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Abstract 

There is a growing need for up-to-date and reliable data for near-shore regions to 

afford a better understanding of coastal processes and aid in better management and 

protection of coastal areas. Near-shore bathymetry is a basic and very essential 

requirement in coastal engineering and coastal management. Recently, mapping of near-

shore bathymetry using boat based SoNAR and air-borne LiDAR have become available. 

These technologies can provide high resolution and accurate bathymetric measurements 

in shallow waters, but availability of these technologies are currently limited due to 

significant costs and time involved in data acquisition. Therefore, this research 

investigates alternative methods for near-shore Satellite Derived Bathymetry (SDB) using 

readily available multispectral satellite images.  

As an alternative to field based approaches, a number of remote sensing methods for 

estimation of bathymetry have been proposed and evaluated. Among them, single spectral 

band based algorithms assume constant light attenuation coefficient and homogeneous 

bottom type. In the present research, this method was evaluated in two study areas 

(Ratnagiri, India and Taketomi, Japan) with three kinds of optical satellite imageries, 

namely Landsat-8 and ASTER. The results indicate that SDB using single spectral band 

are reliable for clear waters when bottom type are homogeneous. Further, single band 

SDB requires a good amount of field data for calibration and validation. As an alternative 

to single band SDB, a new Radiance Based Estimation (RBE) algorithm using single 

spectral band has been proposed. SDB models using single band are found to be affected 

by turbidity and do not adequately address issues related to heterogeneities in bottom 

types and water conditions. 

 Several researchers have proposed SDB using multispectral images in order to address 

heterogeneous conditions in highly dynamic and complex coastal water conditions. In 

general, these algorithms attempt to isolate attenuation components and estimate SDB 

using a combination of spectral bands. This study proposes a new spectral band 

combination using Near-Infrared (NIR) band as it provides some information about 

bottom reflection. Further, a new correction method using Short Wave Infrared (SWIR) 

was proposed in lieu of NIR used in previous researches. Results of using NIR in band 

combination provide significant improvement in SDB. Further, using SWIR provides 
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improved results for atmospheric and water corrections. SDB estimation using multiple 

linear regression does not sufficiently account for local heterogeneities. To address this 

issue, this research recommends the use of local coefficients rather than a single global β-

coefficient. As opposed to non-weighted global models, GWR computes β-coefficients 

for individual pixel. The β-coefficients are determined using moving kernel and pixels 

close to the centroid are assigned higher weights. Two kinds of kernel settings were 

investigated. In Fixed-GWR, the size of the kernel remains constant and in Adaptive 

GWR (A-GWR) the kernel size is set to vary as function of density of calibration points. 

Appropriate weighting functions (e.g. bi-square and Gaussian) and optimal bandwidth 

(kernel radius) were determined by a double cross-validation carried out before and after 

estimation. Both kind of GWR model were evaluated for a test site in Puerto Rico. The 

results indicate that A-GWR consistently provide the best results but is computationally 

intensive. 

Subsequently, SDB off the coast of Miyagi Prefectures, Japan were estimated using 

GWR models. The SDB was combined with global bathymetry (GEBCO) and terrestrial 

DEM (SRTM) to generate an Integrated Coastal Relief Model (ICRM). The ICRM was 

used as input for ANUGA hydrodynamic tsunami simulation model in order to hindcast 

the past Great Tohoku tsunami event of 11 March, 2011. The tsunami simulation results 

showing good correspondence with post-tsunami survey data in terms of extent of 

inundation as well as tsunami inundation height recorded and demonstrate the 

effectiveness of SDB. 

The workflow of GWR based SDB model has been implemented using a Free and 

Open Source GIS framework and therefore can be easily applied in other areas without 

the need to invest resources for software. A new Python module, i.image.bathymetry, was 

implemented by integrating functions of R Statistical Computing package and GRASS 

GIS. The performance of the new module was evaluated using data for different test sites 

(e.g. Puerto Rico, Iwate and Miyagi) and remote sensing data (Landsat-8, RapidEye and 

Sentinel-2). The results obtained were demonstrated the efficacy of the module for SDB 

from multi-constellation satellite data. SDB estimation from microwave satellite image, 

multispectral UAV images and deployment of SDB workflow as Web Processing Service 

are proposed as future topics of research. 
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Chapter One 

Introduction 

A coastal zone is the interface between the land and water. These zones are important 

because around 60% of the world’s population inhabit such zones.  Therefore, it is 

essential to have comprehensive knowledge about the coastal process which can directly 

impact the socio-economic conditions.  Incessant monitoring and data collection are 

essential to have a complete understanding of the coastal zone. Recent development in the 

field of science and technology offers potential to collect data from coastal zone. In spite 

of having time and cost effective technologies to collect data from the land portion of the 

coast, there is a few time and cost effective technologies available for data collection 

from coastal ocean so far. Moreover, the complexity and dynamicity of the coastal ocean 

make it more difficult to collect the data. Lack of coastal ocean data sets impacts 

significantly the research related to coastal processing and modeling.  

Among various data sets, near-shore bathymetry is a key parameter which can be 

largely used as vital information for many coastal researches such as coastal erosion, 

regional sea-level rise, subsidence, hydrodynamic modeling, tsunami simulation, etc.  The 

major ship based surveys have been carrying out to measure bathymetry over off-shore 

not over near-shore simply due to the inaccessibility of shallow water depth in the near-

shore region. In spite of having bathymetry data sets such as DBDB5, ETOPO and 

GEBCO, a lacuna in the global bathymetry data sets has exists for near-shore region due 

to the low resolution of available bathymetry. Moreover, such low-resolution bathymetry 

data sets cannot be effectively used to support detailed coastal research. Therefore, the 

coastal researchers are compelled to survey the near-shore bathymetry either by small 

boats using echo-sounders or by aerial vehicles using LiDAR technology.  

Even though, these technologies are highly expensive and time consuming, many 

researchers have been surveyed near-shore bathymetry in small areas with local scale 

using SoNAR and LiDAR (Costa et al., 2009). LiDAR can provide accurate bathymetric 

measurements in shallow areas, but availability of this technology is currently limited. 
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Apart from that, the highly dynamic nature of near-shore region leads to frequent change 

in bathymetry that are required to be monitored at periodic intervals, and hence the 

survey should be carried out repetitively. This is almost not practical to carry out the 

survey frequently. A suitable alternative for near-shore bathymetry estimation method is 

essential for complex and dynamic near-shore region. Therefore, this doctoral work aims 

to develop an alternative method to estimate near-shore bathymetry using multispectral 

satellite images generally termed as SDB. The alternative solution discussed in this thesis 

is a feasible, cost effective, time effective, synchronous and flexible near-shore 

bathymetry estimation model which can be applied in any near-shore region around the 

world.    

1.1 Research background 

The research related to SDB generation over near-shore region has history of at least 

two decades. Such methods have been proposed for SDB using optical remote sensing 

which emphasizes the principle that a portion of reflectance from near-shore region is a 

function of water depth. It takes advantage of shortwave radiation in the electro-magnetic 

spectrum that has a strong penetration capacity. As the incident solar radiation propagates 

through the water, it undergoes in-water scattering, absorbed by water and in-water 

constituents, leaving varied energy to be backscattered and recorded in remote sensing 

imagery. The following section sets out various methods used to estimate SDB over near-

shore region. Mainly these methods can be classified as analytical models, empirical 

models and combined models. 

1.1.1 Analytical model 

Analytical modeling of near-shore bathymetry is purely based on the manner of light 

penetration in water. Development of this model requires a number of optical properties 

of water over near-shore region such as absorption coefficient suspended and dissolved 

materials, attenuation coefficient, scattering coefficient, backscatter coefficient, bottom 

reflectance, etc., (Lee, et al., 1998 and Mobly, et al., 2001). These kind of models 

generally termed as a radiative transfer model. The radiative transfer model involves the 

inherent assumption of a reflective bottom, an appropriate level of water quality, and/or 
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shallow depth (e.g. Spitzer and Dirks, 1986, Baban, 1993 Muslim and Foody, 2008). 

Therefore, it is not suggested to apply coastal waters that have a poor reflectance of 

bottom due to high turbidity.   

1.1.2 Empirical model 

In empirical modeling, the relationship between remotely sensed radiance of a water 

body and the depth at sampled locations is established empirically without regard to how 

light propagates in water. The correlation between the water depth and the radiance of a 

spectral band are used for SDB estimation. The empirical modeling rely on the 

assumption that total water reflectance is related primarily to water depth, and 

secondarily to water turbidity (Lafon et al., 2002).  Among the models, empirical 

parametric regression based models are quiet popular and easy to apply such as Stumpf et 

al. (2003), Gholamalifard et al. (2013), etc. The other common method is nonparametric 

regression as explained by Ribeiro et al. (2008) However, this empirical model provides 

fast data processing, but it requires calibration depth points for estimating the 

coefficients.  

1.1.3 Combined model 

As the name denotes, it is a combination of analytical and empirical model. The 

combination suggested by many authors in order to overcome the demerits of both 

models.  Among SDB models, combined model is popular and has been widely applied 

(Lyzenga et al., 2006, Kanno and Tanaka, 2012, Su et al., 2014 and Vinayaraj et al., 

2016) These models are physically based algorithm and the predictor can be analytically 

derived from a radiative transfer model. Calibration depth is used to calculate the 

attenuation coefficient of each spectral band. The empirically derived 

parameters/coefficients by a comparison of spectral radiance with measured depths are 

related to the inherent optical properties of the water and the bottom. Calibration depth is 

needed for such models and can estimate reliable SDB even from low quality water 

regions. These models are faster and needed less prior knowledge of spectral properties of 

the water and rapid processing can be expected. The method presented in this research is 

based on combined model and will shed light on a number of issues in the near-shore 
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bathymetry estimation procedure and propose improvements. 

1.2 Research aim and scope 

The overall aim or objective of the study is to develop a robust SDB model and discuss 

about the performance of the model in various near-shore waters around the world. 

Moreover, implement the model on an Open Source GIS platform for assisting the coastal 

researchers to generate reliable SDB from their study areas.  

To accomplish the above mentioned main objective, study investigates the past 

researches related to SDB estimation, its implementation problems and limitation in 

addressing various issues.  The first objective of the study was to estimate SDB using 

single band in order to derive a simple solution with minimum requirements of spectral 

properties of the near-shore water. This attempt was to investigate a combined model, and 

hence, the spectral properties such as attenuation coefficient and scattering coefficient can 

be analytically derived (Stoffle and Halmo, 1991). The second important step carried out 

in this research was to estimate multi-temporal bathymetry even without calibration 

depth. Multi-temporal bathymetry over near-shore region with minimum effort was a 

great desire of the coastal researchers. The developed method (RBE) was an empirical 

model which is not based on the manner of light propagation in water. Nonetheless, only 

related to the radiance of the spectral band and not considering any of the spectral 

properties of water. 

In some previous attempts in the use of a single band the rich information in other 

multispectral bands was not considered. Therefore, such methods are applicable in the 

coastal water with uniform spectral reflectance. In complex coastal water, such 

uniformity cannot be expected all the time. Therefore, as second objective a multispectral 

band based combined model was developed which was expected to address the limitation 

of single band SDB models (Lyzenga et al., 2006). The model constructs a function that 

estimate the bathymetry on the basis of the observed radiances of multiple bands. 

Specifically, the predictor is a linear function of image-derived variables for each visible 

band. 

In theory, the multispectral SDB model can account for a certain level of the 
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heterogeneity. Nonetheless, our practical investigation shows that model suffers from 

spatial heterogeneity due to bottom types and water quality (Vinayaraj et al., 2016). 

Therefore the third objective was to develop a full-fledged GWR based model and 

performance evaluation in order to explore the ability to address spatial heterogeneity.  

Further, the GWR based model was applied in several study areas with various data sets 

to evaluate the performance in various conditions of water quality, satellite image 

characteristics, distribution and quantity of calibration depth points. 

Accuracy assessment of GWR based SDB was carried out with reference depth and 

results show significant improvements.  Further, this study evaluates the applicability of 

the SDB in practical scenarios such as in ICRM and tsunami simulation as its fourth 

objective. ICRM generation and tsunami simulation were carried out using ANUGA1 

hydrodynamic model. Tsunami simulation results were evaluated with post-tsunami 

survey results and it shows close agreement with post-tsunami survey results. After the 

successful evaluation using application examples, the final objective was to implement 

the developed GWR based SDB model in an Open Source GIS platform. GWR based 

SDB model has implemented in GRASS GIS2 as a module using python script. Further 

the performance of the module also evaluated in terms of memory usage, speed of the 

processing and accuracy of the results using three case studies. 

1.3 Thesis outline  

This Ph.D. dissertation is organized as follows: 

• Chapter One, the present chapter, provides an introduction to the theoretical 

background of the SDB models, scope of the research, objective of the study and 

thesis outline.  

•   Chapter Two discusses single band based SDB models which are commonly termed 

as SLR model, its implementation and the theory behind it. A new radiance based 

empirical model (RBE) proposed to estimate multi-temporal bathymetry from 

satellite images. Further, this study investigates multispectral based SDB models and 

                                                   
1 https://anuga.anu.edu.au/ 
2 https://grass.osgeo.org/ 
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a comparison with single band based model has been demonstrated. Apart from that, 

a new band combination is proposed and explained for improved SDB estimation. 

Lastly, a new correction method using SWIR band is introduced and effectiveness of 

the correction methods is demonstrated. 

•  Chapter Three proposes a new GWR based SDB model for improved bathymetry 

estimation. Detailed evaluation of GWR based SDB has been carried out in order to 

evaluate the performance using different weighting functions. Study elucidates 

effectiveness of the model in addressing heterogeneity as compared to conventional 

multispectral model (global model). Comparison has also been carried out between 

A-GWR model and Fixed-GWR model.  

 •  Chapter Four demonstrates the application example of estimated SDB using GWR 

model in ICRM and tsunami simulation. Field investigations on Tsunami propogation 

after Great Tohoku earthquake 2011 was used to compare the result with tsunami 

simulation results.  

 •  Chapter Five describes a new Open Source GIS module implemented for estimating 

SDB using GWR model. Here, we explain the functions and workflow of the module 

in detail. The performance of the module assessed using a benchmark with specific 

computer configuration.  Speed of the processing and accuracy of the results are 

compared with different functions of the module. 

 •  Chapter Six evaluates the results of each chapter, discusses the demerits of previous 

models illustrates the efficacy of GWR based SDB model in addressing 

heterogeneity. Further study discusses about application example and developed 

module and concludes this thesis with some future perspectives.  
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Chapter Two 

Single and Multispectral Band SDB 

 

2.1 Introduction  

Model A number of passive remote sensing methods have been proposed by many 

authors (Brown et al., 1971, Lyzenga, 1978, Benny and Dawson, 1983, Philpot, 1989, 

Tripathi et al., 2002). Several workers (e.g. Stoffle and Halmo, 1991, Stumpf et al., 2003, 

Lyzenga et al., 2006 and Pacheco et al., 2015) have successfully demonstrated the use of 

satellite data for determination of depth in coastal waters. Multiple band techniques have 

been commonly used for SDB from shallow water (e.g. Fonstad and Marcus, 2005 and 

Ceyhun, Yalcyn 2010). There are conflicting opinions expressed over the suitability of 

spectral wavelength bands for SDB estimation. Kumar et al., (1997) used 0.77-0.80µm 

wavelength for depth measurements in an estuary. Warne, (1972) adopted 0.5-0.6µm 

range and Yi and Li (1988) also adopted 0.47-0.54µm band for estimating SDB. George 

(1997) found 0.746–0.759µm range to be more suitable compared to wavelength bands. 

Manessa et al. (2014), also observed that NIR band (0.77-0.89µm) is close to the visible 

spectrum and still sensitive to bottom reflectance. Ibrahim et al. (1990), used 0.5-0.6µm 

(band 4) of Landsat-3 MSS to estimate SDB by correlating the intensity of pixels and 

depth for Penang Island in Malaysia. The shallowest areas (approximately less than 5m) 

show bottom reflectance in 0.77-0.90µm range but deeper areas (greater than 15m) show 

bottom reflectance only in 0.45-0.52µm range (Jupp et al., 1988). Although several 

algorithms have already been discussed, main purpose of this chapter is to evaluate the 

efficacy of some of the algorithms to recently available high radiometric and spatial 

resolution remote sensing data. Further, modification and improvements have proposed 

for these methods to obtain better results. Algorithms dealing with SDB are mainly 

categorized in to single and multispectral bands in terms of number of spectral band are 

used. This study aims at evaluating both single band and multispectral bands approaches 

have proposed by Clark et al. (1987 and 1988) and Stoffle and Halmo, (1991). This 

Chapter also proposes the new RBE method to estimate depth from single band without 
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the need of calibration depth and also proposes improved depth estimation using Clark 

method with new band combination. In addition to that, a refined method for 

atmospheric, water surface and water column correction using SWIR was proposed. 

