respect to the one-variable Alexander polynomial, we have the following 
I I 

corollary by Lemma 8.13 by substituting t2 - t-2 for z: 

Corollary 8.16. Let L' be a link which is obtained from a link L by a 
lassoirtg. Th,crt 'WC ha,uc 

~ Tl ( t)::: ( t - 1) 3 Li TJ ( t), 

where flL(t) is the one-variable Alexander polynomial of L, and= means 
equal up to multiplications of the units of A. 

We show an example. 

Example 8.17. We have 

' . 
' 

·. r 

~(5~) ~ 1.\(7~) = 1.\(B~n) = (t- 1 )3 6.(0)~ 

A(7~) = ~{9~5) == ~{9~6) = (t- 1)3L\{31), 

I 
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~(8~3) ~ (t- 1) 3~(41), 

~(9~1) _:_ (t- lr~~{51), 

Ll{9~2) = Ll{9~3) ~ (l-1)3Ll(52) , 
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where Ll(L) == LlL(t). All the two-component links with the crossing Dllm­

ber nine or less which are obtained from knots by lassoings have been listed 
above. 

Up to 1nultiplications oft -1, the one-variable Alexander polynomial of any 
li11k is tl1e Alexa11der polytloirlial of a11 algebraically cotr1pletely SJJlittable 

link consisting of trivial components: 

Corollary 8.18. Let (t - l)m f(t) be the Alexander polynomial of a link, 
where m is a non-negative integer, f(t) E A, and f(l) =I= 0. Then, 
there exists a non-negative integer rt such that the Laurent polynomial 
(t- l)m+3n.f(t) is the Alexander polynomial of an algebraically completely 
splittable link consisting of trivial components. 

Proof. We can change a crossing by a lassoing. D 

8.4. Proof of Theorem 8.9. In this subsection; we prove Theorem 8.9. 
Before the proof, we define some notions which are due to' [9] to prove 
Tlteore1r1 8.9. For tl1e irttegral Laurer1t polyrlotrtial rir1g A == Z[l~ l-1], a 

multiplicative set of A is a subset S c A- {0} which satisfies the following 
three conditio11B: the units ±t1 (i E Z) are in S, the product gg' of any 
elerrtettts g artd g' of f:J is i11 S, attd every pri111e factor of ar1y eletner1t g E b., 
is in S. For the quotient field Q(A) of A and a multiplicative set S of A, 
As = {ffg E Q(A)I/ E A,g E S} is a subring of Q(A). For a finitely 
generated A-module H : let Hs be the As-module H ®A As, and es(H) 
the minimal number of As-generators of Hs. We take e8 (H) = 0 when 
H = 0. We call e8 (H) the A8-rank of H. Let L be an oriented link in 
S3 : a11d E(L) = cl(S3 - L) the compact exterior of L. Let E(L) > E(L) 
be the infinite cyclic covering which is induced from the epimorphism {L : 

1r1(E(L)) ) Z sending each oriented meridian of L to 1 E Z. Then we 
can regard H1(E(L)) as a finitely A-module. We denote e8 (Ht(E(L))) by 

I 
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es(L). Let L, L' be links which have the same number of components. By 
Theorem 2.3 in (9] ~ we immediately have 

(19) 

where dx ( T~, T/) denotes the X-dist.ance betwefln T~ and T/. We prove The­
orem 8.9. 

Proof of Th,eorem, 8.9. Let T~ be a link which is obtained from a linl{ 

K = K 1 U K 2 U · · · U Ks with V'(K) # 0 by r-iterated lassoings (r = 
1 ~ 2, 3, ... ). Let L' be a completely splittable link which is obtained from 
L by m crossing changes. where m == split(£) = dx (L, L'). We set S = 
A- {0}. Since L' is completely splittable and the nt1mber of components 
of L' is r + s, we have 

(20) C8 (L') == r+s - l. 

The Alexander polyno1njal of L is non-zero because the Conway polynomial 
of L is no11-zero by Corollary 8.15. Hence we have 

(21) C8 (L) == 0. 

Dy SllhAtit11ting the cq11alitics (20), (21) and dx (L, L') = split(L) into the 
ineqtlality (19), we have 

split(L) ~ 1' + s- 1. 

From the r-iterated lassoings, we have ' 

r + split(K) ~ split(L). 

Hence we have the inequality 

r + split(K) ~ split(L) ~ r + s- 1. 

