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Preface 
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Emeritus Takeji Takui. This doctoral thesis is presented by the author in partial fulfillment of the 

requirements of the Graduate School of Science for the Degree of Doctor of Science at Osaka City 

University. 

 

Quantum computers (QCs) are one of the ultimate goals of quantum state control, which have 

capabilities to perform powerful computation procedure named quantum algorithm. Spectroscopy and 

quantum state control have deep relationship in simulations since both describe dynamics of quantum 

nature. Focusing on molecules, an electron magnetic resonance technique is a good representative of 

quantum computing by the virtue of electron and nuclear spins. In this thesis, the author has engaged 

in research molecular spin QCs (MSQCs) based on electron spin resonance-QCs (ESR-QCs), 

discussing magnetic properties of molecules and molecular spin dynamics theoretically. 

After general introduction in chapter 1, chapter 2 describes the structural study of spin-labeled 

DNA duplexes toward Lloyd model QCs as one dimension (1D) spin chain QCs. Here, the author has 

determined the steric structures with conformational search techniques based on molecular mechanics 

(MM) calculations combined with the experiments of pulsed electron double resonance (ELDOR) 

measurements. As a result, the author has suggested that the four electron spins in the DNA analogue 

have a capacity to be controlled individually and positions of spin labels in DNA duplexes are 

significant toward the spin chain QCs. Therefore, MM calculations combined with ESR experiments 

are a powerful tool for QCs since the partial structures about spins can be determined with the help of 

experimental restrictions.  

Research topics on theoretical chemistry for QCs include not only the structural study of molecules 

in static but also dynamic study of quantum properties. They also include theoretical supports of 

experimental procedures based on quantum mechanics in order to realize MSQC (chapters 3 and 4). 

In chapter 3, the author has proposed Adiabatic Quantum Computer (AQC) experiments for MSQCs. 

The most significant theoretical procedure is analytical decompositions in order to conquer pulse 

sequences, as experimental procedure of ESR-QCs, for the AQC experiments and subsequently the 

author has also performed numerical simulations to optimize algorithms for ESR experiments. As a 

result, the author figures out the difference of AQCs between ESR-QCs and nuclear magnetic 

resonance- (NMR-) QCs and proves that ESR-QCs can perform AQCs. In chapter 4, the author has 

investigated molecular design for applications of numerical pulses by GRadient Ascent Pulse 

Engineering (GRAPE) techniques. From the single-crystal studies of a potassium hydrogen maleate 

(KHM) radical and a 13C- labeled malonyl radical, molecular design and suitable molecular 



orientations are discussed for numerical pulses depending on spin magnetic parameters of the 

molecules. In the study, scalability of molecular spins is also proven with numerical simulations.  

From a viewpoint of quantum computing, new quantum algorithms are desired to develop benefit 

of QCs. Recently, quantum chemical calculations on QCs (QCCs on QCs) have been developed into 

a new research area of quantum computing, which solve quantum chemical problems by QCs. In this 

thesis, the author has focused on the spin property of QCCs, and then proposed a new quantum 

algorithms to prepare configuration state functions (CSFs) as described in chapter 5. The quantum 

algorithm has a superpolynomial character, indicating information processing capacity which is 

exponentially faster than the fastest algorithm in classical computers (CCs). By applying the algorithm, 

there is a possibility that open-shell molecules can be efficiently treated same as closed-shell molecules 

in QCs despite not in CCs. 

Through this doctoral thesis, the author contributes to theory of QCs in terms of the molecular 

system for MSQCs, proposing MSQC experiments of AQCs and GRAPE pulses and finding a new 

quantum algorithm. All the achievements in this work will be beneficial for the realization of the 

quantum computing and its experimental approach.  
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Introduction 
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Quantum mechanics tells us the ultimate goal of theoretical chemistry, in which complete 

computations of whole quantum systems derive any desired molecular feature in chemistry and 

physics. In my thesis, I have focused on the spin property of quantum nature in molecules since single 

electron/nuclear spin has the smallest degree of freedom in quantum mechanics and is conservation 

quantity in non-relativistic quantum theory. Although there is a simple single quantum property, the 

total molecular spins composed of those electron and nuclear spins (e.g. N of spin-1/2) have huge 

degrees of freedom (2N) accompanying superposition and entangled states. Therefore, there are the 

significant applications “quantum computing” and “quantum state control”.[1]  

Nowadays, CCs have been essential not only theoreticians but also experimentalists due to the 

huge amount of data to investigate new science and to analyze experiments. Discussing the relation 

between information and physics, it is known that computational resources by an ensemble of atoms 

involved are limited[2] and the quantum feature has more capability in terms of computational ability 

than classical one. Quantum computing is a new paradigm, in which the superposition and entangled 

states of quantum bit (qubit) speed up processing.[1, 3] Mentioning computational ability of QCs, BQP 

(Bounded-error Quantum Polynomial time) class is known as the class which QC can solve in 

polynomial time against the problem size and contains some parts of NP (Non-deterministic 

Polynomial time) and NP-hard classes.[4] Since NP and NP-hard cannot be solved efficiently by CCs, 

there are several issues ought to be solved by QCs. The most interesting quantum algorithms (called 

superpolynomial algorithms) give the solutions of the NP and NP-hard in polynomial time[5] and the 

best known example is Shor’s factorization algorithm[5]. In this algorithm, the solution of the 

factorization problem are given in polynomial time by QCs and the experiments have been invoked 

by (Nuclear Magnetic Resonance) NMR spin qubits[6], photonic qubits[7] and Josephson phase qubits 

resonators[8].  

Toward QCs, many quantum systems have been proposed so far, e.g. Josephson junction qubits,[8, 

9] photonic qubits,[7, 10] trapped ion,[11] NMR-QC,[5, 6, 12-19] ESR-QC,[20-25] and mixed systems in order 

to combine benefits of different qubits,[26] etc. Although quantum systems are struggling with 

decoherence (relaxation) and interaction problems, experiments for quantum state control and 

quantum algorithms are invoked in each system. In Josephson junction systems, interactions between 

qubits can be switched by external contact where charge, phase and flux qubits are proposed to control 

quantum states.[9] Furthermore, the system has experimented Shor’s algorithms by nine qubits 

composed of four phase qubits and the two lowest sublevels of five superconducting co-planar 

waveguide (CPW) resonators[8]. Polarization qubits of photons have benefits in large decoherence time 

and spatial migration ability, thus quantum teleportation, switching interactions[27] and quantum 

algorithms[7, 10] have been investigated. In the trapped ion qubits systems, the quantum systems can 

contain many qubits (the current largest number is 14 qubits[28]), and Deutsch–Jozsa algorithms and 

quantum simulations[11] have also invoked. 
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Referring magnetic resonance QCs, NMR-QCs have been proven significant quantum algorithms 

with small qubit experiments, e.g. the first time experiments of Grover’s quantum search algorithm,[12] 

quantum Fourier transformation,[13] Shor’s algorithm,[6] adiabatic MAXCUT,[14] adiabatic Grover’s 

algorithm[15] and adiabatic factorization of 21[16] and 143[17]. Note that the experiments of Shor’s 

algorithm have been invoked by the NMR-QC utilizing C, H and F nuclear qubits of a 

dimethylfluoromalonate molecule with approximately 300 radio wave pulses.[6] Furthermore, state 

control with numerically computed pulses has been also experimented well by NMR spectrometers.[18, 

19]  

In MSQCs, molecular design for QCs is applicative from chemical point of view named g-tensor, 

pseudo g-tensor, A-tensor and D-tensor engineering and is interested in spectroscopy and the quantum 

state control, [20-25] and MSQCs have stronger interactions than NMR-QCs, which cover from order of 

MHz to few GHz[29]. For the earlier QC experiments, a spinor property of electron was proven by 

pulsed ENDOR spectroscopy,[30] A Diphenylnitroxide (DPNO) was utilized there for 3-qubit entangle 

experiments,[24] A nitroxide biradical was applied to perform a CNOT quantum gate,[23] and indirect 

state control of a hydrogen nuclear qubit was invoked with a single frequency microwave pulse[25]. 

Furthermore, theoretical research[31] has proven several issues to realize MSQCs including my work 

as described in the following chapters.[32] 

Here, I introduce the earlier study and contents of each chapter. Chapter 2 is the study for periodic 

1D-QCs composed of molecular spins, where triple-stranded metallo-helicates[21] and spin-labeled 

DNA duplexes[22] have been synthesized as models for Lloyd QCs before. Although I have studied 

spin-labeled DNA duplexes by virtue of the multi organic radical character in chapter 2, triple-stranded 

metal systems are also significant candidates of the periodic 1D-QCs in which spin sites are composed 

of metal ions of Mn(II) and Zn(II).[21] Lloyd model QCs[33] are one theoretical model of 1D-QCs and 

require individual spin operations at a periodical 3 type spins (A, B, C) and the edges of spin chain 

(E1, E2) to control whole spin chain. In the Lloyd model, it is proven that the QCs can be performed 

only with 16 pulses in an NMR case study, which number is conserved in any spin number of chains.[34] 

Toward Lloyd model QCs, I have focused on the steric structures of a spin-labeled DNA duplex which 

is composed of two radical pairwise and one DNA duplex, and the DNA duplex synthesized was 

characterized well by CD spectra and DNA melting point in the previous study.[22] In chapter 2, I have 

determined the steric structures of the spin-labeled DNA duplex by MM calculations with the help of 

the pulsed ELDOR technique, where the ELDOR experiments were utilized to estimate possible steric 

structures of the DNA duplex and the spin sites. 

In chapter 3, I have proven that MSQCs have a computational ability to perform a quantum 

computational model for AQCs and described practical steps by calculating pulse sequences.[32] In 

AQCs, Hamiltonian is slowly varied in time and its ground states is computed by the change. One of 

the significant AQC experiments is adiabatic factorization algorithm of 21 by an NMR-QC which has 
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computed nuclear spins of a diethylfluoromalonate molecule with analytical pulse sequences.[16] 

Furthermore, the algorithm has the simulating parts of a 3-qubit interaction obviously hard to be 

represented by existent physical systems. As a result, this algorithm requires computational ability to 

perform AQCs for the general manner. In the adiabatic factorization algorithm of 21, time evolution 

of the adiabatic quantum algorithm (AQUA) was simulated by 3 nuclear spin qubits (H, C and F) in 

an analytical manner. Thus, I have applied the same approach to MSQCs in order to perform AQCs. 

For 3 qubit systems of MSQCs mainly discussed in chapter 3, a phtalocyanine derivative[35] and a 

deuterated glutacon acid radical[36] are selected to perform the AQUA with 3 electron qubits and 1 

electron and 2 nuclear qubits, respectively. In chapter 2, the most parts are devoted for the analytical 

pulse sequence generation techniques where secular averaging approach (SAA) is adopted to discuss 

pulse sequences[31] and simulating procedure of quantum path is described in MSQCs for the first time. 

Furthermore, I have pointed out the difference between NMR-QCs and MSQCs and proposed the 

modification methods of experimental conditions for MSQCs by numerical simulations. As a result, I 

have established theoretical perspective on MSQCs toward quantum simulations of time evolution and 

AQCs. 

In chapter 4, numerical pulse sequences are discussed for quantum gate operations. Recently, 

GRadient Ascent Pulse Engineering (GRAPE) techniques have been widely utilized in NMR-QCs by 

virtue of the accurate control and overcoming hard analytical control conditions, where the approach 

optimized pulse amplitude with fixed frequency in a global manner in time.[18] I reveal the relation 

between molecular properties of MSQCs and quantum state control by the GRAPE techniques. 

Simulations to estimate control difficulty have been performed by changing molecular orientations 

against the static magnetic field, and the following control is assumed: nuclear spins are controlled by 

irradiations of microwave via hyperfine interactions between electrons and nuclei, i.e. indirect state 

control of nuclei.[25] A KHM radical[37] and a 13C- labeled malonyl radical[38] are adopted for controlled 

spin systems hosting one electron spin and two nuclear spins. As a result, the control difficulty is 

proven by controllability of the spin systems such as distinguishability of qubits and nuclear spin flip 

speed through hyperfine interactions. This is the first study to establish the relation between molecular 

properties and numerical pulse experiments. 

The last chapter, chapter 5, is concerned with a quantum algorithm study for QCCs on QCs. I have 

established a quantum algorithm to generate a configuration state function (CSF) in a quantum register, 

which is the one of the superpolynomial algorithms. The CSF wavefunction has a multi-determinant 

property composed of exponential number of Slater determinants to satisfy a spin eigenstate. This 

property suggests that the CSF requires exponential time to compute in classical computers in general. 

However, QCs have computational capacity to generate CSFs in polynomial time by a discovered 

quantum algorithm in gate model QCs. The quantum algorithm suggests that open-shell molecules can 

be treated by a same manner with closed-shell molecules, and also offers a new starting point of QCCs.  
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As described above, the research area in my thesis ranges only in theory but wide: A molecular 

structural study (chapter 2), a pulse sequence study in ESR spectroscopy (chapter 3), a molecular 

design study with numerical pulses (chapter 4) and a quantum algorithm study (chapter 5). The details 

are shown in each chapter. Due to my research, new fundamental properties in MSQCs are concluded 

and few further problems are discovered.  
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Chapter 2 

 

Structure Determination of Spin-labeled DNA 

Duplexes by Pulsed ELDOR Experiments and 

Molecular Mechanics Calculations  
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2-1. Introduction 

DNA has been attracting researchers from its salient biological character of life,[1] but the structural 

features itself, i.e. the duplex well-known as a hydrogen bonding architecture and a 1D structure has 

also interests for chemists and physicists. Since 1D structures of DNAs can be applied to chemical 

modification of spin sources, DNA duplexes have been proposed to utilize periodic 1D QCs especially 

for Lloyd model QCs.[2-4] In the research, the electron spin sources are attached and assumed to be 

controlled by pulsed ESR, i.e. MSQCs are assumed.[5-7] This is the salient example of molecular 

designs toward electron spin-based quantum computing and quantum information processing 

(QC/QIP).[2-7]  

Lloyd model QCs are composed of the 1D (ABC)n spin array and have a computational ability of 

3n qubit systems, where the individual spin manipulations are required only for grouped spins of A, B 

and C and the edge spins of the 1D chain.[8] Since the individual manipulations in ESR-QCs are 

possible with the g-tensor and pseudo g-tensor engineering technique, which controls g-value and the 

transition frequency of the spin system by the molecular engineering.[6, 7] It is remarkably proven that 

universal gates, including all performable quantum operations, are possible to be performed only by 

16 pulses for the 1D spin array at the NMR case study.[9] 

At spin functionalized materials such as synthesized oligonucleotides, information of the structural 

properties is a key to the multi-qubit systems: structural flexibility of the system, orientations of spin 

moieties, hydrogen binding structures.[4] It is not feasible to obtain single crystals for synthesized 

oligonucleotides enough good ingredient to determine their structures by X-ray analyses particularly 

with high flexibility. Frequently, the structures should be determined by indirect experiments and 

theoretical calculations. In this chapter, I have invoked conformational search calculations of MM in 

order to determine the optimal structures with the help of the ELDOR experiments.  

Molecular Mechanics is one of the theoretical structure calculation methods on chemistry, which 

is based on classical mechanics with given empirical parameter sets of force fields. The largest benefit 

is the computational speed enough to calculate energy of large molecules. However, MM calculations 

face an avoidable problem in determining flexible structures of oligonucleotides because there are 

many local minima in energy originated from the degree of freedom in atoms.  

The problem seems to be critical for simulating structures around global minima, but it is still 

possible to acquire the structures by combining the MM calculations (Merk Molecular Force Field: 

MMFF)[10] with experimental information observed in ESR. Pulsed ELDOR experiment is known as 

one of the most reliable distance measurements to determine the spin distance about 1.5-8.0 nm 

between two weakly coupled unpaired electrons.[11] Pulsed ELDOR technique (PELDOR) has been 

widely used for the distance measurements of weakly coupled bi/tri-radicals, spin-labeled 

macromolecules and clusters.[12] The distance analyses of ELDOR spectra have been performed by 
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using DeerAnalysis 2006[13] and DEFit program packages[14], and the error of distance distributions 

can be estimated from the experimental data by the later program.  

In addition to conformational search procedure of MM calculations, Molecular dynamics (MD) 

simulations[15] have been very widely used for the folded RNAs and DNAs to study the conformational 

structures, dynamics and thermodynamics with the help of PELDOR.[16] However, both approach 

should simulate same results in static structures since steric structures are time independent physical 

existence. Thus, I discuss only the conformational search method for the structure determination of 

the spin-labeled DNA duplex. 
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2-2. Molecular Information 

2-2-1. Molecular Structures of a Spin-labeled DNA Duplex 

The non-covalent type of a spin-labeled DNA duplex (D1/D2) is aimed at a Lloyd model QC, in which 

two pairs of stable radical moieties are labeled. The structures of D1/D2 are composed of a 22-mer 

duplex (D1 = 5’-GTCTC (G) GTAGACATTC (A) GTTAG-3’ and D2 = 5’-CTAAC (A) 

GAATGTCTAC (G) GAGAC-3’) and G and A in brackets denote mismatch bases as reported 

before.[3] The radical moieties are 2,2,6,6-tetramethylpiperidine (TEMPO) and nitronyl nitroxide (NN) 

which bonds to the predetermined sites with mismatch binding ligands (MBLs). A naphyridine-

azaquinolone (NA) with TEMPO and a naphthyridine carbamate dimer (NCD) with NN are designated 

as MBLs selectively bonding with the hydrogen manner to the guanine-guanine (G-G) mismatch in a 

5’-CGG-3’/5’-CGG-3’ (CGG) partial peptide and the adenine-adenine (A-A) mismatch in a 5’-CAG-

3’/5’-CAG-3’ partial peptide, respectively (Fig. 2-2.1).[3] The moieties are named NCD-NN and NA-

TEMPO and the four radical moieties in attached sites are numbered by NN(1), NN(2), TEMPO(3) 

and TEMPO(4).  

 

 

Figure 2-2.1. A molecular structure of a 22-mer DNA duplex labeled with four-spin moieties. The 

DNA and radical pairwise (two NCD-NN and two NA-TEMPO) in the left hand and middle sides 

compose a spin-labeled DNA duplex of the right hand side. Red-circles depicted in both DNA duplexes 

indicate mismatched bases. Green allows and lines are hydrogen bonds, and allows denote hydrogen 

bonds between spin-labels and DNA bases around the two mismatched sites. 
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2-2-2. Steric Structures around Spin-labels  

As shown in Fig. 2-2.1, the synthesized spin-labeled DNA duplex has two types of spin distances 

expected by the molecular structure since the two radical pairwise are attached distant mismatch bases 

(10 DNA bases) and each pair of spin labels is attached in neighbor DNA bases. One of them is the 

short spin distance between each pair of radical moieties (intra-pairs), and another is the longer 

distance between radical pairs (inter-pairs) than that of intra-pairs. The g-tensor and pseudo g-tensor 

engineering has completed for the 1D chain since two radical pairs are estimated to have different g-

tensors and the different transition frequencies in the chemical point of view.[6, 7] In this spin-labeled 

DNA duplex, there are only two spin sources to be aligned, and it is possible to expand same method 

toward three qubit cyclic chain, i.e. Lloyd model QCs.  
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2-3. ESR Experiments 

2-3-1. Experimental Conditions of ESR Spectroscopy 

Four-pulse ELDOR (PELDOR/DEER) experiments of the spin-labeled DNA duplex were performed 

in frozen solution of the toluene solvent at 50 K. The spectra were observed with a made-to-order 

Bruker ELEXSYS E580 pulsed Q-band ESR spectrometer equipped with a helium cryostat (made-to-

order Optibath SXM) and a temperature control system (ITC 503) both from Oxford Instruments 

amplified via a pulsed traveling wave tube (1kW TWT) amplifier from Applied Systems Engineering.  

 

 

2-3-2. Pulsed ELDOR Spectra 

The pulse sequence in the ELDOR spectroscopy is π/2(ν1)-τ1-π(ν1)-(τ1+t)- π(ν2)-(τ2-t)- π(ν1)- τ2-echo 

(Fig. 2-3.1). In the ELDOR experiments, pulse duration time and pulse interval time are carefully 

selected in terms of selectivity of spins and relaxation effects. The pulse conditions are follows: the 

durations of the detection pulses (ν1) were set to be 16 ns for the π/2 pulse at the center of the resonator 

dip and the duration of the pump pulse (ν2) was set to be 80 ns and applied at 50 MHz lower frequency 

than that of the detection pulses, which is applied to the maximum at the nitroxide-based field-swept 

ESR spectra. The visual positions of the detection and pump pulses are indicated in Fig. 2-3.2. In the 

time conditions, time t was varied 256 points with the increments Δt of 8 ns, and τ1 and τ2 were set to 

be 200 ns and 2000 ns, respectively. The experiment repetition time of 1 ms is adopted for the 

accumulation as the time of the system enough relaxed. Accumulating of 80000 scans, the overall 

measurement time was done in 5.6 h.  

