
　Equivariant cohomology rings of
Springer varieties and regular nilpotent

Hessenberg varieties
(スプリンガー多様体と正則な冪零ヘッセンバーグ多様体の同変コホモロジー環)

理学研究科

数物系専攻

平成２７年度

Tatsuya Horiguchi

(堀口　達也)





Acknowledgements

I thank everyone who helped me along the way.

First, I am truly grateful to my committee for the time and effort they have

dedicated to me. I am especially grateful to my supervisor Professor Mikiya

Masuda for all of his time, spirit, energy, patience, encouragement, understand-

ing, and wisdom throughout. He taught me mathematics and the beauty of

mathematics. I am proud of learning mathematics from him. He also gave me

many chances to present my work at symposiums and seminars. I will never

forget the time that I spent with him. I could not have reached this milestone

in my life without his help and guidance.

I am heartily grateful to Professor Megumi Harada for teaching me so much

about mathematics and the human bonds made through mathematics. I always

benefit from her energy when I discuss mathematics with her.

I am also heartily grateful to Professor Toshiyuki Tanisaki for valuable sugges-

tions.

I would like to thank the members of the research group working under Professor

Mikiya Masuda. My academic siblings Hiraku Abe, Hiroaki Ishida, and Yukiko

Fukukawa helped me along my way. Hiraku Abe often took care of me in many

ways and taught me mathematics. Hiroaki Ishida watched me quietly, and gave

me advice when I had trouble. Yukiko Fukukawa kindly supported me and

taught me mathematics. Also, my friends Hideya Kuwata, Miho Hatanaka, and

Haozhi Zeng helped me and I am glad to study mathematics together with them.

Yusuke Suyama helped me in computer programming. Thanks in particular, to



Hiraku Abe, Hideya Kuwata, and Haozhi Zeng for many helpful conversations

and good discussions.

I owe a special thanks to Mrs. Fumiko Harada, who is Professor Megumi

Harada’s mother, for teaching me so much about life.

Lastly, I express great appreciation for my family, for their warmhearted support

and encouragement.

I was supported by a JSPS Grant-in-Aid for JSPS Fellows: 27·9343 (2015-2016).



Abstract

Hessenberg varieties are subvarieties of the flag variety Flags(Cn). We are

mainly concerned with the nilpotent type of Hessenberg varieties. Springer

varieties and regular nilpotent Hessenberg varieties are the two extreme cases

of nilpotent Hessenberg varieties. Springer varieties are associated with rep-

resentations of the symmetric group on n letters. DeConcini-Procesi gave an

explicit presentation of the cohomology rings of Springer varieties, and Tanisaki

simplified their presentation. Regular nilpotent Hessenberg varieties are gener-

alizations of the Peterson variety which is associated with the quantum coho-

mology of Flags(Cn). The (equivariant) cohomology rings of regular nilpotent

Hessenberg varieties have been studied by Brion-Carrell, Insko, and Fukukawa-

Harada-Masuda.

In this dissertation we give an explicit presentation of the equivariant cohomol-

ogy rings of Springer varieties and regular nilpotent Hessenberg varieties. Also,

we give an explicit presentation of the equivariant cohomology rings of Peterson

varieties in all Lie types.
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Chapter 1

Introduction

The flag variety Flags(Cn) is the collection of nested sequences V• := (V1 ⊂

V2 ⊂ · · · ⊂ Vn = Cn) of subspaces in Cn where Vi is i-dimensional vector space.

Given a linear operator A : Cn → Cn and a nondecreasing function h : [n] → [n]

such that h(i) ≥ i for each i where [n] := {1, 2, . . . , n}, we consider the flags

Hess(A, h) = {V• ∈ Flags(Cn) | AVi ⊆ Vh(i) for all 1 ≤ i ≤ n}. (1.0.1)

The subvariety Hess(A, h) is called a Hessenberg variety (in type A) and the

map h is called a Hessenberg function. We frequently denote a Hessenberg

function by listing its values in sequence, h = (h(1), h(2), . . . , h(n) = n). If

h = (n, n, . . . , n) or A is the zero operator, Hess(A, h) = Flags(Cn). Thus

the flag variety Flags(Cn) is itself a special case of Hessenberg varieties. We

also remark that if g ∈ GL(n, C), then Hess(A, h) and Hess(gAg−1, h) can be

identified via the usual action of GL(n, C) on Flags(Cn). Therefore, we may

assume that A is in Jordan canonical form.

If A = N is a nilpotent operator, we call Hess(N,h) a nilpotent Hes-

senberg variety. We are mainly concerned with the nilpotent type. If h =

9



10 CHAPTER 1. Introduction

(1, 2, . . . , n), we call Hess(N,h) a Springer variety. We denote the Springer

variety Hess(N,h) by Sλ where h = (1, 2, . . . , n) and N is in Jordan canoni-

cal form with Jordan blocks of weakly decreasing sizes λ = (λ1, λ2, . . . , λ`). If

N = N is the regular nilpotent operator, that is, N is the nilpotent operator

in Jordan canonical form with one Jordan block, we call Hess(N, h) a regular

nilpotent Hessenberg variety. These varieties are the two extreme cases of

nilpotent Hessenberg varieties.

Springer constructed a representation of the symmetric group Sn on the co-

homology H∗(Sλ) considered as a complex vector space, and this representation

on the top degree part is the irreducible representation of type λ ([34], [35]).

Here, we call the Sn-representation on the total cohomology H∗(Sλ) Springer’s

representation. DeConcini-Procesi [9] used Springer’s representation to give a

presentation of the cohomology ring H∗(Sλ) as a quotient of a polynomial ring

by an ideal. Tanisaki [37] gave another set of generators of this ideal which sim-

plifies the DeConcini-Procesi presentation; this ideal is now called Tanisaki’s

ideal.

On the other hand, regular nilpotent Hessenberg varieties are generaliza-

tions of the Peterson variety, denoted by Pet, which is the case when h =

(2, 3, 4, . . . , n, n) for Hess(N, h). The Peterson variety arises in the study of the

quantum cohomology of the flag variety Flags(Cn) ([25], [32]). The (equivari-

ant) cohomology rings of Hess(N, h) have been studied in [6], [22], [11].

In this thesis we give an explicit presentation of the equivariant cohomology

rings of Springer varieties and regular nilpotent Hessenberg varieties. Recall
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that the following standard torus

T =





g1

g2

. . .

gn


gi ∈ C∗ (1 ≤ i ≤ n)


(1.0.2)

acts on the flag variety Flags(Cn) in a natural way. This T -action does not

preserve the subvariety Hess(N,h) in general, but the following one-dimensional

subtorus S of T preserves Hess(N,h) ([15, Lemma 5.1]):

S =





g

g2

. . .

gn


g ∈ C∗


. (1.0.3)

We are mainly concerned with the S-equivariant cohomology rings of Springer

varieties and regular nilpotent Hessenberg varieties.

In Chapter 3 we give an explicit presentation of the S-equivariant cohomol-

ogy rings of the Springer variety S(n−k,k) for λ = (n− k, k) with Q-coefficients.

We call S(n−k,k) the (n−k,k) Springer variety. The presentation of H∗
S(S(n−k,k); Q)

yields a presentation of the ordinary cohomology H∗(S(n−k,k); Q) as a ring.

However, the resulting presentation is slightly different from Tanisaki’s presen-

tation given in [37]. From the presentation in Chapter 3 we will see that the

S-equivariant cohomology H∗
S(S(n−k,k)) does not extend Springer’s represen-

tation of Sn. This problem can be rectified by considering instead the action

of the following `-dimensional subtorus T ` of T , which does preserve Sλ for
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λ = (λ1, . . . , λ`):

T ` =





h1Eλ1

h2Eλ2

. . .

h`Eλ`


hi ∈ C∗ (1 ≤ i ≤ `)


(1.0.4)

where Ei is the identity matrix of size i.

In Chapter 4 we construct an Sn-representation on the T `-equivariant coho-

mology H∗
T `(Sλ) which lifts Springer’s representation. We use this Sn-representation

to give an explicit presentation of the T `-equivariant cohomology rings of Springer

varieties Sλ with Z-coefficients. More precisely, we give a T `-equivariant ver-

sion of Tanisaki’s presentation given in [37]. Our method is the T `-equivariant

analogue of [37]. This is joint work with Hiraku Abe ([2]).

In Chapter 5 we give an explicit presentation of the S-equivariant coho-

mology rings of all regular nilpotent Hessenberg varieties Hess(N, h) with Q-

coefficients. As a corollary, we have an explicit presentation of the ordinary

cohomology ring of Hess(N, h):

H∗(Hess(N, h); Q) ∼= Q[x1, . . . , xn]/Ǐh (1.0.5)

where Ǐh is an ideal generated by polynomials
∑j

k=1

(
xk

∏h(j)
`=j+1(xk − x`)

)
for

1 ≤ j ≤ n and we take
∏h(j)

`=j+1(xk −x`) = 1 if h(j) = j. Using the presentation

of (1.0.5), we see that the cohomology ring H∗(Hess(N, h)) is a Poincare duality

algebra. We remark that Hess(N, h) has singular points in general ([25], [23]).

This is joint work with Hiraku Abe, Megumi Harada and Mikiya Masuda ([1]).

In Chapter 6 we give an explicit presentation of the S-equivariant cohomol-

ogy rings of the Peterson varieties in all Lie types with Q-coefficients. More
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precisely, we are able to give a uniform description of the relevant ideal J , valid

for all Lie types, using the Cartan matrix associated to the Lie algebra g of G.

In particular, our analysis shows that the ideal J is generated by quadratics.

Also, our result generalizes the presentation of Fukukawa-Harada-Masuda given

in [11], which was only for Lie type A. This is joint work with Megumi Harada

and Mikiya Masuda ([14]).

This thesis is organized as follows. We briefly recall the localization theorem

and some properties of Hessenberg varieties in Chapter 2. Using localization

tequniques, we calculate the equivariant cohomology rings of Springer varieties

and regular nilpotent Hessenberg varieties. We give an explicit presentation of

the S-equivariant cohomology rings of (n − k, k) Springer varieties and the T `-

equivariant cohomology rings of all Springer varieties in Chapter 3 and Chapter 4

respectively. We give an explicit presentation of the S-equivariant cohomology

rings of all regular nilpotent Hessenberg varieties in Chapter 5. We give an

explicit presentation of the S-equivariant cohomology rings of Peterson varieties

in all Lie types in Chapter 6.

The material in Chapter 3 is contained in [17]. Chapter 4 is joint work with

Hiraku Abe in [2]. Chapter 5 is joint work with Hiraku Abe, Megumi Harada,

and Mikiya Masuda in [1]. Chapter 6 is joint work with Megumi Harada and

Mikiya Masuda in [14].





Chapter 2

Preliminaries

2.1 Localization theorem

First, we recall the definition of torus equivariant cohomology ring. Let T be

an n-dimensional torus. Then there exists a contractible space ET on which T

acts freely. Let X be a topological space with T -action. Then the T -equivariant

cohomology ring of X is defined by the cohomology ring of the Borel construction

of X, i.e.

H∗
T (X) := H∗(ET ×T X) (2.1.1)

where ET ×T X denotes the orbit space of ET ×X with respect to the diagonal

T -action. Let BT := ET/T . Then the projection ET → BT is a principal

T -bundle, so the Borel construction of X produces a fiber bundle over BT with

fiber X. The bundle X → ET ×T X → BT is called the Borel fibration. The

Borel fibration induces the following homomorphisms:

H∗(BT ) → H∗
T (X) → H∗(X). (2.1.2)

In particular, H∗
T (X) has an H∗(BT )-module structure.

15
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Let XT be the set of T -fixed points of X. The inclusion map XT ⊂ X

induces the homomorphism:

ι : H∗
T (X) → H∗

T (XT ). (2.1.3)

The following theorem called the localization theorem plays a role in this thesis.

Theorem 2.1.1. ([19], [31], [8]) Let X be a locally contractible compact Haus-

dorff space with T -action and R be a multiplicatively closed set H∗(BT ) \ {0}.

Then the localization of the homomorphism ι in (2.1.3) with respect to R is an

isomorphism:

R−1ι : R−1H∗
T (X; Q) ∼= R−1H∗

T (XT ; Q). (2.1.4)

In paricular, we see that if H∗
T (X; Q) is a torsion-free H∗(BT ; Q)-module,

then ι : H∗
T (X; Q) → H∗

T (XT ; Q) in (2.1.3) is injective for a locally contractible

compact Hausdorff space X with T -action. In fact, in the commutative diagram

H∗
T (X; Q) ι−−−−→ H∗

T (XT ; Q)y y
R−1H∗

T (X; Q) R−1ι−−−−→∼=
R−1H∗

T (XT ; Q)

the left vertical map is injective because H∗
T (X; Q) is a torsion-free H∗(BT ; Q)-

module. Therefore, we have the injectivity of ι : H∗
T (X; Q) → H∗

T (XT ; Q).

Furthermore, if H∗
T (X; Z) is a free Z-module, we have the injectivity of ι :

H∗
T (X; Z) → H∗

T (XT ; Z).

Let X be path-connected. We assume that the cohomology of X vanishes in

all odd degrees and H∗(X) is a free module. Using the Serre spectral sequence,

we obtain the following isomorphism as H∗(BT )-modules:

H∗
T (X) ∼= H∗(BT ) ⊗ H∗(X).
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In particular, we see that H∗
T (X) is a free H∗(BT )-module.

Therefore, we have the following corollary from Theorem 2.1.1.

Corollary 2.1.2. ([19], [31], [8]) Let X be a locally contractible compact Haus-

dorff space with T -action. We assume that Hi(X; Q) = 0 for odd i. Then the

homomorphism induced from the inclusion map XT ⊂ X

ι : H∗
T (X; Q) → H∗

T (XT ; Q)

is injective. Furthermore, if H∗(X; Z) is a free module, then

ι : H∗
T (X; Z) → H∗

T (XT ; Z)

is injective.

Example. As is well-known, the flag variety Flags(Cn) is a locally contractible

compact Hausdorff space. The n-dimensional torus T in (1.0.2) naturally acts

on Flags(Cn). Since Flags(Cn) admits a complex cellular decomposition called

Schubert cell, the cohomology of Flags(Cn) vanishes in all odd degrees and

H∗(Flags(Cn); Z) is a free module. Therefore, the homomorphism induced

from the inclusion map Flags(Cn)T ⊂ Flags(Cn)

ι : H∗
T (Flags(Cn); Z) → H∗

T (Flags(Cn)T ; Z)

is injective from Corollary 2.1.2. The T -fixed point set Flags(Cn)T is given by

{(〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), . . . , ew(n)〉 = Cn) | w ∈ Sn}

where e1, e2, . . . , en is the standard basis of Cn and Sn is the permutation group

on n letters {1, 2, . . . , n} (cf. [13, Lemma 2 in Section 10.1]). We may identify
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Flags(Cn)T with Sn through the correspondence:

(〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), . . . , ew(n)〉) 7→ w (2.1.5)

So we can embed the T -equivariant cohomology ring H∗
T (Flags(Cn); Z) into a

direct sum of a polynomial ring:

ι : H∗
T (Flags(Cn); Z) →

⊕
w∈Sn

Z[t1, . . . , tn] (2.1.6)

because H∗
T (pt; Z) = H∗(BT ; Z) = Z[t1, . . . , tn] where ti ∈ H2(BT ) denotes

the first Chern class of the line bundle ET ×T Ci over BT . Here, Ci is

the one dimensional representation of T through a map T → C∗ given by

diag(g1, . . . , gn) 7→ gi.

Let Ei be the subbundle of the trivial vector bundle Flags(Cn) × Cn over

Flags(Cn) whose fiber at a flag V• is just Vi. We denote the T -equivariant first

Chern class of the line bundle Ei/Ei−1 by x̄i ∈ H2
T (Flags(Cn)). Then, using

the injectivity of (2.1.6), one can see that the following relations hold:

ei(x̄1, . . . , x̄n) − ei(t1, . . . , tn) = 0 for all 1 ≤ i ≤ n (2.1.7)

where ei is the i-th elementary symmetric polynomial. In fact, it is known that

the T -equivariant cohomology ring of Flags(Cn) is given by

H∗
T (Flags(Cn); Z) ∼= Z[x1, . . . , xn, t1, . . . , tn]/I (2.1.8)

where I is an ideal generated by symmetric polynomials ei(x1, . . . , xn)−ei(t1, . . . , tn)

for 1 ≤ i ≤ n.

For instance, we can check the relations in the case n = 3 using the injectivity

of i in (2.1.6). We arrange all the T -fixed points in Flags(C3)T ∼= S3 by an
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order:

123, 132, 213, 231, 312, 321

where all the above permutations are in one-line notation. The w-component

of ι(x̄i) is given by tw(i), so we have

ι(x̄1) = (t1, t1, t2, t2, t3, t3),

ι(x̄2) = (t2, t3, t1, t3, t1, t2),

ι(x̄3) = (t3, t2, t3, t1, t2, t1).

