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Abstract

Toric origami manifolds, introduced by A. Cannas da Silva, V. Guillemin

and A. R. Pires, are generalizations of symplectic toric manifolds (or

toric symplectic manifolds). Delzant’s famous theorem tells us that

there is a bijection between the set of compact connected symplectic

toric manifolds and the set of Delzant polytopes. Cannas da Silva, V.

Guillemin and A. R. Pires generalized this classification theorem to toric

origami manifolds in [7]. They showed that there is a bijection between

the set of toric origami manifolds and the set of origami templates. It

is well known that many topological invariants, such as Betti numbers,

cohomology rings and equivariant cohomology rings of symplectic toric

manifolds, can be expressed in terms of the Delzant polytopes. Hence

a natural question is how about toric orgami manifolds. When M is

orientable and the orbit space of M/T is contractible, Holm and Pires

study the topology of M in [12]. In this thesis we mainly study the

topology of orientable toric manifolds such that every proper face of

the orbit space is acyclic but the orbit space itself may be arbitrary.

In the last part of this thesis, we make some observations about the

non-orientable case.
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Chapter 1

Introduction

A symplectic toric manifold M is a compact connected symplectic man-

ifold of dimension 2n with an e↵ective Hamiltonian action of a compact

n-dimensional torus T. Delzant’s famous work tells us that there is a

bejection between the set of compact connected symplectic toric mani-

folds and the set of nonsingular polytopes called Delzant polytopes. A

Delzant polytope is the image of the moment map of a symplectic toric

manifold. Delzant theorem connects the geometrical objects and the

combinatorial objects, and many topological information of symplectic

toric manifolds can be read from the corresponding combinatorial data,

such as Betti numbers, cohomology rings, T -equivariant cohomology

rings and so on. Recently, A. Cannas da Silva, V. Guillemin and A. R.

Pires introduced a new geometrical object, toric origami manifolds in [7].

This new object is a generalization of symplectic toric manifolds. They

also introduced combinatorial counterparts, origami templates, of toric

origami manifolds, as Delzant polytopes are the combinatorial coun-

terparts of symplectic toric manifolds. In [7] they generalized Delzant

theorem to toric origami manifolds, i.e., they constructed a bijection be-
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tween the set of toric origami manifolds and the set of origami templates

through moment maps.

The construction of toric origami manifolds comes from folded sym-

plectic manifolds, generalizations of symplectic manifolds [8]. A folded

symplectic form on a 2n-dimensional manifold M is a closed 2-form !

whose top power !n vanishes transversally on a subset Z and whose re-

striction to points in Z has maximal rank. The transversality condition

implies that Z is either an empty set or a codimension-one submani-

fold of M , called the fold. If Z is an empty set, then M is a genuine

symplectic manifold. Hence folded symplectic manifolds are generaliza-

tion of symplectic manifolds. The maximality of the restriction of !

to Z implies the existence of a line field, the kernel of !, on Z. If the

line field is the vertical bundle of some principal S1-fibration Z ! X,

then ! is called an origami form. Similarly to the symplectic case,

we can also define Hamiltonian actions and moment maps for origami

manifolds. A toric origami manifold is a compact connected origami

manifold (M 2n,!) equipped with an e↵ective Hamiltonian action of a

torus T . Roughly speaking, the combinatorial counterpart, an origami

template, of a toric origami manifold is a collection of Delzant poly-

topes with some gluing conditions. A natural question is to describe

the topological invariants such as Betti numbers, cohomology ring and

T -equivariant cohomology ring of a toric origami manifold M in terms

of the corresponding origami template; see [7] and [12].

In [12], Holm and Pires showed that if the folding hypersurface of M

is coörientable, then the T -action on M is locally standard and the orbit

6



space M/T is a manifold with corners. What is more, if we assume that

each face of M/T is acyclic, then we can apply the general result of [15].

The Betti numbers can be expressed by the h-vector of the orbit space

M/T , H⇤T (M) ⇠= Z[M/T ], and H⇤(M) ⇠= Z[M/T ]/(✓
1

, ..., ✓n), where

Z[M/T ] is the face ring of M/T , and (✓
1

, ..., ✓n) is the linear system

of parameters given by characteristic functions on M/T . In [12], Holm

and Pires discussed the topology of toric origami manifolds in a di↵erent

way under the assumption that each face of M/T is acyclic.

In this thesis, we study the topology of toric origami manifolds in

the case when each proper face of M/T is acyclic but M/T is arbitrary.

Much of this work is based on the joint project with A. Ayzenberg, M.

Masuda and S. Park [2].

This thesis is organized as follows. In Chapter 2 we first review the

basic definition and properties of toric origami manifolds and origami

templates. Then we state A. Cannas da Silva, V. Guillemin and A. R.

Pires’ classification theorem for toric origami manifolds.

In Chapter 3 we study the topology of orientable toric origami mani-

folds whose proper faces are acyclic. In Section 3.1 we give a formula to

express the Betti numbers of M in terms of the face numbers of M/T

and the first Betti number of M/T . In Section 3.2 we a give a formula to

calculate the equivariant cohomology ring of M in terms of the face ring

of M/T and the cohomology ring of M/T . In Section 3.3 we study the

restriction map ◆⇤ : H2j
T (M)! H2j(M) by Serre spectral sequence. It is

well-known that when M is a symplectic toric manifold, ◆⇤ is surjective,

but when M is a toric origami manifold, ◆⇤ is not surjective in general.
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Under the assumption that each proper face of M/T is acyclic, we show

that except in degree 2, ◆⇤ is surjective. In Section 3.4, we study the

product structure of H⇤(M) by the ring homomorphism

◆̄⇤ : H⇤T (M)/(⇡⇤(H2(BT )))! H⇤(M)

induced from the restriction map

◆⇤ : H⇤T (M)! H⇤(M).

In Section 3.5 we apply the arguments in Section 3.4 to 4 dimensional

case. In Section 3.6, we make some observations on non-acyclic cases.

In Chapter 4, we study the topology of non-orientable toric origami

manifolds. In Section 4.1 we study the cohomology groups of non-

orientable toric origami manifolds with coörientable folding hypersur-

face under the assumption that each proper face of M/T is acyclic. We

give a formula to express the cohomology groups of M in terms of the

face numbers of M/T and the first Betti number of M/T . In Section

4.2, we study the topology of the simplest type of non-orientable toric

origami manifolds with non-coörientable folding hypersurface. We ex-

press their cohomology groups by their corresponding orientable toric

origami manifolds and T -invariant divisors corresponding to the folded

facet.
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Chapter 2

Toric origami manifolds

2.1 Folded symplectic manifolds

First, let us review the definition of symplectic manifolds.

Definition. A symplectic form on a smooth manifold M is a nondegen-

erate closed 2-form ! 2 ⌦2(M), where nondegeneracy means that for

any q 2M

!q : Tq(M)⇥ Tq(M)! R

is nondegenerate. We call (M,!) is a symplectic manifold.

IfM is a symplectic manifold, thenM is of even dimension 2n, and !n

never vanishes. Hence a symplectic manifold is always orientable. More-

over, if M is compact, then !n is a nonzero element in H2n(M), which

implies that ! is nonzero in H2(M). Hence for a compact symplectic

manifold M , H2(M) 6= 0.

Example 2.1.1. On R2n, ! = dx
1

^ dy
1

+ ...+ dxn^ dyn is a symplectic

form, where (x
1

, ..., xn, y1, ..., yn) is the coordinate of R2n.

Example 2.1.2. Let M be a compact Riemann surface, then the area

form on M is a symplectic form on M .
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Theorem 2.1.1 (Darboux). Let (M,!) be a symplectic manifold and p

be a point in M. Then there is a coordinate chart (U, x
1

, x
2

, ..., xn, y1, ..., yn)

centered at p such that on U

! =
n

X

i=1

dxi ^ dyi.

If we allow !n to vanish in some place, then we have the following

definition of folded symplectic manifolds.

Definition. A folded symplectic form on a 2n dimensional manifold M

is a closed 2-form ! satisfying the following two conditions:

1. !n vanishes transversally on a submanifold i : Z ,!M ;

2. i⇤! has maximal rank, i.e. (i⇤!)n�1 does not vanish.

We call (M,!) a folded symplectic manifold and the submanifold Z is

called the folding hypersurface or fold.

We know that !n : M ! ^2nT ⇤M is a section of the line bundle

^2nT ⇤M over M . “Vanishes transversally” means that !n is transversal

to the zero section. Hence, if (!n)�1(0) 6= ;, then Z = (!n)�1(0) is a

M

^nT ⇤M

Figure 2.1: The blue parts denote the fold Z
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codimension 1 submanifold of M . This is why we call Z “folding hyper-

surface”. However, if (!n)�1(0) = ; then ! is a genuine symplectic form

on M , so folded symplectic manifolds are generalization of symplectic

manifolds.

For p 2 Z,

(i⇤!)p : TpZ ⇥ TpZ ! R

is a bilinear 2-form. “Maximal rank” means that this 2-form has rank

2n� 2, so (i⇤!)p has one-dimensional kernel.

Remark 2.1.1. The first condition does not imply the second condition;

see [8].

Example 2.1.3. On R2n, ! = x
1

dx
1

^ dy
1

+
Pn

k=2

dxk ^ dyk is a folded

symplectic form, since

!n = n!x
1

dx
1

^ dy
1

^ ... ^ dxn ^ dyn

and it vanishes transversally on the hyperplane Z = {x
1

= 0}.

Example 2.1.4. For n > 1, S2n ⇢ Cn�R cannot be a symplectic man-

ifold, since H2(S2n) = 0 for n > 1, but S2n admits a folded symplectic

form !
0

= (!Cn � 0)|S2n, where

!Cn =

p
�1
2

n
X

k=1

dzk ^ dzk.

It is not di�cult to check that !n
0

vanishes transversally on

Z = S2n�1 ⇢ Cn � 0.

Example 2.1.5. The Z
2

action on Cn � R given by

(z
1

, ..., zn, h) 7! (�z
1

, ...,�zn,�h),
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induces a Z
2

action, antipodal action, on S2n. Then it is not di�cult

to see that !
0

given in the last example is Z
2

-invariant, so it induces a

folded symplectic form e!
0

on RP 2n with the fold RP 2n�1 = {[x
1

: y
1

:

..., xn : yn : 0]}, where xi +
p
�1yi = zi, and

Pn
i=1

(x2i + y2i ) = 1.

The above example shows that a folded symplectic manifold can be

non-orientable, so this is another di↵erence between folded symplectic

manifolds and symplectic manifolds.

Similarly to the case of symplectic manifolds, we also have Darboux’s

theorem for folded symplectic manifolds (see [7], [8]): If (M,!) is a

folded symplectic manifold with the fold Z, then for any p 2 Z, there is

a coordinate chart centered at p where the form ! is

x
1

dx
1

^ dy
1

+ dx
2

^ dy
2

+ ...+ dxn ^ dyn.

2.2 Origami manifolds

Since i⇤! has maximal rank, for any p 2 Z, i⇤! has one-dimensional

kernel: the line field V on Z, called the null foliation. If we require that

Z is a principal circle bundle over a compact space B and the tangent

bundle TZ along the fiber direction coincides with the null foliation,

then we say that (M,!) is an origami manifold.

Definition. An origami manifold is a folded symplectic manifold (M,!)

whose null foliation is fibrating with oriented circle fibers, ⇡, over a

compact base B. The form ! is called an origami form and the null

foliation, i.e., the vertical bundle of ⇡ is called the null fibration.
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Z

?

?

y

⇡

B

Example 2.2.1. Let (R2n,!) be the folded symplectic manifold dis-

cussed in Example 2.1.3, then it is not an origami manifold, since the

fold Z is neither a circle bundle over some space nor compact.

Example 2.2.2. Let (S2n,!
0

) be the folded symplectic manifold dis-

cussed in Example 2.1.4, then it is an origami manifold. In fact,

!Cn =

p
�1
2

n
X

k=1

dzk ^ dzk = r
1

dr
1

^ d✓
1

+ ...rndrn ^ d✓n,

where (r
1

, ✓
1

, ..., rn, ✓n) is the polar coordinate system of Cn. The null

foliation is the Hopf fibration since

ı @
@✓1

+...+ @
@✓n
!
0

= �r
1

dr
1

� ...� rndrn

vanishes on Z, so we have S1 ,! S2n�1 ⇣ CP n�1.

Example 2.2.3. The folded symplectic manifold (RP 2n, e!
0

) discussed

in Example 2.1.5 also admits an origami structure. The null fibration is

S1 ,! RP 2n�1 ⇣ CP n�1.

Definition. Two (oriented) origami manifolds (M,!) and (fM, e!) are

symplectomorphic if there is a (orientation-preserving) di↵eomorphism

⇢ : M ! fM such that ⇢⇤e! = !

Definition. Let M be an origami manifold. We say that the folding
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hypersurface Z of M is coörientable, if each component of Z has an

orientable neighborhood.

2.3 Toric origami manifolds

Definition. Let G be a Lie group. We say that the action G on an

origami manifold (M,!) is symplectomorphic, if there is a group homo-

morphism  : G ! Di↵(M), such that  (g)⇤(!) = ! for each g 2 G.

Moreover, we say this action is e↵ective if Ker( ) = 1.

Definition. The action of a Lie group G on an origami manifold (M,!)

is Hamiltonian if it admits a moment map, µ : M ! g⇤ = (Lie(G))⇤,

that is,

1. µ collects Hamiltonian functions, i.e., for each X 2 g := Lie(G)

dhµ,Xi = ıX]!, , where X] is the vector field generated by X;

2. µ is equivariant with respect to the given action of G on M and the

coadjoint action of G on the dual vector space g⇤, i.e., the following

diagram is commutative.

M
µ��! g⇤

g

?

?

y

?

?

y

(Ad⇤g)

M
µ��! g⇤

Definition. A toric origami manifold (M,!, T, µ) is a compact con-

nected origami manifold (M,!) equipped with an e↵ective Hamiltonian

action of a torus T with dimT = 1

2

dimM and with a choice of a corre-

sponding moment map µ.
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Remark 2.3.1. When the fold Z = ;, (M,!, T, µ) is a symplectic toric

manifold (or a toric symplectic manifold), so toric origami manifolds are

generalization of symplectic toric manifolds.

Example 2.3.1. Let (S4,!
0

) be the origami manifold discussed in Ex-

ample 2.2.2. Then T = (S1)2 acts on S4 ⇢ C2 � R by

(t
1

, t
2

) · (z
1

, z
2

, r) = (t
1

z
1

, t
2

z
2

, r)

with moment map

µ(z
1

, z
2

, r) = (
|z

1

|2

2
,
|z

2

|2

2
).

Thus (S4,!
0

, T, µ) is a toric origami manifold.

Figure 2.2: The image µ(Z) of the folding hypersurface (the equator) is the hypotenuse

2.4 Delzant Theorem

A famous theorem of Delzant [10] tells us that there is a one-to-one

correspondence between the set of compact toric symplectic manifolds

and the set of Delzant polytopes. Before discussing about Delzant’s

result, first let us review the definition of Delzant polytopes.

