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Preface

This study was undertaken at Osaka City University, Graduate School of Science during 2013 to 2017
academic year under the supervision of Professor Kazunobu Sato and Professor Emeritus Takeji Takui.
This doctoral thesis is presented by the author in partial fulfillment of the requirements of Graduate

School of Science for the Degree of Doctor of Science at Osaka City University.

Since Zavoisky measured for the first time an electron spin resonance (ESR) signal of a copper ion, a
vast number of ESR spectra have been reported for organic and inorganic substances. Especially, ESR
spectra for metallocomplexes show various line shapes of signals, which reflect the differences of
environments around the metal sites and metals themselves with unpaired electrons, i.e., the electronic
structures featuring in their electronic spin states. Therefore, ESR spectroscopy has extensively been
applied to open shell metals in proteins at an early stage in its development (for example, even a single-
crystal study on hemoglobin or myoglobin), and now widely extended to single-molecule magnets,
catalysts and molecular spin qubits, etc. Magnetic tensors can afford quantum-chemically essential
information on the electronic structures of targeting open shell compounds, such as g- (electronic-spin
interactions with an external magnetic field), A- (hyperfine, electronic-spin interactions with non-zero
nuclear spins) and D-tensors (zero-field splitting as abbreviated to ZFS, electronic-spin interactions
between electron spins or with orbitals, vanishing for S = 1/2). In high spin systems (S > 1), the ZFS
tensor is essentially important since they can be sensitive to the symmetry of the metallionic site, which is
governed by ligands, particularly binding ligands in metallocomplexes. A role or quantitatively evaluated
contribution of spin—orbit interactions to the ZFS tensors has been a long-standing issue in chemistry, and
nowadays the possible tuning of the spin—orbit couplings by exploiting molecular optimization is the
focus of advanced molecule-based magnetism and various realms of electron spin science and technology
such as rational molecular designs for g-engineered molecular qubits. The energy gap generated by ZFS
often exceeds the energy of the irradiated microwave for ESR transitions, simply because ZFS mainly
originates in the spin—orbit couplings in high spin metalloion complexes. When this is the case for half-
integer spins, ESR transition can occur between the same Kramers doublet £Ms (Ms= S, S -1, ... =S),
and the analyses using effective or fictitious spin-1/2 approaches give effective g-values (geff), where only
allowed Ms = +1/2 transitions give implicit information on the contributions from the ZFS tensors and
true g-tensors, resulting in geff > 2 without explicitly providing us with magnetic parameters relevant to
the ZFS tensors. Recent progress in quantum chemical calculations enables us to compare the experiment
with the theory in terms of detailed electronic structures governed by electrostatic interactions and spin—
orbit couplings in metallocomplexes of their well-defined molecular structures. In this context,
experimentally determined true g-tensors together with any significant physical quantities relevant to the
ZFS tensors are required for high spin systems with sizable ZFS parameters. From the experimental
viewpoint such as ESR spectral analyses, spectral simulations can deal with full spin Hamiltonians
incorporating appropriate ZFS terms, which the fictitious spin-1/2 approaches neglect. On the other hand,
the spin-1/2 approaches can afford the geff-values in a straightforward manner without any ambiguity due
to overparameterization. Thus, if the exact analytical relationships which can be bridged between the geff
and gtrue-values are available, the relationships and relevant analytical formulas will give a facile useful

method and significantly contribute to development in chemistry or materials science dealing with open



shell high spin metallocomplexes and biological science. The author has noticed that recent remarkable
advance in high-field/high-frequency ESR spectroscopy can afford the reliable experimental
determination fo the sizable ZFS tensors and the high-field/high-frequency scheme has its own right in
spite of the difficulties in having access to the facilities. Thus, importantly the author emphasizes that the
present method is free from the magnitude of static magnetic fields and microwave frequencies relevant
to resonance fields. Even the zero or low magnetic fields except for the intrinsic sensitivity given in
conventional X-band experiments with bipolar static magnetic field swept themes serve for key
transitions. The present method does not require sophisticated experimental setups. From the theoretical
viewpoint, however the method requires exact or extremely accurate analytical expressions for ESR
transitions of high spin systems with sizable ZFS tensors, which should be included in an appropriate full
spin Hamiltonian such as a Hamiltonian with rank-2 ZFS/fine-structure tensor terms + electronic Zeeman
interaction terms. Once the exact analytical expressions are acquired, the exact (or extremely accurate)
analytical formulas for the gefi—gtrue relationships as a function of the ZFS tensor are derived, affording the
conversion of the effective g-values into the corresponding true g-values. The relationships can be
describable as a function of the ratio of the ZFS parameters, £/D (= 4), where 31 denotes the asymmetric
parameter of the rank-2 ZFS tensor. To the author’s knowledge, the exact analytical approach above has
been documented only for S = 3/2. A similar approach based on the numerical diagonalization of the spin
Hamiltonian with the ZFS/fine-structure terms and electronic Zeeman terms has been reported S = 3/2
and 5/2. The author has for the first time exactly and analytically solved the eigenvalue/eigenfunction
problems of the rank-2 ZFS/fine-structure tensor spin Hamiltonians with electronic Zeeman interactions
for §’s greater than S = 3/2 and derived the geff—gtrue relationships for high spin states with S’s up to S =
7/2. The analytical formulas for the relationships are general and can afford the conversion of the
experimentally determined effective g-values into the true g-values, with which reliable quantum
chemical calculations can be compared in order to get insights into the electronic structures of open shell
high spin systems.

From the viewpoint of providing a facile and general method to analyze sizable ZFS tensors, the
author has demonstrated that the large ZFS parameters can quantitatively be evaluated by using of
conventional ESR spectroscopy, exemplifying three important cases of an Felll(Cl)porphyrin in the sextet
ground state, Collporphyrin in the quartet ground state and rhenium(I'V) mononuclear and rhenium(I1L,IV)
binuclear complexes in the mixed-valence state. The author has emphasized that the possible spectral
assignment of off-principal axis peaks (off-axis extra peaks/lines) is important to accurately evaluate the
ZFS parameters and g-values and the present method can afford the differentiation between the canonical
and off-axis peaks, which avoids ambiguous or misassignment of spectral transitions for unknown peaks:
Any fine-structure canonical peaks can be assignable by using their exact analytical formulas.

The author has also for the first time derived the general relationships between the effective spin-1/2
g-values and true g-values based on the genuine Zeeman perturbation treatment, in which the electronic
Zeeman terms are treated as the perturbation to the second/third order and the rank-2 ZFS-tensor energy
matrixes including the off-diagonal ones are analytically diagonalized by invoking the symmetry
properties of spin functions. The use of the symmetry reduces the overall size of the dimension of the
energy matrixes, enabling us to analytically solve the corresponding eigenvalue/eigenfunction problems.
The easy-to-access relationships are derived for S’s up to S = 7/2, comparing the perturbation with the
exact numerical results to estimate the accuracy. The genuine Zeeman perturbation formalism gives the

exact solutions for S = 3/2 and for higher S’s it is much more accurate than the pseudo Zeeman
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perturbation approaches documented so far (A. Abragam, B. Bleaney, Electron paramagnetic Resonance
of Transition Metal lons, 1970; J. R. Pilbrow, J. Magn. Reson. 1978, 31, 479; F. Trandafir et al., Appl.
Magn. Reson. 2007, 31, 553; M. Fittipaldi, et al., J. Phys. Chem. B 2008, 112, 3859), in which the E(S,2 —
Sy2) term described in the principal coordinate system is putatively treated to the second order. The error
between the exact and approximate solutions and the transition probabilities between |+Ms>-dominant
transitions are also estimated. These topics are discussed in Chapter 2.

In Chapter 3, the analysis of single-crystal ESR spectra from high spin cobalt(Il) and iron(III)
metalloporphyrins (S = 3/2 and 5/2, respectively) magnetically diluted in the corresponding diamagnetic
Ni(II)porphyrin crystals are described, determining all the magnetic tensors appearing th efictitious
spin-1/2 or full spin Hamiltonians. The author has empowered the analyses of high spin ESR spectra
originating in sizable ZFS parameters by invoking the full spin Hamiltonians having the ZFS tensors
which are neglected in the effective (fictitious spin-1/2) spin Hamiltonian approaches. The usefulness of
pulse-based transient electron nutation spectroscopy in order to assign the ESR transitions for the iron
porphyrin system has been demonstrated.

In Chapter 4, the author has revealed the magnetic properties of a new rhenium(IV) mononuclear
complex and rhenium(IIL,IV) binuclear complexes in the mixed-valence state with large ZFS parameters
by using of single-crystal ESR spectroscopy in the principal-axis coordinate system and SQUID
measurements. The Re!V moiety in the binuclear complexes is ESR active, while the Relll unit is found to
have a singlet ground state with an excited triplet state located above at least 500 cm-!. The ZFS and
hyperfine tensors of RelV complexes in the pseudo-octahedral environment have been a long-standing
issue and the determination of the ZFS parameters is the focus of current subjects in advanced physical
chemistry and materials science. Both experimentally and theoretically, the present results of the magnetic
tensors will contribute to further progress in chemistry of rhenium complexes.

In this work, sophisticated quantum chemical calculations including relativistic effects have been
carried out for the high spin metallocomplexes under study in order to obtain the theoretical magnetic
tensors, comparing the experimental values derived on the basis of the spectral analyses with the full spin
Hamiltonians. The author has invoked the updated quantum chemical calculation approach instead of
traditional/conventional ligand field theory/fictitious spin-1/2 approaches such as Griffith Hamiltonian
incorporating spin—orbit interactions to interpret the experimental values in terms of quantum chemistry.
The author has tested the quantum chemical calculations, whose coded software has been laboratory

made.
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Chapter 1: General Introduction



Metallocomplexes have a lot of crucial functions (metabolism, respiration, synthesis, etc.) as proteins
and enzymes in our bodies. Countless combinations of metals and ligands generate vast numbers of
complexes.

Molecules with unpaired electron(s) can be observed by using of ESR spectroscopy. The studies of
electronic structures and spin dynamics of metallocomplexes with unpaired electrons are the subjects of
ESR spectroscopy. [1-8] ESR spectroscopy is applicable to various systems (e.g., materials, [8,9-11]
devices, [12] catalysts, [13] proton-electron dynamics [14] and biological systems [6,15,16]) and samples
(single-crystal, poly crystal, powder, solutions). ESR spectra give us a lot of information on the static or
dynamic characters of molecules or the environments around paramagnetic centers through the magnetic
tensors such as g-, hyperfine A-, zero-field splitting (ZFS) D- and quadrupole Q-tensors. The magnetic
tensors (usually as a form of 3 x 3 matrix or merely the principal values) are obtained with the
diagonalization or perturbation treatment of the effective spin Hamiltonian (Eq. (1.1)). [17]

H=[S+g*B+SD+S+S<Ael-f g I+B+1:Q-1 (1.1)
The first term is electron-Zeeman interaction (S is electron spin-operator, B is the static magnetic vector,
f is Bohr magneton). The second term is known as fine-structure or ZFS term. The third term is hyperfine
interaction (f is nuclear spin-operator).The fourth term is nuclear-Zeeman interaction (. is nuclear Bohr
magneton and gy is nuclear g-value). The last term is nuclear electric quadrupole interaction which can be
included when 7 > 1. Note that the higher order terms such as S;252 are not concerned throughout this
work.

Not only the continuous wave (cw-)ESR spectroscopy but also relevant pulsed or double resonance
technology can afford to reveal the magnetic structures of metallocomplexes. The pulsed electron
transient nutation spectroscopy allows us to determine the Ms-sublevels contributing to ESR transitions.
[18] The determination of the ground spin-state can be a matter of the design and the reaction of catalysts.
[19] Electron-nuclear double resonance (ENDOR) spectroscopy [1,3,20,21] can distinguish the transition
between nuclear states and determine the A- and Q-tensor for / > 1 nuclei. Not only A-tensor of the metal
but also the contributions from the ligand atoms are essential for the electronic structure. The distance
between the metal ion and the ligands can be measured with ENDOR spectroscopy. The direction of the
principal axis and the magnitude of the principal values of the hyperfine tensor is related with the spin
manipulation of quantum bits (qubits) in the field of quantum computing/quantum information processing
technology (QC/QIP) sometimes called A-tensor engineering. The spin-relaxation times are also key
factors for the ESR experiments and applications. [1-3,6,7]

ESR spectra of metalloporphyrin were reported for the first time on copper(Il) porphyrin by Roberts
and Koski in 1960. [22] The electronic structure based on the spin Hamiltonian was discussed. Since then,
interesting molecules such as utilizing the symmetry of the porphyrin skeletons imitating the reactions in
proteins were synthesized and ESR measurements were carried out. [10,11,18,23,24] Neutral porphyrin
itself does not have unpaired electron spin while the excited spin-triplet state can be detected with ESR.
Recently, Di Valentin and co-workers reported that a porphyrin in the photo-excited triplet state can be
used as a spin labeling molecule for measuring the spin-spin distance by using of pulsed electron-electron
double resonance (ELDOR) spectroscopy. [25]

We deal with the systems with sizable ZFS parameters. Systems with S > 1 (S is a spin quantum
number) may have ZFS and this interaction is sensitive to the environment or the symmetry around the
paramagnetic metal center. For example, Hou and co-workers obtained two set of the ZFS tensors of

chromium(III) (d3, S = 3/2) doped in SnO: single crystal, due to the symmetry of the crystal site by using



of ESR and optical spectroscopy. [26] Thus ZFS can form a fundamental contribution as well as the
electron-Zeeman term in the spin Hamiltonian. In the field of magnetism, ZFS interaction is directly
connected with the blocking temperature of the single-molecule magnets which characterizes the
molecules. Metallocomplexes with sizable ZFS parameters can be good candidates of quantum memory
devices for QC/QIP. [4,5]

When the ZFS parameter is larger than the energy of microwave (for example, it is about 0.3 cm-! for
conventional X-band), ESR spectra of metallocomplex (assuming half-integer spin system) get to be
simple because the ESR transitions occur between only the same Ms-sublevels. In order to simplify the
assignment of transitions, the fictitious spin-1/2 Hamiltonian approaches are used. The fictitious spin-1/2
Hamiltonian is written as Eq. (1.2), [1,27-29]

H" =pBS" eg e B+ 8" er“-I—ﬂngnI-B+I-Qe“ o1 (1.2)
where Seff is effective electron spin-operator (S¢ff = 1/2), geff is effective g-tensor, Aeff is effective A-
tensor, which can be altered from the principal values of A-tensor since the projection factor ((2S)!)
changed. The fictitious spin-1/2 Hamiltonian approach [1,20] is useful to estimate the sizable ZFS
principal values in the high spin states, and particularly reports relevant to the evaluation of the ratio of |
E/D| have been documented. [14] Particularly, the analysis of g-value of high spin Fe3* complexes (S =
5/2) are of interest and the g-value dependence of E/D were derived in the early 1960s. [30,31] We have
revisited the derivation of analytical expressions for the relationship between effective g-values (geff)
obtained from Eq. (1.2) and true principal g-values (gtrue) from the “true” spin Hamiltonian (Eq. (1.1)).
The general analytical expressions give more insights into the validity of the experimental parameters
based on the effective spin Hamiltonian approach. The general expressions empower the effective spin
Hamiltonian approach in quest for molecular design and optimization in terms of sizable ZFS tensors,
which underlie the effective g-anisotropy. Two analytical approaches are introduced: One is exact, and the
other is also analytical but based on Rayleigh-Schrédinger perturbation theory. We also attempt to
interpret the appearance of any ZFS effects on the spectra in terms of analytical solutions by Zeeman
perturbation treatment in the principal-axis coordinate system. The geff—gtrue relationships for each spin-
state will be derived in Chapter 2.

To illustrate the usefulness of our approaches, we exploit Fell(CI)OEP (S = 5/2) (OEP:
2,3,7,8,12,13,17,18-octaethylporphyrin) and ColOEP (S = 3/2) well magnetically diluted in the
diamagnetic host crystal lattice of NilOEP, which has a similar molecular structure and thus incorporates
the paramagnetic counterparts without deformation of the guest molecule due to the host-guest mismatch.
The advantage of the single-crystal ESR spectroscopy lies in the fact that the molecular information on
the principal axes of the magnetic tensors such as g- and ZFS tensors are crucial in comparing with the
results of the magnetic properties from reliable quantum chemical calculations. In high spin states of
some metallocomplexes with sizable ZFS in pseudo-octahedral symmetry, their fine-structure ESR
transitions with the static magnetic field along the principal z-axis appear in the lower field far from g ~ 2
at X-band (9.5 GHz). These are the topics of Chapter 3. The appearance disagrees with the putative
intuitive picture of the relevant high spin ESR. We have chosen RellllV binuclear complex (dimer) in the

mixed valence state exemplifying such a case (Chapter 4).
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Chapter 2: Analyses of Sizable ZFS Tensors of High Spin
Metallocomplexes by Conventional ESR Spectroscopy:
Exact Analytical and Genuine Zeeman Perturbation
Expressions for Converting Fictitious Spin-1/2 g-values
into True Principal g-values with the ZFS Parameters



2.1 Introduction

Effective spin Hamiltonian formalism has played the most important role in many field of modern science
relevant to electronic magnetic properties of substances. [1,2] Particularly, in the field of magnetic
resonance and magnetism, the formalism is an essential tool to bridge the gap between magnetic
phenomena/resonance observations and their theoretical/spectral interpretations in microscopic terms
such as crystal field (CF), ligand field (LF) and molecular orbital (MO) theories since early 1950s. [1-3]
Importantly, noting that CF/LF or MO Hamiltonians are theoretical ones, the spin Hamiltonian formalism
is derived from them, and the relevant interrelationships have been documented so far in order to
eliminate the confusions. [4-9] The formalism is a remarkable simplification of the most complex
intractable problem to interpret electronic magnetic experimental data or phenomena in terms of quantum
mechanical protocols instead of solving, in an explicit manner, complicated magnetic energy levels
originating in many electronic and nuclear terms appearing in Schrodinger equation. The formalism is
generally applicable to any spin, intrinsic or fictitious, quantum numbers, and termed the effective spin
Hamiltonian for Kramers doublets and non-Kramers doublets [10,11] for an odd and even electron
system, respectively. Noticeably, from the theoretical viewpoint the latter has been important in indicating
a break of the accepted meaning or protocols of the effective Hamiltonian involving the issues of
inversion symmetry relevant to electromagnetic irradiations if electric field induced transitions are
mediated. [12] The break is significant in terms of both quest for the materials design or molecular
optimization underlying/exhibiting novel electromagnetic multifunctionalities and recent advance in
emerging quantum spin technology allowing us to manipulate molecular spin quantum bits (qubits) as
well-defined open shell entities by use of both pulsed magnetic and electric field irradiations. The
molecular optimization in both realms symmetry considerations of effective Hamiltonians with respect to
the external irradiation fields becomes crucial. [13]

Confining ourselves to conventional magnetic dipole transitions, the accepted meaning of the effective
Hamiltonian formalism is clear and the fictitious spin-1/2 formalism seems to be well established and
practically the putative method in analyzing ESR experimental data on high spin metallocomplexes with
sizable zero-field splitting (ZFS; fine structure) parameters. As well known, in paramagnetic
metallocomplexes the spin—orbit coupling (SOC), as the symmetry breaker, relevant to the central metal
ions is influential and governs the magnetic properties and tensors such as ZFS. The magnetic tensors of
experimentally well-characterized transition metal ion complexes serve as a testing ground for advanced
quantum chemical calculations of magnetic tensors. [14,15] Progress in performance of computing
resources and algorithms has enabled us to calculate magnetic tensors taking into account the higher order
relativistic effects. Especially, DFT calculations of spin Hamiltonian parameters have become a useful
tool for large metallocomplexes, [15] and DFT approaches for magnetic tensors such as metalloporphyrin
have been reported. [16—18] Nonetheless, the capability of DFT for the quantitative calculations of
magnetic tensors, especially for molecules including transition elements, is still a controversial issue. [19]
Quantitative evaluations of the g-, ZFS (D-) and hyperfine (A-) tensors of metallocomplexes in various
symmetric environments are challenging themes for quantum chemistry because their accurate
evaluations are essential for the molecular optimization of emerging quantum spin technology.

We note that ligand field theory has played an important role in understanding the electronic structures
and ligand surroundings of central metal ions, as underlain by the semi-quantitative interpretation of their

g- and hyperfine tensors. [20,21] From the theoretical viewpoint, spin Hamiltonian terms relevant to



electron magnetic resonance are derived from the generalized relativistic Dirac equation, i.e., Breit-Pauli
Hamiltonian which is a two-electron component mediated pseudo-relativistic Hamiltonian. Nowadays
quantum chemical approaches to theoretical magnetic tensors are based on the Breit-Pauli Hamiltonian
and can afford more accurate interpretations on experimental data. Thus, the bridging the differences
between the experimental magnetic parameters on the basis of effective Hamiltonian and those derived
from full spin Hamiltonian based analyses is more and more important, because the former cannot be
compared with the corresponding theoretical values.

The fictitious spin-1/2 Hamiltonian approach is useful to estimate the sizable ZFS principal values in
the high spin states, and particularly reports relevant to the evaluation of the ratio of |E/D| have been
documented. [22-37] In this chapter, we have revisited the derivation of analytical expressions for the
relationship between the effective (fictitious spin-1/2) principal g-values (geff) and true principal g-values
(gte) for S =1, 3/2, 2, 5/2, 3 and 7/2 in a more comprehensive manner. The facile conversion of the
former into the latter is crucial in comparison with the theoretical interpretation of the experiment. The
cases for integer S’s such as S = 1 seem trivial if we confine ourselves to pure magnetic dipole transitions.
The general analytical expressions give more insights into the validity of the experimental parameters
based on the fictitious spin-1/2 Hamiltonian approach. The general expressions empower the fictitious
spin-1/2 Hamiltonian approach in quest for molecular design and optimization in terms of sizable ZFS
tensors, which underlie the effective g-anisotropy.

In this work, two analytical approaches or methods are introduced: One is exact, and the other is also
analytical but based on Rayleigh-Schrodinger perturbation theory. We emphasize that the fictitious
spin-1/2 Hamiltonian approach is not always applicable for electronic high spin systems and the exact
analytical expressions for the geff-gtrue relationships presented in this work are general, but derived under
the limited conditions to spin Hamiltonian terms. The expressions are only derived as necessary
conditions. Generally speaking, for the cases for integer S’s the assumption is not always useful because
of the symmetry of the spinfunctions. In this context, all the analytical expressions on the basis of the

genuine Zeeman perturbation are general and useful.



2.2 Results and Discussions

2.2.1 Effective spin Hamiltonian based g-values versus true principal g-
values derived from full spin Hamiltonians for S =1, 3/2, 2, 5/2, 3, 7/2
and 4

The fictitious spin-1/2 Hamiltonian approach as the putative method to analyze conventional fine-
structure/hyperfine ESR spectra of high spin metallocomplexes with low symmetry and sizable ZFS gives
salient principal g-values far from g = 2 without explicitly affording the principal values for their ZFS in
most cases. [4,5,8,9] Indeed, the derived effective (fictitious spin-1/2) g-values significantly larger than g
= 2 are indicative of the occurrence of their high spin states with a measurable value of |E/D| in some
cases, but naturally they never agree with those (true g-values) acquired by quantum chemical
calculations such as sophisticated reliable DFT or ab initio MOs. The fictitious spin-1/2 Hamiltonian
approach is useful and important in many fields, particularly biological/medical science and materials
science, but from a viewpoint of quantum chemistry there have been superficial misunderstandings
between the effective and true principal g-values. It is important to differentiate between the effective and
true g-values and to experimentally derive the latter as accurately as possible in order to interpret
electronic structures of high spin molecular systems, or to achieve the molecular optimization of
metallocomplexes for advanced technical purposes. Importantly, we notice that the fictitious spin-1/2
Hamiltonian approach itself is not always applicable to high spin systems, and some ESR fine-structure
transitions treated in the fictitious spin-1/2 Hamiltonian approximation, whose resonance fields do not
obey the identity relation with respect to resonance fields, do not lead to correct information on the true g-
tensors. This point will be discussed later. Note that the principal axis system based on the eigenvectors of
the ZFS Hamiltonian is considered here and the vanishing of ZFS tensor for particular local site
symmetry such as cubic are excluded throughout this work. [38—40]

The analytical expressions for the geffi—gtrue relationship help us determine the value of |E/D| or the
principal values of the D-tensor for some favorable cases. There can be derived any analytical expressions
of relationships between the effective principal g-values (geff) and those (gtrc) derived from the full
(ZFS+Zeeman) spin Hamiltonians, which include fine-structure terms from D-tensors for high spin
multiplicities. Referred to the resonance fields in high spin states, the analytical expressions of the
eigenfield values for spin multiplicities up to nonet states (S = 4) have been documented. [41] Practically,
the exact (or very accurate) analytical expressions of the gefi—gtrue relationship for S = 3/2 and 5/2 are
important, and indeed those for S = 3/2 have often been exploited. The exact (or very accurate) analytical
expressions for S = 5/2 or higher spins, however, have not explicitly been documented and the numerical
diagonalizations of the spin Hamiltonian matrixes have illustrated some typical relationships for the
principal values of ZFS tensors for S = 5/2, showing how powder-pattern fine-structure ESR spectra
behave as a function of the ratios of |E/D| with particular D-values. [42—44] Any analytical expressions
for the gefi—gtrue relationships for the higher spins empower to understand the electronic structures of
heavy metal ions such as actinide series, being in harmony with advanced quantum chemical calculation.

Throughout this work, we neglect the contributions from higher order terms of the spin operators such
as Si2572 allowed in the spin Hamiltonian terms for high spin states. We emphasize that the inclusion of the
higher terms is tractable in the present treatment and for simplicity in this work the ZFS Hamiltonian

includes only the rank-2 ZFS terms. We assume the following full spin Hamiltonian, termed the
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ZFS+Zeeman spin Hamiltonian, in the principal-axis system,;

H=pS+g-B+S+D-S

= B(s,5,B,+8,5,B,+8.5.B.)+ D[Sf —%S(S—i— 1)}+E(Sf -57) (2.1)

where the g- and rank-2 ZFS tensors are assumed to be collinear. The definitions for the fine-structure

constants, i.e., D- and E-values are as follows:

p=2p
? ‘ (2.2)
E= E(DX -D,)

|D:| > |Ds| = |Dy| and 0 < |E/D| < 1/3. The choice of the principal axes, x, y and z is not trivial, but is
relevant to the symmetry of the tensor. For the axial symmetric case, the symmetry axis corresponds to
the z-axis, and the other two axes have to be designated so as to define the sign of the E-value. For the
rhombic symmetry, the axis corresponding to the largest principal value is designated to the z-axis. A
comprehensive discussion of the standardization of the ZFS tensor has been given by Rudowicz and co-
workers. [45,46] Note that the ZFS tensor vanishes in the fictitious electron spin state (S” = 1/2). [47-49]

The absolute sign for £ requires the definition for the principal x- and y-axes with respect to the
system under study. In this approach, the resonance condition can be written simply as

E, —E,. =5"pB 2.3)
where geff is an effective g-value.

