T'he warping degree of a link diagram

(#&H B RO OT HJE)

B A 70
B R K

YRR 2 2 R
Ayaka Shimizu

(V7K HEE)



ABSTRACT

|
|
i
&l
1
A
i
4
R
d
E‘J
]
%
J

For an oriented link diagram D, the warping degree d(D) is the smallest
number of crossing changes which are needed to obtain a monotone diagram
from D. We show that d(D) + d(—D) + sr(D) is less than or equal to the
crossing number of D, where —D denotes the inverse of D and sr(D)
denotes the number of components which have at least one self-crossing.
Moreover, we give a necessary and sufficient condition for the equality. We
also consider the minimal d(D) + d(—D) + sr(D) for all diagrams D. For
the warping degree and warp-linking degree, we show some relations to the
linking number, unknotting number, and the splitting number. We also
discuss the complete splitting number of a lassoed link.




ACKNOWLEDGMENTS

The author is deeply grateful to the members of Friday Seminar on Knot
Theory in Osaka City University, including Professor Taizo Kanenobu, Tet-
suya Abe, In Dae Jong, and Kengo Kishimoto, who assisted her in valuable
comments and the tender encouragement. She especially wants to thank
her advisor, Professor Akio Kawauchi, whose support and encouragement
inspired her to greater efforts throughout this research project. She is
partly supported by JSPS Research Fellowships for Young Scientists.



CONTENTS

Abstract 1
Acknowledgments 2
Contents 3

Section 1. Introduction 4
Section 2. Warping degree of an oriented link diagram 7
Section 3. Warping degree of a knot diagram 9

Section 4. Proof of Theorem 1.2 17
Section 5. Warp-linking degree and linking number 22
Section 6. To a link invariant 26

Section 7. Relations of warping degree, unlinking number and
crossing number 32

Section 8. Relation of warping degree and splitting

number 38
Appendix A 41
Appendix B 45

References H8



1. INTRODUCTION

An r-component link L is an image of a smooth embedding of the disjoint
union of r circles into R3. In particular, a knot K is a link of one component.
A diagram D of a link L is a generic immersion of L to a plane enhanced
by information on overpasses and underpasses at double points. A crossing
point p of D is such a double point of D with information on overpass
and underpass. The warping degree and a monotone diagram is defined by
Kawauchi for an oriented diagram of a knot, a link [10] or a spatial graph
[11]. The warping degree represents such a complexity of a diagram, and
depends on the orientation of the diagram. For an oriented link diagram
D, we say that D is monotone if we meet every crossing point as an over-
crossing first when we travel along all components of the oriented diagram
with an order by starting from each base point. This notion is earlier
used by Hoste [5] and by Lickorish-Millett [15] in computing polynomial
invariants of knots and links. The warping degree d(D) of an oriented link
diagram D is the smallest number of crossing changes which are needed to
obtain a monotone diagram from D in the usual way. We give the precise
definitions of the warping degree and a monotone diagram in Section 2.
A link diagram is alternating if the crossings alternate over and under as
we go along the diagram. Let —D be the diagram D with orientations
reversed for all components, and we call —D the inverse of D. Let ¢(D) be
the crossing number of D. We have the following theorem which is for a
knot diagram:

Theorem 1.1. Let D be an oriented knot diagram which has at least one
crossing point. Then we have

d(D)+d(—D)+ 1< ¢(D).

Further, the equality holds if and only if D is an alternating diagram.

We give the proof in Section 3. Let D be a diagram of an r-component link
(r > 1). Let D* be a diagram on a knot component L* of L, and we call D
a component of D. A link diagram D is equilibrial if the number of non-
self over-crossing points of D* in D*U D’ is equal to the number of non-self
under-crossing points of D* in D* U D’ for every two-component sublink
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diagram D* U D’ of D. We assume that a knot diagram is equilibrial. In
Figure 1, the diagram D is equilibrial and D’ is not equilibrial although
D and D' represent the same link. We generalize Theorem 1.1 to a link
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FIGURE 1
diagram:

Theorem 1.2. Let D be an oriented link diagram, and sr(D) the number
of components D* such that D* has at least one self-crossing. Then we have

d(D) +d(—D) + sr(D) < ¢(D).

Further, the equality holds if and only if D 1is equilibrial and every compo-
nent D* of D 1is alternating.

For example, the link diagram D in Figure 2 has d(D) + d(—D) + sr(D) =
3+3+2=8=c¢(D).

(7
e

FIGURE 2
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Let D be a diagram of a link. Let u(D) be the unlinking number of D. As
a lower bound for the value d(D) + d(—D) + sr(D), we have the following
inequality:

Theorem 1.3. We have
2u(D) + sr(D) < d(D) +d(—D) + sr(D).

The rest of this paper is organized as follows. In Section 2, we define the
warping degree d(D) of an oriented link diagram D. In Section 3, we prove
Theorem 1.1. In Section 4, we define the warp-linking degree ld(D), and
consider the value d(D) + d(—D) to prove Theorem 1.2. In Section 5,
we show relations of the warp-linking degree and the linking number. In
Section 6, we apply the warping degree to a link itself. In Section 7, we
study relations to unlinking number and crossing number. In Section 8,
we define the splitting number and consider relations between the warping
degree and the splitting number. In Appendix A, we show methods for
calculating the warping degrees and the warp-linking degrees. In Appendix
B, we discuss the complete splitting number of a lassoed link.



2. WARPING DEGREE OF AN ORIENTED LINK DIAGRAM

Let L be an oriented r-component link, and D a diagram of L. We take
a sequence a of base points a; (i = 1,2,...,r), where every component has
just one base point except at crossing points. Then D,, the pair of D and
a, is represented by D, = D, U D7 U---U D] with the order of a. A
self-crossing point p of D} is a warping crossing point of D}, if we meet
the point first at the under-crossing when we go along the oriented diagram
D} by starting from a; (i =1,2,...,r). A crossing point p of D} and ng
Is & warping crossing point between D} and Dflj if p is the under-crossing
of th_ (1 <i< j<r). A crossing point p of D, is a warping crossing point
of D, if p is a warping crossing point of D} or a warping crossing point
between D, and Dj [10].

FIGURE 3

For example in Figure 3, p is a warping crossing point of D, , and ¢ is a
warping crossing point between D, and D? . We define the warping degree
for an oriented link diagram [10]. The warping degree of D,, denoted by
d(D,), is the number of warping crossing points of D,. The warping degree
of D, denoted by d(D), is the minimal warping degree d(D,) for all base
point sequences a of . Ozawa showed that a non-trivial link which has a
diagram D with d(D) = 1 is a split union of a twist knot or the Hopf link
and r trivial knots (r > 0) [20]. Fung also showed that a non-trivial knot
which has a diagram D with d(D) =1 is a twist knot [27].
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For an oriented link diagram with its base point sequence D, = D, U
DZ U---UD] , we denote by d(D}, ) the number of warping crossing points
of D;,. We denote by d(D; , D ) the number of warping crossing points
between D; and Dj . By definition, we have that

d(Da) =) d(D;)+ ) d(D;,Dj).
i=1 i<j
Thus, the set of the warping crossing points of D, is divided into two types
in the sense that the warping crossing point is self-crossing or not. The
pair D, is monotone if d(D,) = 0. For example, D, depicted in Figure 4
1S monotone.

FIGURE 4

Note that a monotone diagram is a diagram of a trivial link. Hence we
have u(D) < d(D), where u(D) is the unlinking number of D ([19], [28]).




3. WARPING DEGREE OF A KNOT DIAGRAM

In this section, we discuss the warping degree of a knot diagram and
prove Theorem 1.1. We first show some properties of the warping degree
of a knot diagram. We have the following lemma:

Lemma 3.1. Let Dy be a knot diagram with a base point b. Then we have

d(Dy) + d(—Dy) = ¢(D).