Also, the w-component of ι(ti) is given by ti, so we have

ι(t̄1) = (t1, t1, t1, t1, t1, t1),

ι(t̄2) = (t2, t2, t2, t2, t2, t2),

ι(t̄3) = (t3, t3, t3, t3, t3, t3).

Therefore, ι
(
ei(x̄1, x̄2, x̄3) − ei(t1, t2, t3)

)
= 0 holds for i = 1, 2, 3. From the

injectivity of ι, we have the relations in (2.1.7) for n = 3. The relations in

(2.1.7) for general n can be checked in a similar way.

Let X be a path-connected space with T -action. We assume that the co-

homology of X vanishes in all odd degrees and Hi(X) is a finitely generated

free module for every i. Then the homomorphism H∗(BT ) → H∗
T (X) in (2.1.2)

is injective (cf. [27, Theorem 4.2 in CHAPTER III]), so we may think of ti

as an element of H∗
T (X) where we identify H∗(BT ) with a polynomial ring in

n variables t1, · · · , tn. Also, the homomorphism H∗
T (X) → H∗(X) in (2.1.2)

is surjective and its kernel is generated by t1, · · · , tn (cf. [27, Theorem 4.2 in

CHAPTER III]). Therefore, we have the following isomorphism:

H∗(X) ∼= H∗
T (X)/(t1, · · · , tn). (2.1.9)
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Example. Taking ti = 0 for i = 1, . . . , n in (2.1.8), we have well-known pre-

sentation by Borel:

H∗(Flags(Cn); Z) ∼= Z[x1, . . . , xn]/Ǐ (2.1.10)

where Ǐ is an ideal generated by the elementary symmetric polynomials ei(x1, . . . , xn)

for 1 ≤ i ≤ n.

2.2 Properties of Hessenberg varieties

We have already seen the localization tequnique in Section 2.1. To use the local-

ization tequnique for a topological space X, it is enough to check the conditions

that the cohomology of X vanishes in all odd degrees and H∗(X; Z) is a free

module. In this section we recall pavings, sometimes called cellular decomposi-

tions, and the construction of pavings by complex affines of Hessenberg varieties

given by Tymoczko. As a result, we can use the localization tequnique for all

Hessenberg varieties.

Definition. Let X be a variety. A paving of X is an ordered partition X =

q∞
i=0Xi so that each finite union qj

i=0Xi is Zariski-closed in X. If in addition

each Xi is homeomorphic to affine space Rdi then q∞
i=0Xi is called a paving by

affines. We call the Xi cells.

Example. Let w be a permutation in the n-th symmetric group Sn and Cw be

the Schubert cell in the flag variety Flags(Cn) which is homeomorphic to affine

space C`(w). Here, `(w) is the number of inversions of w. Then Flags(Cn) is

paved by affines qw∈SnCw.
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Proposition 2.2.1. (cf. [13, Lemma 6 in Appendix B]) Let X be a variety and

X = qiXi be a paving by a finite number of affines Xi with each Xi homeomor-

phic to Cdi . Then the nonzero cohomology groups of X are giben by

Hk(X; Z) ∼=
⊕

i such that 2di=k

Z.

In particular, the cohomology of X vanishes in all odd degrees and H∗(X; Z) is

a free module.

Therefore, we have the following corollary from Corollary 2.1.2.

Corollary 2.2.2. Let X be a variety and compact Hausdorff space with T -

action. We assume that X has admits a paving by a finite number of complex

affine spaces. Then the homomorphism induced from the inclusion map XT ⊂ X

ι : H∗
T (X; Z) → H∗

T (XT ; Z)

is injective.

The following theorem implies that we can apply the localization tequnique

to Hessenberg varieties.

Theorem 2.2.3. ([38]) Fix a Hessenberg function h : [n] → [n] and a linear

operator A : Cn → Cn. The Hessenberg variety Hess(A, h) admits a paving by

a finite number of complex affine spaces.

Remark. In [38, Theorem 6.1], Tymoczko gave explicitly a paving by complex

affines of Hess(A, h). In fact, let {Cw}w∈Sn be the Schubert cells in the flag

variety Flags(Cn). If A is in highest form and in permuted Jordan form (cf.

[38, Section 4]), then the intersections Cw∩Hess(A, h) form a paving by complex

affines of Hess(A, h).
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Remark. A paving by complex affines of Springer variety Sλ is given by [33].

The n-dimensional torus T in (1.0.2) acts on the flag variety Flags(Cn) in a

natural way. However, this T -action does not preserve the subvariety Hess(A, h)

in general. This problem can be rectified by considering instead the action of

the one-dimensional subtorus S of T in (1.0.3), which does preserve Hess(A, h)

([15, Lemma 5.1]).

From Corollary 2.2.2 and Theorem 2.2.3, we have the following theorem.

Theorem 2.2.4. The homomorphism induced from the inclusion map Hess(A, h)S ⊂

Hess(A, h)

ι : H∗
S(Hess(A, h); Z) → H∗

S(Hess(A, h)S ; Z)

is injective.

We are mainly concerned with nilpotent Hessenberg varieties Hess(N,h).

Since the S-fixed points of the flag variety Flags(Cn) coincide with the T -fixed

points of the flag variety Flags(Cn), we identify the S-fixed points of nilpotent

Hessenberg variety Hess(N,h) with a subset of the permutation group Sn under

the identification (2.1.5).

So we can embed the S-equivariant cohomology ring H∗
S(Hess(N,h); Z) into

a direct sum of a polynomial ring:

ι : H∗
T (Flags(Cn); Z) →

⊕
w∈Hess(N,h)S⊆Sn

Z[t]. (2.2.1)

Note that H∗
S(pt; Z) = H∗(BS; Z) = Z[t] where t ∈ H2(BS) denotes the first

Chern class of the line bundle ES×S C over BS. Here, C is the one dimensional

representation of S through a map S ∼= C∗ given by diag(g, g2, . . . , gn) 7→ g.

Putting the injective maps ι in (2.1.6) and (2.2.1) together, we have the
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following commutative diagram

H∗
T (Flags(Cn); Z) ι−−−−→

⊕
w∈Flags(Cn)T =Sn

Z[t1, . . . , tn]

ρ

y yπ

H∗
S(Hess(N,h); Z) ι−−−−→

⊕
w∈Hess(N,h)S⊆Sn

Z[t]

(2.2.2)

where the map ρ is induced from inclusion maps Hess(N,h) ⊆ Flags(Cn) and

S ⊆ T , and the map π is naturally induced from the map Z[t1, . . . , tn] → Z[t]

given by ti 7→ it for i = 1, . . . , n.

Using the commutative diagram (2.2.2), we will find relations between ring

generators of H∗
S(Hess(N,h)) when Hess(N,h) is a Springer variety or a regular

nilpotent Hessenberg variety. Using the relations, we will give an explicit pre-

sentation of the equivariant cohomology rings of Springer varieties or regular

nilpotent Hessenberg varieties. As a corollary, we have an explicit presenta-

tion of the ordinary cohomology rings of Springer varieties or regular nilpotent

Hessenberg varieties from (2.1.9).

Remark. DeConcini-Procesi [9] gave an explicit presentation of the ordinary

cohomology rings of Springer varieties, and Tanisaki [37] simplified their pre-

sentation. The localization tequnique is not used in their arguments.





Chapter 3

The S-equivariant

cohomology rings of

(n − k, k) Springer varieties

In Chapter 3 we give an explicit presentation of the S-equivariant cohomology

rings of (n − k, k) Springer varieties. Chapter 3 is organized as follows. We

briefly recall the necessary background in Section 3.1 and Section 3.2. Our main

theorem, Theorem 3.3.3, is formulated in Section 3.3 and proved in Section 3.4.

This is a work in [17].

3.1 Definition of (n − k, k) Springer varieties

We begin by recalling the definition of the Springer varieties in type A in Chap-

ter 1. Since we work exclusively with type A in this chapter, we henceforth omit

it from our terminology.

25
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Definition. Let N be a nilpotent matrix of size n in Jordan canonical form

with Jordan blocks of weakly decreasing sizes λ = (λ1, . . . , λ`). The Springer

variety Sλ associated to N is defined as

Sλ = {V• ∈ Flags(Cn) | NVi ⊆ Vi for all 1 ≤ i ≤ n}.

We denote by S(n−k,k) the Springer variety corresponding to the partition

λ = (n − k, k) with 2k ≤ n.

Lemma 3.1.1.

Sλ = {V• ∈ Flags(Cn) | NVi ⊆ Vi−1 for all 1 ≤ i ≤ n}

Here, we take V0 := {0}.

Proof. We prove that an element of Sλ satisfies the condition NVi ⊆ Vi−1

for i = 1, . . . , n. Let V• ∈ Sλ and v1, v2, . . . , vi be generators for Vi. Since

Nv1, Nv2, . . . , Nvi generate NVi, it is enough to prove that Nvi ∈ Vi−1. Now

Nvi ∈ Vi, so we can write

Nvi = c1v1 + · · · + ci−1vi−1 + civi (3.1.1)

for some c1, . . . , ci ∈ C and we have

N2vi − ciNvi = N(Nvi − civi) ∈ NVi−1 ⊆ Vi−1.

From (3.1.1), this implies

N2vi − c2
i vi ∈ Vi−1.

Inductively, we have

Nmvi − cm
i vi ∈ Vi−1 (3.1.2)
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for any positive integer m. Since N is nilpotent, (3.1.2) implies

cm
i vi ∈ Vi−1

for some m. If ci 6= 0, then vi ∈ Vi−1 and we have Vi = Vi−1. This is a

contradiction. Therefore, we have ci = 0. From (3.1.1), Nvi ∈ Vi−1. 2

3.2 S-fixed points of (n− k, k) Springer varieties

We first recall that the T -fixed point set Flags(Cn)T of Flags(Cn) is given by

{(〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), . . . , ew(n)〉 = Cn) | w ∈ Sn}

where e1, e2, . . . , en is the standard basis of Cn and Sn is the permutation

group on n letters {1, 2, . . . , n}, so we identify Flags(Cn)T with Sn as is stan-

dard. Also, since the S-fixed point set Flags(Cn)S of Flags(Cn) agrees with

Flags(Cn)T where S is defind by (1.0.3), we have

SS
N = SN ∩ Flags(Cn)S = SN ∩ Flags(Cn)T ⊂ Sn.

We next describe the S-fixed points in S(n−k,k). Let w`1,`2,...,`k
be an element

of Sn defined by

w`1,`2,...,`k
(i) =


n − k + j if i = `j ,

i − j if `j < i < `j+1,

(3.2.1)

where `0 := 0, `k+1 := n + 1. Note that w−1
`1,`2,...,`k

(i) < w−1
`1,`2,...,`k

(i′) if

1 ≤ i < i′ ≤ n − k or n − k + 1 ≤ i < i′ ≤ n.
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Example. Take n = 4 and k = 2. Using one-line notation, the set of permuta-

tions of the form described in (3.2.1) are as follows:

[3, 4, 1, 2], [3, 1, 4, 2], [3, 1, 2, 4], [1, 3, 4, 2], [1, 3, 2, 4], [1, 2, 3, 4].

Lemma 3.2.1. The S-fixed points SS
(n−k,k) of the Springer variety S(n−k,k) is

the set

{w`1,`2,...,`k
∈ Sn | 1 ≤ `1 < `2 < · · · < `k ≤ n}.

Proof. Since SS
(n−k,k) ⊂ Flags(Cn)T , any element V• of SS

(n−k,k) is of the form

V• = (〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), . . . , ew(n)〉)

for some w ∈ Sn. Since N is the nilpotent operator consisting of two Jordan

blocks with weakly decreasing sizes (n − k, k),

Nei =


0 if i = 1 or n − k + 1,

ei−1 otherwise.

Therefore, if V• belongs to S(n−k,k), then w(1) = 1 or n − k + 1. If w(1) = 1

then w(2) = 2 or n− k + 1. If w(1) = n− k + 1 then w(2) = 1 or n− k + 2, and

so on. This shows that w = w`1,`2,...,`k
for some 1 ≤ `1 < `2 < · · · < `k ≤ n.

Conversely, one can easily see that w`1,`2,...,`k
∈ SS

(n−k,k). 2

3.3 The main theorem in Chapter 3

In this section, we formulate our main theorem which gives an explicit presen-

tation of the S-equivariant cohomology ring of the (n − k, k) Springer variety.
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We consider the following commutative diagram:

H∗
T (Flags(Cn); Q) ι1−−−−→ H∗

T (Flags(Cn)T ; Q) =
⊕

w∈Sn

Q[t1, . . . , tn]

π1

y π2

y
H∗

S(Sλ; Q) ι2−−−−→ H∗
S(SS

λ ; Q) =
⊕

w∈SS
λ⊂Sn

Q[t]

(3.3.1)

where all the maps are induced from inclusion maps and we consider the iden-

tification H∗(BT ; Q) = Q[t1, . . . , tn] and H∗(BS; Q) = Q[t]. The maps ι1 and

ι2 in (3.3.1) are injective since the odd degree cohomology groups of Flags(Cn)

and Sλ vanish. The map π1 in (3.3.1) is known to be surjective (cf. [18]) and

the map π2 is obviously surjective.

Let Ei be the subbundle of the trivial vector bundle Flags(Cn) × Cn over

Flags(Cn) whose fiber at a flag V• is just Vi. We denote the T -equivariant

first Chern class of the line bundle Ei/Ei−1 by x̄i ∈ H2
T (Flags(Cn); Q) and the

image π1(x̄i) of x̄i for each i by τi.

Since π1 is surjective, we have the following lemma.

Lemma 3.3.1. The S-equivariant cohomology ring H∗
S(Sλ; Q) is generated by

τ1, . . . , τn, t as a ring where τi is the image of x̄i under the map π1 in (3.3.1).

We next consider relations between τ1, . . . , τn, and t. We have

ι2(τi)|w = w(i)t

because ι1(x̄i)|w = tw(i), ι1(ti)|w = ti, and π2(ti) = it, where f |w denotes the

w-component of f ∈
⊕

w∈Sn

Q[t1, . . . , tn].

Lemma 3.3.2. The elements τ1, . . . , τn, t satisfy the following relations:

∑
1≤i≤n

τi −
n(n + 1)

2
t = 0, (3.3.2)
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(τi + τi−1 − (n − k + i)t)(τi − τi−1 − t) = 0 (1 ≤ i ≤ n), (3.3.3)∏
0≤j≤k

(τij − (ij − j)t)) = 0 (1 ≤ i0 < · · · < ik ≤ n) (3.3.4)

where τ0 = 0.

Proof. The relation (3.3.2) follows from a relation in H∗
T (Flags(Cn); Q). In

fact,

∑
1≤i≤n

τi −
n(n + 1)

2
t = π1((e1(x̄1, . . . , x̄n) − e1(t1, . . . , tn))) = 0.

In the following, we denote ι2(τi) by the same notation τi for each i. To

prove the relation (3.3.3), it is sufficient to prove either

(τi + τi−1 − (n − k + i)t)|w`1,`2,...,`k
= 0 or (τi − τi−1 − t)|w`1,`2,...,`k

= 0

(3.3.5)

for any w`1,`2,...,`k
∈ SS

(n−k,k) since the restriction map ι2 in (3.3.1) is injective.

We first treat the case i = 1. By the definition of w`1,`2,...,`k
in (3.2.1) the

following holds:

τ1|w`1,`2,...,`k
= w`1,`2,...,`k

(1)t =


(n − k + 1)t if `1 = 1,

t if `1 6= 1.

This shows (3.3.5) for i = 1 because τ0 = 0.

We now treat the case 1 < i ≤ n. Note that

(τi − τi−1)|w`1,`2,...,`k
= (w`1,`2,...,`k

(i) − w`1,`2,...,`k
(i − 1))t, (3.3.6)

(τi + τi−1)|w`1,`2,...,`k
= (w`1,`2,...,`k

(i) + w`1,`2,...,`k
(i − 1))t. (3.3.7)

We take four cases depending on whether i−1 and i appear in `1, . . . , `k or not.

(i) If `j = i − 1 < i = `j+1 for some 1 ≤ j ≤ k − 1, then by (3.2.1) and
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(3.3.6),

(τi − τi−1)|w`1,`2,...,`k
= ((n − k + j + 1) − (n − k + j))t = t.

(ii) If `j < i − 1 < i < `j+1 for some 0 ≤ j ≤ k, then by (3.2.1) and (3.3.6),

(τi − τi−1)|w`1,`2,...,`k
= ((i − j) − (i − j − 1))t = t.

(iii) If `j = i− 1 < i < `j+1 for some 1 ≤ j ≤ k, then by (3.2.1) and (3.3.7),

(τi + τi−1)|w`1,`2,...,`k
= ((i − j) + (n − k + j))t = (n − k + i)t.

(iv) If `j−1 < i − 1 < i = `j for some 1 ≤ j ≤ k, then by (3.2.1) and (3.3.7),

(τi + τi−1)|w`1,`2,...,`k
= ((n − k + j) + (i − j))t = (n − k + i)t.