There are two approaches to derive the analytical expressions for the geffgtrue relationships. One is to
exploit the analytical exact solutions for energy eigenvalues of the full (ZFS+Zeeman) spin Hamiltonian
in the principal-axis system. We have revisited the pioneering work by McGarvey, [50-53] and extended
to the higher spin multiplicities, giving explicitly analytical exact expressions of the geff—gtrue relationships
for high spin systems, which particularly are useful for half-integer spins. The exact eigenvalues of the
ZFS spin Hamiltonian matrixes or the approximated ZFS energies up to S = 3 have been documented so
far, [48,49,54-59] and the eigenvalues of ZFS+Zeeman spin Hamiltonian (Eq. (2.1)) in the principal-axis
system for £ = 0 were described up to S = 5/2, [48,49] and those with non-vanishing E-value for =1 and
3/2 appeared in many books so far. [49,60] In this work, we have obtained the exact analytical
expressions for the eigenenergies/eigenfunctions of the spin Hamiltonian (2.1) with S =2, 5/2, 3 and 7/2
in the principal-axis coordination system, for the first time. They all are useful for analyzing the canonical
peaks and identifying off-principal-axis peaks in fine-structure ESR spectroscopy operating at
conventional X- or Q-band.

The other approach to the analytical expressions for the geffgtue relationships is to invoke Zeeman
perturbation treatment to solve the energy eigenvalues/eigenfunctions of the spin systems with sizable
ZFS, which exceeds relevant Zeeman splitting. The Zeeman perturbation treatment is applicable to any
spin multiplicity, but subject to errors due to the order of the perturbation or the perturbation scheme, i.e.,
the zeroth order eigenfunctions. There are two Zeeman perturbation treatments available, depending on
the zeroth order functions, i.e., genuine and pseudo-Zeeman perturbation schemes. The latter has been the
putative method, [3,33-37] and the former, which is more general and accurate, is given in the next
subsection. The latter approach does not lead to the direct derivation of the analytical expressions for the
gefi—gtrue relationships, and the former gives more significant insights into interpretations of ZFS effects

on electron magnetic resonance.
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(a) Spin triplet state (S=1)

Yang and co-workers [61] reported copper porphyrin dimeric complexes with the ground triplet state
which exhibit AMs =

relationships derived from the exact analytical solution of the ZFS and electronic Zeeman interaction

+2 transition in X-band ESR spectroscopy. For triplet states, the geff—gtrue

Hamiltonian are trivial in terms of purely magnetic dipole transitions for the non-Kramers doublet. The
triplet state gives the simplest case for the protocols of non-Kramers doublet fictitious spin-1/2
Hamiltonian approaches to the issues with electric field induced transitions in magnetic resonance [13] in
which the symmetry considerations of the fictitious spin-1/2 Hamiltonian are required. More generalized

protocols are relevant to spin quintet and septet states because the spin sublevel subject to the parity

symmetry increases in number.

For spin triplet states, the spin Hamiltonian having ZFS and electron-Zeeman interactions is given in

the matrix form as follows;

D
? + g;meﬁB 0 E
) 2D
Hiyres. = 0 3 0
E 0 %— 8."“BB

The exact eigenenergies (Fig. 2.1) and eigenfunctions are obtained,

D
E, =5+ E*+(g™pB) (2.42)
D 2
E == E* +(g™BB) (2.4b)
E0=—2—D (2.4¢)
3
1
v - F[( £+ (g™ BB) + g;me/}B)|+1>+E|—l>} (2.50)
Energy/D E/D=0 Energy/D E/D=0.1
0.4{ 04—
0.2 02F——
/D
002 004 006 008 0107P 00> 004 006 o008 o0.109%/b
-0.2 -0.2
-0.4 -0.4
-o6f -06}
Energy/D E/D=02 Energy/D ED=03
0.6
— — 06—
04 0.4
02 0.2
/D R
002 004 006 008 0107% 502 004 006 o008 010280
0.2 o2 . . . . .
-0.4 -0.4
-06f -o6fp

Fig. 2.1 Energy diagram in spin-triplet states for some E/D values in the case of B//z (red line) and B//x

(broken green line).
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¥ = e e (e pa) g )| @sb)

¥, =|0) (2.5¢)
The subscripts Ms in Eug and gy is referred as the spin-sublevels at the limit of £ — 0 or for the high-

field approximation. Equalizing the energy difference between E+1 and £ to gfT4B gives

E, —E,=2\E*+(g™BB) =¢"BB

Squaring the both side of the equation above yields the identical equation.

(¢"BB) =4E +4(g™BB)

Taking g.eff/g;true > (),
eff 4 2
S = |4 to— A 2 (2.6)
gz (gzrueﬁB !)

with A = E/D and B’ = B/D. Equation (2.6) contains the term with the static magnetic field B, indicating
that the relationship independent of the magnetic field does not exist in general and this is true for other

integer spin systems (Fig. 2.2). The special solution is g.*ff/g e = 2 if and only if A =0 (i.e., E = 0).

eff/ true B//
Ty : 2B =0.1
6
5
02
4
03
3 0.5
!
2 E/D

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Fig. 2.2 g.cff/g.true relationship for triplet states (Eq. (2.6)) for some values of gfB’.

Multiple-frequency measurements or magnetic susceptibility measurements provide us the possibility
of determining the true set of magnetic parameters including ZFS constants.

It is worth calculating the transition probability P; = [<ous|Si|lpms>? (i = x, y, z) between the Ms = +1
dominant transitions (Fig. 2.3).

2

P.=[(p.[S]0.)
i N%“{[_Em' +( B+ (g BB) +82“‘e/33)<—1|}51 K E*+ (s pB) +g§rueﬁB)|+1>+E|—1>}}2

4E2 true 2 true
= [ E*+(g™BB) +g' ﬁB}
Note that the shape of the probability function depends on the ratio g:¢fB/D and P: close to unity for
small g:trweB/D.

When the static magnetic field is along the principal x-axis, the Hamiltonian matrix is represented as

2
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Probability

0.8
0.6
0.4

0.2

EID
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 2.3 Transition probabilities P. calculated with the external magnetic field aligned to principal z-axis
for g:mefB’ = 0.1. P takes maximum value of 0.91 at E/D = 0.31797. In the case of B//x, y, transition
probability is zero for any E/D.

D 2" BB E
3 2
H triplet \/Eg }cmcﬂ B 2D \/Eg ,Irmcﬁ B
ZFS+eZx T - T T
E J2¢™BB D
2 3

The eigenenergies (green dashed line in Fig. 2.1) and eigenfunctions are

-D+3E 1
E..= + + E\/(D+ E) +4(g™pB) (2.7a)
E, =¥—l (D+EY +4(g™pB) (2.7b)
D
Ew=75- 2.7¢)
D+E—\/ D+E) +4(g™BB)
Vo= Nl |+1) - ( \/_gtru)e 55 (gx s ) [0)+|-1) (2.8a)
x4+l x
D+E+\/ D+E) +4(g™BB)
Foa= N] [+1)- : 7 ) 55 %) |0)+-1) (2.80)
x~1 gx
+1)—|-1
JRESE) oo
where the subscripts 1, 0 is taken over the counterparts in the case of B//z, and Ny+; are the normalized
eff/ true B//x eff/ true B//

10
8

10
12/
8

6/// 0.3

02 6

,_,—’_,_,_,_,_,_/_,_,_,_,_, \
4 ;).5 8.%
2 D 2 V=)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 2.4 geff/gtrue relationship in the case of triplet for some values of the ratio gfB’. (left) The external
magnetic field is parallel to the principal x-axis (Eq. (2.9)), (right) the external magnetic field is parallel to
the principal y-axis.
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factors. Equalizing the energy difference between Ex to g:*ffB gives the following identity equation with

respect to B;

E,~E,=(D+E) +4(g™BB) = ¢"BB.
¢ [, G

true 2

8. (s:pBB')

where 4 = E/D, B> = B/D, and g«ff/gitie > 0. In this case, there is no general and special solution

(2.9)

independent of external field B in the range of 0 <4 < 1/3 (Fig. 2.4 (left)). The same relationship are also

given by exploiting the cyclic permutation relationship between the principal axes, replacing D —
1(3E-D) and E — —L(E+ D) in Eq. (2.6). For B/ly, replacing D — —1(3E+ D) and E — L(E-D)
yields the corresponding g,<ff—g true relationship (depicted in the right side of Fig. 2.3). [45,46,62,63]

Under B//x, the transition probability P; = |[<¥-1|Si¥+>|? (i = x, y, z) between the Ms = £1 dominant
transitions is different from that in B//z (Fig. 2.5).

2
|<\}l71 S.r ‘{‘+]>|
11 E+D+\/(E+D)2+4(g;f"e[313)2 E+D—\/(E+D)2+4(g‘;“ﬁ19)2 2
=1y v | - e {O1+(=11]S. | [+~ ; ' |0)+|-1)
N, N, \/ngmL,BB ) ‘/ngmﬁB
- -
3E+3D+\/(E+D)2+4(g;f“°,33)
) 24 BB
Probability Py = [<Y_1|SxP+1>]2 Probability Py = |<Y_1|Sy|P+1>P2
z N 0.5 T
0.020 7 0.4
0.015 0.3
OD,ION 0.2
0.005 B 0.1
z
EID EID
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 2.5 Transition probabilities Py (left) and P, (right) calculated with the external magnetic field aligned
to the principal axes for gtuefB’ = 0.1. The subscripts x, y and z denotes the principal axes of the g- and
ZFS tensors. Px reaches 5.53 x 10-3, 0.021, 0.021 at the limit of E/D — 1/3 for the principal x-, y-, and z-
axes, respectively.

For the arbitrary direction of the magnetic field in the principal-axis coordinate system, the spin

Hamiltonian with ZFS and electron-Zeeman interaction terms is

S+ g.BBcos@ %(gx sin@cos g —ig, sinBsin (p) D‘;D"
Hype = %(gX sinf@cosp+ig, sinesin(p) D, +D, 5——28(& sin@cos¢ —ig, sin@sin (p)
2D, %(gx sinfcosp+ig, sinesin(p) 2 —g.BB

where 0 and ¢ are the angles with respect to the principal-axis system of the tensors (Fig. 2.6). The
eigenenergies of the spin Hamiltonian are the solutions of the following cubic equation (the superscript

“true” is omitted for simplicity);
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x’=px+q
6D? +2(D, - D,) +4(g.BB) (1+cos20)
p= % +(gxﬁB)2 (2-2c0s20+2cos 29— cos(2¢ +20) - cos (29— 26))

+(gyﬁB)2 (2— 208260 +2cos2¢—cos(2¢ +20)—cos(2¢ - 29))

54D} ~54D (D, ~D,) ~108D, (BB’ (1+cos20)

g= -é +2?7(D1 -D,+D,)(g,BB) (2—2c0s 20+ 2cos 20 — cos(2¢+26) - cos (20 — 26))
+%(D: +D, - Dy)(gyﬂB)2 (2-2c0s260+2cos2¢p—cos(2¢p+28)—cos (29— 26))

According to the Viete’s method,

D, 8z
x, =2acos arccos(ij+2n—7r (n=0,1,2)
2a 3
with
p
a=,—
\/; Dy, g
q
b=—.
a2
The resonance fields are obtained from the eigenfield Dx, g
method. [64] Fig. 2.6 The principal-axis coordinate

system and the orientation of the
magnetic field.

(b) Spin-quartet state (S = 3/2)

For spin-quartet states, considering electron-Zeeman and fine-structure terms, spin Hamiltonian is

expanded in the basis of {|Ms>};

D+§g;‘"“ﬂB 0 V3E 0
0 D+ lgmpp 0 V3E
Hquartel — 27"
ZFS+eZz \/_ 1 e
3E 0 -D-— Egz ﬁB O
\/7 3 true
0 3E 0 D™ pB

This matrix can be divided into 2 x 2 matrices of which the basis set are {|+3/2>, |-1/2>} and {|-3/2>, |

+1/2>}, respectively;

3
D+=g"™ BB V3E
H quartet — 2 )
ZFS+eZ,1 — 1 ’
V3E -D-—g™pB
3 true
D-=g™pBB V3E
H quartet  __ 27
ZFS+eZ2 — 1
V3E =D+ g™ BB

Exact eigenenergies and eigenfunctions are obtained with diagonalizing the Hamiltonian matrix (Fig.
2.7).

E :i%g;“‘e,BB+\/(Dig;“‘e,BB)2+3E2 (2.10a)

z,ié
2
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Energy/D E/D=0 Energy/D E/D=0.1

1.0 1.0
0.5 0.5
/D D
0.02 0.04 006 0.08 0.109'3B 0.02 0.04 0.06 0.08 0.109'88/
-0.5 -0.5
-1.0}— -1.0}—
Energy/D E/D=0.2 Energy/D E/D=0.3
1.0 1.0F
0.5 0.5
/D /D
0.02 0.04 006 0.08 0.109'68 0.02 0.04 0.06 0.08 0.109'68
-0.5 -0.5
10k . -1.0t -

Fig. 2.7 Energy diagrams for spin quartet states for some E/D values in the case of B//z (red line) and B//x
(dashed green line).

1
E | = :Lng”e,BB—\/(Dig;m,BB)z +3E° (2.10b)
Z,ig

3 . _1
Y ,=cosf, i—>+sml9,+ +—> (2.11a)

I Ty 5

1 3
¥ | =cosf, i—>—sm9,¢ $—> (2.11b)

.l S =T

where

3E
D+ g;”’e BB
here, Emg and pug denotes the energy eigenvalues and spin eigenfunctions of the Ms-sublevel dominant

tan20, , =

admixed state in the presence of the Zeeman terms. Both upper and lower signs should be chosen in the
double signs. Equalizing the energy differences between the same set of Ms to g ffB gives the

relationship between effective g-value (geff) and “true” g-value (gtrue) can be written as a function of |E/D|

=A.

2
gﬁff =g [1171 Y j (2.12)
1' +

where the upper and lower signs represent the transition between Ms = +1/2 and Ms = +3/2 dominant
doublets, respectively.

According to the eigenfield method, [64] the resonance field B in the case of B//z are

2D+, \-12E” +(hv)’

2 gzmc ﬂ
(h is the Planck constant and v is a frequency of the irradiating microwave) and the solutions of the

following equation;

a,’B® +(2a4a2 —a32)86 +(2a4a0 -a," —2aa, )B4 +(2a2a0 —alz)B2 +a,"=0
with
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a, = _3g;m€4,34

a,=4g""B’hv

a,=[-12E*+12D* +2(v)’ |g"

a, = [24E2 +8D% - 4(hv)2Jg;”‘e/3hv

ay=[-12E>=4D" +(hv) |(hv)’
Replacing B? with B yields the quartic equation.

a B+ (2a4a2 -a )B3 + (2a4a(J —-a,"—2aa, ) B+ (2a2a0 -a’ ) B+a,’=0
2a,a, —

2
a,

2
In order to eliminate B3 term, replacing B with B— 4 yields

B*+b,B*+bB+b,=0

with
3 2 2 2 2 4
b 16a,’a,—8a, aa, —20a,°a,” +12a,a;"a, — 3a,
2 8 4
a,
4 2 3.2 3 3.3 2 3 2.2 2 4 6
b = 8a,"a,” -8a,a;,"a,—8a,’aja,a,—16a,’a,” +4a, a;,"a, +16a,"a,"a,” — 6a,a;"a, +a,
 =—

6
8a,

1 256a,°a,—128a,’a,’a, +128a,’a,a,” — 64a,*a’a,’ — 64a,*aa,’a, —112a,*a,’

" 256a,* +32a,’a,'a, +64a,’a;’a,a, +160a,’a’a,’ —16a,’a’a, — 88a,’a*a,” + 24a,a,°a, — 3a;
The resultant cubic of the quartic equation is
' +2b’ +(b,> = 4b, Ju—b’ =0

In order to eliminate the 2 term, replacing u with u—22 yields

u3=%(p2+12r)u+%(2p3+27q2—72pr) *)
with

p=2b,

q= b22 - 4b0

r=—b,2

According to the Viete’s method, one of the solution of the cubic is

u, =2a, cos larccos b—“ _2_p
3 2a, 3

with

a, = %\/pz +12r

_ 2p° +27q¢> - 12pr
3p* +36r
The quartic equation can be rewritten as the product of the two quadratic equations with uo;

[ ol o252 et o

Therefore, the solutions of the original quartic equation are

1 2b 2a,a, —a;’
32:§|:i1\/ai2 _SO_szil_':l_Lz»?. (*%)

\/Z 4a,

In the case of B//x, the spin Hamiltonian is

b()
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V3

D = 8" BB V3E 0
?gimuﬂB -D tmcﬁB \/gE
Hysrz, = NG
\/§E trueﬂB _D 7g}l{rueﬁB
0 V3E g g™ BB D

The eigenenergies and eigenfunctions are

™ BB+ \/ D*+3E> +(D-3E)g™BB+(g™BB)

E ,=1— !
.x,iE 2
1
E = ;Eg;mﬁB—\/W +3E*5(D-3E)g ‘“‘eﬂB-i-(g‘“‘eﬂB)
x,tE
Y ,=cos6, i§>+sin9x+ ¢l>
x,i; - 2 - 2
Y | =cos,, il>—s1n9x ¢§>
x,iE 2 2
where
—VJ3(E+D
tan20 , = \/_( )

(3E-D)+2¢"™ BB

The same set of equations can be obtained with the transformation of D —

(2.13a)

(2.13b)

(2.14a)

(2.14b)

1(3E-D) and E —

—1(E+ D) based on the cyclic permutation of the subscript for the principal-axes, z — x, x — y and z —

x. [45,46,62,63]

In the case of B//y, the spin Hamiltonian and diagonalized energies are

D —?ig;meﬂB J3E 0
ﬁig;"‘eﬁB ) ~ig"™ BB V3E
Hqud.rlet _ 2 : :
ZFS+eZy — \/5
V3E ig,"“BB =D - i BB
0 J3E ?ig;meﬁB D
E =) g;“’eﬂB+\/D2 +3E>F(D+3E) g™ BB+ (g™ BB)
yvia
E = ; g™ BB- \/DZ +3E° £(D+3E) g™ BB +(g "“eﬁB)
yvia
VY ,=cosf,|t 3>+sm0 1>
yEs 2 2
VY | =cosf J_rl>—sin0v+ $§>
yAs 2 ’ 2
where
3(E-D
tan26,, = [( )1
* —(BE+D)+2g"™BB

(2.15a)

(2.15b)

(2.16a)

(2.16b)

The same set of equations can be obtained with the transformation of D — —4(3E+D) and E —
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1(E - D) based on the cyclic permutation. [45,46,62,63] Noting that the zero-field energy is independent

for the axis (see the next section).

The use of the transformation leads to the simplification of the derivation for the other principal axis
orientations, as frequently described in textbooks. We note that importantly the transformation is relevant
to the spin-space rotation with significant physical consequences, some part of which is described with
the case of S = 3 in this work (see Table 2A.3 in Appendix 2.2). All the geft—gtrue relationships for S = 3/2,
Egs. (2.17a)—(2.17c) are derived under the necessary conditions with the identity relation with respect to
resonance fields.

The relationship between effective and “true” g-values in B//x or y can be written as a function of |E/
D| (= 2) in a similar manner in the case of B//z. The gefft—gtue relationships in each direction (x, y or z) is as

follows: Figure 2.8 depicts geff/gtrue as a function of |E/D| (= 4) relationships. [24-31]
g ! 1-34

o iif—H e (2.17a)
eff

8 1+32

eff

& _jo_ 2 (2.17¢)

g V14342

where gi°ff and gitve (i = x, y or z) denotes the principal values of g-tensor obtained from effective and full
spin Hamiltonian approach, respectively. In those formulas, the upper and lower signs represent the
transition between Ms = +1/2 and Ms = £3/2 doublets, respectively. When E/D approaches to 1/3, the ratio

geft/gime reaches 1 (i =x), 1+~/3 (i=), —14~/3 (i =z) for the +1/2 doublets and 1 (i = x), —1+~/3 (i =

), 1+/3 (i = z) for the £3/2 doublets. If we have the principal values of effective g-tensor,
corresponding values of “true” g-tensor and £/D can be estimated with this relationship. As can be seen in
the right side of Fig. 2.8, the small E/D gives giff/gitue ~ 2 (i = x, y) and ~ 1 (i = z). Assuming that gjtrue =
2, typical value, giff ~ 4 (i = x, y or sometimes represented as L) and ~ 2 (i = z) which are well reported in
literature.

All the principal values can be identified once one of the principal values of the gtrue-values or ZFS
tensors are determined, experimentally or theoretically. Otherwise, full spin Hamiltonian based spectral

analyses identify relevant magnetic tensors in a quantitative manner.

g®"/g"™®  |Ms=+3/2>-dominant transition g°"Ig"™®  |Ms = +1/2>-dominant transition
3.0 _

— Y 1+3
o5 T 28
15 15 X 1
1.0 X _ 1 1.0 _ o i
0.5 _—— “T+3 05 —T+43

- EID EID
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 2.8 The geff/gtrue exact relationships as a function of the ratios of |E/D| for S = 3/2. The subscripts, x, y
and z denote the principal axes of the g- and ZFS tensors. The curves of the exact relationships are given
in the solid lines. Those derived by the genuine Zeeman perturbation treatment to the second order
coincide with the exact curves which is overlapping by using of the broken lines. The values at the end of
the curves are for geff/gtrue at the £/D = 1/3 limit.
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It is noteworthy that some combinations of D- and E-values for § = 3/2 do not give real resonance
fields. General conditions for such case can be derived under necessary conditions in solving the
corresponding quadratic equation.

It is worth calculating the transition probabilities of the |Ms = +£3/2> and |£1/2>-dominant transitions.

We consider only the “quantum-mechanical/group-theoretic” transition probabilities Ping = |[<¢-aglS]
p+mg>? and exclude the Boltzmann factor depending on the energy differences for simplicity(Fig. 2.9).

For the |Ms = +3/2>-dominant transition,

P =

7.4

[SYES

2
2sin@,, sin@, _+ g sin@, , cos0,_+ % cos@_, sinf _ }

and for the |Ms = +1/2>-dominant transition,

P =

.t

3 NE) ’
2cos6_, cosO, _— TSin 0., cosO,_— TCOS 0. sinf, _ }

0=

where the definition of .+ has already been given above.

Probability| /s = +3/2>-dominant transition Probability|Afs = +1/2>-dominant transition

0.25}
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EID

Fig. 2.9 The transition probabilities for the [=Ms>-dominant transitions, [<W-a|Ss|'W+1>[? calculated with

equations in the text for gtuefB’ = 0.1. The subscripts, x, y and z denote the principal axes of the g- and
ZFS tensors. In the right figure, the line for B//z is broken for clarity.

Let us calculate the exact eigenenergies at an arbitrary direction. The spin Hamiltonian matrix is

3D_+3g.BBcosO %(gY cosgo—igj.sinqo)ﬁBsinO @(DY—D},) 0
e _ %(gY cosQ+ig, sin(o)ﬁBsinO —-3D_+%g BBcosB (gx cosQ—ig, sincp)ﬁBsinG @(DY - Dv\,)
psate = @(DY - Dv‘,) (gx cosp+ig, sincp)ﬁBsinG —3D,—%g,BBcosO %(gY cosp—ig, sin(p)ﬁBsinQ
0 @(D‘—D}.) %(g@ cosq0+ig)_sin(0)ﬁBsin0 3D, —-3g.BBcos6

here, the superscript “true” was omitted for simplicity. The secular equation is

X+ pxP+gx+r=0
with
1

p= —5[3(DX -D, )2 +9D° + S(gZ,BB)2 cos>0+5(g,BB) cos’ ¢ sin’ O+ S(gyﬁB)2 sin’ ¢ sin’ 0}

q= —3([33)2 |:2ng22 cos’ 0+ [(Dx -D, - Dz)gx2 cos’ o — (Dx -D + Dz)gy2 sin® (p}sin2 0]
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(D,-D,) +6(D,~D,) D> +9D° |

+ ( y)2—10D g ﬁB cos2 9] gﬂB cos’ @
rz% - (D -D )2 ( )D -2D, ](gXﬁB) sin” @cos’ @

~[2(D,~D,) +8(D,~D,)D.~2D? (2,8B) sin*6sin’¢

+ (g ﬁB) cosz(p+(g ﬁB) sin2(p}[1+2(g ﬁB) cos 9}sm 0

Following the procedure to solve the quadratic equation (from Egs. (*) to (**) in p.18), the eigenenergies

b, 2p
u, =2a, cos|: arccos (—Oﬂ——
2a,
1
a, = g«/pz +12r

_ 2p’+27¢° - T2pr
0 3p® +36r
Both the upper and lower signs should be chosen in the double sign +i, while they should be chosen

freely in the double signs +; and +».

(c) Spin-quintet state (S = 2)

It is, for example, high spin Mn(III) complex that takes spin quintet state. Hori and co-workers measured
the multi-frequency ESR spectra (up to 122 GHz) and determined the ZFS values of Mn(Ill)
protoporphyrin IX reconstituted myoglobin. [32] For the quintet states, the geffi—gtue relationships are

analytically derived from the five exact energy eigenvalues in the presence of the Zeeman terms. We note

that geff/gtrue = 2 relevant to the dominant [+1> sublevels with the energies of —D +4/9E> +(g;“‘e ﬁB)2 for

the principal z-axis orientation is only valid for £ = 0. For the other transitions the analytically exact
expressions of the geff—gtiue relationships are not always acquired as simple formulas for a given value of
the static magnetic field. In this context, we suggest that the corresponding formulas derived from the
genuine Zeeman perturbation treatment and given in the later section are facile generalizations for
practical use with extreme accuracy. The exact energy eigenvalues (Fig. 2.10) and eigenfunctions with the
static magnetic field along the principal axes also are given in later. Particular admixture occurring
because of the symmetry of the spin functions in the quintet state is considered, leading to the derivation
of the analytical exact expressions for the geffigtue relationships for the transitions among the admixed
states of the permutation-symmetric spin functions such as Wt = (42> + [-2>)A2, Yoy = (41> + |-
1>)N2, and Wo = 0>

The spin Hamiltonian matrix of fine-structure and electron-Zeeman terms in the static magnetic field

lies in z-direction is
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Fig. 2.10 Energy diagrams for spin-quintet states for some E/D values in the case of B//z (red line) and
B//x (dashed green line).

2D+2g™ BB 0 J6E 0 0
0 ~D+g™BB 0 3E 0
Hyg. = J6E 0 2D 0 J6E
0 3E 0 -D-g™pBB 0
0 0 J6E 0 2D-2g"™fB

This Hamiltonian is divided into two matrixes of which the basis sets are {|+1>, |-1>} and {|+2>, |0>, |-

2>}, respectively. The eigenvalues and eigenfunctions of the former

quintet _D+g;m°ﬁB 3E
H ZES+eZ,l — true
3E -D-g™fB

are

E, =—D%\9E"+(g™BB) (2.18)

V., =cosf|+1) £sin6|F1) (2.19)
where

tan26 = t3E

8. “BB

Equalizing the energy difference between Ex to g-*f5B,

E, —E,=2\9E"+(¢™pB) =g"pB

leading to
(s%.BB.,) =36E> +(25™BB,,) (2.20a)
(s%,BB',,) =362° +4(g™BB,) . (2.20b)

with A = E/D and B’ = B/D. Similar to the case of spin-triplet states, comparing the coefficients of B in Eq.
(2.20) provides the specific relation g.*ff/g.tre = 2 if and only if E = 0. Otherwise the general g.eff—gtrue
relationship does not hold and depends on g.tuefB (Fig. 2.11).
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Fig. 2.11 The gff/g.tree relationships as a function of the ratios of |E/D| for S = 2 based on the exact
solutions with the spin Hamiltonian parameters as follows g:tefB’ = 0.1, 0.3, 0.5 and 1. The special
solutions of geff/gtrue = 4 and 2 for |Ms = +2> and |+1>-dominant transitions, respectively, are obtained if
and only if E/D = 0.