Before proving Lemma 3.1, we introduce a method of judging locally whether
a crossing point of an oriented knot diagram with a base point is a warping

crossing point or not. For an oriented knot diagram D and a base point b,

we notice that D, is divided into ¢(D) + 1 arcs by cutting the base point

and under-crossings. Then we label them along the orientation from the

arc which has the base point as initial point as shown in Figure 5 . Every

crossing point consists of two or three arcs. We label each crossing point

via the indices of the arcs in the following definition.

b
- |

FIGURE 5

Definition 3.2. Let p be a crossing point of D, which consists of an over-arc
with the index a and the other two arcs with the index 3, v. We define the
cutting number of p in Dy, denoted by cutp, (p), by the following formula:

CUtDb(p) = 200 — /8 — -
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FIGURE 6

Note that the cutting number is always odd. Suppose [ is smaller than 7,
namely v = 8+ 1. Then we have cutp, (p) = 2(a — #) — 1 by substituting
B+1 for «v. Hence cutp, (p) is odd. By the definition of the warping crossing
point, we have the following lemma:

Lemma 3.3. A crossing point p i1s a warping crossing point of Dy if and
only if cutp,(p) > 0, and p is a non-warping crossing point of Dy if and
only if cutp, (p) < 0.

We prove Lemma 3.1.

Proof of Lemma 3.1. Let (ky, ks, ...,k,) be the ordered set of arcs of Dy,
where k; has the index i. Let (ly,ls,...,l,) be the ordered set of arcs of
— D, as above. Then we notice that k; and [,,,_; are the same arc except
the orientations for ¢ = 1,2,...,n. Let p be a crossing point of D, in Figure
6. Then we have the following equality:

cut_p,(p) =2(n+1—a)—(n+1-0)—(n+1—-7)
=—-(2a-§-7)
= _Cu’tﬂb(p)'

Therefore p is a non-warping crossing point of —D, if and only if p is a
warping crossing point of D,. Hence we obtain that
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c(D) = d(Dy) + #{non-warping crossing points of D}
= d(Dy) + #{warping crossing points of — D}
= d(Dy) + d(—Ds).
This completes the proof.

We apply Lemma 3.1 to the mirror image in the following example:

Example 3.4. Let D, be an oriented knot diagram with a base point b, and
D; the mirror image of D,. Then we observe that a crossing point p is a
non-warping crossing point of D; if and only if p is a warping crossing point
of Dy. By Lemma 3.1, p is a warping crossing point of D} if and only if p
is a warping crossing point of —Dj. Therefore we have d(D*) = d(—D).

For two base points which are put across a crossing point, we have the
following lemma:

Lemma 3.5. For the base points a1, ay (resp. by, be) which are put across
an over-crossing p (resp. under-crossing q) in Figure 7, we have d(D,,) =

d(Dg,) + 1 (resp. d(Dy,) = d(Dy,) — 1).

FIGURE 7

Proof. Except at p, D,, and D,, have warping crossing points at same
crossing points, and p is not a warping crossing point of D,, and p is a
warping crossing point of D,,. C

By Lemma 3.5, we obtain the following lemma:
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Lemma 3.6. Let D be an oriented alternating knot diagram. Let b be a
base point of D which is just before an over-crossing as shown in Figure 8,

then we have d(Dy) = d(D).

e
b |

FIGURE &8

We prove Theorem 1.1.

Proof of Theorem 1.1. For an oriented knot diagram D with ¢(D) > 1, the
following inequality holds:

(1) maa:":d(Da) '"' ntind(Da) > 1.

From Lemma 3.5, the equality holds if D is an alternating diagram. On
the other hand, if the equality holds, D is an alternating diagram, namely
there do not exist any two over-crossings or two under-crossings which are
next to each other as shown in Figure 9 .

FIGURE 9

Let a and b be base points which satisfy d(D,) = d(D) and d(—D,) =
d(—D). Then we notice that
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max d(D,)

d(Dy),

because a’ satisfies

d(—Dy) = mind(—D,)

a

and a warping crossing point of — D), is a non-warping crossing point of D,.
Hence the inequality (1) is equivalent to the following inequality:

d(Dy) — d(D,) 2 1,
and this is equivalent to

d(D,) +1 < d(Dy).
By adding d(—D,) to each side, we have

d(D,) +d(—Dy) + 1 < d(Dy) + d(—Dy).

By Lemma 3.1 and the conditions of a and b, we obtain the following
inequality:

d(D)+d(—D)+1<c(D),

where the equality holds if and only if D is an alternating diagram.

Here is an example of Theorem 1.1.

Example 3.7. This table lists all standard knot diagrams based on Rolfsen’s
knot table with crossing number 9 or less [21]. In this table, D(K) denotes
the standard diagram of K with the orientation which has the smaller
warping degree, and a knot marked with T is non-alternating.
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K | d(D(K)) | d(—D(K))

31 1 1

44 1 -

D; 2 2 = 1.2

0, 2 3 3 =1.2.3

7. 13 3 i=12...6

17 2 4

E 1 =12 ...17

818 2 5)

819 T | 3 3

o0 T | 2 3

891 2 2

o, |4 1 i=1.2....13 16.18,20 21.23. 25.27.28.
29,30, 33. 35, 36. 38, 39, 40

0, |3 5 i = 14,15 17,19, 22, 24,26 31,32, 34,37, 41

o, 1|3 3 i — 42,44 45 46

9, 1|3 1 i = 43. 49

97 T | 2 3

98 T | 2 3

In the following lemma, we determine the warping degree of the standard
diagram of a torus knot.

Lemma 3.8. Let T'(p,q) be (p,q)-torus knot (0 < p < q, p and q are

coprime) and D(p,q) the standard diagram of T'(p,q) with the orientation
as shown in Figure 10. Then we have the following:

(1): d(D(p,q)) = d(—D(p,q)) = (p—1)(g — 1)/2,
(2): c(D(p,q)) —d(D(p,q)) —d(—D(p,q)) =p—1.

Proof. In D(p, q), there are (p—1) over-crossings and (p—1) under-crossings
alternately. By Lemma 3.5, a base point which is just before (p — 1) over-

crossings realizes the warping degree of the diagram. For example, base
points a and b in Figure 10 satisfy

d(D(p, 9)a) = d(D(p, q)),
d(_D(pa Q)b) = d(_D(pa q)):




D(5,6)

FIGURE 10

respectively. Considering the upside-down image of D(p, q), we have

d(D(p,q)) = d(—D(p, q)),

that 1s,

(2) d(D(p, q)a) = d(—D(p, q)s)-

With respect to the crossing number of the diagram, we have

(3) d(D(p,q)a) +d(—D(p,q)a) =c(D) = (p—1)q

by Lemma 3.1. And by Lemma 3.5, we have the following relation
(4) d(=D(p, q)s) = d(—D(p,q)a) — (p — 1).

By the formula (2) and (4), we have

(5) d(D(p,q)a) = d(—D(p,q)a) — (p — 1).

And by the formula (3) and (5), we have

2d(D(p,q)a) = (p—1)g— (p—1).
Hence we obtain the warping degree

(p—1)(g —1)

d(D(p,q)) = 5 -

Hence we have

15
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c(D(p,q)) — d(D(p,q)) —d(—D(p, q))

= (p—1)g (p-1)2(q—1)

This means that ¢(D) — d(D) — d(—D) depends only on p in this case.