Definition. A polytope of dimension n in Rn is Delzant if:

• it is simple, i.e., there are n edges meeting at each vertex;
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• it is rational, i.e., each edge meeting at vertex p is of the form

p+ tui t � 0, where ui 2 Zn;

• it is smooth, i.e., for each vertex, these u
1

, ..., un can be chosen to

be a Z-basis of Zn.

Example 2.4.1. In the following pictures, the right polytope is a Delzant

polytope, but the left one is not.

rational but not smooth Delzant

Theorem 2.4.1 (Delzant [10]). There is a one-to-one correspondence
⇢

compact toric

symplectic manifolds

�

1:1 ! {Delzant polytopes}

(M,!, T n, µ) 7�! µ(M).

Example 2.4.2. Let ! be the Fubini-Study form on CP 2. Then the

T 2-action on CP 2 given by

(ei✓1, ei✓2) · [z
0

: z
1

: z
2

] = [z
0

: ei✓1z
1

: ei✓2z
2

]

has moment map

µ[z
0

: z
1

: z
2

] = �1
2
(

|z
1

|2

|z
0

|2 + |z
1

|2 + |z
2

|2 ,
|z

2

|2

|z
0

|2 + |z
1

|2 + |z
2

|2 ).

(CP 2,!, T 2, µ)
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2.5 Origami templates

Recently, Cannas da Silva, Guilemin and Pires generlized Delzant The-

orem to toric origami manifolds. Before stating their classification the-

orem, we need to give the definition of origami templates. Roughly

speaking, an origami template is a collection of Delzant polytopes which

satisfy some compatibility conditions.

Definition. An n-dimensional origami template is a pair (P ,F), where

P is a (nonempty) finite collection of n-dimensional Delzant polytopes

and F is a collection of facets and pairs of facets of polytopes in P

satisfying the following properties:

• for each pair {F
1

, F
2

} 2 F , the corresponding polytopes in P agree

near those facets;

• if a facet F occurs in F , either by itself or as a member of a pair,

then neither F nor any of its neighboring facets occur elsewhere in

F ;

• the topological space constructed from the disjoint union t�i, �i 2

P , by identifying facet pairs in F is connected.

If we denote the elements in P by vertexes, and the elements in F by

edges, then we can give an equivalent definition of origami templates by

graphs.

Let Dn denote the set of all Delzant polytopes in Rn (w.r.t. a given

lattice), Fn — the set of all their facets and G a connected graph (loops

and multiple edges are allowed) with the vertex set V and the edge set

E.
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Definition. An n-dimensional origami template consists of a connected

graph G, called the template graph, and a pair of maps  V : V ! Dn

and  E : E ! Fn such that:

1. If e 2 E is an edge of G with endpoints v
1

, v
2

2 V , then  E(e) is

a facet of both polytopes  V (v1) and  V (v2), and these polytopes

coincide near  E(e) (this means that there exists an open neighbor-

hood U of  E(e) in Rn such that U \ V (v1) = U \ V (v2));

2. If e
1

, e
2

2 E are two edges of G adjacent to v 2 V , then  E(e1) and

 E(e2) are disjoint facets of  (v).

The facets of the form  E(e) for e 2 E are called the fold facets of

the origami template.

Denote by |(G, V , E)| the topological space, constructed from the

disjoint union
F

v2V  V (v) by identifying facets  E(e) ⇢  V (v1) and

 E(e) ⇢  V (v2) for any edge e 2 E with endpoints v
1

, v
2

.

Definition. An origami template (G, V , E) is called coörientable if

the graph G has no loops, i.e., all eges have di↵erent endpoints.

Definition. Let G = (V,E) be a graph, where V and E are the sets of

vertexes and edges respectively. We say that G = (V,E) is 2-colorable,

if there is a function f : V ! {0, 1} such that f(i) 6= f(j) whenever

{i, j} 2 E.

Example 2.5.1. In the following, the first graph is 2-colorable, but the

other two are not.
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Definition. An origami template (G, V , E) is called orientable if the

template graph G is 2-colorable.

It is not di�cult to see that if (G, V , E) is orientable, then so is

the resulting space |(G, V , E)|.

If a graph is 2-colorable, then it has no loops. Hence an orientable

origami template is always coörientable, but the converse is not true as

is shown in the following example.

Example 2.5.2. In the following pictures, we draw the origami tem-

plates on the left side and their associated template graphs on the right

side. We use the blue line and dashed line to denote the fold facets. The

first and the second origami templates are coörientable but the third one

is not. Although the second one is coörientable, it is not orientable, since

its template graph is not 2-colorable.
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2.6 The classification of toric origami manifolds

After the preliminary in the last section, we can talk about Cannas

da Silva, Guillemin and Pires’ classification theorem for toric origami

manifolds.

Theorem 2.6.1 ([7]). Toric origami manifolds are classified by origami

templates up to equivariant symplectomorphism preserving the moment

maps. More specifically, at the level of symplectomorphism classes (on

the left hand side), there is a one-to-one correpondence

{2n-diml toric origami manifolds} �! {n-diml origami templates}

(M 2n,!, T n, µ) 7�! µ(M).

Moreover, oriented toric origami manifolds correspond to oriented origami

templates and coöriented toric origami manifolds correspond to coöriented

origami templates.

Example 2.6.1. Consider the toric origami manifold discussed in Ex-

ample 2.3.1.

When 0  r  1, the image of the moment map

µ(z
1

, z
2

, r) = (
|z

1

|2

2
,
|z

2

|2

2
)

is a triangle and we color it by yellow and its hypotenuse by blue.
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When �1  r  0, the image of µ is also a triangle and we color

it by red and its hypotenuse also by blue. Now we have two copies of

triangles with the smae hypotenuse, the image of the equator under the

map µ. If we glue these two triangles along their hypotenuses, then we

can obtain an origami template, and the resulting space of this origami

template is homeomorphic to the orbit space S4/T 2 as a manifold with

corner.

Remark 2.6.1. Since µ : M ! Lie(T )⇤ is equivariant, it induces

a map M/T ! µ(M). We know that, when (M,!, T n, µ) is a sym-

plectic toric manifold, then the orbit space M/T n is homeomorphic

to µ(M). However, this is not true in general when M is a toric

origami manifold. For instance, consider the folded symplectic mani-

fold (T 2,! = sin ✓
1

d✓
1

^ d✓
2

), where the coordinates on the torus are

✓
1

, ✓
2

2 [0, 2⇡]. The circle action on ✓
2

coordinate is the usual rotation

and µ = � cos ✓
1

, so (T 2,!, S1, µ) is a toric origami manifold. It is not

di�cult to see that the image of µ is an interval while the orbit space

T 2/S1 is homeomorphic to S1. However, the orbit space M/T n is always

homeomorphic to the resulting space of the associated origami template

as a manifold with corners; see [7].
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Chapter 3

On the topology of toric origami

manifolds

In this chapter we will discuss the topological properties of toric origami

manifolds. It is well-known that the cohomology ring and equivariant

cohomology ring of a symplectic toric manifolds can be expressed in

terms of the corresponding Delzant polytope, so a natural question is to

describe the topological invariants of a toric origami manifold in terms of

corresponding origami template. In general, toric origami manifolds are

not simply connected, so it is more di�cult to calculate their topological

invariants than the case of symplectic toric manifolds. For the case that

M is orientable and the folding hypersurface Z is connected, H⇤(M) was

studied by Cannas da silva, Guillemin and Pires in [7]. Later, Holm and

Pires in [12] studied the case that M is orientable and each face of M/T

is acyclic. In this chapter we will discuss the topology of orientable toric

origami manifolds for the case that each proper face of M/T is acyclic

but M/T can be arbitary.
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3.1 Betti numbers of toric origami manifolds with acyclic

proper faces

Let M be an orientable toric origami manifold of dimension 2n with a

fold Z. Let F be the corresponding folded facet in the origami template

of M and let B be the symplectic toric manifold corresponding to F .

The normal line bundle of Z to M is trivial so that an invariant closed

tubular neighborhood of Z in M can be identified with Z ⇥ [�1, 1]. We

set

M̃ := M � Int(Z ⇥ [�1, 1]).

This has two boundary components which are copies of Z. We close

M̃ by gluing two copies of the disk bundle associated to the principal

S1-bundle Z ! B along their boundaries. The resulting closed manifold

(possibly disconnected), denoted M 0, is again a toric origami manifold

by [7] and the graph associated to M 0 is the graph associated to M with

the edge corresponding to the folded facet F removed.

Let G be the graph associated to the origami template of M and let

b
1

(G) be its first Betti number. We assume that b
1

(G) � 1. A folded

facet in the origami template of M corresponds to an edge of G. We

choose an edge e in a (non-trivial) cycle of G and let F , Z and B be

respectively the folded facet, the fold and the symplectic toric manifold

corresponding to the edge e. Then M 0 is connected and since the graph

G0 associated to M 0 is the graph G with the edge e removed, we have

b
1

(G0) = b
1

(G)� 1.

Two copies of B lie in M 0 as closed submanifolds, denoted B
+

and
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B�. Let N+

(resp. N�) be an invariant closed tubular neighborhood of

B
+

(resp. B�) and Z
+

(resp. Z�) be the boundary of N
+

(resp. N�).

Note that M 0 � Int(N
+

[ N�) can naturally be identified with M̃ , so

that

M̃ = M 0 � Int(N
+

[N�) = M � Int(Z ⇥ [�1, 1])

and

M 0 = M̃ [ (N
+

[N�), M̃ \ (N
+

[N�) = Z
+

[ Z�, (3.1.1)

M = M̃ [ (Z ⇥ [�1, 1]), M̃ \ (Z ⇥ [�1, 1]) = Z
+

[ Z�. (3.1.2)

Remark 3.1.1. It follows from (3.1.1) and (3.1.2) that

�(M 0) = �(M̃) + 2�(B), �(M) = �(M̃)

and hence �(M 0) = �(M)+2�(B). Note that this formula holds without

the acyclicity assumption (made later) on proper faces of M/T .

We shall investigate relations among the Betti numbers ofM,M 0, M̃ , Z

and B. The spaces M̃ and Z are auxiliary ones and our aim is to find

relations among the Betti numbers of M,M 0 and B. In the following,

all cohomology groups and Betti numbers are taken with Z-coe�cients

unless otherwise stated but the reader will find that the same argument

works over any field.

Lemma 3.1.1. The Betti numbers of Z and B have the relation

b
2i(Z)� b

2i�1(Z) = b
2i(B)� b

2i�2(B)

for any i.

Proof. Since ⇡ : Z ! B is a principal S1-bundle and Hodd(B) = 0, the
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Gysin exact sequence for the principal S1-bundle splits into a short exact

0! H2i�1(Z)! H2i�2(B)! H2i(B)
⇡⇤
�! H2i(Z)! 0 for any i

(3.1.3)

and this implies the lemma.

Lemma 3.1.2. The Betti numbers of M̃ , M 0, and B have the relation

b
2i(M̃)� b

2i�1(M̃) = b
2i(M

0)� b
2i�1(M

0)� 2b
2i�2(B)

for any i.

Proof. We consider the Mayer-Vietoris exact sequence in cohomology

for the triple (M 0, M̃ , N
+

[N�):

!H2i�2(M 0)!H2i�2(M̃)�H2i�2(N
+

[N�)!H2i�2(Z
+

[ Z�)

�2i�2

��!H2i�1(M 0)!H2i�1(M̃)�H2i�1(N
+

[N�)!H2i�1(Z
+

[ Z�)

�2i�1

��!H2i(M 0) !H2i(M̃)�H2i(N
+

[N�) !H2i(Z
+

[ Z�)

�2i�!H2i+1(M 0)!

Since the inclusions B = B± 7! N± are homotopy equivalences and

Z± = Z, the restriction homomorphism Hq(N
+

[N�) ! Hq(Z
+

[ Z�)

above can be replaced by ⇡⇤ � ⇡⇤ : Hq(B) �Hq(B) ! Hq(Z) �Hq(Z)

which is surjective for even q from the sequence (3.1.3). Therefore, �2i�2

and �2i in the exact sequence above are trivial. It follows that

b
2i�1(M

0)� b
2i�1(M̃)� 2b

2i�1(B) + 2b
2i�1(Z)

�b
2i(M

0) + b
2i(M̃) + 2b

2i(B)� 2b
2i(Z) = 0.

Here b
2i�1(B) = 0 becauseB is a symplectic toric manifold, and 2b

2i�1(Z)+

2b
2i(B) � 2b

2i(Z) = 2b
2i�2(B) by Lemma 3.1.1. Using these identities,

the identity above reduces to the identity in the lemma.
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Next we consider the Mayer-Vietoris exact sequence in cohomology

for the triple (M, M̃, Z ⇥ [�1, 1]):

!H2i�2(M)!H2i�2(M̃)�H2i�2(Z ⇥ [�1, 1])!H2i�2(Z
+

[ Z�)

!H2i�1(M)!H2i�1(M̃)�H2i�1(Z ⇥ [�1, 1])!H2i�1(Z
+

[ Z�)

!H2i(M) !H2i(M̃)�H2i(Z ⇥ [�1, 1]) !H2i(Z
+

[ Z�)!

We make the following assumption:

(⇤) The restriction map H2j(M̃)�H2j(Z⇥ [�1, 1])! H2j(Z
+

[

Z�) in the Mayer-Vietoris sequence above is surjective for j � 1.

Note that the restriction map above is not surjective when j = 0 because

the image is the diagonal copy of H0(Z) in this case and we will see

in Lemma 3.1.5 below that the assumption (⇤) is satisfied when every

proper face of M/T is acyclic.

Lemma 3.1.3. Suppose that the assumption (⇤) is satisfied. Then

b
2

(M̃)� b
1

(M̃) = b
2

(M)� b
1

(M) + b
2

(B),

b
2i(M̃)� b

2i�1(M̃) = b
2i(M)� b

2i�1(M) + b
2i(B)� b

2i�2(B) for i � 2.

Proof. By the assumption (⇤), the Mayer-Vietoris exact sequence for the

triple (M, M̃, Z ⇥ [�1, 1]) splits into short exact sequences:

0!H0(M)!H0(M̃)�H0(Z ⇥ [�1, 1])!H0(Z
+

[ Z�)

!H1(M)!H1(M̃)�H1(Z ⇥ [�1, 1])!H1(Z
+

[ Z�)

!H2(M)!H2(M̃)�H2(Z ⇥ [�1, 1])!H2(Z
+

[ Z�)! 0

and for i � 2

0!H2i�1(M)!H2i�1(M̃)�H2i�1(Z ⇥ [�1, 1])!H2i�1(Z
+

[ Z�)

!H2i(M) !H2i(M̃)�H2i(Z ⇥ [�1, 1]) !H2i(Z
+

[ Z�)! 0.
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The former short exact sequence above yields

b
2

(M̃)� b
1

(M̃) = b
2

(M)� b
1

(M) + b
2

(Z)� b
1

(Z) + 1

while the latter above yields

b
2i(M̃)� b

2i�1(M̃) = b
2i(M)� b

2i�1(M) + b
2i(Z)� b

2i�1(Z) for i � 2.

Here b
2i(Z)� b

2i�1(Z) = b
2i(B)� b

2i�2(B) for any i by Lemma 3.1.1, so

our lemma follows.