The matrix representation of H ey, in the basis of {|+2>, 0>, [-2>} with B//z is as follows;

2D+2¢"™BB 6E 0
Hn = J6E -2D J6E
0 J6E 2D-2g™pBB

The eigenenergies of this matrix are the solutions of the following cubic equation;

x 2Dy~ 4| D+ 38+ (g7BB) |v+8D +24DE* ~8D (g™ BB =0.
In order to use the Viete’s method, which is one of the treatments to obtain the exact solution, eliminating

the x2 term by replacing x with x+22 yields

4 e 128 32 true
:§[4nz+952+3(g; ﬁB) }x—ED —16DE* +—= 3 D(g! ﬁB)z-

The trigonometric solutions for the above cubic equation are

X, =2acos larccos( b ) 2nz n=0,1,2)
3 2a) 3

where

o T

32D° +108DE* - 72D (g™ BB)
12D +27E +9(g"™ BB

and n = 0, 1, 2 correspond to the |Ms = +2>, |0> and |-2>-dominant states, respectively. Thus the

eigenenergies and corresponding eigenfunctions are in the following.
E, =2acos larccos(i)+2ﬂ _2b (2.21)
3 2a 3 3
)+ B.10)+7,1-2) (2.22)

%, JoE Y VO£ B=Al—a =y (n=0,1,2).

B, E,—2D-2g™BB B, E,—2D+2g™ BB’
The gfi—g.trve relationship for the |Ms = £2>-dominant transition is obtained with Eq. (2.3), which is

\Pn = a}‘l

generally field-dependent and the special solution is g-*ff/g.te = 4 if and only if £ = 0. Figure 2.11 depicts
the g.¢ff/g.true relationships as a function of |E/D| for some values of g:refB’.

According to Abragam and Bleaney, the energy difference between |[+2> and |-2> (i.e. |AMs| = 4
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transition) is represented as, [3,32]

2

2
35 j +(4g™pB,) (2.23a)

(gze,fifrzﬂBﬁ )2 = (

(¢0,8B',) =92* +16(g™ BB, ) (2.23b)
The disagreement of Eq. (2.23a) or (2.23b) and the counterpart form the exact relationship (Eq. (2.20a) or
(2.20b)) could be attributed to the pseudo perturbation approach (Fig. 2.12).

We note that spin-quintet chemical entities with intermediate ZFS values give off-principal-axis extra
peaks in their powered spectra, which lead to the spectral complexity and misassignment of the canonical
peaks. [65,66] The analytical formulas given above can afford much more facile spectral assignments of

all the canonical peaks than the eigenfield approach. [65,66]

geff/glrue
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Fig. 2.12 The g-°ff/g;true relationships as a function of the ratios of |E/D| for the [+2>-dominant transition
based on the exact solutions with the spin Hamiltonian parameters as follows g:trwefB* = 0.1, 0.3, 0.5 and
1. The curves from Eq. (2.23b) are depicted in the broken curves.

(d) Spin-sextet state (S = 5/2)

For spin-sextet states, Gaffney and Silverstone have comprehensively treated ESR spectroscopy of ferric
iron complexes in proteins, giving the geffi-gtiue relationships, as a function of |E/D|, with the ESR
transition assignments and transition intensities by invoking numerical diagonalizations of the full spin
Hamiltonian for particular cases of the D-values amounting to 2—10 cm-L. [44] The electronic structures
of iron and manganese complexes in the spin-sextet state are so important that the geft—gtrue relationships
have been obtained by using of the pseudo-Zeeman perturbation treatment. [34,35] However, most of the
relationships can be used under the limited range of |E/D| value (e.g. |E/D| < 0.1). Here, we have derived
the analytical expressions for the geffi-gtrue relationships as a function of |E/D|, as given below for the
principal orientations. Once the relationships in the principal z-orientation is provided, those of the other
two principal axes will be given with the cyclic permutation of the subscript for the axes. The energy
eigenvalues/eigenfunctions for § = 5/2 in the presence of the Zeeman terms are analytically solved, but
the identity procedure for a given value of the static magnetic field leading to the analytical expressions of
the geff—gtrue relationships gives too lengthy and complex formulas, as expected from the eigenfield
method. [41] In the following, the analytical expressions are derived from the exact ones in a desired
series of expansions, and the formulas below are given to the second order of the expansion for
trigonometric functions relevant to the exact energy eigenvalues for the principal z-axis orientation.

In this point of view, consider the case that the static magnetic field is parallel to the principal z-axis.

In sextet states, ZFS and electron-Zeeman Hamiltonian (B//z), H ;;Xs’i’th, in the basis of electron-Zeeman

state {|Ms>} can be represented as
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% D+ gg;'"f BB 0 JioE 0 0 0
2003 e
0 ~3D+ e BB 0 2\3E 0 0
JVIOE 0 Bpilompp 0 2\3E 0
HEe = 3 2°F
ZFS+eZz 8 1 e
0 2V3E 0 ~3D-28™BB 0 JI0E
2.0 3 e
0 0 2\3E 0 —3D-3¢! BB 0
0 0 0 JI0E 0 ? D- % g™BB

This matrix can be divided into two conjugate matrixes whose basis sets are {|+5/2>, |-3/2>, |+1/2>} and

{|-5/2>, |+3/2>, |-1/2>}, respectively. The former is

%D+%g§“ﬁ3 0 JIOE
sextet 2 3 true \/—
Hpsuczy = 0 —ED—EgZ BB 243E
VIOE 2\3E —%D+% g™ BB

In order to obtain the eigenenergies and eigenfunctions, we solve the corresponding secular equation as

follows;

X - % g™ BBx* - %[3361)2 +1008E? +288 Dg"™ BB +1 17(g;‘“733)2]x

—ﬁ[usozf ~11520DE* + 3600 D%g™ BB~ 6480 E*g™ B +1440D (g™ BB) — 405( g;“‘eﬁgﬂ =0

In order to eliminate x2 term, replacing x with x+ g*{m;ﬁ % yields

v =2[7(D*+ 38+ 6DgpB+3(gm ) |«

+£[10(D3 ~9DE®)+ (36D - 27E ) g™ BB+ 180(8?0133)2}

According to the Viete’s method, the set of the three exact eigenenergies and corresponding

eigenfunctions are given as

true B
E, =2acos larccos(i)+2ﬂ + & B (2.24)
3 2a 3 2
5 3 1
Y, =o,|+t=)+B,|-=)+7.|+= 2.25
n n 2> ﬂl‘l 2> /}/Vl 2> ( )
where

a= %/7(02 +3E”)+6Dg™ BB+ 3(;;;“6/33)2

_ 40(D* ~9DE*)+36(4D* - 3E%) g™ B+ 72D(g"™ BB)’
B 21(D*+3E)+18Dg™ BB+9(g™ BB)

o, 10\/@; B, 3J2E yzz{[an] +(&] +1}

1

B y 2 3 iy

’J/n E —D—— frue B yn E +—D+— true B yn yn

=3 D58 TP+ 8B

and n = 0, 1, 2 correspond to |Ms = +5/2>, |[+1/2> and |-3/2>-dominant states, respectively (Fig. 2.13).
The counterpart eigenvalues and eigenfunctions in the basis of {|-5/2>, |+3/2>, |-1/2>} can be obtained

with replacing B with —B. The analytical formulas given above are explicitly derived for the first time
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Fig. 2.13 Energy diagrams for spin-sextet states for some £/D values in the case of B//z (red line) and B//
x (broken green line).

together with those for S = 7/2 as given in later in this work. In order to obtain gefi—gtrue relationship, we

took Maclaurin’s (Taylor’s) expansion for arccosine and cosine in Eq. (2.24);

T
arccos x = 5 - X

'z(z_x) INCR IS
1312 2 6 1243
'1(7: ) NER 1,
cos| =| =—x [+— |=——+—x+ x
1312 3 2 6 1243
RYE: 4r 1
cos| =| ——x |[+— |=—=x
| 312 3 3
Replacing x with b/2a gives rise to the following expanded energy eigenvalues.
2
true B
E" =2a £+l£—;(ij E p
- 2 62a 12\/5 2a 2

true B
P zzc{ii}gz i

CO

w2

3 32a 2
2 true
B
E" | =2a —£+li+#[i] + & h
o 2 62a 1243\ 2a 2

The other eigenenergies corresponding to the conjugate spin states {£_s2, E-12, E+312} are derived by

replacing B with —B. The energy difference between conjugate spin states is equated to g-*ffB, i.e., Eag —

E_us = g~fBB, yielding identities with respect to B. In the second order expansion in this case, we solved
the second or fourth order algebraic equations, acquiring the g.cff—g.true relationships as a function of 1 = |
E/D|. The most reasonable g:<ff—g.true relationship for Ms = £5/2 doublets is one of the solution of the
second order algebraic equation for g:¢f from the coefficient of the B2 term of an identity (see Appendix
2.1).

The derived expressions based on the expansion above are not so simple as those for quartet states, as
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expected. The analytical formulas are rather complex due to the admixture allowed among the Kramers
doublets. The eigenvalues include the Zeeman terms, and thus they are different from those at zero-field.
The trigonometric-function based representations give more physical insights of the admixture between
the Kramers doublets as the function of the D-value and the ratios of E/D, and the representations are
useful to acquire numerical accuracy to compute the eigenvalues/eigenfunctions. We note, however, that
for the simplicity and practical use of the geffgtrue relationships of S = 5/2, without loss of generality,
those based on the genuine Zeeman perturbation treatment are much easier to access and useful enough to
give extreme accuracy equal to the exact relationships for a given value of the static magnetic field. The
transition probabilities relevant to the principal orientations are easily calculated in terms of the
eigenfunctions to the second order of the Zeeman terms (detailed formulas are given in the next section).
The similar approximation can be applied in the case of B//x and y, the discrepancies are much larger than
that in the case of B//z for second-order expansion (see Appendix 2.1). Although higher-order
approximation may approach to the exact geffi—gtrue relationships, that formula will be useless because we
will need to solve sixth or higher order algebraic equation which the general solution does not exist.
Figure 2.14 depicts geff/gtue as a function of the ratios of |E/D| for S = 5/2 together with the
relationships derived room the genuine Zeeman perturbation treatment to the second order. The geff—gtrue
relationships in the solid and dotted curves are based on the expansion given here and on the analytical
formulas by the genuine Zeeman perturbation treatment described in the later section, respectively.
Discrepancy between the two relationships is extremely small, and naturally on increasing the static

magnetic field/microwave frequency used both the expansion and perturbation approaches gives less

accuracy.
G*gme |Ms = +5/2>-dominant transition g /gtrue
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Fig. 2.14 geff/gtiue relationships as a function of the ratios of |E/D| for S = 5/2. The subscripts, x, y and z
denote the principal axes of the g- and ZFS tensors. The curves of the exact relationships in the broken
lines are based on the exact solutions with the spin Hamiltonian parameters as follows: gtuefB’ = 0.1.
Those derived by the genuine Zeeman perturbation treatment to the second order are depicted in the solid
curves based on Egs. (2.51a)—~(2.51c). The values of geff/gtrue at the extreme limit of |E/D| = 1/3 are given.

28



For B//x or y, the cyclic permutation for D and E gives the relationships, i.e., D — +(3E—D) and E
— —1(E+D) for B//x, and D — —%(3E+D) and E — L(E—D) for B//y. [45,46,62,63] Figure 2.14

depicts the geff—gtiue relationships from the exact and the genuine Zeeman perturbation treatment.

(e) Spin-septet state (S=3)

For spin-septet states, the geffi—gtue relationships are derived from all the eigenvalues and eigenfunctions in
the presence of the Zeeman terms for the principal orientations, as given below. All the formulas are
analytical and exact. Referred to septet spin states, genuinely organic molecular high spin entities and
metalloion complexes based high spin clusters are of particular interest, and their ZFS values won’t be
sizable but relatively large because they are reduced due to the projection factors of the resultant spins in
the strong exchange coupling scheme. The derived expressions apply to these molecular high spins with
some modifications.

The spin Hamiltonian with ZFS and electron-Zeeman interactions are

5D+3g™BB 0 VISE 0 0 0 0
0 24" BB 0 V30E 0 0 0
JISE 0  -3D+g™BB 0 6E 0 0
Hgne = 0 V30E 0 —4D 0 V30E 0
0 0 6E 0 -3D-g"™pBB 0 JISE
0 0 0 J30E 0 -2g™BB 0
0 0 0 0 JISE 0 —3¢"BB

: . 7t . : septet septet .
This matrix can be divided into two matrices Hi,, and HJL:,, whose basis sets are {|+3>, [+1>, |-

1>, |-3>} and {[+2>, |0>, |-2>}, respectively.

5D+3g™BB  ISE 0 !
e JI5E -3D+g™ BB 6E 0
ZFS+eZ,1 0 6E -3D— gf,_meﬁB \/EE
0 0 JISE 5D-3g" BB

2¢™pBB 30E 0
Hee, = N30E —4D  \J30E
0  30E 2g™BB

1 3 septet . . .
Let us consider the eigenvalues of Hk, | . The corresponding secular equation is

x' = 4Dx" = 26D + 665> +10(¢™BB)' |+ +] 60D" +420DE* - 44D(g™BB) v

+225(D* ~ E*)’ - (106D - 234E*) (g™ BB)" +9(g™BB) =0.

In order to eliminate the x3 term, replacing x with x + D yields
X [3202 +66E> +10(g™ BB) }8 + [288DE2 64D (g™ pB) }x

+256D* —96 D*E* +225E* —(160D* ~ 234 %) (g™ BB) +9(g™BB)' =0.

The resolvent cubic of this quartic equation is
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u3+2pu2+(p2 _4r)u—612 =0
p=-32D* - 66E* ~10(g"™ BB)
q=288DE> —64D(g™BB)

4

r=256D" —96D°E* +225E* —(160D* ~234E*) (g™ BB) +9(g"™BB)

Following the similar way from Egs. (*) to (**) in p.18, the exact eigenenergies of the Hamiltonian is

1 _ 2
EMS=ElzDJ_rl\/ZJ_rZ —2p—u0+lﬁ:|. (2.26)

with

u, = 2a, cos la:rccos b—o _2_p
3 2a, 3

Jpi+12r
ay=~"~——"—
3
b = 2p’ - T2pr+214°
0 3p*+36r
Both the upper and lower signs should be chosen in the double sign +i, while they should be chosen

freely in the double signs +; and +».

Next, we focus on the eigenenergies of H %, , . The secular equation of this matrix is

V' +4Dy? —[60152 4 4(g;“'eﬂB)2Jy— 16D(g™BB)" =0

In order to use the Viete’s method, replacing y with y—3D vyields

3 16 ., 2 true 2 128 4 ,, 32 true 2
=|—D"+60E"+4 B ——D"-80DE"+—D B
=k (e ) [y~ 2 (g™ p8)

Thus the eigenenergies in trigonometric form are

E, =2acos larccos(i)+2ﬂ _4Db (n=0,1,2) (2.27)
3 2a 3 3

where

ue % \/4 D* +45E* +3(g™BB)

32D° +540DE> - 72D(g™BB)’
12D +135E°+9(g™BB)

and n = 0, 1 and 2 correspond to the energies of |Ms = +2>, |-2> and |0>-dominant states, respectively.

The geff—gtrue relationships as a function of 4 = E/D between the [=Ms>-dominant sates can be obtained
from Eq. (2.3). Considering this equation as identities with respect to B, we obtained the specific
solutions g:¢ff/g.trie = 6, 4 and 2, of the |Ms = +3>, |+2> and |=1>-dominant transition, respectively, if and
only if £/D = 0. Figure 2.15 depicts g.¢ff—g.'re relationships for some g.mefB’ values.

We note that the protocols of the eigenfunctions transformation with respect to the change of the
principal axis are governed by the rotation group of spin space, as described above in the case of S = 3/2.
In this work, we have illustrated that the global invariance of the eigenenergies with respect to the
principal-axis transformation explicitly holds for S = 3 in Appendix 2.2 (see Table 2A.3). More
importantly, the protocols can afford the reduction of the order of the fine-structure spin Hamiltonian,
enabling us to analytically and exactly solve the eigenvalues/eigenfunctions for spins higher than S = 7/2,
which will be the future work.
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Fig. 2.15 geff/gtrue relationships as a function of the ratios of |E/D| for S = 3 based on the exact solutions
with the spin Hamiltonian parameters as follows g:efB’ = 0.1, 0.2, 0.3, 0.5 and 1. The special solutions
of geff/gtrue = 6, 4 and 2 for |Ms = £3>, |[+2> and |=1>-dominant transitions, respectively, are obtained if

and only if £/D = 0.

(f) Spin-octet state (S = 7/2)

Spin-octet state can be achieved with f~orbital atoms or spin couplings between radical species. [67—75]

Spin Hamiltonian considering ZFS and electron-Zeeman interaction in B//z can be written as

7

D+ g BB 0
5 e
0 D+2g™BB
X
21E 0
0 35E
H‘z’?;cz;:
0 0
0 0
0 0
0 0

V21E

0

3 e

—3D+2 g™ BB

S8

0
2J15E

0

0

0

0 0 0 0
3V5E 0 0 0
0 2J15E 0 0
—5D+%gﬁ"‘eﬁ8 0 2J15E 0
0 —5D—%g§'“"ﬁ3 0 35E
2WI5E 0 —30—3 g™ BB 0
0 3W5E 0 D- %g BB
0 0 V21E 0

21E

0

7D%g§mﬁ3

This matrix can be divided two matrixes of which the basis are {|+7/2>, |-5/2>, |+3/2>, |-1/2>} and {|-
7/2>, [+5/2>, |-3/2>, |+1/2>}, respectively. The former is

7D+ % g™ BB 0
0 D—gg;“‘eﬁB
H ;IC:‘;-:-eZ,I =
VI1E 0
0 3J5E

0 3J5E
3D+ %g;“‘e BB 2V15E
215E —5D—% g™ BB

21E

0

The exact eigenenergies are the solutions of the following quartic equation.

x*—2g™BBx’ — [42(1)2 +3E%)- 201)g;“’5,83+%( g;“’eﬁB)z}xz

—[64(D3 ~9DE?)+2(43D* ~111E*) g™ BB+44D(g™BB)

+105(D* +3E%)’ ~84(3D° - 7DE? ) g™ BB -

105

2

219

o (ep) s

(D*~5E*)(¢™BB) +63D(5™BB)

In order to eliminate the x3 term, replacing x with x + g.tuefB/2 yields,

Xt [42(1)2 +3E%)+20Dg™ BB+ 10(g;f“6ﬁ3)2]x2

—[64D(D2 ~9E*)+32(4D* - 3E*) g™ BB+ 64D(g;“‘eﬂB)2}x

+105(D* +3E%) —4(71D° ~219DE? ) g™ BB~ 2(53D* ~171E* (g™ BB) +36D(g™BB) +9(¢™BB)’

31

3 105
+_
16

(s™pB) =0



According to the series of Egs. (*) through (**), the exact eigenenergies of the Hamiltonian is

1 2
Ey, =—| 8™ BB, \Ju, +, |-2p—u, F, = (2.28)
2 Juy

with

1 2
u, = 2a, cos| —arccos b ||_22

3 2a, 3
a, = %\/pz +12r

B 2p = 12pr+274
3p>+36r

p=-42(D*+3E*)~20Dg™BB~10(g™BB)

bO

q=—64(D* ~9E*)-32(4D* -3E*) g™ BB~ 64D (g™ BB)

r=105(D* +3E*) —4(71D° ~219DE* ) g™ BB ~2(53D* ~171E*)(¢™BB) +36D(g™BB) +9(g™pB)’
The eigenenergies of the conjugate Hamiltonian are obtained with replacing B with —B in the solutions
above. The gefi—gtrue relationship between the [£Ms>-dominant states are obtained from Eq. (2.3). Figure
2.16 depicts geff/gtrue as a function of |E/D| together with the genuine-Zeeman perturbation approach.

So far, there are few papers of the spin-octet system with magnetic parameters, however the multi-spin
systems are the promising candidates as quantum memory devices for the QC/QIP or as single-molecule

magnets. Table 2.1 shows the selected magnetic parameters of the spin-octet systems.

g®*igte |Ms = £7/2> dominant g°f/gte |Ms = +5/2> dominant
5F—— —
gen/gtrue z
0.12 4
5t 010 X
4} o0.08 3
3} 006
0.04 y 2 x -
2 0.02 ) 1 -
1 —— Y
0.00 005 010 0.15 020 025 030 -0 X,y /
= E/D — E/ID
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
g°/gtrue |Ms = +3/2> dominant g°gtue |Ms = £1/2> dominant
7
4 y
6
5 v
4
3\\
X
1 2 N
1 ~—— ,
EID ——= EID
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 2.16 The geff/gtrue relationships as a function of the ratios of |E/D| for S = 7/2. The subscripts x, y and
z denote the principal axes of g- and ZFS tensors. The curves of the exact relationships in the broken lines
are based on the exact solutions with the spin Hamiltonian parameters as follows: gtefB’= 0.1. Those
derived by the genuine Zeeman perturbation treatment to the second order are depicted in the solid
curves. The departure of the perturbation treatment from the exact one is only within the third order of the
Zeeman terms.
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Table 2.1 Reported Spin Hamiltonian Parameters of the Spin-Octet Systems

Paramagnetic
center

Mn(I1T);Mn(II)
Fe(Il),
Fe(II)Fe(IIT)
Eu(II)

Eu(II)

Gd(IIn)

Gd(III)

Gd(II)

Gd(II)

Gd(In)

Gd(I1D)

Tm(II)

Yb(IIl),

D/cm-!

—-0.013
+7(2)
+4

—0.50
+1.0

+0.575
0.108
0.804
0.048
-0.019

+0.2100

+0.2575

not available

—4.209

\E/D|

no data
0.11(2)
0

0
0

0.111
0.08
0.168
0.013
0

0.0857

0.02718

not available

no data

g-value

1.92
23,22,2.1
2.04,2.04,2.3

1.92
1.97

2.00

2.018
2.08,2.07,2.14
1.99

1.99

1.9900, 1.9900,
2.0000

2.0090, 2.0100,
1.9775

1.074
3.069
5.668

1.14

Ref.

[67]
[68]
[69]

[70]

[70]
[71]
[72]
(73]
[73]

[74]

[74]

[70]

[75]

(f) Spin-nonet state (S = 4)

The matrix representation of the spin Hamiltonian in the spin-octet state is

33



2D+4g™ BB 0 V28E 0
0 1D+3g"™ BB 0 J63E
V28E 0 ~£D+2g"™ BB 0
0 J63E 0 ~ZD-g™BB
Hiw, = 0 0 JooE 0
0 0 0 VI00E
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
J9OE 0 0 0 0
0 VI00E 0 0 0
—2p 0 VoOE 0 0
0 -ZD-g™pB 0 J63E 0
NE 0 ~£D-2g" BB 0 V28E
0 J63E 0 1D-3g"™pB 0
0 0 V28E 0 BD-4g" BB

This Hamiltonian matrix can be divided into two matrixes in which the basis sets are {|+3>, [+1>, |-1>, |-
3>} and {|+4>, [+2>, |0>, |-2>, |-4>}. The former is

%D+ 3™ BB J63E 0 0
J63E s gmps JI00E 0
Hnonel _ 3 )
ZFS+eZ,1 —
0 VI0OE —%D - g™ BB J63E
0 0 J63E %D —3g"™pB

x* +60Dx’ -[12421)2 +18306E* + 810( g;“’eﬁB)z}xz —[64260D3 —34020DE” + 70956D( g;"“ﬂB)z]x

+1147041D* + 7358526 D*E” + 26040609 E* + 59049 g;'“ﬁB)“ -1931850D° g;'“ﬁls)2 +3424842E° ( g;f"eﬁB)2

=0
In order to eliminate the x3 term, replacing x with x — 15D,

X —[25921)2 +18306E7 + 810(gf“eﬁ3)2}x2 +[583200DE2 — 46656 g;"‘eﬁB)z}x

+1679616D"* +2729376 D*E* +26040609E* +59049 (g™ BB)' ~1049760D* (g™ BB) + 34248427 (g™ BB)’
=0
The eigenenergies of H .., , is given explicitly using u: (Fig. 2.17).

(2.29a)
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Fig. 2.17 The energy diagrams derived from the analytical diagonalization for the spin nonet state for E/D
=0, 0.1, 0.2 and 0.3. Actual E/D value used in the case of “E/D = 0.3” is 0.29552163.

u.=2a,cos lau‘ccos L _2_p
) ‘ 3 2a, 3

a = %,/pzz +12r,
b = 2pz3 -T2p.r, —i—27qz2
‘ 3p.+36r,

p. =-2592D ~18306E - 810( g™ BB’
g. = 583200DE* - 46656D (g™ BB)
4 22 4 true 4
r. =1679616D* + 2729376 D*E* + 26040609 E" + 59049 (g™ BB)
—~1049760D% (g™ BB’ + 3424842 (g™ BB)

z

The eigenenrgies in the case of B//x are prepared here for the counterpart.

1 29
E ,=—|15D-45E—\ju * [2p —u +—F= 2.29b
2[ it 2 @] (2:290)
with
u,=2a, cos larccos b ) |-2
3 2a, 3

a, = %«/pxz +12r,

2px3 -N2pr.+ 27qx2
3p,” +36r,

b =

x
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Fig. 2.18 geff/gtrue relationships as a function of the ratios of |E/D| for S = 4 based on the exact solutions
with the spin Hamiltonian parameters as follows g:tefB* = 0.1, 0.2, 0.3, 0.5 and 1. The special solutions
of geff/gtue = 54 and 18 for |Ms = +3> and |[+-1>-dominant transitions, respectively, are obtained if and only
if E/D = 0.

2

p.= _%[12902 +130DE +257E* + 2o(g;’“eﬁ3)2]

g, =-54*(D- 3E)[25(D+E)2 - S(g;“‘eﬁBﬂ

(9j4 (1 19D* —50DE + 87E2)(39D2 +110DE + 327E2)
2

+1448D* (g™ BB) +8016DE (g™ BB) —3672E> (g™ BB) +144(g™BB)’
These values are the part of the solutions of the following Hamiltonian matrix. Figure 2.18 depicts the
geff/gtrue relationships between |Ms = +3> and |=1>-dominant transitions.