X 2=p~].
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4. PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2. We first define the warp-linking
degree, which is like a restricted warping degree and which has relations
to the crossing number and the linking number (see also Section 5). The
number of non-self warping crossing points does not depend on the orien-
tation. We define the warp-linking degree of D,, denoted by ld(D,), by the
following formula:

ld(Da) = ) d(D;,, Dj) = d(Da) ~ ) _d(D5).
i<j i=1
where Di” Df;:f are components of D,. The warp-linking degree of D, de-
noted by ld(D), is the minimal ld(D,) for all base point sequences a. It
does not depend on any choices of orientations of components. For ex-
ample, the diagram D in Figure 11 has ld(D) = 2. A pair D, is stacked

D E

FIGURE 11

if ld(Dy) = 0. A diagram D is stacked if ld(D) = 0. For example, the
diagram F in Figure 11 is a stacked diagram. We remark that a similar
notion is mentioned in [5]. Note that a monotone diagram is a stacked
diagram. A link L is completely splittable if L has a diagram D without
non-self crossings. We give the precise definition of complete splittable in
Appendix B. We notice that a completely splittable link has some stacked
diagrams.

The non-self crossing number of D, denoted by lc(D), is the number of
non-self crossing points of D. Remark that lc(D) is always even. For an
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unordered diagram D, we assume that D* and D*U D’ denote subdiagrams

of D with an order. We have the following relation of warp-linking degree
and non-self crossing number.

Lemma 4.1. We have
lc(D)
5
Further, the equality holds if and only if D is an equilibrial diagram.

ld(D) <

Proof. Let a be a base point sequence of D), and a the base point sequence
a with the order reversed. We call a the reverse of a. Since we have that
ld(D,) + ld(D3) = lc(D), we have the inequality (d(D) < lc¢(D)/2. Let D
be an equilibrial diagram. Then we have ld(D,) = lc(D)/2 for every base
point sequence a. Hence we have ld(D) = lc(D)/2. On the other hand, we

consider the case the equality 2ld(D) = lc(D) holds. For an arbitrary base
point sequence a of D and its reverse a, we have

ld(D,) > ld(D) = le(D) — ld(D) > le(D) — ld(Dy) = ld(Ds) > ld(D).

Then we have lc¢(D) — ld(D,) = ld(D). Hence we have ld(D,) = ld(D) for
every base point sequence a. Let a’ = (aq,ao,...,ak-1,0k11, Ak, Qk12, - - -, Cr)
be the base point sequence which is obtained from a = (ay, as, .. ., @k, @Gx41, .- -, 0r)
by exchanging ax and ax,1 (kK =1,2,...,7—1). Then, the number of over-
crossings of D is equal to the number of under-crossings of D* in the
subdiagram D* U D**! of D, because we have ld(D,) = ld(Dy). This
completes the proof. "

We next consider the value d(D) + d(—D) for an oriented link diagram D
and the inverse —D. We have the following proposition:

Proposition 4.2. Let D be an oriented link diagram. The value d(D) +
d(—D) does not depend on the orientation of D.

Proof. Let D)) be D with the same order and another orientation. Since
we have d(D") = d(D") or d(D") = d(—D?), we have d(D") + d(—D¥) =
d(D*) + d(—D?) for each D' and D¥. Then we have
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d(D") +d(—-D") = i d(D¥) + ld(D') + Z d(—D") + ld(-D')

=1

" i{d(D’”) +d(—D")} + 21d(D’)
— i{d(Di) +d(—D")} + 2ld(D)

_ id(Di) +1d(D) + id(—Di) + ld(—D)

1=1

= d(D) + d(—D).

A link diagram is a self-crossing diagram if every component of D has at
least one self-crossing. In other words, a diagram D of an r-component link
L is a self-crossing diagram if sr(D) = r. We have the following lemma:

Lemma 4.3. Let D be a self-crossing diagram of an r-component link.
Then we have

d(D) + d(-D) +r < ¢(D).

Further, the equality holds if and only if D is equilibrial and every compo-
nent D' of D is alternating.

Proof. We have
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d(D) +d(—D) +r = Z d(D") + ld(D) + Zr: d(—D") + ld(—D) +r

=1

— 3 {d(D) + d(~D') + 1} +2d(D)
< i c(D*) + 2ld(D)

< i c(D") + lc(D)
— (D),

where the first inequality is obtained from Theorem 1.1, and the second
inequality is obtained from Lemma 4.1. Hence we have the inequality. The
equality holds if and only if D is equilibrial and every component D of D
is alternating which is obtained by Theorem 1.1 and Lemma 4.1.

L

We give an example of Lemma 4.3.

Example 4.4. In Figure 12, there are three diagrams with 12 crossings.
The diagram D is a diagram such that any component is alternating and
has 3 over-non-self crossings and 3 under-non-self crossings. Then we have
d(D)+d(—D)+r =12 = ¢(D). The diagram D’ is a diagram which has a
non-alternating component diagram. Then we have d(D’) +d(—D’) +r =
10 < ¢(D’"). The diagram D" is a diagram such that a component has

2 over-non-self crossings and 4 under-non-self crossings. Then we have
d(D")+d(—D")+r =10 < ¢(D").

Lemma 4.3 is only for self-crossing link diagrams. We prove Theorem 1.2
which is for every link diagram.

Proof of Theorem 1.2. For every component D* such that D* has no self-
crossings, we apply a Reidemeister move of type I as shown in Figure
13. Then we obtain the diagram D* from D!, and D¥ satisfies d(D?) =
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Df

5D 2

FIGURE 12

R1 - bi

D! D"’

FIGURE 13

d(—D") = 0 = d(D*) = d(—D") and ¢(D¥) = 1 = ¢(D?) + 1. For ex-
ample the base points a;, b; in Figure 13 satisfy d(D; ) = d(D*) = 0,
d(—D} ) = d(—D") = 0. We remark that every D' and D" are alternating.
We denote by D’ the diagram obtained from D by this procedure. Since

every component has at least one self-crossing, we apply Lemma 4.3 to D’.
Then we have

d(D")+d(—-D") +r < ¢(D").
And we obtain
d(D) +d(—D) +r < c(D) + (r — sr(D)).
Hence we have
d(D) + d(—D) + sr(D) < ¢(D).

The equality holds if and only if D is equilibrial and every component D*
of D is alternating.
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5. WARP-LINKING DEGREE AND LINKING NUMBER

In this section, we consider the relation of the warp-linking degree and
the linking number. For a crossing point p of an oriented diagram, &(p)
denotes the sign of p, namely ¢(p) = +1 if p is a positive crossing, and
e(p) = —1if p is a negative crossing as shown in Figure 14. For an oriented

/7

e(p) = —1

FIGURE 14

subdiagram D*U D? (i # j), the linking number of D* with D’ is defined
to be
VR
Link(D", D7) = Y e(p).

peD*NDI

The linking number of D* with D’ is independent of the diagram (cf. [3],
[10]). We have a relation of the warp-linking degree and the linking number
of a link diagram in the following proposition:

Proposition 5.1. For a link diagram D, we have the following (i) and (i
(i): We have

> _|Link(D*, D7)| < ld(D).

1<

Further, the equality holds if and only if non-self under-crossings
of D' in D*U D’ are all positive or all negative with an orientation

for every subdiagram D*U D7 (i < j) with an order which realizes
the warp-linking degree.
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(ii): We have
(6) ) " |Link(D?, D?)| = ld(D) (mod 2).
i<j
Proof. (i): For a subdiagram D* U D’ (i < j) with d(D*, D7) = m,

we show that
Link(D*, D?)| < d(D*, D?).