 

Figure 2-3.1. Pulse sequence of 4-pulse ELDOR experiments. The microwave frequency in the 

detection pulse is ν1 and that in the pump pulse is ν2. 

 

p/2 p

p

p

n1

n2
t

Echo Intensity: I(t)



15 

 

 

Figure 2-3.2. Field-swept ESR experiments. Positions of pump and detection pulses are shown with 

respect to the magnetic field. 

 

 

2-3-3. Analyses of ELDOR Experiments 

Experimental data were analyzed for spin distance distributions from the time domain spectra by two 

methods. One is DeerAnalysis2006 with Tikhonov regularization in the range of 1.6 and 8 nm using a 

regularization parameter of 1.[13] Another is DEFit program software developed by P. G. Fajer and 

coworkers,[14] which can estimate not only the distance distributions but the error rates of the 

distributions. Considering these results, I have determined the spin distances with reliability.  
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2-4. Theory of Molecular Mechanics 

2-4-1. Optimization Procedure 

The steric structures of the spin-labeled DNA duplexes are determined by the continuous 

conformational search based on MM calculations from the estimated initial structures. The structural 

energy is estimated by MMFF[10] with water solvent (GB/SA model)[17]. Since MMFF does not have 

force field parameters for radical moieties, the radical NO sites were replaced with CO. It has been 

reported that the CO group is suitable for the replacement of the NO group from the viewpoint of the 

hydrogen bonding form.[18] To my knowledge, NO and CO groups have a similarity in the crystal 

structures for deuterated host-guest systems, therefore the replacement are appropriate.[6]  

The conformational search procedure is composed of three processes, creations of new structures, 

structure optimizations and sequential conformational searches. In the structure optimization process, 

TNCG (Truncated Newton Conjugate Gradient) method is utilized on the basis of nonlinear 

optimization procedure and the end of the optimization process is judged by the energy change being 

lower than 0.1 kJ/mol per one step.[19] An optimized structure is determined to be a new structure when 

RMSD (Root-Mean-Squares Deviation) as measure of the average distance between two relevant 

structures is within 1.0 Å. All the MM calculations were performed in Macromodel 9.8/Maestro 9.1 

and 9.4.[20] 

 

 

2-4-2. Conformational Search 

The simulations of the continuous conformational searches were performed by using a large-scale-low 

mode sampling (LLMOD),[21] torsional sampling (MCMM; Monte Carlo Multiple Minimum) and a 

MMFF and MMFFs re-optimization process.[22] At the conformational search procedure, LLMOD and 

MCMM are applied to the lowest energy structure in order to pick up 10 searched structures with 

energy low. The re-optimization process is performed in order to relax energy of the 10 searched 

structures with two force field, which is sequential optimization to find the lowest energy structure: 1) 

optimize with MMFFs force field into the MMFF optimized structure and 2) a re-optimization with 

MMFF force field into the MMFFs before optimized one. Therefore, the re-optimization process 

certainly comes to the next to LLMOD and MCMM processes. The overall processes are performed 

to the initial structure for a kind of each type, e.g. Type X.  

At the 1st step of the conformational search, (1) LLMOD, MCMM and the re-optimization were 

applied to the initial structure of Type X, say Xi, in which the hydrogen bonds were constrained. The 

1st step was repeated unless the new lowest energy structure found. (2) The 2nd step is the 

conformational search utilizing the lowest energy structure of the 1st step without constraining 

hydrogen bonds. In the re-optimization of this 2nd step, we abandoned the structures in which the 
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hydrogen bonds between the spin-labeling units and the bases in the DNA duplex are completely 

cleaved. The 2nd process was also repeated unless the new lowest energy structure was found. (3) In 

the 3rd step, LLMOD and MCMM with MMFF were applied to the lowest energy structure of the 2nd 

step, in which the hydrogen bonds were not constrained in all the conformational search. This process 

was not repeated, giving the most stable structure optimized for a kind of type, say Xf.  
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2-5. Results of ELDOR Experiments 

2-5-1. ELDOR Analyses by DeerAnalysis 2006  

The time domain profile was obtained by the ELDOR experiments for the spin-labeled DNA duplex 

described above. In DeerAnalysis 2006,[13] the time domain profile is analyzed into the distance 

distributions between two unpaired spins, with Fourier transformation and Tikhonov regularization. 

Several separated peaks range from 2.5 nm to 6.3 nm, where the most intense peak appears at 4.36 nm 

(see Fig. 2-5.1). The best fit for the Fourier transformed spectrum was given by the superposition of 

eight Gaussian functions with particular weights. The details of fitted distance distributions are listed 

in Table 2-5.1.   

Figure 2-5.1. (a) Time domain profile of PELDOR measurements subtracted background by 

DeerAnalysis 2006. (b) Spin distance distributions with Tikhonov regularization (black line) and 

fitting (red line) composed of eight Gaussian functions. The Gaussian weights are shown in Table 2-

5.1. 

 

Table 2-5.1. Peak distances and weights of eight Gaussians. The peak numbers (i)-(viii) in the table 

corresponds to Fig. 2-5.1 (b). Peak weights are relative values given in %. 

 (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 

Distance /nm 2.53 2.69 2.94 3.70 4.36 4.62 4.90 6.26 

Intensity /% 8.95 5.01 12.61 2.16 37.57 6.71 11.60 15.39 

 

 

2-5-2. ELDOR Analyses by DEFit  

DEFit program[14] supplied by P. G. Fajer and coworkers enables to estimate distance distributions 

with error rates of each distribution from a time domain profile of ELDOR experiments. The analysis 

of error rates is based on the fitting arbitrary property, and then a number of Gaussian functions are 
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automatically estimated from change of error rates. Furthermore, reliability of each distance 

distribution is also evaluated as plots of error in χ2 analysis. The analysis plots χ2 values by changing 

the peak distance and width. If the counter plots of error were narrow (broad), the distribution is 

reliable (non-reliable) due to the small (large) arbitrary properties (distance and width) to fit the 

ELDOR experiments. 

The results are shown in Fig. 2-5.2 accompanying three distributions, in which the errors for 

distributions of 2.0-3.5 nm and 6.0-7.0 nm were relatively larger than that of 4.3 nm, and the narrow 

and intense contour plots are given rise to around 4.3 nm. The results imply that the peak of 4.3 nm is 

the most reliable and major component of ELDOR experiments.  

 

(a)       (b)       (c) 

Figure 2-5.2. Analysis of PELDOR signals by DEFit program. (a) Time domain profile subtracted 

background (black line) and the best fit curve (red line). (b) The distance distributions in DEFit 

analysis with respect to the best fit curve. (c) Error in χ2 analysis.  

 

 

2-5-3. ELDOR Results 

With the two analyses, DeerAnalysis 2006 and DEFit program, the ELDOR experiments are 

transformed into the distance distributions and error information. Both programs give approximately 

same distributions except for the peaks below 3.5 nm. In DEFit program, the peak below 3.5 nm has 

large error rate and the further Gaussian functions are not required because of small change of the 

error rates. Thus, I just mention only for possibility of the steric structures giving the peak below 3.5 

nm which appears in DeerAnalysis 2006 results.  

On the other hand, the peaks at 4.3 nm and around 6.0 nm are well consisted within the two 

analyses. These results suggest that there are the steric structures satisfying each distribution although 

the distribution around 6.0 nm has a non-negligible error rate. Therefore I have specially concentrated 

on the structures in which spin distances are about 4.3 nm (major), and also searched the structures 

with the spin distances around 6.0 nm (minor). From the structural point of view, those are 

corresponding to the spin distances between radicals of inter-pairs because distances between spin-

labels are close enough to interact with the direct steric repulsion.  
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2-6. Structure Estimation 

2-6-1. Scope of Simulated Structure  

For the initial structures of the spin-labeled DNA duplex, I have elaborately considered the steric 

structures with different coordination of radical moieties as depicted in Fig. 2-2.1, in which each 

radical site (a ball) is inside/outside the DNA duplex and the hydrogen binding ligand (a dotted line) 

is bonded to the designated DNA bases.  

The structural components of ELDOR results (section 2-5.) are estimated with the assumption 

from the molecular configurations based on steric repulsion. The steric structure neighboring the each 

radical pair-wise satisfies one of the three conditions: (1) a structure of the pair-wise radical in which 

one of hydrogen bonding sites is located inside the DNA duplex and the other located outside the DNA 

duplex, (2) a structure of the pair-wise radical in which both hydrogen bonding sites and radical sites 

are located inside the DNA duplex, (3) a structure of the pair-wise radical in which all the radical sites 

and hydrogen bonding sites of the radical moieties are located outside the DNA duplex. Then, I have 

sixteen types of structures as schematically shown in Fig. 2-6.1.  

 

 

Figure 2-6.1. Schematic drawing of molecular structures of the spin-labeled DNA duplex. Red and 

blue dotted lines with circles denote the spin-labels of NCD-NN and NA-TEMPO, respectively. 

Circles designate spin sources in spin-label moieties. Group A, B and C in green boxes are named on 

the basis of spin distance estimations. For following discussion, Type A to E are named. See the detail 

in section 2-7.  



21 

 

2-6-2. Computed Structures  

As discussed in the following subsection, the steric structures of the spin-labeled DNA duplex are 

estimated by the ELDOR measurements with optimized structures of MM calculations. The ELDOR 

experiments make restrictions for spin distances between the NN site and TEMPO site (inter-pairs), 

since distances between same radicals are too short to discuss two ELDOR peaks of 4-5 nm (major) 

and 6-7 nm (minor). From the view point of optimized/conformational searched structures (see section 

2-7), 1) the structures of Type A in Fig. 2-6.1 have spin distances around 6-7 nm (minor peak of 

ELDOR measurements), and 2) the structures of Type B, C and D have spin distances around 4-5 nm 

(major peak). Where the simulated average spin distances, say simply spin distances, of the MM 

structures are defined as the distances between the oxygen atoms of the CO and NO groups. 

Then, structures of Group A, B and C in Fig. 2-6.1 can be abandoned from the candidates of the 

steric structures. Group A and B are eliminated by restrictions from the distance distributions of the 

ELDOR experiments, and Group C can safely be eliminated by the large steric repulsions between the 

NA-TEMPO radical sites. In Group A, the structures should have spin distances longer than the major 

peak and shorter than the minor peak. These structures can be rejected from the ELDOR experiments 

since there are no peak between 5 nm and 6 nm. Group B can also be eliminated from the fact that  

the radical sites of NA-TEMPO(4) are located outside the DNA duplex and then the corresponding 

spin distances increase from the case of NA-TEMPO(3). Thus, the structures in Group B have also 

larger spin distances than that of the major peak. For Group C, the high steric repulsion between the 

NA-TEMPO radical sites is expected as described in the following section. This is also described 

below that the spin distances of Type E can be estimated from Type D and they have no consistency 

with the ELDOR experiments. Therefore, the probable candidates from the conformational search are 

limited in Type A, C and D. 

 

  



22 

 

2-7. Results of Conformational Search 

2-7-1. Structures of Type A 

Structures of Type A have the longest distance between the spin moieties, in which the hydrogen 

bonding sites, ligand parts of spin-labels, are located inside the DNA duplex and the radical sites are 

placed outside the DNA duplex. This type of structures was constructed based on the synthesis and 

experiments that the structure of molecule inserted DNA was determined by the NMR analyses,[2] 

which corresponds to the 22-mer DNA duplex with the inserted linker (NCD or NA) without the 

radical moieties. Thus, I carefully attached radical moieties to the linker with the structure kept as it 

was. The initial and final (conformational searched) structures, Ai and Af, of Type A are depicted in 

Fig. 2-7.1. The energy of Af is −46016 kJ mol-1 and the corresponding spin distances between inter-

pairs are 6.0 to 7.0 nm (see Table 2-7.1). As a result, I assigned Type A into the minor ELDOR peak 

of (viii) in Fig. 2-7.2. Since each NN/TEMPO spin sites stick out the opposite directions of the DNA 

duplexes in Ai and Af, the spin distances of inter-pairs are maximized. 

 

(a)                   (b)                    

Figure 2-7.1. Computational structures of Type A. Green spheres depict hydrogen bonding sites of 

spin-labels and red and blue spheres are the radical sites (NNs and TEMPOs) of NCD-NN and NA-

TEMPO, respectively. (a) The initial structure Ai (Energy = −45870 kJ mol-1). (b) The final structure 

Af (Energy = −46016 kJ mol-1) of the MM searched structure. 
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Table 2-7.1. Energy and spin distances of Ai and Af. The energy and distances are given in units of kJ 

mol-1 and nm, respectively. Circled number (i) denotes the spin moieties of NN(i) in i = 1, 2 and 

TEMPO(i) in i = 3, 4. 

 Energy 

/kJ mol-1 

(1)-(2) 

/ nm 

(1)-(3) 

  /nm 

(1)-(4) 

/nm 

(2)-(3) 

/nm 

(2)-(4) 

/nm 

(3)-(4) 

/nm 

Ai -45870 0.72 6.07 6.56 5.87 6.43 1.78 

Af −46016 0.62 6.15 6.54 6.45 6.94 1.83 

 

 

Figure 2-7.2. Distance distributions and spin distances of Af. The spin distances between four spin-

labels are shown in red filled circles. The distances corresponds a minor peak about 6.0 to 7.0 nm. 

  

 

2-7-2. Structures of Type B and C 

In order to construct structures with the shortest spin distances, I suggested a new concept of structures. 

Structures of Type B are consisted with all the hydrogen bonding sites are outside the DNA duplex 

and all the radical sites inside the DNA duplex. However, Type B has relatively higher energy than 

Type A, since the structure, e.g. the initial structure (Bi) in Fig. 2-7.3, has large steric repulsion around 

the radical sites of NNs. Compared to NCD-NN, NA-TEMPO has a bulky spin moiety close to NA 

ligand, and then this repulsion is estimated to make steric energy high in Bi. Although the spin 

distances are well corresponded to the major peaks (v)-(vii) of ELDOR experiments, I rejected Type 

B from the element of ELDOR distance distributions without searching its conformations due to the 

steric repulsion.  

The relaxation of a sizable amount of the steric repulsions in Type B led Type C, which was 

constructed by modifying Type B, i.e. the radical site of TEMPO(3) was relocated outside the DNA 
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duplex. Resulting the conformational search from the initial structure of Ci, a final structure of Cf as 

the most energetically stable structure is obtained. The structures of Ci and Cf are depicted in Fig. 2-

7.4 and the spin distances and energies are shown in Table 2-7.2. The spin distances in Type C 

correspond to the major peaks of ELDOR experiments (v)-(vii) (Fig. 2-7.5), and the relative energy of 

Cf is slightly smaller than that of Af. Therefore, I suggest that Type C has contributions to the ELDOR 

spectra. 

 

Figure 2-7.3. Computational structures of the initial structure Bi (Energy = −45753 kJ mol-1). Green 

spheres depict hydrogen bonding sites of spin-labels and red and blue spheres are the radical sites 

(NNs and TEMPOs) of NCD-NN and NA-TEMPO, respectively. 
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(a)                       (b) 

   

Figure 2-7.4. Computational structures of Type C. Green spheres depict hydrogen bonding sites of 

spin-labels and red and blue spheres are the radical sites (NNs and TEMPOs) of NCD-NN and NA-

TEMPO, respectively. (a) The initial structure Ci (Energy = −45895 kJ mol-1). (b) The final structure 

Cf (Energy = −46059 kJ mol-1) of the MM searched structure. 

 

 

Table 2-7.2. Energy and spin distances of Ci and Cf. The energy and distances are given in units of kJ 

mol-1 and nm, respectively. Circled number (i) denotes the spin moieties of NN(i) in i = 1, 2 and 

TEMPO(i) in i = 3, 4. 

 Energy 

/kJ mol-1 

(1)-(2) 

/ nm 

(1)-(3) 

  /nm 

(1)-(4) 

/nm 

(2)-(3) 

/nm 

(2)-(4) 

/nm 

(3)-(4) 

/nm 

Ci -45895 0.80 4.73 4.77 4.22 4.25 1.42 

Cf −46059 0.86 5.22 5.35 4.58 4.71 1.45 
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Figure 2-7.5. Distance distributions and spin distances of Cf. The spin distances between four spin-

labels are shown in blue filled circles. The distances corresponds a major peak about 5.0 nm. 

 

 

2-7-3. Structures of Type D and E 

In order to estimate the steric repulsion between the NN spin sites, the structure of Type D was 

constructed, in which not only one of TEMPO(3) but also one of NN(1) were located outside the DNA 

duplex. From the conformational search, a final structure Df was obtained from the initial structure Di 

(Fig. 2-7.6 and Table 2-7.3). It is note worth that the spin distances of Df are also corresponding to the 

peaks (v)-(vii) and the energy of Df is almost the same as Cf and lower than that of Af. 

As mentioned in section 2.6, Type E was also considered as a steric structure of the spin-labeled 

DNA duplex, which radical sites of TEMPO(3) and NN(2) were located outside the DNA duplex. 

Figure 2-7.7 shows the structure of Ei, and Table 2-7.4 energy and spin distances. Although spin 

distances in Type E consistent with the major ELDOR peaks of (v)-(vii), there are also spin distances 

between inter-pairs, which can range uncertain and minor peaks (< 3.5 nm). This short distances are 

not included in Type C and D because in general NN(2) is closer to TEMPOs than NN(1). Therefore, 

I abandoned Type E as not the major structure consisting ELDOR distance distributions, since the 

structure in maximum is considered to be contained only as much as minor components. Thus, if Type 

E exists in the spin-labeled DNA duplex, the structures can contribute to the small amount of major 

peak of the ELDOR measurements. 
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(a)                 (b)          

    

Figure 2-7.6. Computational structures of Type D. Green spheres depict hydrogen bonding sites of 

spin-labels and red and blue spheres are the radical sites (NNs and TEMPOs) of NCD-NN and NA-

TEMPO, respectively. (a) The initial structure Di (Energy = −45825 kJ mol-1). (b) The final structure 

Df (Energy = −46057 kJ mol-1) of the MM searched structure. 

. 

 

Table 2-7.3. Energy and spin distances of Di and Df. The energy and distances are given in units of kJ 

mol-1 and nm, respectively. Circled number (i) denotes the spin moieties of NN(i) in i = 1, 2 and 

TEMPO(i) in i = 3, 4. 

 Energy 

/kJ mol-1 

(1)-(2) 

/ nm 

(1)-(3) 

  /nm 

(1)-(4) 

/nm 

(2)-(3) 

/nm 

(2)-(4) 

/nm 

(3)-(4) 

/nm 

Di −45825 1.37 4.17 4.25 4.54 4.58 1.42 

Df −46057 1.21 4.66 4.70 5.13 5.19 1.58 
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Figure 2-7.7. Computational structures of the initial structure Ei (Energy = −45859 kJ mol-1). Green 

spheres depict hydrogen bonding sites of spin-labels and red and blue spheres are the radical sites 

(NNs and TEMPOs) of NCD-NN and NA-TEMPO, respectively. 

 

 

Table 2-7.4. Energy and spin distances of Ei. The energy and distances are given in units of kJ mol-1 

and nm, respectively. Circled number (i) denotes the spin moieties of NN(i) in i = 1, 2 and TEMPO(i) 

in i = 3, 4. 

 Energy 

/kJ mol-1 

(1)-(2) 

/ nm 

(1)-(3) 

  /nm 

(1)-(4) 

/nm 

(2)-(3) 

/nm 

(2)-(4) 

/nm 

(3)-(4) 

/nm 

Ei −45859 1.65 4.31 4.68 2.88 3.37 1.05 
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2-8. Discussion 

By conformational search procedure, all the simulated structures are consistent with the PELDOR 

distance distributions (Type A to E, see section 2-7), and the abandoned structures of Bi and Ei have 

higher energy than the conformational searched structures and the short distance distributions. 

However, spin distances of Ei have a possibility to correspond the minor peaks below 4 nm and major 

peaks as described in subsection 2-7-3. Here, I discuss the energy and spin distances of Af, Cf and Df 

with Fig. 2-8.1, in which the energy and spin distances of Bi and Ei are depicted for reference. Energy 

of the structure Af is higher as compared to those of Cf and Df, and this energetic stability can explain 

the relatively intensity of major peaks (v)-(vii) and minor peak (viii) in Fig.2-5.1. In comparison with 

Cf and Df, the energy difference is small enough, therefore I concluded that the structures Cf and Df 

are the most stable ones simulated by the MM calculations. 

 

 

Table 2-8.1. Energy and spin distances of the strucutres of Af, Cf, Bi, Df. and Ei. The energy and 

distances are given in units of kJ mol-1 and nm, respectively.  