On the other hand, the ZFS Hamiltonian in the basis of {|+4>, |+2>, 0>, |-2>, |-4>} is

%D +4¢™BB V28E 0 0 0
J28E —§D+2g;mﬁB JIOE 0 0
nonet \/_ 20 \/_
He = 0 90E -D 90E 0
0 0 NE —%D—zg;’“ﬁB V28E
28 e
0 0 0 J28E = D-4g™BB

The secular equation of this Hamiltonian is quintic so that the general solution does not exist except the

special cases of the parameters. [76]
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2.2.2 Zeeman perturbation treatments of fine-structure spin Hamiltonians:

Rayleigh-Schrodinger perturbation theory

The eigenfield method can afford the exact resonance fields [41] of general spin Hamiltonians in a
straightforward manner, instead of solving energy eigenvalue/eigenfunction problems of full spin
Hamiltonians, and thus potentially a powerful approach for analyzing fine-structure ESR spectra of high
spin entities with sizable ZFS. Analytical formulas of eigenfields for spin multiplicities up to S = 4 only
with the fine-structure spin Hamiltonian are available. There are, however, practical disadvantages of the
relevant numerical diagonalization procedure despite its intrinsic advantages. [77] The relevant eigenfield
matrixes are n2 x n2 generalized ones and give complex eigenvalues of resonance fields while the original
matrixes are n X n Hermitian. In order to practically avoid the pitfall in the numerical diagonalization
procedure for the generalized matrixes, a hybrid eigenfield method has been proposed, which enormously
saves CPU time. [41] In the hybrid method, only transition probabilities are solved as the original energy
eigenvalue/eigenfunction problems with the known calculated eigenfields. To our knowledge, the
eigenfield mediated analytical expressions for arbitrary orientation of the static magnetic field are too
lengthy, and the formulas even for the principal-axis orientations are so complex as to serve as useful
tools for deriving the geff—gtrue relationships, as a given static magnetic field, for the high spin states with
sizable ZFS. The ecigenfield based relationships are less capable of replacing the exact ones given in the
above section in terms of mathematical complexity. Instead, in this section we afford facile analytical
formulas to be equal to the exact relationships with extreme accuracy by invoking the Zeeman
perturbation treatments.

Zeeman perturbation treatments provide physical insights into any possible influence de to dominating
or perturbing terms in the full spin Hamiltonian, predicting spectroscopic behavior without mathematical
complexity. Particularly, the fine structure/hyperfine ESR spectra for spin multiplicities higher than triplet
with sizable ZFS hardly give the magnitudes of their ZFS principal values in an intuitive manner. [3,33—
37] We have derived the Zeeman perturbation based analytical formulas for geff/gtree as a function of |E/D)|
for §$=3/2,2,5/2, 3 and 7/2. We have estimated the discrepancy of the Zeeman perturbation approach
from the exact treatment given in the preceding section. Our perturbation method is based on Rayleigh-
Schrodinger perturbation theory.

There are two approaches in the Zeeman perturbation treatment. One is based on the genuine Zeeman
perturbation and the other based on the pseudo-Zeeman perturbation. [3,33-37] In the genuine Zeeman
perturbation, the unperturbed Hamiltonian Ho is the ZFS term (S*D-S), and the perturbed term is the
electron-Zeeman term (A’ = SegeB). The genuine approach completely solves all the admixtures, due to
the symmetry of spin eigenfunctions, between different spin sublevels such as |Ms + 1> and |Ms — 1> by
the unitary transformation of zero-field fine-structure spin Hamiltonians and then treat resultant Zeeman
terms as the perturbation to the first/second order or higher. This approach is practically applicable to the
spin quantum number up to S = 4 except for particular cases. The pseudo approach treats all the off-
diagonal terms including asymmetric ZFS terms in the second order of the degenerate Rayleigh-
Schrédinger perturbation, (Ho = D[S:2 — S(S + 1)/3] and H' = E(S:2 — S)2) + S°g*B) and thus applicable to
any spin multiplicity despite the fact that increasing |E/D| generally gives rise to less accuracy. In order to
increase the accuracy the perturbation, a trick of transferring to the Brillouin-Wigner perturbation is
useful to derive approximate geff—gtrue relationships.

Note that the energy eigenvalues acquired by the genuine perturbation are exact in terms of the ZFS
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terms, and only the Zeeman perturbation effects to the energies are treated in the first/second order or
higher. Thus, the calculated transition frequencies and resonance fields are accurate even of the cases of
large asymmetric ZFS parameters (3£/D). The pseudo perturbation approach is not appropriate for such
cases. For conventional ESR spectroscopy, the second order treatment of the genuine Zeeman
perturbation is accurate enough, and the departure from the exact treatment is in the third order. Low-
field/multi-microwave frequency ESR spectroscopy enhances the genuine Zeeman perturbation approach,
enabling to estimate sizable ZFS parameters, in spite of the fact that recent instrumentation development
of very high-field/high-microwave frequency ESR spectroscopy is remarkable. [78,79] In the genuine
Zeeman perturbation, cross terms between the Zeeman interaction and ZFS terms, appearing as diagonal
or off-diagonal elements, are treated as Zeeman effects at a given static magnetic field. The contribution
of the Zeeman effect is quantitatively estimated, and gives clues to the magnitudes of the ZFS principal
values, as shown below. Derivations of the geff—gtiue relationships for half-integer spin systems with the

pseudo-Zeeman perturbation are shown in Appendix 2.3. [3,33-37]

(a) Spin-triplet state (S=1)

In this approach, we prepare the spin Hamiltonian in the basis of ZFS eigenfunctions. The matrix

representation of the ZFS Hamiltonian is

D
— 0 E
3
- 2D
=l 0 =22
D
E 0 3

The secular cubic equation of this matrix is
1 2
X ==(D*+3E*)x+-=(D*-9DE*)=0
3 27

The eigenenergies Eﬁ?ﬂ and the corresponding eigenfunctions (pj(gz of the Hamiltonian are

£V :giE (2.30)

0) _ _ZTD (2.30b)
g0 < DEIZY) (2.31a)
o =[0) 2.31b)

The electron-Zeeman term expanded with the new basis {(pfl) , (p((,o) , (pf) } are with B//z

100 0 0 1
Hy*=g™BB 0 0 0 |[>H',=g"BB 0 0 0
00 -1 100

Since the perturbing electron-Zeeman Hamiltonian includes only non-diagonal terms, the interaction with
respect to the magnetic field will be taken to the second-order energy.
rue 2
D, .. (e"BB)

E' =—+F

2.32a
T3 2E ( )
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irue B
E', ZB_E_M (2.32b)
3 2E
And perturbed spin-functions to the first order are
true
g™ BB+2E
‘ +1)+ - 2.33a
ol =|+1)+ [ He Y (2.332)
true
™ BB+2E
=-D)- +1 2.33b
e e 233)
The normalization factor was omitted for simplicity. Using Eq. (2.3) yields the g.cff—g.true relationship.
true 2
BB
E'\—E',=2E+ (spB) _ "pB
E z
g"BBE =2E* +(g™BB) (2.34)

gt 22 8"“BB'
g g pB 2
with A = E/D and B’ = B/D. Since g:*ff/g.'me depends on the external magnetic field, there is no general and

even specific g:¢ff—g.true relationship in this approach.
Note that according to the Brillouin-Wigner perturbation theory, the equations for the perturbed

energies £’sw+1 to the second-order can be represented as

2

D irue B
E'BW,+1__+E+ (g&' ﬂD—) ,
E|BW+1_(_EJ

’ 3

2

' D g;rueﬂB
E‘Bw,l—(3+EJ

Solving these equations for the energies yields the exact solutions (2.4a) and (2.4b).

(b) Spin-quartet state (S = 3/2)

The perturbed energies and wave functions for the spin-quartet case were discussed by Pilbrow. [80] The

matrix representation of the ZFS Hamiltonian in the principal-axis system is

D 0 BE o0

0 -D 0 +3E
V3E 0 -D 0

0 V3 0 D

The secular equation of the matrix is

quartet __
H ZFS T

~3(D*+3E%)¥* +(D*+3E%) =0

The diagonalized eigenenergies E” and corresponding eigenfunctions (p(Mol are in the following.

My
g"J =D* (2.35a)
2
€9 =-p (2.35b)
2
go(é) =cos0 i;>+sin0 -T-%> (2.36a)
2
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@) = cos@ il> —sin@ ¢3> (2.36b)
iE 2 2
where
D*=~D*+3E*

and

3E
D

D*-D
tan@ = or tan20 =
J3E
Phases of the eigenfunctions are chosen such that when £ — 0, <p§3§ — |Ms>. The electron-Zeeman

Hamiltonian rewritten spin Hamiltonian H’ez is

30 0 O
Hqua.rlel — g;meﬁB 0 1 0 0
< 2 00 -10
00 0 -3
3cos’ 6 —sin’ 0 0 —4sinfcos @ 0
S H :g;meﬁB 0 cos’6—3sin’ 6 0 —4sinf@cos
. 2 —4sinfcos@ 0 —cos” 0+ 3sin’ 0 0
0 —4sin@cos@ 0 —~3cos’O+sin’
Thus the second-order energies and first-order spin-functions are
frue 2 .2 2
L 1 e ) . 2(gz ﬁB) sin“Ocos” 0
E%_D*+Egz ﬁB(3cos 6 —sin 9)+ D (2.37a)
2
2(g™BB) sin’BHcos’ O
E', :—D*+lgﬁ“‘eﬂB(cos20—3sin29)— (g" p ) (2.37b)
+ 2" D*
E' ——D%_] " BB(cos’ @ 3sin”6) 2(s"pB) sin*0cos'0 237
=-D*——g! cos” 0 —3sin”0)— )
f% 2g‘ D* (2.37¢)
2
1 2(gi“’eﬁB) sin” @ cos’ @
E',=D*-—g™BB(3cos’§—sin’ §)+—— 2.37d
S 8B ) o (237d)
frue B :
@', =cosb +§>+ sing— 8 PBsin6cos6 —1> (2.382)
2 2 D* 2
@' =cos6 +l>— sing— 8= F2SMTCOSY pBsinfeoso +§> (2.38b)
o 2 D* 2
@' =cosf —l>— sin@—M +§> (2.38¢)
= 2 D* 2
3 , g™ BBsin@cosO 1>
', =cosf|—=)+| sin - =————— ||+— 2.38d
(0_% 0 2> i D 5 ( )

here the normalization factors are omitted for simplicity. Noticeably, these perturbed energies are
equivalent to the set of the exact energies derived in the previous section. It is important that the zeroth-
order energy and the second-order contributions varnishes in the energy differences between the same
Kramers doublet, resulting in equal to exact solutions. Equation (2.3) gives the relationships between
effective g-value (g-*ff) and g-value from the full spin Hamiltonian (g:tr«¢) can be written as a function of 1
(= E/D).

eff

8 _3c0s20—sin6 for i% doublet (2.39a)

tue
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eff
8 _ cos® 0 3sin’ 6 for J_r% doublet (2.39b)
&:
The geft—gtrue relationship in the case of B//x or y can be obtained by the cyclic permutation with

respect to x, y, and z, i.e., for B//x, D — *(3E-D),E — —%(E+D), for B/ly, D - —+(3E+ D), E —

1(E-D).[45,46,62,63] The zeroth-order energy D* holds for the cyclic permutation (see Appendix 2.2).

For B//x,
tan20 = M
1-34
and for B//y,
tan26 = M .

1+34
The definition of  was chosen such as the arguments in arctangent does not diverge in 4 — 0 limit.

Figure 2.8 depicts the geff/gtrue as a function of |E/D| with solid line as well as the exact solutions.

(c) Spin-quintet state (S =2)

The ZFS matrix in the spin quintet case is

2D 0 6E 0 0
0 -D 0 3E 0

Him—| J6E 0 2D 0 6E
0 3 0 -D 0

0 0 ~6E 0 2D

and the coefficients of the secular equation are
aguintct — 7(D2 + 3E2)
atzquimet — _2(D3 _ 9DE2)
alquimet — 12(D2 + 3E2 )2
"™ =8(D*+3E”)(D’-9DE”)
where
¥ +aix’ +aix* +a’x+al =0
The coefficient of the highest term (x5) is set to be the unit. The second highest term (x4 in this case)

disappears due to the traceless of the ZFS Hamiltonian. This remains for the other spin states.

quintet

The ZFS Hamiltonian in the spin-quintet state can be divided into two matrixes Hyg; and H ;;‘S"‘;‘

with the size of 2 x 2 and 3 x 3 of which the basis sets are {|+1>, |-1>} and {|+2>, |0>, |-2>},
respectively. The former is
i -D 3E
Hqumtet — .
ZFS,1 ( 3E _D J
The diagonalized energies and eigenfunctions are
e =_D+3E (2.40a)
o [+ -1

+1

* N

The perturbing electron-Zeeman Hamiltonian in the basis of { (p(ﬁ) , (p@ } 1s;

(2.41a)
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H = gf.,‘“eﬁB( 0o ]a Hy= g;“ﬁB{ . j .
Being different from the spin-quartet case, the electron-Zeeman terms exist in the off-diagonal elements
in the perturbing Hamiltonian. Thus the perturbation effects are taken to the second order in the Rayleigh-
Schrédinger perturbation theory. This is due to the spin symmetry of the system.

The ZFS Hamiltonian in the basis of {|+2>, |0>, |-2>} is

2D J6E 0
HEme = J6E 2D 6E
0 +6E 2D

The diagonalized eigenenergies and eigenfunctions are

e =2p= (2.40b)

e =2p= (2.40c)

£ =2p (2.40d)

0 =, [+2)+ B, 0)+7.,]-2) (2.41b)

o)) = a,|+2) + B,|0) +7,|-2) 2.41c)

o) = [+2)-1-2) +2>J§|_2> (2.41d)
where

-1
o, Y, _ 6E 8|1+ 3E°
ﬂ+2 ﬁ+2 2D*_2D’ ” 2(D*_D)2

-1
a _ 7 N6E B =| 1+ 3E°
B, B, -2D*-2D’"" | 2(D*+D)
and

D*=+D? +3E’

The electron-Zeeman Hamiltonian can be transformed in the basis of { (Pig) ) (Péo) ) (Pg) } with B//z,

10 0 0 0 a,
HY" =2¢™BB 0 0 0 |—>H'y,,=22¢™BB| 0 0 «,
0 0 -1 a, o, O

The perturbed energies to the second order and the wave functions to the first order are

2
8 Erue B a 2
E'+2=2D*+—(g‘ pB) a, (2.42a)
D*-D
2
:mc B
) .
6F
2
8 true B az
E,= _2D*_w (2.42¢)
D*+D
2
true B
E,_IZ_D_3E_(gz pB) (2.42d)
6F
2 2
8 true B o 2 8 true B a2
E',=2D- (s76B) .’ 8(s5B) (2.42¢)
D*-D D*+D
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q0'+2 =a+2|+2>+ﬂ+2|0>+[1+

D’:—D (2.43a)
1 1 g™pB
= | )| =+ 22 -1 243b
L \/§| ) (\/E 6F )l ) ( )
\/ngrueﬂB
¢'o=a0|+2>+ﬁo|0>+[l_m Yol-2) (2.43¢)
1 g"™pBB 1
T - - +1)——|-1 2.43d
o ) e 430)
1 2g™BBa.,, V2g™ BB, 1
v z + 42V —=2 =T 0 0y —|-2 2.43
o= - o) By 2430
The geft—gtrue relationship for the |Ms = +£1>-dominant transition is
true 2
(&™BB) _ &
E' —E'  =6E+-— =g BB
amE g 8P
" BBE = 6E* +(g™BB)’ (2.44a)
g" _ 64 g™PB
g g™ BB 31
with A = E/D and B’ = B/D. For the |+2>-dominant transition,
2 2
8(g™BB) o, 8(g™pBB) a, .
E',—E',=2D*-2D+ (& p ) 2 (g” P ) L =¢""BB
D*-D D*+D :
3E*%¢"BB=6(D*-D)E* +[8(D*+D)a, ~8(D*-D)a2 | (g™BB) (2.44b)
gfff 2(\I1+3ﬂ/2—1) e ' 2 +3)2
ﬁ: true i +16g1 BB 4 M
8, 8. “BB 91

Both Egs. (2.46a) and (2.46b) do not have the field-independent general and special solutions in the

range of 0 <1 < 1/3, exemplifying a trivial case of g:tree = 0.

Now, let us consider the transformation of the Hamiltonian H 2;;“2‘” . According to the eigenvalues

(2.40b)—(2.404), it is equivalent that the transformation of the Hamiltonian;

2D 6E 0 2D 2J3E 0
J6E 2D J6E |—=| 2Y3E 2D 0
0 6E 2D 0 0 2D

The basis of the matrix in the right side is not {|+2>, |0>, |-2>} anymore.

(d) Spin-sextet state (S = 5/2)

The ZFS Hamiltonian in the spin sextet state is
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5D 0 JIOE 0 0 0
2
0 -3D 0 3W2E 0 0
JoE o -Sp 0 32E 0
HSCXlel —
ZFS
0 32E 0 ->D 0o JIOE
2

0 0 3R2E 0 -3 0

10
0 0 0 JIOE 0 <D

and the coefficients of the secular equation are

aiextet — _%(Dz + 3E2)
a;cxtct — _ﬁ(D3 + SDEZ)
a;exlel — &(Dz + 3E2 )2
a = 8Zﬁ(D2 +3E%)(D* +3DE?)
e @( D*+3DE?)
0 729

The definition of the coefficients were mentioned in the spin-quintet state.

The ZFS Hamiltonian H " can be divided by two equivalent 3 x 3 matrices whose conjugate basis

sets are {|+5/2>, |-3/2>, |+1/2>} and {|-5/2>, [+3/2>, |-1/2>}, respectively;

?D 0 I0E
sextet 2

Hps'=| 0 =3D 32E

JIOE 3\2E —%D

The secular cubic equation of this Hamiltonian is

X = §(D2 + 3E2)x+@(03 ~9DE’)
3 27
According to the Viete’s method, the three eigenenergies and three corresponding eigenfunctions are
Sflo) =2acos larccos(£)+2n—” (n=0,1,2) (2.45)
3 2a 3
©) _ 5 3 1
=, += )+ 0,2 )Vt 2.46
=] 3)ep] 2o a0
where

a= gdw +3E’

_ 40D(D*-9E?)
©21(D*+3E%)
and
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-1

a, NIOE B, 32E 10E> 18E? B
7, e0-8D'y, e+ " T 0.y R B
n n 3 n n 3 (850)__Dj (8510)+_Dj
3 3
Here, n =0, 1 and 2 correspond to the |Ms = +5/2>, |[+1/2> and |-3/2>-dominant states, respectively. The

perturbing Hamiltonian in the basis of { (p(Moz } with B//z is

5 3 1 5 3 1 5 3 1
anz - Eﬁoz + 57/02 anaz - Eﬁoﬁz + E}/Oyz anal - Eﬁoﬁl + 57/0}/1
' 5 3 1 5 3 1 5 3 1
H', :g; BB anaz_gﬂoﬁz"'gyoyz §a22—5ﬁ22+5y22 5“1“2_5ﬁ1ﬁ2+57172
5 5

3 1 5 3 1 3 1
anal—gﬁoﬁﬁayo% Eala2_5ﬁ1ﬂ2+5yly2 Ea12_5ﬁ12+5%2

The conjugate Hamiltonian in the corresponding basis of {|-5/2>, |+3/2>, |-1/2>} can be obtained by

replacing B with —B. The perturbed energies to the second order are

5 3 Lo Y (omeggy (3 3 LY (megp)
o 5, 3 1, (anaz_aﬂoﬁz"'ayoyzj (gz ﬁB) (Ea(Ja]_Eﬁ()ﬁl-'_EY(ﬁ/l) (gl :BB)
- D2 2p L true
E o =& i(2a0 2:80 + 27’0)& BB+ PO + e ¢
(2.47a)
5 3 1 D mea? (5 3 1 2 e
0 (5 2 3, 1, (anaz_iﬁoﬁz*'aﬂyz) (gl .BB) (Eala2_5ﬁ1ﬁ2+5yl7/2j (gml :BB)
g 27 K i(5a2 —2F +572ng pB+ e gl i e gl
(2.47b)
5 3 1 P omenny (5 3 1 ? e )
© 5, 3., 1, ) (Ea(lal_aﬁnﬁl"'gy(l%j (g; ﬁB) (Eala2_5ﬁ|ﬁ2+57|y2) (g: ﬁB)
E%ZS(' i(ia' LAY ng FB+ e gl " e gl
(2.47¢)
and the perturbed spin-functions to the first order are
[ 5 3 1 5 3 1 ]
| 1 5 Eana2_5ﬁ0ﬁ2+5707/2 e 3 anal_iﬁoﬁl"'ayoyl e 1
@ e N a, i—>+ By 2 _ g0 8.“BB +—>+ Yot 20 _ g0 8.“BB i§>
3
(2.48a)
[ 5 3 1 5 3 1 |
1 5a0a2—5ﬁ0ﬁ2+5y0y2 wegp 5> 8 3> Ealaz_gﬁlﬁz"'E%?’z e gp 1>
'y= o,F 2 Fo)EBED ) 7, F i Fo
P NG| e - gl & 2/ 7 v e - gl & 2
2
(2.48b)
5 3 1 3 1 i
1 5a0a1_5ﬁ0ﬁ1+5y0y1 neg 5> 8 Eala2_5ﬂlﬁ2+571y2 e 3> 1>
C=—| o £ wegp =) +| B+ BB 32 )4y |£=
. N g9 -l & 2 ’ £ -l & A
2
(2.48¢)

where Nisp, Ni3n and Nziz are the normalization factors. Notice that the zeroth and the contributions of

the second-order energies varnish the energy differences between +Ms, E’ug — E’-py, are taken. Thus,

g-+ff—gtrue relationships as a function of 4 (= |E/D|) are obtained with equation (2.3);

S0AT  s4A
g:ff B (£|$)0)_ %)2 (815)0)_;’_%)2 (2 49a)
g™ 1047 184° '

(=) (o)

for the |Ms = £5/2>-dominating transitions,
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501 5407
- +1

g _(eV-u) (ee3)

i 2.49b
g 104° 1847 ( )
RO
(e5-1) (e¥+3)
for the |Ms = £3/2>-dominating transitions and
50A° 5477
~ O 0P (o0, 2 ]
gt _(eV-8) (e+3) (2.49¢)
g 104° 1847 '
O_ w0V (o0 2
(8 1 _T) (8 1 +§)
for the |Ms = +1/2>-dominating transitions. Here 8 / D and A =E/D.

The transition probabilities between |[+Ms>-dominant transitions are functions of A = E/D and B.

Similar to the case of spin-quartet state, here we consider the group-theoretic quantum transition

2
. >‘ (Fig. 2.19). For the [Ms = +5/2>-dominant transition,

i 3 3(5o,0,—3 +4 : e o)\
/5060,BO+2 /2ﬁ0y0+_}/02__(2 01 2ﬂoﬁ1 227/071) (gz ﬂB)
2 2 2 (0) _ A(0)
1 1 (80 € )

probabilities described as ‘< '
N+%2 Nﬁ; _2\/_(2 o0 —5 ﬂoﬁl 2 7071 )( o O!z 2 ﬁoﬁz 2 yoyZ)(gfmeﬁB)z

o fol)
2 2

For the |Ms = +3/2>-dominant transition,

2 2

For the |Ms = +1/2>-dominant transition,

S

x

2

11| = = 3 3(3a,0, -2 BB +1ry,) >
— 5 +2 2 += 2_ - 1772 2 172 270172 true B
N+;2 Nﬁ; o,p, B.y, 272 2 (8(()0)—8(0))2 (gz B )

1

3
2 1 | ‘/galﬁ| + 2\/513171 + 5}/12

N lZW _\/g(%aoal_%ﬂoﬂl+%7’o7’1)(%a1az_%ﬁlﬂz"'%%yz) e g p 2
I (5(()0)_81(0))(81(0)_3§0)) (gz B )

Probability ~ |Ms = £5/2>-dominant Probability  |Ms = £3/2>-dominant Probability ~ [Ms = £1/2>-dominant
1.2
0.04 / 1.0 5
/
4
0.03 / 08
Y 0.6 3
0.02
/ 0.4 2
%
0.01 _ 0.2 1
_
EID EID EID
000 005 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30 000 005 010 015 020 025 0.30

Fig. 2.19 The transition probabilities [<¢ - Sy|p’+mg>|? for S = 5/2. The subscripts x, y and z denote the

principal axes of the g- and ZFS tensors. The curves are based on the genuine Zeeman perturbation
treatment to the first order with the spin Hamiltonian parameters with gtuefB” = 0.1.