Therefore, (3.3.5) holds in all cases, proving the relations (3.3.3).

Finally we prove the relations (3.3.4). For any w`1,`2,...,`k
∈ SS

(n−k,k), there

is a positive integer ij such that `j < ij < `j+1 for some 0 ≤ j ≤ k. Thus, we

have

w`1,`2,...,`k
(ij) = ij − j.

This means that ∏
0≤j≤k

(τij − (ij − j)t)|w`1,`2,...,`k
= 0.

Therefore, the relations (3.3.4) hold, and the proof is complete. 2

It follows from Lemma 3.3.2 that we obtain a well-defined ring homomor-

phism

ϕ : Q[x1, . . . , xn, t]/I → H∗
S(S(n−k,k); Q) (3.3.8)
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where I is the ideal of a polynomial ring Q[x1, . . . , xn, t] generated by the fol-

lowing three types of elements:

∑
1≤i≤n

xi −
n(n + 1)

2
t, (3.3.9)

(xi + xi−1 − (n − k + i)t)(xi − xi−1 − t) (1 ≤ i ≤ n), (3.3.10)∏
0≤j≤k

(xij − (ij − j)t) (1 ≤ i0 < · · · < ik ≤ n) (3.3.11)

where x0 = 0. Moreover, ϕ is surjective by Lemma 3.3.1.

The following is our main theorem and will be proved in the next section.

Theorem 3.3.3. Let S(n−k,k) be the (n−k, k) Springer variety with 0 ≤ k ≤ n/2

and let the circle group S act on S(n−k,k) as described in Section 3.2. Then the

S-equivariant cohomology ring of S(n−k,k) is given by

H∗
S(S(n−k,k); Q) ∼= Q[x1, . . . , xn, t]/I

where H∗
S(pt; Q) = Q[t] and I is the ideal of the polynomial ring Q[x1, . . . , xn, t]

generated by the elements listed in (3.3.9), (3.3.10), and (3.3.11).

Since the ordinary cohomology ring of S(n−k,k) can be obtained by taking

t = 0 in Theorem 3.3.3, we obtain the following corollary.

Corollary 3.3.4. Let S(n−k,k) be (n− k, k) Springer variety with 0 ≤ k ≤ n/2.

Then the ordinary cohomology ring of S(n−k,k) is given by

H∗(S(n−k,k); Q) ∼= Q[x1, . . . , xn]/J

where J is the ideal of the polynomial ring Q[x1, . . . , xn] generated by the fol-
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lowing three types of elements:

∑
1≤i≤n

xi,

x2
i (1 ≤ i ≤ n),∏

1≤j≤k+1

xij (1 ≤ i1 < · · · < ik+1 ≤ n).

Remark. A ring presentation of the cohomology ring of the Springer variety

Sλ is given in [37] for an arbitrary nilpotent operator N . Specifically, it is

the quotient of a polynomial ring by an ideal called Tanisaki’s ideal. When

λN = (n − k, k), Tanisaki’s ideal is generated by the following three types of

elements:

e1(x1, . . . , xn),

e2(xi1 , . . . , xin−1) (1 ≤ i1 < · · · < in−1 ≤ n),

ek+1(xi1 , . . . , xik+1) (1 ≤ i1 < · · · < ik+1 ≤ n),

where ei is the ith elementary symmetric polynomial. Note that the first and

third elements above are the same as those in Corollary 3.3.4. In fact, one can

easily check that Tanisaki’s ideal above agrees with the ideal J in Corollary 3.3.4

although the generators are slightly different.

3.4 Proof of the main theorem in Chapter 3

This section is devoted to the proof of Theorem 3.3.3. More precisely, we will

prove that the epimorphism ϕ in (3.3.8) is an isomorphism. For this, we first

find generators of Q[x1, . . . , xn, t]/I as a Q[t]-module.

Recall that a filling of λ by the alphabet {1, . . . , n} is an injective placing

of the integers {1, . . . , n} into the boxes of λ.
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Definition. Let λ be a Young diagram with n boxes. A filling of λ is a per-

missible filling if for every horizontal adjacency a b we have a < b. Also, a

permissible filling is a standard tableau if for every vertical adjacency a
b

we

have a < b.

Let T be a permissible filling of (n − `, `) with 0 ≤ ` ≤ k. Let j1, j2, . . . , j`

be the numbers in the bottom row of T . We define xT := xj1xj2 . . . xj`
and

xT0 := 1 where T0 is the standard tableau on (n).

Proposition 3.4.1. The set {xT | T standard tableau on (n − `, `) with 0 ≤

` ≤ k} generates Q[x1, . . . , xn, t]/I as a Q[t]-module.

Proof. It is sufficient to prove that xb1xb2 · · ·xb`
(1 ≤ b1 ≤ b2 ≤ · · · ≤ b` ≤ n)

can be written in Q[x1, . . . , xn, t]/I as a Q[t]-linear combination of the xT where

T is a standard tableau. We prove this by induction on `. The base case ` = 0

is clear. Now we assume that ` ≥ 1 and the claim holds for `− 1. The relations

(3.3.10) imply that

x2
i = (n− k + i+ 1)txi + t

∑
1≤p≤i−1

xp −
∑

1≤p≤i

(n− k + p)t2 (1 ≤ i ≤ n) (3.4.1)

by an inductive argument on i, so we may assume b1 < b2 < · · · < b`.

To prove the claim for `, we consider two cases: 1 ≤ ` ≤ k and ` ≥ k + 1.

(Case i). Suppose 1 ≤ ` ≤ k. We write xb1xb2 · · ·xb`
= xU where

U = b1

a1
. . .
. . .

b`

a` a`+1 . . . an−`

is a permissible filling of (n− `, `). Let j be the minimal positive integer in the

set {r | ar > br, 1 ≤ r ≤ `}, i.e.,

ai < bi (1 ≤ i < j), (3.4.2)

aj > bj . (3.4.3)
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We consider the following equation which follows from the relation (3.3.9):

(−xa1 − xa2 − · · · − xaj−1)
j · xbj+1 · · ·xb`

(3.4.4)

= (xb1 + xb2 + · · · + xb`
+ xaj + xaj+1 + · · · + xan−`

− n(n + 1)
2

t)j · xbj+1 · · ·xb`
.

Claim 1. The left hand side in (3.4.4) is a Q[t]-linear combination of the xT

where the T are standard tableaux.

Proof. We expand the left hand side in (3.4.4). Then any monomial which

appears in the expansion is of the form

xα1
a1

· · ·xαj−1
aj−1

xbj+1 · · ·xb`

where
∑j−1

i=1 αi = j and αi ≥ 0. Note that αi > 1 for some i since
∑j−1

i=1 αi = j

and αi ≥ 0. Therefore, using the relations (3.4.1), the monomial above turns

into a sum of elements of the form

f(t) · xc1 · · ·xch

where h < `, 1 ≤ c1 < · · · < ch ≤ n, and f(t) ∈ Q[t], and by the induction

assumption the term above can be written as a Q[t]-linear combination of the

xT where T is a standard tableau. This proves Claim 1. 2

Claim 2. The right hand side in (3.4.4) can be written as a Q[t]-linear com-

bination of xU and monomials xT and xU ′ where the coefficient of xU is equal

to 1, T is a standard tableau on shape (n − `, `) and U ′ is a permissible filling

of (n− `, `) such that each of the leftmost j columns are strictly increasing (i.e.

ar < br, 1 ≤ r ≤ j).

Proof. We expand the right hand side in (3.4.4). A monomial which appears in
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this expansion is of the form

xβ1
bp1

· · ·xβm

bpm
xα1

aq1
· · ·xαh

aqh
xbj+1 · · ·xb`

where
∑m

i=1 βi +
∑h

i=1 αi ≤ j, βi ≥ 1, αi ≥ 1 and 1 ≤ p1 < · · · < pm ≤ `, j ≤

q1 < · · · < qh ≤ n − `. It is enough to consider the case
∑m

i=1 βi +
∑h

i=1 αi = j

since if
∑m

i=1 βi +
∑h

i=1 αi < j then it follows from the induction assumption

that the above form can be written as a Q[t]-linear combination of the xT

where T is a standard tableau. If pm ≥ j + 1 or some βi or αi is more than

1, then it follows from the relations (3.4.1) and the induction assumption that

the monomial above can be written as a linear combination of xT ’s over Q[t]

where T is a standard tableau. If pm ≤ j and all βi and αi are equal to 1, then

h = j − m and the monomial above is of the form

xbp1
· · ·xbpm

xaq1
· · ·xaqj−m

xbj+1 · · ·xb`

where 1 ≤ p1 < · · · < pm ≤ j ≤ q1 < · · · < qj−m ≤ n − `. This monomial is

associated to a permissible filling U ′ given by

U ′ = d1

c1
. . .
. . .

d`

c` c`+1 . . . cn−`

where

di =


bpi if 1 ≤ i ≤ m,

min{{aq1 , · · · , aqj−m , bj+1, · · · , b`} − {dm+1, . . . , di−1}} if m < i ≤ `,

and

ci = min{{a1, · · · , an−`, b1, · · · , bj}−{aq1 , · · · , aqj−m , bp1 , · · · , bpm , c1, · · · , ci−1}}

for 1 ≤ i ≤ n−`. Note that xU ′ = xU if and only if m = j, since m = j ⇔ di = bi
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for 1 ≤ i ≤ `. We consider the case m < j. Since j ≤ q1 and aj > bj by (3.4.3),

we have

ci = min{{a1, · · · , aj−1, b1, · · · , bj} − {bp1 , · · · , bpm , c1, · · · , ci−1}}

for 1 ≤ i ≤ j. If 1 ≤ i ≤ m, we have ci ≤ ai < bi ≤ bpi = di. If m < i ≤ j, we

have ci ≤ max{aj−1, bj} < min{aj , bj+1} ≤ di by (3.4.2), (3.4.3), and j ≤ q1.

Thus, U ′ is a permissible filling of (n − `, `) such that each of the leftmost j

columns are strictly increasing (i.e. ar < br, 1 ≤ r ≤ j). This proves Claim 2.

2

Claims 1 and 2 show that xU can be written as a Q[t]-linear combination of

xU ′ and xT , where U ′ and T are as above. Applying the above discussion for

xU ′ in place of xU , we see that xU ′ can be written as a Q[t]-linear combination

of xU ′′ and xT where U ′′ is a permissible filling of (n − `, `) such that each of

the leftmost j + 1 columns are strictly increasing (i.e. ar < br, 1 ≤ r ≤ j + 1)

and T is a standard tableau. Repeating this procedure, we can finally express

xU as a Q[t]-linear combination of the xT where T is a standard tableau.

(Case ii). If ` ≥ k+1, it follows from the relations (3.3.11) and the induction

assumption that xb1xb2 · · ·xb`
can be expressed as a Q[t]-linear combination of

the xT where T is a standard tableau.

This completes the induction step and proves the proposition. 2

Recall that for a box b in the ith row and jth column of a Young diagram

λ, h(i, j) denote the number of boxes in the hook formed by the boxes below b

in the jth column, the boxes to the right of b in the ith row, and b itself.

Example. For the Young diagram and the box in the (2, 1) location,
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the hook is and h(2, 1) = 6.

Lemma 3.4.2. Let λ be a Young diagram. Let fλ denote the number of stan-

dard tableaux on λ. Then n

k

 =
∑

0≤`≤k

f (n−`,`).

Proof. We prove the lemma by induction on k. As the case k = 0 is clear, we

assume that k ≥ 1 and that the lemma holds for k − 1. We use the following

hook length formula:

fλ =
n!

Π(i,j)∈λh(i, j)
.

Using the induction assumption and the hook length formula, we have

∑
0≤`≤k

f (n−`,`) =
∑

0≤`≤k−1

f (n−`,`) + f (n−k,k)

=

 n

k − 1

 +
n!(n − 2k + 1)
(n − k + 1)!k!

=

n

k

.

This completes the induction step and proves the lemma. 2

It follows from Proposition 3.4.1 and Lemma 3.4.2 that

rankQ[t]Q[x1, . . . , xn, t]/I ≤
∑

0≤`≤k

f (n−`,`) =

n

k

.

On the other hand, since the odd degree cohomology groups of Sλ vanish, we

have an isomorphism H∗
S(Sλ; Q) ∼= Q[t] ⊗ H∗(Sλ; Q) as Q[t]-modules, and the
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cellular decomposition of Sλ given by Spaltenstein [33] (cf. also Hotta-Springer

[18]) implies that

dimH∗(Sλ; Q) =

n

λ

 :=
n!

λ1!λ2! · · ·λ`!

where λ = (λ1, λ2, . . . , λ`). These show

rankQ[t]H
∗
S(S(n−k,k); Q) = dimQ H∗(S(n−k,k); Q) =

n

k

.

Therefore, we have

rankQ[t]Q[x1, . . . , xn, t]/I ≤rankQ[t]H
∗
S(S(n−k,k); Q).

This means that the epimorphism ϕ in (3.3.8) is actually an isomorphism, prov-

ing Theorem 3.3.3.





Chapter 4

The T `-equivariant

cohomology rings of

Springer varieties

In Chapter 4 we give an explicit presentation of the T `-equivariant cohomology

rings of Springer varieties. We organize Chapter 4 as follows. In Section 4.1, we

introduce a natural action of the `-dimensional torus T ` on the Springer variety

Sλ and give the T `-fixed points ST `

λ of the Springer variety Sλ. We construct

an Sn-action on the equivariant cohomology group H∗
T `(Sλ; Z) in Section 4.2 by

using the localization technique which involves the equivariant cohomology of

the T `-fixed points. We state the main theorem, Theorem 4.3.1, in Section 4.3,

and prove it in Section 4.4 by using this Sn-action on H∗
T `(Sλ; Z). Our method

of the proof is the T `-equivariant analogue of [37]. This is a joint work with

Hiraku Abe in [2].

41
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4.1 T `-fixed points of Springer varieties

We begin with a definition of type A nilpotent Springer varieties. We work with

type A through out this chapter and hence omit it in the following. We first

recall that the (nilpotent) Springer variety Sλ is given by

Sλ = {V• ∈ Flags(Cn) | NVi ⊆ Vi−1 for all 1 ≤ i ≤ n}.

from Lemma 3.1.1.

The torus T ` in (1.0.4) preserves the Springer variety Sλ. Our goal in this

section is to give the T `-fixed point set ST `

λ .

We first recall that the T -fixed point set Flags(Cn)T of the flag variety

Flags(Cn) is given by the set of permutation flags;

{(〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), . . . , ew(n)〉 = Cn) | w ∈ Sn}

where e1, e2, . . . , en is the standard basis of Cn and Sn is the symmetric group

on n letters {1, 2, . . . , n}, so we may identify Flags(Cn)T with Sn. Namely,

w ↔ (〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), . . . , ew(n)〉 = Cn).

Let w be an element of Sn satisfying the following property:

the numbers between λ1 + · · · + λk−1 + 1 and λ1 + · · · + λk appear in the one-

line notation of w as a subsequence in increasing order for each k with 1 ≤ k ≤ `.

(4.1.1)

Here, we write λ1 + · · · + λk−1 = 0 when k = 1.

Example. We consider the case n = 6, ` = 3, and λ = (3, 2, 1). Using one-line
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notation, the following permutations

w1 = 124365, w2 = 416253, w3 = 612435

satisfy condition (4.1.1). This is because the sequences (1, 2, 3), (4, 5) and (6)

appear in the one-line notations as a subsequence in increasing order.

Lemma 4.1.1. The T `-fixed point set ST `

λ of the Springer variety Sλ is equal

to the set of permutation flags

〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), . . . , ew(n)〉 = Cn

which satisfies condition (4.1.1). In particular, we may identify ST `

λ with

S(λ) := {w ∈ Sn | w satisfies condition (4.1.1)}.

Proof. Let V• be a permutation flag Vi = 〈ew(1), ew(2), . . . , ew(i)〉 for i = 1, · · · , n

where w ∈ Sn satisfies condition (4.1.1). Since w(1) is equal to one of the

numbers 1, λ1 + 1, λ1 + λ2 + 1, . . . , λ1 + · · · + λ`−1 + 1, we have NV1 ⊆ {0}.

If w(1) = λ1 + · · · + λk−1 + 1 for some 1 ≤ k ≤ `, then w(2) is equal to one

of the numbers 1 ,λ1 + 1, . . . , λ1 + · · · + λk−1 + 2, . . . , λ1 + · · · + λ`−1 + 1. So

we also have NV2 ⊆ V1. Continuing this argument, we have NVi ⊆ Vi−1 for all

1 ≤ i ≤ n, and it follows that V• is an element of Sλ. Also, V• is clearly fixed

by T `, so V• is an element of ST `

λ .