 

 

The energy analysis for the structures of Af, Cf and Df is invoked in order to discuss the steric 

effects from the energetic point of view (Table 2-8.1). The principal differences are found in the solvent 

and electrostatic terms (> 1000 kJ mol-1) related in charge distributions and surface areas, respectively. 

As these terms reflect the global steric differences, the conformation between them have significant 

difference, and the flexible DNA duplexes appear at solvent and electrostatic properties. This is also 

confirmed that the bonding energies of Af, Cf and Df are nearly the same (the difference is lower than 

70 kJ mol-1).  
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Toward molecular spin based QC/QIP systems, the accurate alignment of 1D periodicity is the 

most significant key. The ultimate goal of g-, A- and D-tensor engineering is to match tensors at the 

real system by the molecular design. For Lloyd model QC, the results suggest that the keys are: 1) 

attachment sites of spin-labels at the duplex in terms of the direction of radical moieties and 2) local 

structures of DNA duplex and spin-labels in terms of rigidity and orientations of the radical-pairwise.  

 

 

Table 2-8.1. Energetic analyses of searched structures. Bonding terms are the sum of energy of 

covalent bonds. The energy is given in units of kJ mol-1. 

 Bonding 

/kJ mol-1 

van der Waals 

/kJ mol-1 

Electrostatic 

/kJ mol-1 

Solvent 

/kJ mol-1 

Total 

/kJ mol-1 

Af 5825 4310 10729 −66880 −46016 

Cf 5888 4383 11413 −67744 −46059 

Df 5867 4311 12689 −68926 −46057 
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2-9. Conclusions 

The MM simulations of the 22-mer DNA duplex oligonucleotide equipped with the four electron spin 

moieties were carried out with the help of pulsed ELDOR spectroscopy. Two kinds of analyses of 

ELDOR experiments suggest two reliable peaks, i.e. major peaks (v)-(vii) in 4-5 nm and minor peak 

(viii) around 6.0 nm. In the MM simulations, I carefully considered 16 structures of the spin-labeled 

patterns which are different enough not to search by automatic calculations, and focused on structures 

corresponding to major and minor peaks.  

The continuous conformational searches were performed to the selected three initial structures Ai, 

Ci and Di representative of Type A, C and D, respectively. Those structures are composed of the 

different spin-label positions: all the spin sites are outside the DNA duplex for Type A, only 

TEMPO(3) locates outside the DNA duplex and the others are inside the DNA duplex for Type C and 

TEMPO(3) and NN(1) locate outside the DNA duplex and the others are inside the DNA duplex for 

Type D. The conformational searched structures of Type A, Af, has spin distances of inter-pairs 

corresponding the minor peak (viii) of ELDOR experiments. Therefore, I conclude Type A is a minor 

steric structure of the spin-labeled DNA duplex. The major distributions (v)-(vii) are supplied by Type 

C and D, where the final structures of Cf and Df have lower energy than that of Af. This is because the 

spin sites of two radical pair-wise stick out to the opposite in Type A, then the spin distances decreased 

in Type C and D.  

Detail analyses are performed in terms of energetic properties. Type A, C and D have large 

differences in solvent and electrostatic (non-bonding) terms reflecting their global structures. At the 

bonding energy of them, the difference is much smaller than non-bonding terms based on the flexibility 

of the DNA systems.  

Focusing on local structures around the spin-labels, the orientations of spin sites are important for 

QC/QIP. The direction control of spin-labels is one of the remained problem for synthesis since g 

tensor engineering for Lloyd model QCs are strongly depending on the accurate alignment of the 1D 

systems. Fortunately, the spin-labeled DNA system has all radical moieties with the different direction, 

then the system can be utilized for four spin systems at least. 

In summary, I have studied the structures of the spin-labeled DNA duplex based on MM 

calculations. The MM calculations combined with the PELDOR experiments have successfully 

suggested and supplied the structure information. As a result, the directions of the two attached radical 

units are different, therefore the system can be utilized for four spin system. It indicates that the subtle 

g-tensor engineering between the units is established.  
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Adiabatic Quantum Computing with Molecular 

Spin Quantum Computers (MSQCs) 
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3-1. Introduction 

Recently, quantum state control has been the major subject of quantum science, and one of the ultimate 

goals is the quantum computing requiring full control of the subspace for the quantum states. In 

mathematics and physics, controllability of quantum systems is considered as a basic framework of 

quantum mechanics in Lie algebra representation.[1-3] Although fundamental theory of controllability 

can answer the problem whether the quantum system can be controlled or not, the concrete procedure 

how to control the system are not given.[2, 3] Therefore, to figure out the concrete approach is essential 

for achieving quantum state control by both analytical and numerical techniques. In this chapter, I 

introduce an analytical technique to perform adiabatic quantum computing by MSQCs (ESR-QCs).[4] 

A numerical state control technique for ESR is discussed with GRAPE methods[5] in chapter 4.  

As described in introduction of my thesis (chapter 1), Shor’s factorization algorithm encouraged 

the quantum computing field,[6] and the adiabatic factorization algorithms[7, 8] have general aspects of 

adiabatic quantum computing. In magnetic resonance QCs, the concrete control procedure is given in 

the forms of pulse sequences. Since the standard QCs are achievable only with the pulse sequences of 

CNOT gates and single spin rotations such as π/8 pulses,[1] the all analytical pulse sequences of 

MSQCs for standard QCs have already proposed by the work of M. Yu. Volkov and K. M. Salikhov.[9] 

However, there are alternative QC models to the standard QCs, i.e. AQC,[10] one-way QC,[11] etc.[12] 

AQC is one of the quantum computer/quantum computation models of QCs, which performs the 

ground state control based on adiabatic theorem and has not been investigated theoretically in MSQCs 

before.[10] 

In NMR-QCs, adiabatic factorization algorithms have been experimented for composite number 

21[7] and 143[8]. Although NMR/ESR systems cannot change the Hamiltonian themselves, those 

systems can perform AQC by simulating the time evolution operator. In this work, I derived analytical 

pulse sequences of AQCs controlled by ESR spectrometers for the first time. The SAA was applied in 

the time evolution period of spin systems and a qubit interaction between nuclear spins is simulated 

by substitution into interactions between electron and nuclear spins to conquer sequences with fast 

computational ability. As a result, I elucidate the difference between NMR-QCs and ESR-QCs and the 

most significant properties are found in evolution time due to the difference of spin interaction 

strengths between NMR and ESR.[4] In order to optimize pulse sequences for MSQC experimental 

conditions, numerical simulations were invoked to investigate a proper adiabatic path for MSQCs and 

Trotter formulas. Although modification of AQC conditions makes computational time larger, it is 

proven that MSQCs have ability to perform AQCs with analytical pulse sequences. 

Following the convention in magnetic resonance spectroscopy appeared in standard theoretical 

textbooks and papers, I use unit of ħ = 1 in both chapters 3 and 4. Since units giving important features 

in magnetic resonance systems are only frequency, angular frequency, energy and time, the coefficients 

by fixing ħ = 1 can put into the weight dimension. As a result, energy is the same unit as angular 
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frequency (ω /rad ∙ s−1) and others do not change unit in frequency (ν /Hz), the magnetic field (B /T) 

and time (t /s). In chapters 3 and 4, Hamiltonian is written in angular frequency and the difference 

between angular frequency and frequency is the coefficient of 2π.  
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3-2. Adiabatic Quantum Algorithms 

The purpose of this section is to introduce an adiabatic model of quantum computing and its algorithms. 

In subsection 3-2-1, I introduce the quantum computation model and the example algorithm shown in 

subsection 3-2-2 and 3-2-3, respectively. Application procedure for magnetic resonance experiments 

is shown in the subsection 3-2-4, in which an AQC form is changed into the time evolution picture 

from the time dependent Hamiltonian manipulation picture. Strictly speaking, Hamiltonian and time 

have arbitrary unit as long as the product has unit of action in this section. 

  

 

3-2-1. Adiabatic Quantum Computers (AQCs)[10] 

Algorithms of AQCs are named adiabatic quantum algorithm (AQUA) and based on time evolution 

of the ground states (Figure 3-2.1). Adiabatic theorem is briefly explained that if Hamiltonian is varied 

slowly and then the quantum system remains its ground state. Describing the details of theorem, let us 

assume following dynamics of a quantum system: 1) An initial quantum state is a ground state of 

System Hamiltonian, 2) System Hamiltonian is varied slowly from the initial one to the final one and 

3) There is no intersection between the ground state and transitable exited states while the evolution 

period. With three conditions, adiabatic theorem indicate that the quantum systems remain in the 

ground states of the time dependent Hamiltonian.    

 

 

Figure 3-2.1. Schematic view of AQC. The blue and red lines indicate the ground and first excited 

states of a quantum system, respectively. The system Hamiltonian moves from the initial 

Hamiltonian (Hi) to the final one (Hf). g denotes a variable changing from 0 to 1 and corresponding 

to the initial state (g = 0) and final one (g = 1). The minimum energy gap is ΔEmin at g = gc. 
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From a point of view of the quantum computing, adiabatic theorem proposes a way to find a ground 

state of the Hamiltonian. Note that developing slowly to the arbitrary Hamiltonian, but the ground 

state is unknown, allows us to prepare its ground state. This is the computational process of AQC. 

Since the inverse of energy gap (ΔE) between the ground state and transitable exited states is 

proportional to the evolution speed of time dependent Hamiltonian, the computational time of AQC 

becomes longer when the energy gap is small. In most AQUA, the computational time of AQC is 

unknown because the problem to estimate energy gap is harder than solving the ground state of 

Hamiltonian. Although there are algorithms with known computational time, the path is extremely 

simple to discuss AQC in a general manner. For instance, the adiabatic searching algorithm can be 

performed with N  against the problem size N[13] as same order of Grover’s algorithm in standard 

QCs. Excepting a problem of computational complexity, AQC has same properties as QCs: 1) AQC is 

equivalent to standard QCs,[14] 2) AQC has error correcting codes.[15]  

 

 

3-2-2. Three-qubit Hamiltonian for Adiabatic Factorization Algorithm of 21[4, 6] 

Here, I introduce adiabatic factorization algorithms of 21 with 3-qubit. The 2-qubit algorithm is 

simplified from the 3-qubit one, thus the 3-qubit algorithm is discussed in first. In the following section, 

the derivations of equations are written mostly for the 3-qubit algorithm, because it is easy to apply 

the same approach for the 2-qubit algorithm. The 3-qubit version of this algorithm is proposed by X. 

Peng et al. and the ideal final/problem Hamiltonian is Eq. (3-2.1),   

      2f
ˆˆˆˆ yxNH                 (3-2.1) 

where ÎN̂ 21  and ( x̂ , ŷ ) is the binary representation of natural numbers by qubits as described later 

in Eqs. (3-2.3) and (3-2.4). Clearly, Eq. (3-2.2) is derived from 21 = xy giving a minimum value of 

Hamiltonian. 

      ŷ,x̂Ĥ 0f
(7, 3) or (3, 7)              (3-2.2) 

Without loss of generality, x̂  and ŷ  can assume as ŷx̂   and both are odd. Then Eqs. (3-2.3) 

and (3-2.4) are derived, since Nx ˆˆ
2
  and Ny ˆˆ

2
  are derived from the relation of Nyx ˆˆˆ  , 

     21ˆ3  x        ÎˆÎx̂ z  1                       (3-2.3) 

     321ˆ21  y          ÎˆÎˆÎŷ zz  322             (3-2.4) 

where i

z̂  is the z̂  value of the ith spin. A number 3 in Eqs. (3-2.3) and (3-2.4) indicates the 

minimum prim number. Note that since the adiabatic path of algorithm is an imaginary pathway, each 
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unit of time and Hamiltonian is arbitrary within the product of them consisting correct units. Thus, I 

do not discuss about the unit in adiabatic paths. 

The ground state of fĤ  in Eq. (3-2.1) is |↓↓↓>, in which the expectation values of x̂  and ŷ  give 

   73,ˆ,ˆ yx . Remembering whole scheme of AQC, a development of unknown ground state 

Hamiltonian fĤ  supplies the ground state of |↓↓↓>. Then one can calculate  yx ˆ,ˆ  with classical 

computers or by hand, and obtains the answer (3, 7) as a factorization result of 21. 

Note that the computational speed of this algorithm is still unknown with large qubits although 

there are an estimation until 16 qubits. And this adiabatic algorithm is not always efficient when the 

solutions of x̂  and ŷ  need the same bit length leading two solutions of  yx ˆ,ˆ   and  xy ˆ,ˆ  

with minΔE 0. However, these problems should be investigated with quantum experiments. 

Developing fĤ , Eq. (3-2.5) is obtained, 

  2

z

1

z

3

z

2

z

1

zf σ̂σ̂20σ̂44σ̂88σ̂84~ˆ H
3

z

2

z

1

z

3

z

2

z

3

z

1

z σ̂σ̂σ̂16σ̂σ̂20σ̂σ̂10              (3-2.5) 

and is utilized for implementing pulse sequences. In this transformation, an identity operator Î  is 

neglected. The initial Hamiltonian which is arbitrary operator is selected as follows, 





3

1

i 30ˆ

i

i

xH                          (3-2.6) 

where the ground state is |x-, x-, x->. Adopting the adiabatic path, described in subsection 3.2.4, fidelity 

i.e. the success probability of the algorithm is known as 0.91. 

 

 

3-2-3. Two-qubit Hamiltonian for Adiabatic Factorization Algorithm of 21 

The adiabatic factorization described in subsection 3-2-2 is possible to perform by 2-qubit systems 

with one assumption. Although this approach solves one part of the factorization problem, it is possible 

to reduce several qubits. In this subsection, I utilize multiplication figure to reduce about 0 to 2 qubits. 

   Multiple of (x, y) sometimes has a simple structure. Fig. 3-2.2 shows multiplication figure of 21, 

where qi is a binary representation of a bit and zij is career to the jth order from ith order. As shown in 

figure, the relation of q2 + q3 = 0 suggests obviously q2 = q3 in mod. 2. Therefore, one can reduce one 

qubit by replacing Eqs. (3-2.3) and (3-2.4) into Eqs. (3-2.7) and (3-2.8), and then the final Hamiltonian 

changes into Eq. (3-2.9). 

     21ˆ3  x        ÎˆÎx̂ z  1                       (3-2.7) 

    321ˆ21  y          IIIy zz
ˆˆˆˆˆ2ˆ 12                 (3-2.8) 

   2

z

1

z

2

z

1

zf σ̂σ̂03σ̂132σ̂68~ˆ H                           (3-2.9) 

Since the initial Hamiltonian is arbitrary, I set the initial Hamiltonian as Eq. (3-2.10). 
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



2

1

i 100ˆ

i

i

xH                             (3-2.10) 

where the ground state is |x-, x-> and the fidelity with the adiabatic path of subsection 3.2.4 is 0.97. At 

the following section, although I discuss mostly the 3-qubit algorithms only, clearly same approach 

can apply for the 2-qubit algorithm.  

 

 

Figure 3-2.2. Multiplication figure of 21 in binary representation. The 1st, 2nd and 3rd qubits 

corresponds to Eqs. (3-2.3) and (3-2.4). zij is the career from ith to jth.  

 

 

3-2-4. Adiabatic Path for Numerical Pulse Sequences 

In subsections 3-2-2 and 3-2-3, the initial and final Hamiltonians are defined. Performing AQC, the 

adiabatic path connecting both Hamiltonians is required in order to define the time dependent 

Hamiltonian. In this subsection, I describe the conditions of slowly varying Hamiltonian. Dynamics 

of quantum system can be written by time evolution operator given in Eq. (3-2.11). 

     




  dttHiU

f

i

t

t

ˆexpT̂ˆ                         (3-2.11) 

Where T̂  is time ordered product,   ff ĤtĤ  ,   ii ĤtĤ   and ti is the initial time, and tf is the final 

time of evolution. Approximating the finite time step for pulse calculations,  

    



5

1

ˆexpˆ

m

mHiΔtU                         (3-2.12) 

       i

2

f

2
}51{5 ĤmĤmĤm                      (3-2.13) 

where Δt is 0.028 for 3-qubit algorithm and 0.014 for 2-qubit algorithm, and the time evolution in both 

cases is divided into discrete 5 steps. Note that 
iĤ  should be non-commutative operator with fĤ  
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(Eq. (3-2.13)) to avoid the crossing of energy levels between the ground state and transitable exited 

states. If mĤ  was composed of only i

z̂  operators, the operator Û  never flip the spins. Therefore, 

Trotter expansion into the commutative operator sets is always required, because ESR/NMR systems 

cannot vary Hamiltonian of molecules directly. The details are discussed in section 3-3.  

Here, I limit the quantum algorithm only for the 3-qubit one. Each exponent product composed of 

only the commutative operator set is written in Eqs. (3-2.14) utilized by Trotter expansion.  

  



5

1

ifi

m

mmm ÛÛÛÛ                           (3-2.14a) 

      /2)ˆ}5/0.028{1exp(ˆ
i

2

i ΗmiUm                        (3-2.14b) 
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The concrete Eqs. (3-2.14b) and (3-2.14c) are as follows: 
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Eqs. (3-2.14) and (3-2.15) suggest different methods to perform from varying the system Hamiltonian. 

The suggestion is that AQC can also be performed by simulating adiabatic path with the time 

dependent Hamiltonian. In ESR/NMR system, former one is almost impossible to perform since the 

system Hamiltonian including interaction terms between electron/nuclear spins cannot change the 

strengths. Thus, the application problem is changed for the pulse sequences how to simulate the time 

evolution of time dependent Hamiltonian. 
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3-3. Mathematical Techniques for Pulsed ESR Sequence Calculations 

Secular approximation for 3-electron systems and 1-electron and 2-nuclear systems is introduced in 

this section toward the 3-qubit algorithm of adiabatic quantum computing. The approximation is 

significant in the next section 3-4 since the analytical calculations require the approximated 

Hamiltonian for the time evolution period. These approaches are well introduced in Mehring book.[16]  

 

 

3-3-1. Theoretical Approaches in Pulsed ESR  

For an analytical pulse sequence study, the several approaches are proposed as theoretical techniques 

due to the difficulties of calculations of time evolution. A common part of all approaches, e.g. Floquet 

Approach (FA),[17] variations of perturbation theory[9, 16, 18] and Secular Averaging Approach (SAA) 

[16], is to find the approximated spin Hamiltonian in time evolution periods. I have adopted the simplest 

analytical technique, SAA, to perform AQCs. The simple form of the effective spin Hamiltonian is 

due to approximated interaction picture called rotational frame approaches. In the perturbation 

theory[9], the theory can calculate time evolution part with more accurate manner, and requires larger 

number of pulses than that applied in the pulse sequence of SAA. In principle, a lot of pulses can 

develop systems more accurately but the accuracy is limited by analytical solvable equations. 

 

 

3-3-2. Spin Hamiltonian in Pulsed ESR  

Spin Hamiltonian of open-shell molecules is written by Eq. (3-3.1) in Schrödinger picture.  

  



NN

ji

jiji
M

i

ii
N

i

ii DjggH
,

e

1

i

nn

1

eeMSQC )(π2ˆ SSBIBS   

  



MM

ji

jiji
MN

ji

jiji DjA
,

n

,

1

)(π2π2 IIIS               (3-3.1) 

where, N and M are the spin number of electrons and nuclei, respectively. Hamiltonian terms with B 

include two parts, the static magnetic field and the pulse magnetic field by irradiation of micro/radio 

waves. In the first and second Zeeman terms, gi is a 2nd rank tensor which is related to the Larmor 

frequency ω0/2π of the ith spin, i.e. z

i

zz

i Bg ee,0    and z

ii

zz

i Bg nn,0   . The other terms are 

interactions between spins which are also described by 2nd rank tensors of J, D and A, exchange, spin-

dipolar and hyperfine interactions, respectively.  

Although SAA contains the approximation picture, SAA is widely used for time evolution of spin 

systems by analytical calculations. Thus, I restrict the system satisfying conditions as follows: 1) small 

anisotropy of g-tensors for electrons and nuclei, 2) strong magnetic field limit for electrons, i.e. 

Zeeman term is much larger than others, but not for nuclei and 3) co-axis properties for hyperfine 

tensors. 1) and 3) are adopted in order to apply theory for solid state systems.  
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In the following section, I discuss the pulse generation methods for 3-spin systems in single 

crystals. Almost the same methods are applicable for the pulse sequences of solution ESR systems 

which will be also described. In solution ESR, the spin Hamiltonian can be simpler than that of single 

crystal systems. 