The energy corrections to the third order £ (n =0, 1, 2) are given in the following;

for the |Ms = +5/2>-dominant state,
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8(()3) _ (Saoal - 3ﬁ0.61 + YoVi )2 (50‘12 - 50‘022_ 3/312 - 3/302 + 712 - 702)(g;mﬁ3)3
8(8((]0) - sfo))
i (5050062 B 3ﬂoﬂ2 VoY )2 (50522 B 50502 B 3ﬁ22 B 3ﬂ02 + 7/22 B 702)
2
8(830) - eg’))
+ (Saoaz B 3ﬂ0ﬁ2 + 70y2)(5a1a2 B 3ﬁlﬁ2 +7/])/2)(5(ZOOC] B 3ﬂ0ﬁl + /}/O?/] )
4(6((,0) —&l" )(séo) - £f°>)

(8" BB)’

(g"pB)’

50E* 54E’ ol 2
(e -9D)(”-1D) (e +3D)(e”+3D)

10E* . 18E* o 10E> N 18E* ol
_(eéo)—%D)z (£g°)+%D)2 (efo)—%D)z (£f°)+%D)2

S0E*  S4ET S0E* S4BT
(e”-9D) (e+3D)  (e-4D) (&+3D) (gBB)
108" L BET M0 I8ET Xg(gém_gfo))z
_(8{0)—%D)2 (£f°)+%D)2 (eéo)—%D)z (8&‘”+_%D)2
50E° B 54E° +12
(6&0)—%D)(8§°)—%D) (ef,o)+%D)(e§°)+%D)
+=
10E? . 18E? il 10E* . 18E? 1
_(ef)o)—%D)z (eé°)+%D)2 (gg°>—g1))2 (ggo)+%D)2
SO S4ET 50E>  54E°
(e-wD) (&9+3D)  (eV-wD) (e”+3:D) (g™ pB)’
ST L I8E? +1_ 10E>  I8E’ +1X8(£(()0)_8go))2
_(eg‘”—%oD)z (£§°)+%D)2 (e(()")—%D)2 (s(()‘))+%D)2
0) SOEZ(O) T (20 54E2(0> *l
+_(81 120)(52 —%D) (51 +%D)(E2 +§D)
10E? 18E? .
el —%’D)2 (sf)o) +2 D)
50E* B 54E° ol
(e -19D)(-9D) (e +3D)(e) +3D)
X
10E? 18E* i
(e-12D) (e9+:D)
50E° _ 54E? o
(& -4D)(e"-4D) (e +3D)(e" +2D) (sBB)

X

8 4(8(()0) - 8;0))(8(()0) - sf"))

10E? . 18E? 1
(ego)—‘f?D)z (eg")+%D)2

for |Ms = —3/2>-dominant transition,

(2.50a)
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823) _ (5050052 - 3ﬁoﬂ2 VoY )2 (50‘02 - 505222_ 3ﬁ02 - 3ﬂ22 + 7/02 B ’}/22)(g;meﬁB)3
8(£§°) - eff’))
+ (50‘10‘2 =386, +77, )2 (50‘12 -50," =3B =3B, +7,’ - 722)
8(8(()0) - 820))2
+ (50600(2 — 3ﬁ0ﬂ2 TVo?s )(50510‘2 — 3ﬂ1ﬁ2 +77 )(Saoal — Sﬁoﬁl + 7/071)
4(8(20) —&l" )(ego) - ef‘)))

(g"BB)’

(g;rueﬂB)3

50E* B 54E° Hz
~ (3;0)—{700)(830’—%01)) (e§°)+%D)(sf)°)+_%D)
10E? . 18E* +1 10E? N 18E? +1
_(620)—%D)2 (gg”)+_%D)2 (sf,o)—%D)z (8(()0)+_%D)2

SOE*  S4ET SOE* _ S4ET
(e"-2D) (e+2D)  (eV-2D) (eP+3D) (g™ pB)’
T 108 L BEE 0 10E° BET Xg(ggm_géo))z
_(eéo)—%D)z (eg°)+%D)2 (e@-%]))z (££°)+%D)2
50E® B 54E° 12
(&-19D)(”-19D) (+3D)(e”+3D)
+=
10E? . 18E? 1 10E? . 18E? )
_(eg")—%D)z (£§°)+%D)2 (gf")—%D)z (s{")+%D)2
SOE* S4BT SOE*  S4ET
(" 4] (e+ip)  (eV-wp) (M+iD) | (gpB)
L T V- L Xg(ggo)_gl(o))z
_(6{0)—%D)2 (gf°)+%D)2 (ego)—%D)z (e£°)+%D)2
50E® 54E° "
(e”-19D)(e-19D) (”+3D)(el+3D)
AL
10E? . 18E? 1
(e - {TOD)Z (& +%D)2
{ ©) 50E2<o) T (O 54152(0) “]
. (EV'-4D)(&”-4D) (e +3D)(e” +3D)
10E? N 18E? +1
(efo)—%’D)z (sf°)+%D)2
50E” B 54E° ol
(e -4D)(e" - 4D) (e +3D)(e" +1D) (s7BB)’
X

8 4(620) - e((f’))(sgo) - efo))

10E* N 18E* "
(350)—@)2 (gg°>+%1>)2

(2.50b)

and for the |Ms = +1/2>-dominant transition,
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50E* 54E°
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10E? . 18E? il 10E? . 18E? +1
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The third-order energies corresponding to the |[Ms = —5/2>, |+3/2> and |-1/2>-dominant states are

obtained with replacing B with —B in the energy equations for the conjugate |Ms = +5/2>, |-3/2> and |
+1/2>-dominant states, respectively. The geffi—gtrue relationships are obtained from Eq. (2.3). Figure 2.20

depicts geff/gtrue as a function of the rations of |E/D| for S = 5/2, as derived from the genuine Zeeman
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geff/g"ue |MS = +5/2>-dominant geff/gtrue
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Fig. 2.20 The g=ff/gtrue relationships as a function of the ratios of |E/D| for S = 5/2. The subscripts x, y, and z
denote the principal axes of the g- and ZFS tensors. The curves of the exact relationships in the brown lines
are based on the exact solutions of the spin Hamiltonian parameters with g-tveSB’ = (0.3. Those derived by
the genuine Zeeman perturbation treatment to the third order are depicted in the solid curves.

Energy/D Energy/D
3 /;0154
2 -0.56
1 -0.58
el Sgtrue 48/D-0.60
"""""""""""""""""" ’ -0.62
........ -0.64
“=0.66

-~ true
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Fig. 2.21 Spin eigenenergies in the case of B//y, E/D = 0.011. Ms = +3/2 dominant states crosses at
gtueB/D = 0.30 so that geff/gtrue = (.

perturbation treatment to the third order and exact solutions for a particular set of the spin Hamiltonian

parameters given in the caption.

(e) Spin-septet state (S = 3)

The ZFS Hamiltonian in the case of spin-septet state is

sp 0 NISE 0 0 0 0
0 0 0 «30E 0 0 0
JSE 0 3D 0 6E 0 0
H2%=| 0 30E 0 —4D 0 ~30E 0
0 0 6E 0 3D 0 AI5E
0 0 ~30E 0 0 0
0 0 0 I5SE 0 5D
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and the coefficients of the secular equation of H “ are

as™ =—42(D* +3E”)
a;™ =—44(D*-9DE?)
as™ = 465(D* +3E%)

as™ =900(D’ +3E*)(D* - 9DE?)

a = 13500(D E- E)

septet __
a,™ =0

The ZFS Hamiltonian H %" can be divided into two matrixes, H & and H,%> , with the basis sets are

{|+3>, [+1>, |-1>, |-3>} and {|+2>, |0>, |-2>}, respectively. The former is

5D 15E 0 0
JISE 3D 6E 0
0 6E 3D AI5E
0 0 ~I5E 5D

The eigenenergies and corresponding eigenfunctions of this matrix are

septet __
H ZFS,1 —

=D+3E+22{2D* $3DE + 3E*

= D+3E-2y2{2D* $3DE + 3E*
(Pﬁ :ai3|+3>+ﬁi3|+1>+yi3|_l>+5i3|_3>

(PS) =0y, | +3> + ﬁtl | +1> ¥4 | _1> + 5t1 | _3>
where

o, 1 (ifn=+1,43)

8, | —1(ifn=-1-3)
Y. _ B, _ e”_5p
5 «a, I5E
(0)
e’ —=5D
2 ifn=+1,+3
B, _o,B, | I5E ( )
5/1 - 5}1 aﬂ - 8(0)_5D
2 ifn=+1,43
JI5E ( )
1
2(e”-5D
53 =| 2+ ( - 2 )
15E

(n==1,£3)
The matrix elements of the perturbing electron-Zeeman Hamiltonian can be represented as

(Heb;p;m) i g;mcﬁB(Sz )I’m - (H 'z ),’m = (3alam +BB, V7.~ 3516m)g:ucﬁB

BB, 7.7
3% % PPy _ViVn_ 3|55 ompp
( 5,5, 50 00 08P

m m

0 (if Im > 0)
_ [(650)—51))( ¥ —5D)- 45E2]g;“‘eﬂ3

\/(g,(‘” —5D)2 +15E? J(ggn —5D)2 +15E°

(if Im < 0)
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(2.51a)
(2.51b)
(2.52a)
(2.52b)



where [, m = =1, £3. For example, (H’¢z,1)+3-1 corresponds to <(p(+(;) H 'ez,l‘(pf(:)> . The perturbed energies

will be obtained with the Hamiltonian H’¢z 1.

The matrix representation of the ZFS Hamiltonian in the basis of {|+2>, |0>, |-2>} is

0 «30E 0
Hpe = J30E —4D  30E
0 30E 0
The eigenenergies and corresponding eigenfunctions are
£ =—2D+2JD*+15E* (2.51c)
=0 (2.51d)
e =2D-2JD* +15E> (2.51¢)
01 = a,|42)+ B,,|0) +7.,,|-2) (2.52¢)
oY = % (2.52d)
o = 0 +2)+ B [0) + 7, -2) (2.52¢)
where
Uy _ Ve _ J30E ) { . 15E2 }‘
B. B. —2D+JD*+1562 " 2D* +15E* = 2D\ D? + 15>
% _ Y _ J30E 2:{ 15E2 }‘
B, B, -—2D-\D>+15E>" 2D* +15E + 2Dy D* +15E?

Thus the perturbing electron-Zeeman Hamiltonian can be rewritten as follows;

20 0 0 0 a,
HP'=¢™BBl 0 0 0 |>H',,=2¢"BB 0 0 ¢
0 O _2 a+2 ao O

Summarizing the perturbed energies to the second-order and the spin functions to the first-order;

o (spB)[(¢ ~5D)(e") ~5D) - 45E° ]
'H :£+3 +
e 0 (9 -5D) +15E* || (¢ —5D) +15E?
Bla=e [u 8()}[( (0) SD) 2:H:( 0) ) }

(¢=pB)’[ (2 -5D)(e% -5D)- 45E2]2
[0~ eﬁ?][(gi‘;’ ~5D) + 15E2}[(e£‘;> ~5D) + 15E2]
2(g"pB) a,,’
2 D—O D2+151052
B g0 (s:B8) (¢4 -5D)(e"~5D)-45E7 ]
R (ei“ﬂ—SD)z+15E2][(e£‘}>—5D)2+15E2}

(2.53a)

E',=-2D+2JD*+15E - (2.53b)

| S—

1 -

(2.53¢)

(s™pB) :(ef;) -5D)(&") —5D)—45E2]

+[s§‘? —e0] (4 -5) +15E* | (29 - 5D) +15E2 |

2
2 true B aZ
E’O:—2D—2x/D2+15E2——(gZ [32 ) — (2.53d)
D+VD?+15E
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(gmBB) [ () -5D)(e!y - 5D)- 45E° ]
T —ei?]_(ef‘i) 5D +15E2}[(£$) 5D +15E2}

(2.53¢)

(smBB) [ (e ~5D)(e") ~5D)- 45E2]
N I
[85(;)—8i01)][(8£?)—5D)2+15E2}[(8§)—5D)2+15E2}
E = (g;meﬁBYOﬁzz + (g;meﬁB)zaoz
? 2p-2ID*+15E> 2D+2JD? +15E>
I (sBB) [(£%) ~5D)(ely ~5D)-45E" |
S [ - e“’)][(eﬂ? ~5D) + 15E2}[(e§) ~5D) + 15E2}

+3

(2.530)

(¢"pB) [(¢%-5D)(e") - 5D)-45E ]2 (2.53g)

[ —ef;)][(eﬁ(;’ -5DY +15E2}[(g§‘;> 5D +15E2]
(¢™pB)[ (€2 -5D)(e") - 5D)-45E" | -1)
[ —eﬂ?]\/(ei? - SD)2 +15E° \/(gf‘? —51))2 +15E
(g"BB)| (- 5D)( - 5D)-45E* | -3)
[ - ef(;)]\/(sg) - SD)2 +15E” \/(g(f;) - SD)2 +15E”

(0

(p'+3 = (0+3) +

(2.54a)

. g."BB
¢, :a+2|+2>+ﬁ+2|0>+(1_m]7/+2|_2> (2.54b)

(g;“ﬁB)[(gf}) ~5D)(&") —50)—45152]—1)
ES —gﬁ?’]\/(si‘? 5D +15E \/(gf? 5D} +15E
(¢mpB)[ () -5D)(e% - 5D)-45E" | -3)
EX —ei(;)]\/(ef{) - SD)2 +15E \/(g@ —5D)2 +15E>

+1

(p‘+1 = ¢‘E’Ol) +

(2.54¢)

. 8."“pB
(Po=0‘0|+2>+ﬂ0|0>+(1_mj%|_2> (2.54d)

(¢™pB)[ (£ -5D)(e - 5D)-45E" | +3)
[ —si?]\/(s?,) —SD)2 +15E \/(g(j? 5D +15E?
(¢pB)[ (£ -5D)(&") - 5D)-45E” | +1)
[ —ei”l)]\/(sﬁ? 5D +15E> \/(gi‘? ~5D) +15E>

1 8" BBa,, J 8. BBa, |
Q=] —=+ : +2)+ - 0
2 (\/5 D-D* +15E +2) D+D*+15E

(gBB)[ (% ~5D)(e! ~5D) - 45E* |+3)
[ —gi?]\/(ef;) ~5D) +15E \/(si‘;) 5D +15E
(¢ pB)[ (£ -5D)(£") - 5D)-45E |} +1)
[9 —sﬁ?]\/(s@ —5D)2 +15E? \/(gf? —SD)2 +15E>

Q= (PE?) +

(2.54¢)

>—%I—2> (2.540)

¢ = (Dg) +

(2.54g)
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g-ff/g true relationship as a function of A = E/D for the |Ms = £3>-dominant transition is calculated
from Eq. (2.3).

E',~E',=g"BB (2.55a)
for the |Ms = £2>-dominant transition,

4 true B 2 2 2 true B 2 2
E',—~E',=-2D+2JD*+15E* - (& ﬁ; ) a+22 —~ (& '32 ) a+22 =¢"BB
D-D*+15E> D+D*+15E

15gfffﬁBE2=(g;r“eﬁB)2[4(D+\/D2+15E2)0¢+22+2(D— D2+15E2)a02}—30E2(D— D2+15E2)a02

(2.55b)
. [4(D+\/m)%2 +2(D— D* +15E )aoz] 2(0— D> +15E )oco2
and for the |Ms = +1>-dominant transition,
E.—-E_ =g"BB (2.55¢)

Considering Eqs. (2.55a)—(2.55¢c) as identities with respect to B, we obtain the special solution g-*ff/
gzue = 0 for the |Ms = +2>-dominant transition if and only if £/D = 0, while no special solutions for the |
Ms = =£3> and [£1>-dominant transitions.

Exploiting the approximate formulas in the following, a simplified expression for E’+3 can be

obtained.
2 2
J2D* —3DE+3E: ~\2D2 - NP E, 15E
22D 1642D?
3WD?E  15E?

\2D? +3DE+3E? ~\2D2 +

+
22D 164202

’ 2 2
E'+3zD+3E+2\/§[\/2D2 _WDE, 1SE ]

22D 16v2D?

(g"BB)’ (19 -5D)(e" - 5D)-45E* |

(e9-5D) +156* || (€9 -5D) +15E7

+3

2 2 2 2
6E+2\/§[«/ﬁ WDE, 15E ]—2«/5( 2pr+ NP E, DE j

- + +
22D 16v2D? 2N2D 16v2D?

+

(f) Spin-octet state (S = 7/2)

The ZFS Hamiltonian in the case of spin-octet state is

7D 0 2IE 0 0 0 0 0
0 D 0 35E 0 0 0 0
V2IE 0 -3D 0 2J15E 0 0 0
prm | O 35 0 5D 0 2ISE 0 0
0 0 24I5E 0 —5D 0 3V5E 0
0 0 0 2JI5E 0 3D 0 RIE
0 0 0 0 35E 0 D 0
0 0 0 0 o 21E o0 7D

and the coefficients of the secular equation are
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ay® =-84(D +3E”)
ay™ =-128(D*~9DE?)
ae =1974(D* +3E°)
ay™ =5376(D* +3E”)(D* - 9DE?)
a;de‘ =—4(1181D°+38277D*E> - 23409D°E* + 59535E°)
ay* = ~13440(D* —9DE?)(D* + 3E*)

aze =11025(D* +3E%)'
The ZFS Hamiltonian (£ # 0) in spin-octet states can be divided into two equivalent 4 X 4 matrixes whose
basis sets are {|+7/2>, |-5/2>, |+3/2>, |-1/2>} and {|-7/2>, |+5/2>, |-3/2>, |+1/2>}, respectively. The basis

sets are conjugate. The former is

7D 0 21E 0
o _| O D 0 35E
AT RIE 0 3D 2\15E

0 3J5E 2JI5E  -5D

The secular quartic equation of the Hamiltonian is

xt— 42(D2 + 3E2)x2 - 64(D3 —9DE2)x+ 105(D2 + 3152)2 =0

The solutions of the secular equation are

128(D’ —9DE2)

il\/%iz\/m( D’ +3E”)—u, 1, N
0

X =

n

N | =

with

u, =2a, cos L arccos| 2o +28(D2+3E2)
3 2a,
a,=421(D* +3E)

_24(3D*+E’)(D’ -4DE+7E’)(D* +4DE+7E’)
T 7(D* +3E7)

In the range of 0 < |E/D| < 1/3, the values in square root is always larger than zero. The eigenenergies 85\22

and corresponding eigenfunctions (p(Moz are,

=y, :% v+ |2p—uy - 2L (2.56a)
o \/ Juy

1] 2
O =, == Jug — |- =4
e =x,= 2p—u (2.56b)
e =, = L+ [2p—uy + 2L (2.56¢)
o 2| ity
£ =x, =L i — |2p—u,+ 2L (2.56d)
B 2| ity

al+2)ep)-

>+71

2)es)-

> (2.57a)
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7 5 3 1

go%) 0,=q, +E>+ﬂ2 —E>+y2 +2> _§> (2.57b)
7 3 1

€0i0§> =0;=0; +§>+ﬁ3 ——>+73 +5> 3|75 (2.57¢)
7 5 3 1

(Pfog =p, =0, +E>+ﬁ“ —§>+74 +5> —5> (2.57d)

with
a,_ \21E 5, 1 217 | B, 3SES,
7. x-71D" 7, 2J15E\" “x-10)y, x-Dy,’

2 2 \? 2V B
| 2E 3 e asp-2E L iapo 2E ] =1,2,3,4),
(x,—7DY  4(x,-D) x,—1D ) " 60E x,—7D

The elements of the perturbing electron-Zeeman Hamiltonian are given as
1 7 3 1 true ..

(H ) +2OCOC ﬁiﬁ_f+5yi}//_56i5_j 8. BB (laJ: 1,2, 374)'

)=(0

second order and corresponding spin-functions to the first order are

(o(_?>. The perturbed energies to the

H ‘eZ

For example, (H’ez)12 corresponds to ((01|H '

1
E,= 8(01’ +(+%alz —%ﬁf + %712 —555jg;"*e/33+ 8(21’ (2.582)
2 2 2
E _'= (0) 7 2 5 15 e 3 p (2) 2.58b
s =€5 7T +§062 _Eﬁz _7/2 5% 8P TE&5 (2.58b)
2 2
E .'= (0) 7 2 5 2 152 e 3 p 258
aTEST +5a3 _5ﬁ3 =7, ) |8 B +£ (2.58¢c)
2
E1'=8(°3+(+%“42‘%’342 ;542)5“ B+e) (2.584)
2 2
1 (H'y),| 5> 3> >
= et - o)+ 2.59a
go% N[(p] X, — X, | 2 2 ( )
[(H' H' H' ]
?' s _ L), +Z>+<pz+—( ) +§>+—( ) —1> (2.59b)
2 Ny x-x | 2 X=x | 2/ x-x | 2/
(H' H' H' ]
o =L Wl +Z>+( 2y —§>+¢3+7( 2 —l> (2.59)
O Ny x5-x | 2 X;—=Xx, | 2 X, —x | 2/
B H' H' H' T
o' IZNL (H'sa), +Z>+( )y —§>+( eZ)43|+§>+(04 (2.594d)
- sl Xemx |2 X, —x, | 2 X, =X, | 2

where Ni, N2, N> and Ns are the normalization factors. The other sets {¢’-72, ¢ +52, ¢’ 30, ¢ +1,} are
obtained with replacing B with —B. Since the zeroth and the second-order terms vanish when the energy
difference between the same Kramers doubles are taken, g.*ff/g.rue can be represented form Eq. (2.3) as

eff

=7a, =58 +3y,> -0,

(s (2 2+3
(x\=7) \4(x,-1) 6047 )U" 7 x,-7

2 [ 3 |, 2 2+1
(x,=7) (4(x,—1) 6027 7" 7 ¥1=7

(n=1,2,3,4). (2.60)

ITUC
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with x°, = x,/D, A= E/D and n = 1, 2, 3 and 4 correspond to the |Ms = £7/2>, |+5/2>, |£3/2> and |£1/2>-
dominant transition, respectively. Figure 2.16 depicts geff/gtrue for § = 7/2 as a function of the ratios of |E/
D|. In Fig. 2.16, as similarly to the cases of S = 5/2, the comparison is made only between the genuine
Zeeman perturbation approach and the exact analytical calculations with typical sets of the tinge-structure
parameters. We emphasize that the behavior of the geff/gtue relationships for S = 7/2 is not totally
analogous to that of the sextet state, but there are salient features for the dominant middle Kramers
doublets as seen in Fig. 2.16.

The transition probabilities Py = [<¢’-ug|Sxlp’+m>(? (Fig. 2.22):

For the |Ms = +7/2>-dominant transition,

2
23(H'),(H'), I5(H')(H), 2(H'),
0,8 o' | \/_Otﬂ +2\/_,B7 +25 _ )12 213 _ 213 214 _ €2 /14
< 3 *;> N, NN { I . ( =) (% —x,) (xl—x3)(xl—x4) (xl_x4)2 |
for the |[+5/2>-dominant transition,
2
Jis(H',), (H' 2(H',),”
<<p' ;|5 o' > N | V1 23Ry, + 1578, 425, - o)y 2oy
- - N', (o, = ;) (3, = x,) (x,—x,) ]
for the |[+3/2>-dominant transition,
2
Ji(H',) (H' 2(H',).”
<(P‘ 3[5:|9 3> ,2 \/_063,33+2\/7ﬂ373+\/—}/35 +262 ( 02)3]( 02)32 - ( CZ)Mz
- +5 N ()C2 xl)(x3—x2) (xS—xA) ]
for the |[+1/2>-dominant transition,
2 2
1 1 2 1 1
(oo | e s o2y 550200 L)y 20
- 5 N', (2, =x)(x, —x,) (2, —x,)(x, = x;)

ProbabilitylMs = +7/2>-dominant transition
0.004

y,z’

0.003

0.002

0.001

!

EiD

000 0.05 010 0.15 020 025 0.30
Probability |Afs = +3/2>-dominant transition

4

0.00 0.05 010 015 020 025 0.30

EiD

Probability|Ms = +5/2>-dominant transition

08 /
06
0.4
0.2
EiD
0.00 005 010 015 020 025 0.30
Probability| Mg = £1/2>-dominant transition
12
10
8 X
6
4
AN
E ~. V. Z
S
—— EiD
0.00 005 010 015 020 025 0.30

Fig. 2.22 The transition probabilities [<¢’-u|Sx|¢p’+mg>[? for the spin-octet state. The subscripts x, y and z

denote the principal axes of the g- and ZFS tensors. The curves are based on the genuine Zeeman
perturbation treatment to the first order with the spin Hamiltonian parameters with gtruefB” = 0.1.
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(g) Spin-nonet state (S = 4)

The matrix representation of the ZFS Hamiltonian is

28

=D 0 2NTE 0 0 0 0 0 0
0 %D 0 37E 0 0 0 0 0
2WTE 0 —%D 0 3JIOE 0 0 0 0
17
0 3JIE 0 -5D 0 10E 0 0 0
nonet 20
HE = 0 0 3JI0E 0 -5D 0 WI0E 0 0
17
0 0 0 10E 0 -3D 0 WIE 0
0 0 0 0 3IE o0 -=D 0 2J7E
7
0 0 0 0 0 3IE 0 3P0
28
0 0 0 0 0 0 247E 0 =D
and the coefficients of the secular equation are
a;cnct =_2860 (DZ +3E2)
a;™ =-128(D’ - 9DE”)
a;onel — 21043(D2 + 3E~2)2
3
arm = 691340(D2 +3E”)(D*-9DE?)
27
at = —%(5075241)6 +10416591D*E” + 2005398 D*E* +19552023E° )
onet —72“52320(02 +3E*) (D’ - 9DE?)
81
nonet 21952 2 2 6 4 2 24 6
; =W(D +3E”)(4352D° +177543D" E* = 159246 D’ E* + 255879 E° )
a = M(m —9DE”)(2312D° +17433D*E* + 69174 D’E* + 59049E° )
19683

The ZFS Hamiltonian in the spin nonet case is 9 x 9 matrix which can be divided into two matrixes.
(As seen below, it can be divided into three matrixes.) The ZFS Hamiltonian in the basis of {|+3>, |[+1>, |-

1>, |-3>} is

%D 3WIE 0 0

WTE —%D 10E 0
Hnonet_

ZFS,1 —

0 10E —%D 3W7E

0 0 3JIE %D

The secular quartic equation

58



R —3(231)2 +339E%)x’ —@1)(171)2 —9E”)x+
3 3 27

14161 D* + 10094 D*E* +3969E* =0

81

can be factorized into two quadratic equations

xﬂu?(D—SE)x—

119

1,

, 210

567

+~—DE-—E’=0
9 9

210

567

x2+%(D+ 3E)x === D === DE-=“E*=0

9

9

and the solutions of Egs. (2.61a) and (2.61b), i.c., the eigenenergies of the Hamiltonian H, are

‘xodd,n = _%Dil 5E iz 2\/5\/2D2 $l 5DE+11E2
Both the upper and lower signs should be chosen in the double signs =1, while should be chosen freely in

the double signs +1 and +,. Corresponding eigenstates are

(pfx(()lzln = aodd,n | +3> + odd,n | +1> + yodd,n | _1> + 5odd,ﬂ | _3>
with

WTE

'
ﬁodd,n X odd.n - 4D

aodd o

yndd,n =L|:x|0dd’n+4D—3ﬁEandd’" :|= (X'odd_n—4D)(x|'0dd_n+ 4D)—63E2
ﬁodd,n 10E odd 1 IOE(x oddn 4D)

O 1 { Y odd i|

= —|(x' ., +4D)=—-10E

ﬁodd n SﬁE ( o ) odd,n

(%= 4D)(x' gy, + 4D) ~100E?(x',,,,~ 4D)~ 63> (x',,,,+4D)
- 100E” (x' gy, — 4D)

and

X'n =55E+, 222D F, 5DE + 11E?

Some eigenenergies of the Hamiltonian H %

7rs, are related to those of

—%D—SEiZ«/Ex/ZDZ +5DE+11E* L?Diz 9D> +7E*

—%D—SEiZ«/E\/ZDZ +5DE+11E* L%Diﬂ 9D*+7E*

%(SD +3v9D* +7E? ) belong to the eigenenergies of the ZFS Hamiltonian but the residual 5 x 5 matrix.

On the other hand, the ZFS Hamiltonian in which the basis set is {|+4>, [+2>, [0>, |-2>, |[-4>} is

?D WIE 0 0 0
2\TE —%D 3WJI0OE 0 0
nonet 20
HX=| 0 3JI0E -=D 3JI0E 0
- 3
0 0 3JI0E —%D 2\1E
0 0 0 2\7E 2—380
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81

The secular equation of H

243 27

is quintic, so that the general algebraic solutions does not exist according

520, (848 +236E2)x +(@D 12880DE* )
3 9 27
+(229376 e 8512 +5824E4)x+ 1003520 5 878080 . . 125840 .

nonet
ZFS 2

to the Galois theory except the special cases. However, the secular quintic equation can be factorized into
quadratic and cubic.