Further, these proposed methods have been validated various kinds of radiometric, spatial 

and temporal resolution data sets such as Landat-7, Landsat-8 and ASTER. 

2.2 Study area 

The study area shown in Figure 2.1 is located off Ratnagiri along the Arabian Sea 

coast with maximum depth of 11 m. Geographically it stretches 73º16'30"E -73º18'00"E 

16º57'00"N - 16º59'30"N with 5km long coastal zone, that includes 70% of sandy beach 

and an estuary of Kajali River. Tides in the region are mixed and are predominately semi-

diurnal and the annual rainfall of the region is around 3,000mm. The near-shore depth is 

highly dynamic due to sediment discharge from the Kajali River and seasonal climate 

changes. The water has been observed as turbid due to sediment discharge from the Kajali 

River. 

The next study area is located at off Taketomi Island, which lies south-eastern part of 

Japan (Figure 2.2). Geographically it stretches from 124º3'00"E - 124º5'42"E and 

24º18'54"N - 24º20'42"N. Taketomi Island belongs to the Yaeyama Island group which is 

one of the world’s largest healthy coral reef systems. Therefore, water quality of the 

Taketomi Island is relatively better. 

2.3 Data used 

Multi-constellation and multi-resolution satellite image data were collected from both 

Ratnagiri and Taketomi Island regions. Landsat-7 data with 30m spatial resolution and 

radiometric quantization at 8 bit dynamic range was collected. Recently, Landsat-8 data 

are freely available which has higher radiometric resolution, quantized over a 12-bit 

dynamic range (this translates into 4096 potential DN value range in an image compared 

with only 256 DN value range in previous 8-bit instruments). Even though ASTER data 

has the radiometric resolution of 8 bit, it provides the spatial resolution of 15m. Two field 

surveys were carried out to collect depth data using single-beam echo-sounder from the 
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Ratnagiri and one from Taketomi. These in-situ depths were separated to use for 

calibration and evaluation of the depth estimation. Detailed description of the 

characteristics of data used is reported in the Table 2.1 

2.4 Data pre-processing  

The raw satellite images were collected over coastal waters can be impacted by many 

factors. Therefore adequate pre-processing has been carried out to calibrate the satellite 

images to make it possible to retrieve necessary information for bathymetry estimation. 

The subsections below discuss the pre-processing procedures for both satellite images 

and in-situ depth in detail.   

2.4.1 Tide correction of in-situ depth 

Since the satellite images and in-situ depth were collected at different time and tide 

conditions, tide correction need to be applied for in-situ depth in order to synchronize the 

tide at the time of the corresponding image capture. The data collected from Ratnagiri 

shows significant tide difference therefore, appropriate tide correction was applied for the 

Ratnagiri data. Tide data collected by tide gauges operated by National Institute of 

Oceanography, India were used for applying corrections. The tide at the time of satellite 

image capturing is unique, but in case of field surveys, start at a time with one tide and 

ends at a time with different tide condition. Such variation in the tide height during in-situ 

depth data collection was also addressed by tide correction. For instance, the tide of in-

situ depth collected on 27 May, 2012 is vary from 1.53m to 2.3m, therefore the tide of the 

in-situ depth is corrected to the tide of the image (1.15m) collected on 9 May, 2012 

(Landsat-7). All the in-situ depths collected are tide corrected according to the tide of the 

time of satellite image is used to estimate depth. In case of Taketomi Island the in-situ 

depth data were collected as with zero tide. And hence, 1.37m (tide at the time of 

Landsat-8 image capture) was added to in-situ depth.  

2.4.2 Radiance conversion 

All the satellite data were already geometrically and radiometrically calibrated. Digital 

Numbers (DN) were converted to physical units of band averaged spectral units 
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(Watts/(m2×srad×μm)). Equations for radiance (L(λ)) conversion for Landsat-7, Landsat-8 

and ASTER are explained below. For Landsat-7 image,  

L                                                               (1) 

Where, Lmin is the minimum radiance, Lmax is the maximum radiance and DN is the 

digital number of a particular band. For Landsat-8 the equation used to convert to 

radiance is: 

L                                                              (2) 

Where, ML is band-specific multiplicative rescaling factor 

(RADIANCE_MULT_BAND_x, where x is the band number), AL is Band-specific 

additive rescaling factor (RADIANCE_ADD_BAND_x, where x is the band number), 

Qcal is quantized and calibrated standard product pixel values (DN). In case of ASTER, 

radiance is calculated as shown in the equation (Lillesand et al., 2004) below: 

L          –                                                      (3) 

2.4.3 Water delineation and filtering 

There are two very important procedures that must be undertaken prior to atmospheric 

and water corrections. The first step is to distinguish water from the land. The ratio of 

green and NIR bands was computed and ratio of greater than or equal to 1 was classified 

as water and less than 1 as land. In addition, a visual inspection has been carried out to 

well distinguish the water and land. Water region separated by masking 1 and area has 

been used for further analysis. The second procedure involves correction of the imagery 

to remove random noise and stripping. Since the methods are sensitive to random noise 

and striping, image smoothing with a low-pass 3×3 filter has been carried out (Lyzenga, 

1981). 

2.5 Satellite image correction 

The radiance observed by a satellite sensor on shallow water basically consist of four 

components, namely, atmospheric scattering component, surface reflection component, 
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in-water volume scattering component, and bottom reflection component as shown in 

Figure 2.3 (Kanno and Tanaka, 2012). Many authors (Baban, 1993, Muslim and Foody, 

2008) have also suggested a component of bottom reflectance in shallow water images. 

Bottom reflectance can be transformed to depth values after removing other three 

components (atmospheric scattering component, surface reflection component, in-water 

volume scattering component) successfully.  

2.5.1 Correction using averaged deep water radiance 

In the correction method introduced by Lyzenga, (1981), sea-surface scattering or 

atmospheric scattering are implicitly assumed to be homogeneous over the target area. In 

case of deep water, the observed spectral radiance (L(λ)i) at infinite depth, L∞(λ)i  is 

assumed not to include bottom reflectance, such that the water depth only consists of 

information related to external reflection from the water surface and atmospheric 

scattering. Subsequently, the effects of atmospheric scattering, surface reflection and in-

water volume scattering can be eliminated by subtracting the average radiance of the deep 

water L∞(λ)i   

                                                                                  (4) 

Where, X(λ)i  is log transformed radiance values of ith band, mean (L∞(λ)i  ) represents 

the averaged radiance of deep water and subtracted standard deviation of radiance for ith 

band. Whereas pixels corresponding to shallow waters are of current interest, deep water 

pixels can be considered to corresponding to an infinite depth and discarded. The deep 

water pixels have a low overall reflectance than the shallow water pixels, and hence easy 

to separate. Subsequently the log transformed radiance values were calculated from blue, 

green, red and NIR bands separately as mentioned in equation (4). The steps for used in 

this correction have illustrated in Figure 2.4.  

2.5.2 Correction using NIR band  

In order to retrieve bottom reflectance from the spectral radiance some authors (e.g. 

Lyzenga, 1981 and Gholamalifard et al., 2013) have proposed direct subtraction of deep 

water spectral radiance from the shallow water spectral radiance (as explained in section 
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2.5.1). In this study we adopted a more refined way of retrieving bottom reflectance 

originally proposed by Lyzenga et al. (2006) and further modified by Kanno and Tanaka 

(2012). This method assumes that spectral radiance of deep water region is mainly a 

contribution of atmospheric scattering, surface reflectance and in-water volume 

scattering. Therefore, one can expect correlation between visible band and NIR band. A 

simple linear regression between each visible band and NIR band in deep water region to 

estimate regression coefficient as shown in equation below (Kanno and Tanaka 2012).  

                                                                               (5)    

According to Lyzenga (1981), Stoffle and Halmo (1991) and Gholamalifard et al. 

(2013), in order to extract bottom reflectance from shallow water region, a 

logarithmically transformed subtraction of mean of spectral radiance of deep water pixels 

from shallow water (equation 4) has to be carried out. The radiance of deep water pixel 

(L∞(λ)i ) from equation (5) can be substituted in equation (4) to derive a transformed 

radiance as shown below; 

                                                                  (6) 

 Thus, the estimated values of α0i and α1i for the deep-water pixels can be used to 

calculate the transformed (X(λ)i)  of shallow water pixels for respective band.  

2.5.3 Correction using SWIR band 

  Many authors (Lyzenga et al., 2006, Kanno and Tanaka, 2012) have been established 

correction method by NIR band from the optical remote sensing to estimate better 

bathymetry from shallow water region. In contrast, we utilize SWIR band to correct the 

atmospheric and water surface components from the image and assume that the corrected 

bands are linearly related to the water depth. Wang and Shi (2007) have also established a 

correction algorithm utilizing SWIR band from MODIS data. Subsequently, deep water 

pixels were determined for further processing. The reflectance in visible bands (L∞(λ)i) 

are proportional to those in SWIR (L∞(λ)SWIR) in deep water. As explained in section 2.5.2 

with the correction using NIR band, we can also expect a correlation between L∞(λ)i and 

L∞(λ)SWIR for an arbitrary visible wavelength. Further a linear regression of visible bands 
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(L∞(λ)i )  bands against SWIR band (L∞(λ)SWIR) over deep water pixels were carried out 

and the coefficients of regression α0i and α1i were computed. The equation (6) will 

transform the form as shown below.     

                                                                     (7) 

2.6 Bathymetry estimation 

2.6.1 Simple Linear Regression (SLR) model 

The Stoffle and Halmo, (1991) have proposed algorithm that have been used to 

estimate depth from single band. The depth is estimated based on equation below: 

                                                                (8) 

Where,    is estimated depth; X(λ)i is corrected transformed radiance which is linearly 

related to the depth, k is water attenuation coefficient. V0 is sensitivity factor related to 

solar irradiance at the surface, the bottom reflectance, atmospheric transmission, and 

sensor equipment (Gholamalifard et al., 2013). The equation (8) takes the form of depth = 

slope X(λ)i + constant (shown in equation 9). The slope of this line is related to the water 

attenuation coefficient such that slope is -1/2k, and the constant value is given by 1/2k 

(logV0). The SLR model assumes a constant attenuation coefficient and homogeneous 

bottom type in the overall study area and also assumes the transformed radiance of single 

band corresponds directly to water depth. The limitation of this method is that it needs 

calibration depth to compute linear relationship and estimate depth. 

A single band was selected from particular satellite imagery to apply SLR. In empirical 

modeling, the relationship between the remotely sensed radiance of a water body and the 

depth at sampled locations is established without considering how light is transmitted in 

water (Gao, 2009). To select a single band for applying algorithms, correlation coefficient 

is calculated by simple linear regression between the transformed bands and in-situ depth 

measurement value. The transformed band is considered as independent variable (X(λ)i) 

and depth (  ) as a dependent variable as shown in equation below: 

                                                                  (9) 
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Any single band that provides better correlation coefficient as compared to other bands 

is selected for depth estimation. It has been observed that in all the multi-temporal data, 

NIR (0.77-0.90µm) band provides better correlation compare to other bands in case of 

Ratnagiri. In lighted the above observations, NIR band was chosen to apply SLR method 

for Ratnagiri study area. 

2.6.2 Multi-temporal bathymetry (RBE) 

  The maximum depth value of the estimated SDB using SLR model over the study 

area is arbitrarily chosen as an input value for the RBE method to estimate depth when 

there is no corresponding calibration depth available. The workflow of RBE method is 

explained in detail below with an example of Landsat-7 data. First of all, RBE is applied 

to Landsat-7 image 30 March, 2003 and, subsequently, reliability of the method was 

tested with other data set too.  

The RBE method directly applied to the transformed single band without need to 

consider about the radiative transfer of light in the sea water. The attenuation coefficient 

in a particular single band is calculated using SLR algorithm to understand the radiative 

transfer of light for a particular band. RBE is suggested to be used as an extension to SLR 

model to estimate depth from multi-temporal satellite imageries.  In RBE, a single band is 

selected in order to derive better depth estimation and this particular band of other 

satellite imageries is used to estimate depth. Only one reference data (maximum depth 

value) which is estimated by SLR method has to be used as input for the RBE. The 

highest value for depth derived by SLR model is considered as constant for all multi-

temporal images. Apart from that, the constant maximum value can also be assigned 

arbitrarily in case in-situ depth is unavailable to apply RBE. A conversion factor is 

calculated by the following equation. 

                                                                   (10) 

Where,       is the maximum depth value derived by SLR method, which is 

considered as constant for other satellite imageries, N is unique cell values in a single 

transformed band. The conversion factor is applied to the transformed band and depth is 
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estimated. 

  To apply RBE method to an imagery only one in-situ depth value as maximum value 

is necessary. Here, maximum depth value is derived from 9 May, 2012  image (11m) by 

applying SLR is assigned as constant for all images of other dates in order to apply RBE. 

Tide correction is applied to the single maximum depth value with respect to the tide 

during image capture. The tide height during Landsat-7 image acquisition (30 March, 

2003) was 2.01m. Since the tide height of image collected from 9 May 2012 depth is 

1.15m, the maximum depth value will be changed to 11.86m after adding 0.86m to the 

constant maximum depth (11m) in order to correct the tide.  So the maximum depth value 

in case of 30 March, 2003 image is changed to 11.86m. The transformed radiance (Figure 

2.5b) has 68 unique cell values; hence the maximum depth 11.86m is divided by 68 to 

derive conversion factor (0.174). The maximum value in the transformed radiance 

(Figure 2.5b) is 2.36. 

The cells having unique value as 2.36 in the transformed radiance were changed to 

0.1745m depth. Subsequently all the cell values are transformed to depth by adding 

conversion factor to the transformed radiance. Eventually, the cells having unique value 

as 0.54 in the transformed radiance are assigned to 11.86m depth. Hence, 68 classes of 

unique depth values are derived by the RBE method (Figure 2.5c). The same way, depth 

was estimated from other data sets such as Landsat-8 and ASTER. The count of different 

cell values (denoted by N in equation 10) will vary according to the DN value ranges of 

the data.  

2.6.3 Multiple Linear Regression model (Global model) 

 Several authors (Clark et al., 1988, Hamilton et al., 1993, Kanno and Tanaka, 2012) 

recognized Multiple Linear Regression (MLR) model would provide good depth 

estimation using multiple bands over shallow water region. Originally, Clark et al. (1987) 

proposed a multiple regression analysis between in-situ depth and multispectral bands to 

estimate regression coefficients. Further, these coefficients have been used to estimate 

SDB. This method addresses the heterogeneity of the bottom type by utilizing all the 
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visible bands. This algorithm attempts to isolate water attenuation and hence depth using 

a combinations of spectral bands. MLR utilizes multispectral band, so that it accounts for 

varying attenuation coefficients for different bottom types as it calculates water depth 

(Van Hengel and Spitzer, 1991). The equation to estimate SDB using multispectral bands 

is following: 

                                                           (11) 

Where    is the estimated depth, β0, β1, β2,…, βn  are derived constants and X(λ)1, 

X(λ)2,…, X(λ)i  are the log transformed atmospheric, water surface and water column 

corrected radiance values of multispectral bands. Where, log transformed bands (X(λ)1, 

X(λ)2,…X(λ)i) are taken as independent variable and in-situ depth has taken as dependant 

variable. The coefficients (β0, β1, β2… βn) derived from multiple linear regression have 

been used to estimate the depth for all pixels. The workflow is explained in Figure 2.4. 

2.6.4 Multiple Linear Regression model using new band combination 

There is a lack of agreement amongst researchers about the right band combination for 

better SDB estimation. Therefore this study has investigated different combination of 

multispectral bands in order to evaluate the performance. Further, a new band 

combination that includes visible and NIR band for improved bathymetry estimation is 

proposed. As described in the equation (11) multiple linear regressions were carried out 

between the log transformed visible+NIR bands and calibration depth. The new 

combination of bands was tested with all available data sets with corresponding in-situ 

depth. If the corresponding in-situ depth was not available, in-situ depth collected close to 

the image capture date was used for multiple regression and calibration. The details of the 

in-situ depth and satellite imageries used for SDB estimation are shown in Table 2.1. 

From 2000 to 2014, various multi-temporal and multi-source data sets were used to 

estimate the SDB along Ratnagiri coast and Taketomi Island. Landsat-7, Landsat-8 and 

ASTER data were used to estimate depth and used to compare the behavior of the 

algorithms in terms of various spatial and radiometric resolutions.  
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2.7 Results 

In this section, results derived from each model explained in section 2.6 are described. 