Lemma 3.1.4. Suppose that the assumption (⇤) is satisfied and n � 2.

Then

b
1

(M 0) = b
1

(M)� 1, b
2

(M 0) = b
2

(M) + b
2

(B) + 1,

b
2i+1

(M 0) = b
2i+1

(M) for 1  i  n� 2.

Proof. It follows from Lemma 3.1.2 and Lemma 3.1.3 that

b
2i(M

0)� b
2i�1(M

0) = b
2i(M)� b

2i�1(M) + b
2i(B) + b

2i�2(B) for i � 2.

(3.1.4)

Take i = n in (3.1.4) and use Poincaré duality. Then we obtain

b
0

(M 0)� b
1

(M 0) = b
0

(M)� b
1

(M) + b
0

(B)

which reduces to the first identity in the lemma. This together with the

first identity in Lemma 3.1.3 implies the second identity in the lemma.

Similarly, take i = n � 1(� 2) in (3.1.4) and use Poincaré duality.

Then we obtain

b
2

(M 0)� b
3

(M 0) = b
2

(M)� b
3

(M) + b
0

(B) + b
2

(B).

This together with the second identity in the lemma implies b
3

(M 0) =

b
3

(M).
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Take i to be n � i in (3.1.4) (so 2  i  n � 2) and use Poincaré

duality. Then we obtain

b
2i(M

0)� b
2i+1

(M 0) = b
2i(M)� b

2i+1

(M) + b
2i�2(B) + b

2i(B).

This together with (3.1.4) implies

b
2i+1

(M 0)� b
2i�1(M

0) = b
2i+1

(M)� b
2i�1(M) for 2  i  n� 2.

Since we know b
3

(M 0) = b
3

(M), this implies the last identity in the

lemma.

The following is a key lemma.

Lemma 3.1.5. Suppose that every proper face of M/T is acyclic. Then

the homomorphism H2j(M̃)! H2j(Z
+

[Z�) induced from the inclusion

is surjective for j � 1, in particular, the assumption (⇤) is satisfied.

Proof. Since B
+

[B� is a deformation retract of N
+

[N�, the following

diagram is commutative:

H2j(M 0) ��! H2j(B
+

[B�)
?

?

y

?

?

y

⇡⇤
±

H2j(M̃) ��! H2j(Z
+

[ Z�)

where ⇡± : Z+

[ Z� ! B
+

[ B� is the projection and the other homo-

morphisms are induced from the inclusions. By (3.1.3) ⇡⇤± is surjective,

so it su�ces to show that the homomorphism H2j(M 0)! H2j(B
+

[B�)

is surjective for j � 1.

The inverse image of a codimension j face of M 0/T by the quotient

map M 0 ! M 0/T is a codimension 2j closed orientable submanifold

of M 0 and defines an element of H
2n�2j(M 0) so that its Poincaré dual

yields an element of H2j(M 0). The same is true for B = B
+

or B�.
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Note that H2j(B) is additively generated by ⌧K ’s where K runs over all

codimension j faces of F = B/T .

Set F± = B±/T , which are copies of the folded facet F = B/T . Let

K
+

be any codimension j face of F
+

. Then there is a codimension j face

L of M 0/T such that K
+

= L\F
+

. We note that L\F� = ;. Indeed, if

L\F� 6= ;, then L\F� must be a codimension j face of F�, say H�. If

H� is the copy K� of K
+

, then L will create a codimension j non-acyclic

face of M/T which contradicts the acyclicity assumption on proper faces

of M/T . Therefore, H� 6= K�. However, F± are respectively facets of

some Delzant polytopes, say P±, and the neighborhood of F
+

in P
+

is

same as that of F� in P� by definition of an origami template (although

P
+

and P� may not be isomorphic). Let H̄ and K̄ be the codimension

j faces of P� such that H̄ \F = H� and K̄ \F = K�. Since H� 6= K�,

the normal cones of H̄ and K̄ are di↵erent. However, these normal cones

must agree with that of L because L \ F
+

= K
+

and L \ F� = H� and

the neighborhood of F
+

in P
+

is same as that of F� in P�. This is a

contradiction.

The codimension j face L ofM 0/T associates an element ⌧L 2 H2j(M 0).

Since L \ F
+

= K
+

and L \ F� = ;, the restriction of ⌧L to H2j(B
+

[

B�) = H2j(B
+

) � H2j(B�) is (⌧K+, 0), where ⌧K+ 2 H2j(B
+

) is asso-

ciated to K
+

. Since H2j(B
+

) is additively generated by ⌧K+’s where

K
+

runs over all codimension j faces of F
+

, for each element (x
+

, 0) 2

H2j(B
+

)�H2j(B�) = H2j(B [B�), there is an element y
+

2 H2j(M 0)

whose restriction image is (x
+

, 0). The same is true for each element

(0, x�) 2 H2j(B
+

)�H2j(B�). This implies the lemma.
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Finally we obtain the following.

Theorem 3.1.1. Let M be an orientable toric origami manifold of di-

mension 2n (n � 2) such that every proper face of M/T is acyclic.

Then

b
2i+1

(M) = 0 for 1  i  n� 2. (3.1.5)

Moreover, if M 0 and B are as above, then

b
1

(M 0) = b
1

(M)� 1 (hence b
2n�1(M

0) = b
2n�1(M)� 1 by Poincaré duality),

b
2i(M

0) = b
2i(M) + b

2i(B) + b
2i�2(B) for 1  i  n� 1.

(3.1.6)

Finally, H⇤(M) is torsion free.

Proof. We have b
1

(M 0) = b
1

(M) � 1 by Lemma 3.1.4. Therefore, if

b
1

(M) = 1, then b
1

(M 0) = 0, that is, the graph associated to M 0 is

acyclic and hence bodd(M 0) = 0 by [12] (or [15]). This together with

Lemma 3.1.4 shows that b
2i+1

(M) = 0 for 1  i  n�2 when b
1

(M) = 1.

If b
1

(M) = 2, then b
1

(M 0) = 1 so that b
2i+1

(M 0) = 0 for 1  i  n � 2

by the observation just made and hence b
2i+1

(M) = 0 for 1  i  n� 2

by Lemma 3.1.4. Repeating this argument, we see (3.1.5).

The relations in (3.1.6) follows from Lemma 3.1.4 and (3.1.4) together

with the fact b
2i+1

(M) = 0 for 1  i  n� 2.

As we remarked before Lemma 3.1.1, the arguments developed in

this section work with any field coe�cients, in particular with Z/p-

coe�cients for any prime p, and hence (3.1.5) and (3.1.6) hold for

Betti numbers with Z/p-coe�cients, so the Betti numbers of M with

Z-coe�cients agree with the Betti numbers of M with Z/p-coe�cients

for any prime p. This implies that H⇤(M) has no torsion.
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As for H1(M), we have a clear geometrical picture.

Proposition 3.1.1. Let M be an orientable toric origami manifold of

dimension 2n (n � 2) such that every proper face of M/T is acyclic. Let

Z
1

, . . . , Zb1 be folds in M such that the graph associated to the origami

template of M with the b
1

edges corresponding to Z
1

, . . . , Zb1 removed

is a tree. Then Z
1

, . . . , Zb1 freely generate H
2n�1(M), equivalently, their

Poincaré duals z
1

, . . . , zb1 freely generate H1(M). Furthermore, all the

products generated by z
1

, . . . , zb1 are trivial because Z
1

, . . . , Zb1 are dis-

joint and the normal bundle of Zj is trivial for each j.

Proof. We will prove the proposition by induction on b
1

. When b
1

= 0,

the proposition is trivial; so we may assume b
1

� 1. Let Z and M 0 be as

before. Since b
1

(M 0) = b
1

� 1, there are folds Z
1

, . . . , Zb1�1 in M 0 such

that Z
1

, . . . , Zb1�1 freely generate H
2n�1(M 0) by induction assumption.

The folds Z
1

, . . . , Zb1�1 are naturally embedded in M and we will prove

that these folds together with Z freely generate H
2n�1(M).

We consider the Mayer-Vietoris exact sequence for a triple (M, M̃, Z⇥

[�1, 1]):

0! H
2n(M)

@⇤�! H
2n�1(Z+

[ Z�)
◆1⇤�◆2⇤����! H

2n�1(M̃)�H
2n�1(Z ⇥ [�1, 1])

! H
2n�1(M)

@⇤�! H
2n�2(Z+

[ Z�)
◆1⇤�◆2⇤����! H

2n�2(M̃)�H
2n�2(Z ⇥ [�1, 1])

where ◆
1

and ◆
2

are the inclusions. Since ◆⇤
1

: H2n�2(M̃) ! H2n�2(Z
+

[

Z�) is surjective by Lemma 3.1.5, ◆
1⇤ : H2n�2(Z+

[ Z�) ! H
2n�2(M̃)

is injective when tensored with Q. However, H⇤(Z) has no torsion in

odd degrees because H2i�1(Z) is a subgroup of H2i�2(B) for any i by

(3.1.3) and H⇤(B) is torsion free. Therefore, H⇤(Z) has no torsion in

even degrees. Therefore, ◆
1⇤ : H2n�2(Z+

[ Z�) ! H
2n�2(M̃) is injective
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without tensoring with Q and hence the above exact sequence reduces

to this short exact sequence:

0! H
2n(M)

@⇤�! H
2n�1(Z+

[ Z�)
◆1⇤�◆2⇤����! H

2n�1(M̃)�H
2n�1(Z ⇥ [�1, 1])

! H
2n�1(M)! 0.

Noting @⇤([M ]) = [Z
+

] � [Z�] and ◆
2⇤([Z±]) = [Z], one sees that the

above short exact sequence implies an isomorphism

◆⇤ : H2n�1(M̃) ⇠= H
2n�1(M) (3.1.7)

where ◆ : M̃ !M is the inclusion map.

We consider the Mayer-Vietoris exact sequence for a triple (M 0, M̃ , N
+

[

N�):

0! H
2n(M

0)
@0⇤�! H

2n�1(Z+

[ Z�)
◆1⇤�◆3⇤����! H

2n�1(M̃)�H
2n�1(N+

[N�)

! H
2n�1(M

0)
@0⇤�! H

2n�2(Z+

[ Z�)
◆1⇤�◆3⇤����! H

2n�2(M̃)�H
2n�2(N+

[N�)

where ◆
3

is the inclusion map of the unit sphere bundle in N
+

[N�. Note

that H
2n�1(N+

[N�) = H
2n�1(B+

[B�) = 0 and ◆
1⇤ : H2n�2(Z+

[Z�)!

H
2n�2(M̃) is injective as observed above. Therefore, the above exact

sequence reduces to this short exact sequence:

0! H
2n(M

0)
@0⇤�! H

2n�1(Z+

[ Z�)
◆1⇤�! H

2n�1(M̃)
◆⇤�! H

2n�1(M
0)! 0.

Here @⇤([M ]) = [Z
+

]�[Z�] andH
2n�1(M 0) is freely generated by Z

1

, . . . , Zb1�1

by induction assumption. Therefore, the above short exact sequence im-

plies that

H
2n�1(M̃) is freely generated by Z

1

, . . . , Zb1�1 and Z
+

(or Z�).

This together with (3.1.7) completes the induction step and proves the

lemma.
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Next we describe b
2i(M) in terms of the face numbers of M/T and

b
1

(M). Let P be the simplicial poset dual to @(M/T ). As usual, we

define

fi = the number of (n� 1� i)-faces of M/T

= the number of i-simplices in P for i = 0, 1, . . . , n� 1

and the h-vector (h
0

, h
1

, . . . , hn) by

n
X

i=0

hit
n�i = (t� 1)n +

n�1
X

i=0

fi(t� 1)n�1�i. (3.1.8)

Example 3.1.1. Let (M,!, T, µ) be a toric origami and the follow-

ing picture is the associated origami template, whose resulting space is

homeomorphic to M/T as a manifold with corners. It has 8 vertexes

Figure 3.1: The origami template with four polygons

and 8 edges so f
1

= 8 and f
0

= 8. Hence the f -vector is (f
0

, f
1

) = (8, 8)

and the h-vector is (h
0

, h
1

, h
2

) = (1, 6, 1).

Theorem 3.1.2. Let M be an orientable toric origami manifold of di-

mension 2n such that every proper face of M/T is acyclic. Let bj be

the j-th Betti number of M and (h
0

, h
1

, . . . , hn) be the h-vector of M/T .

Then
n

X

i=0

b
2it

i =
n

X

i=0

hit
i + b

1

(1 + tn � (1� t)n),

34



in other words, b
0

= h
0

= 1 and

b
2i = hi � (�1)i

✓

n

i

◆

b
1

for 1  i  n� 1,

b
2n = hn + (1� (�1)n)b

1

.

Remark 3.1.2. We have hn = (�1)n+
Pn�1

i=0

(�1)n�1�ifi by (3.1.8) and

�(@(M/T )) =
Pn�1

i=0

(�1)ifi because every proper face ofM/T is acyclic.

Therefore, hn = (�1)n�(�1)n�(@(M/T )). Since b
2n = 1, it follows from

the last identity in Theorem 3.1.2 that

�(@(M/T ))� �(Sn�1) = ((�1)n � 1)b
1

.

Moreover, since b
2i = b

2n�2i, we have

hn�i � hi = (�1)i((�1)n � 1)b
1

✓

n

i

◆

= (�1)i(�(@(M/T ))� �(Sn�1))

✓

n

i

◆

for 0  i  n.

These are generalized Dehn-Sommerville relations for @(M/T ) (or for

the simplicial poset P), see [21, p. 74] or [5, Theorem 7.44].

For a manifold Q of dimension n with corners (or faces), we define

the f -polynomial and h-polynomial of Q by

fQ(t) = tn +
n�1
X

i=0

fi(Q)tn�1�i, hQ(t) = fQ(t� 1)

as usual.

Lemma 3.1.6. The h-polynomials of M 0/T , M/T , and F have the re-

lation hM 0/T (t) = hM/T (t) + (t+ 1)hF (t)� (t� 1)n. Therefore

tnhM 0/T (t
�1) = tnhM/T (t

�1) + (1 + t)tn�1hF (t
�1)� (1� t)n.

Proof. In the proof of Lemma 3.1.5 we observed that no facet of M 0/T

intersects with both F
+

and F�. This means that no face of M 0/T
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intersects with both F
+

and F� because every face of M 0/T is contained

in some facet of M 0/T . Noting this fact, one can find that

fi(M
0/T ) = fi(M/T ) + 2fi�1(F ) + fi(F ) for 0  i  n� 1

where F is the folded facet and fn�1(F ) = 0. Therefore,

fM 0/T (t) = tn +
n�1
X

i=0

fi(M
0/T )tn�1�i

= tn +
n�1
X

i=0

fi(M
0/T )ti + 2

n�1
X

i=0

fi�1(F )tn�1�i +
n�2
X

i=0

fi(F )tn�1�i

= fM/T (t) + 2fF (t) + tfF (t)� tn.

Replacing t by t�1 in the identity above, we obtain the former identity

in the lemma. Replacing t by t�1 in the former identity and multiplying

the resulting identity by tn, we obtain the latter identity.