20 224 252

Py 5 SOl » C ity ;g (2.61c)
3 9 9
x3—@(02+3E2) 4480(0 ~9DE’)=0 (2.62)
3 27

As seen above, %(5Di3\/ 9D* +7E2) are the eigenenergies of the ZFS Hamiltonian Hyy, . Indeed,

they are the solutions of Eq. (2.61c¢).
The solutions of the cubic equation (2.62)
3 208(D2 +3E2) 4480(
3 27

x D*-9DE”) (2.63)

can be expressed with the trigonometric form as

( b j 2nr
X, =2acos| arccos| — [+——
2a 3

with

a= @JDZ +3E?
280D (D’ —9E?)
351(D +3E?)

and n =0, 1, 2 correspond to |[Ms = +4>, |0> and |+2>-dominant states, respectively. The eigenfunctions

are

o =0, |+4)+ B142)+7,/0)+6,]-2) +,|4)

with
o, _ 2NE
C—
v g (xn—sz](xn+§D]—28E2
—: BJ_E{ +=D— ZJ_E/BJ

3\/EE[xn - Z—ED)

Z_ 3J]_ EK 5 )ﬁ,, 3\/_4

(xn - %Dj(xn +8Dj(x” +20D)— 90E® (xn —28Dj— 28E* (xn + ZODJ
_ 3 3 3 3 3

90E2( —238D)

60



|

ltofne]

(x ——Dj(x +8DJ ( n+§D)—180E2(xn—ﬁD)(xn-kﬁDj
1 3 3 3 3
8

180x/_E( —3D) _ngZ(x +3 j(x 230D)+2520E4

o 2 v 2 s 2 e 2 !
B, B, B, B,
Summarize the eigenenergies of the matrix below;
i b
=2acos arccos(—ﬂ (2.64a)
L 2a
el = %(—5D+15E+ 62N2D* - 5DE+11E2) (2.64b)
=2acos arccos(ij+4—n (2.64c)
L 2a 3
0 = 1( 5D+15E-6322D 5DE+11E2) (2.64d)
=2acos arccos(ij+2—” (2.64¢)
2a 3
%( 50—15E+6J§JzD2+SDE+11E2) (2.640)
%(SD +39D? + 7E ) (2.64¢)
%( 5D—15E—6\/§\/2D2+5DE+11E2) (2.64h)
—(SD ~3op* 1 7E ) (2.64i)

nonet

We see that the secular quintic equation of Hg, can be decomposed into the quadratic and cubic

none(

equations. In other words, H,, can be divided into two matrixes by the accurate transformation. As

seen in Appendix 2.2, D2 + 3E2 and D3 — 9DE? are served with the transformation of the subscripts so that
the ZFS eigennergies are hold even in the cases of B//x and B//y.

2380 2WIE 0 0 0 2380 2WIE|l 0 0 0
2\7E —%D 3JI0E 0 0 2\7E —%D 0 0 0
20 20
0 3JI0E -5 3WI0OE 0 |[=| o 0 |-5D 6JSE 0
0 0 3JI0E —%D 2\7E 0 0 |e6V5E —%D 2\7E
0 0 o 2J7E %D 0 0 0 2J7E 2—381)

(h) Spin-dectet state (S = 9/2)

The secular equation of this case is factorized into two quintet equations which does not solved

analytically. The half-integer states higher than S = 9/2 shows the same tendency due to the spinor
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characters and/or the theory of double group for the rotation. The exact numerical diagonalization gives

the corresponding relationships.
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2.3 Conclusion

In the field of magnetic resonance, the fictitious spin-1/2 Hamiltonian approach has seen the most
putative and facile method to analyze ESR fine-structure/hyperfine spectra of high spin metallocomplexes
having sizable ZFS parameters since early 1950s. [1,2] The approach gives their principal g-values far
from g = 2 without explicitly providing their ZFS values. Naturally, these experimental principal g-values
do not agree with the true g-values acquired by quantum chemical calculations such as sophisticated DFT
or reliable ab initio MOs. This fact excludes superficial understanding of the concept relevant to the
fictitious spin-1/2 Hamiltonian approaches. In this work, in harmony with the recent progress in quantum
chemical calculations for the g-, hyperfine or ZFS tensors of metallocomplexes, we have derived the geff—
gtue analytical relationships for high spin systems up to S = 7/2 with sizable ZFS, for the first time. The
analytical relationships give the facile conversion of the geff values into the principal gtue ones with the
information on the ZFS tensors.

The analytical formulas in the principal-axis coordinate system are derived on the basis of two
mathematical schemes; one is to exactly solve the full (ZFS+Zeeman) spin Hamiltonian, and the other to
exactly solve the ZFS Hamiltonian (the genuine Zeeman perturbation) and treat the electronic Zeeman
terms as the perturbing terms by invoking Rayleigh-Schrédinger perturbation theory to the second order.
We have derived the analytically exact expressions for the eigenvalues/eigenfunctions with the spin
quantum number S from S = 2 to 4 under the condition of the presence of the electronic Zeeman
interaction, for the first time. The analytical expressions are applicable to experimental observations of
any principal ZFS values including intermediate cases in which the genuine Zeeman perturbation
treatment breaks down. In this work, we have treated only the rank-2 ZFS tensors in the presence of the
static magnetic field, and the inclusion of the higher order terms such as ;252 is tractable.

The latter scheme gives easy-to-access formulas for the geff—gtue relationships. The expressions are
exact or equal to exact ones to the third order in the genuine Zeeman perturbation treatment, and they are
all useful to derive the true principal g-values from the experimentally analyzed data on the basis of
fictitious spin-1/2 Hamiltonians, in a straightforward manner. Importantly, the assignment of canonical
peaks and discrimination from off-principal-axis extra lines can be checked on the basis of the geff—gtrue
analytical relationships. This procedure gives a clue to the occurrence of high spin states with relatively
sizable ZFS values.

The genuine-Zeeman perturbation treatment developed in this work provides us with true principal g-
values which are accurate at conventional X- or Q-band ESR spectroscopy enough to compare with the
theoretical values. The genuine-Zeeman perturbation based formulas are practically much simpler and
give high accuracy in conventional ESR spectroscopy. The general formulas for S = 5/2 are explicitly
given particularly for high spin Felll ion complexes with sizable ZFS of biological implications in the
following chapter. The corresponding formulas serve as the purpose of getting physical insights into the
relationships as a function of the principal ZFS values.

In this work, we have illustrated that the transformation of the eigenenergies of the ZFS Hamiltonian
is governed by the symmetry of the rotation group for spin space. This suggests that the symmetry
consideration of the ZFS Hamiltonian for spins higher than S = 7/2 affords the exact analytical solutions
for the corresponding eigenvalue/eigenfunctions. Rotation group mediated symmetry approaches to the

analytical solutions are the future work.
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Appendix 2.1: Approximate expressions of geff—gtrue relationships

in the case of §=15/2

As mentioned in Section 2.2.1, the diagonalized (exact) eigenenergies of the spin Hamiltonian with

electron-Zeeman and ZFS terms are expressed in terms of trigonometric functions as a function of 4 = E/

D and B. In order to explicitly describe the geff—gtrue relationships as a function of 1 = E/D, as given in the

case of the genuine Zeeman perturbation treatment, we are allowed to exploit a series of the expansion of

arccosine and cosine at a desired order of the expansion, exemplifying to the first or de in the following;

/4
arccos[x] = E -Xx

'1(7: ) V31 1,
cos|=| ——x ||=—+—-x——Fx
1312 2 6" 1243
_l(n' ) 27 NERS 1,
cos| =| ——x [+— |=——+—x+—Fx
1302 3 2 6 1243
(1( 7 4 1
cos| =| ==X |+—|=—=x
_3(2 ) 3} 3

According to Eq. (2.24), eigenenergies are approximated as,

g g Y3, 1b 1 (B )| &™pB
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2 32a, 2
r 2
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(2A.1b)

(2A.1c)

The other eigenvalues corresponding to the conjugate spin states {£"-s;2, E”+312, E”-12} are derived by
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Fig. 2A.1 The energy diagrams of the exact (red) and approximate (green)

energies of each |Ms>-

dominant state for 4 = 0, 0.1, 0.2 and 0.3, respectively. Since b1/2a; in arccosine is a monotonically

decreasing function of 4, the approximate values become close to the exact ones.

64



replacing B with —B. Figure 2A.1 compares the exact and approximate energies. The energy difference
between the conjugate spin-states is equated to g:*f6B, i.e., E”+ms — E”-ms = g*fB, yielding identities
with respect to B. In order to obtain the formula of geff/gtrue explicitly, we exemplify the transition between
|Ms = +5/2>-dominant states. Both sides of the equation are multiplied by ai5a25 (a2 is obtained with

replacing B with —B in a1) to eliminate B from denominators.

a’a,’ (E"+5— E"_SJ =a’a,’g"" BB (2A2)

2 2
Then, we separate the group of terms with only the even indices from those with only the odd indices of

a1 and a2 and transpose the former terms to the opposite side of the equation. Squaring the equation yields
identities with respect to B. The comparison of the coefficients with respect to the same order of B
provides the quadratic or quartic equations, acquiring the geff—gtrue relationships as a function of 4 = E/D.
For example, the coefficient of B2 term gives a quadratic equation about geff (or gtrue);

92236816

6561
222356615 (1+32%) — 3025264 g (1+3A°) (403+23584° +5671*)

X e 67358717 +1146273129A% + 5104268649 A* — 30039591151° (2A.3)
© | -564865832251" — 156035604694 + 12809086227 4" + 89319288874

(1+322)' (3037 +28683A> + 792992 + 833492° )’

=0
One of the solutions, which is too long and complicated to write, gives geff—gtrue relationships as a function

of E/D (Figs. 2A.2 and 2A.3). An expansion procedure similar to the above is applicable to eigenfield
solutions, and the analytical expressions for ge¢ff—gtrue relationships are all lengthy. There is no significant

advantage to exploit expansion approaches compared with the genuine Zeeman perturbation treatment.
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Fig. 2A.2 The geff/gtrue relationships as a function |E/D| for S = 5/2. The subscripts, x, y and z denote the
principal-axes of the g- and ZFS tensors. The curves derived by the genuine Zeeman perturbation
treatment to the second order are depicted in the solid curves based on Egs. (2.492)—(2.49c). The broken
lines denote the numerical calculation using £ g — E7-mg = g:*8B assuming g-efB’ = 0.1.
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Fig. 2A.3 The g:=ff/g-tree relationships as a function of the rations of |E/D| between |+5/2>-dominant sub
levels in terms of the three different derivations. The blue solid line was from the genuine Zeeman
perturbation approach, blue broken line denotes the numerical calculation using exact eigenenergies (Eq.
(2.24) and its counterpart) with g-vefB’= 0.1, purple broken line denotes the numerical calculation using
E”+s5p — E”_s5pp = g-*BB assuming g-tveffB’ = 0.1, and the curve denoted by cyan solid line was obtained by
solving the quadratic equation (Eq. (2A.3)). The discrepancy between the cyan and purple lines is due to
the ignorance of the higher-order of series expansion of arccosine and cosine.

The coefficient of B4 term is, however, the quartic equation about geff (or gtrue) (Eq. (2A.4));

117649
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+3025260g"™g" (1+322)’ (
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T8 | 31307021281177077233052184" — 392939589910309347 161234747 — 1751595263940022156 79636417 + 1073294364352201 8500403274
+14578891030127000802857944%° +491910630186565976252013 1%
=0
(2A.4)
One of the solutions gives a geff—gtrue relationship as a function of |E/D| (Fig. 2A.4).
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Fig. 2A.4 The g:ff/g-ree relationships as a function of the rations of |E/D| between |+5/2>-dominant sub
levels in terms of the three different derivations. The blue solid line was from the genuine Zeeman
perturbation approach, blue broken line denotes the numerical calculation using exact eigenenergies (Eq.
(2.24) and its counterpart) with g.tueffB’ = 0.1, purple broken line denotes the numerical calculation using
E”+s5p — E”_s5pp = g-*BB assuming g-tveffB’ = 0.1, and the curve denoted by cyan solid line was obtained by
solving the quartic equation (Eq. (2A.4)). The discrepancy between the cyan and purple lines is due to the
ignorance of the higher-order of series expansion of arccosine and cosine.

Let us consider another example of the transition between the |Ms = +1/2>-dominant state in the case
of B//x. A similar procedure as the |+5/2>-dominant state case and cyclic permutation (D — %(3E-D),

E — —4(E+D)) [45,46,62,63] provides the corresponding identity with respect to B. Comparing the
coefficient of B2 terms yields Eq. (2A.5).
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One of the solution of this equation is approximate geff/gtrue as a function of E/D (Fig. 2A.5).
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Fig 2A.5 The g<ff/g,true relationships as a function of the rations of |E/D| between |£1/2>-dominant sub
levels in terms of the three different derivations. The red solid line was from the genuine-Zeeman
perturbation approach, gray broken line denotes the numerical calculation using exact eigenenergies with

giefiB’ = (.1, yellow broken line denotes the numerical calculation using E”+12 — E”-12 = g:SB

assuming gxuefB’ = 0.1, and the curve denoted by pink solid line was obtained by solving the quadratic
equation (2A.5).

In order to gain more accuracy to the relationship, here takes the expansion of trigonometric functions
to third order, that is,

3

Y/ X
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Thus, the eigenenergies are approximated as,
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Figure 2A.5 compares the energies derived with the exact

(2A.6a)

(2A.6b)

(2A.6¢)

analytical approach and the series

expansion of the trigonometric functions. Figure 2A.6 depicts the comparison of the approximate

calculation and the genuine Zeeman perturbation treatment. The explicit relationships of the geff/gtrue as a

function of E/D will be obtained by comparing the coefficients of the identity with respect to B, and is

expected longer and more complicated.
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Fig. 2A.6 The energy diagrams in the case of S = 5/2. The exact analytical energy (Eq. (2.24)) is given in
the red lines. The approximate energies based on the expansion of the cosine and arccosine functions are
depicted in the green (Egs. (2A.6a)—(2A.6¢)) and blue (Egs. (2A.1a)—(2A.1c¢)) broken curves.
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Fig. 2A.7 The g¢ff/gtrue relationships as a function |E/D| for S = 5/2. The subscripts, x, y and z denote the
principal-axes of the g- and ZFS tensors. The curves derived by the genuine Zeeman perturbation
treatment to the second order are depicted in the solid curves based on Egs. (2.47a)—(2.47c). The broken
lines denote the numerical calculation using £°”+ug— E”-mg = g:*fB assuming g:vefB’ = 0.1.
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Appendix 2.2: Global permutation for the ZFS eigenenergies

ZFS eigenenergies must hold for the orientation of the static magnetic field invoking the permutation of

the subscripts x, y and z. For B//x, D — +(3E—D), E — —+(E+ D), and for B//y, D — —+(3E+ D), E

— L(E- D) in the eigenenergies for B//z. [45,46,62,63]

A2.2.1 Spin-triplet state (S=1)

Permutations of the subscripts of x, y and z give rise to the corresponding ZFS energies. D — 1(3E - D)

2D . D

gl =22 B = p=gl)
3 3
2D . D

E(()O) = —T—“//y ? +FE= 85?)

Perturbed energies in the case of B//x, y does not give general solutions for the geft—gtue relationships

based on the genuine Zeeman perturbation treatment.

Table 2A.1 Summarized permutation relationships of the ZFS eigenenergies in the spin-triplet state

Bl/z Bl/x Blly
+1 0 0
0 -1 +1
-1 +1 -1

* The numbers (0 and +1) represent the Ms values of the ZFS eigenenergies (e.g., +1 means 8501) ).

The energies and wavefunctions are also referred as E; and ¢; (i = X, Y, Z) instead of Ms.

D |-1)—|+1)
-Z_E i
€x 3 P 2
D i(|-1)+]+1))
=Z4E AT/ TT)
8)’ 3 + q)Y [2
2D
& =" . =[0)

A2.2.2 Spin-quartet state (S = 3/2)

The zeroth-order energy D* holds in this permutation procedure.

2 2
D*=+/D*+3E? i“’—)J[%(SE— D)} + 3[—%(E+D)} =\D?+3E?

2 2
D*=+D*+3E* %\/[—%(yn D)} + 3[%(15— D)} =\D*+3E’

A2.2.3 Spin-quintet states (S = 2)

The ZFS energies eﬁ? and 8(()0) which equal to D* hold for the permutation of the subscripts as seen in
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the spin quartet case. However, the set of ZFS energies { Sg) , Sf) s 852) } are related with each other.

=—D+3E—% 5 _p-3E=¢" =—D+3E—2 5 _p4+3E=¢"
e< =—D—3EL20=5<0> g<°)=—D—3EL>2D=gj;’
=2D—2" s _D1+3E=¢" =2D—22 s _p-3E=¢"

Table 2A.2 Summarized permutation relationships of the ZFS eigenenergies in the spin-quintet state

Bz Bl/x Blly
+2 +2 +2
+1 -1 +1
0 0 0
-1 -2 -2
-2 +1 -1

* The numbers (0, £1 and +2) represent the Ms values of the ZFS eigenenergies (e.g., +2 means gfg) ).

A2.2.4 Spin-sextet states (S = 5/2)
The ZFS eigenenergies for spin-sextet states consist of D2 + 3E2 and D3 — 9DE2. As seen above, D2 + 3E2

does not change in the permutation of the subscripts. Thus we demonstrate that D3 — 9DE? also hold for

the permutation of the subscripts.

D’ —9DE’ L\/B(w— D)T - 9[%(3E—D)}[—%(E+D)T =D —9DE>

D’-9DE® L\/[ (3E+D)T—9[—%(3E+D)}[%(E—D)T= D’ -9DE?

In fact, D3 — 9DE? is factorized to D(D + 3E)(D — 3E) which the group of the elements close for the

permutation treatment.

A2.2.5 Spin-septet state (S = 3)

Obviously, the ZFS energy SE(;) holds for the permutation of the subscripts. For the other eigenenergies,

242D* —3DE + 3E> — 2 5 2\ D* +15E>
2\2D* - 3DE +3E> —22 5 2\ D* +15E>

232D + 3DE + 3E2 —2 322 D* — 3DE + 3E*
22D? +3DE + 3E> —2 522 D* + 3DE + 3E>
D> +15E* —2 5222D* + 3DE + 3E>
ND? +15E> —2L 322+2D* — 3DE + 3E”
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Table 2A.3 Summarized permutation relationships of the ZFS eigenenergies in the spin-septet state

B//z B//x Bl/ly
+3 +2 +2
+2 -3 +3
+1 0 0

0 -1 +1
-1 +1 -1
-2 -2 -2
-3 +3 -3

* The numbers (0, £1, £2 and +3) represent the Ms values of the ZFS eigenenergies (e.g., +3 means gg) ).

Interestingly, the same relationships as in Table 2A.1 are reproduced from the row of +1 to —1 in Table
2A.3 (squared by bold). This is due to the theory of the angular momenta and the fact that the ZFS is the

2-rank tensor.

A2.2.6 Spin-octet state (S = 7/2)

The ZFS energies for the spin-octet state consist of D2 + 3E2 and D3 — 9DE?, both are confirmed to hold

for the cyclic permutation as seen in the spin-quartet and sextet cases.

A2.2.7 Spin-nonet state (S = 4)

From the derivations of eigenenergies (2.66a)—(2.66i), 853) , 852) and 8(()0) hold for the permutation of the

subscripts. Others are related as the following table.
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Table 2A.4 Summarized permutation relationships of the ZFS eigenenergies in the spin-nonet state

B//z B//x Bl/ly
+4 +4 +4
+3 -3 +3
+2 +2 +2
+1 -1 +1

0 0 0
-1 -2 -2
-2 +1 -1
-3 4 4
—4 +3 -3

* The numbers (0, £1, £2, +3 and +4) represent the Ms values of the ZFS eigenenergies (e.g., +4 means

g0 ).

4

Similar to the spin-quintet case, the same relationships as in Table 2A.2 are reproduced from the row
of +2 to —2 in Table 2A.4 (squared by bold).
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Appendix 2.3: ZFS eigenenergies for the integer spin systems for
S>4

We derive the eigenenergies and the corresponding eigenfunctions of the ZFS Hamiltonian (£ # 0) and
discuss the mathematical and physical structures of the Hamiltonian. Here, we expand the secular
equation in the form of

S..n
a)x

n

with aj,,, =1. Due to the traceless of the ZFS Hamiltonian matrix, aj; =0 .

@JSsS=>5
The matrix representation of the ZFS Hamiltonian in the case of S = 5 is as follows;
15D 0  35E 0 0 0 0 0 0 0 0
0 6D 0 6J3E 0 0 0 0 0 0 0
35E 0 -D 0 24&2E 0 0 0 0 0 0
0 63E 0 6D 0 210E 0 0 0 0 0
0 0 2J2E 0 9D 0 15E 0 0 0 0
HZ=| 0 0 0 N210E O -10D 0 ~210E O 0 0
0 0 0 0 15E 0 9D 0 2y&2E 0 0
0 0 0 0 0 210E 0 6D 0 6J3E 0
0 0 0 0 0 0 2yRE 0 -D 0 35E
0 0 0 0 0 0 0 6~/3E 0 6D 0
0 0 0 0 0 0 0 0 3WSE 0 15D

S§=5
n

ay” =-429(D* +3E)
ag” =-1430(D* —9DE?)

The coefficients @~ of the secular equation of this matrix are listed below.

™ =59631(D* +3E?)

ay” =353340(D’ - 9DE*)(D’ +3E?)

as™ =-27(89377D° +1328693D"E* +1364579D°E* +2937479E° )

a$™ =-19698390(D* +3E*)' (D~ 9DE?)

ay” =6804(D’ +3E7)(1994D° +161621D*E* - 233512D°E* +197513E°)

ay” =29160( D’ —9DE”)(10678D° +104677D*E* + 271156 D°E* + 29688 1E°)
a’™ =2624400(D* + 3E ) (197D° — 4646 D*E® +18157D°E* ~1100E°

ay” =26244000( D +3E”)(D* - 9DE?)(9D° - 262D*E* + 929DE* — 100E")

The matrix HJ., can be divided into two matrixes. The Hamiltonian matrix in the basis of {|+5>, |

+3>, [+1>, |-1>, |-3>, |-5>} is as follows.
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15D
35E
0
0
0
0

3J5E
-D
2NRE
0
0
0

0
2N2E
-9D
I5E
0
0

0
0
I5E
9D
WNRE

0

0
2NA2E
-D

3J5E

S O o O

3J5E

15D

The secular equation of this matrix is factorized as
x’=5(D+3E)x’ —(141D* —210DE +213E” ) x 135D + 225D’ E+ 21 15DE* + 675E° =0 (2A.7a)

x=5(D-3E)x’ —(141D* +210DE + 213E”)x = 135D° = 225D’ E+ 21 15DE* —=675E° =0 (2A.7b)
The solutions of Eqs. (2A.7a) and (2A.7b) will be shown together with the relationships of the

permutation.
The ZFS matrix in the basis of in the basis of {|+4>, [+2>, |0>, |-2>, |-4>} is
6D 63E 0 0 0
6V3E 6D 210E 0 0
HS=| 0 210E -10D 210E 0
0 0 210E -6D 6v3E
0 0 0 638 6D

The secular equation of this matrix can be decomposed into two equations;

X’ =36(D*+3E*)=0 (2A.8)

X’ +10Dx” —(36D° + 528 E” ) x— 360(D’ —4DE’) =0 (2A.7¢)
The solutions of the quadratic equation (2A.8) are

x, =164 D* +3E* =16D" (2A.9)

x+ and x- correspond to the eigenenergies of the |Ms = —2> and |-4>-dominant states, respectively. The

eigenfunctions are

o, = 0| +4)+ B.]+2) +7.]0)+6,|-2) +e.|4)

with

o, _ B3E

B. +D -D

voo 6 [oip ip% _6(iD*—D)(J_rD*+D)—18E2

B, V2| TUTVEB T V210E(+D" - D)

%:ﬁ{(ﬁﬁﬂop)ﬁ—mﬂ
~ 6(+D" = D)(£D"+ D)(+6D" +10D)-210E*(+D" — D) - 18E*(+6D" +10D)
B 210E*(+D - D)

& __1 - S, _ Ve

5 6\/§E{(i6D +6D)ﬁi WEBJ

*

I+

_ 1 (+D"-D)(D"+ D) (+6D" +10D)~70E* (+D' ~ D)(+D' + D)
~ 35V3E(£D"- D) —3E’(+D"+D)(+6D" +10D)+210E*

{5

This solution is invariant for the permutation of the axis.
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Equations. (2A.7a)—(2A.7¢) are related with each other with the permutation relationships;

(2A7c)—2 5 (2A.7a)—2 5 (2A.7b)
(2A.7c)—22 5 (2A.70)—22 5 (2A Ta)
Thus the solutions of Eqs. (2A.7a) and (2A.7b) are obtained with the replacement of D and E in the

solutions of Eq. (2A.7¢). Replacing x with x—2 D in Eq. (2A.7c¢) yields

o 16(

13D% +99E” )+
3

640
> (7D —135E )

The solutions of the Eq. (2A.7¢) can be written in the trigonometric form as

Xovenn = 20qyen COS larccos boen +2n_7r —&D n=0,1,2)
| 3 2a 3 3

even

with

a =%\/13D2 +99E*

~ 40D(7D* - 135E”)
" 3(13D +99E7)

and n = 0, 1, 2 correspond to the |[Ms = +4>, |0> and |[+2>-dominant states, respectively. The

corresponding eigenfunctions are

(D(AE[)Z- even n ’ +4> + ﬁeven,ﬂ | +2> + yeven,n ‘ 0> + 5even,n | _2> + geven,n ’ _4>

with
aeven,n _ geven,n _ 6\/§E
ﬁeven,n 5even,n ! 28 —D

X even n 3

7/ 7 1 |: 8 (x|even.n_%Dj[x'even,n—i_%D)_logEz
evenn _ Levenn _ X even,,"' D-— 6\/_E evenn:|
ﬁeven,n 6even,n NV 210E 3 ﬁeven,n 1,210E('x'even,n_ 28D)

3

even g

evenn j[ evenn+8D)( evenn+@D)
3 T3

210E e 2—380)— 108E* (x'even’n+§D)

1 2 y _ AT
EVCH S ! . even rg 21 E
eve“ ) \/F 0E |: even n 3 :|

ZIOEZ(

even n

3

£ 1 8 Y.
even,n — xl + even J1 HE even,n
ﬁeven J 6\/§E { e 3 ﬁeven r ﬁeven g }

B 2
('x‘evenn_ﬁDj( evenn+8D) [ evenn+ED)
T3 3 3

= 1 _420E2 ('x'even }’l_ §Dj[ even, ’l+ 8 D)
1260\/§E3(x'mn— 28 D) -3 3

3

even,n 3

2 2 2 2 -1
ﬁezven n = aeven . + yeven,n + 5even N + Seven,n + 1
ﬁeven n ﬂeven n ﬁeven,n even

—108E® (x' + §Dj(x'ew+ ?D)+ 22680E*

and
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! 1 bCVCﬂ znﬂ.
X' onn = 20, COS| —arccos| —=e |4
' 3 2a 3

even

The solutions of Eqgs. (2A.7a) and (2A.7b) are obtained with applying the cyclic permutation. For Eq.
(2A.7a),

Xogan = 20u4 cos{% aI‘CCOS(ZbL‘dJ-an—ﬂ}-F%D—SE (n=0,1,2) (2A.102)

Aoua 3

with

gy = %«/2802 +30DE + 54E°

_20(D-3E)(16D’ +39DE+9E")
- 42D +45DE +81E”
n =20, 1 and 2 correspond to the |Ms=—-5>, |-1> and |-3>-dominant states. The eigenfunctions are

bodd

(l’f,gzm = Qg n | +5> + :Bodd,n | +3> ¥ oddn ’ +1> + 50dd,n | _1> +Eaan | _3> *+Coddn ’ _5>
with

aodd,n _ Codd,n _ 3\/§E

Bodd,n godd n X ‘odd,n — ? D

40 8
x'udd,n_ ?Dj('xlodd,n-{_ gD) - 45E2

2\/42E(x‘oddvn— 4301))

yodd n 50(1(1 n 1 8 o [
= = = = x' +—D— 3\/§E =
ﬁndd,n godd,n 2 \J 42E |: od 3 ﬂm

1)
odd,n — yodd,n _L|:(x'mm,n+£Djm_2mE:|

ﬂndd g 8ndd g 1 5 E 3 odd,n

: 40 , 8 , 32
1 (x odd,n_?Dj(‘x odd4n+§D)(x odd,n+?Dj

- 40
30\/EE2 ('x|0dd,n_ 3D) _168E2 ('xlodd.n_ ?Dj - 45E2 ('x'odd,n-i- 3_32D)

1)
gndd,n — 1 |:(xV0dd,n+ ED) odd .,n _ ]SE YOdd,Vl i|

ﬁodd,n - 2 v 42E 3 ﬁodd,n ﬁodd,n

(40 .8 32 V]
('x odd,n_?D)('x odd,n+§D)(‘x odd,n+?D)

1 _225E2 (xyodd.n_4_;)D)(x'ndd,n+§Dj
- 40
2520E3(x'0dd,,,—D) ~-168E* x'odd,,—@D X'nddﬁED
3 3 T3
2

—45E2(x'udd_n+3—32D) +10125E*
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g dd |:( 8 ) dd
Doddn __ .O ,,+ odd ,n 2\/—E m
ndd n 3\/_E “ ﬁodd n ﬁ m
(., 40 8 Y 32 Y
(‘x odd,n_?Dj( oddn+ 3D) ( odd,n+?D)
40 8
_336E2 ('X’J()dd,n_?D)( odd n+ 3D)( ndd,n+3_32Dj

.40 8 Y
1 _225E2('xodd,n_?D]( oddn+3D)

.40 2
7560v5E (x ot 5 D —4552(x'0ddn+§D)(x'nddn+2D)
"3 "3

+28224E* (x'odd_,,— ?D)

+10125E4( X' gant E;Dj+7560E4 (x'odd,n+3_32D)
2 2 2 2 2 -l
ao n yndd n 50dd n godd n Cﬂdd n
o [3 odd ,n ﬁ odd,n ﬁ odd ,n B odd,n ﬁ odd,n

X' saan =20, cos{larccos(b”A)+ 2””} 5E (2A.10b)
: 3 2a,, ) 3

Replacing £ with —F in the equations from Egs. (2A.10a) to (2A.10b) gives the corresponding

and

eigenenergies/eigenvalues for Eq. (2A.7b), where n = 0, 1 and 2 correspond to the |Ms = +5>, |[+1> and |
+3>-dominant states, respectively.
Summarize the eigenenergies of the matrix below;

1 b' 5
85? =2a' ;, COS| —arccos —Zodd || L ZD4+5E
3 2a' 3

1
353):2%%“ cos —arccos( X ﬂ
3

even

4
552) =2a' ,, cos —arccos b'ouq + ar + ED +5E
V L 3 2a 'odd 3 3
1 b 4 10
85? =2a,,, COS| —arccos| —==- |4 ar_ v D
L3 2a0.,) 3] 3
- 1 ‘ ,
85(;) = 2a'odd Ccos| —arccos b odd 1y i + ED +5E
L 3 2a 'odd 3 3
1 b 2 10
8(()0) = zacvcn cos| —arccos even + _ﬂ,' D
3 aeven 3 3

1
ej) =2a,,, cos garccos(

SN

odd J+2—ﬂ +%D—5E

odd 3

[\
Q

) =67D? +3E>

1 4
£ =2a,,cos 5 Arecos odd J+—” +%D—5E

%‘

[\

aodd 3

) = -6 D* + 3E*
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1
35(;) =2a,4, COS| —arccos Do + ED —5E
3 2 3

aodd

where aodd and boda are defined above and

a'y = %\/ZSDZ —30DE+54E>

_20(D+3E)(16D’ -39DE+9E")
o 42D —45DE +81E°
The permutation relationship among the eigenenergies are summarized in Table 2A.5. A part of the

table is same as Table 2A.3, the spin septet case (surrounded by the bold lines). This is because the ZFS

tensor considered is rank-2 tensor.