 

 

3-3-3. Approximated Spin Hamiltonian in 3-electron Systems  

Spin Hamiltonian in Schrödinger picture corresponding to Eq. (3-3.1) is written by Eq. (3-3.2) for the 

three electron system.  
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Assuming time evolution period, first term only contains static magnetic field along z-direction 

(  zB,,00B ). Then, the few of Zeeman terms are vanished as Eq. (3-3.3). 
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There are two methods to transform the rotational frame: 1) individual rotating frame and 2) 

common rotating frame. Although the latter one is often used in ESR, the former one can be used in 

future like the NMR. Here, I mention the individual rotating frame first. The non-perturbed 

Hamiltonian and the perturbed Hamiltonian in the rotating frame are given by Eqs. (3-3.4) and (3-3.5), 

respectively. And the time dependent spin operators are given by Eqs. (3-3.6). 
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Equations above have no approximation, and zeroth order SAA of the individual rotating frame is as 

follows assuming time averaging by fast Larmor rotations of individual spins, and then neglects all 

anisotropic terms of the perturbed Hamiltonian. This is on the basis of smaller amplitude of the 

perturbed Hamiltonian against the non-perturbed one, i.e. small interaction terms between spins 

against the Zeeman terms[16]. Therefore Eq. (3-3.5) is transformed into Eq. (3-3.7) in individual 

rotating frame.  
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The perturbed Hamiltonian of Eq. (3-3.7) is adopted for the following pulse sequence study (section 

3-4) as effective spin Hamiltonian of the qubit system. 

The interaction forms in the common rotating frame are slightly different from equations above. 

The interaction picture focusing on the single Larmor frequency of the 1st electron is described by Eqs. 

(3-3.4’), (3-3.5’) and (3-3.6’).  
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As mentioned all spins are rotating in a common Larmor frame of the 1st spin, the subtracted frequency 

for the 2nd and the 3rd spins based on the rotational speed appears in Eq. (3-3.5’) as the result. By 

applying SAA, the following equation is obtained as the approximated perturbed Hamiltonian. The 

extra terms given in Eq. (3-3.7’) can be also eliminated with the short pulse sequences (see subsection 

3-4-2). 
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3-3-4. Approximated Spin Hamiltonian in 1-electron and 2-nuclear Systems  

Analytical approaches for the 1-elecctron and 2-nuclear systems are slightly different in 3-electron 

systems due to the hetero-spin properties. The spin Hamiltonian of this system can be written by Eq. 

(3-3.8) in Schrödinger picture.  
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is obtained. In the individual rotating frame case, the Larmor frequency is selected to be zzz Bg e
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nn,0   , then the Hamiltonian in interaction picture is given by Eqs. (3-3.10) and (3-3.11), 
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where the time dependent spin operator for the electron is written by Eqs. (3-3.6) and for nuclear 

spins is given by Eqs. (3-3.12). 
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Discussing the rotating frame in the 1-electron and 2-nuclear system, the same approach is possible 

for the electron part. But for nuclei, their Larmor terms are not large enough against hyperfine 

couplings to reach the SAA limit, thus the rotating terms do not vanish in nuclear case. As a result,  
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Eq. (3-3.13) is obtained as time dependent perturbed Hamiltonian. Since the time dependent parts of 

)(ˆ
, tI i

yx  make hard to calculate a pulse sequence with analytical techniques, I selected the static 

magnetic field (B0) parallel to the principal axis of both hyperfine tensors, i.e. coaxes. Note that the 

coaxes properties are significant only in single crystal systems not but for solution systems by virtue 

of the isotropic tensor character. In the conditions mentioned above, the perturbed Hamiltonian in time 

evolution operator is written by Eq. (3-3-4.7). 
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And the Eq. (3-3-4.7) does not depend on time explicitly.  

In the common rotating frame that two nuclei rotate in the same frame, Eqs. (3-3.10’), (3-3.11’) 

and (3-3.12’) are given.  
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The last offset (g-shift) is the only difference between Eqs. (3-3.11) and (3-3.11’). By taking the same 

procedure, Eq. (3-3.13’) is obtained for single crystal systems. This extra term can be also eliminated 

with the short pulse sequences (see subsection 3-4-2). 
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3-4. Analytical Calculations of Pulse Sequences for AQCs   

Here, I describe the analytical calculations of 3-qubit AQC pulse sequences. All the components in 

adiabatic time evolution operator are decomposed into the following a set of ESR spin operations. The 

set of operations with ESR-QC is assumed 1) arbitrary spin rotations in x- and y-axis directions for 

individual spins and 2) time evolution with the SAA spin Hamiltonian for molecules ( int

e3Ĥ  and int

2n1e
ˆ

H ) 

discussed in subsections 3-3-3 and 3-3-4. Since both spin Hamiltonians have Ising type 3-qubits with 

individual manipulations, the systems can perform universal quantum gate (UQG) which can perform 

all unitary operations.[1, 16] Thus, the remained problem is how to simulate time evolution of AQUA 

written in subsection 3-2-4.   

The operation set is gevin by S. (3-4.1) and (3-4.2), 

}ˆ,,{ int
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i

x   for the three electron system    S. (3-4.1) 

}ˆ,,{ int

2ne1 Hi

y

i

x     for the one electron and two nuclear system  S. (3-4.2) 

and the required 3-qubit AQC operations are as follows:  
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2
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All the equations are discussed in subsection 3-2-2 and 3-2-4.  

 

The contents of section 3-4 are,  

1) Simulations of single qubit rotations with arbitrary angles. (subsection 3-4-1) 

1. Simulations of single qubit rotations around x-/y-axis : Eq. (3-4.4a) 

2. Simulations of single qubit rotations around z-axis: Eq. (3-4.4b) 

2) Simulations of two qubit interactions depending on interaction picture. (subsection 3-4-2) 

1. Two qubit interactions in individual rotating frame: Eq. (3-4.4b) 

2. Two qubit interactions in common rotating frame. 

3) Simulations of three qubit interactions and higher order qubit interactions. (subsection 3-4-3) 

1. Three qubit interactions: Eq. (3-4.4c). 

2. Higher order (>3) qubit interactions. 

4) Simulation techniques for fast two qubit interactions between the nuclei. (subsection 3-4-4) 

1. Fast Simulation for two qubit interactions between the nuclei: Eq. (3-4.4d). 

5) Constructions of Pulse sequences for AQC. (subsection 3-4-5) 

1. AQC pulse sequence in a 3-electron system. 
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2. AQC pulse sequence in a 1-electron and 2-nuclear system. 

6) Discussions. (subsection 3-4-6) 

 

Subsection 3-4-1 to 3-4-4 describes whole sequence decomposition methods for AQC. In subsection 

3-4-5, pulse sequences of AQC are described. Most parts of ESR-AQC studies are supported by this 

section. Although the theoretical procedure is slightly complicated, almost all parts are utilized for 

pulse sequence calculations. 

Figures 3-4.1 depicts notations of pulses in the sequences study. Black/red blocks indicates x-/y-

direcction, filled/empty blocks indicate minus/pulse angle and oblong/square blocks are (π/2)-/π- 

pulses, respectively. Although there are two types of pulses, i.e. selective and non-selective pulses, I 

discussed the pulse sequences of AQCs only with selective pulses. 

 

 

Figure 3-4.1 Notation of pulse operations. Black/red blocks are the rotation around the x-/y-axis. 

Oblong/square blocks indicate the rotational angles of (π/2)/π. The filled block means a minus angle 

operation. The other pulse operations around the x- and y- axes are written by blue blocks with a 

number or word. 

 

 

3-4-1. Simulations of Single Qubit Rotations  

Simulations of Single Qubit Rotations Around x-/y-axis 

The most basal qubit operation is a single spin rotation performed by irradiation of a microwave pulse 

in ESR-QC experiments. Strictly discussing the pulse effects into spin systems are difficult to estimate 

and enough worth to investigate in another spin science aspect. Thus in section 3-4, I simply assumed 

an operation set of S. (3-4.1) and (3-4.2) due to the essence of AQC. By definition, θ = 2α /rad rotation 

to the kth spin with selective pulses around x-/y-axes is written as follows: 

   k

y

k

x ii   exp,exp               S. (3-4.5) 

Thus, Eq. (3-4.3a) can obviously be performed and the parameter angle θ is given by Eq. (3-4.6). 
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Simulations of Single Qubit Rotations Around z-axis 

Simulations of single qubit rotations around z-axis are performed by combinations of single spin 

rotations around x- and y- axes. The spin rotations (θ = 2α radians) around the z-axis are written by 

Eqs. (3-4.7) and (3-4.8). The corresponding pulses are shown in Fig. 3-4.2. 
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Adopting those equations, spin rotation angle θi /rad for the ith spins in Eq. (3-4.4a) are described in 

Eq. (3-4.9). 

mm ss 928.4,704.4 21   and ms464.23                 (3-4.9) 

 

 

Figure 3-4.2. Pulse sequences for single qubit operations, a) Corresponding to Eq. (3-4.7) and b) 

Corresponding to Eq. (3-4.8). Blue blocks of a and b are θ = 2α /rad rotation around the x- and y- axes, 

respectively. 

 

 

3-4-2. Simulations of two qubit interactions 

Simulations of Two Qubit Interactions in Individual Rotating Frame 

In general, the simulations of two qubit interactions require the time evolution period with effective 

spin Hamiltonian. This part speeds up quantum algorithms by generation of entanglement. In this 

subsection, I describe the method to perform the arbitrary two-spin interactions between i

z  and j

z  

(i ≠ j) in 3 spins with individual rotating frame. There are a couple of target effective Hamiltonians 

written by Eqs. (3-4.10) and (3-4.11). The derivation is shown in subsection 3-3-3 and 3-3-4.  
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In both systems, the simulating operator )exp( ti j

z

i

z

ij   is derived by Eqs. (3-4.12), 
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a) b) 
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where, j
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|  in which αij corresponds to the 

coefficients of spin Hamiltonian. The operator )π2exp( tHi k  is possible to be simulated with Eqs. 

(3-4.13). 
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As described in the equations, all decomposed forms give the same operators. The calculated pulse 

sequence corresponding to Eqs. (3-4.12a) with (3-4.13a) is shown in Fig. 3-4.3. 

 

 

Figure 3-4.3. An example sequence for a two qubit interaction. The operation )exp( ti j

z

i

z

ij   (i ≠ k, 

k ≠ j, j ≠ i) is decomposed by Eqs. (3-4.12a) and (3-4.13a). The right vertical line is the end of the 

sequence. 

 

 

If one does not consider global phase, the following any pattern of π pulses with the same direction 

are permitted (Eqs. (3-4.14)). Although I have not used the following equations in the sequence study, 

it is also recommended for usage. Because global phase is not significant on quantum computing.  
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It is significant to simulate interactions with opposite coefficients, i.e. simulating the interaction 

of
ij . In the case of the operator, )exp( ti j

z

i

z

ij  , they can be written by Eqs. (3-4.15), utilizing an 
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z

i

z

ij   operation. 
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These equations also have the corresponding forms with some change in global phase.  

 

 

Simulations of Two Qubit Interactions in Common Rotating Frame 

From the experimental point of view, common rotating frame should be investigated as described in 

subsection 3-3-3 and 3-3-4. The Hamiltonian difference between individual and common rotating 

frame is the single spin rotating terms around z-axis, see Eqs. (3-4.16) and (3-4.17). Here, I show two 

methods in order to vanish the difference by annihilating extra terms. This problem does not related 

to the essence of AQC, thus those two techniques are just introduced here and not adopted in pulse 

sequence study. Conditions of example pulse sequences are selected as written in subsection 3-3-3 and 

3-3-4. 
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The first method is affecting minus rotations of the difference. This method requires selective 

pulses. Let me assume the time evolution )ˆexp( ΔtHi zz  for individual rotating frame and 

)ˆexp( intΔtHi  for common rotating frame. In order to simulate )ˆexp( ΔtHi zz  by )ˆexp( intΔtHi , 

subtracting the last terms are enough from Eqs. (3-4.16) and (3-4.17). The resulting time evolution is 

given in Eqs. (3-4.18) where the rotation angle (2αk pulses) for the kth spin is given in Table 3-4.1. For 

instance, A pulse sequence given in Fig. 3-4.4 is calculated from the conditions of Eqs. (3-4.7) and (3-

4.18b).  
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Table 3-4.1. Rotation angles of the spins while time evolution of )ˆexp( intΔtHi  in the condition of 

subsection 3-3-3 and 3-3-4. 

 Rotation angles (θ2 = 2α2) /rad Rotation angles (θ3 = 2α3) /rad 

3-electron 

system 
  ΔtBgg zzzzz e

12     ΔtBgg zzzzz e

13   

1-electron and 

2-nuclear system 
0   ΔtBgg zzzzz

313

n
  

 

 

 

Figure 3-4.4. A simulation method of )ˆexp( ΔtHi zz  by the spin rotation around z-axis with Eq. (3-

4.7) and (3-4.18b). The blue block a is the spin rotation around x-axis which spin number and angles 

(θk) are shown in Table 3-4.1. 

 

 

The second method is based on annihilating odd order interactions of spins. This simulations are 

possible to be performed with two non-selective pulses and does not depend on the evolution time 

)ˆexp( intΔtHi . At first, we define 
sH int,ˆ  as spin flipped Hamiltonian of all spins written in Eq. (3-

4.19). The Hamiltonian is easily achieved with Eqs. (3-4.20). 
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If you do not consider global phase, any patterns of π pulses with the same direction are permitted. 

The time evolution )ˆexp( ΔtHi zz  in individual rotating frame is simulated by Eqs. (3-4.21), and the 

example of pulse sequences is shown in Figure 3-4.5.  
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)ˆexp( ΔtHi zz )2/ˆexp()2/ˆexp( intint, ΔtHiΔtHi s                      (3-4.21a) 

)2/ˆexp()2/ˆexp( int,int ΔtHiΔtHi s                     (3-4.21b) 

 

 

Figure 3-4.5. Simulations of )ˆexp( ΔtHi zz  by Eq. (3-4.20a) and (3-4.21b) in three spin systems. 

 

 

3-4-3. Simulations of Three Qubit Interactions and Higher Order Qubit Interactions 

Simulations of Three Qubit Interactions  

Generally UQG can simulate n qubit interactions. Here, we discuss a 3 qubit interaction[19] which 

appears in the 3-qubit algorithm of AQC. Three qubit interaction is decomposed by following 

procedure in Eqs. (3-4.22).  
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The Eq. (3-4.22c) contains only two components: the single qubit rotations and two qubit interactions, 

thus the equation has a fully decomposed form to simulate 3-qubit interactions for the pulse sequence 

studies. As the preparation to the following subsection (see fast simulations for two qubit interaction 

between nuclei), we denote the other two expressions of Eqs. (3-4.23) to (3-4.26) which are the 

permutation of Eq. (3-4.22c).  
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1223 /'  tt                  (3-4.24) 
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1213 /'  tt                             (3-4.26) 

Note that time t’ and t’’ can range to negative values. In the negative case, simulate inverse sign two 

qubit interactions as discussed in subsection 3-4-2, and then sign of time changes into the positive 

value. The same approach is also applied for the simulation of )exp( 32112 ti zzz  . The examples of 

pulse sequence of Eq. (3-4.22c) with Eqs. (3-4.12b), (3-4.13b) and (3-4.15b) are shown in Figure 3-

4.6. In this pulse sequence, the sign of 
13 , coupling constants of 1st and 3rd spins, are assumed to be 

as positive.  

 

 

Figure 3-4.6 A pulse sequence for the simulations of a three spin interaction. The qubit operation 

)exp( 32112 ti zzz   is decomposed by Eqs. (3-4.12b), (3-4.13b), (3-4.15b) and (3-4.22c). 013   is 

assumed in the generation of the pulse sequence. 

 

 

Simulations of Higher (n > 3) Qubit Interactions  

The higher qubit interaction (n > 3) is also possible to generate with the same procedure of the 3-qubit 

interaction. Repeating the decomposition, n-qubit interactions are simulated and the computational 

costs of n-qubit interactions are estimated to be 2n+1 times higher than that of two qubit operation. 

The example of four qubit interaction is shown in Eq. (3-4.27). 
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3-4-4. Simulation Techniques for Fast Two Qubit Interactions between Nuclei 

Two spin interactions between nuclei (< kHz) are much smaller than those between electrons (~ MHz) 

and between an electron and a nucleus (~ MHz). The small interactions in spin Hamiltonian slows 

down the computational speed of quantum computer below kHz. In order to conserve the 

computational speed about MHz, I employed the following equation. Let me assume the 1-electron 

and 2-nuclear system and the nuclei 2 and 3 have only weak or no interaction. Transforming Eqs. (3-

4.22c) and (3-4.23), the spin interaction between nuclei is achieved without utilizing its direct 

interaction in Eq. (3-4.28).  
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The right side of Eq. (3-4.28) does not contain the interaction between 2nd and 3rd spins. The equation 

costs much number of single and two qubit interactions but possible to be performed with high 

computational speed about MHz. The same approach is also applied for the simulations of 

)exp( 32112 ti zzz  . The example pulse sequence of Eq. (3-4.28) with Eqs. (3-4.12b), (3-4.13b) and (3-

4.15b) is shown in Fig. 3-4.7. In this pulse sequence, the signs of 12  and 13  are assumed to be 

positive.  

 

 

Figure 3-4.7. A pulse sequence simulating a two spin interaction between the nuclei. The operation 

tzze
3212   is composed of Eqs. (3-4.12b), (3-4.13b), (3-4.15b) and (3-4.28). 0, 1312   are assumed 

at the pulse sequence decomposition.  

 

 

3-4-5. AQC Pulse Sequences 

AQC Pulse Sequence in 3-electron System 

The pulse operations of each Hamiltonian term of AQC are described above subsection. Here, I write 

down the whole sequence toward the adiabatic factorization problem of 21. The connected pulse 

sequence is conquered in the case that all spin interactions are negative (Fig. 3-4.8), corresponding to 
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the case of the spin Hamiltonian of a phthalocyanine derivative molecule as described in subsection 

3-5-1. 

 

 

Figure 3-4.8 A pulse sequence for a 3-electron system which coupling constants are 0,, 312312  . 

This sequence requires five time repetition with changing the value of m = 1 to 5 (see subsection 3-2-

4), where Δt = 0.028. The details of pulse intervals (t1 to t5) and blue blocks are described in Table 3-

4.2 and 3-4.3. 

 

 

Table 3-4.2 Analytical pulse intervals (t1 to t5) in the 3-electron system, where 2

m )5/(028.0 ma  .  

Interval t1 t2 t3 t4 t5 

Analytical 

time /s 

13)/( JDzz    12)/(64 JDa zzm   12)/(80 JDa zzm   13)/(40 JDa zzm   23)/(80 JDa zzm   

 

 

Table 3-4.3 Analytical operation angles and directions (Block 1 to 5) in the 3-electron system, where 

})5/(1{028.0 2

m mb   and 2

m )5/(028.0 mc  .  

Pulse block 1 2 3 4 5 

Angle /rad m30b  m168c  m176c  m88c  2/30 m b  

Direction x y y y x 

 

 

AQC Pulse Sequence in 1-electron and 2-nuclear System  

As the same as the 3-electron system case, the whole sequence toward the adiabatic factorization 

problem of 21 is conquered in the 1-electron and 2-nuclear system. The connected pulse sequence is 

for the coupling constants of 0,0 3112    (Fig. 3-4.9), corresponding to the case of the spin 

Hamiltonian of a glutaconic acid radical as described in subsection 3-5-2. 
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Figure 3-4.9. A pulse sequence for a 1-electron and 2-nuclear system. The coupling constants are 

0,0 3112   . The sequence requires five time repetitions with changing m = 1 to 5 (see subsection 

3-2-4), where Δt = 0.028. The details of pulse interval (t1 to t5) and blue blocks are shown in Table 3-

4.4 and 3-4.5. 

 

 

Table 3-4.4. Analytical pulse interval ( 1t  to 5t ) in the 1-electron and 2-nuclear system, where, 

2
m )5/(028.0 ma  .  

Interval t1 t2 t3 t4 t5 

Analytical 

time /s 

13/ zzA  12/64 zzm Aa  12/80 zzm Aa  13/40 zzm Aa  12/ zzA  

 

 

Table 3-4.5. Analytical operation angles and directions (Block 1 to 5) in the 1-electron and 2-nuclear 

system, where })5/(1{028.0 2
m mb   and 2

m )5/(028.0 mc  .  

Pulse block 1 2 3 4 5 

Angle /rad m30b  m168c  m176c  m88c  2/30 m b  

Direction x y y y x 
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3-4-6. Discussion of Analytical Sequence Calculations. 

In this subsection, I described sequence calculation methods with SAA Hamiltonian. Since single spin 

rotations are assumed for x-/y-directions, the simulations of single qubit rotations are calculated with 

simple methods. However, the simulations between qubit interactions requires some pulses and time 

evolution parts. The basics of simulating qubit interactions are to simulate arbitrary two qubit 

interactions discussed in subsection 3-4-2. If it was done, the following technique discussed in 

subsection 3-4-3 to 3-4-5 can generate pulse sequences which have a capability to perform any AQUA.  