Proof of Theorem 3.1.2. Since
Pn

i=0

hi(M/T )ti = tnhM/T (t
�1), Theo-

rem 3.1.2 is equivalent to
n

X

i=0

b
2i(M)ti = tnhM/T (t

�1) + b
1

(M)(1 + tn � (1� t)n). (3.1.9)

We shall prove (3.1.9) by induction on b
1

(M). The identity (3.1.9) is

well-known when b
1

(M) = 0. Suppose that k = b
1

(M) is a positive

integer and the identity (3.1.9) holds for M 0 with b
1

(M 0) = k� 1. Then

n
X

i=0

b
2i(M)ti

=1 + tn +
n�1
X

i=1

(b
2i(M

0)� b
2i(B)� b

2i�2(B))ti (by Theorem 3.1.1)
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=
n

X

i=0

b
2i(M

0)ti � (1 + t)
n�1
X

i=0

b
2i(B)ti + 1 + tn

=tnhM 0/T (t
�1) + b

1

(M 0)(1 + tn � (1� t)n)� (1 + t)tn�1hF (t
�1) + 1 + tn

(by (3.1.9) applied to M 0)

=tnhM/T (t
�1) + b

1

(M)(1 + tn � (1� t)n)

(by Lemma 3.1.6 and b
1

(M 0) = b
1

(M)� 1),

proving (3.1.9) for M . This completes the induction step and the proof

of Theorem 3.1.2.

Example 3.1.2. Consider the toric origami manifold discussed in Ex-

ample 3.1.1. By Theorem 3.1.2 we have

b
0

= b
4

= 1, b
1

= b
3

= 1 and b
2

= 8.

3.2 Equivariant cohomology and face ring

A torus manifold M of dimension 2n is an orientable connected closed

smooth manifold with an e↵ective smooth action of an n-dimensional

torus T having a fixed point ([11]). An orientable toric origami manifold

with acyclic proper faces in the orbit space has a fixed point, so it is a

torus manifold. The action of T on M is called locally standard if every

point of M has a T -invariant open neighborhood equivariantly di↵eo-

morphic to a T -invariant open set of a faithful representation space of

T . Then the orbit space M/T is a nice manifold with corners. The torus

action on an orientable toric origami manifold is locally standard. In

this section, we study the equivariant cohomology of a locally standard

torus manifold with acyclic proper faces of the orbit space.
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We review some facts from [15]. Let Q be a nice manifold with corners

of dimension n. Let R be a ground commutative ring with unit. We

denote by G _ H the unique minimal face of Q that contains both G

and H. The face ring R[Q] of Q is a graded ring defined by

R[Q] := R[vF : F a face]/IQ

where deg vF = 2 codimF and IQ is the ideal generated by all elements

vGvH � vG_H
X

E2G\H
vE.

For each vertex p 2 Q the restriction map sp is defined as the quotient

map

sp : R[Q]! R[Q]/(vF : p /2 F )

and it is proved in [15, Proposition 5.5] that the image sp(R[Q]) is the

polynomial ring R[vQi1
, . . . , vQin

] where Qi1, . . . , Qin are the n di↵erent

facets containing p.

Lemma 3.2.1 (Lemma 5.6 in [15]). If every face of Q has a vertex,

then the sum s = �psp of restriction maps over all vertices p 2 Q is a

monomorphism from R[Q] to the sum of polynomial rings.

In particular, R[Q] has no nonzero nilpotent element if every face of

Q has a vertex. It is not di�cult to see that every face of Q has a vertex

if every proper face of Q is acyclic.

Let M be a locally standard torus manifold. Then the orbit space

M/T is a nice manifold with corners. Let q : M !M/T be the quotient

map. Note that M � := M � q�1(@(M/T )) is the T -free part. The

projection ET ⇥M ! M induces a map q̄ : ET ⇥T M ! M/T , where
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ET denotes the total space of the universal principal T -bundle and

ET ⇥T M denotes the orbit space of ET ⇥M by the diagonal T -action

on ET ⇥M . Similarly we have a map q̄� : ET ⇥T M � ! M �/T . The

exact sequence of the equivariant cohomology groups for a pair (M,M�)

together with the maps q̄ and q̄� produces the following commutative

diagram:

H⇤T (M,M�)
⌘⇤��! H⇤T (M)

◆⇤��! H⇤T (M
�)

q̄⇤
x

?

?

x

?

?

(q̄�)
⇤

H⇤(M/T )
◆̄⇤��! H⇤(M �/T )

where ⌘, ◆ and ◆̄ are the inclusions andH⇤T (X, Y ) := H⇤(ET⇥TX,ET⇥T

Y ) for a T -space X and its T -subspace Y as usual. Since the T -action

on M � is free and ◆̄ : M �/T !M/T is a homotopy equivalence, we have

graded ring isomorphisms

H⇤T (M
�)

((q̄�)⇤)�1

�����! H⇤(M �/T )
(◆̄⇤)�1

���! H⇤(M/T ) (3.2.1)

and the composition ⇢ := q̄⇤ � (◆̄⇤)�1 � ((q̄�)⇤)�1, which is a graded ring

homomorphism, gives the right inverse of ◆⇤, so the exact sequence above

splits. Therefore, ⌘⇤ and q̄⇤ are both injective and

H⇤T (M) = ⌘⇤(H⇤T (M,M�))� ⇢(H⇤T (M �)) as graded groups. (3.2.2)

Note that both factors at the right hand side above are graded subrings

of H⇤T (M) because ⌘⇤ and ⇢ are both graded ring homomorphisms.

Let P be the poset dual to the face poset of M/T as before. Then

Z[P ] = Z[M/T ] by definition.

Proposition 3.2.1. Suppose every proper face of the orbit space M/T

is acyclic, and the free part of the action gives a trivial principal bundle
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M � !M �/T . Then H⇤T (M) ⇠= Z[P ]� H̃⇤(M/T ) as graded rings.

Proof. Let R be the cone of @(M/T ) and let MR = MR(⇤) be the T -

space R⇥T/ ⇠ where we use the characteristic function ⇤ obtained from

M for the identification ⇠. Let M �
R be the T -free part of MR. Since the

free part of the action on M is trivial, we have M �M � = MR �M �
R.

Hence,

H⇤T (M,M �) ⇠= H⇤T (MR,M
�
R) as graded rings (3.2.3)

by excision. Since H⇤T (M
�
R)
⇠= H⇤(M �

R/T )
⇠= H⇤(R) and R is a cone,

H⇤T (M
�
R) is isomorphic to the cohomology of a point. Therefore,

H⇤T (MR,M
�
R)
⇠= H⇤T (MR) as graded rings in positive degrees. (3.2.4)

On the other hand, the dual decomposition on the geometric real-

ization |P| of P defines a face structure on the cone P of P . Let

MP = MP (⇤) be the T -space P ⇥ T/ ⇠ defined as before. Then a

similar argument to that in [9, Theorem 4.8] shows that

H⇤T (MP ) ⇠= Z[P ] as graded rings (3.2.5)

(this is mentioned as Proposition 5.13 in [15]). Since every face of P

is a cone, one can construct a face preserving degree one map from R

to P which induces an equivariant map f : MR ! MP . Then a similar

argument to the proof of Theorem 8.3 in [15] shows that f induces a

graded ring isomorphism

f ⇤ : H⇤T (MP )
⇠
=�! H⇤T (MR) (3.2.6)

since every proper face of R is acyclic. It follows from (3.2.3), (3.2.4),
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(3.2.5) and (3.2.6) that

H⇤T (M,M�) ⇠= Z[P ] as graded rings in positive degrees. (3.2.7)

Thus, by (3.2.1) and (3.2.2) it su�ces to prove that the cup product

of any a 2 ⌘⇤(H⇤T (M,M�)) and any b 2 ⇢(H̃⇤T (M
�)) is trivial. Since

◆⇤(a) = 0 (as ◆⇤ � ⌘⇤ = 0), we have ◆⇤(a [ b) = ◆⇤(a) [ ◆⇤(b) = 0 and

hence a [ b lies in ⌘⇤(H⇤T (M,M�)). Since ⇢(H⇤T (M
�)) ⇠= H⇤(M/T ) as

graded rings by (3.2.1) and Hm(M/T ) = 0 for a su�ciently large m,

(a[b)m = ±am[bm = 0. However, we know that a[b 2 ⌘⇤(H⇤T (M,M�))

and ⌘⇤(H⇤T (M,M �)) ⇠= Z[P ] in positive degrees by (3.2.7). Since Z[P ]

has no nonzero nilpotent element as remarked before, (a [ b)m = 0

implies a [ b = 0.

As discussed in [15, Section 6], there is a homomorphism

' : Z[P ] = Z[M/T ]! Ĥ⇤T (M) := H⇤T (M)/H⇤(BT )-torsions. (3.2.8)

In fact, ' is defined as follows. For a codimension k face F of M/T ,

q�1(F ) =: MF is a connected closed T -invariant submanifold of M of

codimension 2k, and ' assigns vF 2 Z[M/T ] to the equivariant Poincaré

dual ⌧F 2 H2k
T (M) of MF . One can see that ' followed by the restriction

map to H⇤T (M
T ) can be identified with the map s in Lemma 3.2.1.

Therefore, ' is injective if every face of Q has a vertex as mentioned in

[15, Lemma 6.4].

Proposition 3.2.2. Let M be a torus manifold with a locally standard

torus action. If every proper face of M/T is acyclic and the free part of

action gives a trivial principal bundle, then the H⇤(BT )-torsion submod-
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ule of H⇤T (M) agrees with q̄⇤(H̃⇤(M/T )), where q̄ : ET ⇥T M !M/T is

the map mentioned before.

Proof. First we prove that all elements in q̄⇤(H̃⇤(M/T )) are H⇤(BT )-

torsions. We consider the following commutative diagram:

H⇤T (M)
 ⇤

��! H⇤T (M
T )

q̄⇤
x

?

?

x

?

?

H⇤(M/T )
¯ ⇤

��! H⇤(MT )

where the horizontal maps  ⇤ and  ̄⇤ are restrictions to MT and the

right vertical map is the restriction of q̄⇤ to MT . Since MT is isolated,

 ̄⇤(H̃⇤(M/T )) = 0. This together with the commutativity of the above

diagram shows that q̄⇤(H̃⇤(M/T )) maps to zero by  ⇤. This means that

all elements in q̄⇤(H̃⇤(M/T )) are H⇤(BT )-torsions because the kernel

of  ⇤ are H⇤(BT )-torsions by the Localization Theorem in equivariant

cohomology.

On the other hand, since every face of M/T has a vertex, the map '

in (3.2.8) is injective as remarked above. Hence, by Proposition 3.2.1,

there are no other H⇤(BT )-torsion elements.

We conclude this section with observation on the orientability ofM/T .

Lemma 3.2.2. Let M be a closed smooth manifold of dimension 2n with

a locally standard smooth action of the n-dimensional torus T . Then

M/T is orientable if and only if M is.

Proof. Since M/T is a manifold with corners and M �/T is its interior,

M/T is orientable if and only if M �/T is. On the other hand, M is ori-

entable if and only if M � is. Indeed, since the complement of M � in M
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is the union of finitely many codimension-two submanifolds, the inclu-

sion ◆ : M � ! M induces an epimorphism on their fundamental groups

and hence on their first homology groups with Z/2-coe�cients. Then

it induces a monomorphism ◆⇤ : H1(M ;Z/2) ! H1(M �;Z/2) because

H1(X;Z/2) = Hom(H
1

(X;Z/2);Z/2). Since ◆⇤(w
1

(M)) = w
1

(M �) and

◆⇤ is injective, w
1

(M) = 0 if and only if w
1

(M �) = 0. This means that

M is orientable if and only if M � is.

Thus, it su�ces to prove that M �/T is orientable if and only if M �

is. But, since M �/T can be regarded as the quotient of an iterated free

S1-action, it su�ces to prove the following general fact: for a principal

S1-bundle ⇡ : E ! B where E and B are both smooth manifolds, B is

orientable if and only if E is. First we note that the tangent bundle of

E is isomorphic to the Whitney sum of the tangent bundle along the

fiber ⌧fE and the pullback of the tangent bundle of B by ⇡. Since the

free S1-action on E yields a nowhere zero vector field along the fibers,

the line bundle ⌧fE is trivial. Therefore

w
1

(E) = ⇡⇤(w
1

(B)). (3.2.9)

We consider the Gysin exact sequence for our S1-bundle:

! H�1(B;Z/2)! H1(B;Z/2) ⇡⇤
�! H1(E,Z/2)! H0(B;Z/2)! .

Since H�1(B;Z/2) = 0, the exact sequence above tells us that the map

⇡⇤ : H1(B;Z/2) ! H1(E;Z/2) is injective. This together with (3.2.9)

shows that w
1

(E) = 0 if and only if w
1

(B) = 0, proving the desired

fact.
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3.3 Serre spectral sequence

Let M be an orientable toric origami manifold M of dimension 2n such

that every proper face of M/T is acyclic. Note that M �/T is homotopy

equivalent to a graph, hence does not admit nontrivial torus bundles.

Thus the free part of the action gives a trivial principal bundle M � !

M �/T , and we may apply the results of the previous section.

We consider the Serre spectral sequence of the fibration ⇡ : ET ⇥T

M ! BT . Since BT is simply connected and both H⇤(BT ) and H⇤(M)

are torsion free by Theorem 3.1.1, the E
2

-terms are given as follows:

Ep,q
2

= Hp(BT ;Hq(M)) = Hp(BT )⌦Hq(M).

Since Hodd(BT ) = 0 and H2i+1(M) = 0 for 1  i  n � 2 by Theo-

rem 3.1.1,

Ep,q
2

with p+ q odd vanishes unless p is even and q = 1 or 2n� 1.

(3.3.1)

We have di↵erentials

! Ep�r,q+r�1
r

dp�r,q+r�1
r�����! Ep,q

r

dp,qr��! Ep+r,q�r+1

r !

and

Ep,q
r+1

= ker dp,qr / im dp�r,q+r�1
r .

We will often abbreviate dp,qr as dr when p and q are clear in the context.

Since

dr(u [ v) = dru [ v + (�1)p+qu [ drv for u 2 Ep,q
r and v 2 Ep0,q0

r

and dr is trivial on Ep,0
r and Ep,0

r = 0 for odd p,

dr is an H⇤(BT )-module map. (3.3.2)

44



Note that

Ep,q
r = Ep,q

1 if p < r and q + 1 < r (3.3.3)

since Ea,b
r = 0 if either a < 0 or b < 0.

There is a filtration of subgroups

Hm
T (M) = F0,m � F1,m�1 � · · · � Fm�1,1 � Fm,0 � Fm+1,�1 = {0}

such that

Fp,m�p/Fp+1,m�p�1 = Ep,m�p
1 for p = 0, 1, . . . ,m. (3.3.4)

There are two edge homomorphisms. One edge homomorphism

Hp(BT ) = Ep,0
2

! Ep,0
3

! · · ·! Ep,0
1 ⇢ Hp

T (M)

agrees with ⇡⇤ : H⇤(BT ) ! H⇤T (M). Since MT 6= ;, one can construct

a cross section of the fibration ⇡ : ET ⇥T M ! BT using a fixed point

in MT . So ⇡⇤ is injective and hence

dr : E
p�r,r�1
r ! Ep,0

r is trivial for every r � 2 and p � 0, (3.3.5)

which is equivalent to Ep,0
2

= Ep,0
1 . The other edge homomorphism

Hq
T (M) ⇣ E0,q

1 ⇢ · · · ⇢ E0,q
3

⇢ E0,q
2

= Hq(M)

agrees with the restriction homomorphism ◆⇤ : Hq
T (M)! Hq(M). There-

fore, ◆⇤ is surjective if and only if the di↵erential dr : E0,q
r ! Er,q�r+1

r is

trivial for every r � 2.