Let p1,po,...,pm be the warping crossing points between D* and
D’ and €(p;1),e(p2),...,e(pm) the signs of them. Since a stacked
diagram is a diagram of a completely splittable link, we have

(7) Link(D'", D) — (e(p1) +€(p2) + -+ - +€(pm)) =0
by applying crossing changes at p;,ps,...,pm for D* U D?. Then
we have

Link(D*, D?)| = |e(p1) +&(p2) + -+ - + €(pm)| < m = d(D*, D?).
Hence we obtain
) " |Link(D¥, D)| < ld(D).
i<j
The equality holds if and only if non-self under-crossings of D in

D*U D’ are all positive or all negative with an orientation for every

subdiagram D*U D’ (i < j) with an order which realizes the warp-
linking degree.

(ii): By the above equality (7), we observe that Link(D*, D7) =

e(p1) + €(p2) + -+ + e(pm) = ea) + e(g2) + -+ + €(gn), Where
pr (resp. qx) is a non-self under-crossing (resp. over-crossing) of
D'in D'U D?, ld(D*U D’) = m and le(D*'U D’) = m+n. A
similar fact is also mentioned in [21]. We have

Link(D*, D’) = €(p1) + €(p2) + - - - + €(Pm)
= m (mod 2)
= d(D*, D7).

Hence we have the modular equality
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Y " |Link(D*, D’)| = 1d(D) (mod 2).

1<J

Example 5.2. In Figure 15, D has (0,2,3), E has (0,2,2), and F' has
(4,4, 4), where (I, m,n) of D denotes that 3 _._. |Link(D*, D?7)| = [, ld(D) =
m, and lc(D)/2 = n.

1<J

FIGURE 15

The total linking number of an oriented link L is defined to be )
with a diagram and an order. We have the following corollary:

7K
(2

FIGURE 16

Link(D*, D?)

1<J
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Corollary 5.3. We have

Z Link(D*, D?) = Z{E(pk)lpk . a non-self warping crossing point of Da},

1< k=1

where a is a base point sequence of D.

Corollary 5.3 is useful in calculating the total linking number of a diagram.
For example in Figure 16, the diagram D with 4 components and 11 crossing
points has ld(D) = 4. We have that the total linking number of D is 0 by
summing the signs of only 4 crossing points.
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6. TO A LINK INVARIANT

In this section, we consider the minimal d(D) +d(—D), d(D) +d(—D) +
sr(D) and ld(D) for minimal crossing diagrams D for an oriented link L.
We define e(L) as follows:

e(L) = min{d(D) + d(—D)|D : a diagram of L with ¢(D) = ¢(L)},

where ¢(L) denotes the crossing number of L. In the case where L is a
non-trivial knot K, we have the following theorem:

Theorem 6.1. Let K be a non-trivial knot. We have the following (1) and
(2).
(1): We have
e(K)+1<c(K).
Further, the equality holds if and only if K is a prime alternating
knot.
(2): For any positive integer n, there exists a prime knot K such that

c(K)—e(K)=n.

Proof. First, we show the equality of (1). By Theorem 1.1, we have the
equality |

(8) d(D) 4+ d(—D) + 1 = c(D)

if and only if D is an alternating diagram. If K is a prime alternating
knot, then minimal crossing diagrams of K are alternating [17]. Hence we
have the equality by considering the minimum of the equality (8). On the
other hand, if K is a non-prime alternating knot, then there is a minimal
crossing non-alternating diagram so that e(K) + 1 < ¢(K) [16]. Next, we

look to ¢(T'(p,q)) — e(T'(p, q)) for the (p,q)-torus knot T'(p,q) (0 < p < q)
to prove (2). Schubert mentioned in [22] (cf.[18]) that

c(T(p,q)) = (p—1)g.

Ozawa showed in [20] that the ascending number of T'(p, ¢), which is equal
to the minimal warping degree for all diagrams of T'(p,q) and all orienta-
tions, is (p — 1)(¢ — 1)/2. Then we have
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e(T(p,q)) = P 1)2(q P A 1)2(q =l § (p—1)(g—-1)

because d(D(p, q)) = d(—D(p,q)). Hence we have

c(T(p,q)) —e(T(p,q)) =p—1)g—(p—1)(g—1)=p— 1.

We next define ¢*(L) and e*(L) as follows:
c*(L) = min{c(D)|D : a self-crossing diagram of L},
e*(L) = min{d(D)+d(—D)|D : a self-crossing diagram of L with ¢(D) = c¢*(L)}.

As a generalization of Theorem 6.1, we have the following theorem:

Theorem 6.2. For an r-component link L, we have
e*(L) +r < c*(L).

Further, the equality holds if and only if every self-crossing diagram D of L
with c¢(D) = ¢*(L) is equilibrial and every component D* of D 1is alternating.

Proof. Let D be a self-crossing diagram of L with ¢(D) = c¢*(D). We
assume that D satisfies the equality d(D)+d(—D) = e*(L). Then we have

e*(L) +r = d(D) + d(~D) +r

B Z )+ WH) + Z d(—D") +1d(=D) +r

=1

- i{d(D") + d(—D*) + 1} + 2ld(D)

< ic(D") 2ld(D)

% ic(Di) + le(D)
= CED) s i ki)

where the first inequality is obtained by Theorem 1.1, and the second in-
equality is obtained by Lemma 4.1. If D has a non-alternating component
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D*, or D has a diagram D' U D’ such that the number of over-crossings
of D" is not equal to the number of under-crossings of D*, then we have
e*(L) +r < ¢*(L). On the other hand, the equality holds if D is equilibrial
and every component D* of D is alternating. B

We have the following example:

Example 6.3. For non-trivial prime alternating knots L', L%, ..., L" (r > 2),
we have a non-splittable link L by performing n;-full twists for every L*
and L*'*! (¢ =1.2,...,r) with L™t = L! as shown in Figure 17, where we
assume that n; and n, have the same sign.

SO K.

FIGURE 17

Note that we do not change the type of knot components L*. Let D be a
diagram of L with ¢(D) = ¢(L). Then we notice that D is a self-crossing
diagram with ¢(D) = c¢*(L). We also notice that D is equilibrial and
every component D* of D is alternating because l¢(D* U D?) = 2|n;| and
Link(D?, D?) = n;, and lc¢(D'UD") = 2|n;+n,| and Link(D*, D7) = n;+n,
in the case where r = 2. Hence we have e*(L) 4+ r = ¢*(L) in this case.

We have the following corollary:

Corollary 6.4. Let L be an r-component link whose all components are
non-trivial. Then we have

e(L)+r <c(L).
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Further, the equality holds if and only if every diagram D of L with ¢(D) =
c(L) is equilibrial and every component D* of D is alternating.

Proof. Since every diagram D of L is a self-crossing diagram, we have

e(L) =e*(L) and ¢(L) = c*(L).

We also consider the minimal d(D)+d(—D)+sr(D) and the minimal sr(D)
for diagrams I of L in the following formulae:

f(L) = min{d(D) 4+ d(—D) + sr(D)|D : a diagram of L},

sr(L) = min{sr(D)|D : a diagram of L}.

Note that the value f(L) and sr(L) also do not depend on the orientation
of L. Jin and Lee mentioned in [6] that every link has a diagram which

restricts to a minimal crossing diagram for each component. Then we have
the following proposition:

Proposition 6.5. The value sr(L) is equal to the number of non-trivial
knot components of L.

The following corollary is directly obtained from Theorem 1.2.

Corollary 6.6. We have
f(L) < (L)
Proof. For a diagram D with ¢(D) = c¢(L), we have
f(L) < d(D) +d(-D) + sr(D) < ¢(D) = ¢(L),

where the second inequality is obtained by Theorem 1.2.