Expansion for non-SAA Hamiltonian is also possible by replacement of pulse calculation 

technique of two qubit interactions as discussed in subsection 3-4-2. More accurate approximation of 

spin Hamiltonian can provide better quality of time evolution for ESR-AQC experiments. However, 

these approaches require a larger pulse operation number in general in order to annihilate off-diagonal 

elements of spin Hamiltonian.  
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3-5. Pulse Sequence of 3-qubit AQC with Single Crystal Systems 

In this section, I present the pulse sequences analytically calculated from the section above. All the 

detail results in pulse sequences are shown in this section. Contents are: 

3-5-1. Pulse sequence of 3-qubit AQC with a single crystal of a phthalocyanine derivative[4] 

3-5-2. Pulse sequence of 3-qubit AQC with a single crystal of a glutaconic acid radical[20] 

3-5-3. Pulse sequence of 2-qubit AQC with a single crystal of a biradical 1[21] 

3-5-4. Pulse sequence of 2-qubit AQC with a single crystal of a malonic acid radical[22]  

In the last subsection 3-5-5, I discussed the feature of pulse sequences toward ESR-AQC.   

 

 

3-5-1. Pulse Sequence of 3-qubit AQC with a Single Crystal of a Phthalocyanine 

Derivative  

A phthalocyanine derivative[4] is adopted for a 3-electron qubit system, which one electron spin is 

quenched by a hydrogen atom. The direction of static magnetic field is selected in order to make the 

system have strong spin interactions, and the resultant coupling constants with respect to subsection 

3-3-3 and the direction is shown in Table 3-5.1 and Fig. 3-5.1. The J couplings and D tensors are 

calculated by quantum chemical calculations (UB3LYP/6-31G* level) based on an expanded broken 

symmetry methods and point dipole approximation with the optimized structure. 

 

 

Figure 3-5.1. A molecular structure of a phthalocyanine derivative. One radical sites are designated 

by the red numbers. The magnetic field is applied from z-direction. 

 

 

Table 3-5.1. Interaction strengths between spin sites estimated by theoretical calculations. 

 1-2 2-3 3-1 

J /MHz -12.01 -12.01 -66.03 

  /rad 5π/4 −5π/4 π/2 

zzD  /MHz −16.55 −16.55 11.71 

)( JDzz   /MHz −28.56 −28.56 −54.32 
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A pulse sequence shown in Fig. 3-5.2 is simplified from the sequence of subsection 3-4-5 by 

connecting same type of pulses neighboring. This technique does not change the computational time 

but reduce the number and total angles of spin rotations. The notation is the same as the sequence of 

subsection 3-4-5, and the new parameters and the numerical values are shown in Table 3-5.2. 

 

 

Figure 3-5.2. A pulse sequence for a phtalocyanine derivative. The magnetic field is applied from z-

direction. The parameters of time intervals and pulse rotations are shown in Table 3-5.2. 

 

 

Table 3-5.2. Analytical pulse intervals and rotation angles. (a) Analytical pulse intervals with 

interaction values of systems in (Dzz + J)ij < 0. (b) Analytical pulse intervals in the phthalocyanine 

derivative. (c) Analytical pulse rotation angles and directions. 

(a) Analytical pulse intervals in (Dzz + J)ij < 0 

Interval t1  t2  t3  t4  t5  

Analytical 

time /s 

13)/( JDzz 

 

12)/(64 JDa zzm 

 

12)/(80 JDa zzm 

 

13)/(40 JDa zzm 

 

23)/(80 JDa zzm 

 

 

(b) Analytical pulse intervals in the phthalocyanine derivative 

Intervals t1  t2  t3 t4  t5 

Analytical value /ns 9.158 0.4017 0.5021 0.1306 0.5021 

  

(c) Analytical pulse rotation angles and directions 

Pulse block 1 2 3 4 5 

Angle /rad mb30  mc168  mc176  mc88  2/30 mb  

Direction x y y y x 
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As a result, the pulse sequence is composed of 140 pulses, which totally rotates electron 1, 2 and 

3 for 29.8π, 35.0π and 28.2π radians, respectively. The computational time is 0.176 μs. Since the 

experiments of the 3-nuclear spin QC took 50 ms with 95 pulses, the 3-electron spin QC can improve 

the computational time about 2.84×105 times. The results are shown in Table 3-5.3. 

 

Table 3-5.3. Total operation angles of each spin and required time with Fig. 3-5.2. 

Qubits e1  e2 e1 

Operation angles /rad 29.8π 35.0π 28.2π 

Required time /μs 0.176  

 

 

3-5-2. Pulse Sequence of 3-qubit AQC with a Single Crystal of a Glutaconic Acid 

Radical 

In the 1-electron and 2-nuclear system, a 2-deuterated glutaconic acid radical (e1, H2 and H3)[20] are 

adopted due to the coaxial properties in two hyperfine tensors. The interaction parameters of the 

system are utilized the set of ESR experiments of the glutaconic acid radical, where 0.712 zzA  

MHz and 9.3731 zzA  MHz.[20] The direction of magnetic field is parallel to one of the hyperfine 

coaxes as shown in Fig. 3-5.3.  

 

 

Figure 3-5.3. A molecular structure of a glutaconic acid radical. One hydrogen is deuterated and the 

direction of the static magnetic field and one of principal coaxes of hyperfine tensors is along the z-

direction. The coupling constants between the electron and 2nd and 3rd hydrogen nuclei are +7.0 MHz 

and −36.0 MHz, respectively. 

 

 

A pulse sequence shown in Fig. 3-5.4 is simplified from the sequence of subsection 3-4-5 by 

connecting same type of pulses neighboring. The parameters are shown in Table 3-5.4 and in 

subsection 3-4-5, in which numerical values are also shown. 
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Figure 3-5.4. A pulse sequence for a glucotanic acid radical. The magnetic field is applied from z-

direction. The parameters of time intervals and pulse rotations are shown in Table 3-5.4. 

 

 

Table 3-5.4. Analytical pulse intervals and rotation angles. (a) Analytical pulse intervals with 

interaction values of systems in A12 > 0 and A13 < 0. (b) Analytical pulse intervals in the glucotanic 

acid radical. (c) Analytical pulse rotation angles and directions. 

a) Analytical pulse intervals in A12 > 0 and A13 < 0 

Interval t1  t2  t3 t4  t5  

Analytical 

time /s 

13/ zzA  12/64 zzm Aa  12/80 zzm Aa  13/40 zzm Aa  12/ zzA  

 

b) Analytical pulse intervals in the glucotanic acid radical 

Interval t1  t2  t3  t4  t5  

Analytical 

value /ns 
13.89 1.630 2.037 0.1981 71.43 

 

c) Analytical pulse rotation angles and directions 

Pulse block 1 2 3 4 5 

Angle /rad mb30  mc168  mc176  mc88  2/30 mb  

Direction x y y y x 

 

As a result, the pulse sequence is composed of 240 pulses, which totally rotates electron and nuclei 

1, 2 and 3 for 39.8π, 70.0π and 53.2π radians, respectively. The computational time is 1.31 μs. Since 

the experiments of the 3-nuclear spin QC took 50 ms with 95 pulses, the 1-electron and 2-nuclear spin 

QC can improve the computational time about 3.82×104 times. The results are shown in Table 3-5.5. 
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Table 3-5.5. Total operation angles of each spin and required time with the sequence Fig. 3-5.4. 

Qubit e1  n2 n3 

Operation angles /rad 39.8π 70.0π 53.2π 

Required time /μs 1.31  

 

 

3-5-3. Pulse Sequence of 2-qubit AQC with a Single Crystal of a Biradical 1 

In the case of the 2-qubit algorithm, the pulse sequence is much simplified from the 3-qubit one, 

because there are only one spin interaction as much as AQC algorithm, i.e. no 3-qubit interaction and 

decrease two of the 2-qubit interactions. For the 2-electron study, biradical 1[21] (Fig. 3-5.5) is adopted 

for the sequence study including 5 time repetition as shown in Fig. 3-5.6. Although whole sequences 

require 32 pulses, utilizing non-selecting pulses the sequence can performed with only 21 pulses. The 

computational time, 63 ns, is approximately twice faster than that of the 3-qubit case as shown in Table 

3-5.6.  

 

 

Figure 3-5.5. Biradical 1 and the static magnetic field direction. In this orientation, dipole interaction 

between electron spins are −18.5 MHz. 

 

 

 

Figure 3-5.6. A pulse sequence for 2-qubit adiabatic quantum computing with molecules which 

interaction sign is minus. biradical 1. Time intervals are ti = 60ai/|(Dzz+J)12| for the 2-electron 

systems and ti = 60ai/|(Azz)12| for the 1-electron and 1-nucleus system. 

 

  



65 

 

Table 3-5.6. Total operation angles and required time in biradical 1. 

Pulse type of operation e1  e2 Non-selective 

Operation angles /rad 0.86π 1.4π 5.8π 

Required time /μs 1.31  

 

 

3-5-4. Pulse Sequence of 2-qubit AQC with a Single Crystal of a Malonic Acid 

Radical  

A maronic acid radical (Fig. 3-5.7) is utilized for a 1-electron and 1-nucleus system.[22] Since there is 

no interaction in the 2-qubit systems, the pulse sequence is the same as that of the 2-electron system 

(Fig. 3-5.6) and there is no requirement of coaxes properties. Thus, the experiments for the system is 

much simplified from the 1-electron and 2-nuclear system in terms of spin rotations (see Table 3-5.7). 

Whole sequences are performed with 32 pulses. The computational time is 13 ns due to the strong 

hyperfine interaction, −91 MHz, between the electron and hydrogen nucleus. 

 

 

Figure 3-5.7. A maronic acid radical and the static magnetic field direction. 

 

 

Table 3-5.7. Total operation angles and required time in a maronic acid radical.  

Qubit e1  n2 

Operation angles /rad 6.7π 7.2π 

Required time /μs 1.31 

 

 

3-5-5. Discussion in Pulse Sequence Study. 

In section 3-5, I have calculated analytical pulse sequences in order to perform AQC with molecular 

spin QCs. The sequences for 2-/3-qubits with corresponding molecular qubits have different features 

in the required time, number of pulses and rotating angles. As a consequence, it is established that 

molecular spin QCs have capability to perform AQC with SAA Hamiltonian, and the sequences have 

fast computational ability in terms of computational time than NMR-QCs.  
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However, the time intervals (~ 0.1 ns) between pulses are much shorter than NMR-QCs when the 

same algorithms as NMR-QCs are applied into ESR-QCs due to the strength of spin interactions. 

Assuming standard X-band pulse ESR spectrometers (9.5 GHz), the intervals are too short to perform 

QC-experiments from the both experimental and theoretical points of view for the pulse control and 

SAA. Thus, the solving time interval problem is essential for ESR-AQCs. Note that the above issue 

appears particularly in AQC, but not in gate model QC approaches because pulse intervals in gate 

model QCs appeare in only controlled gates, e.g. CNOT gates, with the fixed amounts of time. The 

short time intervals are the essence of slight change in time dependent Hamiltonian of AQUA. At the 

following section, I discuss this problem by numerical simulations.  
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3-6. Numerical Simulations for AQUA  

The last topic of adiabatic quantum computing is the simulations of theoretical conditions of the 

algorithm. This section includes two contents: 1) how to achieve high fidelity, i.e. success probability 

of AQC, with an adiabatic path conditions, 2) how to solve the time evolution problem discussed in 

section 3-5. In subsection 3-6-1, I introduce the basics of the AQC time evolution period and Trotter 

decomposition. Subsection 3-6-2 is concerned in the numerical simulations to find good theoretical 

conditions without Trotter decomposition. Since Trotter decomposition are one of the approximation 

methods, the feature of Trotter decomposition is discussed in subsection 3-6-3. Note that there are 

Trotter formulas with some arbitrary parameters. The application is the time interval problem, in which 

the Trotter parameters can extend time intervals (in subsection 3-6-4), and the last subsection 3-6-5 

gives discussions. 

 

 

3-6-1. Time Evolution Period and Trotter Decomposition in AQUA 

Let me assume that evolution time, whole computational time, of AQUA ranges 0 to T. Time steps of 

AQCs are briefly described in subsection 3-2-4, and Fig. 3-6.1 depicts two evolution periods: 1) Time 

evolution steps of AQUA as described in Eqs. (3-2.12) and (3-2.13) and 2) Trotter decomposition steps 

in Eqs. (3-2.14). The Trotter steps are discussed below. Evolution periods related in steps of AQUA 

(M) and Trotter steps (N) are depicted in Fig. 3-6.1 with red and blue colors, respectively.  

 

 

Figure 3-6.1. Two time steps in AQCs. M is the time evolution steps which mean the quantum 

computational accuracy of time evolution. N is Trotter decomposition steps which reflect the accuracy 

of the Trotter formula in each evolution time step N.  
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Trotter decompositions have several formula, in which each decomposition approximates the 

matrix exponential composed of non-commutative operators. Although the simple 2nd order formula 

(Eqs. (3-2.14) and Eq. (3-6.1a)) has been adopted in a standard AQC study, there are higher order and 

arbitrary parameterized formulas in Trotter decompositions (Eqs. (3-6.1)).[23] 

 

・2nd formula  

e𝐴+𝐵 = [𝑒𝐴 2𝑁⁄ ∙ 𝑒𝐵 𝑁⁄ ∙ 𝑒𝐴 2𝑁⁄ ]
𝑁

+ 𝑂(𝑁2)              (3-6.1a) 

e𝐴+𝐵 = [𝑒(1−𝛾)𝐴 𝑁⁄ ∙ 𝑒𝐵 2𝛾𝑁⁄ ∙ 𝑒𝛾𝐴 𝑁⁄ ∙ 𝑒(1−1 2𝛾⁄ )𝐵 𝑁⁄ ]
𝑁

+ 𝑂(𝑁2)               (3-6.1b) 

 

・3rd formula 

𝑒𝐴+𝐵 = [𝑒(1−𝛾)𝐴 𝑁⁄ ∙ 𝑒
(

4

3
−𝛾±𝛤)𝐵 2𝛾(𝛾±𝛤)⁄ 𝑁

∙ 𝑒(𝛾±𝛤)𝐴 2𝑁⁄ ∙ 𝑒(3−4𝛾)𝐵 2(2−3𝛾)𝑁⁄ ∙  

𝑒(𝛾∓𝛤)𝐴 2𝑁⁄ ∙ 𝑒
(1−(3𝛾−

4

3
∓𝛤) (2𝛾(𝛾∓𝛤))⁄  )𝐵 𝑁⁄

]
𝑁

+ 𝑂(𝑁3)        (3-6.1c) 

Γ = [(−12𝛾3 + 45𝛾2 − 48𝛾 + 16) (−12𝛾 + 9)⁄ ]1 2⁄            (3-6.1c’)  

 

・4th formula 

𝑒𝐴+𝐵 = [𝑒𝛽𝐴 2𝑁⁄ ∙ 𝑒𝐵 2(2− √2
3 )𝑁⁄ ∙ 𝑒(1− √2

3 )𝛽𝐴 2𝑁⁄ ∙ 𝑒− √2
3

𝐵 𝑁⁄ ∙  

𝑒(1− √2
3 )𝛽𝐴 2𝑁⁄ ∙ 𝑒𝐵 2(2− √2

3 )𝑁⁄ ∙ 𝑒𝛽𝐴 2𝑁⁄ ]
𝑁

+ 𝑂(𝑁−4)         (3-6.1d) 

 

Note that Eqs. (3-6.1b) and (3-6.1c) have an arbitrary parameter γ which is a complex number. 

However, γ and Γ should be selected in a real value because the time evolution period should be 

composed of a set of unitary operators. Thus, One should be careful utilizing Eq. (3-6.1c) by the 

restriction of Eq. (3-6.1c’) not to make Γ with the imaginary part.  

There is another caution for Trotter orders. The order in Trotter decompositions is described with 

respect to N which is discussed in Fig. 3-6.1. If there is no iteration period, i.e. N = 1, higher order 

Trotter does not make sense. If one utilizes large N, the higher order formulas have efficiency. 

The accuracy of AQC is evaluated by fidelity,[1] which represent “a distance” between two matrices.  

𝐹(𝜌, 𝜎) = Tr [√√𝜌 ∙ 𝜎 ∙ √𝜌]               (3-6.2) 

Tr(A) is the trace of a matrix A. The simplest formula is given when both ρ and σ (Eq. (3-6.3a)) are 

pure as shown in Eq. (3-6.3b). 

𝜌 = |𝜑 >< 𝜑|,   𝜎 = |𝜓 >< 𝜓|             (3-6.3a) 

𝐹(𝜌, 𝜎) = |< 𝜑|𝜓 >|              (3-6.3b) 
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When ρ and σ are pure density matrices, the fidelity represents the overlap of wavefunction. Thus, 

fidelity ranges 0 to 1 and large fidelity means two matrices are well resembled. In the typical QC study 

as same as this study, fidelity suggests computational accuracy (f = 1 is complete accuracy of control 

and f = 0 is completely wrong control). 

 

 

3-6-2. Time Evolution Period and Trotter Decomposition in AQUA 

First numerical simulations are performed in order to estimate which adiabatic path is suitable to AQCs. 

Fidelity was plotted in Fig. 3-6.2, where the 3-qubit algorithm is adopted with changing parameters of 

time evolution steps (M) and the whole computational time (T). The detail Hamiltonian and time step 

are shown in Eqs. (3-6.4) and (3-6.5). 

    



M

m

mHiMTU
1

ˆ)/(expˆ                          (3-6.4) 

       i

2

f

2 ˆ}1{ˆˆ HMmHMmHm                      (3-6.5) 

Although there are several lines with low fidelity in Fig. 3-6.2, fidelity becomes larger with the 

increase of evolution steps (M) in general. The tendency of evolution steps against computational time 

is significant for Trotter decompositions discussed in subsection 3-6-3. The slop is smaller than 1, 

therefore the evolution time in each step increases against the computational time.  

Figure 3-6.3 shows the small computational time (T) domain of Fig. 3-6.2. There is a region (𝑇 ≲

0.2) in which fidelity cannot reach to 1 by increasing evolution step (M). This is the adiabatic limits. 

Performing AQC with fast computational time, the excitation can be occurred as mentioned in section 

3-2. Figure 3-6.3 suggests that the recommended computational time (T) is larger than 0.5. 

 

 

Figure 3-6.2. Fidelity plots with computational time (T) and evolution steps (M).  
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Fig. 3-6.3. Fidelity plots in low computational time (T) area with evolution steps (M). 

 

 

3-6-3. Feature of Trotter Decompositions in AQUA 

Accuracy of Trotter decompositions is evaluated, in which the evolution steps (M) are selected in each 

computational time (T) to make the fidelity of discrete adiabatic path 0.99. All the Trotter formula Eqs. 

(3-6.1) are utilized in the simulations. In simulations, Hamiltonian operators in Trotter formulas, A 

and B, are taken one or both of the following equations, which minimize the operations of Hf. 

   i

2 ˆ}/{1)/( ΗMmMTiA  ,   f

2 ˆ/)/( ΗMmMTiB                        (3-6.6a) 

   f

2 ˆ/)/( ΗMmMTiA  ,   i

2 ˆ}/{1)/( ΗMmMTiB                (3-6.6b) 

Since the number of A and B are same in Eqs. (3-6.6b) and (3-6.6c), both equations are utilized. 

The resultant fidelity is depicted in Fig. 3-6.4 and Fig. 3-6.5 with Trotter steps N = 1 and N = 4, 

respectively. Comparing Fig. 3-6.5 with Fig. 3-6.4, there is a high fidelity area in low computational 

time region (below T < 5). Since Trotter decomposition is failed in the case of large exponent terms, 

small Trotter time steps, (T/M)/N, makes fidelity high (see subsection 3-6-1). Figure 3-6.5 does not 

make differences in the Trotter order. I therefore concluded that only the Trotter time steps are 

significant in these low fidelity cases.  
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Figure 3-6.4. Fidelity plots against computational time (T) in the case of N = 1. In the calculation, 

evolution steps (M) is selected in order to make fidelity without Trotter decomposition 0.99. 

 

 

Figure 3-6.5. Fidelity plots against computational time (T) in the case of N = 4. In the calculation, 

evolution steps (M) is selected in order to make fidelity without Trotter decomposition 0.99. 

 

 

3-6-4. Feature of Trotter Decompositions in AQUA 

As discussed in section 3-5, ESR-AQCs have an experimental/theoretical problem for short time 

intervals in its pulse sequence. I have solved this problem by modifying AQUA of the Trotter 

decomposition part. Employing Eq. (3-6.1b) instead of Eq. (3-6.1a). 