Conversely, let V• be an element of ST `

λ . Let v1,v2,. . . ,vj be generators for

Vj where vj = (x(j)
1 , x

(j)
2 , · · · , x

(j)
n )t in Cn for all j. Since we have

Nv1 = (x(1)
2 , · · · , x

(1)
λ1

, 0︸ ︷︷ ︸
λ1

, x
(1)
λ1+2, · · · , x

(1)
λ1+λ2

, 0︸ ︷︷ ︸
λ2

, · · · · · · , x
(1)
λ1+···+λ`−1+2, · · · , x(1)

n , 0︸ ︷︷ ︸
λ`

)t,
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the condition NV1 ⊆ V0 = {0} implies that

v1 = (x(1)
1 , 0, · · · , 0︸ ︷︷ ︸

λ1

, x
(1)
λ1+1, 0, · · · , 0︸ ︷︷ ︸

λ2

, · · · · · · , x
(1)
λ1+···+λ`−1+1, 0, · · · , 0︸ ︷︷ ︸

λ`

)t. (4.1.2)

It follows that exactly one of x
(1)
i (i = 1, λ1+1, λ1+λ2+1, . . . , λ1+· · ·+λ`−1+1)

which appear in (4.1.2) is nonzero. In fact, V• is fixed by the T `-action and hence

we have h · v1 = v1 for arbitrary h ∈ T ` where

h · v1 = (h1x
(1)
1 , 0, · · · , 0︸ ︷︷ ︸

λ1

, h2x
(1)
λ1+1, 0, · · · , 0︸ ︷︷ ︸

λ2

, · · · · · · , h`x
(1)
λ1+···+λ`−1+1, 0, · · · , 0︸ ︷︷ ︸

λ`

)t.

Since each hi runs over all nonzero complex numbers, only one of x
(1)
i in (4.1.2)

must be nonzero.

If x
(1)
λ1+···+λk−1+1 is nonzero for some 1 ≤ k ≤ `, then we may assume that

v1 = (0, · · · , 0, 1, 0, · · · , 0)t,

vj = (x(j)
1 , · · · , x

(j)
λ1+···+λk−1

, 0, x
(j)
λ1+···+λk−1+2, · · · , x(j)

n )t

for 2 ≤ j ≤ n where the (λ1 + · · · + λk−1 + 1)-th component of v1 is one. Since

we have

Nv2 = (x(2)
2 , · · · , x

(2)
λ1

, 0︸ ︷︷ ︸
λ1

, x
(2)
λ1+2, · · · , x

(2)
λ1+λ2

, 0︸ ︷︷ ︸
λ2

, · · · · · · , x
(2)
λ1+···+λ`−1+2, · · · , x(2)

n , 0︸ ︷︷ ︸
λ`

)t,

the condition NV2 ⊆ V1 implies that

v2 = (x(2)
1 , 0, · · · , 0︸ ︷︷ ︸

λ1

, · · · · · · , 0, x
(2)
λ1+···+λk−1+2, 0, · · · , 0︸ ︷︷ ︸

λk

, · · · · · · , x
(2)
λ1+···+λ`−1+1, 0, · · · , 0︸ ︷︷ ︸

λ`

)t.

(4.1.3)

Therefore, we see that the only one of x
(2)
i (i = 1, λ1 + 1, . . . , λ1 + · · ·+ λk−1 +

2, . . . , λ1 + · · · + λ`−1 + 1) which appear in (4.1.3) is nonzero by an argument
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similar to that used above. Continuing this procedure, we conclude that V• is a

permutation flag whose permutation satisfies condition (4.1.1). In fact, we see

that V• forms

〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), . . . , ew(n)〉 = Cn

for some w ∈ Sn, so it is enough to check that the permutation w satisfies

condition (4.1.1). The number w(1) is equal to one of the numbers 1, λ1 + 1,

λ1 + λ2 + 1, . . . , λ1 + · · · + λ`−1 + 1. If w(1) = λ1 + · · · + λk−1 + 1, then

w(2) is equal to one of the numbers 1, λ1 + 1, . . . , λ1 + · · · + λk−1 + 2, . . . ,

λ1 + · · ·+λ`−1 +1 and so on. This means that for each k = 1, . . . , ` the numbers

between λ1 + · · ·+λk−1 +1 and λ1 + · · ·+λk appear in the one-line notation of

w as a subsequence in increasing order, so the permutation w satisfies condition

(4.1.1). This completes the proof. 2

Regarding a product of symmetric groups Sλ1 ×Sλ2 ×· · ·×Sλ`
as a subgroup

of the symmetric group Sn, it follows from Lemma 4.1.1 that the T `-fixed points

ST `

λ of the Springer variety Sλ are in one-to-one correspondence with the right

cosets Sλ1 × Sλ2 × · · · × Sλ`
\Sn. Namely, we have a bijection (cf. [7])

θ : ST `

λ = S(λ) → Sλ1 × Sλ2 × · · · × Sλ`
\Sn ; w 7→ [w]. (4.1.4)

4.2 An action of the symmetric group Sn on

H∗
T `(Sλ)

In this section, we introduce an action of the symmetric group Sn on the equiv-

ariant cohomology H∗
T `(Sλ) over Z-coefficients by using the localization tech-
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niques similar to those in [39] and [11]. We will see that the projection map

ρλ : H∗
T n(Flags(Cn)) → H∗

T `(Sλ)

induced from the inclusions of Sλ into Flags(Cn) and T ` into Tn is an Sn-

equivariant map. In particular, we consider the following commutative diagram

H∗
T n(Flags(Cn))

ρλ

��

ι1 // H∗
T n(Flags(Cn)T n

) =
⊕

w∈Sn

Z[t1, . . . , tn]

π

��

H∗
T `(Sλ) ι2 // H

∗
T `(ST `

λ ) =
⊕

w∈ST `

λ ⊆Sn

Z[u1, . . . , u`]

(4.2.1)

where all the maps are induced from inclusion maps. We have H∗
T n(Flags(Cn)T n

) =⊕
w∈Sn

H∗(BTn) and H∗
T `(ST `

λ ) =
⊕

w∈ST `

λ

H∗(BT `), and the identifications of

H∗(BTn) and H∗(BT `) with the polynomial rings Z[t1, . . . , tn] and Z[u1, . . . , u`]

respectively will be explained later in this section. All (equivariant) cohomology

rings are assumed to be over Z-coefficients unless otherwise specified.

It is known that Flags(Cn) and Sλ admit complex cellular decompositions

([33]), so the odd degree cohomology groups of Flags(Cn) and Sλ vanish.

The path-connectedness of Flags(Cn) and Sλ together with this fact implies

that H∗
T n(Flags(Cn)) ∼= H∗(BTn)⊗H∗(Flags(Cn)) as H∗(BTn)-modules and

H∗
T `(Sλ) ∼= H∗(BT `)⊗H∗(Sλ) as H∗(BT `)-modules. In particular, the equivari-

ant cohomology H∗
T n(Flags(Cn)) and H∗

T `(Sλ) are free modules over H∗(BTn)

and H∗(BT `), respectively. Hence the maps ι1 and ι2 in (4.2.1) are injective

(cf. [19] and [31]). The map π in (4.2.1) is clearly surjective. Also, the map ρλ

in (4.2.1) is surjective. This is because the surjectivity of the restriction map

H∗(Flags(Cn)) → H∗(Sλ) for ordinary cohomology was proved in [18], and

hence the natural commutative diagram of the exact sequences ([27, Theorem
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4.2.])

0 // (t1, . . . , tn) //

��

H∗
T n(Flags(Cn))

ρλ

��

// H∗(Flags(Cn))

��

// 0

0 // (t1, . . . , tn) // H∗
T `(Sλ) // H∗(Sλ) // 0

shows the surjectivity of ρλ.

We construct Sn-actions on the three modules H∗
T n(Flags(Cn)),

⊕
w∈Sn

Z[t1, . . . , tn],

and
⊕

w∈ST `

λ

Z[u1, . . . , u`] in (4.2.1) to construct an Sn-action on H∗
T `(Sλ).

Step 1: The Sn-action on H∗
T n(Flags(Cn)).

We first introduce the left action of the symmetric group Sn on the Tn-

equivariant cohomology H∗
T n(Flags(Cn)). To do that, we consider the right

Sn-action on the flag variety Flags(Cn) as follows. For any V• ∈ Flags(Cn),

there exists g ∈ U(n) so that Vi =
⊕i

j=1 Cg(ej), where {e1, . . . , en} is the

standard basis of Cn. Then the right action of w ∈ Sn on Flags(Cn) can be

defined by

V• · w = V ′
• (4.2.2)

where V ′
i =

⊕i
j=1 Cg(ew(j)).

We recall an explicit presentation of the Tn-equivariant cohomology ring

of the flag variety Flags(Cn). Let Ei be the subbundle of the trivial vector

bundle Flags(Cn) × Cn over Flags(Cn) whose fiber at a flag V• is just Vi.

We denote the Tn-equivariant first Chern class of the line bundle Ei/Ei−1 by

x̄i ∈ H2
T n(Flags(Cn)). Let Ci be the one dimensional representation of Tn

through a map Tn → C∗ given by (g1, . . . , gn) 7→ gi where C∗ acts on Ci = C

by the standard multiplication. We denote the first Chern class of the line

bundle ETn ×T n Ci over BTn by ti ∈ H2(BTn). We may identify

H∗(BTn) = Z[t1, . . . , tn].
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Then H∗
T n(Flags(Cn)) is generated by x̄1, . . . , x̄n, t1, . . . , tn as a ring. Defining a

surjective ring homomorphism from the polynomial ring Z[x1, . . . , xn, t1, . . . , tn]

to the equivariant cohomology H∗
T n(Flags(Cn)) by sending xi to x̄i and ti to

ti, its kernel Ĩ is generated as an ideal by ei(x1, . . . , xn) − ei(t1, . . . , tn) for all

1 ≤ i ≤ n, where ei is the i-th elementary symmetric polynomial. That is, we

have an isomorphism

H∗
T n(Flags(Cn)) ∼= Z[x1, . . . , xn, t1, . . . , tn]/Ĩ. (4.2.3)

This can be explained from the fact that we have ETn ×T n Flags(Cn) =

Flags(ETn ×T n Cn) where the right-hand-side is the flag bundle of the vec-

tor bundle ETn ×T n Cn, and then (4.2.3) follows from [5, Section 21] (cf. [12]).

Now the right action in (4.2.2) induces the following left action of the sym-

metric group Sn on H∗
T n(Flags(Cn)):

w · x̄i = x̄w(i), w · ti = ti (4.2.4)

for w ∈ Sn. This is because the pullback of the line bundle Ei/Ei−1 under the

right action in (4.2.2) is exactly the line bundle Ew(i)/Ew(i)−1 and the right

action in (4.2.2) is Tn-equivariant.

Step 2: The Sn-action on
⊕

w∈Sn
Z[t1, . . . , tn].

We next define a left action of v ∈ Sn on the direct sum
⊕

w∈Sn
Z[t1, . . . , tn]

of the polynomial ring as follows:

(v · f)|w = f |wv (4.2.5)

where w ∈ Sn and f ∈
⊕

w∈Sn
Z[t1, . . . , tn].

Observe that the map ι1 in (4.2.1) is the following mapping

ι1(x̄i)|w = tw(i), ι1(ti)|w = ti. (4.2.6)
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This is because the pullback of the line bundle ETn×T n (Ei/Ei−1) → ETn×T n

Flags(Cn) on ETn×T n {w} is naturally isomorphic to the line bundle ETn×T n

Cw(i) over BTn appeared above, and hence (4.2.6) follows from the definition

of tw(i). Note that it follows from (4.2.4), (4.2.5), and (4.2.6) that the map ι1

is Sn-equivariant map, i.e. w · (ι1(f)) = ι1(w · f) for any f ∈ H∗
T n(Flags(Cn))

and w ∈ Sn.

Step 3: The Sn-action on
⊕

w∈ST `

λ

Z[u1, . . . , u`].

We identify H∗(BT `) with a polynomial ring with ` variables. That is,

H∗(BT `) = Z[u1, . . . , u`]

where ui ∈ H2(BT `) is the first Chern class of the line bundle ET ` ×T ` Ci

over BT `. Here, Ci is the one dimensional representation of T ` through a

map T ` → C∗ given by (h1, · · · , h1, h2, · · · , h2, · · · · · · , h`, · · · , h`) 7→ hi. We

define the left action of v ∈ Sn on the direct sum
⊕

w∈ST `

λ

Z[u1, . . . , u`] of the

polynomial ring as follows. Recall that we have a bijection θ : ST `

λ = S(λ) →

Sλ1 × Sλ2 × · · · × Sλ`
\Sn given in (4.1.4), and there is a natural right action of

Sn on the set of right cosets Sλ1 × Sλ2 × · · · × Sλ`
\Sn. So we can define a left

Sn-action on
⊕

w∈ST `

λ

Z[u1, . . . , u`] by

(v · f)|w := f |θ−1(θ(w)v) (4.2.7)

for w ∈ ST `

λ and f ∈
⊕

w∈ST `

λ

Z[u1, . . . , u`].

Denote {1, 2, . . . , n} by [n]. Let p : [n] → [`] be a map defined by

p(i) = k (4.2.8)

if λ1 + · · ·+λk−1 +1 ≤ i ≤ λ1 + · · ·+λk where λ1 + · · ·+λk−1 = 0 when k = 1.
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Observe that the map π in (4.2.1) is the following mapping

π(f)|w = f |w(up(1), . . . , up(n)), (4.2.9)

for w ∈ ST `

λ and f ∈
⊕

w∈Sn
Z[t1, . . . , tn].

Remark. The map π is not Sn-equivariant map in general. For example, take

n = 3 and λ = (2, 1). In one-line notation, all the T `-fixed points ST `

λ of Sλ are

the following

123, 132, 312.

If v = 213 ∈ S3 and f = (t1, t21, t
3
1, t

4
1, t

5
1, t

6
1) arranging by an order 123, 132, 213,

231, 312, 321 in S3, then we have v·π(f) = (u1, u
5
1, u

2
1) and π(v·f) = (u3

1, u
5
1, u

2
1).

Although the map π is not Sn-equivariant in general, we will see that the map

ρλ in (4.2.1) is Sn-equivariant.

Step 4: The Sn-action on H∗
T `(Sλ).

Let ȳi ∈ H2
T `(Sλ) be the image ρλ(x̄i) of x̄i for each i, i.e. the T `-equivariant

first Chern class of the i-th tautological line bundle restricted on Sλ. We obtain

the following lemma by the surjectivity of ρλ.

Lemma 4.2.1. The T `-equivariant cohomology ring H∗
T `(Sλ) is generated by

ȳ1,. . . ,ȳn,u1,. . . ,u` as a ring where ȳi is as above and H∗(BT `) = Z[u1, . . . , u`].

It follows from (4.2.6), (4.2.9) and the commutative diagram in (4.2.1) that

ι2(ȳi)|w = up(w(i)) and ι2(ui)|w = ui. (4.2.10)

Lemma 4.2.2. For any v ∈ Sn and 1 ≤ i ≤ n, it follows that

v · (ι2(ȳi)) = ι2(ȳv(i)) and v · (ι2(ui)) = ι2(ui) (4.2.11)
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where the map ι2 is in (4.2.1) and ȳi is as above.

Proof. From (4.2.10) and (4.2.7), we have

(v · (ι2(ui)))|w = ι2(ui)|θ−1(θ(w)v) = ui = ι2(ui)|w

for all w ∈ Sn. So the second equation holds. From (4.2.10) and (4.2.7) again,

we have

(v · (ι2(ȳi)))|w = ι2(ȳi)|w′ = up(w′(i)),

ι2(ȳv(i))|w = up(w(v(i)))

where w′ = θ−1(θ(w)v). Therefore, it is enough to prove p(w′(i)) = p(wv(i)).

Since [w′] = θ(w)v = [wv] in Sλ1 × Sλ2 × · · · × Sλ`
\Sn, we have

λ1 + · · · + λr−1 + 1 ≤ w′(i) ≤ λ1 + · · · + λr,

λ1 + · · · + λr−1 + 1 ≤ wv(i) ≤ λ1 + · · · + λr

for some r. From the definition (4.2.8) of the map p, we have p(w′(i)) = r =

p(wv(i)), and the first equation holds. We are done. 2

Since the map ι2 is injective, we obtain an Sn-action on H∗
T `(Sλ) satisfying

w · ȳi = ȳw(i) and w · ui = ui (4.2.12)

for w ∈ Sn from Lemma 4.2.1 and Lemma 4.2.2. This means that our Sn-action

on H∗
T `(Sλ) lifts the Springer’s Sn-action on H∗(Sλ) (cf. [18]). Moreover, one

can see that the map ρλ in (4.2.1) is an Sn-equivariant homomorphism by (4.2.4)

and (4.2.12). We summarize the results in this section as follows.

Proposition 4.2.3. There exists an Sn-action on H∗
T `(Sλ) such that the map ρλ
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in (4.2.1) is an Sn-equivariant homomorphism where the Sn-action on H∗
T n(Flags(Cn))

is given by (4.2.4).