We have the following question:

Question 6.7. When does the equality f(L) = ¢(L) hold?
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Example 6.8. In Figure 18, there are two link diagrams D and E. We
assume that D (resp. F) is a diagram of a link L (resp. M). We have
f(I) = e(I.) = 5 because we have d(D) + d(—D) + sr(D) =2+ 2+ 1 and
we know d(D*) > u(3;) = 1, ld(D) > 1, and sr(D) > sr(L) = 1, where
D' is any diagram of 3;. On the other hand, we have that f(M) < ¢(M)
because f(M) < d(F)+ d(—F)+sr(F)=3+3+1=7<10=c(M).

b (G

FIGURE 18

The non-self crossing number lc(L) of a link L is the minimal non-self
crossing number lc(D) for all diagrams D of L. With respect to the warp-
linking degree, we define le(7.) as follows:

le(L) = min{ld(D)|D : a diagram of L with lc(D) = le(L)}.

We remark that lsplit(L) < le(L), where lsplit(L) is the linking complete
splitting number of L which is defined in Section 8. A link L is equilibrial
if all diagrams D of L with le(D) = lc(L) arc equilibrial. We have the
following theorem:

Theorem 6.9. We have 1ol
le(L) < c(2 )

Further, the equality holds if and only +f L 1s cquilibrial.

Proof. If L is equilibrial, i.e., every D with l¢(D) = le(L) is equilibrial,
then every D) satisfies that ld(/)) = le(D))/2 by Lemma 4.1. Then we
have le(L) = ld(D) = le(D)/2 = le(L)/2. On the other hand, if the
equality le(L) = le(L)/2 holds, then every diagram D with lc(D) = le(L)
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satisfies le(L) = lc(D)/2 = le(L)/2. Since le(L) < ld(D) < le(D)/2,
we have ld(D) = l¢(D)/2 which means that D is equilibrial. Hence L is
equilibrial.

In the following example, we discuss le(.) of the Whitehead link 7.

Example 6.10. Let L be the Whitehead link. The three diagramns in Figure
19 represent the Whitehead link respectively. Since L = L' U L? is non-
trivial and has Link(L', L?) = 0 and l¢(L) < 4, L has lc(L) = 4. Let
D = D'U D? be a minimal non-self crossing diagram of L. We note that
D is not a stacked diagram because L is not splittable. Therefore D' has
even but non-zero number of non-self over-crossing points, that is, D' has
two non-self over-crossing points and two non-self under-crossing points.

Hence D is equilibrial, and L is equilibrial. By Theorem 6.9, we have
le(L) =lc(L)/2 = 2.

FIGURE 19



32

7. RELATIONS OF WARPING DEGREE, UNLINKING NUMBER AND
CROSSING NUMBER

In this section, we study several relations of the warping degree, the
unknotting number or unlinking number, and the crossing number. Let |D|
be D with oricntation forgotten. We define the minimal warping degree of
D for all orientations as follows:

d(|D|) := min{d(D)|D : |D| with an oricntation}.

Note that the minimal d(|D|) for all diagrams D of L is equal to the as-
cending number a(7.) [20]:

a(L) = min{d(|D|)|D : a diagramn of L}.

Let E be a knot diagram, and D a diagram of an r-component link. We
review the relation of the unkuotting number w(E) (resp. the unlinking
number u(D)) and the crossing number c(F) (resp. ¢(D)) of E (resp. D).
The following inequalities are well-known [19]:

(9) um) < 4821
(10) u(D) < C(f )

Moreover, Taniyama mentioned the following conditions [28] :

The necessary condition for the equality of (9) is that E is a reduced alter-
nating diagram of some (2, p)-torus knot, or F is a diagram with ¢(F) = 1.
The necessary condition for the equality of (10) is that every D* is a simple
closed curve on S? and every subdiagram D*U D is an alternating diagram.

Hanaki and Kanadome characterized the link diagrams D which satisfy
u(D) = (¢(D) — 1)/2 as follows [4]:

Let D =D'uUD?*U---U D" be a diagram of an r-component link. Then
we have
c(D) -1

u(D) = ;
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if and only if exactly one of D*, D%, ..., D" is a reduced alternating diagram
of a (2, p)-torus knot, the other components are simple closed curves on S?,
and the non-self crossings of the subdiagram D* U 17 are all positive, all
negative, or empty for each ¢ # j. In addition, they showed that any
minimal crossing diagram D of a link L with u(L) = (¢(L) — 1)/2 satisfies
u(D) = (e(D) —1)/2.

Abe, Hanaki and Higa study the knot diagrams D which satisfy

u(p) =421 =2

2
Let D be a knot diagram with u(D) = (¢(D) — 2)/2. They showed in
[1] that for any crossing point p of D, one of the components of D, is a
reduced alternating diagram of a (2, p)-torus knot and the other component
of D, has no self-crossings, where D, is the diagram obtained from D

by smoothing at p. In addition, they showed that any minimal crossing

diagram D of a knot K with u(K) = (c¢(K) — 2)/2 satisfies the above
condition.

By adding to (9), we have the following corollary:

Corollary 7.1. For a knot diagram E, we have

¢(l)—1
u(E) < d(B)) < S2-1
Further, if we have
. ; c(k)—1
o(B) = () = L2

then F is a reduced alternating diagram of some (2, p)-torus knot, or F is
a diagram with c(E) = 1.

By adding to (10), we have the following corollary.

Corollary 7.2. (i): For an r-component link diagram D, we have

u(n) < d(n)) < Z2
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(ii): We have
c(D)
2

if and only if every D* is a simple closed curve on S* and the

number of over-crossings of D' is equal to the number of under-
crossings of D* in every subdiagram D*U D? for cach i # .

u(D) < d(|D]) =

(in): If we have
c(D)
2 )
then every D* is a simple closed curve on §* and for each pair i,
j, the subdiagram D' U 17 is an alternating diagram.

u(D) = d(|D]) =

Proof. (i): The equality u(D) < d(|D|) holds because u(D) < d(D)
holds for every oriented diagram. We show that d(|D|) < ¢(D)/2.
Let ) be an oriented diagram which satisfies

d(D) = Zd(ni) +1d(D) = d(|D)).

Then D also satisfies

. Dt
1) 4t < 47
for every component D* because of the orientation of D. By Lemma

4.1, we have

(12) ld(D) < ‘C(QD )

Then we have

d -  ¢(D? le(D
;.:z(D*)Hd(D)g; (2 )+ 3(2 )

by (11) and (12). Hence we obtain the inequality

d(|D]) < "(f )
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(ii): Suppose that the equality d(|D|) = ¢(D)/2 holds. Then the

equalities
(D
d(D?") = (2 )
and
ld(D) = l“(ZD )

hold by (11) and (12), where D has an orientation such that d(D) =
d(|D}). The equality (13) is equivalent to that c¢(D*) = 0 for every
D*. We prove this by an indirect proof. We assume that ¢(D?) > 0
for a component D*. In this case, we have the inequality

d(D*) + d(—D%) + 1 < ¢(DY)
by Theorem 1.1 since D* has a self-crossing. We also have
c(D*)
2

because d(D*) < d(—D*) and (13). By substituting (16) for (15),
we have

d(D*) = d(~D*) =

c(DY) + 1 < ¢(D).

This implies that the assumption ¢(D*) > 0 is contradiction. There-
fore every D" is a simple closed curve. The inequality (14) is equiv-
alent to that the number of over-crossings of D* is equal to the
number of under-crossings of D* in every subdiagram D* U D’ for
each 7 # j by Lemma 4.1. On the other hand, suppose that every
D' is a simple closed curve, and the number of over-crossings of D"
is equal to the number of under-crossings of D* in every subdiagram
D* U D7 for each ¢ # j, then we have
- le(D) (D)

d(ID)) = 1d(D) = 52 = 5

(ii): This holds by Corollary 7.2(i) and above Taniyama’s condition.