From:  e𝐴+𝐵 = [𝑒𝐴 2𝑁⁄ ∙ 𝑒𝐵 𝑁⁄ ∙ 𝑒𝐴 2𝑁⁄ ]
𝑁

+ 𝑂(𝑁2)             (3-6.1a) 

To:  e𝐴+𝐵 = [𝑒(1−𝛾)𝐴 𝑁⁄ ∙ 𝑒𝐵 2𝛾𝑁⁄ ∙ 𝑒𝛾𝐴 𝑁⁄ ∙ 𝑒(1−1 2𝛾⁄ )𝐵 𝑁⁄ ]
𝑁

+ 𝑂(𝑁2)      (3-6.1b) 

where A and B are written as follows:  

     f

2 ˆ/)/( ΗMmMTiA  ,   i

2 ˆ}/{1)/( ΗMmMTiB               (3-6.6b) 
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In numerical simulations, parameter M is set to 15 in order to improve algorithm fidelity to 0.99. Plots 

of γ vs fidelity are shown in Fig. 3-6.6.  

 

 

Figure 3-6.6. Scalability of time interval depicting fidelity and γ.  

 

 

As shown in Fig. 3-6.6, the change of the Trotter decomposition method suggests that can expand 

time intervals for 99 times with enough fidelity. The low fidelity region can be caused due to the 

change of the adiabatic pathway. Since M = 15 is adopted, the ratio between expanded time intervals 

and original algorithm (M = 5) one is 33. Toward the experiments of ESR-AQC, Trotter 

decompositions should be carefully applied with this expansion techniques of time evolution period.   

  

 

3-6-5. Discussion of Numerical Simulations for AQUA 

The numerical simulations have been performed in order to discuss the AQUA of 3-qubit algorithm 

for factorization of 21 focusing on the discrete time evolution period (subsection 3-6-2), fidelity of 

Trotter formula (subsection 3-6-3) and the arbitrary parameter of Trotter formula (subsection 3-6-4). 

In subsection 3-6-2, discrete time evolution has simulated in terms of time evolution steps (M) and the 

whole computational time (T). The significant feature is that the evolution time of each step is 

increased if one increase T. As discussed in subsection 3-6-3, the long evolution time in each 

decomposed step make Trotter decompositions hard. Thus, Trotter time intervals, (T/M)/N, should be 

smaller by Trotter iteration number N. However, Trotter decompositions can be useful in terms of the 

adjustment of time intervals in pulse sequences by virtue of the arbitrary parameter (see subsection 3-

6-4). As a result, I proved that the time interval problem can be solved by modifying Trotter 

decompositions.  
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3-7. Conclusions 

In chapter 3, I have established experimental procedure to perform AQCs with MSOCs, which contain 

the adiabatic algorithm for 2-qubit systems, pulse sequence and numerical studies. The 2-qubit 

algorithm is developed in order to relax the difficulty of MSQC experiments with the multiplication 

assumption.  

The most significant part of this chapter is pulse sequence calculations adopting SAA with single 

crystal ESR spectroscopic technique. Comparing it with the previous NMR-QC experiments, MSQCs 

have a capability to perform AQCs fast. However, the computational ability of MSQCs has different 

aspects from gate model QCs (standard QCs). Since AQCs require short time evolution in the spin 

systems, the intervals between pulses can be too short to manipulate both experimentally and 

theoretically in typical ESR conditions. Assuming X-band (9.5 GHz) ESR spectrometers, it is 

impossible to apply time evolution below 0.1 ns and SAA gives proper Hamiltonian in the case of 

much larger evolution than 0.1 ns. Thus, the time intervals related in the fast computing ability of 

MSQCs can cause the problem performing AQCs.  

On the other hand, MSQCs have significant ability in the systems composed of electron spins with 

nuclear spins via hyperfine interactions. The systems can create interactions between nuclear spins, 

and the systems have the same order of computational speed with the systems composed of only 

electrons. This is the reason why both systems have faster computational ability (interaction strengths 

~ MHz) than that of the NMR-QC experiments.  

The numerical simulations are invoked to find the good experimental conditions, in which 

adiabatic path and Trotter formula are calculated. As a result, Trotter decompositions are found to be 

significant in AQCs because of Trotter decomposition steps. Furthermore, much larger time evolution 

steps are required to reach AQC fidelity 0.99 stably. Note that the problem in short time intervals is 

non-essential. This is because the intervals are adjustable in the Trotter decomposition process. Thus, 

I have overcomed all barrier of AQCs based on adiabatic computation nature. 
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Chapter 4 

 

Nuclear Spin State Control with Microwave 

Irradiation to an Unpaired Electron by GRAPE 

Simulation Approach  
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4-1. Introduction 

A quantum state control is the most significant part in QC experiments since any QC models control 

physical reality in quantum nature. Controllability is known as one aspect of quantum state control 

described by Lie algebra,[1] and the complete controllability allows quantum system to perform 

universal quantum gate, abbreviated as UQG.[1] Since QCs require any special unitary control 

(SU(Nd)) of quantum systems, UQG and complete controllability are essential for QCs composed of 

Nd dimension of Hilbert space. As described in chapter 1, in order to acquire controllability of MSQCs, 

spin Hamiltonian engineering has been investigated, i.e. g-tensor,[2] pseudo g-tensor,[3] A-tensor[4] and 

D-tensor[2] engineering, which enable to distinguish qubits with adjusting interaction strength between 

spins.  

However, there are other aspects of a state control since controllability cannot predict the control 

procedure and required control time while it can predict whether the system is controllable or not.[1, 5] 

The control procedure and difficulty must be proven in another theory. Although there are analytical 

and numerical methods to calculate a concrete quantum pathway, analytical one has a limitation of 

analyzable equations (see chapter 3). Therefore, numerical optimized pulses give significant 

perspective of control difficulty.  

Recently, Krotov[6-8] and GRAPE[9-13] numerical pulses/pulse sequences have been developed as 

the powerful tools for QC experiments. Both approaches optimize time dependent irradiation wave 

amplitude with fixed frequency pulses in magnetic resonance. Since Krotov approach arose in 1983,[6] 

Krotov theory in NMR has been studied for dynamical nuclear polarization (DNP)[7] and magnetic 

resonance imaging (MRI)[8]. However, experiments of Krotov approach are few due to the pulse 

optimization method.[6-8] While Krotov approach optimizes pulses in stepwise about time,[6] GRAPE 

approach optimizes pulses with a global manner in time.[10] The GRAPE approach has been applied 

to Deutsch-Jozsa algorithm[11] and AQUA[12] of factoring 143 by using molecular systems, 13C- labeled 

crotonic acid and 1-Bromo-2-Chlorobenzene, respectively. In terms of MSQCs, there is one of the 

most sophisticated experiments for a CNOT gate between the electron and nucleus and simulations of 

13C-labeled malonyl radical aiming indirectly control by microwave.[13] It is noteworthy that those 

experiments are hard with analytical pulses due to the analyzable equations. 

In this chapter, I have established molecular design in order to control molecular spins with pulses 

numerically simulated, where two nuclear spins are controlled by microwave GRAPE pulses, i.e. the 

indirect state control is invoked by pulsed ESR spectroscopy. Although the controllability is known 

for the system, control difficulty has not been described yet. Thus, control difficulty depending on 

molecular orientations and the molecular optimization for numerical pulses are investigated.  
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4-2. Theory 

Theoretical approaches related to numerical simulations are given in this section. In subsection 4-2-1 

and 4-2-2, spin Hamiltonian and Hamiltonian parameters of one electron and two nuclear systems are 

described, respectively. Controllability of the spin qubits is mentioned in subsection 4-2-3 and 

importance of hyperfine tensor parameters is noted. A GRAPE method is briefly introduced in 

subsection 4-2-4, and the computational conditions are shown in subsection 4-2-5.  

 

 

4-2-1. Spin Hamiltonian in One Electron and Two Nuclear Systems. 

Here, I discuss spin Hamiltonian of one electron and two nuclear spin systems with microwave 

irradiation and SAA[14] (see chapter 3) was applied only for the electron. A generalized Hamiltonian 

is described in Eq. (4-2.1), where H0 and Hctrl are time independent, and an open-shell molecular part 

of Hamiltonian (molecular Hamiltonian) and a control pulse part of Hamiltonian (control Hamiltonian), 

respectively.  

𝐻(𝑡) =  𝐻0 + 𝑐(𝑡)𝐻𝑐𝑡𝑟𝑙       (4-2.1) 

The coefficient c (t) is the time dependent control amplitude of the pulse part, which is automatically 

adjusted by the GRAPE optimization process. Eq. (4-2.2) is derived from analogue procedure as 

described at subsection 3-3-4 in chapter 3. Each term is, 

𝐻0 = (𝜔0(𝐵0) − 𝜔MW)𝑆𝑍 − 𝛾𝑛1𝐵0𝐼𝑍
1 − 𝛾𝑛2𝐵0𝐼𝑍

2   

+2𝜋(𝐴𝑍𝑋
1 𝑆𝑍𝐼𝑋

1 + 𝐴𝑍𝑌
1 𝑆𝑍𝐼𝑌

1 + 𝐴𝑍𝑍
1 𝑆𝑍𝐼𝑍

1) + 2𝜋(𝐴𝑍𝑋
2 𝑆𝑍𝐼𝑋

2 + 𝐴𝑍𝑌
2 𝑆𝑍𝐼𝑌

2 + 𝐴𝑍𝑍
2 𝑆𝑍𝐼𝑍

2)    (4-2.2) 

𝐻𝑐𝑡𝑟𝑙 = 𝜔1𝑆𝑋           (4-2.3) 

where, Zeeman terms in Eq. (4-2.2) are composed of the microwave frequency (ωMW/2π), the strength 

of a static magnetic field (B0 // Z), Zeeman frequency (ω0(B0)/2π), and nuclear gyromagnetic ratios 

γn1, and S and Ik denote spin operator of the electron and kth nucleus, respectively. Here, Hamiltonian 

is written in unit of angular frequency (rad/s) and the hyperfine coupling constants are written in unit 

of frequency (Hz). The other terms in Eq. (4-2.2) are derived from anisotropy of hyperfine coupling 

tensors (A) between the electron and each nucleus. The microwave amplitude of ω1/2π is given in Eq. 

(4-2.3), although the GRAPE control amplitude is automatically optimized with respect to c(t). 

 

 

4-2-2. Molecular Conditions. 

A potassium hydrogen maleate (KHM) radical system[15] is composed of one electron spin and two 

hydrogen nuclear spins (1H2, 1H3), and a 13C- labeled malonyl radical system [16] is composed of one 

electron spin and one hydrogen and 13C nuclear spins (1H2, 13C3). Figure 4-2.1 shows the molecular 

structures and molecular coordinates of both KHM and malonyl radicals. (a) A KHM radical is a 

homo-nuclear system and (b) a malonyl radical is a hetero-nuclear system. The spin Hamiltonian of 
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each system is employed from the past studies with single-crystal experiments.  

 

 

Figure 4-2.1 Molecular structures and XYZ coordinate. (a) A molecular structure of a potassium 

hydrogen maleate (KHM) radical. The molecular coordinate xyz is same as a crystallographic 

coordinate abc. The 1st qubit is an electron spin and the 2nd and 3rd qubits are hydrogen (1H2, 1H3) 

atoms depicted in the figure. (b) A molecular structure of a 13C- labeled malonyl radical. The 1st qubit 

is an electron spin and the 2nd and 3rd qubits are hydrogen (α-proton) and 13C atoms (1H2, 13C3) 

depicted in the figure, respectively. The coordinate (xyz) is the principal axes of the hyperfine tensor 

of α-proton. (c) Definition of XYZ computational coordinate with respect to xyz coordinate. Euler 

angles φ and θ are defined in the figure. The static magnetic field (B0) is applied parallel to the Z axis. 

 

 

In the orthorhombic KHM radical, the hyperfine tensors in a crystallographic coordinate system 

abc (= the Cartesian molecular coordinate system (xyz)) are given by Eqs. (4-2.4a) and (4-2.4b), where 

electron, 1H2 and 1H3 spins are numbered as 1st, 2nd and 3rd qubit, respectively. In the malonyl radical, 

hyperfine tensors with respect to molecular coordinate (xyz) are given by Eqs. (4-2.5a) and (4-2.5b), 

and the coordinate axes (xyz) are set to the principal axes of hyperfine tensor of α-proton as shown in 

Fig. 4-2.1b. In the malonyl radical, I utilized electron, 1H2 and 13C3 spins as qubits numbered 1st, 2nd 

and 3rd, respectively. 

In the orientation study, the static magnetic field (B0) is applied from the Z-direction, in which Fig. 

4-2.1c shows Cartesian coordinate (XYZ) with respect to the molecular coordinate (xyz) depicted in 

Figs. 4-2.1a and 4-2.1b. 

𝑨KHM( H 
1 2) =  (

−14.6 −3.7 7.4
−3.7 −16.0 −6.3
7.4 −6.3 −23.0

) /MHz            (4-2.4a) 

𝑨KHM( H 
1 3) =  (

−14.6 −3.7 −7.4
−3.7 −16.0 6.3
−7.4 6.3 −23.0

) /MHz            (4-2.4b) 
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𝑨mal( H 
1 2) =  (

−56.0 0.0 0.0
0.0 −91.5 0.0
0.0 0.0 −26.6

) /MHz                   (4-2.5a) 

𝑨mal( C 
13 3) =  (

211.8 1.0 −8.9
1.0 24.6 −1.3
−8.9 −1.3 43.4

) /MHz                    (4-2.5b) 

 

 

4-2-3. Controllability  

Complete controllability of one electron and multi-nuclear spin-1/2 systems with microwave is 

established by a closed Lie group SU(21 + Nd) in the earlier study[13] which is simulated by GRAPE 

algorithm with SAA spin Hamiltonian and experimented with an X-ray irradiated malonyl radical (one 

electron and one hydrogen nuclear system). Where Nd denotes the nuclear number of qubits. Assuming 

non-equivalent nuclear spins at the proof, the graph connectivity[17] of quantum states is considered in 

order to make transitions between the states, and then the controllability of the system is ensured 

excepting no off-diagonal elements in hyperfine tensors. This is because in one electron and two nuclei 

spin systems, the nuclear spins are applied spin rotations around (x-/y- axes) only via hyperfine 

interactions as described in spin Hamiltonian at subsection 4-2-1, i.e. off-diagonal elements of 

hyperfine interactions (AzxIx and AzyIy) are essential to flip nuclear spins. This implies that the hyperfine 

interactions are significant role also in control difficulty. 

 

 

4-2-4. GRAPE Algorithm 

Numerical simulations with GRAPE algorithm are performed by DYNAMO toolbox[18] on MATLAB 

software. The algorithm optimizes control amplitude u(t) with fixed frequency pulses targeting 

quantum states and gates. In the optimization process, a GRAPE method calculates gradient of fidelity 

(f) against the control amplitude (∂f/∂u), and the extremum is searched in order to maximize fidelity. 

Fidelity represents ‘a distance’ between two matrices, which ranges 0 to 1 and large fidelity indicates 

two matrices are well resembled (see subsection 3-6-1 in chapter 3). In the standard QC study, fidelity 

suggests computational accuracy (f = 1 is complete accuracy of control and f = 0 is completely wrong 

control). Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme is adopted for the optimization 

algorithm.  
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4-3. Simulation Conditions 

Simulations with microwave GRAPE pulses are invoked in XYZ coordinate and the parameters were 

described in subsection 4-2-2. Toward universal control, off-diagonal elements of hyperfine tensors in 

XYZ coordinate system are required the restrictions as described in subsection 4-2-3. In each molecule, 

fidelity is a function of two sets of conditions, i.e. GRAPE conditions (target gates, computational 

time steps and gate operation time) and spin Hamiltonian conditions (strength of the static magnetic 

field (B0), subtracted frequency between microwave and Zeeman frequency). 

 

Table 4-3.1. Reference conditions of simulations.  

Static magnetic field strength (B0) 1.1 T 

Offset frequency ((ω0 – ωMW)/2π) 10 MHz 

Computational time step (Δt) 5 ns 

Gate operation time (the KHM radical) 0.5 μs 

Gate operation time (the malonyl radical) 0.3 μs 

 

 

In the molecular orientation study, we fixed several physical parameters to the reference conditions 

(Table 4-3.1) excepting target gates and molecular orientations. Computational time steps is fixed for 

5 ns due to the experimental and SAA points of view. B0 is set 1.1 T for Q-band ESR experiments. The 

gate operation time is selected as 0.5 μs and 0.3 μs for the KHM radical and 13C labeled malonyl 

radical, respectively, where fidelity is estimated to increase monotonically against the gate operation 

time due to the selectable number of pulse operations. Offset frequency of MW is selected as 10 MHz 

in order to enhance fidelity (Fig. 4-3.1).  

 

 

Figure 4-3.1. Offset frequency with fidelity. The static magnetic field is applied from the original 

points to each plots. (a) A fidelity plots of the KHM radical with offset frequency 10 MHz. (b) A 

fidelity plots of the malonyl radical with offset frequency 10 MHz. (c) A fidelity plots of the KHM 

radical with offset frequency 0 MHz. (d) A fidelity plots of the malonyl radical with offset frequency 

0 MHz. 
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Three quantum gates (CNOT1, CNOT2, and SWAP1) are simulated in order to estimate control 

difficulty of molecular orientations, which unitary matrices are written by Eqs. (4-3.1), (4-3.2) and (4-

3.3), respectively. CNOT1 (or CNOT2) flips the 3rd (or 2nd) qubit depending on the state of the 2nd 

(or 3rd) qubit and SWAP1 exchanges the quantum state of the 2nd qubit with that of the 3rd qubit. 

CNOT1 =

(

 
 
 
 
 

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0)

 
 
 
 
 

      (4-3.1) 

CNOT2 =

(

 
 
 
 
 

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
0 1

0 0
0 1

1 0
0 0)

 
 
 
 
 

      (4-3.2) 

SWAP1 =

(

 
 
 
 
 

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1)

 
 
 
 
 

      (4-3.3) 
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4-4. Results and Discussions of Molecular Orientations  

Fidelity of each quantum gate is simulated with the molecular orientations (φ, θ) corresponding to the 

static magnetic field B0 (φ, θ) direction. Orientation plots of fidelity is simulated with intervals of 5 

degrees, where Fig. 4-4.1 (a), (b) and (c) are for the KHM radical and Fig. 4-4.2 (a), (b) and (c) for the 

malonyl radical are the orientation plots of CNOT1, CNOT2 and SWAP1, respectively. In section 4-

4, the other parameters were set to the reference conditions and spin Hamiltonian parameters, 

especially hyperfine tensors, are discussed in XYZ coordinate because of B0 (φ, θ) // Z.  

In the orientation study, fidelity reflects controllability and control difficulty. Control difficulty is 

low if fidelity is high, vice versa, the system is hard or impossible to be controlled if fidelity is low, 

i.e. unsuitable conditions to control. Here, I discuss two physical aspects of low fidelity orientations 

(φ, θ) (see subsection (4-4-1 and 4-4-2) and (4-4-3 and 4-4-4)), which can quantitatively establish the 

fidelity plots. 

 

Figure 4-4.1. Fidelity plots with respect to orientations of static magnetic field in the KHM radical. 

Each sphere indicates each two qubit gate manipulating two hydrogen nuclear qubits. The direction of 

static magnetic field is applied from the original points to the plotted point and the color shows fidelity. 

(a) CNOT1 gate. (b) CNOT2 gate. (c) SWAP1 gate. 
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Figure 4-4.2. Fidelity plots with respect to orientations of static magnetic field in the malonyl radical. 

Each sphere indicates each two qubit gate manipulating two hydrogen and 13C nuclear qubits. The 

direction of static magnetic field is applied from the original points to the plotted point and the color 

shows fidelity. (a) CNOT1 gate. (b) CNOT2 gate. (c) SWAP1 gate. 

 

 

4-4-1. Controllability and Distinguishability  

Distinguishability of qubits is a key to QCs. If two qubits (spin-1/2) cannot be controlled individually, 

the system is no longer able to be manipulated as two qubits (spin-1/2), and then the system behaves 

one qubit (spin-1). As a result, the spin degree of freedom is decreased from 22 (two spin-1/2 qubits) 

to 31 (one spin-1 qubit), and then controllability of 4 states disappears in the latter case. Thus, it is 

essential to distinguish qubits to acquire controllability. Since individual quantum operations are 

supposed by non-symmetric operations, symmetric control and molecular Hamiltonian between two 

spins lead the spins impossible to distinguish. 

In the case of indirect control of nuclear spins via microwave, symmetrical molecular Hamiltonian 

makes hard to distinguish nuclear qubits due to the symmetry of control Hamiltonian of any nuclei 

(see Eqs. (4-2.2) and (4-2.3)). Therefore, the non-symmetric nuclear Zeeman and hyperfine interaction 

terms are the key to acquire nuclear spin distinguishability. 