4.3 The main theorem in Chapter 4

In this section, we state our main theorem. For this purpose, let us clarify our

notations. We set pλ(s) := λn−s+1 + λn−s+2 + · · ·+ λ` for s = 1, · · · , n, namely

the number of boxes strictly below than (n − s)-th row. We denote by λ̌ the

transpose of λ, i.e. λ̌ = (η1, · · · , ηk) where k = λ1 and ηi = |{j | λj ≥ i}| for

1 ≤ i ≤ k. For indeterminates y1, · · · , ys and a1, a2, · · · , let

ed(y1, · · · , ys|a1, a2, · · · ) :=
d∑

r=0

(−1)d−rer(y1, · · · , ys)hd−r(a1, · · · , as+1−d)

(4.3.1)

for d ≥ 0 where ei and hi denote the i-th elementary symmetric polynomial

and the i-th complete symmetric polynomial, respectively. In fact, this is the

factorial Schur function ([28]) corresponding to the Young diagram consisting of

the unique column of length d as shown in the next section (see Lemma 4.4.2).

We also define a map φλ : [n] → [`] by the condition

(uφλ(1), · · · , uφλ(n)) (4.3.2)

= (u1, · · · , u1︸ ︷︷ ︸
λ1−λ2

, u1, u2, · · · , u1, u2︸ ︷︷ ︸
2(λ2−λ3)

, · · · · · · , u1, u2, · · · , u`, · · · · · · , u1, u2, · · · , u`︸ ︷︷ ︸
`(λ`−λ`+1)

)

as ordered sequences where for each 1 ≤ r ≤ ` the r-th subsequence of the

right-hand-side consists of (u1, u2, · · · , ur) repeated (λr − λr+1)-times. Here,

we denote λ`+1 = 0.

Let us define a ring homomorphism

ψ : Z[y1, · · · , yn, u1, · · · , u`] → H∗
T `(Sλ) (4.3.3)
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by sending yi to ȳi and ui to ui where H∗(BT `) = Z[u1, · · · , u`]. Recall that

ȳi is the equivariant first Chern class of the tautological line bundle Ei/Ei−1

over Flags(Cn) restricted to Sλ (see Section 4.2). This homomorphism ψ is a

surjection by Lemma 4.2.1.

Theorem 4.3.1. The map ψ in (4.3.3) induces a ring isomorphism

H∗
T `(Sλ) ∼= Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ

where Ĩλ is the ideal of the polynomial ring Z[y1, · · · , yn, u1, · · · , u`] generated

by the polynomials ed(yi1 , · · · , yis |uφλ(1), · · · , uφλ(n)) defined in (4.3.1) with φλ

described in (4.3.2) for 1 ≤ s ≤ n, 1 ≤ i1 < · · · < is ≤ n, and d ≥ s + 1− pλ̌(s).

Remark. The argument in [37] treated the cohomology over C-coefficients, but

the argument works also over Z as well.

Remark. The ideal Ĩλ is the T `-equivariant analogue of so-called Tanisaki’s

ideal (it is written as Kλ̌ in [37]). Each generator of Ĩλ given above specializes

to a generator of Tanisaki’s ideal given in [37] after the evaluation ui = 0 for all

i.

4.4 Preliminaries from Grassmannians

To prove Theorem 4.3.1, we recall some facts about Tn-equivariant Schubert

classes for Grassmannians and factorial Schur functions from [24] and [28] in

this section. These facts will be used in the proof of Theorem 4.3.1.

4.4.1 T n-equivariant Schubert classes for Grassmannians

Let s be a positive integer with s ≤ n and Grs(Cn) the Grassmannian of s-

dimensional linear subspaces of Cn. Let U• be a complete flag in Cn. For
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a Young diagram µ with at most s rows and n − s columns, the Schubert

variety corresponding to µ with respect to the reference flag U• is an irreducible

subvariety of Grs(Cn) defined by

Xµ(U•) = {V ∈ Grs(Cn) | dim(V ∩ Un−s+i−µi) ≥ i for all 1 ≤ i ≤ s}.

Let e1, · · · , en be the standard basis of Cn. For each permutation w ∈ Sn,

we can think of w as a linear automorphism w : Cn → Cn, by abuse of no-

tation, which sends ei to ew(i). In terms of the standard coordinate, this is

given by (z1, · · · , zn) 7→ (zw−1(1), · · · , zw−1(n)). Again by abuse of notation, this

naturally induces

w : Grs(Cn) → Grs(Cn) ; V 7→ w(V ), (4.4.1)

w : Flags(Cn) → Flags(Cn) ; V• 7→ w(V•) (4.4.2)

where w(V•) := (w(V0) ⊂ w(V1) ⊂ · · · ⊂ w(Vn)). It is straightforward to see

that

Xµ(w(U•)) = w(Xµ(U•)). (4.4.3)

Let F• and F̃• be complete flags defined by Fi := 〈e1, · · · , ei〉 and F̃i =

〈en+1−i, · · · , en〉, respectively. Then it is known that Xµ(F̃•) ∩ Xν(F•) = ∅

unless µ ⊂ ν∗ where ν∗ = (n − s − νs, · · · , n − s − ν1) from [13, Section 9.4,

Lemma 3]. If U• = w(F•), then we have

Xµ(w(F̃•)) ∩ Xν(U•) = ∅ unless µ ⊂ ν∗. (4.4.4)

The Grassmannian Grs(Cn) carries a Tn-action which is the restriction

of the natural GLn(C)-action on Grs(Cn) regarding Tn as the diagonal sub-

group of GLn(C). Now, suppose that the flag U• is Tn-invariant. Then the

Schubert variety Xµ(U•) is a Tn-invariant irreducible subvariety of Grs(Cn),
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and hence we can consider the associated Tn-equivariant cohomology class

[Xµ(U•)] ∈ H∗
T n(Grs(Cn)) supported on Xµ(U•). This is called a T `-equivariant

Schubert class. The above map w : Flags(Cn) → Flags(Cn) is equivari-

ant with respective to the group homomorphism φw : Tn → Tn given by

(g1, · · · , gn) 7→ (gw−1(1), · · · , gw−1(n)). So it induces a group automorphism

w∗ of H∗
T n(Flags(Cn)), and we have

[Xµ(w(F•))] = (w−1)∗[Xµ(F•)]. (4.4.5)

Note that the automorphism w∗ of H∗
T n(Flags(Cn)) is in fact an H∗(BTn)-

algebra homomorphism with respect to the ring homomorphism H∗(BTn) =

Z[t1, · · · , tn] given by ti 7→ tw−1(i) where the identification H∗(BTn) = Z[t1, · · · , tn]

is as in Section 4.2.

4.4.2 Factorial Schur functions

Let s be a positive integer. In [28], factorial Schur functions are defined as

follows: for a Young diagram µ with at most s rows, the factorial Schur function

associated to µ is defined to be

sµ(x1, · · · , xs|a1, a2, · · · ) =
∑
T

∏
α∈µ

(xT (α) − aT (α)+c(α))

as a polynomial in Z[x1, · · · , xs]⊗Z[a1, a2, · · · ] where T runs over all semistan-

dard tableaux of shape µ with entries in {1, · · · , s}, T (α) is the entry of T in

the cell α ∈ µ, and c(α) = j − i is the content of α = (i, j). This polynomial is

symmetric in the x-variables.

For positive integers s and n with s ≤ n, let p : Flags(Cn) → Grs(Cn) be the

projection defined by p(V•) = Vs. We recall that the Tn-equivariant Schubert

class with respect to the standard flag F• is represented by the factorial Schur

function in the Tn-equivariant cohomology of Flags(Cn).
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Proposition 4.4.1. ([29], [28], [24]) For any Young diagram µ with at most s

rows and n − s columns, we have

p∗[Xµ(F•)] = sµ(−x̄1, · · · ,−x̄s| − tn, · · · ,−t1, 0, 0, · · · )

in H∗
T n(Flags(Cn)).

For integers 0 ≤ k ≤ s, let µs,k = (1, · · · , 1, 0, · · · , 0) with 1 repeated k-

times and 0 repeated (s − k)-times. We will need the following lemma in the

next section to prove Theorem 4.3.1.

Lemma 4.4.2. For indeterminates x1, · · · , xs, a1, a2, · · · , we have

sµs,k
(x1, · · · , xs|a1, a2, · · · ) =

k∑
r=0

(−1)k−rer(x1, · · · , xs)hk−r(a1, · · · , as+1−k)

where µs,k is as above.

Proof. We first find the coefficient of the monomial x1 · · ·xr in sµs,k
(x|a). For

each I = (i1, i2, · · · , ik−r) satisfying r + 1 ≤ i1 < i2 < · · · < ik−r ≤ s, there is a

summand in sµs,k
(x|a) corresponding to the standard tableau TI of shape µs,k

whose (j, 1)-th entry is


j if 1 ≤ j ≤ r,

ij−r if r + 1 ≤ j ≤ k.

The summand is of the form

(x1 − a1)(x2 − a1) · · · (xr − a1)(xi1 − ai1−r)(xi2 − ai2−r−1) · · · (xik−r
− aik−r−k+1),

and the contribution of the monomial x1 · · ·xr from this polynomial is

(−1)k−r(ai1−rai2−r−1 · · · aik−r−k+1)x1 · · ·xr.
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Since the condition on I is equivalent to

1 ≤ i1 − r ≤ i2 − r − 1 ≤ · · · ≤ ik−r − k + 1 ≤ s − k + 1,

we see that the coefficient of x1 · · ·xr in sµs,k
(x1, · · · , xs|a1, a2, · · · ) is

(−1)k−rhk−r(a1, · · · , as−k+1).

Recalling that sµs,k
(x1, · · · , xs|a1, a2, · · · ) is symmetric in the x-variables, we

conclude that the coefficient of xj1 · · ·xjr is (−1)k−rhk−r(a1, · · · , as−k+1) for

any 1 ≤ j1 < · · · < jr ≤ s. Thus, the polynomial

(−1)k−rer(x1, · · · , xs)hk−r(a1, · · · , as−k+1)

gives the summand in sµs,k
(x1, · · · , xs|a1, a2, · · · ) whose degree in the x-variables

is r. 2

4.5 Proof of the main theorem in Chapter 4

In this section, we prove Theorem 4.3.1. Our argument is the T `-equivariant

version of [37]. Our first goal in this section is to show that

ed(ȳi1 , · · · , ȳis |uφλ(1), · · · , uφλ(n)) = 0

in H∗
T `(Sλ) for 1 ≤ s ≤ n, 1 ≤ i1 < · · · < is ≤ n, and d ≥ s + 1 − pλ̌(s) which

will be sated in Proposition 4.5.4.

Let us first consider the cases for s < n. Take a Tn-invariant complete flag

U• which refines the flag (· · · ⊂ N2Cn ⊂ NCn ⊂ Cn). This is possible since N

is in Jordan canonical form. We denote by w̄ the element of Sn corresponding

to U•, i.e. U• = w̄F• where F• is the standard flag defined by Fi = 〈e1, · · · , ei〉
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for all 1 ≤ i ≤ n. Recall that the map p : [n] → [`] is the map defined in (4.2.8).

Let p : Flags(Cn) → Grs(Cn) be the projection defined by p(V•) = Vs.

Let µ0 = (n − s, · · · , n − s, 0, · · · , 0) be a Young diagram with n − s repeated

pλ̌(s)-times and 0 repeated (s− pλ̌(s))-times. We recall the following fact from

[37].

Proposition 4.5.1. ([37, Proposition 3]) p(Sλ) ⊂ Xµ0(U•)

We reproduce the proof here for the convenience of the reader. For a

complete flag V• ∈ Sλ, we have Nn−sCn ⊂ Vs because of the definition of

Sλ. With the fact that dimNn−sCn = rankNn−s = pλ̌(s), it follows that

Nn−sCn = Upλ̌(s). Hence, we obtain dim(Vs ∩ Ui) = i for i ≤ pλ̌(s). Also, it is

easy to see that dim(Vs∩Un−s+i) ≥ i for i > pλ̌(s) by elementary linear algebra.

Proposition 4.5.2. ed(ȳi1 , · · · , ȳis
|up(w̄(1)), · · · , up(w̄(n))) = 0 in H∗

T `(Sλ) for

1 ≤ s < n, 1 ≤ i1 < · · · < is ≤ n, and d ≥ s + 1 − pλ̌(s).

Proof. By the Sn-action on H∗
T `(Sλ) constructed in Section 4.2, we may as-

sume that i1 = 1, · · · , is = s. Proposition 4.5.1 shows that the projection

p : Flags(Cn) → Grs(Cn) restricts to a map Sλ → Xµ0(U•) which we will

denote by k : Sλ → Xµ0(U•). Together with this map, we obtain the following

commutative diagram

H∗
T n(Flags(Cn))

ρλ

��

H∗
T n(Grs(Cn))

p∗
oo

i∗

��
H∗

T `(Sλ) H∗
T n(Xµ0(U•))

k∗
oo

(4.5.1)

where i∗ and ρλ are the maps induced by the inclusions. Let µs,d = (1, · · · , 1, 0, · · · , 0)

with 1 repeated d-times and 0 repeated (s− d)-times. This Young diagram has

at most s rows and n − s columns since we are assuming that s < n. Recall

that the Tn-equivariant Schubert class S̃µ = [Xµ(w̄F̃•)] ∈ H∗
T n(Grs(Cn)) is
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supported on Xµ(w̄F̃•). That is, S̃µ is the image of a relative cohomology class

in H∗
T n(Grs(Cn), Grs(Cn)\Xµ(w̄F̃•)). Now µs,d 6⊂ µ∗

0 and (4.4.4) show that

no cycle in Xµ0(U•) intersects with Xµs,d
(w̄F̃•). That is, in the commutative

diagram

H∗
T n(Grs(Cn))

i∗

��

H∗
T n(Grs(Cn), Grs(Cn)\Xµ(w̄F̃•))oo

ttiiiiiiiiiiiiiiiii

H∗
T n(Xµ0(U•))

induced by natural inclusions, the left-down map is a zero map. So it follows

that i∗S̃µs,d
= 0 for d ≥ s + 1 − pλ̌(s). Thus, we obtain

ρλ(p∗S̃µs,d
) = 0 (4.5.2)

by the commutativity of the diagram (4.5.1). We note that, if s = n which

we excluded from our case, the equality (4.5.2) does not hold because we have

Grs(Cn) = Xµ0(U•) in this case.

To relate (4.5.2) to the claim of Lemma 4.5.2, we write ρλ(p∗S̃µs,d
) in terms

of ȳ1, · · · , ȳn and u1, · · · , u`. Let us first describe p∗S̃µs,d
in terms of x̄1, · · · , x̄n

and t1, · · · , tn. Let w ∈ Sn be a fixed permutation. Recall from (4.4.1) that we

have the induced map w : Flags(Cn) → Flags(Cn) which satisfies that

w∗(tiα) = tw−1(i)w
∗(α) (4.5.3)

for any α ∈ H∗
T n(Flags(Cn)) and i = 1, · · · , n where the products are taken by

the cup products via the canonical homomorphism H∗(BTn) → H∗
T n(Flags(Cn)).

Similarly, w induces an automorphism of w : Grs(Cn) → Grs(Cn) (see (4.4.2)),

and the projection map p : Flags(Cn) → Grs(Cn) is compatible with the auto-

morphisms of Flags(Cn) and Grs(Cn), i.e., p◦w = w ◦p as maps Flags(Cn) →
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Grs(Cn). Observe that

w∗x̄i = x̄i (4.5.4)

since w ∈ Sn naturally induces a map Ei/Ei−1 → Ei/Ei−1 which is a fiber-wise

isomorphism.

For any Young diagram µ with at most s rows and n − s columns, we have

that Xµ(w̄F̃•) = Xµ(w̄w0F•) from the definition where w0 ∈ Sn is the longest

element with respect to the Bruhat order. So it follows from (4.4.5), (4.5.3),

(4.5.4), and Proposition 4.4.1 that

p∗S̃µ = p∗((w̄w0)−1)∗[Xµ(F•)] = ((w̄w0)−1)∗p∗[Xµ(F•)]

= sµ(−x̄1, · · · ,−x̄s| − tw̄(1), · · · ,−tw̄(n)).

Now Lemma 4.4.2 together with the definition (4.3.1) shows that

p∗S̃µs,d
= (−1)ded(x̄1, · · · , x̄s|tw̄(1), · · · , tw̄(n)). (4.5.5)

Thus, applying ρλ to this equality, we obtain

ρλ(p∗S̃µs,d
) = (−1)ded(ȳ1, · · · , ȳs|up(w̄(1)), · · · , up(w̄(n))) (4.5.6)

because of (4.2.9), and we obtain the desired equality by (4.5.2). 2

From now on, we take a specific choice of w̄ as follows and we study the

image of the Schubert classes p∗S̃µ under ρλ. We choose w̄ so that its one-line

notation is given by

w̄ = J1 · · · J`
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where each Jr is a sequence

Jr = j(1)
r j(2)

r · · · j(λr−λr+1)
r

consisting of sequences of the form

j(m)
r = (λ1 − λr) + m , (λ1 − λr) + λ2 + m , . . . . . . , (λ1 − λr) + λ2 + · · · + λr + m.