SDB results derived from existing models such as SLR and MLR are presented. The 

comparative analysis of the results derived from methods which originally proposed in 

this Chapter is also discussed.  

In Ratanagiri study area, SLR model was applied to 9 May, 2012 (Landsat-7) image, 

12 November, 2013 image (Landsat-8) and 10 December, 2012 (ASTER) are calibrated 

and evaluated using in-situ depth collected on 27 May, 2012, 17 November, 2013 and 17 

November, 2013 respectively. The evaluation of the results derived by RBE was carried 

out with in-situ depth collected closer to the image acquisition date. In the case of 8 May, 

2000 and 30 March, 2003 (Landsat-7) and 16 January, 2003 (ASTER) images, NHO chart 

data surveyed on 2003 was used, In case of 31 January, 2014, 4 March, 2014 (Landsat-8) 

and 10 December, 2012 (ASTER) in-situ depth collected on 17 November, 2013 was 

used. The comparison of estimation results of all the satellite imageries used in this 

Chapter carried out by correlation coefficient (R), coefficient of determination (R2) and 

RMSE. These parameters used to evaluate the accuracy of results shows that SDB from 

Landsat-8 data provide better accuracy than other satellite imageries (Table 2.2). Landsat-

8 data was collected on 31 January, 2014 and 04 March, 2014 were providing correlation 

coefficient of 0.89, 0.80, coefficient of determination of 0.81, 0.66 and RMSE of 1.39m, 

2.09 m respectively. Figure 2.6a and Figure 2.6b are showing the bivariate scatter plot 

between SDB estimated by RBE model and reference depth from Landsat-8 data. High 

radiometric resolution of Landsat-8 data provides better depth estimation as compared to 

other data sets. Even though ASTER data has high spatial resolution compared to 

Landsat-8, it was not effective in providing comparable results of Landsat-8 data. 

Several authors (Clark et al., 1987, Clark et al., 1988, Kanno et al., 2011 and Pacheco 

et al., 2015) have reported that reliable SDB estimation could be made using MLR 

model. Therefore, the research has been carried out to estimate depth from MLR model 

with different combination of spectral bands. A combination of visible and NIR (MLR-

NIR) was used to estimate SDB from all available satellite imageries. In case of Landsat-
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7, four bands (0.45-0.90µm), in case of Landsat-8 five bands (0.43-0.88µm) and in case 

of ASTER three bands (0.52-0.86µm) were used. The results derived by MLR-NIR model 

were compared and evaluated with the results derived by MLR model. The results show 

that SDB by MLR-NIR model has provided better accuracy than the MLR Table 2.3. 

Especially, in Landsat-8 data (12 November, 2013, 31 January, 2014 and 04 March, 2014) 

provides better accuracy results in terms of correlation coefficient (0.95, 0.95, 0.90), 

coefficient of determination (0.91, 0.91, 0.83) and RMSE (0.83m, 1.23m) respectively. 

The Figure 2.6a shows the bivariate scatter plot SDB and reference depth derived from 

Landsat-8. Figure 2.6c, Figure 2.6e and Figure 2.6g show the bivariate scatter plot of 

SDB from MLR and Figure 2.6d, Figure 2.6f and Figure 2.6h are from MLR-NIR. 

Bivariate scatter plots clearly demonstrate that the proposed new band combination 

(MLR-NIR) is better than the previous results. The new band combination shows 

significant increase in the accuracy irrespective the satellite imageries used. Observed 

higher accuracy in Landsat-8 was due to the availability of new coastal aerosol (0.43-

0.45µm) band.  

 In case of Ratnagiri, turbidity which occurs due to the sedimentation from Kajali 

River was a factor which could impact the accuracy of the results. Therefore, evaluation 

tests were also carried out to estimate accuracy and error obtained due to turbidity in 

depth estimate derived by both single band and multispectral band models from Landsat-

8 data. The study area was divided into two sections based on NDWI. The NDWI 

originally introduced by Rogers and Kearney (2004) to demarcate coastal marsh, where, 

lower NDWI value denote high turbidity and higher NDWI values indicate relatively low 

turbidity. The evaluation tests confirm that the accuracy of the depth estimates at low 

turbid area is higher than the high turbid region. Table 2.4 summarizes the evaluation 

results carried out by using R, R2 and RMSE. The RMSE values indicate that error 

associated the depth estimates increases in high turbid region. The estimated SDB results 

at high turbid region and low turbid region are compared using bivariate scatter plot in 

Figure 2. Low turbid region shows stronger linear relationship between estimated depth 

and reference depth than high turbid region. Figure 2. demonstrates the scatter plot of 
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SDB from Landsat-8 data (31 January, 2014) by MLR-NIR method and reference depth. 

Other data summarized in the Table 2.4 also show the similar trend. However, the 

turbidity due to wave action along the coast or dynamic sediment discharge near estuary 

is potentially responsible for reducing the accuracy of the depth estimation.  

 Study has been further focused to develop an improved SDB estimation method using 

established MLR-NIR method by integrating a better correction method. The correction 

method is basically proposed by Lyzenga et al. (2006) (details of the correction method 

explained in section 2.5.2). Many studies demonstrated (e.g. Kanno and Tanaka, 2012) 

that improved correction algorithm proposed by Lyzenga, (2006) has potential to produce 

good quality SDB. On the other side these authors used NIR band for atmospheric and 

water corrections. However, this leads to significant errors in the shallow depth region 

due to reflectance from the bottom in NIR band (Manessa et al., 2014). Since, NIR band 

(0.77-0.89µm) is sensitive towards the low depth region and variety of bottom types like 

very bright sand bottom. Therefore, an approach has been carried out as correction 

method using SWIR band for as explained in section 2.5.3. 

As mentioned before, many authors were observed bottom reflectance components in 

NIR region of the electromagnetic spectrum. Therefore this study utilizes available four 

visible bands and one NIR (MLR-NIR) band from Landsat-8 images. The key 

contribution of this study is that the introduction of new correction method using SWIR 

(1.57-1.65µm) band. We utilize the fact that the longer wave length bands attenuate very 

soon in the water region. Hence, we expect no reflectance components from the bottom 

even at shallow depth. The studies have carried out with Landsat-8 data over Taketomi 

and Ratnagiri regions. Results derived by the SWIR correction method also show good 

correlation with reference depth data in terms of R, R2 and RMSE are at Taketomi, 0.90, 

0.81, 2.19m and at Ratnagiri 0.90, 0.81, 1.24m respectively. In order to comprehend the 

outcome of the SWIR band correction method, a comparative analysis was carried out 

with NIR band correction method and SWIR correction method provides better SDB 

estimation than NIR band correction method. Details of the comparison assessment are 

reported in Table 2.5 and bi-variate scatter plot shown in Figure 2.7.
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Chapter Three  

Geographically Weighted Regression Based 

SDB Model 

3.1 Introduction 

 The common practice adopted in previous attempts on SDB has been to calibrate a 

single set of coefficients using MLR models (hereafter referred to as global model). 

Theoretically, global model were purported to address the spatial heterogeneity 

introduced by different bottom classes (Van Hengel and Spitzer, 1991). In practice, such 

global models do not fully address the heterogeneity as they only reflect the relation 

between the spatial average of spectral radiance and water depth. Therefore, we consider 

that depth estimate derived by global model can result in significant errors. The previous 

Chapter has discussed about the benefit of using global model in order to overcome the 

problems related to SLR. Nonetheless, previous attempts have not discussed about the 

limitations of the global model in addressing the issues generated by heterogeneity due to 

variations in bottom types and water quality. The derived coefficients in global model are 

used to estimate depth from the transformed radiance (e.g. Clark et al., 1988, Pacheco et 

al., 2015). However, single set of coefficient is inadequate to address variation in coastal 

waters due to local conditions. In order to address this lacuna in conventional global 

model, this study proposes and evaluates the GWR model to address spatial heterogeneity 

issues and improve the SDB results. The performance of global model, motivation to the 

GWR model and improvements made by the GWR model in addressing heterogeneity 

will be presented in this Chapter. 

3.2 Study area  

 The near-shore coastal waters of the south-western Puerto Rico, in north-eastern 

Caribbean Sea were chosen as the test case to derive water depth. Study area shown in 

Figure 3.1, geographically stretches from 17°49' N - 18°5' N, and 67°00' E - 67°18' E and 

covers 160km2 along 30km coastal stretch off Puerto Rico. The Puerto Rico was selected 

as the study area due to two reasons; one of them is availability of open high resolution 
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LiDAR depth (16-bit Geotiff image with 4 × 4m spatial resolution)3 provided by NOAA. 

Secondly, clear water conditions observed in the region could afford better estimation. 

3.3 Data used 

LiDAR bathymetric data provided by NOAA were acquired by using a Laser Airborne 

Depth Sounder (LADS) Mk II Airborne System which is surveyed from 07 April, 2006 to 

15 May, 2006. This airborne LiDAR is a 900 Hz Nd: YAG (neodymium-doped yttrium 

aluminium garnet) laser, which is split by an optical coupler into an infrared (1.064µm) 

beam and a green (0.532µm) beam. Final product image (16 bit Geotiff image) is 

produced at 4 × 4m bathymetry surface (Hernandez and Armstrong, 2016). The horizontal 

accuracy of dataset is better than ±5m + 5% of the depth, and the vertical accuracy or 

maximum total vertical uncertainty of dataset is better than ±0.82m (Costa et al., 2009). 

Landsat-8 and RapidEye data were collected in order to test the algorithm at moderate 

and high spatial resolution. The heterogeneous bottom type and clear water condition 

have been noted by visual examination of satellite images collected. Both Landsat-8 and 

RapidEye have higher radiometric resolution quantized over a 12-bit dynamic range can 

be rescaled to radiance using radiometric rescaling coefficients provided in the product 

metadata file. In addition, RapidEye provides higher spatial resolution of 5m as compared 

to 30m spatial resolution of Landsat-8. Five spectral bands (four visible and one NIR) of 

Landsat-8 were used for SDB estimation and SWIR (1.57-1.65µm) band was used for 

correction. In case of RapidEye data four visible bands were used for estimation and NIR 

(0.76-0.85µm) was used for correction. The characteristics of the data used for this study 

is given in Table 3.1. In this Chapter LiDAR derived depth is used as in-situ depth, and 

hence in this Chapter in-situ depth will be referred as LiDAR.  

3.4 SDB models 

The study first of all estimated SDB using global model by applying equation (11). As 

explained in the equation (11), transformed radiance (X(λ)i) have been considered as 

independent variable and randomly distributed LiDAR derived depth points as dependant 

                                                   
3 https://data.noaa.gov/dataset/noaa-geotiff-4-meter-lidar-bathymetry- u-s-caribbean-puerto-rico-southwest-projects-opr-

i305- 
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variable in a global model. The global model was tested using 30m spatial resolution 

Landsat-8 image of 25 November, 2013. Firstly, correction algorithm has been applied to 

each visible spectral band such as coastal aerosol (0.43-0.45µm), blue (0.45-0.51µm), 

green (0.53-0.59µm), red (0.64-0.67µm) and NIR (0.85-0.88µm) bands. The large 

attenuation coefficient of SWIR band (1.57-1.65µm) is used to correct the spectral 

radiance of each band effectively by using equation (7). Further, transformed radiance are 

used for depth estimation as shown in equation (11). A total of 10,000 randomly 

distributed LiDAR derived depth points were used to estimate SDB and 2,000 

independent LiDAR depth points used for validation. 

The global model was also tested on 5 m spatial resolution RapidEye image collected 

on 01 May, 2010. Firstly, the correction has been applied to each visible spectral bands, 

namely blue (0.44-0.51µm), green (0.52-0.59µm), red (0.63-0.69µm) and red-edge (0.69-

0.73µm). Since there is no SWIR band available for RapidEye, NIR band (0.76-0.85µm) 

was used for correction (equation 6). Considering that a single pixel of Landsat-8 image 

corresponds to about 36 RapidEye pixels, 360,000 randomly distributed LiDAR derived 

depth points were used to estimate SDB and 2,000 independent LiDAR depth points used 

for validation. 

3.4.1 Class based model 

As opposed to global model, class based models is also a linear regression model that 

computes β-coefficients for each class. These class based coefficients will be further used 

to estimate depth for each class and merged together for SDB. A residual map was 

generated by subtracting LiDAR depth from estimated depth to assess the effects of 

spatial heterogeneity in the global model. Six classes were generated by maximum 

likelihood classification; signatures of the classes were determined by visual examination 

of the residual map. Therefore, the equation (11) is transformed to equation (12) as shown 

below. 

                                                                         (12) 

Where, Where       is the depth at j class, β0 is representing the y-intercept and β1(j), 
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β2(j),.., βn(j) are the slope of the multiple linear regression  at j class respectively.  X(λ)1(j), 

X(λ)2(j),…, X(λ)i(j) are the transformed radiance at j class. 

3.4.2 Geographically Weighted Regression (GWR) Model 

In order to address local heterogeneity, GWR could be a feasible and effective method 

as compared to global model since it allows local coefficients to be applied. Several 

authors (Brundston et al., 1996, Fotheringham, et al., 1998 and Yrigoyen et al., 2008) 

have suggested the efficacy of GWR as a spatial predictor model.  

As opposed to non-weighted global and class based models described in the earlier 

section, the GWR model is a weighted regression model that computes β-coefficients for 

each pixel. In GWR, β-coefficients are determined using moving kernel and pixels close 

to the centroid are assigned higher weights than the pixels away from the centroid. 

Distance decay of the weights can be estimated using different functions such as 

exponential, bi-square and Gaussian. In general, weighting schemes can be broadly 

classified as continuous and discontinuous depending on the functions used. The 

discontinuous bi-square function gives fractional decaying weights according to the 

proximity of the current pixel to centroid (Lu, et al., 2014). In GWR model, the term 

bandwidth denotes the size of the kernel window. As shown in equation (13), bi-square 

function decay of weighting would be applied only if distance from the centroid is less 

than bandwidth else the assigned weight will be zero. On the other hand, the continuous 

Gaussian function (equation 14) gives fractional decay of weights according to the 

proximity of the current pixel to centroid even if distance from the centroid is greater than 

bandwidth.  

                                                                 (13) 

                                                                    (14) 

Where, bw is the bandwidth, d is the distance from current pixel to the centroid and wp 

is the weight assigned to the current pixel.  

Bandwidth determines the spatial coverage of the local kernel and assigning 
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appropriate bandwidth is critical. There are two ways of assigning bandwidth, one is fixed 

bandwidth (Fixed-GWR) and other is adaptive bandwidth (A-GWR). In A-GWR model, 

size of the kernel is set by considering density of calibration points in the local 

neighborhood. As illustrated as A-GWR model in Figure 3.2, the size of the kernel is 

smaller when calibration points are denser, and size of the kernel increases when 

calibration points are sparse. Previous researchers (e.g. Yrigoyen et al., 2008) have 

demonstrated that, adaptive bandwidth performs relatively better, particularly in case of 

randomly distributed calibration points.  

Large bandwidth will produce results similar to global model, and spatial 

heterogeneity cannot be resolved. The problem is, therefore to select the optimal 

bandwidth. Optimal bandwidth can be determined using a cross-validation approach 

wherein the validation scores are minimized (Harris et al., 2010 and Lu et al., 2014). This 

minimization of cross-validation score can be carried out by estimating the Root Mean 

Square Predicting Error (RMSPE) for a range of bandwidth. The bandwidth which 

provides minimum RMSPE (equation 15) is considered as optimal (Harris et al., 2010 

and Harris et al., 2011) and used in subsequent estimation.  

RMSPE =   
 

 
                  

  
                                   (15) 

Where, N is the number of neighborhood points of an adaptive bandwidth, D(x,y) is the 

actual depth and          is predicted depth.  

Appropriate weighting function and bandwidth can be selected to estimate β-

coefficients for each pixel of independent variable using A-GWR model. The derived β-

coefficients are further used to estimate SDB as shown in equation (16). 

                                                                           (16) 

Where          is the depth at a particular location, β0 is representing the y-intercept and 

β1, β2, βn are the slope of the weighted multiple linear regression respectively. 

The workflow of the A-GWR model has shown step by step in Figure 3.2. The first 
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step is to convert georeferenced multispectral bands (DN values) to spectral radiance 

using the radiometric rescaling coefficients available as metadata provided along with 

satellite image. In the second step, deep water pixels are selected by visual interpretation 

to estimate linear regression coefficients as explained in section 3.2). The third step 

involves the atmospheric, water column and water surface reflectance corrections. In 

fourth step, log transformation of the corrected spectral radiance was carried out. Further, 

in the fifth step corrected or transformed spectral radiance applied to GWR model. 