We shall investigate the restriction homomorphism ◆⇤ : Hq
T (M) !

Hq(M). Since M/T is homotopy equivalent to the wedge of b
1

(M)

circles, Hq
T (M) vanishes unless q is 1 or even by Proposition 3.2.1 while

Hq(M) vanishes unless q is 1, 2n � 1 or even in between 0 and 2n by

Theorem 3.1.1.
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Lemma 3.3.1. The homomorphism ◆⇤ : H1

T (M) ! H1(M) is an iso-

morphism (so H1(M) ⇠= H1(M/T ) by Proposition 3.2.1).

Proof. By (3.3.5),

d
2

: E0,1
2

= H1(M)! E2,0
2

= H2(BT )

is trivial. Therefore E0,1
2

= E0,1
1 . On the other hand, E1,0

1 = E1,0
2

=

H1(BT ) = 0. These imply the lemma.

SinceH2n�1
T (M) = 0, The homomorphism ◆⇤ : H2n�1

T (M)! H2n�1(M)

cannot be surjective unless H2n�1(M) = 0.

Lemma 3.3.2. The homomorphism ◆⇤ : H2j
T (M) ! H2j(M) is surjec-

tive except for j = 1 and the rank of the cokernel of ◆⇤ for j = 1 is

nb
1

(M).

Proof. Since dimM = 2n, we may assume 1  j  n.

First we treat the case where j = 1. Since H3

T (M) = 0, E2,1
1 = 0 by

(3.3.4) and E2,1
1 = E2,1

3

by (3.3.3). This together with (3.3.5) implies

that

d
2

: H2(M) = E0,2
2

! E2,1
2

= H2(BT )⌦H1(M) is surjective. (3.3.6)

Moreover d
3

: E0,2
3

= ker d
2

! E3,0
3

is trivial since E3,0
3

= 0. Therefore,

E0,2
3

= E0,2
1 by (3.3.3). Since E0,2

1 is the image of ◆⇤ : H2

T (M)! H2(M),

the rank of H2(M)/◆⇤(H2

T (M)) is nb
1

(M) by (3.3.6).

Suppose that 2  j  n� 1. We need to prove that the di↵erentials

dr : E
0,2j
r ! Er,2j�r+1

r

are all trivial. In fact, the target group Er,2j�r+1

r vanishes. This follows
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from (3.3.1) unless r = 2j. As for the case r = 2j, we note that

d
2

: Ep,2
2

! Ep+2,1
2

is surjective for p � 0, (3.3.7)

which follows from (3.3.2) and (3.3.6). Therefore Ep+2,1
3

= 0 for p �

0, in particular Er,2j�r+1

r = 0 for r = 2j because j � 2. Therefore

◆⇤ : H2j
T (M)! H2j(M) is surjective for 2  j  n� 1.

The remaining case j = n can be proved directly, namely without

using the Serre spectral sequence. Let x be a T -fixed point of M and

let ' : x ! M be the inclusion map. Since M is orientable and '

is T -equivariant, the equivariant Gysin homomorphism '
!

: H0

T (x) !

H2n
T (M) can be defined and '

!

(1) 2 H2n
T (M) restricts to the ordinary

Gysin image of 1 2 H0(x), that is the cofundamental class of M . This

implies the surjectivity of ◆⇤ : H2n
T (M) ! H2n(M) because H2n(M) is

an infinite cyclic group generated by the cofundamental class.

3.4 On the ring structure

Let ⇡ : ET ⇥T M ! BT be the projection. Since ⇡⇤(H2(BT )) maps to

zero by the restriction homomorphism ◆⇤ : H⇤T (M)! H⇤(M), ◆⇤ induces

a graded ring homomorphism

◆̄⇤ : H⇤T (M)/(⇡⇤(H2(BT )))! H⇤(M) (3.4.1)

which is surjective except in degrees 2 and 2n� 1 by Lemma 3.3.2 (and

bijective in degree 1 by Lemma 3.3.1). Here (⇡⇤(H2(BT ))) denotes the

ideal in H⇤T (M) generated by ⇡⇤(H2(BT )). The purpose of this section

is to prove the following.
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Proposition 3.4.1. The map ◆̄⇤ in (3.4.1) is an isomorphism except in

degrees 2, 4 and 2n�1. Moreover, the rank of the cokernel of ◆̄⇤ in degree

2 is nb
1

(M) and the rank of the kernel of ◆̄⇤ in degree 4 is
�

n
2

�

b
1

(M).

The rest of this section is devoted to the proof of Proposition 3.4.1.

We recall the following result, which was proved by Schenzel ([20], [21,

p.73]) for Buchsbaum simplicial complexes and generalized to Buchs-

baum simplicial posets by Novik-Swartz ([17, Proposition 6.3]). There

are several equivalent definitions for Buchsbaum simplicial complexes

(see [21, p.73]). A convenient one for us would be that a finite simpli-

cial complex � is Buchsbaum (over a field k) if for all p 2 |�| and all

i < dim |�|, Hi(|�|, |�|\{p}; k) = 0, where |�| denotes the realization

of �. In particular, a triangulation � of a manifold is Buchsbaum over

any field k. A simplicial poset is a (finite) poset P that has a unique

minimal element, 0̂, and such that for every ⌧ 2 P , the interval [0̂, ⌧ ] is

a Boolean algebra. The face poset of a simplicial complex is a simplicial

poset and one has the realization |P | of P where |P | is a regular CW

complex, all of whose closed cells are simplices corresponding to the in-

tervals [0̂, ⌧ ]. A simplicial poset P is Buchsbaum (over k) if its order

complex �(P ) of the poset P = P\{0̂} is Buchsbaum (over k). Note

that |�(P )| = |P | as spaces since |�(P )| is the barycentric subdivision

of |P |. See [17] and [21] for more details.

Theorem 3.4.1 (Schenzel, Novik-Swartz). Let � be a Buchsbaum sim-

plicial poset of dimension n � 1 over a field k, k[�] be the face ring of
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� and let ✓
1

, . . . , ✓n 2 k[�]
1

be a linear system of parameters. Then

F (k[�]/(✓
1

, . . . , ✓n), t) =(1� t)nF (k[�], t)

+
n

X

j=1

✓

n

j

◆

⇣

j�2
X

i=�1
(�1)j�i dimk H̃i(�)

⌘

tj

where F (M, t) denotes the Hilbert series of a graded module M .

As is well-known, the Hilbert series of the face ring k[�] satisfies

(1� t)nF (k[�], t) =
n

X

i=0

hit
i.

We define h0i for i = 0, 1, . . . , n by

F (k[�]/(✓
1

, . . . , ✓n), t) =
n

X

i=0

h0it
i,

following [17].

Remark 3.4.1. Novik-Swartz [17] introduced

h00i := h0i �
✓

n

j

◆

dimk H̃j�1(�) = hj +

✓

n

j

◆

⇣

j�1
X

i=�1
(�1)j�i dimk H̃i(�)

⌘

for 1  i  n�1 and showed that h00j � 0 and h00n�j = h00j for 1  j  n�1.

We apply Theorem 3.4.1 to our simplicial poset P which is dual to

the face poset of @(M/T ). For that we need to know the homology of

the geometric realization |P| of P . First we show that |P| has the same

homological features as @(M/T ).

Lemma 3.4.1. The simplicial poset P is Buchsbaum, and |P| has the

same homology as @(M/T ).

Proof. We give a sketch of the proof. Details can be found in [1, Lemma

3.14]. There is a dual face structure on |P|, and there exists a face
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preserving map g : @(M/T ) ! |P| mentioned in the proof of Propo-

sition 3.2.1. Let F be a proper face of M/T and F 0 the correspond-

ing face of |P|. By induction on dimF we can show that g induces

the isomorphisms g⇤ : H⇤(@F )
⇠
=�! H⇤(@F 0), g⇤ : H⇤(F )

⇠
=�! H⇤(F 0), and

g⇤ : H⇤(F, @F )
⇠
=�! H⇤(F 0, @F 0). Since F is an acyclic orientable man-

ifold with boundary, we deduce, by Poincaré-Lefschetz duality, that

H⇤(F 0, @F 0) ⇠= H⇤(F, @F ) vanishes except in degree dimF . Note that F 0

is a cone over @F 0 and @F 0 is homeomorphic to the link of a nonempty

simplex of P . Thus the links of nonempty simplices of P are homol-

ogy spheres, and P is Buchsbaum [17, Prop.6.2]. Finally, g induces an

isomorphism of spectral sequences corresponding to skeletal filtrations

of @(M/T ) and |P|, thus induces an isomorphism g⇤ : H⇤(@(M/T ))
⇠
=�!

H⇤(|P|).

Lemma 3.4.2. |P| has the same homology as Sn�1]b
1

(S1 ⇥ Sn�2) (the

connected sum of Sn�1 and b
1

copies of S1 ⇥ Sn�2).

Proof. By Lemma 3.4.1 we only need to prove that @(M/T ) has the

same homology groups as Sn�1]b
1

(S1 ⇥ Sn�2). Since M/T is homotopy

equivalent to a wedge of circles, H i(M/T ) = 0 for i � 2 and hence the

homology exact sequence of the pair (M/T, @(M/T )) shows that

Hi+1

(M/T, @(M/T )) ⇠= Hi(@(M/T )) for i � 2.

On the other hand, M/T is orientable by Lemma 3.2.2 and hence

Hi+1

(M/T, @(M/T )) ⇠= Hn�i�1(M/T )

by Poincaré–Lefschetz duality, and Hn�i�1(M/T ) = 0 for n� i� 1 � 2.
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These show that

Hi(@(M/T )) = 0 for 2  i  n� 3.

Thus it remains to study Hi(@(M/T )) for i = 0, 1, n� 2, n� 1 but since

@(M/T ) is orientable (because M/T is orientable), it su�ces to show

Hi(@(M/T )) ⇠= Hi(S
n�1]b

1

(S1 ⇥ Sn�2)) for i = 0, 1. (3.4.2)

When n � 3, Sn�1]b
1

(S1⇥Sn�2) is connected, so (3.4.2) holds for i = 0

and n � 3. Suppose that n � 4. Then Hn�2(M/T ) = Hn�1(M/T ) = 0,

so the cohomology exact sequence for the pair (M/T, @(M/T )) shows

that Hn�2(@(M/T )) ⇠= Hn�1(M/T, @(M/T )) and hence H
1

(@(M/T )) ⇠=

H
1

(M/T ) by Poincaré–Lefschetz duality. SinceM/T is homotopy equiv-

alent to a wedge of b
1

circles, this proves (3.4.2) for i = 1 and n � 4.

Assume that n = 3. Then H
1

(M/T, @(M/T )) ⇠= H2(M/T ) = 0. We

also know H
2

(M/T ) = 0. The homology exact sequence for the pair

(M/T, @(M/T )) yields a short exact sequence

0! H
2

(M/T, @(M/T ))! H
1

(@(M/T ))! H
1

(M/T )! 0.

Here H
2

(M/T, @(M/T )) ⇠= H1(M/T ) by Poincaré–Lefschetz duality.

Since M/T is homotopy equivalent to a wedge of b
1

circles, this implies

(3.4.2) for i = 1 and n = 3.

It remains to prove (3.4.2) when n = 2. We use induction on b
1

.

The assertion is true when b
1

= 0. Suppose that b
1

= b
1

(M/T ) � 1.

We cut M/T along a fold so that b
1

(M 0/T ) = b
1

(M/T ) � 1, where M 0

is the toric origami manifold obtained from the cut, see Section 3.1.

Then b
0

(@(M 0/T )) = b
0

(@(M/T ))� 1. Since (3.4.2) holds for @(M 0/T )
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by induction assumption, this observation shows that (3.4.2) holds for

@(M/T ).

Lemma 3.4.3. For n � 2, we have

n
X

i=0

h0it
i =

n
X

i=0

b
2it

i � nb
1

t+

✓

n

2

◆

b
1

t2.

Proof. By Lemma 3.4.2, for n � 4, we have

dim H̃i(P) =

8

>

>

>

>

>

<

>

>

>

>

>

:

b
1

if i = 1, n� 2,

1 if i = n� 1,

0 otherwise.

Hence

j�2
X

i=�1
(�1)j�i dim H̃i(P) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if j = 1, 2,

(�1)j�1b
1

if 3  j  n� 1,

((�1)n�1 + 1)b
1

if j = n.

Then, it follows from Theorem 3.4.1 that

n
X

i=0

h0it
i =

n
X

i=0

hit
i +

n�1
X

j=3

(�1)j�1b
1

✓

n

j

◆

tj + ((�1)n�1 + 1)b
1

tn

=
n

X

i=0

hit
i � b

1

(1� t)n + b
1

(1� nt+

✓

n

2

◆

t2) + b
1

tn

=
n

X

i=0

hit
i + b

1

(1 + tn � (1� t)n)� nb
1

t+

✓

n

2

◆

b
1

t2

=
n

X

i=0

b
2it

i � nb
1

t+

✓

n

2

◆

b
1

t2

where we used Theorem 3.1.2 at the last identity. This proves the lemma
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when n � 4. When n = 3,

dim H̃i(P) =

8

>

>

>

>

>

<

>

>

>

>

>

:

2b
1

if i = 1,

1 if i = 2,

0 otherwise,

and the same argument as above shows that the lemma still holds for

n = 3. When n = 2,

dim H̃i(P) =

8

>

>

>

>

>

<

>

>

>

>

>

:

b
1

if i = 0,

b
1

+ 1 if i = 1,

0 otherwise,

and the same holds in this case too.

Remark 3.4.2. One can check that
n�1
X

i=1

h00i t
i =

n�1
X

i=1

b
2it

i � nb
1

(t+ tn�1).

Therefore, h00i = h00i (P) is not necessarily equal to b
2i = b

2i(M) although

both are symmetric. This is not surprising because h00i depends only on

the boundary of M/T . It would be interesting to ask whether h00i (P) 

b
2i(M) when the face poset of @(M/T ) is dual to P and whether the

equality can be attained for some such M (M may depend on i).

Now we prove Proposition 3.4.1.