Note that j
(m)
r is a sequence of length r and Jr is a sequence of length r(λr −

λr+1). We define Jr to be the empty sequence if λr = λr+1. Recall that λ`+1 = 0

in our convention.

Lemma 4.5.3. The complete flag w̄F• refines the flag (0 ⊂ · · · ⊂ N2Cn ⊂

NCn ⊂ Cn).

Proof. We list the numbers 1, 2, · · · , n as in the one-line notation of w̄:

j
(1)
1 · · · j(λ1−λ2)

1 j
(1)
2 · · · j(λ2−λ3)

2 · · · j
(1)
` · · · j(λ`−λ`+1)

` . (4.5.7)

Then

NCn = 〈ei | i is not in j
(λ`−λ`+1)
` 〉.

If λ` − λ`+1 ≥ 2, then

N2Cn = 〈ei | i is not in j
(λ`−λ`+1−1)
` j

(λ`−λ`+1)
` 〉,

if λ` − λ`+1 = 1, then

N2Cn = 〈ei | i is not in j
(λ`−1−λ`)
`−1 j

(1)
` 〉

and so on. In general, for each k, the linear subspace NkCn is generated by
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the set of ei for which i is not in r-th subsequence from the right in (4.5.7) for

1 ≤ r ≤ k. This implies that the complete flag w̄F• refines the flag (0 ⊂ · · · ⊂

N2Cn ⊂ NCn ⊂ Cn). 2

Example. If n = 16 and λ = (7, 5, 2, 2), then

w̄ = 1 2 3 8 4 9 5 10 6 11 13 15 7 12 14 16

where J1 = j
(1)
1 j

(2)
1 = 1 2, J2 = j

(1)
2 j

(2)
2 j

(3)
2 = 3 8 4 9 5 10, J3 is the empty

sequence, and J4 = j
(1)
4 j

(2)
4 = 6 11 13 15 7 12 14 16. Then w̄F• refines the flag

(· · · ⊂ N2Cn ⊂ NCn ⊂ Cn).

We now refine Proposition 4.5.2 by taking the explicit choice of w̄ given

above.

Proposition 4.5.4. ed(ȳi1 , · · · , ȳis |uφλ(1), · · · , uφλ(n)) = 0 in H∗
T `(Sλ) for 1 ≤

s ≤ n, 1 ≤ i1 < · · · < is ≤ n, and d ≥ s + 1 − pλ̌(s).

Proof. We first consider the case for s < n. The map p : [n] → [`] defined in

(4.2.8) takes each sequence j
(m)
r to the sequence 1, · · · , r since the k-th number

of j
(m)
r satisfies

λ1 + · · · + λk−1 + 1 ≤ (λ1 − λr) + λ2 + · · · + λk + m ≤ λ1 + · · · + λk.

This shows that p ◦ w̄ coincides with the map φλ defined in (4.3.2). From

Proposition 4.5.2, we obtain the desired equality for the case s < n.

Next, we prove the claim for the case s = n. We have that d ≥ n+1−pλ̌(n) =
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1 in this case. Observe that in H∗
T n(Flags(Cn)) we have

ed(x̄1, · · · , x̄n|t1, · · · , tn)

=
d∑

r=0

(−1)d−rer(x̄1, · · · , x̄n)hd−r(t1, · · · , tn+1−d)

=
d∑

r=0

(−1)d−rer(t1, · · · , tn)hd−r(t1, · · · , tn+1−d)

by the presentation given in (4.2.3). It is straightforward to check that this is

equal to ed(tn+2−d, · · · , tn) by comparing the degree d part of the product of

the following generating functions with a formal variable z for elementary and

complete symmetric polynomials :

n∏
i=1

(1 − tiz) =
n∑

r=0

(−1)rer(t1, · · · , tn)zr,

n+1−d∏
i=1

1
1 − tiz

=
∑
r≥0

hr(t1, · · · , tn+1−d)zr.

Observe that ed(tn+2−d, · · · , tn) is zero since the number of variables is greater

than d. That is, the polynomial ed(x̄1, · · · , x̄n|t1, · · · , tn) vanishes in H∗
T n(Flags(Cn)),

and hence we see that ed(ȳ1, · · · , ȳn|uφλ(1), · · · , uφλ(n)) = 0. 2

Proof of Theorem 4.3.1:

Proposition 4.5.4 shows that the surjective homomorphism (4.3.3) induces a

surjective ring homomorphism

ψ̄ : Z[y1, · · · , yn, u1, · · ·u`]/Ĩλ −→ H∗
T `(Sλ). (4.5.8)

In what follows, we prove that this is an isomorphism by thinking of both

sides as Z[u1, · · ·u`]-algebras. Namely, the ring on the left-hand-side admits the

obvious multiplication by u1, · · · , u`, and the ring on the right-hand-side has

the canonical ring homomorphism H∗(BT `) → H∗
T `(Sλ) with the identification
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H∗(BT `) = Z[u1, · · ·u`].

From the cellular decomposition given in [33], H∗(Sλ) is a free Z-module

and

rankZH∗(Sλ) =
n!

λ1!λ2! · · ·λ`!
.

We denote the multinomial coefficient n!
λ1!λ2!···λ`!

by
(
n
λ

)
. Recall that we have

H∗
T `(Sλ) ∼= Z[u1, · · · , u`]⊗H∗(Sλ) as Z[u1, · · · , u`]-modules as discussed in Sec-

tion 4.2. So the rank of H∗
T `(Sλ) over Z[u1, · · · , u`] coincides with the rank of

H∗(Sλ):

rankZ[u1,··· ,u`]H
∗
T `(Sλ) = rankZH∗(Sλ) =

(
n

λ

)
.

Hence, we complete our proof of Theorem 4.3.1 by the following Lemma and

the fact that, for any commutative ring R with unit, a surjective homomorphism

from an R-module to a free R-module of the same rank is an isomorphism.

2

Lemma 4.5.5. Let k =
(
n
λ

)
be the multinomial coefficient as above. Let

Φ1(y), · · · , Φk(y) be homogeneous polynomials in Z[y1, · · · , yn] which give an

additive basis of Z[y1, · · · , yn]/Iλ where Iλ is generated by ed(yi1 , · · · , yis) for

1 ≤ s ≤ n, 1 ≤ i1 < · · · < is ≤ n, and d ≥ s + 1 − pλ̌(s). If we think of

Φ1(y), · · · , Φk(y) as elements of Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ, then they generate

Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ as a Z[u1, · · · , u`]-module.

Remark. There exists a homogeneous Z-basis of Z[y1, · · · , yn]/Iλ. In fact, the

argument in [37] works for the proof of the fact that we have a well-defined

surjective map

Z[y1, · · · , yn]/Iλ → H∗(Sλ) (4.5.9)
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which maps each yi to the first Chern class of the tautological line bundle

Ei/Ei−1 over Flags(Cn) restricted to Sλ. This surjectivity can also be explained

as a non-equivariant limit of (4.5.8), namely we have a commutative diagram

Z[y1, · · · , yn, u1, · · ·u`]/Ĩλ

ψ̄ //

��

H∗
T `(Sλ)

��
Z[y1, · · · , yn]/Iλ

// H∗(Sλ)

where the left-vertical map is the map ui 7→ 0 and the right-vertical map is

the canonical forgetful map. It follows that the rank of Z[y1, · · · , yn]/Iλ is less

than or equal to k =
(
n
λ

)
from the proof of Theorem 1 in [37] by replacing the

“ dim” to “rank” in the argument. Thus, the surjective map (4.5.9) is in fact

an isomorphism from the fact mentioned above Lemma 4.5.5, and this implies

that Z[y1, · · · , yn]/Iλ is a free Z-module.

Proof. It suffices to show that any monomial m of the variables y1, · · · , yn in

Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ can be written as a Z[u1, · · · , u`]-linear combination

of Φ1(y), · · · , Φk(y). We prove this by induction on the degree d of m. The base

case d = 0 is clear, i.e. Φi(y) = 1 for some i. We assume that d ≥ 1 and the claim

holds for d − 1. Let θ be a homomorphism from Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ to

Z[y1, · · · , yn]/Iλ sending yi to yi and ui to 0. This is well-defined since each

generator ed(ȳ1, · · · , ȳs|uφλ(1), · · · , uφλ(n)) of Ĩλ is mapped to the corresponding

generator ed(yi1 , · · · , yis) of Iλ. By assumption, θ(m) can be written as a Z-

linear combination of Φ1(y), · · · ,Φk(y), that is, we have

m −
∑

i

aiΦi(y) ∈ ker θ

for some ai ∈ Z. Here, ker θ is the ideal of Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ generated

by u1, · · · , u`. In fact, it follows that the image of Iλ in Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ
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is included in the ideal (u1, · · · , u`) of Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ from the fol-

lowing equation in Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ:

ed(yi1 , · · · , yis) = −
∑

0≤r<d

(−1)d−rer(yi1 , · · · , yis)hd−r(uφλ(1), · · · , uφλ(s+1−d)).

Therefore, the monomial m can be written as

m =
∑

i

aiΦi(y) +
∑̀
j=1

fj(y, u)uj (4.5.10)

for some polynomials f1(y, u), · · · , f`(y, u). Since m has degree d, we can replace

the polynomials in the right-hand-side by their homogeneous components of de-

gree d. Namely, we can assume that deg Φi(y) = deg fj(y, u)+1 = d. The induc-

tion hypothesis shows that each fj(y, u) is written as a Z[u1, · · · , u`]-linear com-

bination of Φ1(y), · · · , Φk(y) since the degree of each monomial in y contained in

fj(y, u) is less than d. Hence, the element m is written by a Z[u1, · · · , u`]-linear

combination of Φ1(y), · · · , Φk(y) in Z[y1, · · · , yn, u1, · · · , u`]/Ĩλ, as desired. 2



Chapter 5

The S-equivariant

cohomology rings of regular

nilpotent Hessenberg

varieties

In Chapter 5 we give an explicit presentation of the S-equivariant cohomology

rings of regular nilpotent Hessenberg varieties. Chapter 5 is organized as follows.

We briefly recall the necessary background in Section 5.1. Our main theorem,

Theorem 5.2.1, is formulated in Section 5.2. We sketch the outline of the proof

in Section 5.3. We see that the cohomology rings of regular nilpotent Hessenberg

varieties are Poincaré duality algebra from Corollaly 5.2.2 in Section 5.4. This

is a joint work with Hiraku Abe, Megumi Harada and Mikiya Masuda in [1].
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5.1 Background on Hessenberg varieties

In this section we briefly recall the terminology required to understand the

statements of our main results; in particular we recall the definition of the

regular nilpotent Hessenberg variety in type A in Chapter 1, denoted Hess(N, h),

along with a natural S-action on it. Since we work exclusively with type A in

this chapter, we henceforth omit it from our terminology.

We first begin by recalling the definition of a Hessenberg function. A

Hessenberg function is a function h : {1, 2, . . . , n} → {1, 2, . . . , n} satis-

fying h(i) ≥ i for all 1 ≤ i ≤ n and h(i + 1) ≥ h(i) for all 1 ≤ i < n.

We frequently denote a Hessenberg function by listing its values in sequence,

h = (h(1), h(2), . . . , h(n) = n).

Definition. Let N : Cn → Cn be the regular nilpotent linear operator, i.e. N

has one Jordan block with eigenvalue 0. The regular nilpotent Hessenberg

variety Hess(N, h) is defined as the following subvariety of Flags(Cn):

Hess(N, h) := {V• ∈ Flags(Cn) | NVi ⊆ Vh(i) for all i = 1, . . . , n}. (5.1.1)

Next recall that the standard torus T in (1.0.2) naturally acts on the flag

variety Flags(Cn). However, this T -action does not preserve the subvariety

Hess(N, h) in general. This problem can be rectified by considering instead the

action of the one-dimensional subtorus S of T in (1.0.3), which does preserve

Hess(N, h) ([15, Lemma 5.1]). Recall that the T -fixed points Flags(Cn)T of the

flag variety Flags(Cn) can be identified with the permutation group Sn on n

letters. More concretely, it is straightforward to see that the T -fixed points are

the set

{(〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1), ew(2), . . . , ew(n)〉 = Cn) | w ∈ Sn}

(5.1.2)
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where e1, e2, . . . , en denote the standard basis of Cn.

Since the S-fixed points Flags(Cn)S of the flag variety Flags(Cn) is also

given by the above set, we have

Hess(N, h)S = Hess(N, h) ∩ (Flags(Cn))T .

Therefore, we may view Hess(N, h)S as a subset of Sn.

5.2 Statement of the main theorem in Chapter 5

In this section we state the main result in Chapter 5. We first recall some

notation and terminology. Let Ei denote the subbundle of the trivial vector

bundle Flags(Cn) × Cn over Flags(Cn) whose fiber at a flag V• is just Vi.

We denote the T -equivariant first Chern class of the line bundle Ei/Ei−1 by

τ̃i ∈ H2
T (Flags(Cn)). Let Ci denote the one dimensional representation of T

through the map T → C∗ given by diag(g1, . . . , gn) 7→ gi. In addition we denote

the first Chern class of the line bundle ET ×T Ci over BT by ti ∈ H2(BT ). It is

well-known that the t1, . . . , tn generate H∗(BT ) as a ring and are algebraically

independent, so we may identify H∗(BT ) with the polynomial ring Q[t1, . . . , tn]

as rings. Furthermore, it is known that H∗
T (Flags(Cn)) is generated as a ring

by the elements τ̃1, . . . , τ̃n, t1, . . . , tn. Indeed, by sending xi to τ̃i and the ti to

ti we obtain the following isomorphism:

H∗
T (Flags(Cn)) ∼= Q[x1, . . . , xn, t1, . . . , tn]/(ei(x1, . . . , xn)−ei(t1, . . . , tn) | 1 ≤ i ≤ n).

Here the ei denote the degree-i elementary symmetric polynomials in the rel-

evant variables. In particular, since the odd cohomology of the flag variety
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Flags(Cn) vanishes, we additionally obtain the following:

H∗(Flags(Cn)) ∼= Q[x1, . . . , xn]/(ei(x1, . . . , xn) | 1 ≤ i ≤ n). (5.2.1)

As mentioned in Section 5.1, in this manuscript we focus on a particular circle

subgroup S of the usual maximal torus T . For this subgroup S, we denote the

first Chern class of the line bundle ES ×S C over BS by t ∈ H2(BS), where

by C we mean the standard one-dimensional representation of S through the

map S → C∗ given by diag(g, g2, . . . , gn) 7→ g. Analogous to the identification

H∗(BT ) ∼= Q[t1, . . . , tn], we may also identify H∗(BS) with Q[t] as rings.

Consider the restricion homomorphism

H∗
T (Flags(Cn)) → H∗

S(Hess(N, h)). (5.2.2)

Let τi denote the image of τ̃i under (5.2.2). We next analyze some algebraic re-

lations satisfied by the τi. For this purpose, we now introduce some polynomials

fi,j = fi,j(x1, . . . , xn, t) ∈ Q[x1, . . . , xn, t].

First we define

pi :=
i∑

k=1

(xk − kt) (1 ≤ i ≤ n). (5.2.3)

For convenience we also set p0 := 0 by definition. Let (i, j) be a pair of natural

numbers satisfying n ≥ i ≥ j ≥ 1. These polynomials should be visualized as

being associated to the (i, j)-th spot in an n×n matrix. Note that by assumption

on the indices, we only define the fi,j for entries in the lower-triangular part of

the matrix, i.e. the part at or below the diagonal. The definition of the fi,j is

inductive, beginning with the case when i = j, i.e. the two indices are equal. In

this case we make the following definition:

fj,j := pj (1 ≤ j ≤ n). (5.2.4)
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Now we proceed inductively for the rest of the fi,j as follows: for (i, j) with

n ≥ i > j ≥ 1 we define:

fi,j := fi−1,j−1 +
(
xj − xi − t

)
fi−1,j . (5.2.5)

Again for convenience we define f∗,0 := 0 for any ∗. Informally, we may visualize

each fi,j as being associated to the lower-triangular (i, j)-th entry in an n × n

matrix, as follows: 

f1,1 0 · · · · · · 0

f2,1 f2,2 0 · · ·

f3,1 f3,2 f3,3
. . .

...

fn,1 fn,2 · · · fn,n


(5.2.6)

To make the discussion more concrete, we present an explicit example.