Determination of β-coefficients by calibrating LiDAR derived depth, and water depth 

estimation were carried out as the final step. Since, in GWR model same LiDAR derived 

depth is used for calibration and validation the optimal bandwidth determined by cross-

validation procedure may not be appropriate. Guo et al. (2008) also observed that the 

GWR cross-validation may not reflect an optimal bandwidth. Therefore investigations 

were undertaken to evaluate the depth estimates obtained over a range of bandwidth using 

both bi-square and Gaussian weighting functions. 

3.5 Results 

Various SDB methods described in the previous section were tested using Landsat-8 

and RapidEye images over dynamic and complex coastal water of Puerto Rico. A total of 

62 and 2,250 randomly distributed calibration points per square kilometer were used for 

Landsat-8 and RapidEye images which comprise of a total of 10,000 and 360,000 

respectively. Further, 2,000 randomly distributed LiDAR derived depth points were used 

to validate the performance and behavior of the models in heterogeneous coastal water 

region. 

Initially, the performance and behavior of the global model were evaluated for 

Landsat-8 image. Depth estimated by global model appears to be consistent in terms of 

correlation coefficient (0.88) and coefficient of determination (0.78), but shows high 

RMSE of 2.63m. Further, a class based model was generated as explained in section 3.4.1 

to evaluate the performance of the model in addressing heterogeneity. Bivariate scatter 

plot between LiDAR depth and estimated depth by global model over each class is shown 

in Figure 3.3a. The multiple trend lines in Figure 3.3a suggested the necessity to 
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determine coefficients based on individual classes. Therefore, in the proposed class based 

model, coefficients were calculated for 6 classes and were used to estimate depth for each 

class. Accuracy of the class based estimation and global model is compared using a 

density plot (Figure 3.3b) and statistical analysis. The results shown in Table 3.2 clearly 

demonstrate an improved depth estimation in class based model. 

In case of RapidEye, the global model results are showing correlation coefficient of 

0.88, coefficient of determination (0.78) and RMSE of 2.48m. Further, class based model 

was applied for improved depth estimation. In case of class based model, procedures of 

generation of classes are same as in case of Landsat-8. The improvement in estimation 

using class based model is reflected in bivariate plot shown in Figure 3.4a. The results 

(Table 3.2 and Figure 3.4b) indicate an improvement in depth estimation and clearly 

demonstrate that heterogeneity can be better addressed by using class based coefficients. 

Significant improvements have been observed in depth estimates derived from class 

based model indicating the robustness of using a local coefficient to address 

heterogeneity rather than using a global coefficient.  

Furthermore, A-GWR model was applied as it can be expected to perform better than 

class model by weighting regression coefficients locally. In A-GWR model, an 

appropriate weighting function was evaluated by cross-validating the depth estimation 

results computed by using bi-square and Gaussian functions. The weighting function 

which provides minimum RMSE and appropriate range of minimum and maximum value 

was selected as the suitable weighting function. Gaussian function provides relatively 

better estimates for both Landsat-8 and RapidEye in terms of RMSE. Range of estimated 

depth shows close correspondence with the LiDAR derived depth. Considering above 

observations, Gaussian weighting function was used for SDB. 

Optimal bandwidth selection was carried out by cross-validation over a bandwidth 

range of 5 to 200 neighborhood points. Consequently, 5 and 15 neighborhood points were 

selected as optimal bandwidth for Landsat-8 and RapidEye as they show minimum 

RMSE of 1.13m and 0.41m respectively. As a result of the optimal bandwidth selection, 

the range of estimated depth show close correspondence with the range of LiDAR 
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derived depth. The SDB result derived from Landsat-8 has shown in Figure 3.5.  

The accuracy of the SDB estimates of A-GWR model were compared and evaluated 

for Fixed-GWR and global model (Table 3.3). A-GWR model results show significant 

improvement for both Landsat-8 and RapidEye and show strong linear relationship 

(Figure 3.6a and Figure 3.6c). Errors associated with underestimation due to high 

reflectance and overestimations due to low reflectance in the spectral bands are evident 

from the RMSE values. The RMSE for Landsat-8 is reduced from 2.68m to 1.14m and 

for RapidEye image from 2.48m to 0.41m. Density curve of residuals for Landsat-8 and 

RapidEye calculated by subtracting estimated depth from LiDAR derived depth are 

shown Figure 3.6b and Figure 3.6d respectively. In Figure 3.6b peak of the curve 

extends up to 0.8 and around 90% of area under the curve is covered by the values very 

close to zero. In Figure 3.6d peak of the curve extend up to 2.0, almost 95% of area 

under the curve is covered by the values very close to zero and these results reveal a 

significant improvement in SDB estimation. 

The results were verified by several cross-sectional profiles as shown in Figure 3.7a. 

The cross shore profile (A-B in Figure 3.7a) across continuous surface for Landsat-8 

(Figure 3.7b) and RapidEye (Figure 3.7c) indicate excellent match with the LiDAR 

derived depth for both. Two profiles cross shore profile (C-D and E-F in Figure 3.7a) 

across discontinuous surface with islands for Landsat-8 (Figure 3.7d, Figure 3.7f) and 

RapidEye (Figure 3.7e, Figure 3.7g) are also showed good agreement. In case of 

medium resolution Landsat-8 relatively fewer LiDAR derived depth points were used to 

estimate depth, consequently cross profiles show slight discrepancies in depicting crest 

and trough of the profile. The statistics of difference of profiles were calculated Table 3.4. 

Generally, the statistics of profiles are also showing good agreement with LiDAR depth. 

However, the profile across continuous surface (A-B) is showing better estimation than 

other profiles across discontinuous surface (C-D and E-F).  

The estimated depth data were separated to 5 depth categories at 5m interval to 

evaluate the performance of the A-GWR model in each depth category and to determine 
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the maximum depth that could be reliably estimated by the model. Details of the accuracy 

assessment in each depth category are given in the Table 3.5. Depth derived from 

Landsat-8 and RapidEye data show better results in 1-5m depth category compared to the 

other depth categories as reflected by RMSE and up to 20m all depth categories show no 

significant difference in terms of correlation coefficient and coefficient of determination. 

The RMSE indicates that there are only very few pixels are over or under estimated in 1-

5m depth category. Depth beyond 20m is considered as limit for reliably estimating depth 

in this study area as see from decrease in correlation coefficient, coefficient of 

determination and increase in RMSE. Lower accuracy observed in depth estimate of 

Landsat-8 compared to RapidEye for each depth category is due to the fewer LiDAR 

depth points used for estimation.  

The study further evaluates the efficacy of A-GWR model in two practical scenarios 

where high resolution reference depth data may not be available. Two scenarios for 

available reference depth data could be considered, namely, low resolution gridded data 

extracted from bathymetric charts or freely available ocean data (e.g. GEBCO) or field 

echsounder survey data. Considering the first scenario, (Scenario-1) water depth is 

estimated using sparse grid of LiDAR derived depths. Figure 3.8, demonstrates the 

distribution of LiDAR depth points as in Scenario-1. Figure 3.9, demonstrates LiDAR 

derived depth along arbitrary tracks, as in field based data collection used in case of the 

second scenario (Scenario-2). 

In order to test the A-GWR model for Scenario-1, LiDAR derived depth at an interval 

of 200 meter were prepared. A total of 5,200 LiDAR derived depth were used for both 

Landsat-8 and RapidEye to estimate the depth using A-GWR model. Optimal bandwidth 

selection was carried out by cross-validation over a bandwidth range of 5 to 200 

neighborhood points. As a result, 15 neighborhood points were selected as optimal 

bandwidth for both Landsat-8 and RapidEye as they show minimum RMSE of 1.38m and 

1.55 m respectively. Results shown in Table 3.6 suggest that, even with sparse gridded 

calibration data, A-GWR model provides excellent results. Figure 3.10a (Landsat-8) and 

Figure 3.10b (RapidEye) show the bivariate scatter plot between estimated depth by A-
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GWR model and LiDAR derived depth and reveals the excellent agreement between 

them. Correlation coefficient is as high as 0.96 and 0.97 and coefficient of determination 

(0.94 and 0.95) and RMSE (1.38m and 1.55m) are also showing reliable estimates for 

Landsat-8 and RapidEye respectively. Capability A-GWR model in resolving features in 

terms of calibration data density have been attempted by many authors (e.g. Chen et al., 

2011). Visual examination of depth estimate derived in case of Scenario-1 reveals that 

larger bandwidth not effective in resolving finer details in bathymetry. 

In Scenario-2, the traditional way of field data collection with echo-sounder survey is 

considered for applying the A-GWR model. LiDAR derived depth along arbitrary track 

shown in Figure 3.9 is used to calibrate the A-GWR model. Same tracks are used for 

both Landsat-8 and RapidEye images; a total of 5,440 for Landsat-8 and 32,640 LiDAR 

derived points for RapidEye along the track were used. Further, cross-validation of 

estimated depths was carried out at ranges of bandwidth from 5 to 200. Consequently, 20 

and 25 neighborhood points were selected as optimal bandwidth for both Landsat-8 and 

RapidEye image with minimum RMSE of 1.40m and 1.44m for Landsat-8 and RapidEye 

respectively. 

Bivariate scatter plot between LiDAR depth and estimated depth are shown in Figure 

3.11a and Figure 3.11b for Landsat-8 and RapidEye image respectively. The results 

indicate that Scenario-2 also provides reliable estimate as evident from the high 

correlation coefficient (0.96 and 0.96), coefficient of determination (0.93 and 0.92) and 

RMSE (1.40m and 1.44m) for Landsat-8 image and RapidEye image respectively.  

In this study we were also evaluated the performance of bi-square and Gaussian 

weighting function over different surface and different distribution pattern of calibration 

points. Two sub-areas (AoI-1 and AoI-2 are shown in Figure 3.9) in the study are used 

for the evaluation test. AoI-1 is a continuous surface, while AoI-2 is discontinuous 

surface with many islands. Two types of distribution of the LiDAR derived points 

(randomly distributed points and arbitrary tracks) were used over both AoI-1 and AoI-2.  

 In case of continuous surface (AoI-1), good estimates are reported for both bi-square 
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and Gaussian weighting functions. However, bi-square with RMSE of 0.43m and range of 

estimated depth show close correspondence with the range of LiDAR derived depth with 

minimum value as 0.76m and maximum as 21.5m provides slightly better estimate than 

Gaussian. Arbitrary ship track LiDAR points over AoI-1 provides almost similar results 

for bi-square and Gaussian with RMSE (0.63m and 0.64m), range of estimated depth with 

minimum (-12m and -13m) and maximum (22m and 21m) respectively. In case of 

discontinuous surface (AoI-2), accuracy of estimation is poor compared to results of AoI-

1. However, randomly distributed LiDAR points over AoI-2 provides similar results for 

both bi-square and Gaussian with RMSE (1.45m and 1.42m), range of estimated depth 

with minimum (-22m and -22m) and maximum (21m and 20.78m). Arbitrary ship track 

LiDAR points over AoI-2 provides better estimates by Gaussian with RMSE of 1.64m 

and range of estimated depth show close correspondence with the range of LiDAR 

derived depth with minimum value as -15m and maximum as 21m.  

The above results indicate that depth estimates with A-GWR model are sensitive to the 

bandwidth and the kernel weighting function used. Distribution, density of calibration 

points and spatial continuity of the surface to be estimated also influence the results. In 

case of continuous surface, when calibration points are randomly distributed, bi-square 

weighting function could provide better estimates. In case of LiDAR points distributed 

along arbitrary track, using a Gaussian weighting function or tuning the bandwidth for bi-

square by cross-validating the results may be needed. In case of discontinuous surface, 

Gaussian weighting function could work better. 
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Chapter Four  

Application for Integrated Coastal Relief 

Model and Tsunami Simulation 

4.1 Introduction 

GWR models have shown significant improvements as predictive weighted linear 

regression model in various fields (Brundston et al., 1996, Fotheringham, et al., 1998, 

Yrigoyen et al., 2008 and Lu, et al., 2014). The previous Chapter illustrated that the 

newly proposed GWR based SDB model is able to produce high quality SDB. The results 

derived from GWR based model suggests that it can be applied in various conditions of 

coastal water, density of calibration depth points, spatial and radiometric resolution of the 

satellite data. Therefore in this Chapter, the application of derived SDB as input for 

practical scenarios is attempted. Study aims to generate an ICRM over parts of Miyagi 

prefecture by combining derived SDB with various resolutions topographic and 

bathymetry data. Developed ICRM could be used to demonstrate a practical application 

scenario of the SDB in tsunami simulation.  Therefore, this Chapter evaluates the 

application of generated coastal bathymetry in tsunami simulation to hindcast the real 

event. Coarse accurate coastal bathymetry data were used for many previous tsunami 

simulation application researches and indicated the drawbacks due to lack of reliable 

accuracy coastal bathymetry data in tsunami simulation (Griffin et al., 2015). Hence, 

research aims to use reliable accuracy ICRM developed over Miyagi region. Details of 

the data and study area are discussed in the following sections. 

4.2 Study area and data usage 

Coastal area of Tohoku, Japan was significantly affected by earthquake driven Tsunami 

occurred off Japan, on March 11, 2011 (Okayasu et al., 2013). This tsunami was the third 

mega earthquake generated tsunami in this decade. Miyagi, Japan was the one of the most 

affected prefectures in the region (Mori et al., 2011). The epicenter of the Tohoku tsunami 

was reported as 38°19' N, 142°22' E and Miyagi prefecture was the closest location. 

Therefore, a tsunami simulation has been carried out in parts of Miyagi prefecture 
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(Figure 4.1) along 110km coastal stretch.  

Medium spatial resolution (15m) ASTER Open Data collected on 10 September, 2010 

were used to estimate SDB. Medium radiometric resolution (8-bit quantized) green band 

(0.52 - 0.60µm) and red band (0.63 - 0.69 µm) were used for estimation and NIR band 

(0.76 - 0.86µm) used for correction (Table 4.2). J-DOS bathymetry4 data of 500m grid 

resolution (JODC-Expert Grid data for Geography) was used as calibration depth points 

to estimate 15m reliable SDB approximately  over an area of 219km2 in a part of Miyagi 

coastal area. A total of 649 evenly distributed in-situ depth points were used for 

calibration and for evaluation of accuracy. Even though depth points were sparse, the 

distribution of the data was at equal interval. Therefore, Fixed-GWR model was used to 

estimate the SDB and which was expected to perform better than A-GWR model in this 

situation. The results of SDB generated from Fixed-GWR shows better agreement with 

reference depth in terms of R (0.93), R2 (0.87) and RMSE 1.65m than A-GWR model R 

(0.91), R2 (0.84) and RMSE (1.95m). Both ASTER satellite image and J-DOS data were 

collected before the tsunami occurred, therefore the estimated SDB can be considered to 

be reliable. 

4.3. Integrated Coastal Relief Model 

ICRM is a regional bathymetric-topographic model for the area of a part of Miyagi 

prefecture. This model incorporates the most recent, publicly available topographic data 

and bathymetry data to provide a comprehensive view of Miyagi coastal zone (Figure 

4.1). Publicly available low resolution (900m) offshore bathymetry collected from 

GEBCO5, medium resolution (30m) terrestrial topographic data collected from SRTM6 

were combined with SDB estimated using ASTER (15m) to develop the seamless ICRM. 

The ICRM was generated using ANUGA Open Source Hydrodynamic model (Nielsen et 

al., 2005). ANUGA is an Open Source Software package with most components being 

implemented in Python7 and is capable of modeling the impact of hydrological disasters 

such as dam breaks, riverine flooding, storm-surge or tsunamis.  

                                                   
4 http://jdoss1.jodc.go.jp/vpage/depth500_file_j.html 
5 http://www.gebco.net/ 
6 http://srtm.csi.cgiar.org/ 
7 https://www.python.org/ 
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Firstly, the raster GEBCO, SRTM and SDB data were individually converted to ASCII 

format using r.out.ascii module of GRASS GIS. Further this ASCII data was converted 

into ANUGA DEM format using the script anuga.asc2dem. Further, the DEM file was 

converted to point format using anuga.dem2pts. Further, 

anuga.geospatial_data.geospatial_data (ANUGA script) was used to combine the point 

file data of multi-resolution topographic data to generate a single seamless ICRM. 