 

 

4-4-2. First Unsuitable Orientations: Lack of Distinguishability  

The 13C-labeled malonyl radical has distinguishability of two nuclear qubits due to the heteronuclear 

feature different from the homonuclear system of the KHM radical. Thus, heteronuclear spins are 

always possible to be distinguished with each other. For CNOT1 and CNOT2 gates with the KHM 

radical, fidelity is low suggesting high control difficulty in two arcs which orientations of (φ = 50°, θ 

= arbitrary) and orientations of (φ = arbitrary, θ = 90°) are depicted in Fig. 4-4.3 (a) and (b) (see also 

Fig. 4-4.1 (a) and (b)). Table 4-4.1 shows the hyperfine tensors in several orientations. It is clear that 

the absolute values of tensors are same at 1H2 and 1H3 in low fidelity orientations, thus these arcs are 
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given rise to the lack of distinguishability of the two nuclear qubits. Furthermore, the arc feature is 

originated of symmetry of the hyperfine tensors since absolute principal values of two hyperfine 

tensors are same as described in Eqs. (4-2.4).  

 

 

 

Figure 4-4.3. Fidelity plots with respect to orientations of static magnetic field in the KHM radical. 

The direction of static magnetic field is applied from the original points to the plotted point and the 

color shows fidelity. White two lines shows low fidelity conditions of two arcs which orientations are 

(φ = 50°, θ = arbitrary) and (φ = arbitrary, θ = 90°) (a) CNOT1 gate. (b) CNOT2 gate. 

 

 

Referring gate dependence, there are still performable operations for nuclear spins even in lack of 

distinguishability, i.e. in lack of controllability. SWAP1 gate which does not require to distinguish two 

qubits has no low fidelity arcs of φ = 50° and θ = 90° at the KHM radical in contrast to the CNOT gate 

simulations. This is because SWAP gates exchange quantum states of two qubits and then the gates 

are symmetrically in the acting two qubits (see Eq. (4-3.3)). Note that the molecular orientations 

without distinguishability/controllability are impossible to implement UQG, therefore these are 

unsuitable orientations for quantum computing.  
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Table 4-4.1. Tensor conditions and distinguishability. Table shows orientations, hyperfine tensors and 

fidelity in the KHM radical of CNOT1. Excepting the reference orientation (φ = 10° and θ = 150°), 

fidelity is lower than 0.8 due to the lack of distinguishability. Control and Target qubits are the 2nd and 

3rd qubits of hydrogen atoms. 

Orientations 
Qubits 

Hyperfine tensor parameters 
Fidelity 

φ /° θ /° AZX /MHz AZY /MHz AZZ /MHz 

50 30 
Control 1.7 -8.4 -22.1 

≈ 0.75 
Target 1.7 8.4 -22.0 

50 90 
Control 0.0 -0.1 -19.0 

≈ 0.30 
Target -0.0 -0.1 -19.0 

140 90 
Control 9.7 0.1 -11.5 

≈ 0.75 
Target -9.7 0.1 -11.5 

10 150 
Control 0.0 4.6 -26.6 

0.99 
Target -6.2 -8.3 -15.9 

 

 

4-4-3. Controllability and Interaction Strength.  

The second conditions related to controllability are orientations with small interaction strength. As 

described in subsection 4-2-3, the controllability disappears if the system does not have off-diagonal 

elements of hyperfine tensors.[13] Here, I discuss the computational speed based on interaction strength. 

Assume a simple one electron and one nucleus (I = 1/2) system in which Hamiltonian is written by 

only one off-diagonal hyperfine interaction between an electron and a nucleus. 

𝐻 = 2𝜋𝐴𝑍𝑋𝑆𝑍𝐼𝑋       (4-4.1) 

Then it takes time to flip the nuclear spin at least,  

𝑒−𝑖𝐻𝑇 = −𝑖𝜎𝑍
𝑒𝜎𝑋

𝑛   ⇒   𝑇min =
1

𝐴𝑍𝑋
      (4-4.2) 

where T is computational time, 𝜎𝑍
𝑒 is Pauli matrix of Z direction for the electron and 𝜎𝑋

𝑛 is Pauli 

matrix of X direction for the nucleus. The details of unit are described in introduction of chapter 3, and 

ħ is set to 1. When the coupling constant 𝐴𝑍𝑋 = 1 MHz, the minimum computational time 𝑇min =

1 μs. Since nuclear spin rotations in my systems depend on the off-diagonal elements of hyperfine 

interactions, the strength (𝐴off = √|𝐴𝑍𝑋|
2 + |𝐴𝑍𝑋|

2 ≥ 2.0 and 3.3 MHz) are essential to flip nuclear 

spins with 0.5 μs for the KHM radical and 0.3μs for the malonyl radical, respectively. In general, the 

strong off-diagonal elements, i.e. strong anisotropy of hyperfine tensors, are suitable for fast quantum 

computations.  
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4-4-4. Second Unsuitable Orientations: Lack of Interaction Strength. 

The other aspect of control difficulty is governed by the interaction strength. In the KHM radical, 

fidelity of CNOT1 (see Fig. 4-4.1 (a) and Fig. 4-4.4) becomes low at the orientations (φ, θ) of (140°, 

60°), (140°, 150°), and (50°, 90°) and the hyperfine parameters are shown in Table 4-4.2. It is obvious 

that the off-diagonal elements of the hyperfine tensor (AZX and AZY) of the nucleus 1H3 are too small 

to flip the nuclear spin in the low fidelity orientations as discussed in section 4-4-3, i.e. the static 

magnetic field is applied from the principal axis of the hyperfine tensor of 1H3.  

However, the orientations of (140°, 30°) and (140°, 120°) with small off-diagonal hyperfine 

elements of 1H2 have still high fidelity in CNOT1. Taking into account of the character of CNOT1, 

the nuclear spin 1H2 does not require any spin rotations since 1H2 is control qubit in contrast to the 

target qubit 1H3. These results suggest that the required time and spin interactions depend on the 

quantum gates in numerical pulses.  

 

 

 

Figure 4-4.4. Fidelity plots with respect to orientations of static magnetic field in the KHM radical. 

The direction of static magnetic field is applied from the original points to the plotted point and the 

color shows fidelity. Five white circles shows low fidelity conditions of (140°, 30°), (140°, 60°), (140°, 

120°), (140°, 150°), and (50°, 90°) depicted in Table 4-4.2. (a) CNOT1 gate. (b) CNOT2 gate. 
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Table 4-4.2. Tensor conditions and interaction strength. Table shows orientations, hyperfine tensors 

and fidelity in the KHM radical of CNOT1. Excepting the reference orientation (φ = 10° and θ = 150°), 

fidelity is lower than 0.8 due to the lack of distinguishability. Control and Target qubits are the 2nd and 

3rd qubits of hydrogen (1H2 and 1H3) atoms. 

Orientations 
Qubits 

Hyperfine tensor parameters 
Fidelity 

φ /° θ /° AZX /MHz AZY /MHz AZZ /MHz 

140 30 
Control 0.1 0.1 -28.5 

0.99 
Target 9.8 0 -11.7 

140 60 
Control 9.8 0.1 -22.8 

≈ 0.50 
Target 0.1 0.0 -6.0 

140 120 
Control -0.1 0.0 -6.0 

0.99 
Target -9.8 0.1 -22.8 

140 150 
Control -9.8 0 -11.7 

≈ 0.50 
Target -0.1 0.1 -28.5 

50 90 
Control 0.0 -0.1 -19.0 

≈ 0.30 
Target -0.0 -0.1 -19.0 

 

 

Further evidence has been found in the orientation study of CNOT2 and SWAP1 (see Fig. 4-4.1 

(b) and (c)). In CNOT2 (Fig. 4-4.4 (b)), low fidelity orientations are changed into (140°, 30°) and 

(140°, 120°), which are principal axes of the hyperfine tensor of 1H2, from (140°, 60°) and (140°, 

150°). The molecular orientations around (50°, 90°) still have low fidelity in CNOT2 since the 

orientation of (50°, 90°) has coaxial property in the hyperfine principal axes of 1H2 and 1H3. In the 

case of SWAP1, fidelity decreases both orientations at the principal axes of hyperfine tensors of 1H2 

and 1H3 (see the orientations of (140°, 60°), (140°, 150°), (140°, 30°), (140°, 120°) and (50°, 90°)). 

The unsuitable orientations in SWAP1 are matched with connectivity as described in 4-2-3. As a result, 

all the dominant orientations with low fidelity depicted in the fidelity plots are characterized in the 

KHM radical, which make UQG hard or impossible. 

This mechanism of the small interaction strength also appears in the malonyl radical as depicted 

in Fig. 4-4.5 (see also Fig. 4-4.2). Since the malonyl radical has coaxial properties for all principal 

axes of hyperfine tensors, the low fidelity orientation does not depend on those three gates, in which 

some nuclear spin rotations are included, and appeared in (0°, 0°), (0°, 90°) and (90°, 90°). Since those 

are all the low fidelity conditions at the malonyl radical, all the unsuitable orientations are 

characterized in the malonyl radical too. Thus, the heteronuclear malonyl radical system can decrease 

the unsuitable orientations based on the heteronuclear character, the coaxial property and large 

anisotropy of hyperfine tensors.  
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Figure 4-4.5. Fidelity plots with respect to orientations of static magnetic field in the malonyl radical. 

The direction of static magnetic field is applied from the original points to the plotted point and the 

color shows fidelity. Five white circles shows low fidelity conditions of (0°, 0°), (0°, 90°) and (90°, 

90°). Due to the plotted orientations, (0°, 180°) and (90°, 150°) can also be seen but those are double 

count by the axial property. (a) CNOT1 gate. (b) CNOT2 gate. (c) SWAP1 gate. 

 

 

4-4-5. Discussions of Molecular Orientations and Controllability  

All the dominant orientations with low fidelity in Figs. 4-4.1 and 4-4.2 can be established from the 

view point of (1) distinguishability of qubits and (2) interaction strength. They are interpreted by 

controllability, and the orientations difficult to control are appeared around the orientations with lack 

of controllability. Each orientation is related with spin Hamiltonian of molecules directly, i.e. (1) 

principal values of each hyperfine tensor in homo-nuclear system and (2) the off-diagonal strength of 

the hyperfine tensors. From the view point of experiments, the static magnetic field should be applied 

with the distant direction far from those unsuitable orientations. It is because the orientations with high 

fidelity are predicted by complement groups of the unsuitable orientations depicted as Figs. 4-4.1 and 

4-4.2.  

Furthermore, it has proven that molecular designs are possible from quantum chemical/mechanical 

points of view even for numerical simulated pulses. Since there are the unsuitable orientations (1) and 

(2), to reduce these orientations is possible by molecular design. As a result, molecules should be 

designed as follows: (i) hetero-nuclei system or non-symmetric hyperfine principal values between 

nuclei, (ii) large anisotropy for hyperfine tensors and (iii) coaxial properties for hyperfine tensors. 
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4-5. Simulations of Time Evolution.  

Time evolution of the one electron and two nuclear system is confirmed by numerical simulations. In 

the KHM radical, a GRAPE pulse of CNOT1 in the orientation (10°, 150°) is shown in Fig. 4-5.1. The 

computational time 1.2 μs is selected to decrease the control amplitude of the simulated pulse. The 

other conditions (the static magnetic field, offset frequency and time steps) are set to the reference 

conditions as discussed in section 4-3. In SAA Hamiltonian, fidelity is estimated at 0.9907. 

 

 

Figure 4-5.1. A GRAPE pulse sequence of the KHM radical in the orientation (10°, 150°).  

 

 

Further simulations are invoked by assuming spin Hamiltonian without any approximation (SAA). In 

the simulations, time steps and microwave frequency are set to 0.1 ps and 30.856 GHz, respectively. 

With the transformation into the rotating frame, fidelity is estimated to 0.5654. However, correcting 

the phase of electron with Eq. (4-5.1), 

𝑈corrected = 𝑈calc ∙ exp(−𝑖 𝜎𝑧𝛼 2⁄ ) ,         0 ≤ 𝛼 ≤ 4𝜋       (4-5.1) 

the best fidelity is increased to 0.9897 as depicted in Fig 4-5.2. Where α /rad is a correction coefficient 

(fitting parameter), Ucalc is the simulated gate in Schrödinger picture and Ucorrected is the corrected gate. 

As a result, the 2-qubit gate operation succeeds except for the electron phase. 
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Figure 4-5.2. Fitted fidelity with Eq. (4-5.1). The maximum fidelity is 0.9897 at the correction 

coefficient = 2.564 /rad. 
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4-6. Conclusions 

In this chapter, molecular orientation studies for the KHM and malonyl radicals with indirect quantum 

state control by numerical pulses have been invoked to estimate control difficulty for QC experiments 

and to optimize spin Hamiltonian of molecules. As a result, several molecular orientations which are 

not suitable to manipulate spins are found and have no distinguishability of qubits and/or small 

interaction strength of the hyperfine tensors. Since both are interpreted by the controllability of spin 

systems, the other parameters, e.g. transition rates, transition frequency, etc., are estimated as minor 

contributions. It is noteworthy that suitable molecular orientations can be predicted directly from the 

controllability of spin systems. Thus, feasible systems are characterized by (i) hetero-nuclei system or 

non-symmetric hyperfine principal values between nuclei, (ii) large anisotropy for hyperfine tensors 

and (iii) coaxial properties for hyperfine tensors.  

From the QC/QIP point of view, to find the best orientation to control qubits is one of the 

significant problem. In this study, I have suggested several candidates for valid quantum control as the 

distinct orientations from the unsuitable conditions. This guideline must improve the numerical pulse 

experiments with molecular spin systems. 
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Chapter 5 

 

Quantum Algorithm of Configuration State 

Function (CSF) toward Quantum Chemical 

Calculations on Quantum Computers  

(QCCs on QCs) 
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5-1. Introduction 

One of the ultimate goals of theoretical chemistry and physics is to conquer the exact solution of 

Schrödinger equation which governs stochastic and dynamical motions of atoms and molecules. The 

Schrödinger equation has been solved under various physical situations since quantum mechanics 

have born, and there are always challenging problem sizes to solve despite the development of 

computer technology. In quantum chemistry, although Hamiltonian of systems is defined 

rigorously,[1] in numerical calculation an astronomical number of operations must be performed for 

acquiring accurate solutions due to the two-body nature of interactions among electrons.  

The best solution of the Schrödinger equation within a given basis set is referred to as the full 

configuration interaction (FCI) wavefunction. The computational costs for solving the FCI problem 

depends on the number of electrons in the atomic/molecular systems and the size of basis set. Great 

efforts have been made to develop theoretical frameworks as well as computational programs to 

obtain as accurate total energy and wavefunctions as possible of larger molecular systems with less 

computational costs. For example, the density matrix renormalization group (DMRG) is able to 

compute complete active space configuration interaction (CAS-CI) type wavefunctions for large 

active space up to 40 electrons and 40 orbitals.[2] The exact wavefunctions (beyond FCI limit) of 

small molecules can be calculated with supercomputers, by adopting the free complement theory 

proposed by Nakatsuji and co-workers.[3] The series of reports made a paradigm shift on the role of 

quantum chemistry to the truly predictive tool in chemical science, but their applications are still 

limited at the moment. 

QCCs on QCs are based on the one suggestion by Feynman in 1982 that quantum systems can be 

efficiently simulated by using quantum devices by Feynman.[4] The first theoretical suggestion and 

application for QCCs on QCs were demonstrated in 2005 by Aspuru-Guzik and co-workers.[5] It was 

computation of FCI energies of molecules with quantum computing and quantum phase estimation 

(QPE) algorithm of Abrams and Lloyd (Eq. (5-1.1)).[6]  

      2iiEtiHt eee 
             (5-1.1) 

Experiments for QCCs on QCs have been reported since 2010, where FCI/STO-3G calculations 

of H2 molecule are invoked in the photonic[7] and NMR-[8] QCs. Although this is a new research field 

even among quantum computing science, quantum FCI is now considered as near-future targets to 

realize.[9] However, the fundamental quantum algorithms are still limited against the vast research 

filed of quantum chemistry. Therefore new quantum algorithms, i.e. superpolynomial algorithms 

which can be run in polynomial time not with classical computers but with QCs, are still desired in 

order to perform efficient QCCs. It is noteworthy that quantum FCI based on QPE does not require 

the preparation of exact wavefunction (ΨExact) but approximated wavefunction (Ψ0).[5] Although the 

difference in the wavefunctions affects success probability of the algorithms proportional to 
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|<Ψ0|ΨExact>|2, QPE is still available to calculate the FCI energy in the case of |<Ψ0|ΨExact>|2 > 0.5.[5]  

As describing the feature of quantum FCI, preparation of wavefunction is a still modifiable 

problem. In closed-shell molecules, a Hartree–Fock wavefunction ΨHF is a choice for Ψ0 because a 

single determinant of orbitals is typically an good approximation of a ground state.[10] Needless to 

say, this approach is not valid for open-shell systems. In general, ΨExact can have a strong 

multiconfigurational character resulting in a small overlap with ΨHF. It is known that a wavefunction 

of the open-shell molecule with antiferromagnetic interactions among electrons is composed of 

many Slater determinants due to a requirement satisfying the spin symmetry of operator S2 and Sz.[10] 

If the system has this multiconfigulational character, ΨHF is no longer a good approximation of ΨExact. 

Thus an approximate wavefunction is desired to be properly prepared on the basis of spin nature.  

Here, I introduce a new quantum algorithm to construct spin symmetry-adapted configuration 

state function (CSF). The CSF (ΨCSF) is considered to ensure a sufficiently larger overlap of ΨCSF 

with ΨExact than that of ΨHF with ΨExact in open-shell molecules due to symmetry of spin functions. 

The feature of CSF is discussed in section 5-2 and the algorithm details are shown in section 5-4 and 

5-5. This quantum algorithm has a superpolynomial property against singly occupied β spins because 

it prepares an exponential number of determinants with polynomial time in QCs.  
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5-2. Effectiveness of CSF in QPE 

Potency of CSF in QPE is depicted in the ground state (S = 10) of the first single molecule magnet 

[Mn12O12(CH3COO)16(H2O)4].[11] The Mn cluster includes eight MnIII (d4) and four MnIV (d3) 

magnetic centres with antiferromagnetic interactions between adjacent MnIII and MnIV centres.25 In 

this section, I describe the number of Slater determinants. I assume that the Mn cluster has a single 

CSF type of wavefunction, namely, that a single CSF, a minimum unit satisfying the symmetry of 

spin eigenfunction, is a better approximation of the exact wavefunction of the Mn clusters than a 

single Slater determinant. The number of primitive spin functions belonging to MS = 10 is NCNβ = 

44C12 ≈ 2.1 × 1010, where N and Nβ stand for the total number of unpaired electrons and the number 

of unpaired spin-βelectrons respectively. The number NCNβ can easily diverge to the exponential 

number. In the QC, the CSF is possible to be prepared only with Nβ of one-qubit rotations and Nβ
2 of 

controlled NOT (CNOT) operations (see section 5-5). 

Note that I do not mention that anytime a single CSF wavefunction is a proper approximation of 

the exact wavefunction but that a CSF can provide a better approximation than any single 

determinant. From the view point of QPE, the overlap between a ‘best’ single Slater determinant 

(e.g., Hartree-Fock) and the exact wavefunction is approximately proportional to the inverse of the 

number of Slater determinants necessary to properly approximate the exact wavefunction. As 

discussed above, it is clear that if Ψ0 is a single determinant the success probability of QPE is 

attenuated exponentially fast against the number of unpaired electrons and the spin quantum number. 

However, if Ψ0 is a single CSF, the success probability can be maintained even in this case due to its 

multi-determinant character. 

   The second point of this algorithm clarify current direction of QCCs on QCs. Although a CSF 

itself does not include the effects of electron correlation (i.e., beyond a mean-field approximation), 

QCs can prepare a better wavefunction easily than classical computers. The algorithm suggests at 

least that the first approximation toward exact wavefunction is the CSF on QCs. The Hartree-Fock 

approximation is widely used in ab initio calculations in classical computers, but in QCs the CSF or 

a better wavefunction than the CSF can take over this situation since the CSF is corresponding to the 

Hartree-Fock wavefunction for the closed shell molecules. Therefore, QCs can treat the closed shell 

and open-shell molecules almost equivalently. 
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5-3. Structure of Spin Eigenfunctions  

Here, I describe the spin eigenfunction composing the spin part of the CSF. The same description is 

written in Pauncz's book.[12] The spin eigenfunction ΨS(N, S, MS) is defined by three parameters: N 

represents the number of unpaired spins and S, MS represent eigenvalues of the S2 and SZ operators, 

respectively. In the non-relativistic quantum chemistry, one usually focuses on the largest angular 

momentum sublevel of (MS = S) as electron spin sublevels since the property of (2S + 1) sublevels of 

S with different MS can be calculated from the reference sublevel by virtue of Wigner-Eckart 

theorem. Although I describe the spin eigenfunctions in a general fashion at this section, the usual 

restriction is utilized in the section of the quantum algorithm for the CSF.  

The spin eigenfunction is proven by induction as follows. Adding one electron with its spin 

angular momentum α to the spin eigenfunction ΨS(N, S, MS), Eq. (5-3.1) is obtained due to the 

properties of the spin quantum number.  