Example. Suppose n = 4. Then the fi,j have the following form.

fi,i = pi (1 ≤ i ≤ 4)

f2,1 = (x1 − x2 − t)p1

f3,2 = (x1 − x2 − t)p1 + (x2 − x3 − t)p2

f4,3 = (x1 − x2 − t)p1 + (x2 − x3 − t)p2 + (x3 − x4 − t)p3

f3,1 = (x1 − x3 − t)(x1 − x2 − t)p1

f4,2 = (x1−x3−t)(x1−x2−t)p1 +(x2−x4−t){(x1−x2−t)p1 +(x2−x3−t)p2}

f4,1 = (x1 − x4 − t)(x1 − x3 − t)(x1 − x2 − t)p1

For general n, the polynomials fi,j for each (i, j)-th entry in the matrix (5.2.6)

above can also be expressed in a closed formula in terms of certain polynomials

∆i,j for i ≥ j which are determined inductively, starting on the main diagonal.

As for the fi,j , we think of ∆i,j for i ≥ j as being associated to the (i, j)-th

box in an n × n matrix. In what follows, for 0 < k ≤ n − 1, we refer to the

lower-triangular matrix entries in the (i, j)-th spots where i− j = k as the k-th
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lower diagonal. (Equivalently, the k-th lower diagonal is the “usual” diagonal

of the lower-left (n − k) × (n − k) submatrix.) The usual diagonal is the 0-th

lower diagonal in this terminology. We now define the ∆i,j as follows.

1. First place the linear polynomial xi − it in the i-th entry along the 0-th

lower (i.e. main) diagonal, so ∆i,i := xi − it.

2. Suppose that ∆i,j for the k−1-st lower diagonal have already been defined.

Let (i, j) be on the k-th lower diagonal, so i − j = k. Define

∆i,j :=

(
j∑

`=1

∆i−j+`−1,`

)
(xj − xi − t).

In words, this means the following. Suppose k = i − j > 0. Then ∆i,j is the

product of (xj − xi − t) with the sum of the entries in the boxes which are in

the “diagonal immediately above the (i, j) box” (i.e. the boxes which are in the

(k − 1)-st lower diagonal), but we omit any boxes to the right of the (i, j) box

(i.e. in columns j + 1 or higher). Finally, the polynomial fi,j is obtained by

taking the sum of the entries in the (i, j)-th box and any boxes “to its left” in

the same lower diagonal. More precisely,

fi,j =
j∑

k=1

∆i−j+k,k. (5.2.7)

We are now ready to state our main result.

Theorem 5.2.1. Let n be a positive integer and h : {1, 2, . . . , n} → {1, 2, . . . , n}

a Hessenberg function. Let Hess(N, h) ⊂ Flags(Cn) denote the corresponding

regular nilpotent Hessenberg variety equipped with the S-action described above.

Then the restriction map

H∗
T (Flags(Cn)) → H∗

S(Hess(N, h))
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is surjective. Moreover, there is an isomorphism of Q[t]-algebras

H∗
S(Hess(N, h)) ∼= Q[x1, . . . , xn, t]/Ih

sending xi to τi and t to t and we identify H∗(BS) = Q[t]. Here the ideal Ih is

defined by

Ih := (fh(j),j | 1 ≤ j ≤ n). (5.2.8)

We can also describe the ideal Ih defined in (5.2.8) as follows. Any Hes-

senberg function h : {1, 2, . . . , n} → {1, 2, . . . , n} determines a subspace of the

vector space M(n × n, C) of matrices as follows: an (i, j)-th entry is required

to be 0 if i > h(j). If we represent a Hessenberg function h by listing its values

(h(1), h(2), · · · , h(n)), then the Hessenberg subspace can be described in words

as follows: the first column (starting from the left) is allowed h(1) non-zero en-

tries (starting from the top), the second column is allowed h(2) non-zero entries,

et cetera. For example, if h = (3, 3, 4, 5, 7, 7, 7) then the Hessenberg subspace is





? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

0 0 ? ? ? ? ?

0 0 0 ? ? ? ?

0 0 0 0 ? ? ?

0 0 0 0 ? ? ?





⊆ M(7 × 7, C).

Then, using the association of the polynomials fi,j with the (i, j)-th entry of

the matrix (5.2.6), the ideal Ih can be described as being “generated by the

fi,j in the boxes at the bottom of each column in the Hessenberg space”.

For instance, in the h = (3, 3, 4, 5, 7, 7, 7) example above, the generators are

{f3,1, f3,2, f4,3, f5,4, f7,5, f7,6, f7,7}.
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Our main result generalizes previous known results.

Remark. Consider the special case h = (2, 3, . . . , n, n). In this case the cor-

responding regular nilpotent Hessenberg variety has been well-studied and it is

called a Peterson variety Petn (of type A). Our result above is a generaliza-

tion of the result in [11] which gives a presentation of H∗
S(Petn). Indeed, for

1 ≤ j ≤ n − 1, we obtain from (5.2.5) and (5.2.3) that

fj+1,j = fj,j−1 + (xj − xj+1 − t)fj,j

= fj,j−1 + (−pj−1 + 2pj − pj+1 − 2t)pj

and since fn,n = pn we have

H∗
S(Petn) ∼= Q[x1, . . . , xn, t]/

(
fj,j−1 + (−pj−1 + 2pj − pj+1 − 2t)pj , pn | 1 ≤ j ≤ n − 1

)
= Q[x1, . . . , xn, t]/

(
(−pj−1 + 2pj − pj+1 − 2t)pj , pn | 1 ≤ j ≤ n − 1

)
∼= Q[p1, . . . , pn−1, t]/

(
(−pj−1 + 2pj − pj+1 − 2t)pj | 1 ≤ j ≤ n − 1

)
which agrees with [11]. (Note that we take by convention p0 = pn = 0.)

The main theorem above also immediately yields a computation of the or-

dinary cohomology ring. Indeed, since the odd degree cohomology groups of

Hess(N, h) vanish [38], by setting t = 0 we obtain the ordinary cohomology. Let

f̌i,j := fi,j(x, t = 0) denote the polynomials in the variables xi obtained by

setting t = 0. A computation then shows that

f̌i,j =
j∑

k=1

xk

i∏
`=j+1

(xk − x`).

(For the case i = j we take by convention
∏i

`=j+1(xk − x`) = 1.) We have the

following.
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Corollary 5.2.2. Let the notation be as above. There is a ring isomorphism

H∗(Hess(N, h)) ∼= Q[x1, . . . , xn]/Ǐh

where Ǐh :=
(
f̌h(j),j | 1 ≤ j ≤ n

)
.

Remark. Consider the special case h = (n, n, . . . , n). In this case the con-

dition in (5.1.1) is vacuous and the associated regular nilpotent Hessenberg

variety is the flag variety Flags(Cn). In this case we can explicitly relate the

generators f̌h(j)=n,j of our ideal Ǐh = Ǐ(n,n,...,n) with the power sums pr(x) =

pr(x1, . . . , xn) :=
∑n

k=1 xr
k, thus relating our presentation with the usual Borel

presentation as in (5.2.1), see e.g. [13]. More explicitly, for r be an integer,

1 ≤ r ≤ n, define

qr(x) = qr(x1, . . . , xn) :=
n+1−r∑

k=1

xk

n∏
`=n+2−r

(xk − x`).

Note that by definition qr(x) = f̌n,n+1−r so these are the generators of Ǐ(n, n, . . . , n).

The polynomials qr(x) and the power sums pr(x) can then be shown to satisfy

the relations

qr(x) =
r−1∑
i=0

(−1)iei(xn+2−r, . . . , xn)pr−i(x). (5.2.9)

Remark. In the usual Borel presentation of H∗(Flags(Cn)), the ideal I of

relations is taken to be generated by the elementary symmetric polynomials.

The power sums pr generate this ideal I when we consider the cohomology with

Q coefficients, but this is not true with Z coefficients. Thus our main Theo-

rem 5.2.1 does not hold with Z coefficients in the case when h = (n, n, . . . , n),

suggesting that there is some subtlety in the relationship between the choice of

coefficients and the choice of generators of the ideal I(h).
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5.3 Sketch of the proof of the main theorem in

Chapter 5

We now sketch the outline of the proof of the main result (Theorem 5.2.1)

above. As a first step, we show that the elements τi satisfy the relations

fh(j),j = fh(j),j(τ1, . . . , τn, t) = 0. The main technique of this part of the proof

is (equivariant) localization, i.e. the injection

H∗
S(Hess(N, h)) → H∗

S(Hess(N, h)S). (5.3.1)

Specifically, we show that the restriction fh(j),j(w) of each fh(j),j to an S-fixed

point w ∈ Hess(N, h)S is equal to 0; by the injectivity of (5.3.1) this then

implies that fh(j),j = 0 as desired. This part of the argument is rather long

and requires a technical inductive argument based on a particular choice of

total ordering on Hess(N, h)S which refines a certain natural partial order on

Hessenberg functions. Once we show fh(j),j = 0 for all j, we obtain a well-

defined ring homomorphism which sends xi to τi and t to t:

ϕh : Q[x1, . . . , xn, t]/(fh(j),j | 1 ≤ j ≤ n) → H∗
S(Hess(N, h)). (5.3.2)

We then show that the two sides of (5.3.2) have identical Hilbert series. This

part of the argument is rather straightforward, following the techniques used in

e.g. [11].

The next key step in our proof of Theorem 5.2.1 relies on the following two

key ideas: firstly, we use our knowledge of the special case where the Hessen-

berg function h is h = (n, n, . . . , n), for which the associated regular nilpotent

Hessenberg variety is the flag variety Flags(Cn), and secondly, we consider

localizations of the rings in question with respect to R := Q[t]\{0}. For the fol-

lowing, for h = (n, n, . . . , n) we let H := Hess(h = (n, n, . . . , n)) = Flags(Cn)
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denote the flag variety and let I denote the associated ideal I(n, n, . . . , n). In

this case we know that the map ϕ := ϕ(n,n,...,n) is surjective since the Chern

classes τi are known to generate the cohomology ring of Flags(Cn). Since the

Hilbert series of both sides are identical, we then know that ϕ is an isomorphism.

The following commutative diagram is crucial for the remainder of the ar-

gument.

R−1
(
Q[x1, . . . , xn, t]/I

) R−1ϕ−−−−→∼=
R−1H∗

S(H) −−−−→∼=
R−1H∗

S(HS)ysurj

y ysurj

R−1
(
Q[x1, . . . , xn, t]/Ih

) R−1ϕh−−−−→ R−1H∗
S(Hess(N, h)) −−−−→∼=

R−1H∗
S(Hess(N, h)S)

The horizontal arrows in the right-hand square are isomorphisms by the local-

ization theorem. Since ϕ is an isomorphism, so is R−1ϕ. The rightmost and

leftmost vertical arrows are easily seen to be surjective, implying that R−1ϕh is

also surjective. A comparison of Hilbert series shows that R−1ϕh is an isomor-

phism. Finally, to complete the proof we consider the commutative diagram

Q[x1, . . . , xn, t]/Ih
ϕh−−−−→ H∗

S(Hess(N, h))yinj

yinj

R−1Q[x1, . . . , xn, t]/Ih
R−1ϕh−−−−→∼=

R−1H∗
S(Hess(N, h))

for which it is straightforward to see that the vertical arrows are injections.

From this it follows that ϕh is an injection, and once again a comparison of

Hilbert series shows that ϕh is in fact an isomorphism.

5.4 Applications

Lastly, we state that the cohomology rings of regular nilpotent Hessenberg va-

rieties are Poincaré duality algebra.
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Definition. [16, Definition 2.78] Suppose that R = ⊕d
i=0Ri is an Artinian

algebra and R0 is a field. We say R is a Poincaré duality algebra if the map

Ri × Rd−i → Rd

defined by the multiplication in R gives a perfect pairing for every i = 0, · · · , d.

Corollary 5.4.1. Let h ∈ Hn be a Hessenberg function and let Hess(N, h)

denote the associated regular nilpotent Hessenberg variety. Then, with respect

to the usual grading and multiplication in cohomology, the ordinary cohomology

ring H∗(Hess(N, h)) is a Poincaré duality algebra.

Proof. Let R := Q[x1, . . . , xn]/Ǐh. From Corolally 5.2.2, we prove that R is

a Poincaré duality algebra. Since the set of units in R are precisely those of

the form a0 + a1 + a2 + · · · with ai ∈ Ri and a0 6= 0, the ring R is local

with the maximal ideal m = (x1, . . . , xn) (cf. [3, Proposition 1.6]). Moreover,

we have mk = 0 for some k, so R is also Artinian (cf. [3, Proposition 8.6]).

Therefore, the homogeneous polynomials f̌h(1),1, . . . , f̌h(n),n form a regular se-

quence in Q[x1, . . . , xn] (cf. [11, Proposition 5.1]). We also see that the homo-

geneous polynomials f̌h(1),1, . . . , f̌h(n),n form a regular sequence in the ring of

formal power series Q[[x1, . . . , xn]]. Since the completion R̂ of R is isomorphic

to Q[[x1, . . . , xn]]/(f̌h(1),1, . . . , f̌h(n),n) (cf. [3, Proposition 10.12, Proposition

10.15]), R is a complete intersection ring (cf. [26, Theorem 21.2]). In particu-

lar, R is Gorenstein (cf. [26, Theorem 21.3]). From Theorem 2.79 in [16], R is

a Poincaré duality algebra. 2



Chapter 6

The S-equivariant

cohomology rings of

Peterson varieties in all Lie

types

In Chapter 6 we give an explicit presentation of the S-equivariant cohomology

rings of Peterson varieties in all Lie types. Chapter 6 is organized as follows. We

briefly recall the necessary background in Section 6.1. We derive the relevant

quadratic relations in Section 6.2. In particular, a key computation is contained

in Lemma 6.2.3. The main theorem, Theorem 6.3.1, is proven in Section 6.3.

This is a joint work with Megumi Harada and Mikiya Masuda in [14].
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6.1 Background on the Peterson variety

In this section we record some facts about Peterson varieties which we require

in this manuscript.

Let G be a complex semisimple linear algebraic group of rank n. We fix B

a Borel subgroup and T a maximal torus of G such that T ⊆ B ⊆ G. These

choices then determine the following data:

• a set of simple roots ∆ = {α1, . . . , αn},

• the associated Weyl group W ,

• the associated Lie algebras t ⊆ b ⊆ g, and

• root spaces gα ⊆ g for each root α.

Definition. Let Eα be a basis element of the root space gα and let N =∑
α∈∆ Eα, a regular nilpotent operator. In this setting we may define the Pe-

terson variety (associated to g) as

Pet := {gB ∈ G/B | Ad(g−1)(N) ∈ b ⊕
⊕

α∈−∆

gα}.

As is well-known, the maximal torus T acts on G/B by left multiplication.

This action does not in general preserve the Peterson variety. However, using the

homomorphism φ : T → (C∗)n defined by t 7→ (α1(t), . . . , αn(t)) and defining S

to be the connected component of the identity in

φ−1({(c, c, . . . , c) | c ∈ C∗})

it can be seen that the restriction of the T -action on G/B to the subgroup S

does preserve Pet ([15, Lemma 5.1]).
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Next recall that the T -fixed points of G/B are in bijective correspondence

with the Weyl group W of G. Moreover, since the S-fixed points PetS of the

Peterson variety satisfy the relation

PetS = Pet ∩ (G/B)T

we may view PetS as a subset of the Weyl group W . Indeed, the fixed point

set PetS may be described concretely as follows. For a subset K of the set ∆

simple roots, let WK denote the parabolic subgroup generated by K and let wK

denote the longest element of WK . Then it is known [15, Proposition 5.8] that

PetS = {wK | K ⊆ ∆}.

Here and below we always use complex coefficients C for our cohomology

rings and hence omit it from our notation. Let αi : T → C∗ be a homomorphism

which thus determines a complex 1-dimensional representation of T . Let ET ×T

C → BT be the corresponding complex line bundle and by slight abuse of

notation we let αi ∈ H2(BT ) also denote the corresponding first Chern class.

With this notation in place we have

H∗(BT ) = C[α1, . . . , αn].

Consider the 1-dimensional representation of the diagonal subgroup {(c, c, . . . , c) :

c ∈ C∗} ⊆ (C∗)n obtained via the projection (c, c, . . . , c) → c. Composing with

the restriction to S of the above homomorphism φ, we obtain a 1-dimensional

representation of S and an associated line bundle ES ×S C → BS with first

Chern class denoted t ∈ H2(BS). With this notation in place we have

H∗(BS) = C[t].
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Next we recall that the inclusion homomorphism S ↪→ T induces a homomor-

phism π : H∗(BT ) → H∗(BS) and from the definition of φ we obtain

π(αi) = t (i = 1, 2, . . . , n). (6.1.1)

We now consider the following commutative diagram

H∗
T (G/B) −−−−→

⊕
w∈(G/B)T =W

H∗
T (w)

ρ

y π

y
H∗

S(Pet) −−−−→
⊕

w∈PetS⊆W

H∗
S(w)

(6.1.2)

where all the maps are induced from inclusions of subgroups or inclusions of

subspaces. As is well-known, the odd cohomology Hodd(G/B) of G/B vanishes.