Proof of Proposition 3.4.1. At first we suppose that k is a field. By

Proposition 3.2.1 we have Z[P ] = Heven
T (M). The images of ring gener-

ators of H⇤(BT ; k) by ⇡⇤ provide an h.s.o.p. ✓
1

, . . . , ✓n in Heven
T (M ; k) =

k[P ]. This fact simply follows from the characterization of homogeneous

53



systems of parameters in face rings given by [6, Th.5.4]. Thus we have

F (Heven
T (M ; k)/(⇡⇤(H2(BT ; k))), t) =

n
X

i=0

b
2i(M)ti � nb

1

t+

✓

n

2

◆

b
1

t2

(3.4.3)

by Lemma 3.4.3. Moreover, the graded ring homomorphism in (3.4.1)

◆̄⇤ : k[P ]/(✓
1

, . . . , ✓n) = Heven
T (M ; k)/(⇡⇤(H2(BT ; k)))! Heven(M ; k)

(3.4.4)

is surjective except in degree 2 as remarked at the beginning of this

section. Therefore, the identity (3.4.3) implies that ◆̄⇤ in (3.4.4) is an

isomorphism except in degrees 2 and 4. Finally, the rank of the cokernel

of ◆̄⇤ in degree 2 is nb
1

(M) by Lemma 3.3.2 and the rank of the kernel of

◆̄⇤ in degree 4 is
�

n
2

�

b
1

by (3.4.3), proving Proposition 3.4.1 over fields.

Now we explain the case k = Z. The map ⇡⇤ : H⇤(BT ; k)! H⇤T (M ; k)

coincides with the map ⇡⇤ : H⇤(BT ;Z) ! H⇤T (M ;Z) tensored with k,

since both H⇤(BT ;Z) and H⇤T (M ;Z) are Z-torsion free. In particular,

the ideals (⇡⇤(H2(BT ; k))) and (⇡⇤(H2(BT ;Z))⌦k) = (⇡⇤(H2(BT ;Z)))⌦

k coincide in H⇤T (M ; k) ⇠= H⇤T (M ;Z)⌦ k. Consider the exact sequence

(⇡⇤(H2(BT ;Z)))! H⇤T (M ;Z)! H⇤T (M ;Z)/(⇡⇤(H2(BT ;Z)))! 0

The functor �⌦ k is right exact, thus the sequence

(⇡⇤(H2(BT ;Z)))⌦k! H⇤T (M ;Z)⌦k! H⇤T (M ;Z)/(⇡⇤(H2(BT ;Z)))⌦k! 0

is exact. These considerations show that

H⇤T (M ;Z)/(⇡⇤(H2(BT ;Z)))⌦ k ⇠= H⇤T (M ; k)/(⇡⇤(H2(BT ; k)))

Finally, the map

◆̄⇤ : H⇤T (M ; k)/(⇡⇤(H2(BT ; k)))! H⇤(M, k)
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coincides (up to isomorphism) with the map

◆̄⇤ : H⇤T (M ;Z)/(⇡⇤(H2(BT ;Z)))! H⇤(M,Z),

tensored with k. The statement of Proposition 3.4.1 holds for any field

thus holds for Z.

We conclude this section with some observations on the kernel of ◆̄⇤

in degree 4 from the viewpoint of the Serre spectral sequence. Recall

H4

T (M) = F0,4 � F1,3 � F2,2 � F3,1 � F4,0 � F5,�1 = 0

where Fp,q/Fp+1,q�1 = Ep,q
1 . Since Ep,q

2

= Hp(BT ) ⌦ Hq(X), Ep,q
1 = 0

for p odd. Therefore,

rankH4

T (M) = rankE0,4
1 + rankE2,2

1 + rankE4,0
1 ,

where we know E0,4
1 = E0,4

2

= H4(M) and E4,0
1 = E4,0

2

= H4(BT ). As

for E2,2
1 , we recall that

d
2

: Ep,2
2

! Ep+2,1
2

is surjective for any p � 0

by (3.3.7). Therefore, noting H3(M) = 0, one sees E2,2
3

= E2,2
1 . It

follows that

rankE2,2
1 = rankE2,2

2

� rankE4,1
2

= nb
2

�
✓

n+ 1

2

◆

b
1

.

On the other hand, rankE0,2
1 = b

2

� nb
1

and there is a product map

' : E0,2
1 ⌦ E2,0

1 ! E2,2
1 .

The image of this map lies in the ideal (⇡⇤(H2(BT )) and the rank of

the cokernel of this map is

nb
2

�
✓

n+ 1

2

◆

b
1

� n(b
2

� nb
1

) =

✓

n

2

◆

b
1

.
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Therefore

rankE0,4
1 + rank coker' = b

4

+

✓

n

2

◆

b
1

which agrees with the coe�cient of t2 in F (Heven
T (M)/(⇡⇤(H2(BT ))), t)

by (3.4.3). This suggests that the cokernel of ' could correspond to the

kernel of ◆̄⇤ in degree 4.

3.5 4-dimensional case

In this section, we explicitly describe the kernel of ◆̄⇤ in degree 4 when

n = 2, that is, when M is of dimension 4. In this case, @(M/T ) is the

union of b
1

+ 1 closed polygonal curves.

First we recall the case when b
1

= 0. In this case, Heven
T (M) =

H⇤T (M). Let @(M/T ) be an m-gon and v
1

, . . . , vm be the primitive edge

vectors in the multi-fan of M , where vi and vi+1

spans a 2-dimensional

cone for any i = 1, 2, . . . ,m (see [16]). Note that vi 2 H
2

(BT ) and we

understand vm+1

= v
1

and v
0

= vm in this section. Since {vj, vj+1

} is a

basis of H
2

(BT ) for any j, we have det(vj, vj+1

) = ±1.

Let ⌧i 2 H2

T (M) be the equivariant Poincaré dual to the characteristic

submanifold corresponding to vi. Then we have

⇡⇤(u) =
m
X

i=1

hu, vii⌧i for any u 2 H2(BT ), (3.5.1)

where h , i denotes the natural pairing between cohomology and ho-

mology, (see [14] for example). We multiply both sides in (3.5.1) by

⌧i. Then, since ⌧i⌧j = 0 if vi and vj do not span a 2-dimensional cone,
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(3.5.1) turns into

0 = hu, vi�1i⌧i�1⌧i+hu, vii⌧ 2i +hu, vi+1

i⌧i⌧i+1

in H⇤T (M)/(⇡⇤(H2(BT ))).

(3.5.2)

If we take u with hu, vii = 1, then (3.5.2) shows that ⌧ 2i can be expressed

as a linear combination of ⌧i�1⌧i and ⌧i⌧i+1

. If we take u = det(vi, ),

then u can be regarded as an element of H2(BT ) because H2(BT ) =

Hom(H
2

(BT ),Z). Hence (3.5.2) reduces to

det(vi�1, vi)⌧i�1⌧i = det(vi, vi+1

)⌧i⌧i+1

in H⇤T (M)/(⇡⇤(H2(BT ))).

(3.5.3)

Finally we note that ⌧i⌧i+1

maps to the cofundamental class of M up to

sign. We denote by µ 2 H4

T (M) the element (either ⌧i�1⌧i or �⌧i�1⌧i)

which maps to the cofundamental class of M .

When b
1

� 1, the above argument works for each component of

@(M/T ). In fact, according to [14], (3.5.1) holds in H⇤T (M) mod-

ulo H⇤(BT )-torsion but in our case there is no H⇤(BT )-torsions in

Heven
T (M) by Proposition 3.2.2. Suppose that @(M/T ) consists of mj-

gons for j = 1, 2, . . . , b
1

+ 1. To each mj-gon, we have the class µj 2

H4

T (M) (mentioned above as µ). Since µj maps to the cofundamental

class of M , µi� µj (i 6= j) maps to zero in H4(M); so it is in the kernel

of ◆̄⇤. The subgroup of Heven
T (M)/(⇡⇤(H2(BT ))) in degree 4 generated

by µi � µj (i 6= j) has the desired rank b
1

.

Example 3.5.1. Take the 4-dimensional toric origami manifold M cor-

responding to the origami template shown on fig. 3.2 (Example 3.15 of

[7]). Topologically M/T is homeomorphic to S1⇥ [0, 1] and the bound-

ary of M/T as a manifold with corners consists of two closed polygonal
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Figure 3.2: The origami template with four polygons

curves, each having 4 segments. The multi-fan of M is the union of two

copies of the fan of CP 1 ⇥ CP 1 with the product torus action. Indeed,

if v
1

, v
2

are primitive edge vectors in the fan of CP 1⇥CP 1 which spans

a 2-dimensional cone, then the other primitive edge vectors v
3

, . . . , v
8

in

the multi-fan of M are

v
3

= �v
1

, v
4

= �v
2

, and vi = vi�4 for i = 5, . . . , 8

and the 2-dimensional cones in the multi-fan are

\v
1

v
2

, \v
2

v
3

, \v
3

v
4

, \v
4

v
1

,

\v
5

v
6

, \v
6

v
7

, \v
7

v
8

, \v
8

v
5

,

where \vv0 denotes the 2-dimensional cone spanned by vectors v and

v0. Note that

⌧i⌧j = 0 if vi, vj do not span a 2-dimensional cone. (3.5.4)

We have

⇡⇤(u) =
8

X

i=1

hu, vii⌧i for any u 2 H2(BT ). (3.5.5)

Let {v⇤
1

, v⇤
2

} be the dual basis of {v
1

, v
2

}. Taking u = v⇤
1

or v⇤
2

, we see

that

⌧
1

+ ⌧
5

= ⌧
3

+ ⌧
7

, ⌧
2

+ ⌧
6

= ⌧
4

+ ⌧
8

in H⇤T (M)/(⇡⇤(H2(BT ))). (3.5.6)
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Since we applied (3.5.5) for the basis {v⇤
1

, v⇤
2

} of H2(BT ), there is no

other essentially new linear relation among ⌧i’s.

Now, multiply the equations (3.5.6) by ⌧i and use (3.5.4). Then we

obtain

⌧ 2i = 0 for any i,

(µ
1

:=)⌧
1

⌧
2

= ⌧
2

⌧
3

= ⌧
3

⌧
4

= ⌧
4

⌧
1

,

(µ
2

:=)⌧
5

⌧
6

= ⌧
6

⌧
7

= ⌧
7

⌧
8

= ⌧
8

⌧
5

in H⇤T (M)/(⇡⇤(H2(BT ))).

Our argument shows that these together with (3.5.4) are the only degree

two relations among ⌧i’s in H⇤T (M)/(⇡⇤(H2(BT ))). The kernel of

◆̄⇤ : Heven
T (M ;Q)/(⇡⇤(H2(BT ;Q)))! Heven(M ;Q)

in degree 4 is spanned by µ
1

� µ
2

.

3.6 Some observation on non-acyclic cases

The face acyclicity condition we assumed so far is not preserved under

taking the product with a symplectic toric manifold N , but every face

of codimension � 1

2

dimN +1 is acyclic. Motivated by this observation,

we will make the following assumption on our toric origami manifold M

of dimension 2n:

every face of M/T of codimension � r is acyclic for some integer

r.

Note that r = 1 in the previous sections. Under the above assumption,

the arguments in Section 3.1 work to some extent in a straightforward

way. The main point is that Lemma 3.1.5 can be generalized as follows.
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Lemma 3.6.1. The homomorphism H2j(M̃) ! H2j(Z
+

[ Z�) induced

from the inclusion is surjective for j � r.

Using this lemma, we see that Lemma 3.1.3 turns into the following.

Lemma 3.6.2.
r

X

i=1

(b
2i(M̃)� b

2i�1(M̃)) =
r

X

i=1

(b
2i(M)� b

2i�1(M)) + b
2r(B)

b
2i(M̃)� b

2i�1(M̃) = b
2i(M)� b

2i�1(M) + b
2i(B)� b

2i�2(B) for i � r + 1.

Combining Lemma 3.6.2 with Lemma 3.1.2, Lemma 3.1.4 turns into

the following.

Lemma 3.6.3.

b
1

(M 0) = b
1

(M)� 1, b
2r(M

0) = b
2r(M) + b

2r�2(B) + b
2r(B),

b
2i+1

(M 0) = b
2i+1

(M) for r  i  n� r � 1.

Finally, Theorem 3.1.1 is generalized as follows.

Theorem 3.6.1. Let M be an orientable toric origami manifold of di-

mension 2n (n � 2) such that every face of M/T of codimension � r is

acyclic. Then

b
2i+1

(M) = 0 for r  i  n� r � 1.

Moreover, if M 0 and B are as above, then

b
1

(M 0) = b
1

(M)� 1 (hence b
2n�1(M

0) = b
2n�1(M)� 1 by Poincaré duality),

b
2i(M

0) = b
2i(M) + b

2i(B) + b
2i�2(B) for r  i  n� r.
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Chapter 4

Towards non-orientable cases

4.1 The coörientable case

In this section we will discuss about the cohomology groups of a non-

orientable toric origami manifold M with coörientable folding hypersur-

face. By Lemma 5.1 in [12], the T -action on M is locally standard, so

M/T is a manifold with corners. In this section we assume that each

proper face of M/T is acyclic. We will construct the orientation cover-

ing cM of M to study the cohomology groups of M . For this purpose, we

construct the orientation covering for the associated origami template

of M .

Construction. Let G = (V,E) be the graph associated to M and

(G, V , E) be the corresponding origami template. Then we can con-

struct a new 2-colorable graph bG = (bV , bE), the double covering of

G = (V,E), and its origami template is ( bG, 
bV , bE) by the following

process. Set

V = {v
1

, ..., vm}.
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1. Consider

bV = W t U,

where

W = {w
1

, ..., wm}, U = {u
1

, ..., um},

are two sets. Let f : W ! V and g : U ! V be two maps such that

f(wi) = vi and g(ui) = vi;

2. bE := {(wi, uj) 2 W ⇥ U | (f(wi), g(uj)) 2 E};

3.  
bV := bV

ftg��! V
 v�! Dn;

4.  
bE : bE

'�! E
 E�! En, where ' : (wi, uj) 7! (vi, vj).

Lemma 4.1.1. Let P and bP be the origami templates of (G,  V ,  E)

and ( bG,  
bV ,  bE) respectively. Then there exists a map ⇡ :| bP |!| P |

which preserves the order of faces and is an orientation covering of | P |.

Proof. Recall that | P |= t(Pvk t Pvl)/ ⇠ where (vk, x) ⇠ (vl, y) if and

only if (vk, vl) 2 E and x = y 2  E(vk, vl). | bP |= t(Pwi t Pui)/ ⇠2

where (wi, x) ⇠2

(uj, y) i↵ (wi, uj) 2 bE and x = y 2  
bE(wi, uj).

Since bG is 2-colorable, | bP | is orientable as a manifold with corners.

From the map t(PwitPui)
idtid���! tPvi, we have a well-defined continuous

map

t(Pwi t Pui)/ ⇠2

�! (tPvi)/ ⇠ .

Namely,

| bP |�!| P | .

We denote this map by ⇡. Note that the following diagram is commu-
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tative
t(Pwi t Pui)

idtid���! tPvi

bq

?

?

y

?

?

y

q

| bP | ⇡��! | P |
where q and bq are the quotient maps. Then we can obtain that ⇡ is

surjective since q � (id t id) is surjective.

For any [(vi, x)] 2| P |, we have

⇡�1[vi, x] = {[(wi, x)], [(ui, x)]},

where “[ ]” means the equivalence classes in the corresponding quotient

spaces. In fact, [(wi, x)] 6= [(ui, x)] since (vi, vi) /2 E. Otherwise the

origami template (G, V , E) is not coörientable. It is not di�cult

to check that ⇡ is a local homeomorphism, so ⇡ :| bP |!| P | is an

orientation covering map. Moreover ⇡ maps k-dim faces of bP to k-dim

faces of P . This completes the proof.