     21,21,121,21,1,, 2121   SSSSSSSS MSNCMSNCMSN       (5-3.1) 

Tow coefficients, CS+1/2 and CS−1/2, should be calculated with following Lowdin's projection operator 

OS+1/2 (5-3.4). It is simple in MS = S that the 2nd term of the right hand side vanishes in Eq. (5-3.1) 

because MS value cannot exceed S value.  
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21 SSS          (5-3.2)  

    SSSSS MSNCMSN ,,21,21,1 21  O      (5-3.3) 

C denotes the normalization factor and the 2nd term is annihilated by the projection. The S2 operator 

is as follows: 

        1,,2,11,,2,1
222   NNNN SSSSS    

            1,,2,121,,2,1 ZZ   NNNN SSSS        (5-3.4) 

where, the operators Si of (1,2,…,N) refer to the system of N-electrons, and the operators Si of (N + 

1) act to the added one electron. Calculating Eq. (5-3.3), Eq. (5-3.7) is obtained. 
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Considering a norm of wavefunction at the left side of Eq. (5-3.7), the normalization factor should 

be taken as Eq. (5-3.8). 
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Thus, an additional equation of angular momentum is obtained.   
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In the case of MS = S, Eq. (5-3.9) has a very simple formula.  

     SSNSSN SS ,,21,21,1              (5-3.10) 

Applying the same methodology, the following three relations are obtained with OS+1/2 and 

OS−1/2.  
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The spin eigenfunction ΨS(N + 1, S − 1/2, S − 1/2) is derived from Eq. (5-3.13). The Eqs. (5-3.9) and 

(5-3.11) to (5-3.13) suggest that one can add single electron with a spin to the spin system step by 

step and then the simplest couple of formulas in MS = S are given in Eqs. (5-3.10) and (5-3.14).  
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5-4. Quantum Algorithm of Spin Eigenfunction  

5-4-1. Algorithmic Scheme of Spin Eigenfunction  

In order to establish the quantum algorithm of CSF, the fast preparation of spin eigenfunctions is the 

key. This is because the spin part of CSF is composed of the spin eigenfunctions as described above. 

The superpolynomial property is also helped with this part, and the spin eigenfunctions are 

composed of the superposition of exponential number of the Sz computational basis.  

Assume that we have an N-spin system ΨS(N, S, MS = S). As discussed in section 5-3, the 

wavefunctions satisfy the following equations in the same way as Eqs. (5-3.10) and (5-3.14) 

   SSNSSN SS ,,21,21,1               (5-4.1) 
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Remember that S− operator can create ΨS(k, S, S − 1):  

   SSk
S

SSk SS ,,
2

1
1,,  S               (5-4.3) 

Eq. (5-4.3) suggests that Eqs. (5-4.2) and (5-4.3) can calculated only with the ΨS(N, S, S) and S- 

operator. In QCs, one can apply unitary operators themselves as quantum operations i.e. as quantum 

gates therefore those equations can be performed with the direct formulas. However, this suggestion 

is impossible in classical computers not to have quantum superposition.  

   It is easy to perform Eq. (5-4.1) on QCs because this operation can be done with just to add 

single α-spin on the quantum register representing ΨS(N, S, S). However, Eq. (5-4.2) should be taken 

in a different manner preparing ΨS1 first: 
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The second term is prepared by a single qubit rotation. After the preparation of Eq. (5-4.4), the 

controlled S- operation is performed by targeting the last α-qubit, 
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then the same equation as Eq. (5-4.2) is reached. Therefore, the remaining problem is how to apply 

the controlled S- operator to ΨS(N, S, S) (see section 5-4-2). 
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5-4-2. Controlled S- Operation  

Let me consider the following case: I have wavefunction of ΨS(N, S, S), then ΨS(N, S, − S) is 

obtained by spin flip methods. 

ΨS(N, S, S) = | f(α, β)>   

<−>   ΨS(N, S, − S) = | f(β, α)>             (5-4.6) 

where fN(α, β) represents the sequence of α, β.  

 

Examples1:  

ΨS(3, 3/2, 3/2) = | f1(α, β)> = |ααα>  

<−>   ΨS(3, 3/2, − 3/2) = | f1(β, α)> = |βββ>              (5-4.7) 

Examples2:  

ΨS(3, 1/2, 1/2) = | f1(α, β)> = 1 √6⁄  ×(− 2|ααβ> + |αβα> + |βαα> )  

<−>   ΨS(3, 1/2, − 1/2) = | f1(β, α)> = 1 √6⁄  ×(− 2|ββα> + |βαβ> + |αββ> )            (5-4.8) 

   

The simple relation between two spin eigenfunctions suggests that ΨS(N, S, − 1/2) is obviously 

calculated with ΨS(N, S, 1/2) by spin flip methods. Obviously, Eq. (5-4-2-4) is obtained. 

ΨS(N, 1/2, 1/2) = | f(α, β)>   

<−>   ΨS(N, 1/2, − 1/2) = | f(β, α)>            (5-4.11) 

Thus, S- operator can be applied to the spin eigenfunction ΨS(N, 1/2, 1/2), where automatically S is a 

half-integer. In quantum algorithm, the gate operation is written in Fig. 5-4.1. 

 

 

Figure 5-4.1. Quantum algorithm of the S- operator applying to the spin eigenfunction ΨS(N, 1/2, 

1/2). X is a flip operation of a qubit/qubits representing one spin of ΨS(N, 1/2, 1/2). 

  



103 

 

5-4-3. Pathway of Quantum Computing to Reach Spin Eigenfunctions 

In the following quantum algorithm, arbitrary spin eigenfunctions cannot be constructed but all 

eigenfunctions only for quantum chemical calculations are possible to be computed. It is due to S- 

operator forms.  

First, I introduce a branching diagram (Fig. 5-4.2), in which pathway the spin eigenfunction is 

calculated. The branching diagram represents couplings of angular momentum and the circles are the 

set of spin eigenfunctions of ΨS(N, S, S). Starting from the origin, the spin eigenfunctions to the final 

destination are calculated by selecting “sticks” connecting circles from the left to the right as the 

pathway. The sticks have two selections of up (red) and down (blue). Although each pathway 

corresponds to a spin eigenfunction one-to-one, any pathways are allowed to compute a set of spin 

eigenfunctions in quantum chemistry. 

 

 

Figure 5-4.2. A branching diagram of the spin eigenfunction. The up (red) and down (blue) lines 

indicate the pathways to add one unpaired electron from N to N + 1. In the up line case, S changes to 

S + 1, and in the down line case, S changes to S – 1. The number of circles is the multiplicity of the 

spin state. 
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Utilizing two equations in section 5-3 and 5-4-2, 

   SSNSSN SS ,,21,21,1             (5-3.10) 

ΨS(N, 1/2, 1/2) = | f(α, β)>   

<−>   ΨS(N, 1/2, − 1/2) = | f(β, α)>            (5-4.11) 

it is possible to achieve spin eigenfunctions on QCs. As described in section 5-4-2, Eq. (5-4.11) 

suggests that S- is possible by flipping spins. As a result, the following operations are possible: (1) if 

S is 1/2 then use Eq. (5-4.11) to decrease spin number S or use Eq. (5-3.10) to increase S, (2) 

otherwise use Eq. (5-3.10). Thus, there is one pathway leading to ΨS(N, S, S) which repeats up ΨS(k 

+ 1, 1/2, 1/2) and down ΨS(k + 1, 1/2, − 1/2) until k = N – S and then repeats up ΨS(k + 1, 1/2, 1/2) 

until k = N. The nine pathways leading to Ψ(6, 1, 1) are shown in Fig. 5-4-3.2. The pathway (9) is 

the one which can be realized by the above quantum operations. 

  

 

Figure 5-4.3. Pathways in a branching diagram to reach Ψ(6, 1, 1). Pathway (9) is suitable to 

compute the spin eigenfunction.  
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5-4-4. Computational Complexity 

From the view point of computational complexity, I revisit Eqs. (5-4.1), (5-4.4) and (5-4.5). 

   SSNSSN SS ,,21,21,1              (5-4.1) 
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Applying controlled S- operators to ΨS1, I obtain. 
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Since Eq. (5-4.1) indicates just to add one α spin with no computational costs, the computational 

complexity is evaluated by Eqs. (5-4.4) and (5-4.5). In S = 1/2, both are transformed into following 

equations respectively. 
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Eq. (5-4.12) suggests that the NOT and Hadamard gates into the β spin are required. The 

computational cost is Nβ. Then, Eq. (5-4.13) achieves the NOT operation into ΨS(N, 1/2, 1/2) 

controlled by the last α qubit with the cost of Nβ
2. Therefore, the algorithm preparing exponential 

number of Slater determinants against Nβ just requires Nβ times of the NOT and Hadamard gates and 

Nβ
2 times of CNOT gates, which is obviously polynomial number of quantum operations. 
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5-5. Quantum Algorithm of CSFs  

A CSF is described by one spin eigenfunction as discussed in section 5-4 and a set of molecular 

orbitals. In quantum computing, both spin and orbital information labelling singly occupied orbitals 

(SOMOs) should be mapped onto quantum registers. Here, I discuss direct mapping (DM)[5] and spin 

coordinate mapping (SCM).  

 

5-5-1. Map to Qubits (SCM and DM) 

Let me assume that the molecule has three components of orbitals: 1) Doubly occupied orbitals, 2) 

SOMOs and 3) unoccupied orbitals (Fig. 5-5.1). SCM is simple mapping technique of spin and 

orbital information of SOMOs, in which one SOMO has α-/β- spin then assigns one qubit as |0>/|1>, 

respectively. There is a state ΨSCM = |o3α, o4α, o5β, o6α>SCM mapped into the quantum register of 

SCM: RSCM = |0010>SCM, where oi is the orbital number. 

 

 

Figure 5-5.1. Schematic view of molecular orbital of open-shell systems. There are three types of 

molecular orbitals: doubly occupied molecular orbitals, singly occupied molecular orbitals and 

unoccupied molecular orbitals. 
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Qubits in DM correspond to ket-vectors in Fock space due to treating creation and annihilation 

operators. Most quantum algorithms with phase estimation algorithm are written in the DM approach. 

When one state is occupied/unoccupied, the corresponding qubit is 1/0, respectively. In Fig. 5-5.1, a 

state ΨDM = |o1α, o1β, o2α, o2β, o3α, o4α,o5β, o6α, 0, 0…>DM is mapped into the quantum register as 

RDM = |11110100…, 11001000…>DM in a DM manner. It is obvious that qubits in SCM can 

transform into DM by the feature of Fock space with initialized qubits in |00…>. Prepare R(SCM) in 

the quantum register, 

R(SCM) = (|00>⨂|0000>⨂|00…>)⨂(|00>⨂|0010>SCM⨂|00…>)             (5-5.1) 

applying the CNOT gates to SOMOs,  

R1 = (|00>⨂|1101>⨂|00…>)⨂(|00>⨂|0010>SCM⨂|00…>)             (5-5.2) 

and applying the NOT gates to doubly occupied orbitals, 

RDM = (|11>⨂|1101>⨂|00…>)⨂(|11>⨂|0010>SCM⨂|00…>)             (5-5.3) 

then RDM is obtained. The same approach is also possible when the wavefunction has a 

multi-determinant character.  

 

 

5-5-2. Whole Procedure of the Quantum Algorithm of CSFs 

The whole quantum algorithm of the CSF in SCM is described in Fig. 5-5.2. Since the 

transformation from SCM to DM is easy (in section 5-5-1), the algorithm is written in the SCM 

mapping in first. The next step is to apply quantum algorithm of spin eigenfunctions. It costs Nβ for 

the NOT and Hadamard operations, and Nβ
2 for the CNOT operations (see section 5-4-4). At the end 

of this procedure, the SCM wavefunction in CSF is conquered. Therefore, CSFs composed of the 

exponential number of deteminants can be prepared in polynomial time by QCs.  
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Figure 5-5-2.1. Scheme of quantum algorithm to compute CSF wavefunction of ΨS(N, S, S). Due to 

S- operators, the pathway is limited as described in subsection 5-4-3: Until i = N – 1, compute Si + 1 = 

Si – 1 if i is odd, Si + 1 = Si + 1 if i is even, and then compute Si + 1 = Si + 1 until i + 1 = N. 
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5-6. Conclusions 

I have established one quantum algorithm to generate a CSF wavefunction as an approximate 

wavefunction of QCCs based on QPE. The quantum algorithm has two aspects: 1) superpolynomial 

property and 2) starting point of quantum chemical calculations. The former one indicates the fast 

computational ability in QCs and the latter one suggests a new paradigm in QCCs on QCs. As 

described in introduction, it is proven that the CSF wavefunction is the starting point of ab initio 

calculations on QCs because the approximate wavefunction is prepared as easily as the Hartree-Fock 

wavefunctions. In my prediction, the same computational difficulty both for open-shell and for 

closed-shell molecules in QCs is implied. Although the superpolynomial algorithm for QCCs on 

QCs is very few with proven computational speed, e.g. phase estimation algorithm and ours, the spin 

structures of molecules can play the significant role on this field in the near future. Thus, the 

construction of the CSF wavefunctions is one of the most fundamental problem in future quantum 

chemistry. 

I have shown one result, but the unsolved problems are increased. First, there may be simpler 

algorithms to construct the CSF, i.e., the proven algorithm described above may not be optimized in 

terms of computational complexity. Second, it is unknown whether the CSF of the other pathways in 

branching diagram can be constructed in polynomial time or not. Furthermore, there is also 

fundamental problem whether one can compute the interactions between two CSFs efficiently on 

QCs or not. Those are the significant tasks related in fundamental theory for future QCCs on QCs.  
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Appendix (Abbreviation List) 

 

Abbreviations Descriptions (Chapter) 

A A-tensor: hyperfine coupling (2, 3, 4) 

AQC Adiabatic Quantum Computer (3) 

AQUA Adiabatic QUantum Algorithm (3) 

B0, Bz Static magnetic field strength in ESR (3, 4) 

BQP  Bounded-error Quantum Polynomial time (3, 5) 

CAS-CI Complete Active Space Configuration Interaction (5) 

CC Classical Computer (3, 4, 5) 

CNOT  Controlled NOT (3, 4, 5) 

CPW Co-Planar Waveguide (1) 

CSF Configuration State Function (5) 

D D-tensor: zero field splitting/fine structure coupling (2, 3, 4) 

DEER Double Electron-Electron Resonance (2) 

DM Direct Mapping (5) 

DMRG Density Matrix Renormalization Group (5) 

DPNO DiPhenylNitrOxide (1) 

ELDOR Electron Double Resonance (2) 

ENDOR  Electron Nuclear DOuble Resonance (1) 

ESR Electron Spin Resonance (2, 3, 4, 5) 

F, f Fidelity: success probability of quantum operations (3, 4) 

FA Floquet Approach (3) 

FCI Full Configuration Interaction (5) 

g g-tensor (2, 3, 4) 

GB/SA  Generalized Born/Surface Area (2) 

GRAPE Gradient Ascent Pulse Engineering (4) 

Group X (X = A, B, C) Abandoned structure group composed of several types of 

spin-labeled DNAs (2) 

𝐻̂f  Final Hamiltonian in an adiabatic path (3) 

𝐻̂i  Initial Hamiltonian in an adiabatic path (3) 

𝐻̂MSQC  Spin Hamiltonian of MSQC (3, 4) 

J J-tensor: exchange coupling (3) 

KHM potassium Hydrogen Maleate (4) 

LLMOD Large-scale-Low MODe sampling (2) 
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MAXCUT MAXimum CUT (1) 

MCMM Monte Carlo Multiple Minimum (2) 

MM Molecular Mechanics (2) 

MMFF Merk Molecular Force Field (2) 

MSQC Molecular Spin Quantum Computer (2, 3, 4, 5) 

NA Naphyridine-Azaquinolone (2) 

NCD Naphthyridine Carbamate Dimer (2) 

NMR Nuclear Magnetic Resonance (2, 3, 4) 

NN Nitronyl Nitroxide (2) 

NP Non-deterministic Polynomial time (3, 5) 

OS Lowdin's projection operator (5) 

PELDOR Pulsed ELDOR (Electron Double Resonance) (2) 

QC Quantum Computer (2, 3, 4, 5) 

QCC Quantum Chemical Calculation (5) 

QCCs on QCs Quantum Chemical Calculations on Quantum Computers (5) 

QIP Quantum Information Processing (2, 3, 4, 5) 

QPE Quantum Phase Estimation (5) 

RMSD  Root-Mean-Squares Deviation (2) 

SAA Secular Averaging Approach (3, 4) 

SCM Spin Coordinate Mapping (5) 

SU(N) Special unitary group of N dimension (4, 5) 

SWAP A gate swaps two qubits (4)  

TEMPO Tetramethylpiperidine (2) 

TNCG  Truncated Newton Conjugate Gradient (2) 

TWT Traveling Wave Tube (2) 

Type A A minor structure type with 6-7 nm spin distances (2) 

Type B A abandoned structure type with strong steric repulsion (2) 

Type C A major structure type around 5 nm spin distances (2) 

Type D A major structure type around 5 nm spin distances (2) 

Type E A abandoned/minor structure type due to 3 nm spin distances (2) 

Type X (X = A, B, C, 

D, E) 

A structure type of spin-labeled DNAs (2) 

U A unitary operator in time evolution (3, 4) 

UQG Universal Quantum Gate (2, 3, 4, 5) 

Xf A conformational searched structure of type X (2) 

Xi An initial structure of type X (2) 
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βe Bohr magneton (3, 4) 

βn Nuclear magneton (3, 4) 

ΨDM Wavefunction in DM (5) 

ΨS(N, S, Ms) Spin eigenfunction (5) 

ΨSCM Wavefunction in SCM (5) 

ω0 Larmor angular frequency of each spin in ESR (3, 4) 

ω1 Rabi (control) angular frequency of each spin in ESR (3, 4) 

ωMW Microwave angular frequency in ESR (4) 
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Concluding Remarks 

The author has investigated MSQCs in terms of molecular structures, experimental methods for 

adiabatic quantum computing, molecular design for numerical pulses and a new quantum algorithm. 

In chapter 2, steric structures of spin-labeled DNA duplex were studied, in which the control of 

orientations about attached spin sources were significant in applications for MSQCs. By the virtue of 

MM calculations, the attached four spin sites can be controlled individually because of the different 

orientations of the radical moieties, and the orientations should be manipulated with a more 

sophisticated manner toward 1D-QCs such as Lloyd model QCs.  

The two studies in chapter 3 and 4 are related to spin control properties of open-shell molecules. 

In chapter 3, the procedure to perform AQCs by MSQCs was investigated under the assumption of 

SAA, where the pulse sequences were calculated by analytical techniques. MSQCs composed of 

both electrons only and electrons with nuclei have capacity to scale up the computational speed from 

NMR-QCs in AQCs. However, pulse intervals in analytical sequences can be too short to perform 

the practical QC experiments from the view point of both experimental restrictions and SAA theory. 

The solution was suggested by numerical simulations. By modifying Trotter decompositions, the 

pulse intervals can be increased proportional to required time, i.e. computational time. Although the 

computational speed is sacrificed, the method surely relaxes experimental restrictions and matches 

theoretical assumptions. Excepting the relaxation picture, the author has proven the pulse sequences 

and analytical calculation methods to AQCs by MSQCs. 

In chapter 4, the author has established molecular design toward indirect spin manipulations of 

nuclei by MSQCs. In this calculation, two nuclear spins of a potassium hydrogen maleate (KHM) 

radical and a 13C- labeled malonyl radical are controlled via one electron by microwave. As a result, 

two objectives for the molecular design are suggested. (1) Heteronuclear spin systems are easy to 

control by the numerical pulses. In homonuclear systems, the large difference in principal values of 

hyperfine tensors can decline the disadvantage. (2) Large anisotropy and coaxial property of 

hyperfine tensors make a system control fast. Since both conditions are directly connected to the 

controllability, it is proven that the control difficulty is interpreted by controllability of the molecular 

system.   

A quantum algorithm to generate CSFs is investigated for QCCs on QCs. In chapter 5, the author 

has suggested that the quantum algorithm has a superpolynomial property and is possible to compute 

the exponential number of Slater determinants in polynomial time. The CSFs in QCs are 

wavefunctions easy to prepare in open-shell molecules replacing Hatree-Fock wavefunctions.  

The author has investigated MSQCs with various theoretical points of view in this dissertation. 

Theory in chemistry, physics and mathematics is applied to MSQCs for molecular designs (chapters 

2, 3 and 4), control properties by ESR (chapters 3 and 4) and complexity of quantum algorithms 
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(chapters 5). Concerning experimental difficulties, the new quantum algorithm described in chapter 

5 is significantly easy to implement among quantum algorithm of QCCs on QCs. As discussed in 

those chapters, the development of theory can help experiments and solves fundamental problems in 

quantum computing. 
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