The same holds for the Peterson variety, i.e. Hodd(Pet) = 0 [30]. Thus we

obtain that both horizontal maps in (6.1.2) are injective, and we may identify

H∗
T (G/B) (respectively H∗

S(Pet)) with its image under these maps. For w ∈

(G/B)T ∼= W (respectively w ∈ PetS ⊆ W ) and f ∈ H∗
T (G/B) (respectively

f ∈ H∗
S(Pet)) we will denote by f(w) the restriction of f to the w-th factor

H∗
T (w) = H∗(BT ) = C[α1, . . . , αn] (resp. H∗

S(w) = H∗(BS) = C[t]) in the

direct products on the right hand sides of (6.1.2).

For v ∈ W , we let σv denote the corresponding equivariant Schubert class in

H∗
T (G/B), and let pv denote its image ρ(σv) in H∗

S(Pet). We call pv a Peterson

Schubert class (associated to v). Let si be the simple reflection corresponding

to a simple root αi. The vertices of the Dynkin diagram corresponding to the

set of simple roots ∆ = {α1, . . . , αn} is in 1-1 correspondence with ∆. Here and

below, we assume to be fixed an ordering of the simple roots as given in [10,

Figure 1] (which in turn agrees with the standard ordering in [20, p.58]). With

respect to this ordering, given any subset K = {αa1 , αa2 , . . . , αak
} of the simple
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roots with a1 < a2 < · · · < ak, we define an element vK of W by the formula

vK := sa1sa2 · · · sak
.

The Peterson Schubert classes pvK
corresponding to the Weyl group elements

vK defined above satisfy the following property.

Proposition 6.1.1 (Theorem 3.5 in [10]). The Peterson Schubert classes {pvK |

K ⊆ ∆} form a C[t]-module basis for H∗
S(Pet).

It follows from Proposition 6.1.1 that the ρ in (6.1.2) is surjective. It is

well-known that the equivariant Schubert classes σsi generate H∗
T (G/B) as a

C[α1, . . . , αn]-algebra. From the surjectivity of the homomorphism ρ we imme-

diately obtain the following.

Proposition 6.1.2. The Peterson Schubert classes psi (i = 1, 2, . . . , n) generate

H∗
S(Pet) as a C[t]-algebra.

Since the odd cohomology Hodd(Pet) of the Peterson variety vanishes, we

know that as a C[t]-module the equivariant cohomology H∗
S(Pet) is isomorphic

to C[t] ⊗ H∗(Pet). It is known [6, Theorem 3] that

F (H∗(Pet), s) = (1 + s2)n

F (H∗
S(Pet), s) =

(1 + s2)n

1 − s2

(6.1.3)

where the left hand sides denotes the Hilbert series of the graded rings H∗(Pet)

and H∗
S(Pet) with respect to the variable s (of degree 1).

Fix an integer i with 1 ≤ i ≤ n and a subset K ⊆ ∆. From Proposition 6.1.1

it follows that the product psi · pvK
can be written uniquely as a C[t]-linear

combination of the pvJ
(for J ⊆ ∆). The so-called Monk’s formula gives a

concrete computation of the coefficients in this linear combination.
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Theorem 6.1.3 (Monk’s formula for Peterson varieties for all Lie types, The-

orem 4.2 in [10]). The Peterson Schubert classes satisfy the following relation:

psi · pvK
= psi(wK) · pvK

+
∑
J⊃K

|J|=|K|+1

cJ
i,K · pvJ

where the coefficient cJ
i,K are non-negative rational numbers. More specifically,

we have

cJ
i,K = (psi(wJ) − psi(wK)) · pvK (wJ)

pvJ
(wJ)

.

Next we recall the so-called Giambelli’s formula. From Proposition 6.1.2 it

follows that each module generator pvK
can be expressed as a polynomial (with

C[t] coefficients) in the (ring) generators psi . The Giambelli formula gives a

concrete expression for this polynomial as follows.

Theorem 6.1.4 (Giambelli’s formula for Peterson varieties for all Lie types,

Theorem 5.5 in [10]). Suppose K is a subset of the simple roots ∆. Assume that

the Dynkin diagram corresponding to the subset K is connected. Then

|K|!
|R(vK)|

· pvK
=

∏
αi∈K

psi

where |R(vK)| denotes the number of distinct reduced-word expressions for vK .

Remark (cf. Theorem 5.3 in [10]). The connectedness assumption in the above

theorem is not serious, in the following sense. Suppose J,K ⊆ ∆ are two subsets

of ∆ such that their corresponding Dynkin diagrams are connected. Suppose,

however, that J ∪ K has corresponding Dynkin diagram that is not connected.

Then pvJ∪K
is simply the product of pvJ

and pvK
, i.e.

pvJ∪K
= pvJ

· pvK
.
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6.2 Quadratic relations satisfied by the Peterson

Schubert classes psi

In this section, we derive certain quadratic relations satisfied by the cohomology-

degree-2 Peterson Schubert classes psi (i = 1, 2, . . . , n) by using Monk’s formula

(Theorem 6.1.3), Giambelli’s formula (Theorem 6.1.4), and Billey’s formula re-

called below. We will then show in the next section that these relations are

sufficient to determine the equivariant cohomology ring H∗
S(Pet) of the Peter-

son variety.

Theorem 6.2.1 (Billey’s formula, Theorem 4 in [4]). Let w ∈ W and fix a re-

duced word decomposition w = sb1sb2 · · · sbm of w. Set r(i, w) := sb1sb2 · · · sbi−1(αbi).

For an equivariant Schubert class σv for v ∈ W we have the following:

σv(w) =
∑

reduced words
v=sbj1

sbj2
···sbj`

∏̀
i=1

r(ji, w).

We begin with some elementary computations involving Peterson Schubert

classes. First, from Monk’s formula (Theorem 6.1.3) applied to the case K =

{αi} and vK = si we obtain

p2
si

= psi(si) · psi +
∑
j 6=i

cj
i · pv{αi,αj} (6.2.1)

where

cj
i = (psi(w{αi,αj}) − psi(si)) ·

psi(w{αi,αj})
pv{αi,αj}(w{αi,αj})

. (6.2.2)

More specifically, since Theorem 6.2.1 implies that σsi(si) = αi, from (6.1.1) we

conclude

psi(si) = t. (6.2.3)

We record the following.
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Lemma 6.2.2. In (6.2.1), if si and sj commute, then cj
i = 0.

Proof. Since si and sj commute, we have w{αi,αj} = sisj . Moreover from

Theorem 6.2.1 we can compute

σsi(w{αi,αj}) = σsi(sisj) = αi.

From (6.1.1) we get psi(w{αi,αj}) = t. Then the equations (6.2.2), (6.2.3) imply

cj
i = 0 as desired. 2

In the case when si and sj do not commute, the Dynkin diagram corre-

sponding to the subset K = {αi, αj} is connected, so Giambelli’s formula (The-

orem 6.1.4) yields

pv{αi,αj} =
1
2
psipsj . (6.2.4)

In this case, the coefficient appearing in (6.2.1) can be expressed in terms of

the Cartan matrix.

Lemma 6.2.3. In (6.2.1), if si and sj do not commute, then

cj
i = −〈αi, αj〉

where 〈αi, αj〉 denotes the Cartan integer.

Proof. From (6.2.2), (6.2.3), (6.2.4) we can compute

cj
i =

2(psi(w{αi,αj}) − t)
psj (w{αi,αj})

(6.2.5)

so it suffices to compute psi(w{αi,αj}) and psj (w{αi,αj}). In what follows we use

the notation

aij := 〈αi, αj〉 (i 6= j), a := aijaji.
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With this notation in place, note that by definition of the Cartan integers we

have that the action of the simple reflections sj on the simple roots αj may be

expressed as

sj(αi) =


αi − aijαj (i 6= j),

−αi (i = j).
(6.2.6)

In order to prove the lemma, we consider each of the possible cases.

(i) In the case when the Dynkin diagram corresponding to {αi, αj} is of the

form d d
i j

the order of sisj is 3 so we have

w{αi,αj} = sisjsi = sjsisj .

Using Theorem 6.2.1 and (6.2.6) in this case we can compute that

σsi(w{αi,αj}) = σsi(sisjsi) = αi + sisj(αi) = aαi − aijαj ,

σsj (w{αi,αj}) = σsj (sjsisj) = αj + sjsi(αj) = aαj − ajiαi.

Then (6.1.1) implies

psi(w{αi,αj}) = (a − aij)t, psj (w{αi,αj}) = (a − aji)t.

Finally (6.2.5) yields

cj
i =

2(a − aij − 1)
(a − aji)

(6.2.7)

and substituting a = aijaji, aij = −1 we obtain cj
i = −aij as desired.

(ii) In the case d d
i j

the order of sisj is 4 so we have

w{αi,αj} = sisjsisj = sjsisjsi.
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Using the above together with Theorem 6.2.1 and (6.2.6) we may compute

σsi(w{αi,αj}) = σsi(sisjsisj) = αi + sisj(αi) = aαi − aijαj ,

σsj (w{αi,αj}) = σsj (sjsisjsi) = αj + sjsi(αj) = aαj − ajiαi

which is the same as case (i) above. Thus (6.2.7) also holds in this case and

since a = aijaji = 2 we obtain cj
i = −aij as required.

(iii) Finally, in the case d d
i j

the element sisj has order 6 and thus

w{αi,αj} = sisjsisjsisj = sjsisjsisjsi.

In this case we have a = 3 so Theorem 6.2.1 and (6.2.6) yield that

σsi(w{αi,αj}) = σsi(sisjsisjsisj) = αi + sisj(αi) + (sisj)2(αi) = 4αi − 2aijαj ,

σsj (w{αi,αj}) = σsj (sjsisjsisjsi) = αj + sjsi(αj) + (sjsi)2(αj) = 4αj − 2ajiαi.

Then from (6.1.1) we compute

psi(w{αi,αj}) = (4 − 2aij)t, psj (w{αi,αj}) = (4 − 2aji)t.

Equation (6.2.5) then implies

cj
i =

2(3 − 2aij)
4 − 2aji

and finally using that aijaji = 3 we get that cj
i = −aij as desired.

This completes the proof of the lemma. 2

From the above considerations we obtain the following proposition.

Proposition 6.2.4. In the equivariant cohomology ring H∗
S(Pet) of the Peter-
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son variety, the following quadratic relations are satisfied:

n∑
j=1

〈αi, αj〉psipsj − 2tpsi = 0 (1 ≤ i ≤ n).

Proof. If si and sj commute then 〈αi, αj〉 = 0, so by Lemma 6.2.2 the conclusion

of Lemma 6.2.3 holds in this case. From this and (6.2.4) we see that (6.2.1) can

be expressed as

p2
si

= t · psi −
1
2

∑
j 6=i

〈αi, αj〉psipsj .

Since 〈αi, αi〉 = 2 for any i, the above equation can be re-written to be of the

form given in the statement of the proposition. 2

6.3 The main theorem in Chapter 6

Let (〈αi, αj〉)1≤i,j≤n be the Cartan matrix associated to a rank n semisimple

Lie algebra g. Using the coefficients in the Cartan matrix, we define an ideal J

in the polynomial ring C[x1, . . . , xn, t] as follows:

J :=

 n∑
j=1

〈αi, αj〉xixj − 2txi | 1 ≤ i ≤ n

 .

From Proposition 6.1.2 and Proposition 6.2.4 it then follows that the map send-

ing xi to psi defines a surjective C[t]-algebra homomorphism

ϕ : C[x1, . . . , xn, t]/J ³ H∗
S(Pet). (6.3.1)

Here H∗(BS) = C[t] and Pet denotes the Peterson variety associated to the

Lie algebra g. Since Hodd(Pet) = 0, as a H∗(BS)-module we have H∗
S(Pet) ∼=
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H∗(BS) ⊗ H∗(Pet). Defining the ideal J̌ as

J̌ =

 n∑
j=1

〈αi, αj〉xixj | 1 ≤ i ≤ n

 (6.3.2)

we then also have a surjective ring homomorphism

ϕ̌ : C[x1, . . . , xn]/J̌ ³ H∗(Pet). (6.3.3)

The following is the main theorem.

Theorem 6.3.1. The maps ϕ and ϕ̌ of (6.3.1) and (6.3.3) are both isomor-

phisms.

In order to prove Theorem 6.3.1 we use the theory of regular sequences. For

reference we briefly recall the definition and a key property of regular sequences

(cf. [11]).

Definition. Let R be a graded commutative algebra over C and let R+ denote

the positive-degree elements in R. Then a homogeneous sequence θ1, . . . , θr ∈

R+ is a regular sequence if θk is a non-zero-divisor in the quotient ring R/(θ1, . . . , θk−1)

for every 1 ≤ k ≤ r. This is equivalent to saying that θ1, . . . , θr is algebraically

independent over C and R is a free C[θ1, . . . , θr]-module.

It is a well-known fact (see for instance [36, p.35]) that a homogeneous

sequence θ1, . . . , θr ∈ R+ is a regular sequence if and only if

F (R/(θ1, . . . , θr), s) = F (R, s)
r∏

k=1

(1 − sdeg θk) (6.3.4)

where F (R/(θ1, . . . , θr), s) and F (R, s) denote the Hilbert series of the graded

rings R/(θ1, . . . , θr) and R, respectively.
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The following proposition gives a convenient characterization of regular se-

quences.

Proposition 6.3.2. [11, Proposition 5.1] A sequence of positive-degree homo-

geneous elements θ1, . . . , θr in the polynomial ring C[z1, . . . , zr] is a regular se-

quence if and only if the solution set in Cr of the equations θ1 = 0, . . . , θr = 0

consists only of the origin {0}.

We can now prove our main theorem in Chapter 6.

Proof of Theorem 6.3.1. We first claim that if ϕ̌ is an isomorphism then it fol-

lows that ϕ is an isomorphism. To see this, suppose that ϕ̌ is an isomorphism.

Then the sequence

θi : =
n∑

j=1

〈αi, αj〉xixj − 2txi for 1 ≤ i ≤ n,

θn+1 : = t

in C[x1, . . . , xn, t] is regular, where deg(xi) = deg(t) = 2. Indeed,

F (C[x1, . . . , xn, t]/(θ1, . . . , θn, θn+1), s)

=F (C[x1, . . . , xn]/J̌, s)

=(1 + s2)n

=
1

(1 − s2)n+1
· (1 − s4)n(1 − s2)

=F (C[x1, . . . , xn, t], s)
n+1∏
i=1

(1 − sdeg θi)

so this follows from (6.3.4). Note that a subsequence θ1, . . . , θn of a regular

sequence θ1, . . . , θn+1 is again a regular sequence, so from (6.3.4) and (6.1.3) we
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obtain

F (C[x1, . . . , xn, t]/J, s) = F (C[x1, . . . , xn, t]/(θ1, . . . , θn), s)

=
1

(1 − s2)n+1

n∏
i=1

(1 − sdeg θi)

=
(1 + s2)n

1 − s2

= F (H∗
S(Pet), s)

from which it follows that ϕ is an isomorphism.

Thus it suffices to check that ϕ̌ is an isomorphism. We already know that ϕ̌

is surjective and from equation (6.1.3) we know that F (H∗(Pet), s) = (1+s2)n.

Thus in order to show that ϕ̌ is injective it suffices to show that

F (C[x1, . . . , xn]/J̌, s) = (1 + s2)n. (6.3.5)

Note that by (6.3.4), the equality (6.3.5) is equivalent to the statement that∑n
j=1〈αi, αj〉xixj (1 ≤ i ≤ n) is a regular sequence. Furthermore, by Propo-

sition 6.3.2 , in order to prove (6.3.5) it in turn suffices to show that the zero

set of the collection of quadratic equations

n∑
j=1

〈αi, αj〉xixj = 0 (1 ≤ i ≤ n), (6.3.6)

given by the generators of the ideal J̌ of (6.3.2) is {0}, i.e., the equations (6.3.6)

have only the trivial solution.

Suppose in order to derive a contradiction that (6.3.6) has a non-trivial

solution (b1, . . . , bn). In particular, setting I = {i | bi 6= 0}, we have I 6= ∅ and

so since bi 6= 0 for i ∈ I we obtain from (6.3.6) that

∑
j∈I

〈αi, αj〉bj = 0 (i ∈ I).
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Since (〈αi, αj〉)i,j∈I is a |I|×|I| square matrix which is again the Cartan matrix

of a semisimple Lie algebra, it must be positive definite [21, section 2.4] and

in particular non-singular. Thus the bi must be 0 for i ∈ I, contradicting the

assumption on I. Thus (6.3.6) has only the trivial solution, as desired. 2

Remark. Theorem 6.3.1 is a generalization to all Lie types of the computation

given in [11]. Indeed, the generators of the ideal given in [11] are the same as

those given above, up to a scalar factor of 1/2.

Remark. In fact, Theorem 6.3.1 holds also with Q coefficients. Indeed, since

both ϕ and ϕ̌ can be defined over Z, if the maps become isomorphisms upon

tensoring with C then they are also isomorphisms upon tensoring with Q.
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