36

Let K be a knot, and L an r-component link. Let u(K) be the unknotting

number of K, and u(l.) be the unlinking number of 7.. The following
inequalities are also well-known [19]:

(17) u(k) < =1,
c(L)
(18) u(l) < -

The following conditions are mentioned by Taniyama [28]:

The necessary condition for the equality of (17) is that K is a (2, p)-torus
knot (p:odd,# =£1). The necessary condition for the equality of (18) is that
I, has a diagram D such that every D* is a simple closed curve on S§* and
every subdiagram D* U I is an alternating diagram.

By adding to (17) and Theorem 6.1, we have the following corollary:

Corollary 7.3. (i): We have
u(K) < e(f) < -‘-’-(-I—{-%—"-'—l-

(ii): We have

e(K) ¢K)-1
u(K) < > 5

if and only if K is a prine alternating knot.

(ii): If we have

e(K) c(K)-1
2 2
then K is a (2,p)-torus knot (p:odd,#

u(K) =

)

=1 ).

By adding to (18), we have the following corollary:
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Corollary 7.4. For a diagram of an unoriented r-component link, we have

e(L) (L)
L)< — < ——,
ul)< == <=
Further, if the equality u(L) = e(L)/2 = ¢(L)/2 holds, then L has a diagram
D=D'UD?U-.-UD" such that every D' is a simple closed curve on S?

and for each pair i, j, the subdiagram D* U D? is an alternating diagram.

Proof. We prove the inequality u(L) < e(L)/2. Let D be a minimal cross-
ing diagram of L which satisfies e(L) = d(D) + d(— D). Then we obtain

e(I) =d(D)+d(—D) > 2u(D) > 2u(l).

The condition for the equality is due to above Taniyama’s condition.
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8. RELATION OF WARPING DEGREE AND SPLITTING NUMBER

In this scction, we define the splitting number and consider relations
of the warping degree and the complete splitting number. The splitting
number (resp. complete splitting number) of D, denoted by Split(D) (resp.
split(D)), is the smallest number of crossing changes which are needed to
obtain a diagram of a splittable (resp. completely splittable) link from D.
The splitting number of a link which is the minimal Split(D) for all dia-
gramns D is defined by Adawms [2]. The linking splitting number (resp. link-
ing complete splitting number) of D, denoted by 1Split(D) (resp. lsplit(D)),
is the smallest number of crossing changes at non-self crossings which are
needed to obtain a diagrain of a splittable (resp. completely splittable) link

from D. In Appendix B, we also discuss the complete splitting number of
a link. We have the following propositions:

Proposition 8.1. (i): We have
split(D) < d(|D|).

(ii): We have

le(D) . c(D)
2 - 2

split(D) < lIsplit(D) < ld(D) <

We give examples of Proposition 8.1.

Example 8.2. The diagramn D in Figure 20 has split(D) = 2 < d(|D}) = 3.
The diagram E in Figure 20 has split(F) = d(|E|) = 3.

Example 8.3. The diagram D in Figure 21 has split(D) = 1 < Isplit(D) =
2. The diagram E in Figurc 21 has split(E) = lsplit(E) = 2.

Example 8.4. The diagram D in Figure 22 has Isplit(D) = 3 < ld(D) = 5.
The diagram E in Figure 22 has Isplit(E) = ld(E) = 5.
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Question 8.5. When does the equality
split(D) = d(|D]),
split(D) = Isplit(D)

or
Lsplit(D) = ld(D)

hold?



41

APPENDIX A

In this appendix, we show methods for calculating the warping degrees
and warp-linking degrees by using matrices. First, we give a method for
calculating the warping degree d(D) of an oriented knot diagram D. Let
a be a basc point of D. We can obtain the warping degree d(D,) of D,
by counting the warping crossing points easily. Let [D,] be the sequence
of some “0” and “u”, which is obtained as follows. When we go along the
oricnted diagram D from a, we write down “o” (resp. “w”) if we rcach a
crossing point as an over-crossing (resp. under-crossing) in numerical order.
We next perform a normalization to [D,| by deleting the subsequence “ou”
repeatedly, to obtain the normalized sequence | D,|. Then we have

d(D) = d(D.) - 52(Dal,

where #| D,| denotes the number of entries in | D,|. Thus, we obtain the
warping degree d(D) of D. In the following examnple, we find the warping
degree of a knot diagram by using the above algorithm.

Exaruple 8.6. For the oriented knot diagram D and the base point a in

Figure 23, we have d(D,) = 4 and [D,] = [oouuouvouuouoouoou). By
normalizing [D,], we obtain |D,| = [uuoo|. Hence we find the warping
degree of D as follows:

dD)=4—-=-x%x4=2.

FIGURE 23
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For some types of knot diagram, this algorithm is useful in formulating the
warping degree or locking into its properties. We show a property of an
oriented diagram of a pretzel knot of odd type in the following example:

Example 8.7. Let D = P(eyn;, a0, . . ., Emiy,) be an oriented pretzel knot
diagram of odd type (g; € +1, —1,n;,m: odd> 0), where the orientation is
given as shown in Figure 24. We take base points a, b in Figure 24. Then

we have
i+l _

-
=
e
!
X
|
S
||
I&
+
D
G
|
tgl

and

#Da] = §[—Ds).
Hence we have d(D) = d(—D) in this case. In particular, if D is alternating

i.e. €y =€9=---=¢, = £l1, then we have
D) 1
d(D) = 5 5
P(5,3,3)

=
&

FIGURE 24

We next consider how to calculate the warp-linking degree ld(1?) by using
matrices. For a link diagram D and a base point sequence a of D, we define
an r-square matrix M(D,) = (m;;) by the following rule:
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FIGURE 25

o For i # j, m;; is the number of crossings of D* and D’ which are
under-crossings of D*.

e For i = j, m;; = d(D").
We show an example.

Example 8.8. For Dy and Dy, in Figure 25, we have

0 1
M(D,)=11 0 , M(Dy) =
2 2

o O O
O O
O N
Qo= N

We note that ld(D,) is obtained by summing the upper triangular entrics
of M(Dy), that is

ld(Da) = Z m;;,

1<j

d(Da) = Zmij:
1<)
where m;; is an entry of M(D,) (i, = 1,2,...,7). For the base point
scquence @' = (aq,a9,...,0541, 0k, - --,0r) Which is obtainced from a basc
point sequence a by exchanging ax and axy; (K = 1,2,....7 — 1), the
matrix M (Dy) is obtained as follows:

M(Dgy) = P.M(D,) P,

and we notice that
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where

1 for (i,5) = (k. k+1), (k + 1, k)
and(i, j) = (i,3)(i # k. k + 1),

0 otherwise.

y M5

- O
o =

With respect to the warp-linking degree, we have
ld(Daf) = ld(Da) — Mkk+1 + Me41k,

where myy | 1, My | 1k are entries of M (D,). To enumerate the permutation of
the order of a = (ay,ay, ..., d,), we consider a matrix Q = P~ 1pP7—2%... p2pl,
where P™ denotes P,P,i1--- P, (n < k, < r — 1) or the identity matrix
E,. Since () depends on the choices of k£, (n = 1,2,...,r — 1), we also
denote Q by Qyx, where k = (ky, ka2, ..., k-—1) (n < k, < r) and we regard
P" = F, in the case k, = r. Hence we obtain the following formula:

ld(D) = m&n{z mijlmij ©oan entry of QkM(Da)Ql:l}
i<
Thus, we obtain the warping degree of an oriented link diagram by summing

the warping degrees d(D*) (¢ = 1,2,...,r) and the warp-linking degree
ld(D).
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APPENDIX B

In this appendix, we discuss the complete splitting number of a lassoed
link.