Table 2A.5 Summarized permutation relationship of the ZFS eigenenergies in the case of S=5

B//z B//x B/ly
+5 +4 +4
+4 -5 +5
+3 +2 +2
+2 -3 +3
+1 0 0

0 -1 +1
-1 +1 -1
-2 -2 -2
-3 +3 -3
4 4 -4
-5 +5 -5

* The numbers (0, +1, £2, +£3, +4, +5) represent the Ms values of the ZFS eigenenergies (e.g., +5 means

)
b S=6

The ZFS Hamiltonian can be represented with the 13 x 13 matrix
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2D 0  N66E 0 0 0
0 11D 0 VI65E 0 0
J66E 0 2D 0 330E 0
0 JI6SE 0 -5D 0  6JI0E
0 0 3J30E 0 ~10D 0
0 0 0 6JI0E 0 ~13D
HS=| 0 0 0 0 2J105E 0
0 0 0 0 0 21E
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
2WI05E 0 0 0 0 0 0
0 21E 0 0 0 0 0
~14D 0 2J105E 0 0 0 0
0 —13D 0 6J10E 0 0 0
2J105E 0 ~10D 0 3V30E o0 0
0  6JIOE 0 -5D 0 VI65E 0
0 0 3J30E 0 2D 0 66E
0 0 0 J165E 0 11D 0
0 0 0 0 66E 0 22D

and the coefficients of the secular equation are
ay;® =-1001(D’ +3E?)
ay® =-4862(D’ - 9DE”)
al™ = 347347(D* + 3E2)
ay™* =3038308(D* +3E”)(D’ - 9DE”)
as™® =—43126735D° — 562948011 D*E* — 814807053D°E* — 133922924 1E°
ay* =-540793358( D’ + 3E” )2 (D*-9DE?)
as™ =28(D” +3E”)(41380643D° + 2060980056 D' E* — 2259831177 D°E* +2805831630E")
ay* =8(D*—9DE?)(3997058677D° + 40610463084 D*E” + 98646714297 D°E* +112557519270E° )
a3 =6160(D* +3E2) (11301923D° — 442520559 D* E* +1393627653D°E* — 239085945 E° )
a5 =—677600(D* +3E*)(D* —9DE” )(447203D° + 10674765 D*E* ~ 1225395 D*E* + 18724419 E° )

19409 D" — 364005 D" E* — 4262922 D*E* +10905462 D°E® j

a¥=* = -31944000
: +25085133D*E® +55117503D°E" — 7001316 E"

a3™ = 8198960000( D* +3E%)'(D* ~9DE*)(169D° +2250D* E> + 3105 D*E* + 5292E° )

The matrix can be divided into two matrixes H1 and H>. The former is in the basis of {|+5>, [+3>, |
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+l>: |_1>9 |_3>9 |_5>}'

11D J165E 0 0 0 0
VI6SE  -5D  6JI0E 0 0 0
H = 0 6JIOE -13D 2IE 0 0
0 0 21E  -13D 6J10E 0
0 0 0 6JI0E -5D 165E
0 0 0 0 I65E 11D

The secular equation of this matrix can be decomposed of two cubic equations;

X’ +7(D=3E)x’ —(133D* 126 DE + 525E” ) x — 715D +1155D°E + 1815 DE” + 3465 E" = 0
(2A.11a)
x*+7(D+3E)x’ = (133D +126 DE +525E” ) x— 715D° — 1155D’E + 1815DE” — 3465E° = 0

(2A.11b)
The solutions of Eqs. (2A.11a) and (2A.11b) will be shown together with the relationships of the

permutation.

The matrix representation in the basis of {|+6>, [+4>, |+2>, |0>, |-2>, |-4>, |-6>} is

22D 66E 0 0 0 0 0
J66E 2D 3J30E 0 0 0 0
0 3J30E -10D 24J105E 0 0 0
HS=| 0 0 2J105E -14D 2J105E 0 0
0 0 0 2JI05E -10D 3J30E 0
0 0 0 0 3J30E 2D  66E
0 0 0 0 0 J66E 22D
The secular equation of this matrix can also be factorized into the following cubic and quartic equations.
x’=14Dx* = (196D’ + 336E” ) x + 440D’ + 5280 DE” = 0 (2A.11¢)
x*~392(D* +3E%)x* ~2304(D’ ~ 9DE* ) x+6160(D* + 3E%) =0 (2A.12)

Equations. (2A.11a)—(2A.11c¢) are related each other with the permutation of the axes;

2A.11c)—2=5(2A.11a)—2= 5 (2A.11b)

2A.110)—22 5 2A.110)—22 5 (2A.11a)
Thus here shows the solutions of Eq. (2A.11c) and the solutions of Egs. (2A.11a) and (2A.11b) are

obtained with the permutation treatment. In order to eliminate x2 term, replacing x with x+4 D yields

128

7D* + 9E2)x+—D(143D2 - 783E2)
27

w1

The solutions of Eq. (2A.11c¢) are written in the trigonometric form as follows;

Xovenn = 2Qqyen COS larccos bei + 2nm + ED
' 3 a 3 3

even

with

A,y = ngz +9E?
) _8D(143D2—783E2)
" 21(7D7 +9E?)

and n =0, 1, 2 correspond to the |Ms = —6>, |-2> and |-4>, respectively. The corresponding eigenstates

are
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¢§\32 = aeven,n | +6> + even.,n | +4> + /)/CVCD,VI ‘ +2> + 5€VCH,H | O> + geven,n | _2> + even,n ‘ _4> + neven,n | _6>

C

n. _ V66E
z x'n—gD
3

. ) g o (x'n—%Dj(x'“+§D]—66E2
| oS- |- -
: B. 3\/@?(;@”—?0)

S |:(x'”+ %DJL— 3@E]

(x' —QDJ(X' +8D)(x M )—270E2(x' —2D)—66E2(x',+ﬁDj
"3 "3 3 "3 '3

9014 E* (x'”—%zpj

—420E2(x'"—2Dj[x'n+§Dj
1 3 3

1260«/_E (x' —?D] _270152(xv —2D] X
"3

n

x' +%D)+27720E4

H X'+ ﬁ1))——2«/10 E—= }
. , }
(x‘”—2DJ(x‘)[+§D)(x'n+ﬁDj (x'ﬁEDj
3 3 3 3
—840E2(x'n—2D)[x +8D)(x +ﬂDj
3 3 3
! —27OEz(x'"—2D)( )(x'n+§D)
113400E4(x'”—%Dj > 3
—66E2(x +44Dj (x +E j
3 3

+1 13400154(x',,—%0j+55440154(x',,+%1))

3J_E
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r 2
(x'n—EDj(x'n+§Dj (x +ﬁD] (x'ﬁEDj
3 3 3 3
—5400E2(x'”—gDJ(x'”+§D)(x +ﬂb)(x'n+§D)
3 3 3 3
2
—840E2(x'n—2D)(x'”+§Dj (x'”+ﬁDj
3 3 3

—66E2(x'n+§D)(x +ﬁD) (x'n+ ﬁD)
= 1 3 3 3

. 2
113400V/66E (x”—?DJ +226800E4(X,II_S?ZDJ(X,N%D)
+72900E“( —%D)(X' +%D)

+55440E°| x' +§D](x +%D)

+1782OE4(x' 3 Dj( ' 536Dj—7484400E6
2

{5 ()5 (53

Next, the solution of the quartic equation (2A.12) are

1 { 2q
x=—|xJu, £, [2p—u,F, —
2[ 1Vl T2 2 1\/%:|

with

u, =2a, cos{larccos(b—oﬂ—
3 a,
1
a, = g\/pz +12r

b = 2p =T2pr+21q°
0 3p® +36r

p=-392(D*+3E?)

q=-2304(D*-9DE?)

r=6160(D*+3E*)
Both the upper and lower signs should be chosen in the double sign +1, while should be chosen freely in
the double signs +; and +>. Note that Eq. (2A.12) is invariant for the permutation and thus they
correspond to |Ms = +6>, |[+4>, |[+2>, |0>-dominant states. The corresponding eigenstates are

(PfIO) =0y, | +6> + ﬂO.n | +4> TYoa | +2> + 50,»1 | 0> T &, | _2> + gO,n | _4> o | _6>
with
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_ J66E

x —-22D

(x,—22D)(x,-2D)—66E>
{ ~2D-e6E % } 3\/_E(xn—22D)

1l 1]
| :Nm ms»

3«/_E

=S R =R

2\/W {(xn +10D)};—i—3@E}

-22D)(x,—2D)(x,+10D)-270E*(x, —22D)— 66 E*(x, +10D)
9014 E*(x, —22D)

%zlelﬁE{(x +14D)——2«/WE }

—_
=><

(x,-22D)(x,-2D)(x,+10D)(x, +14D)
~ 1 —420E*(x,—22D)(x,-2D)
© 12604/30E*(x, —22D)| —270E> (x, —22D)(x, +14D)

—66E*(x, +10D)(x, +14D)+27720E*

{(xn +10D);—z—2\/ﬁE2—j

&1

B. 3J30E
[ (x,—22D)(x, —2D)(x, +10DY (x, +14D) ]
—840E*(x, —22D)(x,—2D)(x,+10D)

! —270E?(x, —22D)(x, +10D)(x, +14D)

~113400E" (x, - 22D)

~66E>(x, +10D)’(x, +14D)
| +113400E* (x, —22D)+55440E" (x, +10D) |

! [(x,, - 20)2—1— 3\/%15;—1

[(x,—22D)(x,—2D)’ (x, +10D)’ (x, +14D)
—540E*(x,—22D)(x,—2D)(x,+10D)(x, +14D)
—840E7(x, —22D)(x, —2D)’ (x, +10D)

B 1 —66E*(x, —2D)(x, +10D)’(x, +14D)

113400566 E° (v, = 22D)| 41226800E* (x, — 22D)(x, - 2D)

+72900E* (x, —22D)(x, +14D)

+55440E* (x, —2D)(x, +10D)

| +17820E* (x, +10D)(x, +14D)—7484400E°

2 2 s 2 2 ¢ 2 2 B
a. Y. . £, . n.
v ﬁz ﬁz ﬂz ﬂz ﬂz ﬁz
Summarize the eigenenergies of the matrix below;

1 27 |
85?2— u, + —2p—u0——q
? T

1 b
e%=2a", cos {5 arccos(zﬂ

, +§D+5E
L 3

]
1

1 2
0_
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'
odd

1 2
852):— —\Juy + —2p—u0+—q
2 T

1 b 2 7
55?) =2a,, cos| —arccos| —¢ 2 I pyE
3 2a 3 3

£ =2a', cos larccos Do 1,471, 5p sE
i 3 2 3 3

odd

1 2
(0) _ [ q
£ —| = — [-2p— + —=
0 2|: U, p—u, ,—MO :l

1 b' 2
=2a' Oddcos&arccos[ j+—ﬂ}—%D TE

3

2 14
rccos[ e J+—”} ?D

even

5 —Zaddcos +4_7r +5D SE
3 3

1 b dr | 14
= cos| —arccos| —=<£ —|+—D
3 [2 J 3} 3
b

wl»—

even

W | =

arccos L
2a,

even
even

=24, cos{ arccos( 2l }+§D—5E
3 2a,, 3
Table 2A.6 Summarized permutation relationship of the ZFS eigenenergies in the case of S=6
B//z B//x Bl/ly
+6 +6 +6
+5 -5 +5
+4 +4 +4
+3 -3 +3
+2 +2 +2
+1 -1 +1
0 0 0

-1 -2 -2
-2 +1 -1
-3 —4 —4
—4 +3 -3
=5 -6 -6
-6 +5 =5

* The numbers (0, +1, £2, £3, +4, £5 and +6) represent the Ms values of the ZFS eigenenergies (e.g., +6

means £)).

85



a 3

1 b 14
e(fs) =2a,,., cos{g arccos(ﬂﬂ +—D
where aodd and boda are defined above and

a'y = %\/2802 —30DE +54E>

_20(D+3E)(16D*-39DE+9E")
o 42D - 45DE +81E”
Similar to the spin-quintet case, the same relationships as in Table 2A.4 are reproduced from the row

of +4 to —4 in Table 2A.6 (squared by bold).

b!

«S=7

The matrix representation of the ZFS Hamiltonian in the case of S =7 is
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§=7 _
H ZFS —

SO O O O O o o o o o o©

0
0
0

S © © o o o ©o o o o

NCYY

and the coefficients of the secular equation of this matrix are
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0
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_, 6188
al = —T(D2 +3E%)
o 369512(D3 _opr?)

27
g7 - 13963222 (0436

9
o = 1520676248 (D% +36°) (D= 9DF")

81

a = —%(5046606505D" +61279568667 D" E* +104538155391D°E* +152118485757E° )
= 67273;348744 (0 +362) (0° ~9DE?)

o (0 +37) 4419392579327 D° +152892447575463D*E*
a;, =—
729 —106912229081211D*E* +232441514003349E°
o 8 (D3 2) 3450100304025127 D° + 34671043965866859 D* E>
© 19683 +85912425749396997 D*E* + 96772849438319145E°
_ 56 2(120951193171268 D® — 7991819490821445 D*E*
ai’ = ——(D*+3E)
2187 +21426442674349950 D*E* — 5814698013738621E°

s = ﬁ(Dz +3E)(D’ - 9DE2)[

19098858238853600D° +309973137338617317D*E? +]
59049

239502346071177366 D*E* +653752585637982117E°
882690060961045936D'* —16261234209749931336 D'’ E*
s 208 ~135039488422286359053D°E* +271776317859222236100D°E®
G 531441| +1476231862578430940802D*E® +2271623040182266458156 D*E"°
—253714698352400236749E"

272965254367804 D° +9855688346845587 D* E2
o5 = 80569 (D*+3E%) (D* - 9DE2)[ ]

177147 ~7427940247139994 D*E* +14769062925466059 E°
407562688058944 D" —3759895157210496 D" E*
—-40353709822621101D°E* +179933647787827380D°E°
+588702042264434994 D* E® + 964629066489983028 D*E"°
-20181943961038125E"

600381907136D" — 7775277274224 D" E*
—43823307552219D*E* +117583929014220 D°E°®
+1095143923237086 D*E® +1356274129063932D*E"
—58839486766875E"

The matrix can be divided into two matrixes, H, and H,., . The former is in the basis of {|+7>, |
+5>, [43>, |[+1>, |-1>, |-3>, |-5>, |-7>}

oy 27559168

2 2
M T 504323 (D*+387)

s, 220693817344

3 2
“ 1asaso0r (0 OPE)
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ap N9lE 0 0 0 0 0 0
JIE 2D 6JIIE 0 0 0 0 0
0 6JIIE -2D 15J3E 0 0 0 0
H 0 0 I5J3E -2D 28E 0 0 0
' 0 0 0 28E 2D 153E 0 0
0 0 0 0 15V3E -2D 6JIIE 0

0 0 0 0 0 6JIIE 2D <IE

0 0 0 0 0 0 9IE %D

in the basis of {|+7>, [+5>, |+3>, |[+1>, |-1>, |-3>, |-5>, |-7>}. The secular equation of this matrix can be

factorized into two quartic equations;

x* —Z—E(D— 3E)x’ - %(137D2 +162DE +249E” ) x*

—%(D— 3E)(6823D” + 51150 DE - 30681E ) x (2A.13a)

+%(29203D4 +46284D°E + 59634 D*E* + 277452 DE* + 54675 E* ) = 0

X —%(D+ 3E)x’ - %(1371)2 —162DE +249E )x°

—24—7(D+3E)(6823D2 ~51150DE - 306817 ) x (2A.13b)

+%(29203D4 — 46284 D°E+59634 D°E> — 277452 DE* + 54675E*) =0

The ZFS matrix in the basis of {|+6>, [+4>, [+2>, |0>, |-2>, |-4>, |-6>} is

2p  3W26E 0 0 0 0 0
3J26E -8D 5V22E 0 0 0 0
0 S5V22E -4D 6N21E 0 0 0
Hyl,=| 0 0 6V2IE -%D 6W21E 0 0
0 0 0 6W21E -%D 5J2E 0
0 0 0 0 5V2E -iD 3J26E
0 0 0 0 0 326E 2D

The secular equation of this matrix can be factorized into cubic and quartic equations;

x3—L§4(DZ+3E2)x—%(D3—9DE2)=0 (2A.14)

o428 pye —E(MDZ +123E%)x° —20(46881)2 ~11511E?)
3 3 27

1456 (2A.13¢)
—7(70404 ~10224D°E* —19683E* )= 0

Equation (2A.14) is invariant for the permutation of the axes and thus the energies are expected to be the |
Ms=-2> |-4> and |-6>-dominant states from the analogue in the case of S = 5. The solutions of Eq. (2A.
14) can be written in the trigonometric form as
1 b 2
X, =2acos —arccos(—)+ﬂ (n=0,1,2)
3 2a 3

with

89



a=2—38 D*+3E?

_1144(D’-9DE?)

 147(D*+3E?)
n =0, 1 and 2 correspond to the |Ms = —6>, |-2> and |-4>-dominant states, respectively. The
corresponding eigenfunctions are;

ou) = a,[=2)+ B,|-4)+7,|-6)
Equations (2A.13a)—(2A.13c) are related with each other with the permutation relationship;

(2A.13c)—2= 5 (2A.132)—2X 5 (2A.13b)

(2A.13c)—22 5 (2A.13b)—22 5 (2A.13a)
The solutions of Egs. (2A.13a) and (2A.13b) are obtained with the appropriate replacing of D and E in the
solution of Eq. (2A.13c¢);

1 — 2 14
'xeven = El:il ueven,O i_2 \/_zpeven —u + ﬂ]__l)

even,0 + 1
V ueven,t) 3

with

u. .=2a._,cos larccos bomo |2
even,0 even,0 3 2(1 3 p

even0

Aoyeng = %\/pz +12r

2 =27prtg’
)

Peven ==36(7D" + 41E?)

Geen =—256D(9D* —137E”)

Foew =112(55D* + 626 D’E> + 3159E*).
Both the upper and lower signs should be chosen in the double sign +1, while should be chosen freely in

the double signs +1 and +>. The solutions of Eq. (2A.13a) can be obtained with the permutation of the

principal axes;

1 24 7
Xodd = E[il\/ L \/_ZP_undd,o + m]+§D_ TE

with

1 b 2
Uogap = 200 COS l:g afccos(za"&]} 3 Poa
0dd0

_ 2
Aoaap = 5 Poda T 127,44

b — 2p3dd — 27p0ddrodd + qc2)dd
od0 3p§dd +36r,4,

Poa =—112(6D” + 5DE +13E?)

Gos =—256(D—3E)(16D* + 41DE + 7E”)
Iy = 448(60D* +148D°E + 323D°E” +222DE” + 207E*).

Summarize the eigenenergies of the matrix below;
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1
gg) = E VU '0dd0 \/
1
(0) _ /
eV —_— —_
+6 2 even 0 \/ even 0o 'Meve“ o
l . 2q', 7
852)25 U odd() \/ -2p', oddO ; < +§D+7E

+ZD+7E
3

zpeven -

odd odd 0 |
U o440
dd

853):% V even0

2pcvcn - cvcnO - 3
Meven.O

odd odd 0 |

1
gﬁg):a U ndd()

1 b 2
£ =2acos —arccos(—) +
3 2a 3

1 2G4 7

(0) _
€5 == =\Uosao T, |72 Posa — Uouao + — +5D-TE
2[ \/ undd,() ] 3
1 4
Sg) =2acos —arccos(i)+—”
3 2a 3

1 2q, 7
35(;) = E[\/ Usaao _\/_2podd ~Ugaap ~ Tdd]"' SD -TE

1 ( b )
=2acos| —arccos| —
3 2a

2
8(0) _ 1 (Zodd,O ]+1D_ 7E

=—| JUosso T |2 Poda = Uosao —
-7 odd,0 odd odd,0 [
2 [ \/ undd,O

where a, Aodd/even, b, bodd/even, Podd/even, Godd/even, Fodd/even and Uodd,0/even,0 Arc defined above and
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1 b' 2
U'sa0 =20 440 Cos{garccos[ﬁ]} - gp'odd

0dd0
I 3
a'sao = g Plaat12r'

_ 2Pass = 27 Podalosa * o
3p:dd +367,4

b'udd,O
P'ya=-112(6D* = SDE+13E)
q' s =—256(D+3E)(16D* —41DE+7E”)
r' oo =448(60D* —148D°E + 323D°E* - 222DE’ + 207E* )

Table 2A.7 Summarized permutation relationship of the ZFS eigenenergies in the case of S=7

BlIz Bl/x Blly
+7 +6 +6
+6 =7 +7
+5 +4 +4
+4 -5 +5
+3 +2 +2
+2 -3 +3
+1 0 0

0 -1 +1
-1 +1 -1
-2 -2 -2
-3 +3 -3
4 4 4
-5 +5 -5
-6 -6 -6
=7 +7 -7

* The numbers (0, 1, £2, +£3, 4, +£5 +6 and +7) represents the Ms of the ZFS eigenenergies (e.g., +7
means s(g) ).

+

Similar to the spin-quintet case, the same relationships as in Table 2A.5 are reproduced from the row
of +5 to —5 in Table 2A.7 (squared by bold).
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d)§=8

=81is

The matrix representation of the ZFS Hamiltonian in the case of S

2\30E

40D

3J35E

25D

0

V546 E
2V195E

0

12D

2\30E

0

3V110E

0
-8D

3J35E

0

V1155E

0
-15D

0

V546 E
2N195E

0

0
20D

0

3V110E

0

0
-23D

0

V1155E

0

0

6/35E

0

36E

6/35E

36E

0 6~/35E

-23D

-24D

0

V1155E
3V110E

0
-20D

0

6/35E

0

2N195E

0
-15D

0

V1155E

0

546E

0
-8D

0

3V1I10E

0

0

0 0
3J35E

2N195E

0

0

V546 F

0

24/30E

12D

0

3J35E

0

25D

40D

2\/30E

and the coefficients of the secular equation of this 17 x 17 matrix are
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as* =-3876(D* +3E”)

aj;* =-33592(D’ - 9DE”)

al =5695782( D +3E)

a;® =91000728(D* +3E”)(D* - 9DE?)

ay® =-3876(943385D° +10926891D°E” +20598543D°E* + 27907821E° )

aly =—85908664008(D? + 3E*)' (D~ 9DE?)
s . o[ 4966130659D° +135330357483D°E*
ay* =171(D* +3E )[ L 6]
—47184835311D°E* +224720709345E
4276878691837D° +42334571475369 D' E*
+107790398181927D°E* +1 19318387928435D°J
149101213724 D° — 21248827139637 D*E*
+49207208896854 D°E* —18565005292605 E"J
2218895021552D° + 31367334398913DE*
+37115607172014D°E" + 71307444786849E6J
18150537753904 D" — 408356565832008 D'°E* — 3125721579413805D°E*
ai™ =-2000| +4172949766584900 D°E* + 32700613037985090 D*E*
+48032594504553132 D*E'"” — 7045627061640429E"

258668245028 D°® + 8235078954417 D*E”
—4830086882574D°E* +12891 107364921E6J
410175646592D" — 4536545414976 D' E*
—-58069906055235D°E* +222320454502284 D°E®
+532884123756270 D*E*® +1039890859058124 D*E"°
—52819713052227E"

4687893376 D" — 315518965344 D' E*
—2228518635291D*E* —1219240365012D°E®
+12521547772254 D E® +17880584460300 D*E"
—7441930892187E"

171112640D" + 2228355936 D" E*
—114893419167D*E* + 612011807676 D°E°®
~568959600762D*E* + 800605059804 D*E"°
—30285942687E"

846400D" + 58320720 D" E?
+965215899D*E* —1309501836 D°E®
43548956194 D*E® — 2126670876 D°E"°
+2329687899E"

The ZFS matrix H ‘29;21 can be divided into two matrixes. The one in the basis of {|+7>, [+5>, [+3>, |

ayt =8(D’ —9DE2)[
™ =360(D* + 3E2)2[

ay™® =-2400(D* +3E*)(D* - 9DE’ )(
a$™ =960000(D* ~9DE*)(D* +3E?) [
as™ =7200000(D* + 3E”)
a3 = 864000000( D* —9DE?)
a’™ =-103680000000( D* +3E)’

ay™* =12441600000000( D’ - 9DE* (D + 3E?)