4.4 Tsunami simulation 

In case of tsunami simulation, 2D non-linear shallow water equations are commonly 

implemented and solved numerically on a mesh or grid, and there are many software 

solutions available for tsunami simulation, such as TUNAMI (Goto et al., 1997), 

ANUGA, and TsunAWI (Rakowsky et al., 2013). In ANUGA, the conservative finite 

volume scheme allows discontinuities at the edges of all mesh triangles and therefore can 

simulate wetting and drying of mesh elements (Jakeman et al., 2010). Tsunami inundation 

is simulated through numerical solution of the non-linear shallow water equations over a 

model of bathymetry and topography with appropriate extensions to model wetting and 

drying processes.ANUGA uses unstructured triangular meshes, with internal polygons 

used to define the maximum allowable size of an individual mesh. The ICRM represents 

unstructured triangular meshes as explained in section 4.3. Boundary conditions such as 

rainfall, tide, wind stress, surface roughness, etc., were not considered in the simulation 

process. In addition, mean sea level was assumed as the initial water level and fixed 

Manning’s coefficient was used. 

4.5 Results 

Tsunami simulation was carried out with duration as 50 minutes and results were 

evaluated with post-tsunami survey results (Mori et al., 2011). In this study, we compared 

the inundation extent and heights of the tsunami simulation with post-tsunami survey 

data. The simulation experiment is showing that around 115km2 of area was inundated. 

Simulation tsunami about 14m high traveled inland up to 5km and Ishinomaki and 

Higashimatsushima region were affected the most. These regions are low lying land and 

Kitakami River is passing through Ishinomaki region, these factors were amplifying the 
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tsunami inundation (Figure 4.2 and Figure 4.3). Figure 4.2 and Figure 4.3 illustrates the 

comparison between the simulation results and the post-tsunami survey results. Figure 

4.2a shows the actual extent of the inundation and Figure 4.2b shows the simulated 

inundation extent in 50 minutes duration. The surveyed tsunami inundation heights at 243 

points were overlaid on simulated tsunami inundation height map (Figure 4.3a). Figure 

4.3b demonstrates the correlation between surveyed and simulated tsunami inundation 

heights. The Figure 4.3a and Figure 4.3b depict that the maximum inundation observed 

was about 10m and 14m in surveyed and simulated events respectively. The evaluation of 

the simulated tsunami inundation heights shows a reasonable agreement with post-

tsunami survey data in terms of R (0.75), R2
 (0.57) and RMSE (2.98m).  
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Chapter Five  

Implementation of GWR Based SDB Model 

as Open Source GIS Module 

5.1 Introduction 

The previous Chapters discussed the several SDB models for improved SDB 

estimation. Among them, GWR based SDB model proposed in Chapter Three has been 

shown significant improvements for SDB. Further, evaluation of performance with 

application scenarios in Chapter Four also has shown robustness of the model in practical 

use. In addition, authors like Su et al., 2014 also has successfully used GWR model as an 

improved SDB method. However, until now, no software module has been proposed to 

automate the procedure of GWR based SDB models. Therefore, this Chapter is proposing 

a new Open Source GRASS GIS module called i.image.bathymetry to automate the SDB 

estimation using multispectral bands. Since i.image.bathymetry has been entirely 

implemented using a Free and Open Source GIS framework, it can be easily applied in 

other areas without the need to invest resources for software.  

5.2 Validation of implemented SDB algorithm 

Several case studies have been carried out with various satellite imageries to evaluate 

the performance of the i.image.bathymetry in estimating SDB. Here, we present three 

case studies carried out in Puerto Rico, North-eastern Caribbean Sea, parts of Iwate and 

Miyagi prefecture, Japan. The first case study is carried out in the area demarcated by 

AoI-1 illustrated in Chapter Three and Figure 3.9, satellite data collected from Sentinel-2 

(MSI) was used for SDB estimation and calibration depth points is same as explained in 

section 3.3. The characteristics of Sentinel-2 image used will be discussed in section 

5.2.1. The second case study is carried out in parts of Miyagi prefecture, the study area 

and data used are exactly same as explained in Chapter Four and shown in Figure 4.1. 

The third study was carried out in parts of Iwate prefecture characteristics of the data and 

study area will be explained in the section 5.2.2.   

5.2.1 Puerto Rico, North-eastern Caribbean Sea 
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Sentinel-2 high spatial and radiometric resolution data were collected on 25 December, 

2015. As compared to other satellite imageries, Sentinel-2 have a spatial resolution that 

varies from 10m to 60m for multispectral bands and radiometric resolution quantized 

over a 12-bit dynamic range and rescaled to 16-bit. In addition to that, Sentinel-2 

provides several red edge bands that also can be used as additional bands for SDB 

estimation. The availability of SWIR band (1.610µm) is another significant feature of 

Sentinel-2 which can be used for atmospheric and water corrections. A bi-linear 

interpolation has been carried out to resample the pixels of SWIR band from 20m to 10m. 

An interpolation method has been used to keep the original pixel value of SWIR as it is 

and interpolate only the redundant pixel by using the equation (17).  One 20m pixel can 

be divided in to four 10m pixels, the value of first pixel was assigned as the original value 

of 20m pixel and values of other three pixels were interpolated using the equation (17).  

                                                             (17) 

Where, Z is the value of the pixel and x,y is the coordinates of Z in a matrix, 

respectively  Z1, Z2, Z3 and Z4 are the neighboring pixels which are used for the 

calculation and (x1,y1), (x1,y2), (x2,y1), (x2,y2) are the coordinates respectively. t and u are 

the slope between these coordinates, can be written as (x-x1)/(x2-x1) and (y-y1)/(y2-y1), 

respectively.  

5.2.2 Iwate, Japan 

The third study area demonstrates SDB estimation in a coastal area of the Iwate 

prefecture, Japan (Figure 5.1). This study area is comparatively much smaller than the 

previous study area, covering only 4km2 and stretching along 6km of coastal line. Freely 

available Landsat-8 with medium spatial resolution (30m) and high radiometric resolution 

was collected on 31 October, 2014. All the available visible spectral bands and NIR band 

were used for estimation and SWIR band (1.57-1.65µm) band were used for correction.  

5.3 System environment 

The i.image.bathymetry module to estimate SDB has been developed in GRASS GIS 

Version 7. GRASS GIS is a robust Open Source GIS widely used in academia, 
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commercial settings and governmental agencies. A powerful feature of GRASS is the 

availability of Python scripting library which is used to implement several customizable 

modules for geoprocessing. In addition, GRASS GIS also provides access to R Statistical 

Computing through numerous packages for geospatial and geostatistical analysis. 

5.3. GRASS Python scripting library 

Python, a widely used programming language provides a powerful scripting 

environment in GRASS GIS. It enables users to efficiently exploit the capabilities of 

GRASS GIS software for developing new modules and extensions. In this study, GRASS 

Python scripting library has been used to combine multiple modules, functions from 

GRASS and R to implement the SDB model. 

5.3.2 R packages 

R is an Open Source statistical computing environment that provides several spatial 

analysis packages and functions. rgrass7 work as an interface between GRASS GIS 7 and 

R. The package provides access to all GRASS commands from the R command line. The 

rgrass7 package can be used to import/export data from GRASS to R and vice versa. The 

rgrass7 package is only available beyond R Version 3.1, therefore, that should be 

installed in order to use the i.image.bathymetry module. Another library data.table is used 

to manage the spatial data frame of the raster data in R. GWmodel (Gollini et al., 2013) is 

collection of function which is considered as particular branch of spatial statistics called 

geographical weighted models and is used to deploy the GWR functionality.  

5.4 Workflow of the module 

The i.image.bathymetry is a collection of many existing GRASS GIS and R modules 

and new functions. Main functionalities of the module are 1) delineating water region, 2) 

atmospheric and water corrections, 3) GWR. Geometrically and radiometrically corrected 

spectral bands of any optical multispectral remote sensing data can be used to estimate 

SDB from the suitable coastal region. In the flowchart (Figure 5.2), the dotted box shows 

the required spectral bands, optional spectral bands and other input data such as 

calibration depth points (as vector point type) and tide height. The spectral bands in the 

green, red, NIR wavelength are mandatory inputs. Other spectral bands available in the 
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visible domain can be supplemented as additional bands depending upon the satellite 

sensor. 

The first step in the processing chain of i.image.bathymetry is the delineation of water 

region.  A rule based combination of NDVI and band ratio between green and infrared 

band were used for effective delineation. Band ratio of greater than or equal to 1 was 

classified as water, less than 1 as land. Masked water region has been used for further 

processing. NDVI has been used to remove the cloud, ice, etc., from the water region. 

GRASS GIS module r.mapcalc is used for these calculations to delineate water pixels 

effectively (Step 1 in Figure 5.2). In the practical experience it is observed that 

delineating water region without a visual interpretation is potential to produce error. 

Therefore, in addition to the band ratio (explained section 2.4.3) a NDVI is also used for 

water delineation. 

In spite of the availability of numerous satellite images, very rarely satellite images are 

acquired at the time of zero tide. Therefore, i.image.bathymetry module has an option to 

provide tide height specific to the time of satellite image capture and to carry out tide 

correction (step 2 in Figure 5.2). Tide height of the time of image acquisition can be 

provided and used to correct the calibration depth. If the tide of the time of satellite image 

acquisition is lower than zero, negative value can be provided as tide height. This option 

can also be used when the same calibration depth is used in multi-temporal SDB 

estimation.  

Theoretical background and implementation of atmospheric, water corrections (step3 

in Figure 5.2) and GWR (step4 in Figure 5.2) algorithm are explained in section 2.5.3. 

Step 4a and 4b are illustrating the Fixed and A-GWR respectively. In case of Fixed-

GWR, the size of the kernel is the same all over the working domain. Therefore, Fixed-

GWR treats the entire region uniformly irrespective of the distribution of calibration 

depth points. Fixed-GWR model is less computationally intensive and less memory 

consuming as compared to an adaptive GWR (A-GWR) model. Consequently, Fixed-

GWR model is available in many software packages and therefore it is easy to apply. In 
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GRASS GIS, the module r.gwr computes the Fixed-GWR and A-GWR with bi-square, 

and Gaussian kernel. The i.image.bathymetry module has adopted r.gwr module to 

process Fixed-GWR by selecting a system generated optimal bandwidth. The corrected 

spectral bands are used as independent variables and calibration depth as dependent 

variable to calculate Fixed-GWR (step 4a in Figure 5.2). A flag (-f) has been 

implemented in order to carry out depth estimation using Fixed-GWR.  

In A-GWR model, size of the kernel is set by considering density of calibration points 

in a local neighborhood. The module called GWmodel available in R has been used to 

calculate A-GWR. Corrected spectral bands (step 3 in Figure 5.2) are imported to R 

using the library rgrass7 and these spectral bands are further converted to a spatial data 

frame using the library data.table (step 4b in Figure 5.2). A spatial data frame of spectral 

bands is used as independent variable and reference depth is used as dependent variable 

to compute A-GWR using the library GWmodel. In GWmodel, the function called bw.gwr 

is used to calculate the optimal bandwidth. In GWmodel, the optimal bandwidth is 

determined using a cross-validation approach where the validation scores are minimized 

(Harris et al., 2010, Harris et al., 2011 and Lu et al., 2014). An A-GWR model is slower 

and needs more memory than a Fixed-GWR model. Therefore, i.image.bathymetry uses 

as default an A-GWR model. If the particular system not able to run the A-GWR model 

due to low memory, a Fixed-GWR will be used to estimate SDB (step 4b in Figure 5.2). 

5.5 Results 

Three case studies were carried out in order to assess the behavior and performance of 

the module related to different factors such as size of the data, spatial/spectral/radiometric 

resolution, and cloud coverage and water quality of the study area. Table 5.2 evaluates 

the performance of the module in order to comprehend impact of above mentioned 

factors in SDB estimation. Table 5.2 mainly compares the accuracy of the results in terms 

of kernel weighting functions (bi-square or Gaussian) and the mode of the GWR 

estimation (Fixed-GWR or A-GWR). The machine used for the benchmark was a laptop 

with an Intel Core i5-3320M CPU @2.60 GHz. The system has 16Gb of RAM and a 

solid state disk (SSD) of 512 Gb. The installed operating system (OS) is GNU/Linux 
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(Ubuntu 14.04 LTS x64-bit). GRASS 7.0.4 version and R version 3.3.1 were used for the 

benchmark. The screenshots shown in Figure 5.3 demonstrate options and workflow of 

i.image.bathymetry. Figure 5.3 used an example of case study 1 to demonstrate the 

processing using bi-square kernel. Figure 5.3a shows the required input used in the 

processing and Figure 5.3b demonstrates the optional input and optional flags used for 

Fixed-GWR based SDB estimation. The -f flag used in Figure 5.3b can be removed in 

order to process A-GWR based SDB estimation. Figure 5.3c demonstrates the optimal 

bandwidth estimation procedure for Fixed-GWR based computation. The optimal 

bandwidth estimation begins from a minimum value. The module performs GWR 

computation once the optimal bandwidth is determined. In Figure 5.3c, 47 was 

determined as optimal bandwidth for Fixed-GWR estimation. Figure 5.3d shows the A-

GWR optimal bandwidth estimation in R using a cross-validation score. The number of 

points (15) selected as optimal adaptive bandwidth is shown in Figure 5.3d. Figure 5.3e 

and Figure 5.3f show the SDB estimated using Fixed-GWR and A-GWR in GRASS GIS 

monitor respectively. 

The area covered (40 km2) in case study 1 (AoI-1 in Figure 3.9) was relatively larger 

and spatial/spectral/ radiometric resolutions of the image used was higher. Apart from 

that, there were more depth points used for calibration and water quality of the area was 

also relatively better. Therefore, case study 1 produced high accuracy SDB from both 

Fixed and A-GWR models (Table 5.2). Processing time was evaluated using Fixed-GWR 

and A-GWR with bi-square and Gaussian kernel. In case of Fixed-GWR model, around 2 

minutes were needed to finish processing and in case of A-GWR model, around 6 

minutes were needed to finish the processing. In case study 1 (AOI-1), the study area was 

a continuous surface with dense calibration points distributed randomly over relatively 

clear waters, thereby, facilitating SDB generation with good accuracy SDB for both Fixed 

and A-GWR models. All the available bands in the visible domain and NIR band were 

used for SDB estimation as shown in Table 5.2. Tide height during satellite image 

acquisition was nearly zero; therefore no tide correction was applied. The estimation has 

been carried out using 1,260 depth points as dependent variable and another 2,000 depth 
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points were used to validate the results. Various weighting functions in Fixed-GWR and 

A-GWR were tested. Among different options attempted, A-GWR using bi-square kernel 

produced high accuracy SDB. Results were evaluated in terms of R (0.99), R2 (0.98) and 

RMSE (0.61m).   

Figure 4.1 shows the second study area with the parts of Miyagi prefecture which 

were used for ICRM generation and tsunami simulation. In case of Fixed-GWR model, 

around 3 minutes were taken to finish processing and in case of A-GWR model, around 

260 minutes were taken to finish the processing (Table 5.2). The calibration depth points 

were sparse and distributed in unit interval (500m), and hence, Fixed-GWR model was 

expected to provide better or almost similar estimates like A-GWR model (Gollini, et al, 

2015). Fixed-GWR with bi-square kernel provides better SDB. The results of SDB 

generated from Fixed-GWR shows better agreement with reference depth in terms of R 

(0.93), R2 (0.87) and RMSE 1.65m than A-GWR model R (0.91), R2 (0.84) and RMSE 

(1.95m) 

The third study area covered (4km2) a part of Iwate prefecture (Figure 5.1), was 

relatively smaller and SDB estimation was based on medium spatial resolution of 30m. 

However, spectral/radiometric resolution and number of depth points used for calibration 

of SDB were also relatively good. A total of 3,360 depth points (10 June, 2012) were 

collected by echo-sounder and 2,342 depth points were used for estimation and remaining 

depth points were used to evaluate the accuracy of the result. The characteristics of echo-

sounder data are shown in Table 5.1. In case of Fixed-GWR model, around 2.5 minutes 

were taken to finish processing and in case of A-GWR model, around 180 minutes were 

taken to finish the processing (Table 5.2). A-GWR with bi-square kernel provides better 

SDB estimate compared to the other modes. In case study 3, a continuous surface of the 

study area and randomly distributed denser calibration depth points were considered as 

two favorable factors for better estimation using A-GWR model. The Fixed-GWR does 

not perform well in this area and could perhaps be the result of non-clear water in study 

area. Tide height during acquisition of satellite imagery was nearly 1.35m and was 

provided as tide height value in the module option to apply correction. Various weighting 
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functions in Fixed-GWR and A-GWR were tested. Among that A-GWR using bi-square 

kernel produced high accuracy SDB in terms of R (0.98), R2 (0.97) and RMSE (1.50m). 

Detailed results of the SDB are shown in Table 5.2. 
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Chapter Six  

Discussion and Conclusions 

In this thesis available single spectral and multispectral band based SDB models were 

investigated and several improvements to the existing models in terms of estimation 

algorithms, and atmospheric and water corrections algorithms have been suggested. In 

addition, a GWR based SDB model have been developed and evaluated with application 

examples. Further, the developed GWR based SDB model has implemented in to an Open 

Source GIS environment therefore it can be used in any study areas without the need of 

additional software resource. 