8.1. Introduction. The splittability of a link is onc of the basic concepts
in knot theory. For example, the splittability interacts with polynomial in-
variants: the Alexander polynomial and the Conway polynomial take zero
for a splittable link. Joncs polynomial and skein polynomial have specific
formulae with respect to the split sum. Moreover, the splittabilities of
links or spatial graphs are studied and applied to other subjects: chem-
istry. biology. psychology, ctc. For exaimnple, Kawauchi proposed a model of
prion proteins as a spatial graph (8], and Yoshida studied its splittability
which concerns with the study of prion diseases: mad cow disease, scrapie,
Creutzfeldt-Jakob disease, etc. [13]. Another example is about a model of
human mind which is also proposed by Kawauchi [7], [8]; by considering
one’s mind as a knot and by considering a mind relation of n persons as an
n-component link, the models “mind knots” and “mind links” are studied.
The splittability of a link corresponds to the “self-releasability” of a mind
link.

For a two-component link, Adams defined the splitting number which
represents how distant the link is from a splittable link [2]. In this paper.
we define for an n-component link L (n = 2, 3,4, ...) the complete splitting
number split( L) which represents how distant the link is from a completely
splittable link. The wunlinking number wu(l.) of a link 7. is the minimal
number of crossing changes in any diagram of L which are needed to obtain
the trivial link L. Since a trivial link is completely splittable, we have
split(7.) < wu(l.). Lassoing is a crossing-changing and loop-adding local
move as shown in Figure 26 (we give the precise definitions of completely
splittable, complete splitting number, and a lassoing in Subsection 8.2).
For any r-component link L = L*UL2U ... UL" (r = 1,2,3,...) with
the Conway polynomial V(L) # 0, there are (-iterated lassoings from L
to an algebraically completely splittable link L* with V(L*) # 0 where
£= ), ; |Link(L;. L;)| (we define an algebraically completely splittable
link in Subsection 8.2). For any s-component link K = K1 U K?U...UK*®
(s > 1) with V(KX) # 0, there are (¢ + u)-iterated lassoings from K to
an algebraically completely splittable link L with trivial components such
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/ . \ /
lassoing
P e
/ / \

FIGURE 206

that V(7)) # 0 where £ = 3, . |Link(K*, K?)| and v = )], u(K*). In
this appendix, we show the following theorem:

Theorem 8.9. Any link I. obtained from any s-component link K = K* U

K‘U...UK* (s =1,2,3,...) with V(K) # 0 by r-iterated lassoings (r =
0.1,2,...) satisfies

r + split(K) > split(L) >r+s—1.

We have the following corollaries:

Corollary 8.10. For any s-component link K = K'!U K? U ... U K*
(s =1,2,3,...) with split(K) = s — 1, and any inleger r > £ + u where
£ = 3 |Link(K*,K?)| and u = Y ;_, u(K"), there are r-iterated las-
soings from K to an algebraically completely splittable link L with trivial
components such that split(l.) =r + s — 1.

Corollary 8.11. Let K be a knot. Let L be a link which is obtained from
K by r-iterated lassoings (r = 1,2,3,...). Then L has split(L) = r.
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We define a component-lassoing to be the lassoing at a self-crossing point
of a diagram. We have the following corollary:

Corollary 8.12. Every link L obtained from a knot K by r-iterated component-

lassoings (r = 1,2,3,...) is an (r + 1)— component algebraically completely
splittable link with split(L) = 7.

7¢ \
&

For example, the link 72 depicted in Figure 27 which is a link obtained
from a trefoil knot by a single component-lassoing, has the linking number
zero and split(7) = 1. We also remark that w(72) = 2 (cf. [14]). Adams
also showed in [2] that there is a two-component link, each component of
which is trivial, but such that its splitting number is less than its unlinking
numbcr, like the link 72. We show in Subscction 8.5 that for any integer
r > 0 and any knot K with Nakanishi’s index e(K) > 2r, any link L
obtained from K by r-iterated lassoings is a link such that split(L) < u(L),
i.c.. L is non-trivial by any r crossing changcs.

8.2. Complete splitting number. Let I, = I,, U, U---U I, be a
link consisting of sublinks L; (z = 1,2,...,7r). A link L is splittable into
Ly, L,,..., L, if there exist mutually disjoint 3-balls B; (i =1,2,...,r) in
S3 such that 7; C B;. For example, the link M in Figure 28 is splittable
into M; and M., whereas the link N is not splittable into N; and N,. A
link L is splittable if L is splittable into subdiagrams L; and L,, where
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L = L UL,y L,L, # ¢. For example, the link M in Figure 28 is a
splittable link.

M MI/\ N NI

X LN

F1GURE 28

A link L is completely splittable if L is splittable into all the knot compo-
nents of L. In particular. a knot is assumed as a non-splittable link but
a completely splittable link. A link L is algebraically completely splittable
if every two knot components K* and K? of L have the linking number
Link(K*, K?) = 0. For example, the link E in the left hand of Figure 29 is
not completely splittable but algebraically it is completely splittable.

E N
_

W\

FIGURE 29

The complete splitting number split(7)) of a link diagram 7) is the minimal
number of crossing changes which are needed to obtain a diagram of a
completely splittable link from D. For example, the link diagram F'in the
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right hand in Figure 29 has split(F) = 1. As a relation to the warp-linking
degree ld(D) of D, we have split(D) < ld(D). The complete splitting
number split(/.) of a link 7. is the minimal number of crossing changes in
any diagram of the link which are needed to obtain a completely splittable
link.

Let p be a crossing point of a link diagram 7). We put a lasso around p,
i.e., we apply a crossing change at p, and add a loop alternately around
the crossing as shown in Figure 26. Then, we obtain another link diagram
D'. The diagram D’ is said to be obtained from D by lassoing at p. Let L'
be the link which has the diagram D’. The link L’ is said to be obtained
from L by a lassoing. For example, we obtain the Borromean ring from the
Hopf link by a lassoing (sce Figure 30).

lassoing

el \7’

FIGURE 30

A link L’ is said to be obtained from L by r-iterated lassoings if L' is
obtained from L by lassoings r times iteratively. For example, the link L in
Figure 31 is a link obtained from a trivial knot by two-iterated lassoings.
Since a lassoing depends on the choice of a crossing point and the choice
of a diagram of the link, we may have many types of link by a lassoing.

8.3. Conway polynomial and Alexander polynomial. In this subsec-
tion, we study the Conway polynomials and the Alexander polynomials of
lassoed links. Let V(L; z) be the Conway polynomial of a link L with an
orientation. We have the following lemma:

Lemma 8.13. We have
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(82)-(X )

Proof. We obtain the first equality by the skein relations in Figure 32.

The other equalities are similarly obtained.
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ZV(D+;2)-2(V (D;2)+zV (Do; 2)+22V(D; 2))

@ =2 (D+;2)-V(D;2)-2V(Do; 2))-2°V(D;7)

-z-*V(D ')

wlR( 180
@ @ y @
V(D)  W(D;7)
> < Y

V(Deo;2) V(D;?2)

FIGURE 32

Example 8.14. The link diagram D in Figure 33 is obtained from a diagram
of a trefoil knot by 2-iterated lassoings. Then we have V(L) = z* x 2% X
V(3:) = 25(1 + z?), where L is a link represented by D, and 3, is a trefoil
knot.
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F1ctUrr 33

We remark that for a link L’ with V(L) = 0, there are no lassoings from
L' to L with V(L) # 0. We have the following corollary:

Corollary 8.15. Let L be a link obtained from a link L’ with V(L') # 0, in

particular from any knot K, by r-iterated lassoings (r =1,2,3....). Then
we have V(1) # 0.