Lemma 4.1.2. If P is coörientable and each proper face of | P | is

acyclic, then each proper face of | bP | is also acyclic.

Proof. Let bF be a proper face of | bP |, then ⇡( bF ) is also a proper face

of | P |. Set ⇡( bF ) = F , then ⇡�1(F ) is a double covering of F . Since

F is homotopy equivalent to wedge of circles and acyclic, F is simply

connected. Thus ⇡�1(F ) = bF t bF 0, where bF ⇠= bF 0 ⇠= F as manifolds

with corners. Therefore, bF is acyclic.

We denote by cM the toric origami manifold corresponding to the

origami template bP . Then it is not di�cult to see that cM is an orienta-

tion covering of M and we denote the covering map by ⇡.
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Lemma 4.1.3. The i-th cohomology group of M has the following form:

H i(M) = Zbi
M

(Z
2

)ci.

Proof. Consider the transfer homomorphism:

⌧ ⇤ : H⇤(cM)! H⇤(M).

Note that ⌧ ⇤ � ⇡⇤ = 2, where ⇡⇤ : H⇤(M) ! H⇤(cM) is induced from

⇡ : cM ! M , so if ↵ 2 ker ⇡⇤, then 2↵ = 0. Each proper face of the

orbit space cM/T is acyclic, so H⇤(cM) is torsion free by Theorem 3.1.1.

Therefore, H i(M) = Zbi
L

(Z
2

)ci, where bi, ci 2 N [ {0}.

By the above lemma and the universal coe�cients theorem, it su�-

cient to consider H⇤(M ;Q) and H⇤(M ;Z
2

).

Lemma 4.1.4 ([3]). bi(cM) = bi(M) + b
2n�i(M).

Corollary 4.1.1. b
2i+1

(M) = 0 for 1  i  n� 2.

Proof. We know that b
2i+1

(cM) = 0 for 1  i  n� 2 by Theorem 3.1.1,

so b
2i+1

(M) = 0 = for 1  i  n� 2 by Lemma 4.1.4.

Since M is a toric origami manifold with coörientable folding hyper-

surface, topologically M is obtained by equivariant connected sums of

toric symplectic manifolds along their T -invariant divisors. However for

a non-orientable manifold, we can not apply Poincaré duality with Q

coe�cients.

To fix our notations, we recall the arguments at the beginning of

section 3.1. Let M be a toric origami manifold of dimension 2n with

coörientable folding hypersurface. Let Z be a component of the folding
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hypersurface, F be the corresponding folded facet in the origami tem-

plate of M and let B be the symplectic toric manifold corresponding

to F . The normal line bundle of Z to M is trivial so that an invariant

closed tubular neighborhood of Z inM can be identified with Z⇥[�1, 1].

We set

M̃ := M � Int(Z ⇥ [�1, 1]).

This has two boundary components which are copies of Z. We close

M̃ by gluing two copies of the disk bundle associated to the principal

S1-bundle Z ! B along their boundaries. The resulting closed manifold

(possibly disconnected), denoted M 0, is again a toric origami manifold.

Let G be the graph associated to the origami template ofM . A folded

facet in the origami template of M corresponds to an edge of G. We

assume that b
1

(G) � 1. We choose an edge e in a (non-trivial) cycle

of G and let F , Z and B be respectively the folded facet, the fold and

the symplectic toric manifold corresponding to the edge e. Then M 0 is

connected and the graph G0 associated to M 0 is nothing but the graph

G with the edge e removed, so b
1

(G0) = b
1

(G)� 1.

Two copies of B lie in M 0 as closed submanifolds, denoted B
+

and

B�. Let N+

(resp. N�) be an invariant closed tubular neighborhood of

B
+

(resp. B�) and Z
+

(resp. Z�) be the boundary of N
+

(resp. N�).

Note that M 0 � Int(N
+

[ N�) can naturally be identified with M̃ , so

that

M̃ = M 0 � Int(N
+

[N�) = M � Int(Z ⇥ [�1, 1])
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and

M 0 = M̃ [ (N
+

[N�), M̃ \ (N
+

[N�) = Z
+

[ Z�, (4.1.1)

M = M̃ [ (Z ⇥ [�1, 1]), M̃ \ (Z ⇥ [�1, 1]) = Z
+

[ Z�. (4.1.2)

We shall investigate relations among Betti numbers of M,M 0, M̃ , Z

and B. The spaces M̃ and Z are auxiliary ones and our aim is to find

relations between Betti numbers of M,M 0 and B.

Since the proof of Lemma 3.1.1 and Lemma 3.1.2 do not use Poincaré

duality, we also have the following two equations.

b
2i(Z)� b

2i�1(Z) = b
2i(B)� b

2i�2(B) for any i. (4.1.3)

b
2i(M̃)� b

2i�1(M̃) = b
2i(M

0)� b
2i�1(M

0)� 2b
2i�2(B) for any i.

(4.1.4)

Lemma 4.1.5. b
2n�1(M) = b

1

(M)� 1.

Proof. By Lemma 4.1.4 we have

b
1

(M) + b
2n�1(M) = b

1

(cM). (4.1.5)

Let bG be the graph associated to cM , then

|V ( bG)| = 2|V (G)|, |E( bG)| = 2|E(G)|, (4.1.6)

where V ( bG) and E( bG) denote the sets of vertexes and edges of bG re-

spectively, and V (G) and E(G) denote the same sets for G.

Since

|E(G)|� |V (G)|+ 1 = dimH1(G), (4.1.7)

we have

|E( bG)|� |V ( bG)|+ 1 = dimH1( bG). (4.1.8)
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Hence by (4.1.6), (4.1.7) and (4.1.8), we have

dimH1( bG) = 2 dimH1(G)� 1. (4.1.9)

Since proper faces of cM/T and M/T are acyclic, cM and M must have

fixed points. By Proposition 2.3 in [16], we have

⇡
1

(cM) ⇠= ⇡
1

(cM/T ) ⇠= ⇡
1

( bG),

which implies that

dimH
1

(cM) = dimH
1

( bG).

Therefore

b
1

(cM) = dimH1( bG). (4.1.10)

Similarly, we have

b
1

(M) = dimH1(G). (4.1.11)

By (4.1.9), (4.1.10) and (4.1.11), we have

b
1

(cM) = 2b
1

(M)� 1. (4.1.12)

Then by (4.1.5), we have

b
2n�1(M) = b

1

(M)� 1.

This completes the proof of the lemma.

Lemma 4.1.6. b
1

(M 0) = b
1

(M) � 1, b
2n(M 0) � b

2n�1(M 0) = 1 �

b
2n�1(M).

Proof. The first equation follows from

b
1

(M) = b
1

(G), b
1

(M 0) = b
1

(G0) and b
1

(G) = b
1

(G0) + 1.

67



Next, we show the second equation.

Case 1: The case where M 0 is orientable. By Poincaré duality we

have

b
2n�1(M

0) = b
1

(M 0) = b
1

(M)� 1. (4.1.13)

Hence

b
2n(M

0)� b
2n�1(M

0) = 1� (b
1

(M)� 1) = 1� b
2n�1(M), (4.1.14)

so the last equality follows from Lemma 4.1.5.

Case 2: The case where M 0 is non-orientable. Then

b
2n�1(M

0) = b
1

(M 0)� 1,

follows from Lemma 4.1.5. Note that when M 0 is non-orientable,

b
2n(M

0) = 0,

so

b
2n(M

0)� b
2n�1(M

0) = 1� b
1

(M 0) = 1� (b
1

(M)� 1) = 1� b
2n�1(M).

This completes the proof of the lemma.

Lemma 4.1.7. b
2

(M 0) = b
2

(M) + b
2

(B) + 1.

Proof. Consider the Mayer-Vietoris exact sequence in cohomology for

the triple (M, M̃, Z ⇥ [�1, 1]):

!H2i�2(M)!H2i�2(M̃)�H2i�2(Z ⇥ [�1, 1])!H2i�2(Z
+

[ Z�)

!H2i�1(M)!H2i�1(M̃)�H2i�1(Z ⇥ [�1, 1])!H2i�1(Z
+

[ Z�)

!H2i(M) !H2i(M̃)�H2i(Z ⇥ [�1, 1]) !H2i(Z
+

[ Z�)! .
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Case 1: n > 3. Since H3(M) = 0 by Corollary 4.1.1, the Mayer-

Vietoris exact sequence for the triple (M, M̃, Z ⇥ [�1, 1]) splits into

short exact sequences:

0!H0(M)!H0(M̃)�H0(Z ⇥ [�1, 1])!H0(Z
+

[ Z�)

!H1(M)!H1(M̃)�H1(Z ⇥ [�1, 1])!H1(Z
+

[ Z�)

!H2(M)!H2(M̃)�H2(Z ⇥ [�1, 1])!H2(Z
+

[ Z�)! 0.

Hence we have

b
2

(M̃)� b
1

(M̃) = b
2

(M)� b
1

(M) + b
2

(Z)� b
1

(Z) + 1. (4.1.15)

By (4.1.3) we have

b
2

(M̃)� b
1

(M̃) = b
2

(M)� b
1

(M) + b
2

(B). (4.1.16)

By (4.1.4) we obtain

b
2

(M̃)� b
1

(M̃) = b
2

(M 0)� b
1

(M 0)� 2b
0

(B). (4.1.17)

By (4.1.16) and (4.1.17), we get

b
2

(M)� b
1

(M) = b
2

(M 0)� b
1

(M 0)� 2b
0

(B)� b
2

(B). (4.1.18)

Since b
1

(M 0) = b
1

(M)� 1, we have

b
2

(M 0) = b
2

(M) + b
2

(B) + 1. (4.1.19)

Case 2: n = 2. Consider the Mayer-Vietoris exact sequence for the

triple (M, M̃, Z ⇥ [�1, 1]) :
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0!H0(M)!H0(M̃)�H0(Z ⇥ [�1, 1])!H0(Z
+

[ Z�)

!H1(M)!H1(M̃)�H1(Z ⇥ [�1, 1])!H1(Z
+

[ Z�)

!H2(M)!H2(M̃)�H2(Z ⇥ [�1, 1])!H2(Z
+

[ Z�)

!H3(M)!H3(M̃)�H3(Z ⇥ [�1, 1])!H3(Z
+

[ Z�)! 0.

Since M is non-orientable, H4(M ;Q) = 0. Hence the last term in the

above exact sequence is 0. By the above exact sequence, we have

b
2

(M̃)� b
1

(M̃)� b
3

(M̃) = b
2

(M)� b
1

(M)� b
3

(M) + b
2

(Z)� b
1

(Z).

(4.1.20)

Note that M̃ is a manifold with boundary, so

b
4

(M̃) = 0. (4.1.21)

By (4.1.3), (4.1.4), (4.1.20) and (4.1.21) we have

b
2

(M 0)� b
1

(M 0)� 2b
0

(B) + b
4

(M 0)� b
3

(M 0)� 2b
2

(B)

=b
2

(M)� b
1

(M)� b
3

(M) + b
2

(B)� b
0

(B).
(4.1.22)

We know that when n = 2, B = CP 1, so (4.1.22) reduces to

b
2

(M 0)�b
1

(M 0)+b
4

(M 0)�b
3

(M 0)�4 = b
2

(M)�b
1

(M)�b
3

(M). (4.1.23)

By Lemma 4.1.6 and (4.1.23) we have

b
2

(M 0) = b
2

(M) + 2 = b
2

(M) + b
2

(B) + 1.

This completes the proof of the lemma.

Lemma 4.1.8.

b
2i(M

0) = b
2i(M) + b

2i(B) + b
2i�2(B) for 2  i  n� 2 and n > 4

b
4

(M 0) = b
4

(M) + b
4

(B) + b
2

(B) for n = 3.

70



Proof. First, consider the case n � 4.

Since H2i�1(M ;Q) = 0 for 2  i  n� 2, we have

0 !H2i�1(M̃)�H2i�1(Z ⇥ [�1, 1])!H2i�1(Z
+

[ Z�)

!H2i(M)!H2i(M̃)�H2i(Z ⇥ [�1, 1]) !H2i(Z
+

[ Z�)! 0,

By the above exact sequence and (4.1.3) we have

b
2i(M̃)� b

2i�1(M̃) = b
2i(M) + b

2i(B)� b
2i�2(B) for 2  i  n� 2.

(4.1.24)

By the above equation and (4.1.4) we have

b
2i(M

0)�b
2i�1(M

0)�2b
2i�2(B) = b

2i(M)+b
2i(B)�b

2i�2(B) for 2  i  n� 2.

(4.1.25)

Since the folding hypersurface of M 0/T is coörientable and each proper

face of M 0/T is acyclic, b
2i�1(M 0) = 0 for 2  i  n � 1 by the same

argument as in the proof of Corollary 4.1.1. Hence (4.1.25) reduces to

b
2i(M

0) = b
2i(M) + b

2i(B) + b
2i�2(B) for 2  i  n� 2. (4.1.26)

Next, we consider the case n = 3.

By Corollary 4.1.1, the Mayer-Vietoris exact sequence for the triple

(M, M̃, Z ⇥ [�1, 1]) splits into

!0! H3(M̃)�H3(Z ⇥ [�1, 1])! H3(Z
+

[ Z�)

!H4(M)! H4(M̃)�H4(Z ⇥ [�1, 1])! H4(Z
+

[ Z�)

!H5(M)! H5(M̃)�H5(Z ⇥ [�1, 1])! H5(Z
+

[ Z�)

! 0.

Since M is non-orientable, H6(M ;Q) = 0. Hence the last term in the
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above exact sequence is 0. Thus we have

b
4

(M̃)�b
3

(M̃)�b
5

(M̃) = b
4

(M)�b
5

(M)+b
4

(Z)�b
3

(Z)�b
5

(Z) (4.1.27)

Note that M̃ is a manifold with boundary, so

b
6

(M̃) = 0. (4.1.28)

By (4.1.3), (4.1.4), (4.1.27) and (4.1.28), we have

b
4

(M 0)� b
3

(M 0)� 2b
2

(B) + b
6

(M 0)� b
5

(M 0)� 2b
4

(B)

=b
4

(M)� b
5

(M) + b
4

(B)� b
2

(B)� b
5

(Z).
(4.1.29)

Since b
3

(M 0) = 0, b
5

(Z) = 1 and b
4

(B) = 1, (4.1.29) reduces to

b
4

(M 0)� b
2

(B) + b
6

(M 0)� b
5

(M 0)� 2 = b
4

(M)� b
5

(M). (4.1.30)

We know that b
6

(M 0) � b
5

(M 0) = 1 � b
5

(M) by Lemma 4.1.6, so by

(4.1.30), we have

b
4

(M 0) = b
4

(M) + b
4

(B) + b
2

(B).

This completes the proof of the lemma.

Lemma 4.1.9.

b
2n�2(M

0)� b
2n�4(B) = b

2n�2(M) + 1

i.e.,

b
2n�2(M

0) = b
2n�2(M) + b

2n�4(B) + b
2n�2(B).