Firstly, this study investigated SDB model using single spectral band and further 

improved the available models by developing a new model for multi-temporal 

bathymetry. Further, multispectral approaches were carried out to estimate improved 

SDB. Three approaches such as RBE, MLR-NIR and new correction method using SWIR 

band were presented in the Second Chapter is originally proposed by this research in 

order to improve the accuracy of SDB. The RBE single band method is an extension to 

the SLR method. In the SLR method, attenuation coefficient assumed to be constant in 

the study area, to consider otherwise would require more ground truth knowledge about 

bottom type that are often not available. The attenuation of light in a particular band is 

estimated by using SLR method and multi-temporal images of same band was used for 

investigating bathymetric changes. RBE method depends only on radiance value of 

transformed band. More significantly, RBE shows a unique estimation capability for all 

the data sets. Since RBE directly converts transformed radiance to depth, it is very 

sensitive to correction methods. If the correction method is able to remove all the noises 

obtained from the atmosphere, water, then the RBE could provide far better results than 

occurred. The advantage of this RBE is that it is feasible even in situations where 

calibration data is lacking. Results derived by SLR and RBE models from various data 

sets with different spatial and radiometric resolution were evaluated using reference depth 

and observed good accuracy in quantitative terms. Landsat-8 data with high radiometric 
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resolution provides better results using SLR and RBE. Further, an attempt has also been 

carried out to comprehend the reduced accuracy of the SLR and RBE due to turbidity. 

Results show that turbidity affects the attenuation of the light and affects accuracy of 

derived depth but does not significantly degrade the estimation. The limitation of single 

band method is that, it does not address the issues of heterogeneity occurred due to 

difference in bottom type and water quality. 

The MLR-NIR is a modification of multispectral band combination. The multispectral 

band models account for variations in attenuation coefficients depending on wavelength 

used, sea bottom types, and water column properties. Since NIR wavelength is capable of 

capturing some bottom reflectance in shallow water, a new multispectral band 

combination including NIR band has been proposed and evaluated. A comparative study 

was carried out between MLR and MLR-NIR. The results show that the MLR-NIR 

provides better SDB depth estimates as evident from improved correlation coefficient, 

coefficient of determination and RMSE.  

The new correction method has been proposed using SWIR band to overcome the 

problems of NIR band correction. Study was observed as like many other previous 

authors, NIR band carries components of bottom reflectance in shallow water. Therefore, 

NIR band is not recommended for use in correction.  However, this study is relying on 

the fact that there is no bottom reflectance component is contained in SWIR band (1.57-

1.65µm). Therefore, SWIR band was used for atmospheric water correction. The 

comparative study has indicated that NIR band correction method provides null values 

due to high bottom reflectance in NIR region. The alternative correction method using 

SWIR provides depth information where NIR correction method was not able to provide 

any depth information. Thus, study recommends use SWIR band if available instead of 

NIR band for atmospheric and water correction for SDB estimation. 

This study also proposed and evaluated the potential of GWR based SDB model in 

estimating near-shore bathymetry. Detailed investigation has been carried out in Puerto 

Rico (Figure 3.1) using Landsat-8 image and RapidEye image. In fact the proposed 
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GWR based SDB model is an extension of combined SDB model: the predictor can be 

analytically derived from a radiative transfer model. The results clearly demonstrate that 

GWR model is more suitable for SDB with enhanced reliability as compared to SLR and 

MLR (global model). It is also observed that conventional global models provide 

reasonable depth estimates, but do not sufficiently address the issues of heterogeneities 

that are normally observed in most areas where data is required. In addition, the global 

model suffers from over or under estimation of depth in many parts of the study area. The 

problem of over or under estimation are mainly attributed to difference in bottom type 

and water quality. On the other hand, GWR model can effectively address heterogeneity 

and able to significantly minimize such errors. 

In GWR model, bandwidth is the crucial parameter and two mode of considering 

bandwidth is available one is Fixed-GWR and other is A-GWR. Many authors (e.g. Guo, 

et al. 2008) have suggested different mode of bandwidth (fixed vs adaptive) for better 

estimates. Therefore, apart from A-GWR model, we also investigated and evaluated the 

estimates generated from Fixed-GWR model in order to demonstrate the efficacy of A-

GWR model. The comparative results shown in Table 3.3 clearly indicate that A-GWR 

model with Gaussian weighting function is the best option for estimating depth in this 

study area (Figure 3.1). 

The main problem observed in A-GWR model is overshooting and undershooting 

when the bandwidth is too low. Larger bandwidth will produce a flat surface with little 

spatial variation (Yrigoyen et al., 2008). Overshooting and undershooting at a few 

locations can be overcome by selecting optimal bandwidth with an appropriate weighting 

function. Many authors (Yrigoyen et al., 2008, Su et al. 2014 and Monteys et al., 2015) 

have suggested different weighting function in order to get better estimate in different 

situations. Some authors (e.g. Guo, et al., 2008) have tried to comprehend the behavior of 

weighting functions and bandwidth in case of denser and sparser calibration points.  

 As demonstrated in this research, bandwidth is the crucial parameter in A-GWR 

model. Therefore, density of the calibration points impacts the results significantly. Two 
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cross-validation procedures were carried out prior and subsequent to the estimation, in 

order determine optimal weighting function and bandwidth. Since the study area is 

discontinuous surface with many islands, Gaussian weighting function was used to 

estimate optimal bandwidth. Based on the experiment, it was found that, optimal 

bandwidth with suitable weighting function could improve the estimation accuracy and 

address the heterogeneity effectively. It can also be concluded that the density of 

calibration points used for estimation is an influential factor for any kind of regression 

model. However, A-GWR model still produces reliable estimates, even with relatively 

few calibration points. The results indicate significant improvements in SDB estimation 

using GWR based model.  

The importance of GWR based SDB model was demonstrated clearly and forms the 

main contribution of this thesis. GWR based SDB model is proposed as an effective 

solution to estimate SDB over near-shore where the conventional models perform poorly. 

Conventional SDB models provide good estimation when calibration depth points are 

dense. Unlike conventional model, GWR based SDB models provide reliable depth 

estimates even when calibration depth points are sparse. Therefore, the proposed model 

can be used to apply various situations such as low water quality and fewer calibration 

depth points. 

As observed from this study SDB model was able to produce reliable results in various 

conditions in terms of spatial, radiometric resolution of satellite imagery and 

characteristics of calibration depth points. Even though the reliability of a GWR based 

model evaluated adequately, it is necessary to verify the estimated SDB to assist practical 

coastal modeling. The efficacy GWR based SDB model in practical scenario of tsunami 

simulation. GWR based SDB applied as one of the input for generation of ICRM and 

tsunami simulation. The seamless ICRM was developed by combining SRTM, SDB and 

GEBCO over parts of Miyagi prefecture in order to provide geometry polygon for 

ANUGA hydrodynamic model.  

The tsunami simulation was carried out to hindcast the real tsunami occurred in 
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Tohoku region during 2011. The main earthquake shocks lasted for 3 to 4 minutes and, 

owing to the proximity of the epicenter to shore, the first significant waves reached Japan 

only 10 minutes after the event started (Grilli et al., 2012). Coarse accuracy coastal 

bathymetry data were used for many previous tsunami simulation application researches. 

Several studies (e.g. Griffin et al., 2016) have been reported issues pertaining to tsunami 

simulation due to lack of reliable accuracy coastal bathymetry data. Therefore, this study 

used SDB as an additional high resolution data set to reproduce the tsunami inundation 

extent and heights. Here, the inundation extent and inundation heights of the tsunami 

were compared with real data collected from the post-tsunami survey. These results were 

showing good agreement with post-tsunami survey of inundation extent and tsunami 

inundation height. 

This research also presents a user friendly Open Source GIS module to estimate 

bathymetry from optical satellite imageries. The efficacy of the i.image.bathymetry 

module has been evaluated using three case studies with multi-resolution and multi-

constellation data. The module incorporates pre-processing of satellite data and an option 

for performing tide correction of calibration depth data with tide at the time of satellite 

image capture. A limited number of depth points for calibration may be collected by 

LiDAR and SoNAR or extracted from the hydrographic charts. The SDB estimation 

region is automatically determined by the distribution of calibration depth points. 

Therefore it is suggested to be mindful while preparing the calibration depth points in 

order to cover the area of interest. In addition, an optional parameter has been developed 

to supply a polygon vector file which defines the area to be estimated. Deep water pixels 

are used for atmosphere and water corrections; therefore, users are suggested to supply 

the multispectral data which contains deep water region. Satellite image which does not 

have deep water region can also be used for SDB estimation; hence, the estimation will 

be carried out without using deep water coefficient for correction. In addition, Vinayaraj 

et al. (2016) has suggested the use SWIR band for correction instead of NIR band. NIR 

band is suggested to use for correction only when multispectral imagery do not include 

SWIR band such as in case of ASTER. The key functionality of the i.image.bathymetry 
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module is GWR based estimation. It has been demonstrated that GWR model can 

effectively address the issues of heterogeneity due to different bottom types and water 

quality and hence provide improved SDB.  

The i.image.bathymetry module allows user to choose both Fixed and A-GWR model 

with kernel weighting function either bi-square or Gaussian, this option can be effectively 

used if the user has prior knowledge about the study area. This study also evaluated the 

computational cost for estimation Fixed and A-GWR models comparing with accuracy of 

the SDB generated. Such evaluation illustrates that A-GWR model is computationally 

intensive especially for large dataset but offers best results. However both Fixed and A-

GWR model  estimated SDB with acceptable accuracy and hence, it is suggested to use 

either Fixed or A-GWR according to the distribution of calibration depth points, size of 

the image and available RAM on computer.  

The module can be downloaded from GRASS GIS svn repository8 and installed using 

g.extension inside GRASS GIS. Accuracy of SDB depends upon characteristics of 

satellite imagery, number and distribution of calibration depth points and water quality of 

the study area. All the case studies carried out in the study were aimed to evaluate the 

performance of the module in addressing characteristics of the data which varied 

depending on data used and area investigated.  

6.1 General conclusions  

Concluding this chapter, it can be said that this study has highlighted and addressed a 

number of key problems in existing SDB models. Even though the problem of estimating 

bathymetry from remote sensing data has a relatively long history, last five to ten years 

the reliability of the SDB models have been significantly improved. Moreover, SDB has 

becoming popular in coastal researches. Study has investigated various problems in the 

SDB models mentioned by the previous authors and an attempt have been made to 

provide feasible solutions. The results were more favorable towards combined SDB 

model rather than simple empirical model. The aim of such combined models was to 

                                                   
8 https://svn.osgeo.org/grass/grass-addons/grass72/imagery/i.image.bathymetry 
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provide better accuracy estimates and at the same time to be able justify the predictor 

using the radiative transfer model.  

Two single band based SDB models and various multispectral band based SDB models 

were proposed in the thesis. Most of the models investigated in this study including single 

and multi-spectral bands were based on a linear regression approach. In case of single 

band, a simple linear regression (SLR) was used. Meanwhile, in case of multispectral 

bands, a multiple linear regression (MLR) has been used. RBE, the single band model 

was an extension of SLR model in order to estimate temporal SDB from multi-temporal 

satellite images without the need of multi-temporal calibration depth points. GWR based 

models were an extension of MLR model which was essentially a weighted linear 

regression based approach.  

The SDB models described in this thesis was mainly intended to retrieve maximum 

bottom reflectance from a satellite image by addressing the issues of low water quality, 

different water types and bottom types. These were the three crucial problems that should 

be adequately investigated and addressed. The research was carried out step by step from 

simple models to advanced models in order to elucidate of these three problems.  Among 

the SDB models, single band based model rely on the assumptions that attenuation 

coefficient is constant and bottom types are homogenous. This ideal situation rarely meets 

in complex coastal water region. Since the single band based models are only suitable for 

unique coastal waters with homogenous bottom type, a multispectral band based models 

investigated for more complex coastal waters. The correction method has improved upon 

using SWIR band to overcome the above of mentioned problems. MLR-NIR models have 

shown an improvement in accuracy of the estimates but do not satisfactorily address the 

issues related to variations in bottom type and water quality. Thus, study proposed a local 

linear regression using GWR based models. Consequently, the derived SDB showi better 

estimates and satisfactorily addresses the spatial heterogeneity. Study evaluated in detail 

about the different approach of GWR based model and can be used in various coastal 

waters with suitable GWR approach.  
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Since GWR based SDB was found to be addressing low quality water and 

heterogeneity issues, it is concluded that GWR based SDB model as a reasonable 

solution. Research further examined the efficacy of the estimated SDB in ICRM and 

tsunami simulation as a key application scenario. An Open source GIS module has been 

developed and evaluated in order to apply the proposed SDB model easily in other study 

areas around the world. Improved SDB demonstrated in this study has potential to 

supplement conventional charting and bathymetric surveys. Further, if a generalized 

predictor can be developed and applied to multi-temporal imagery for multi-temporal 

bathymetry changes.  

6.2 Future perspectives 

The results of this study suggest a number of new avenues for future research. Passive 

remote sensing based SDB techniques cannot be applied in regions with cloud cover or 

highly turbid waters. Therefore, in such situation Wave Based Approach (WBA) models 

to retrieve bathymetry from swell waves shoaling and refraction phenomena can be used. 

Moreover, the work presented here was using only satellite images as a source of 

bathymetry estimation.  In addition to use only satellite images, research can use airborne 

UAV derived high resolution multi-spectral images. UAV-based approach can be 

effectively used to estimate multi-temporal SDB. Therefore the future perspective is to 

improve all aspect of the bathymetry estimation such as spatial resolution, spatial 

coverage and temporal resolution by using an integrated approach with passive satellite 

images, UAV images and SAR images. Either optical remote sensing or SAR remote 

sensing based methodology can be applied with respect to the coastal environment, and 

hence, we expect to produce coastal bathymetry even in a very complex coastal 

environment with wide coverage, which can really support further coastal 

research/application. 

Another concern of the future study is to deploy i.image.bathymetry as a Web 

Processing Service (WPS) to facilitate on-demand SDB data to the user without requiring 

them to have software and data locally. In case of Japan, low resolution (500 m) depth 

data (JDOS) are available as Open Data. JDOS depth data coupled with satellite images 
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like Landsat-8, ASTER and Sentinel-2 could be used to SDB as a service to users with 

limited expertise in Remote Sensing and geospatial analysis. GRASS GIS also offers a 

framework for parallel computing which may be useful when considering future 

implementation of SDB algorithm as a Web Service. 
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Figure 2.1: Study area, Ratnagiri, India (after Vinayaraj et al., 2015) 
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Figure 2.2: Study area, Taketomi Island, Japan 
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Figure 2.3: Schematic view of spectral radiance components observed using the visible sensor over optically shallow water (after 

Vinayaraj et al., 2016) 
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Figure 2.4: Flowchart of proposed models (after Vinayaraj et al., 2015) 
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(a)                                                                       (b) 

  
       (c)                                                                      

 

      (d) 

 

Figure 2.5: SDB by SLR method from Landsat-7, (a) depth for 09 May, 2012, (b) 

Transformed radiance of NIR band of 30 March, 2003, (c) SDB for 30 March, 2003 and 

(d) SDB for 08 May, 2000 (after Vinayaraj et al., 2015) 
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Figure 2.6: Bivariate Scatter plot between SDB from Landsat-8 and reference depth 

RBE, (a) 31 Jan, 2014; (b) 04 Mar, 2014 

 MLR, (c) 12 Nov, 2013; (e) 31 Jan, 2014; (g) 04 Mar, 2014 

 MLR-NIR, (d) 12 Nov, 2013; (f) 31 Jan, 2014;  (h) 04 Mar, 2014 (continued). 
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Figure 2.6: Bivariate scatter plot between SDB from Landsat-8 and reference depth.  