Let A be the integral Laurent polynomial ring, i.e., A = Z[t,t~']. With
respect to the one-variable Alexander polynomial, we have the following
corollary by Lemma 8.13 by substituting t3 — =% for z:

Corollary 8.16. Let L' be a link which is obtained from a link L by a
lassoing. Then we have

A (t)=(t — 1)°Ap(2),

where A (t) is the one-variable Alezander polynomial of L, and = means
equal up to multiplications of the units of A.

We show an cxample.

Example 8.17. We have
AGY) = A(T2) = A8%) = (t— 1)°A(0),
A(73) = A(935) = A(956) = (L — 1)°A(3y),
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A(813) = (t - 1)°A(4y),
A(93,) = (t - 1)*A(5),

A(935) = A(933) = (L — 1)°A(5,),

where A(L) = Ag(t). All the two-component links with the crossing num-

ber nine or less which are obtained from knots by lassoings have been listed
above.

Up to multiplications of ¢ — 1, the one-variable Alexander polynomial of any
link is the Alexander polynomial of an algebraically completely splittable
link consisting of trivial components:

Corollary 8.18. Let (t — 1)™f(t) be the Alexander polynomial of a link,
where m s a non-negative integer, f(t) € A, and f(1) # 0. Then,
there exists a mon-negative integer n such that the Laurent polynomial

(t —1)™+3n f(t) is the Alezander polynomial of an algebraically completely
splittable link consisting of trivial components.

Proof. We can changc a crossing by a lassoing.

8.4. Proof of Theorem 8.9. In this subsection, we prove Theorem 8.9.
Before the proof, we define some notions which are due to [9] to prove
Theorem 8.9. For the integral Laurent polynomial ring A = Z[(. 17}, a
multiplicative set of A is a subset S C A — {0} which satisfies the following
three conditions: the units +#' (¢ € Z) are in S, the product gg’ of any
elements g and ¢’ of S is in S5, and every prime factor of any element g € S
is in S. For the quotient field Q(A) of A and a multiplicative set S of A,
As = {f/g € QA)|f € A,g € S} is a subring of Q(A). For a finitely
generated A-module H, let Hs be the Ag-module H ®) Ag, and es(H)
the minimal number of As-generators of Hg. We take eg(H) = 0 when
H = 0. We call es(H) the Ag-rank of H. Let L be an oriented link in
S3. and E(L) = cl(S® — L) the compact exterior of L. Let E(L) — E(L)
be the infinite cyclic covering which is induced from the epimorphism 7, :
m1(E(L)) — Z sending each oriented meridian of L to 1 € Z. Then we
can regard H;(E(L)) as a finitely A-module. We denote es(H;(E(L))) by
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es(L). Let L, I’ be links which have the same number of components. By
Theorem 2.3 in [9|, we immediately have

(19) ¥ (1, 1) > les(T) — es(I)

)

where d* (I, I) denotes the X-distance between I, and I/. We prove The-
orem 8.9.

Proof of Theorem 8.9. Let I, be a link which is obtained from a link
K=K UK*U---UK?* with V(K) # 0 by r-iterated lassoings (r =
1,2,3,...). Let L' be a completely splittable link which is obtained from
L by m crossing changes. where m = split(L) = d*(L,L'). We sct S =

A — {0}. Since L’ is completely splittable and the number of components
of L' is r + s, we have

(20) co(L)=7r+s5—1.

The Alexander polynomial of L is non-zero because the Conway polynomial
of L is non-zero by Corollary 8.15. Hence we have

(21) cs(L) = 0.

By substituting the cqualitics (20), (21) and d* (L, L) = split(L) into the
inequality (19), we have

split(L) > r+ s — 1.
From the r-iterated lassoings, we have
r + split(K') > split(L).
Hence we have the inequality

r + split(K) > split(L) > r+ s — 1.

As the coutraposition of Theorem 8.9, we have the following corollary:

Corollary 8.19. Let K = K' UK*U---U K*® be an s-component link. If
K has split(K) < s — 1, then V(K) = 0.
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8.5. Non-triviality. In this subsection, we discuss the non-trivialities of
completely splittable links which are obtained from L in Corollary 8.11 by

r crossing changes (r = 1,2,...). For a link 7, obtained from a knot K by
r-iterated lassoings. we have the following theorem:

Theorem 8.20. If a link L is obtained from a knot K with e(K) > 2r
by r-iterated lassoings (r = 1.2,3,...), then we have split(L) = r and
u(L) > r.

We remark that in Theorem 8.20 the link L is an algebraically completely
splittable link if the r-iterated lassoings are all component-lassoings. Before
proving Theorem 8.20, we have the following Lemma:

Lemma 8.21. Let Lo = K' + K*+---+ K" be a completely splittable link
with r components. Then we have

T

u(Lg) = Z'&(Ki).

2=1

Proof. We have u(Lg) = u + u; + uz + - -+ + u,, where u is the number of
non-self crossing changes and w; is the number of crossing changes on K*
which are needed to obtain the trivial link from 7.,;. Then we have

r .
uw(lo)=u+w+---+u2u+- - +u 2 Za(K‘)
1=1
Since Ly is completely splittable, we have

u(lp) < Z?L(K’j).

=1

Therefore the equality holds. »

We show Theorem 8.20

Proof of Theorem 8.20. Let I = K!+ K? + ... 4+ K™ be a completely
splittable link which is obtained from L by r crossing changes. For the
integral Laurent polynomial ring A = Z[t,t™'], we take the multiplicative
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set 5 of A so that S is the set of units of A. Then es(L) is equivalent to
Nakanishi’s index e(L) [9]. Since we can consider Ly = K+ K?+-- -+ K™}
to be a connected sum O™ "' # K14 K24 . # K™ we have

H,(E(Ly)) = H{(E(O™Y)) & Hy(E(K'#K?# ... #K™))
>N @ H(FE(K*#K*# ... #K™)).

And by [12], we have ¢(Lg) = r+ e(K*#K?# ... #K™1). By substituting
this into the inequality (19), we have

dX(La Lo) 2 |e(L) — e(Lo)| = e(L) — r — e(K1#Ka# . .. #Kr11).
Recall that d* (L, Ly) = split(L) = r. Then we have

(22) r>e(l)—1r—e(K'#K*# ... #K™1).

Next, we consider another completely splittable link K + O™ which is ob-
tained from L by the r anti-lassoings (see Figure 34).

/ anti-
\ lassoing /
/ -
/ \ /
FIGURE 34
Since K + O™ = O™"'#K , we have
H1(F(To)) = A" @ Hi(E(K)).

And by [12], we have ¢(K + O") = 7 + ¢(K). Hence we have

(23) r>r+e(K)—e(Ll)
by [9]. By summing the inequalities (22) and (23), we have
or > o(K) — c(K ' K2 ... #K™),

From Lemma 8.21, we have
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g
u(Lo) =Y u(K*) > u(K'#K* .. . #K™) > e(K'$#K2#.. . #K™*)
> c(K) — 2r.

Hence Ly is non-trivial if e(K) > 2r.

For a knot which has Nakanishi’s index large enough, we can construct a

link such that the unlinking number is greater than the complete splitting
number. Here is an example.

Example 8.22. Since the knot K in Figure 35 which is the connected sum
of 2r + 1 trefoil knots has Nakanishi’s index e(K) = 2r + 1, any link 7,

obtained from K by r-iterated lassoings has the unlinking number more
than r whereas split(L) = r.

foleToms

FIGURE 35
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