Proof. We consider two cases to prove the lemma.

Case 1: n = 2. In this case B = CP 1, so the lemma follows from

Lemma 4.1.7.
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Case 2: n � 3. We know that H2n�3(M) = 0 by Corollary 4.1.1 and

H2n(M) = 0 since M is non-orientable, so the Mayer-Vietoris exact

sequence for the triple (M, M̃, Z ⇥ [�1, 1]) splits into

!0! H2n�3(M̃)�H2n�3(Z ⇥ [�1, 1])! H2n�3(Z
+

[ Z�)

!H2n�2(M)! H2n�2(M̃)�H2n�2(Z ⇥ [�1, 1])! H2n�2(Z
+

[ Z�)

!H2n�1(M)! H2n�1(M̃)�H2n�1(Z ⇥ [�1, 1])! H2n�1(Z
+

[ Z�)

!0.

Hence

b
2n�2(M̃)� b

2n�3(M̃)� b
2n�1(M̃)

=b
2n�2(M)� b

2n�1(M)� b
2n�3(Z) + b

2n�2(Z)� b
2n�1(Z).

(4.1.31)

Since M̃ is a manifold with boundary,

b
2n(M̃) = 0. (4.1.32)

By (4.1.3), (4.1.4), (4.1.31) and (4.1.32), we have

b
2n�2(M

0)� b
2n�3(M

0)� 2b
2n�4(B) + b

2n(M
0)� b

2n�1(M
0)� 2b

2n�2(B)

=b
2n�2(M)� b

2n�1(M) + b
2n�2(B)� b

2n�4(B)� b
2n�1(Z).

(4.1.33)

Note that b
2n�2(B) = 1, b

2n�1(Z) = 1, and H2n�3(M 0;Q) = 0, so by

(4.1.33) we obtain that

b
2n�2(M

0)+ b
2n(M

0)� b
2n�1(M

0)� b
2n�4(B) = b

2n�2(M)� b
2n�1(M)+2.

(4.1.34)

Hence the lemma follows from (4.1.34) and Lemma 4.1.6. This completes

the proof of this lemma.
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In summary, by Corollary 4.1.1, Lemma 4.1.5, Lemma 4.1.7, Lemma

4.1.8, and Lemma 4.1.9 we obtain the following.

Lemma 4.1.10. Let M be a non-orientable toric origami manifold of

dimension 2n (n � 2) with coörientable folding hypersurface such that

every proper face of M/T is acyclic. Then

b
2i+1

(M) = 0 for 1  i  n� 2.

b
1

(M) = b
1

(M/T ), b
2n�1(M) = b

1

(M/T )� 1,
(4.1.35)

Moreover, if M 0 and B are as above, then

b
2i(M

0) = b
2i(M) + b

2i(B) + b
2i�2(B) for 1  i  n� 1,

b
0

(M) = 1, b
2n(M) = 0.

(4.1.36)

Since all the relations among b
2i(M) and b

2i(M 0) for i  n� 1 are

the same as (3.1.6) in Theorem 3.1.1, we have the following theorem.

Theorem 4.1.1. Let M be a non-orientable toric origami manifold of

dimension 2n (n � 2) with coörientable folding hypersurface such that

every proper face of M/T is acyclic. Let bj be the j-th Betti number

of M with Q coe�cients and (h
0

, h
1

, . . . , hn) be the h-vector of M/T .

Then

b
2i = hi � (�1)i

✓

n

i

◆

b
1

for 1  i  n� 1.

When we consider the Betti numbers ofM with Z
2

coe�cients, we can

use Poincaré duality for non-orientable manfolds, so all the arguments

are the same as the orientable case.
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Theorem 4.1.2. Let M be a non-orientable toric origami manifold of

dimension 2n (n � 2) with coörientable folding hypersurface such that

every proper face of M/T is acyclic. Let bj be the j-th Betti number

of M with Z
2

coe�cients and (h
0

, h
1

, . . . , hn) be the h-vector of M/T .

Then
n

X

i=0

b
2it

i =
n

X

i=0

hit
i + b

1

(1 + tn � (1� t)n),

in other words, b
0

= h
0

= 1 and

b
2i = hi � (�1)i

✓

n

i

◆

b
1

for 1  i  n� 1,

b
2n = hn + (1� (�1)n)b

1

,

b
1

= b
2n�1 = b

1

(M/T ),

b
2i+1

= 0 for 1  i  n� 2.

By Lemma 4.1.10, Theorem 4.1.1, Theorem 4.1.2 and the universal

coe�cients theorem, we obtain the following.

Theorem 4.1.3. Let M be a non-orientable toric origami manifold of

dimension 2n (n � 2) with coörientable folding hypersurface such that

every proper face of M/T is acyclic. Let bj be the j-th Betti number of

M with Z coe�cients and (h
0

, h
1

, . . . , hn) be the h-vector of M/T . Then

H i(M) is torsion free for i  2n� 1.

Moreover,

b
0

= h
0

= 1,

b
2i = hi � (�1)i

✓

n

i

◆

b
1

for 1  i  n� 1,
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b
2i�1(M) = 0 for 2  i  n� 1,

b
1

= b
1

(M/T ),

b
2n�1 = b

1

(M/T )� 1,

H2n(M) ⇠= Z
2

.

Example 4.1.1. Consider the following origami template, and let M

denote the toric origami manifold corresponding to this template.

From this template, we can see that the f -vector is

(f
0

, f
1

) = (6, 6),

so the h-vector is

(h
0

, h
1

, h
2

) = (1, 4, 1).

By Theorem 4.1.3, we have

H0(M) = Z, H1(M) = Z, H2(M) = Z6, H3(M) = 0, H4(M) = Z
2

.

4.2 The non-coörientable case

In this section, we will discuss the cohomology groups of a non-orientable

toric origami manifold M with a non-coörientable folding hypersurface

Z and we assume connectedness of Z.
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Let (G, V , E) denote the origami template of M such that the

associated graph G has only one vertex v and a loop e.

v
e

Set  V (v) = P ,  E(e) = F . Let M 0 and B be the symplectic toric

manifolds corresponding to P and F respectively. Consider the graph

bG = (bV , bE), where bV = {v
1

, v
2

} and bE = {ẽ} = {(v
1

, v
2

)}.

v1 v2
ẽ

Then we can construct a new origami template ( bG,  
bV ,  bE) such

that

 
bV (v1) =  bV (v2) =  V (v) = P

and

 
bE(ẽ) =  E(e) = F.

Let cM be the toric origami manifold corresponding to the origami

template ( bG,  
bV ,  bE). Since bG is 2-colorable, the origami template

( bG,  
bV ,  bE) is orientable. Hence cM is orientable by Theorem 2.6.1.

Topologically, cM is just the equivariant connected sum of two copies

of M 0 along the submanifold B. Let Ñ be an invariant closed tubular
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neighborhood of B inM 0 with boundary Z̃. Let N be an invariant closed

tubular neighborhood of Z. By the radial blow-up operation in [7] for

the non-coörientable case, Z̃ is a double covering but not an orientation

covering of Z while cM is an orientation covering of M .

Set

M̃ := M � Int(N),

then

M = M̃ [N, M̃ \N = Z̃, (4.2.1)

On the other hand,

M̃ = M 0 � Int(Ñ),

and

M 0 = M̃ [ Ñ , M̃ \ Ñ = Z̃, (4.2.2)

Since Z and Z̃ are orientable S1-bundles over B, we obtain the fol-

lowing two equations by the same reason of Lemma 3.1.1

Lemma 4.2.1. b
2i(Z̃)� b

2i�1(Z̃) = b
2i(B)� b

2i�2(B) for any i.

Lemma 4.2.2. b
2i(Z)� b

2i�1(Z) = b
2i(B)� b

2i�2(B) for any i.

Since each face of the orbit space cM/T is acyclic, H⇤(cM) is torsion

free by [15] or [12]. By the same argument as in the proof of Lemma

4.1.3, we have

H i(M) = Zbi
M

(Z
2

)ci

for some bi, ci 2 N [ {0}.

Hence, it is su�cient for us to consider H⇤(M ;Q) and H⇤(M ;Z
2

).
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Proposition 4.2.1. The Q coe�cients Betti numbers between M and

M 0 have the following relationship:

b
2i�1(M) = 0 for 1  i  n. (4.2.3)

b
2i(M) = b

2i(M
0)� b

2i�2(B) for 1  i  n. (4.2.4)

Proof. Since each face of the orbit space cM/T is acyclic, H2i�1(cM) = 0

by [15] or [12]. Thus H2i�1(M ;Q) = 0 by Lemma 4.1.4. Hence the

Mayer-Vietoris exact sequence for the triple (M, M̃,N) splits into:

0! H2i�1(M̃)�H2i�1(N)! H2i�1(Z̃)

! H2i(M)! H2i(M̃)�H2i(N)! H2i(Z̃)! 0.

By the above short exact sequence, we have

b
2i(M̃)� b

2i�1(M̃) = b
2i(M) + b

2i(Z̃)� b
2i�1(Z̃)� b

2i(N) + b
2i�1(N)

(4.2.5)

Since N is a line bundle over Z, N is homotopy equivalent to Z. Hence,

we have

b
2i(M̃)� b

2i�1(M̃) = b
2i(M), (4.2.6)

by Lemma 4.2.1 and Lemma 4.2.2. In fact,

b
2i(Z̃)� b

2i�1(Z̃) = b
2i(B)� b

2i�2(B)

and

b
2i(N)� b

2i�1(N) = b
2i(Z)� b

2i�1(Z) = b
2i(B)� b

2i�2(B),

so

b
2i(Z̃)� b

2i�1(Z̃) = b
2i(N)� b

2i�1(N).
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Since H2i�1(M 0) = 0 the Mayer-Vietoris exact sequence for the triple

(M 0, M̃ , Ñ) splits into:

0! H2i�1(M̃)�H2i�1(Ñ)! H2i�1(Z̃)

! H2i(M 0)! H2i(M̃)�H2i(Ñ)! H2i(Z̃)! 0

We have

b
2i(M̃)� b

2i�1(M̃) = b
2i(M

0) + b
2i(Z̃)� b

2i�1(Z̃)� b
2i(Ñ) + b

2i�1(Ñ).

(4.2.7)

Since Ñ is homotopy equivalent to B, b
2i�1(Ñ) = 0. Hence this propo-

sition follows from Lemma 4.2.1, (4.2.6) and (4.2.7).

Proposition 4.2.2. The Z
2

coe�cients Betti numbers between of M

and M 0 have the following relationship:

b
2i�1(M) = b

2i�2(B) for 1  i  n. (4.2.8)

b
2i(M) = b

2i(M
0) for 1  i  n. (4.2.9)

Proof. Note that the map

H2i(M̃)! H2i(Z̃)

is surjective. In fact since B is a deformation retract of Ñ , the following

diagram is commutative:

H2j(M 0) ��! H2j(B)
?

?

y

?

?

y

⇡⇤

H2j(M̃) ��! H2j(Z̃)

where ⇡ : Z̃ ! B is the projection and the other homomorphisms are

induced from the inclusions. By (3.1.3) ⇡⇤ is surjective, and since M 0 is
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a toric symplectic manifold, the homomorphism H2j(M 0) ! H2j(B) is

surjective. Hence

H2i(M̃)! H2i(Z̃)

is surjective. Therefore the Mayer-Vietoris exact sequence for the triple

(M, M̃,N) splits into:

0!H2i�1(M)! H2i�1(M̃)�H2i�1(N)! H2i�1(Z̃)

!H2i(M)! H2i(M̃)�H2i(N)! H2i(Z̃)! 0

Then we have

b
2i(M̃)� b

2i�1(M̃)

=b
2i(M)� b

2i�1(M) + b
2i(Z̃)� b

2i�1(Z̃)

�b
2i(N) + b

2i�1(N).

(4.2.10)

Note that N is homotopy equivalent to Z and Lemma 4.2.1 and Lemma

4.2.2 also hold for Z
2

coe�cients, so (4.2.10) reduces to

b
2i(M̃)� b

2i�1(M̃) = b
2i(M)� b

2i�1(M). (4.2.11)

Since H2i�1(M 0;Z
2

) = 0, the Mayer-Vietoris exact sequence for the

triple (M 0, M̃ , Ñ) splits into:

0! H2i�1(M̃)�H2i�1(Ñ)! H2i�1(Z̃)

! H2i(M 0)! H2i(M̃)�H2i(Ñ)! H2i(Z̃)! 0

We have

b
2i(M̃)� b

2i�1(M̃) = b
2i(M

0) + b
2i(Z̃)� b

2i�1(Z̃)� b
2i(Ñ) + b

2i�1(Ñ).

(4.2.12)
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Ñ is homotopy equivalent to B, so H2i�1(Ñ ;Z
2

) = 0 and b
2i(Ñ) =

b
2i(B). Then by Lemma 4.2.1, we have

b
2i(M̃)� b

2i�1(M̃) = b
2i(M

0)� b
2i�2(B). (4.2.13)

By (4.2.11) and (4.2.13) we obtain

b
2i(M)� b

2i�1(M) = b
2i(M

0)� b
2i�2(B). (4.2.14)

We claim that for any i

b
2n�2i(M) = b

2n�2i(M
0), b

2n�2i�1(M) = b
2n�2i�2(B). (4.2.15)

We show (4.2.15) by induction on i.

When i = 0, b
2n(M ;Z

2

) = b
2n(M 0;Z

2

) = 1, so by (4.2.14) we obtain

that

b
2n�1(M) = b

2n�2(B).

Suppose that for i  k, we have

b
2n�2i(M) = b

2n�2i(M
0), b

2n�2i�1(M) = b
2n�2i�2(B).

Then by Poincaré duality, we have

b
2k+1

(M) = b
2k(B).

By (4.2.14), we have

b
2k+2

(M)� b
2k+1

(M) = b
2k+2

(M 0)� b
2k(B).

Hence,

b
2k+2

(M) = b
2k+2

(M 0).

By Poincaré duality, we obtain

b
2n�2k�2(M) = b

2n�2k�2(M
0).
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Using (4.2.14) again, we have

b
2n�2k�3(M) = b

2n�2k�4(B).

Therefore, for i = k + 1, (4.2.15) also holds. This completes the proof

of the proposition.

Example 4.2.1. The toric origami manifold corresponding to the left

origami template is M = RP 4 and it easy to see that M 0 = CP 2 and

B = CP 1.

Figure 4.1: M = RP 4
Figure 4.2: M 0

= CP 2

For Q coe�cients,

b
1

(RP 4) = b
3

(RP 4) = 0,

b
2

(RP 4) = b
2

(CP 2)� b
0

(CP 1) = 0,

b
4

(RP 4) = b
4

(CP 2)� b
2

(CP 1) = 0,

b
0

(RP 4) = b
0

(CP 2) = 1.

83



For Z
2

coe�cients,

b
1

(RP 4) = b
0

(CP 1) = 1,

b
3

(RP 4) = b
2

(CP 1) = 1,

b
2

(RP 4) = b
2

(CP 2) = 1,

b
4

(RP 4) = b
4

(CP 2) = 1,

b
0

(RP 4) = b
0

(CP 2) = 1.
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