RBE, (a) 31 Jan, 2014; (b) 04 Mar, 2014 

 MLR, (c) 12 Nov, 2013; (e) 31 Jan, 2014; (g) 04 Mar, 2014 

 MLR-NIR, (d) 12 Nov, 2013; (f) 31 Jan, 2014;  (h) 04 Mar, 2014 
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(a)

 

(b)

 
Figure 2.7: Bivariate scatter plot of SDB from Landsat-8 (31 Jan, 2014) in terms turbidity 

(a) at high turbid (b) and low turbid region (after Vinayaraj et al., 2015) 

 
(a) 

 

(b) 

 
 (c) 

 

 (d)

 
Figure 2.8: Bivariate scatter plots between reference depth and SDB estimated with NIR 

and SWIR corrections at (a), (b): Taketomi and (c), (d): Ratnagiri, respectively. 
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Figure 3.1: Study area used in South-western Puerto Rico (after Vinayaraj et al., 2016)
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Figure 3.2: Workflow of the A-GWR model (after Vinayaraj et al., 2015) 
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(a) 

 

 

 

 

(b) 

 

Figure 3.3: (a)Trend lines of scatter plots of SDB (Landsat-8) from global model and 

LiDAR depth for different classes; (b) and density plot of differences between SDB and 

LiDAR depth (after Vinayaraj et al., 2016) 

 

 

 

 

 

(a) 

 

(b) 

 

Figure 3.4: (a)Trend lines of scatter plots of SDB (RapidEye) from global model and 

LiDAR depth for different classes; (b) and density plot of differences between SDB and 

LiDAR depth (after Vinayaraj et al., 2016) 
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Figure 3.5: SDB from Landsat-8 using 10,000 LiDAR depth points as calibration depth (after Vinayaraj et al., 2016) 
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Figure 3.6: Evaluation and comparison of SDB from Landsat-8 (a ), (b) and RapidEye 

(c), (d) images by A-GWR model (after Vinayaraj et al., 2016) 
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(a) 

 
(b) 

 

(c) 

 
(d) 

 

(e) 

 
(f) 

 

(g) 

 

Figure 3.7: Evaluation of SDB from Landsat-8 (b, d and f) and RapidEye (c, e and g) 

images by A-GWR model using random cross profiles (after Vinayaraj et al., 2016)
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Figure 3.8: Demonstration of LiDAR depth points distribution as in scenario-1 
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Figure 3.9: Demonstrate the arbitrary ship tracks for SDB in scenario-2 (after Vinayaraj et al., 2016) 
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(a) 

 

 

 

 

(b) 

 
Figure 3.10: Evaluation of SDB from Landsat-8 (a) and RapidEye (b) images with 

LiDAR depth for Scenario-1 using A-GWR model (after Vinayaraj et al., 2016) 

 

 

 

 

 

 

 

(a) 

 
 

(b) 

 

Figure 3.11: Evaluation of SDB from Landsat-8 (a) and RapidEye (b) images with 

LiDAR depth for Scenario-2 using A-GWR model (after Vinayaraj et al., 2016) 
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Figure 4.1: Study area parts of Miyagi prefecture, Japan 
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(a) 

 
(b) 

 
Figure 4.2: Evaluation of Tohoku tsunami simulation results. (a) Actual tsunami 

inundation extent, (b) simulation inundation extent (continued).  

 



 

77 

 

(a) 

 
(b) 

 

 
Figure 4.3: Evaluation of Tohoku tsunami simulation results. (a) survey tsunami 

inundation height points overlaid on simulated tsunami inundation height map (b) 

scatter plot between surveyed and simulated tsunami inundation height 
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Figure 5.1: Study area, Parts of Iwate prefecture, Japan. 
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Figure 5.2: Flowchart of workflow of i.image.bathymetry 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(d) 

 

(f) 

 

  

Figure 5.3: Screenshots demonstrate the processing of i.image.bathymetry, (a) required 
and, (b) optional band and flags selected for Fixed-GWR, (c) optimal bandwidth for 

Fixed-GWR, (d) optimal bandwidth for A-GWR (e) SDB from Fixed-GWR and (f) SDB 

from A-GWR
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Table 2.1: Characteristics of data used  

Date Source Tide(m) Res.(m) 

09-05-2012 Landsat-7 1.15 30 

27 May, 2012 In-situ depth 1.53-2.3 10 

30 Mar, 2003 Landsat-7 2 30 

2003 NHO chart (1:60,000) 2.3 30 

08 May, 2000 Landsat-7 1.36 30 

12 Nov, 2013 Landsat-88 1.255 30 

31 Jan, 2014 Landsat-8 2.40 30 

04 Mar, 2014 Landsat 8 1.66 30 

17 Nov, 2013 In-situ depth 2.24-2.16 7 

10 Dec, 2012 ASTER 1.03 15 

16 Jan, 2003 ASTER 1.8 15 

5 Apr, 2014 Landsat-8 1.37 30 

30 Nov, 2014 In-situ depth 0 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 82 

 

Table 2.2: The estimated multi-temporal SDB from various data sets using single spectral 

band model 

Data source Date Method R R2 RMSE 

Landsat-7 

09 May, 2012 SLR 0.67 0.46 2.14 

30 Mar, 2003 RBE 0.63 0.41 2.83 

8 May, 2000 RBE 0.74 0.56 2.88 

Landsat-8 

12 Nov, 2013 SLR 0.85 0.74 1.46 

31 Jan, 2014 RBE 0.89 0.81 1.39 

04 Mar, 2014 RBE 0.80 0.66 2.09 

ASTER 
10 Dec, 2012 SLR 0.70 0.50 2.10 

16 Jan, 2003 RBE 0.57 0.34 2.38 

 

 

 

 

Table 2.3: Comparison of accuracy of SDB from MLR and MLR-NIR 

Data source Date 
MLR MLR-NIR 

R R2 RMSE R R2 RMSE 

Landsat-7 

8 May, 2000 0.80 0.66 1.64 0.82 0.69 1.57 

30 Mar, 2003 0.65 0.44 2.44 0.77 0.61 2.07 

09 May, 2012 0.53 0.30 1.77 0.68 0.48 1.53 

Landsat-8 

12 Nov, 2013 0.91 0.84 1.77 0.95 0.91 1.53 

31 Jan, 2014 0.91 0.84 1.12 0.95 0.91 0.83 

04 Mar, 2014 0.85 0.74 1.43 0.90 0.83 1.23 

ASTER 
16 Jan, 2003 0.76 0.59 1.90 0.78 0.62 1.86 

10 Dec, 2012 0.69 0.50 1.75 0.76 0.60 1.56 
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Table 2.4: Comparison of accuracy of SDB estimated from Landsat-8 data in terms of 

turbidity 

Date Methods NDWI R R2 RMSE 

12 Nov, 2013 

RBE 
Low turbid 0.88 0.78 1.21 

High turbid 0.82 0.67 1.50 

MLR-NIR 
Low turbid 0.97 0.94 0.85 

High turbid 0.90 0.81 0.90 

31 Jan, 2014 

RBE 
Low turbid 0.82 0.68 1.27 

High turbid 0.77 0.60 1.36 

MLR-NIR 
Low turbid 0.95 0.91 0.97 

High turbid 0.84 0.71 1.65 

04 Mar, 2014 

RBE 
Low turbid 0.77 0.59 2.70 

High turbid 0.65 0.43 2.82 

MLR-NIR 
Low turbid 0.93 0.86 1.48 

High turbid 0.85 0.72 1.85 

 

 

 

 
Table 2.5: Comparison of SDB obtained from NIR and SWIR band correction methods 
Study area Correction band R R2  RMSE 

Taketomi 
SWIR 0.90 0.81 2.19 

NIR 0.87 0.77 2.42 

Ratnagiri 
SWIR 0.90 0.81 1.24 

NIR 0.85 0.74 1.38 
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Table 3.1: Characteristics of the data used 

Data Date  Res.(m) Estimation bands 
Correction 

band 

Landsat-8 25 Nov, 2013 30 

0.43-0.45µm (coastal) 

0.45-0.51µm (blue) 

0.53-0.59µm (green) 

0.64-0.67µm (red) 

0.85 - 0.88µm (NIR) 

1.57-1.65µm 

(SWIR) 

RapidEye 01 May, 2010 5  

0.44-0.51µm (blue) 

0.52-0.59µm(green) 

0.63-0.69µm (red) 

0.69-0.73µm (Red-edge) 

0.76-0.85µm 

(NIR) 

LiDAR 
07 Apr, 2006 –  

15 May, 2006 
4  0.523 µm 1.064µm 

 

 

 

 

Table 3.2: Comparison of accuracy of SDB from global model and class based model 

Satellite data 
Global model Class based model 

R R2 RMSE R R2 RMSE  

Landsat-8 0.88 0.78 2.63 0.94 0.90 1.70 

RapidEye 0.88 0.78 2.48 0.94 0.88 1.82 

 

 

 

Table 3.3: Comparison of accuracy of SDB from global, Fixed-GWR and A-GWR model 

Data 
Global model Fixed-GWR model A-GWR model 

R R2 RMSE R R2 RMSE R R2 RMSE 

Landsat-8 0.88 0.78 2.63 0.96 0.93 1.41 0.98 0.95 1.13 

RapidEye 0.88 0.78 2.48 0.98 0.96 1.06 0.99 0.99 0.41 
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Table 3.4: Statistics of differences for each cross-shore profile (A-B, C-D and E-F) 

Data Profile 

LiDAR A-GWR model Comparison 

N Min Max Mean STD N Min Max Mean STD R R2 RMSE 

Landsat-8 

A-B 240 2.71 19.65 11.68 4.08 240 2.97 19.57 11.68 4.02 0.99 0.99 0.29 

C-D 127 2.85 20.00 15.23 5.47 127 1.94 19.58 15.08 5.43 0.99 0.98 0.85 

E-F 181 4.56 18.61 13.53 2.85 181 3.94 19.32 13.63 2.99 0.92 0.95 0.84 

RapidEye 

A-B 502 2.65 19.79 11.77 4.11 502 2.70 19.79 11.78 4.11 0.99 0.99 0.21 

C-D 480 2.92 20.00 14.95 5.65 480 2.96 19.97 14.77 5.68 0.99 0.99 0.29 

E-F 502 5.21 18.70 13.72 2.61 502 5.36 18.56 13.77 2.56 0.97 0.95 0.59 
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Table 3.5: Comparison of accuracy in each regular depth categories from A-GWR model. 

Data  1-5m 5-10m 10-15m 15-20m 20-25m 

Landsat-8 

N 21919 29126 45064 77829 35359 

R 0.73 0.77 0.73 0.74 0.63 

R2 0.53 0.59 0.54 0.54 0.39 

RMSE 0.92 1.18 1.26 1.09 1.50 

RapidEye 

N 1005762 1013220 1269665 2118627 1313220 

R 0.97 0.93 0.89 0.90 0.78 

R2 0.95 0.88 0.80 0.82 0.62 

RMSE 0.33 0.53 0.69 0.62 2.01 

 

 

 

 

Table 3.6: Comparison of SDB was from A-GWR based model from Scenario-1 and 

Scenario-2 

Scenarios 
Landsat-8 RapidEye 

R R2 RMSE R R2 RMSE 

Scenario-1 0.96 0.94 1.38 0.97 0.95 1.55 

Scenario-2 0.96 0.93 1.40 0.96 0.92 1.44 

 

 

 

 

Table 4.1: Characteristics of data used 

Data Date Res.(m) Estimation bands Correction band 

ASTER 10 Sep, 2010 15 
0.52 - 0.60µm (green) 

0.63 - 0.69µm (red) 
0.76 - 0.86 µm 

(NIR) 

JDOC Before 1998 500   
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Table 5.1: Characteristics of data used 

Data Date Res.(m) Estimation bands Correction band 

Landsat-8 31 Oct, 2014 30  

0.43-0.45µm (coastal) 

0.45-0.51µm (blue) 

0.53-0.59µm (green) 

0.64-0.67µm (red) 

0.85 - 0.88µm (NIR) 

1.57-1.65µm (SWIR) 

Sentinel-2 

 

 

25 Dec, 2015 

 

 

10 

10 

10 

20 

20 

10 

0.49µm (blue) 

0.56µm(green) 

0.66µm (red) 

0.70µm (Red-edge) 

0.74µm (Red-edge) 

0.84µm (NIR) 

1.61µm (SWIR) 

LiDAR 07 Apr, 2006 - 15 May, 2006 4 0.52µm 1.06µm 

SoNAR 10 Jun, 2012 2   
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Table 5.2: Performance of i.image.bathymetry in case studies 1, 2 and 3 

 

Area 

 

Data 

 

Kernel  

 

GWR model 

 

Time(minute) 

SDB results 

R R2 RMSE 

 

Puerto Rico 

 

Sentinel-2 

Gaussian 
Fixed-GWR 2.22 0.99 0.98 0.67 

A-GWR 180 0.99 0.98 0.62 

Bi-square 
Fixed-GWR 2.24 0.99 0.98 0.64 

A-GWR 184 0.99 0.99 0.61 

 

Miyagi 

 

ASTER 

Gaussian 
Fixed-GWR 3.02 0.91 0.83 1.93 

A-GWR 265 0.89 0.80 2.20 

Bi-square 
Fixed-GWR 3.08 0.93 0.87 1.65 

A-GWR 255 0.91 0.84 1.95 

 

Iwate 

 

Landsat-8 

Gaussian 
Fixed-GWR 2.50 0.86 0.74 2.91 

A-GWR 6.00 0.96 0.93 1.54 

Bi-square 
Fixed-GWR 2.50 0.88 0.77 2.77 

A-GWR 5.55 0.97 0.94 1.50 
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Appendix  

As mentioned in the Chapter Five, i.image.bathymetry the module developed using 

python GRASS scripting as shown below. The script is also available in GRASS GIS 

SVN repository. i.image.bathymetry can be considered as the first Open Source SDB 

module.  Like all the GRASS GIS module i.image.bathymetry uses the GRASS parser 

mechanism. This very advanced parser helps to check the user input format and 

optionally create a graphical user interface for the module. In Python, parser() function 

used to call the parser from grass.script package. These comments start with #% and can 

be referred to as interface definition comments. 

 

#!/usr/bin/env python 

 

########################################################################

### 

# 

# MODULE: i.image.bathymetry 

# AUTHOR(S): Vinayaraj Poliyapram <vinay223333@gmail.com> and Luca Delucchi 

# PURPOSE:   Script for estimating bathymetry from optical satellite images 
# COPYRIGHT: (C) Vinayaraj Poliyapram and by the GRASS Development Team 

#               This program is free software under the GNU General 

#               Public License (>=v2). Read the file COPYING that 

#               comes with GRASS for details. 

# 

########################################################################

### 

 

# Input parameters and flags definition 
#%module 

#% description: Estimates Satellite Derived Bathymetry (SDB) from multispectral 

images. 

#% keyword: imagery 

#% keyword: bathymetry 

#% keyword: satellite 

#%end 

#%option G_OPT_R_INPUT 

#% key: blue_band 
#%required: no 

#%end 

#%option G_OPT_R_INPUT 

#% key: green_band 

#%required: yes 
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#%end 

#%option G_OPT_R_INPUT 

#% key: red_band 

#%required: yes 

#%end 
#%option G_OPT_R_INPUT 

#% key: nir_band 

#%required: yes 

#%end 

#%option G_OPT_R_INPUT 

#% key: band_for_correction 

#%required: yes 

#%end 

#%option G_OPT_V_INPUT 
#% key: calibration_points 

#%required: yes 

#%end 

#%option G_OPT_V_INPUT 

#% key: area_of_interest 

#%required: no 

#%end 

#%option G_OPT_R_INPUT 

#% key: additional_band1 
#%required: no 

#%end 

#%option G_OPT_R_INPUT 

#% key: additional_band2 

#%required: no 

#%end 

#%option G_OPT_R_INPUT 

#% key: additional_band3 

#%required: no 

#%end 

#%option G_OPT_R_INPUT 

#% key: additional_band4 

#%required: no 

#%end 

#%option G_OPT_R_OUTPUT 

#% key: depth_estimate 

#%required: yes 

#%end 
#%option 

#% key: tide_height 

#%type: double 

#%multiple: no 

#%required: no 

#%description: Tide correction to the time of satellite image capture 

#%end 
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#%option G_OPT_DB_COLUMN 

#% key: calibration_column 

#%required: yes 

#%description: Name of the column which stores depth values 

#%end 
#%flag 

#%key: f 

#%description: select if only want to run Fixed-GWR model 

#%end 

#%flag 

#%key: b 

#%description: select kernel function as bi-square 

#%end 

 

# importing required python libraries 

import atexit 

import grass.script as g 

from grass.pygrass.raster import RasterRow 

import subprocess 

import os 

crctd_lst = [] 

 

# Define the input option names 
def main(): 

    options, flags = g.parser() 

 

    Blue = options['blue_band'] 

    Green = options['green_band'] 

    Red = options['red_band'] 

    NIR = options['nir_band'] 

    SWIR = options['band_for_correction'] 

    Calibration_points = options['calibration_points'] 

    Area_of_interest = options['area_of_interest'] 

    Additional_band1 = options['additional_band1'] 

    Additional_band2 = options['additional_band2'] 

    Additional_band3 = options['additional_band3'] 