0 

As tl1e cotttrapositiotl of Tlteoreiil 8.9, we ltave the followir1g corollmy: 

Corollary 8.19. Let K = K 1 U K 2 U · · · U Ktl be an s-component link. If 
K has split(K) < s- 1, then V'(K) = 0. 

• 
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8.5. Non-triviality. In this subsection, we discllSS the non-trivialities of 
completely splittable links which are obtained from Lin Corollary 8.11 by 

r crossing changes (r == 1, 2; ... ). For a link T~ obtained from a lmot K by 
r-iterated lassoings~ we have the following theorem: 

Theorem 8.20. If a link L is obtained from a knot K with e(K) > 2r 
by r-itcTatcd lassoi'rtgs ( r = 1 ~ 2, 3, ... ) , tltcrt 'We lta'vc split ( L) == r artd 
u(L) > r. 

We remark that i11 Theorem 8.20 the link Lis an algebraically completely 
split table link if the r--iterated lassoings are all component-lassoings. Before 
proving Theorem 8.20, we have the following Lemma: 

Lemma 8.21. Let L0 = K 1 + K 2 + · · · + Kr be a completely splittable link 
with r components. Then we have 

r 

u(Lo) = L u(Ki). 
i=l 

Proof. We have u(Lo) = u + u1 + u2 + · · · + Ur, where u is the number of 
. 

non-self crossing changes and 'Ui is the number of crossing changes on K' 
which are needed to obtain the trivial link from T~o. Then we have 

r , 

u(Lo) = 'U + Ut + · · · + Ur ;::: Ut + · · · + 'Ur ;::: L u(Ki). 
i=l 

Since L 0 is completely splittable, we have 
r 

1L(lj0 ) ~ L u(K.'). 
i=l 

Therefore the eq11ality holds. D 

We show Theorem 8.20 

Proof of Theorem 8.20. Let T~o = K 1 + K 2 + · · · + Kr+l be a completely 
splittable link which is obtained from L by r crossing changes. For the 
integral Laurent polynomial ring A = Z[t, t-1

], we take the multiplicative 

• 

' 
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set S of A so that S is the set of units of A. Then es ( L) is equivalent to 
Nakanishi's index e{L) [9] . Since we can consider L0 = K 1+K2 +· · ·+Kr+I 
to be a connected sum or+1#K1#K2# ... #f<r+l ; we have 

H, (E(Lo)) ~ H, (E(or+1
)) c H 1 (E(K 1#K2 # ... #Kr+! )) 

~ Ar EB H1(FJ{K1#K2# ... #Kr+l)). 

And by [12], we have c{L0 ) == r + c(K1#K2# .. . #Kr+l ). Dy SllhRtit11ting 
this into the inequality (19), we have 

d~Y (L, Lo) ~ e(L) - e(Lo) l ~ e(L)-,.- e(KI #K2# ... #Kr+l)· 

Recall that dx (L , L 0 ) =split(£) = r . Then we have 

(22) 

Next , we consider another completely splittable link K +or which is ob­
taitled frotil L by tl1e 1· at1ti-lassoit1gs (see Figure 34). 

anti­
lassoing 

... 

FIGt"RE 34 

Since /( + or = or+ 1 #K; we have 

HI(R(T,o)) ~ Ar EB H1(R(K)). 

And by [12] ~ we have e(K +or)='"+ e(K). Hence we have 

(23) r 2: r + e(K)- e(L) 

by [9]. By summing the inequalities {22) and (23), we have 

2r ~ c(K) - c(K1#K2# ... #Kr+1
). 

Fro1n Lemma 8.21, we have 

• 
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r+l 

'u(Lo) = L u(Ki) ~ u(K1#K2# ... #Kr+l) ~ e(K1#K2# ... #Kr+l) 
l 1 

~ ~(K) - 2r. 

Hence Lo is non-trivial if e(K) > 2r. D 

For a knot which has Nakanishi's index large eno11gh: we can constrllct a 
link such that the unlinking number is greater than the complete splitting 
IlUtrlber. Here is ail exa1r1ple. 

Example 8.22. Since the knot K in Figure 35 which is the connected sum 
of 2r + 1 trefoil knots has Nakanishi's index e ( K) == 2r + 1, any link T~ 

obtained from K by r-iterated lassoings has the unlinking number more 
than r whereas split ( L) = r. 

K 

••• 

' 

FIGt"RE 35 

• 
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