    Additional_band4 = options['additional_band4'] 

    bathymetry = options['depth_estimate'] 

    tide_height = options['tide_height'] 

    calibration_column = options['calibration_column'] 

    bisquare = flags['b'] 
    fixed_GWR = flags['f'] 

 

    # setting the grass region same as input spectral band 

    res = g.parse_command('g.region', raster=Green, flags='g') 

    g.run_command('v.to.rast', input=Calibration_points, type='point', 

                  use='attr', attribute_column=calibration_column, 

                  output='tmp_Calibration_points') 
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    # hull generation from calibration depth points 

    g.run_command('v.hull', input=Calibration_points, output='tmp_hull', 

                  overwrite=True) 

    # buffer the hull to ceate a region for including all calibration points 

    g.run_command('v.buffer', input='tmp_hull', output='tmp_buffer', 
                  distance=float(res['nsres']), overwrite=True) 

    # applying tide correction 
    if tide_height: 

        cal = g.parse_command('r.univar', map='tmp_Calibration_points', 

                              flags='g') 

        if float(cal['min']) >= 0: 

            t = float(tide_height) 

            g.mapcalc(exp="{d}=({d}+float({t}))".format(d='tmp_Calibration_points', 

                                                        t=t), 
                      overwrite=True) 

        if float(cal['min']) < 0: 

            t = float(tide_height) * -1 

            g.mapcalc(exp="{d}=({d}+float({t}))".format(d='tmp_Calibration_points', 

                                                        t=t), 

                      overwrite=True) 

    # estimating band ratio 

    g.mapcalc(exp="{tmp_ratio}=({Green}/{SWIR})".format(tmp_ratio='tmp_ratio', 

              Green=Green, SWIR=SWIR)) 

    # estimating NDVI 
    g.mapcalc(exp="{tmp_NDVI}=float({NIR}-{Red})/float({NIR}+{Red})" 

              .format(tmp_NDVI='tmp_NDVI', NIR=NIR, Red=Red)) 

    g.mapcalc(exp="{tmp_water}=if({tmp_ratio} < 1, null(), if({tmp_NDVI} <" 

                  "0, {tmp_ratio}, null()))".format(tmp_NDVI='tmp_NDVI', 

                                                    tmp_water='tmp_water', 

                                                    tmp_ratio='tmp_ratio')) 

    g.run_command('r.mask', raster='tmp_water', overwrite=True) 

    li = [Green, Additional_band1, Additional_band2, Additional_band3, 

          Additional_band4, Blue, Red] 

    for i in li: 

        j, sep, tail = i.partition('@') 

        tmp_ = RasterRow(str(i)) 

        if tmp_.exist() is False: 

            continue 

        g.message("Ditermining minimum value for %s" % i) 

        g.run_command('g.region', vector=Calibration_points) 

        # ignore zero values may be available in the DN value 
        g.mapcalc(exp="{tmp_b}=if({x}>1, {x},null())".format(tmp_b='tmp_b', 

                  x=str(i)), overwrite=True) 

        tmp_AOI = g.parse_command('r.univar', map='tmp_b', flags='g') 

        tmp_AOI_min = float(tmp_AOI['min']) 

        g.run_command('g.region', raster=Green) 

        try: 

            # estimate the deep water pixels 
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            g.mapcalc(exp="{tmp_deep}=if({tmp_band}<{band_min}, {tmp_band}," 

                          "null())".format(tmp_deep='tmp_deep', 

                                           band_min=tmp_AOI_min, 

                                           tmp_band=str(i)), 

                          overwrite=True) 
            g.run_command('r.mask', raster='tmp_deep', overwrite=True) 

            tmp_coe = g.parse_command('r.regression.line', mapx=SWIR, 

                                      mapy=str(i), flags='g') 

            g.message("Deep water ditermination for %s" % i) 

 

            # bathymetry to be estimated in the area which user provided as polygon file 
            if Area_of_interest: 

                g.run_command('r.mask', vector=Area_of_interest, overwrite=True) 

                g.run_command('g.region', vector=Area_of_interest) 
            else: 

                # bathymetry to be estimated in the area according to the calibration points 
                g.run_command('r.mask', vector='tmp_buffer', overwrite=True) 

                g.run_command('g.region', vector=Calibration_points) 

            # atmospheric and water corrections using infrared band 

            g.mapcalc(exp="{tmp_crct}=log({tmp_band}-{a}-{b}*{SWIR})" 

                          .format(tmp_crct='tmp_crct' + str(j), 

                                  tmp_band=str(i), a=float(tmp_coe['a']), 

                                  b=float(tmp_coe['b']), SWIR=SWIR), 
                           overwrite=True) 

            g.run_command('r.mask', raster='tmp_water', overwrite=True) 

            g.mapcalc("{tmp_crctd} = ({tmp_crct} * 1)" 

                      .format(tmp_crct='tmp_crct'+str(j), tmp_crctd='tmp_crctd' + str(j))) 

        except: 

           # if the deep water pixels are not included in the satellite image, correction will 

be carried out with  using deep water coefficients 
            g.message("Cannot find deep water pixels") 

            if Area_of_interest: 

                g.run_command('r.mask', vector=Area_of_interest, overwrite=True) 

                g.run_command('g.region', vector=Area_of_interest) 

            else: 

                g.run_command('r.mask', vector='tmp_buffer', overwrite=True) 

                g.run_command('g.region', vector=Calibration_points) 

            g.mapcalc(exp="{tmp_crct}=log({tmp_band}-{a}-{b}*{SWIR})" 

                          .format(tmp_crct='tmp_crct' + str(j), 

                                  tmp_band=str(i), a=float(tmp_coe['a']), 

                                  b=float(tmp_coe['b']), SWIR=SWIR), 
                           overwrite=True) 

            g.run_command('r.mask', raster='tmp_water', overwrite=True) 

            g.mapcalc("{tmp_crctd} = ({tmp_crct} * 1)" 

                      .format(tmp_crct='tmp_crct'+str(j), tmp_crctd='tmp_crctd' + str(j))) 

        crctd_lst.append('tmp_crctd' + str(j)) 

    # if user selected –f flag for fixed-GWR based SDB model 
    if fixed_GWR: 
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        if not g.find_program('r.gwr', '--help'): 

            g.run_command('g.extension', extension='r.gwr') 

        if bisquare: 

            g.message("Calculating optimal bandwidth using bisqare kernel...") 

            bw = g.parse_command('r.gwr', mapx=crctd_lst, 
                                 mapy='tmp_Calibration_points', 

                                 kernel='bisquare', flags='ge') 

            g.message("Running Fixed-GWR using bisqare kernel...") 

            g.run_command('r.gwr', mapx=crctd_lst, 

                          mapy='tmp_Calibration_points', 

                          estimates='tmp_bathymetry', kernel='bisquare', 

                          bandwidth=int(bw['estimate'])) 

        else: 

            g.message("Calculating optimal bandwidth using gaussian kernel...") 
            bw = g.parse_command('r.gwr', mapx=crctd_lst, 

                                 mapy='tmp_Calibration_points', flags='ge') 

            g.message("Running Fixed-GWR using gaussian kernel...") 

            g.run_command('r.gwr', mapx=crctd_lst, 

                          mapy='tmp_Calibration_points', 

                          estimates='tmp_bathymetry', 

                          bandwidth=int(bw['estimate'])) 

    else: 

        global r 
        global predict 

        try: 

            # in case A-GWR model use GWmodel in R 

            r = g.tempfile() 

            r_file = open(r, 'w') 

            # check if R libraries installed in the if not install 
            libs = ['GWmodel', 'data.table', 'rgrass7', 'rgdal', 'raster'] 

            for i in libs: 

                install = 'if(!is.element("%s", installed.packages()[,1])){\n' % i 

                install += "cat('\\n\\nInstalling %s package from CRAN\n')\n" % i 

                install += "if(!file.exists(Sys.getenv('R_LIBS_USER'))){\n" 

                install += "dir.create(Sys.getenv('R_LIBS_USER'), recursive=TRUE)\n" 

                install += ".libPaths(Sys.getenv('R_LIBS_USER'))}\n" 

                install += 'install.packages("%s", repos="http://cran.us.r-' \ 

                   'project.org")}\n' % i 

                r_file.write(install) 

                libraries = 'library(%s)\n' % i 

                r_file.write(libraries) 
            Green_new, sep, tail = Green.partition('@') 

            r_file.write('grass_file = readRAST("tmp_crctd%s")\n' % Green_new) 

            r_file.write('raster_file = raster(grass_file)\n') 

            frame_file = 'pred = as.data.frame(raster_file,na.rm = TRUE,xy = TRUE)\n' 

            r_file.write(frame_file) 

            for i in li: 

                j, sep, tail = i.partition('@') 
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                Green_new, sep, tail = Green.partition('@') 

                tmp_ = RasterRow(str(i)) 

                if tmp_.exist() is False: 

                    continue 

               # exports files from GRASS to R 
                r_file.write('grass_file = readRAST("tmp_crctd%s")\n' % j) 

                r_file.write('raster_file = raster(grass_file)\n') 

                r_file.write('frame_pred%s = as.data.frame(raster_file, na.rm = TRUE,' 

                             'xy = TRUE)\n' % j) 

                pred_file = 'frame_pred_green=data.frame(frame_pred%s)\n' % Green_new 

                pred_file += 'pred=merge(pred, frame_pred%s)\n' % j 

                r_file.write(pred_file) 

                g.run_command('r.mask', raster='tmp_Calibration_points', 

                                          overwrite=True) 
                r_file.write('grass_file=readRAST("%s")\n' % 'tmp_Calibration_points') 

                r_file.write('raster_file = raster(grass_file)\n') 

                frame_file = 'calib = as.data.frame(raster_file,na.rm = TRUE ,' \ 

                     'xy = TRUE)\n' 

                r_file.write(frame_file) 

            # creating independent variables for GWmodel processing 
            for i in li: 

                j, sep, tail = i.partition('@') 

                tmp_ = RasterRow(str(i)) 
                if tmp_.exist() is False: 

                    continue 

                r_file.write('grass_file = readRAST("tmp_crctd%s")\n' % j) 

                r_file.write('raster_file = raster(grass_file)\n') 

                r_file.write('frame_ref%s = as.data.frame(raster_file,na.rm = TRUE,' \ 

                     'xy = TRUE)\n' % j) 

                ref_file = 'calib = merge(calib, frame_ref%s)\n' % j 

                r_file.write(ref_file) 

            g.run_command('g.remove', type='raster', pattern='MASK', flags='f') 

            ref_file = 'Rapid_ref.sdf=SpatialPointsDataFrame(calib[,1:2],calib)\n' 

            ref_file += 'Rapid_pred.sdf=SpatialPointsDataFrame(pred[,1:2],' \ 

                    'pred)\n' 

            ref_file += 'DM_Rapid_ref.sdf=gw.dist(dp.locat=coordinates' \ 

                    '(Rapid_ref.sdf))\n' 

            r_file.write(ref_file) 

            l = [] 

            predict = g.read_command("g.tempfile", pid=os.getpid()).strip() + '.txt' 

            # join the corrected bands in to a string 
            le = len(crctd_lst) 

            for i in crctd_lst: 

                l.append(i) 

                k = '+'.join(l) 

            if bisquare: 

                # bi-square Adaptive kernel processing 
                ref_flag = "cat('\nCalculating optimal bandwidth using " \ 
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                       "bisquare kernel..\n')\n" 

                ref_flag += 'BW_Rapid_ref.sdf=bw.gwr(tmp_Calibration_points~%s,' \ 

                        'data=Rapid_ref.sdf, kernel="bisquare",' \ 

                        'adaptive=TRUE, dMat=DM_Rapid_ref.sdf)\n' % k 

                ref_flag += "cat('\nCalculating euclidean distance\n')\n" 
                ref_flag += 'DM_Rapid_pred.sdf=gw.dist(dp.locat=coordinates' \ 

                        '(Rapid_ref.sdf), rp.locat=coordinates' \ 

                        '(Rapid_pred.sdf))\n' 

                ref_flag += "cat('\nRunning A-GWR using bisquare kernel\n')\n" 

                ref_flag += 'GWR_Rapid_pred.sdf=gwr.predict(tmp_Calibration_poi' \ 

                        'nts~%s,data=Rapid_ref.sdf, bw = BW_Rapid_ref.sdf,' \ 

                        'predictdata = Rapid_pred.sdf, kernel = "bisquare",' \ 

                        'adaptive = TRUE, dMat1 = DM_Rapid_pred.sdf,' \ 

                        'dMat2 = DM_Rapid_ref.sdf)\n' % k 
                r_file.write(ref_flag) 

            if not bisquare: 

                # gaussian Adaptive kernel processing 
                ref_fla = "cat('\nCalculating optimal bandwidth using " \ 

                         "gaussian kernel..\n')\n" 

                ref_fla += 'BW_Rapid_ref.sdf=bw.gwr(tmp_Calibration_points~%s,' \ 

                       'data=Rapid_ref.sdf, kernel="gaussian",' \ 

                       'adaptive=TRUE, dMat= DM_Rapid_ref.sdf)\n' % k 

                ref_fla += "cat('\nCalculating euclidean distance\n')\n" 
                ref_fla += 'DM_Rapid_pred.sdf=gw.dist(dp.locat=coordinates' \ 

                       '(Rapid_ref.sdf), rp.locat=coordinates' \ 

                       '(Rapid_pred.sdf))\n' 

                ref_fla += "cat('\nRunning A-GWR using gaussian kernel\n')\n" 

                ref_fla += 'GWR_Rapid_pred.sdf = gwr.predict(tmp_Calibration_poi' \ 

                       'nts~%s,data=Rapid_ref.sdf, bw=BW_Rapid_ref.sdf,' \ 

                       'predictdata = Rapid_pred.sdf, kernel = "gaussian",' \ 

                       'adaptive = TRUE, dMat1 = DM_Rapid_pred.sdf,' \ 

                       'dMat2 = DM_Rapid_ref.sdf)\n' % k 

                r_file.write(ref_fla) 

            ref_fil = 'Sp_frame = as.data.frame(GWR_Rapid_pred.sdf$SDF)\n' 

            r_file.write(ref_fil) 

            # export estimated depth to a grass temporary file 
            export = 'write.table(Sp_frame, quote=FALSE, sep=",",' \ 

                         '"%s")\n' % predict 

            r_file.write(export) 

            r_file.close() 

            subprocess.check_call(['Rscript', r], shell=False) 
            g.run_command('r.in.xyz', input=predict, 

                      output='tmp_bathymetry', skip=1, separator=",", 

                      x=(int(le) + 5), y=(int(le) + 6), z=(int(le) + 3), 

                      overwrite=True) 

        except subprocess.CalledProcessError: 

            g.message("Integer outflow... ") 

           # check if r.gwr addon installed and if not install 
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            if not g.find_program('r.gwr', '--help'): 

                g.run_command('g.extension', extension='r.gwr') 

            if bisquare: 

                # bi-square Fixed kernel processing 
                g.message("Running Fixed-GWR using bisqare kernel...") 
                bw = g.parse_command('r.gwr', mapx=crctd_lst, 

                                 mapy='tmp_Calibration_points', 

                                 kernel='bisquare', flags='ge') 

                g.run_command('r.gwr', mapx=crctd_lst, 

                          mapy='tmp_Calibration_points', 

                          estimates='tmp_bathymetry', kernel='bisquare', 

                          bandwidth=int(bw['estimate'])) 

            else: 

                # gaussian Fixed kernel processing 
                g.message("Running Fixed-GWR using gaussian kernel...") 

                bw = g.parse_command('r.gwr', mapx=crctd_lst, 

                                 mapy='tmp_Calibration_points', flags='ge') 

                g.run_command('r.gwr', mapx=crctd_lst, 

                          mapy='tmp_Calibration_points', 

                          estimates='tmp_bathymetry', 

                          bandwidth=int(bw['estimate'])) 

    tmp_rslt_ext = g.parse_command('r.univar', map='tmp_Calibration_points', 

                                   flags='g') 
    g.mapcalc(exp="{bathymetry}=if({tmp_SDB}>{max_}, null()," 

                  "if({tmp_SDB}<{min_}, null(), {tmp_SDB}))".format 

                  (tmp_SDB='tmp_bathymetry', bathymetry=bathymetry, 

                   max_=float(tmp_rslt_ext['max']), 

                   min_=float(tmp_rslt_ext['min']))) 

 

 

def cleanup(): 

    # clean the temp files 
    g.run_command('g.remove', type='raster', name='MASK', flags='f') 

    g.run_command('g.remove', type='all', pattern='*tmp*', flags='f') 

    try: 

        g.try_remove(predict) 

        g.try_remove(r) 

    except: 

        pass 

 

if __name__ == '__main__': 
    atexit.register(cleanup) 

    main() 