+1>, |-1>, |-3>, |-5>, |-7>}) is
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25D  335E 0 0 0 0 0 0
335 D 2JI95E 0 0 0 0 0
0 2J195E -15D A1155E 0 0 0 0
b~ 0 0 JII55E -23D  36E 0 0 0
‘ 0 0 0 36E  -23D  N1I155E 0 0
0 0 0 0 V1I55E -15D 2J195E 0

0 0 0 0 0 2J195E D  335E

0 0 0 0 0 0 3J35E 25D

in the basis of {|+7>, [+5>, |+3>, |[+1>, |-1>, |-3>, |-5>, |-7>}. The secular equation of this matrix are
decomposed into two quartic equations.
x*+12(D=3E)x* = 6(103D° =66 DE + 375 E” ) x* —=20(D - 3E)(401D” + 546 DE + 65TE” ) x

+75(115D* —180D°E + 4146 D’E* — 7092 DE* + 4851E* ) = 0
(2A.152)
x* +12(D+3E)x*~ 6(103D* + 66 DE + 375 E* ) x* —20(D+ 3E)(401D° + S46 DE + 65TE” ) x

+75(115D* +180D°E + 4146 D’E” + 7092 DE* + 4851E* ) = 0

(2A.15b)
The residual matrix in the basis of {|+8>, |[+6>, |[+4>, [+2>, |0>, |-2>, |-4>, |-6>, |-8>} is
40D 2\30E 0 0 0 0 0 0 0
2W30E 12D J546E 0 0 0 0 0 0
0 J546E 8D 3JII0E 0 0 0 0 0
0 0 3JII0E —20D 6V35E 0 0 0 0
HSS,=| 0 0 0 6\V35E 24D  6JY35E 0 0 0
0 0 0 0 6J/35E 20D 3IIOE 0 0
0 0 0 0 0 3JII0OE -8D S46E 0
0 0 0 0 0 0 J546E 12D 24/30E
0 0 0 0 0 0 0  2J30E 40D

in the basis of {[+8>, [+6>, |+4>, [+2>, |0>, |-2>, | 4>, |-6>, |-8>}. The secular equation of this matrix can
be factorized to quartic and quintic equations;
x'=24Dx’ - 24(34D% + 69E” ) x> +160D(32D” + 369E” ) x
(2A.15¢)
+1200(64D4 —48D°E* + 99E4) =0

X —1392(1)2 + 3E2)x3 —14464(D3 —9DE2)x2
2 (2A.16)
+199680(D2 + 3E2) x+1843200(D2 + 352)(03 —9DE2) =0

The quintic equation (2A.16) is composed of (D? + 3E2) and (D3 — 9DE?) which meets the global
invariance for the permutation, and thus the general solution does not exist and the equation itself has
nothing with the others.

The solutions of Eq. (2A.15¢) are

1 [ 2q
x=—|%,.u +, [2p...—u F == —-6D
2 1 even) —2 \/ even even0 T1 \/7

even,0
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1 beven 0 2
Ugono = 20en 0 COS| —arccos| ——— | |—=p
Y ) 3 2aeven,() 3

| O ——
aeven,0=§ p2+12r

_2p’-27pr+q’
even0 3p*+36r
Peven = _24(43D2 + 69E2)

Goen =—256D(25D —153E7)
Foew =148(1547D" + 4938 D’E” +2475E* )
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Appendix 2.4: Pseudo-Zeeman perturbation approach for the half-
integer spin systems (S = 3/2, 5/2 and 7/2)

As mentioned above, the pseudo-Zeeman perturbation approach treats all the off-diagonal terms including
asymmetric ZFS terms to the second order of the Rayleigh-Schrodinger perturbation. The unperturbed
term Ho is D[S:2 — S(S + 1)/3] and the perturbing term H* = E(Sx2 — S)2) + SSeg*B. In contrast to the
genuine Zeeman perturbation, the pseudo-Zeeman perturbation approach is easier to obtain the geft—gtrue
relationships and applicable to any spin systems because we do not need the eigenfunctions of ZFS
Hamiltonian. Of course, however, the accuracy of approximation gets worth than the genuine Zeeman
perturbation treatment. As a similar approach, “the pseudo-nuclear Zeeman effect” gives an aid for the
interpretations of the magnetic structures of ferric hemoglobins (S = 5/2) with small |E/D|.* [26,37-39] In
this section, we formalize the geff/gtrue as a function of |E/D| for S = 3/2, 5/2 and 7/2 and discuss the
limitation of this treatment by comparing with the genuine counterpart.

Eisenberger and Pershan derived the gieff—gitrue (L means that the magnetic field lies in the xy-plane)
relationship for the |[Ms = +1/2> dominant state assuming the strong axial zero-field splitting and

determined the D-value of MetMyoglobin (S = 5/2) by measuring the two different resonance field. [81]

(a) Spin-quartet state

The matrix representation of the unperturbed and perturbed terms in the basis of |Ms> are

D 0 . %g “ps E
H :l:;:r?]rbedl [ 0 -D J ::r‘::rebling,l = 1
NEY 5 8"“BB
3 e
D 0 . R8P 3E
H Lcll:;?):\[xrbcd 2= [ 0 -D J H g;::lrebling,z = 1
V3E 5 8" BB

Assuming that E£/D is so small that the zeroth-order energies can be approximated to only the axial ZFS

parameter (D) and D >> g:tmefB, first-order wavefunctions ¢’y and second-order energies £’yg can be

written as
3\ J3E| 1 3 3E°
_+_ +___ E I:D true B+
s 2> 2D 2> +2 28 B 4D
1 3E| 3 1 3E?
q)lv=+_>_\/____> Ell=_D tmeﬂB
*5 2 2 2 +E 2 4D
1\ J3E| 1 , 1 g 3E?
0, '= __>____> E,'=-D-—g™ BB~
- 2/ 2D| 2 - 28 4D
E2
¢3,=_g>+@_l> E,=p-3gmpps3E
- 2 2D 2 - 2 4D

Note that the zeroth- and second-order terms vanish when the energy difference between the same
spin subsystems (|+=3/2> or [£1/2>) is taken. Therefore, the geff-gtrue relationships for each spin sublevel

arc

* Although the authors did not declare that they used “the pseudo perturbation treatment” described here, it is obvious
that their formalization is based on the pseudo-perturbation like approach.
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g =3¢ (for i% doublet)

g =g (for i% doublet)

In the similar sequence, the geffi—gtrue relationships in each direction (x, y or z) is as follows: Figure 2A.
8 depicts geff/gtue as a function of |E/D| (= A) relationships for +1/2 doublets. The discrepancies at the

several E/D values are summarized in Table 2A.10.

eff
S =93 (2A.17a)
8
geff
t);ue:2+3}“ (2A.17b)
eff
8.
=1 (2A.17¢)
8.
geff/gtrue
3.0
25 Y
20F — —

0.5

EID
0.00 005 010 0.15 020 025 0.30

Figure 2A.8 Comparison of g¢ff/gtrue between the exact analytical treatment (solid line) and pseudo-
Zeeman perturbation (broken line).

ff ) Atrue
g"'lg |Ms = £3/2>-dominant |g°"/g"™ | |Ms = +1/2>-dominant
5 5
4 4
3 —— — 3
2 2\
1 // 1mh——— e
EID EID
0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Fig. 2A.9 The geff/gtrue relationships as a function of the rations of |E/D| for S = 3/2 for the principal z-axis
of the g- and ZFS tensors. The curves of the exact relationships (Egs. (2.17a)—(2.17¢c)) are given in the
solid lines Those derived by the pseudo-Zeeman perturbation treatment to the third order are depicted in
the dashed lines.
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Table 2A.10 The numerical discrepancies in the exact and pseudo-Zeeman geff/gtiue at several £/D values

E/D 0.05 0.1 0.2 0.3 1/3 limit
X 3.1x103 0.010 0.022 0.011 0
y 4.3 x 1073 0.019 0.088 0.21 0.27
z 7.5 %103 0.029 0.11 0.23 0.27

We considered the higher-order correction in the case of B//z where the g¢ff/gtrue was constant for any

E/D values. The geff/gtrue for the transition between each spin sublevels calculated from the third-order

perturbation are

eff
true

8:
eff

8:

true

oQ

S 3(1 - lz) (for the | £3)-dominant transition)

=1-3A’ (for the |+4)-dominant transition)

Figure 2A.10 compares the geff/gtrue between the analytical treatment and pseudo-Zeeman perturbation

geff/gtrue
3.00p ——

2.95
2.90
2.85
2.80
2.75
2.70

—

0.00 0.05 0.10 0.15 0.20 0.25 0.30

geff/gtrue
1.00p ——

0.95
0.90
0.85
0.80
0.75
0.70

—

EID
0.00 0.05 0.10 0.15 0.20 0.25 0.30

EID

Fig. 2A.10 The geff/gtrue relationships as a function of the rations of |E/D| for S = 3/2 for the principal z-
axis of the g- and ZFS tensors. The curves of the exact relationships (Eq. (2.17¢)) are given in the solid
lines Those derived by the pseudo-Zeeman perturbation treatment to the third order are depicted in the
dashed lines. The values of g-¢ff/g:true in the second-order pseudo-Zeeman perturbation are constant, while
the g.*ff/g.true relationships depend on the ratios of |E/D].

(b) Spin-sextet state

The first-order wavefunctions ¢’u and the second-order energies £’ derived in the case of B//z are
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5\ J10E| 1 10 3 5E?
'=|+— )+ +— = = ptue
= 2> 6D 2> e Y
3\ 3W2E| 1 2 3 9E
l:+_ T E l:__D =~ e B
P 2> 2D ‘ 2> 2 =TRPHR s
2
(pl,:+l>_«/ﬁE|+§>_3ﬁE _§> Eo=-8pilgmpp 32E
47172/ ep |2/ 2D | 2 ST 3T 3D
,__l>_3x/§E+§>_«/ﬁE_§> - '=—§D—ig‘mﬁB—32Ez
q’—; 2/ 2D | 2/ 6D | 2 -~ 3 2% 3D
2 03 e 9E®
¢§>3ﬂ‘ 1> Eoe-2p_dgmpp,
2712/ 2D | 2 532 D
10 5 vepn SE
¢S~:_§>+@_l> E,'=—D->g"™BB+
=12/ 6D | 2 5 32 3D

geff/gtrue relationships in the case of the spin-sextet state are obtained from Eq. (2.3): Figure 2A.11

depicts geff/gtrue as a function of |E/D| (= A) relationships. [33-37]

eff
& =3-122
geff
C_—34124
'eff
8:

true

(2A.18a)

(2A.18b)

(2A.18¢)

These relationships are valid within |E/D| is small due to the assumption for the perturbation theory.

Indeed, g:=ff/g.true crosses zero at about £/D = 0.25.

eff / gtrue |

7

lg

- N W b~ OO0 O
<

z e

0.00 0.05 0.10 0.15 0.20 0.25 0.30

EID

Fig. 2A.11 The g¢ff/gtrue relationships as a function of the rations of |E/D| for S = 5/2 and the |Ms = +1/2>-
dominant transition. The subscripts x, y and z denote the principal axis of the g- and ZFS tensors. The
curves of the exact relationships (Eqs. (2.51a)—(2.51c)) are given in the solid lines Those derived by the

pseudo-Zeeman perturbation treatment to the second order are depicted in the dashed lines.

Table 2A.11 The discrepancies in the exact and pseudo-Zeeman geff/gtrue at several E/D values

E/D 0.05 0.1 0.2 0.3 1/3 limit
x 7.8 x 103 0.026 0.39 (1.12)* (1.43)*
y 0.037 0.19 0.84 1.80 2.16
z 0.040 0.15 0.42 0.64 0.70

* These values were obtained with |g,cff/g,trie| however gyeff/gytrue < 0.
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Fig. 2A.12 The g¢ff/gtrue relationships as a function of the rations of |E/D| for S = 5/2 for the principal z-
axis of the g- and ZFS tensors. The curves of the exact relationships (Eq. (2.21c¢)) are given in the solid
lines Those derived by the pseudo-Zeeman perturbation treatment to the third order are depicted in the
dashed lines. The values of g:¢ff/g.tre in the second-order pseudo-Zeeman perturbation are constant, while
the g.*ff/g.true relationships depend on the ratios of |E/D).

Table 2A.12 The discrepancies in the exact and pseudo-Zeeman geff/gtiue at several £/D values

E/D 0.05 0.1 0.2 0.3 1/3 limit
[£5/2>a 2.0 x 105 3.2 % 104 5.1% 103 0.025 0.037
[+3/2>a 1.6 x 103 0.023 0.25 0.86 1.14
[£1/2>a 1.6 x 103 0.023 0.26 (0.88) (1.18)

 |[=Mg> means [£Ms>-dominant transition.

b These values were obtained with |geff/gtruc| however geff/gtrue < (.
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(c) Spin-octet state

The first-order wavefunctions ¢’y and the second-order energies £’y obtained in the case of B//z are

|7\ 21 7 21E?
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2
VSE| 1 5 15E
[ + _ _ true —
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The second-order energies gives the constant geff/gtue relationships for the all |+Ms>-dominant
transition.

The third-order perturbed energies are;
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It is worth mentioning that some geff—gtiue curves have the zero point at the energy crossing point due

to the dispersion of the perturbation theory.
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Fig. 2A.13 The geff/gtrue relationships as a function of the rations of |E/D| for S = 7/2 for the principal z-
axis of the g- and ZFS tensors. The curves of the exact relationships (Eq. (2.21c)) are given in the solid
lines Those derived by the pseudo-Zeeman perturbation treatment to the third order are depicted in the
dashed lines. The values of g.¢ff/g:true in the second-order pseudo-Zeeman perturbation are constant, while
the g.*ff/g.true relationships depend on the ratios of |E/D].
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Chapter 3: Analyses of Sizable ZFS and Magnetic Tensors
of High Spin Metalloporphyrins, Felll(C1)OEP and
CollOEP by X-Band Cw-/Pulsed-ESR and Electron Spin
Nutation Spectroscopy: Their Electronic Structures Based
on Quantum Chemical Calculations



3.1 Introduction

Porphyrins have attracted continuing attention in a variety of scientific and technological fields. [1,2]
They have a suitable cavity for binding various transition metals, resulting in the formation of
metalloporphyrins as the most important active center of hemoproteins such as hemoglobin, exemplifying
biological molecular functionality, which is subtly regulated by ligation to the central metal ions. Many
kinds of schemes for molecular assemblages of porphyrin skeletons have given fascinating materials
models in emerging fields. [1,2] Paramagnetic metalloporphyrins in their ground or excited state are
important chemical complexes in view of both biological implications and materials science. An
enormous number of reports have been published on their intrinsic electronic and magnetic properties as
well as the fascinating biological functions [1,2] until recently. In terms of relevant ground-state
electronic structures modulated by the ligation, the experimental principal g-values play an essential role
in understanding the modulation.

In quest for novel molecular or materials functionalities such as Mobius aromaticity or orbital phase-
topology, expanded porphyrins take a significant role in synthesizing model compounds for Mdbius
molecular strips. [3] Referred to the possible applications of porphyrin scaffolds, one-dimensionally
extended paramagnetic metalloporphyrins, which undergo g-tensor engineering for molecular spin
quantum bit (qubit) chains such as (ABC),-type Lloyd model of universal quantum computers, [4-6] in
which A, B and C denote distinguishable spin qubits with non-equivalent g-tensors. Importance of the
porphyrin scaffold is in that viable synthetic approaches to sizable oligomers or infinite chains for 1D
expanded metalloporphyrins give a possible materials solution for the scalability of qubits, which all the
physically realized qubits including photon qubits face as the most intractable issue in the field of
quantum computing and quantum information science. [5] Furthermore, molecular spin qubits are
emerging in the fields of quantum technology, and the molecular design or optimization for molecular
spin qubit based quantum computers or quantum information processing systems requires the fine tuning
of the g-tensor or zero-field splitting (ZFS) magnetic properties in addition to exchange interactions
within the chain.

Among high spin metallocomplexes with non-vanishing ZFS tensors, the robust crystals of the
complexes with sizable principal values of the ZFS tensors serve as ensemble quantum spin memories
capable of strongly coupling with superconducting flux qubits or microwave photons in planar resonators.
[7] The ensemble spin crystals themselves function as quantum devices, and the magnitude of principal
ZFS values needs to fulfill coupling conditions, thus the limitation of current superconducting circuit and
microwave technology. The matching of energy depends on the magnitude of the ZFS values, and for the
initialization processes of the qubit memory the sizable values are preferable. All the materials under
study fulfill such requirements. Particularly, metalloporphyrins and materials analogues whose magnetic
tensors are well characterized are suitable candidates for realistic quantum spin memory devices.

In paramagnetic metalloporphyrins, the spin—orbit coupling (SOC), as the symmetry breaker, relevant
to the central metal ions is influential and governs the magnetic properties. The magnetic tensors of
experimentally well-characterized transition metal complexes serve as a testing ground for advanced
quantum chemical calculations of magnetic tensors. [8,9] We note that ligand field theory has played an
important role in understanding the electronic structures and ligand surroundings of central metal ions, as
underlain by the semi-quantitative interpretation of their g- and hyperfine tensors. [10,11] Even for copper

complexes, however, the critical defection caused by misleading identification of SO contributions, which
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are estimated from localized metal hyperfine and molecular Ag-shifts, has been pointed out. [12] Also, as
well known, relativistic effects are the largest in the Group 11 series of metals even for light copper
element. Electron nuclear hyperfine interactions between unpaired electrons and central nuclear spins (I #
0) are mainly caused by spin polarization [13] and the SOCs.[14] Thus, reliable theoretical interpretations
for the transition metal hyperfine tensors are crucial. [9] Progress in performance of computers and
computing algorithms has enabled us to calculate magnetic tensors taking into account the higher order
relativistic effects. Especially, DFT calculations of spin Hamiltonian parameters have become a useful
tool for large metallocomplexes, [9] and DFT approaches for magnetic tensors of metalloporphyrin have
been reported. [15—17] Nonetheless, the capability of DFT for the quantitative calculations of magnetic
tensors, especially for molecules including transition elements, is still a controversial issue. [18]
Quantitative evaluations of the g-, ZFS and hyperfine tensors of metallocomplexes in various symmetric
environments are challenging themes for quantum chemistry because their accurate evaluations are
essential for the molecular optimization of emerging quantum spin technology.

Prior to the DFT or ab initio MO quantum chemical calculations for metalloporphyrins as model
chemical entities, we determine the experimental magnetic tensors of metalloporphyrins with sizable ZFS
principal values as accurately as possible. In this work, we utilize facile approaches to determine the spin
multiplicities with true g-values and magnetic tensors of high spin metallocomplexes having sizable ZFS,
instead of performing advanced high-field/high-frequency ESR spectroscopy at cryogenic temperatures.
The facile approaches are based on the utilization of the exact analytical formulas for the geffgtrue
relationships between the principal g-value (g¢ff) based on the fictitious spin-1/2 approach and the true
principal g-value (gtre) for high spin states. The analytical formulas convert the experimental principal
gefl-values into the true principal g-values together with the information on the ZFS tensor. The analytical
expressions for the relationships are derived in the basis of both (1) exact analytical solutions of the full
spin Hamiltonians having the rank-2 ZFS and electronic Zeeman interaction terms and (2) the genuine
Zeeman perturbation treatment. Even the latter (2) gives accurate conversion enough for the X-band ESR
spectroscopy. The complete spectral analyses are based on the full spin Hamiltonians with the ZFS +
electronic Zeeman terms, comparing theoretical tensors by reliable quantum chemical calculations.

To illustrate the usefulness of our approaches, we exploit Felll(Cl)OEP (S = 5/2; OEP: 2, 3, 7, 8, 12,
13, 17, 18-octaethylporphyrin) and Col!lOEP (S = 3/2) well magnetically diluted in the diamagnetic host
crystal lattice of NilOEP, which has a similar molecular structure and thus incorporates the paramagnetic
counterparts without deformation of the guest molecule due to the host-guest mismatch. The advantage of
the single-crystal ESR spectroscopy lies in the fact that the molecular information on the principal axes of
the magnetic tensors such as g- and ZFS (D) tensors is crucial in comparing with the results of the
magnetic properties from reliable quantum chemical calculations. In particular, the true g-values of
CollOEP well incorporated in the tetragonal symmetric environment of the single crystal of NillOEP
suggest the occurrence of the peculiar electronic behavior. In high spin states of some metallocomplexes
with sizable ZFS in pseudo-octahedral symmetry, their fine-structure ESR transitions with the static
magnetic field along the principal z-axis appear in the lower field far from g = 2 at X-band. The

appearance disagrees with the putative intuitive picture of the relevant high spin ESR.
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3.2 Samples and Experiments

3.2.1 Single-crystalline sample

Magnetically diluted CollOEP and Fell(Cl)OEP in NillOEP single-crystals were provided by Professor
David Dolphin (University of British Columbia, Canada). Table 3.1 shows the crystallographic data for
the host NillOEP.

Table 3.1 Crystallographic Data for the Host Ni"OEP [19]

Formula C36H44N4Ni1
Temperature/K 4

Crystal system tetragonal
Space group 14/a

Z 4

alA 14.93(1)
b/A 14.93(1)
c/A 13.84(1)
VIA3 3085

Rla] 0.077

R'lal 0.137

[a] R= E|AFmeasz‘/2|F(‘,2|, R = [ZW(AFmeasz)/2F04]l/2 and AFmeas2 = ||Fmeasz| — ‘Fca]cZH.

The central nickel atom is coordinated in a square planner arrangement by four nitrogen atoms. The
host NilOEP molecule has a slightly ruffled structure with Ss symmetry. The molecular principal-axis
system of the crystal nearly coincides with the crystallographic-axis system. It leads to the facilitation of
spectral analyses for observed ESR spectra because we can find the crystal axes from the crystal shape.
Very tiny experimental error due to the setting of the crystal in the cavity (within 2 degree) enables us a

precise determination of magnetic tensors. The c-axis of the crystal is taken in porphyrin plane vertically

Et Et Et Et Et Et
Et Et Et Et Et Et
Et Et Et Et Et Et
Et Et Et Et Et Et
Guest Host
Fell(CI)OEP (S =5/2) CollOEP (S = 3/2) NillOEP (S = 0)

Fig. 3.1 Host and guest molecules of metalloporphyrins considered in this work.
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Fig. 3.2 (left) External shape of NillOEP single-crystal with assignment of Miller indices. (right) The
relationship between the crystal axes (abc) and the molecular principal axes (xyz) in Ni'lOEP.

while the N—N directions are nearly parallel to the a- or b-axis.

These two systems show the ruffling structure due to the static and dynamic pseudo Jahn-Teller
distortion [20-23]. Intensity of ESR spectra for Felll(CI)OEP rapidly decrease above 5 K. [22,23] The
boundary temperature between the static and dynamic distortion is about 36 K for Co'OEP. [20,21]

3.2.2 Cw-/pulsed-ESR experiments
Single crystals of diamagnetic Ni"OEP well incorporating Felll(CI)OEP (S = 5/2) were prepared, in which

actual guest/host concentration ratios were not determined. The Miller indexes of the single crystal were
assigned to the crystal planes of a square-bipyramidal structure. (the published paper giving the X-ray
data) [19] Based on the assignment of the Miller indexes an oxygen-free copper wedge was designed and
prepared for ESR/ENDOR experiments in the principal-axis coordinate systems. Fortunately, the
bipiramidal plane coincides with the square plane composed of the four nitrogen nuclei of the porphyrin
skeleton, and an angle between the crystal a-axis (or the b-axis) and the direction of the diagonal nitrogen
nuclei is only 2 degrees, as shown in Fig. 3.2 (molecular structure vs the principal axis and crystal axis).
The error of the plane angles of the wedge was less than 0.2 degrees. All the experiments including pulsed
ESR and electron spin transient nutation spectroscopy at X-band were carried out at liquid helium
temperatures except otherwise specified.

Conventional CW ESR experiments were carried out with a Bruker ESP300/350 X-band ESR
Spectrometer equipped with a dual mode resonator ER4116DM, in which the ESR measurements were
achieved in a not only conventional perpendicular mode (BLB: B denotes the static magnetic field and
B the micro-wave oscillating field) but also a parallel excitation mode (B//B1). The parallel mode allows
the fine-structure/hyperfine forbidden transitions allowed. Temperature was controlled with an Oxford
ESRI10 helium-gas flow temperature controller system. CW X-band ENDOR measurements in the
principal-axis coordinate systems were carried out with the ESP350 based spectrometer equipped with a
single-circle goniometer.

Single-crystal X-band pulsed-ESR spectroscopy was carried out with ESP300/380E (BrukerBioSpin)

spectrometer equipped with a 1 kW TWT microwave amplifier. The relative phase and the intensity of
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microwave pulses were adjusted by using a high speed oscilloscope 9450A, 300 MHz (Lecroy). The
microwave frequency was monitored with a frequency counter R5373 (Advantest). The temperature was
regulated with a helium-gas flow controller systems (Oxford). Echo-detected field-swept ESR spectra
were obtained with the conventional pulse sequence: 7/2—rn—r—echo with 7/2 = 30 ns, 7 = 60 ns and 7 =
300 ns. Two-dimensional electron spin transient nutation spectroscopy was carried in the echo-detected
scheme with a pulse sequence of nutation pulse—to—n/2—t—r—7—echo, where the nutation pulse was
changed from 16 to 512 ns in the step of 4 ns with z/2 = 30 ns, =7 = 60 ns, f = 40 ns and z = 300 ns.
Spectral analysis of ESR spectra of CollOEP and Fell(CI)OEP were carried out based on the exact
numerical diagonalization with EasySpin (version 5.1.10) [24] under MATLAB R2014b software.

The host crystal of NillOEP is a tetragonal bipyramidal with the space group 14i/a, Z =4, a=b =
1.493(1) nm, ¢ = 1.384(1) nm as determined by Mayer [19] and the crystal has a habit of well-developed
planes with Miller indexes, (110), (100) (minor), (010) (minor), (001) (minor), (—100) (minor), (0—10)
(minor), (00-1) (minor), (101), (011), (0-11), (-101), (01-1), (10-1), (0-1-1), (=10-1). The host NillOEP
molecule has a slightly ruffled structure of the porphyrin plane with Ss symmetry. The molecular
principal-axis system of the crystal nearly coincides with the crystallographic-axis system. It facilitates
the spectral analyses for the observed ESR/ENDOR spectra, giving good accuracy of the determined
tensors. The experimental error of setting the crystals of NilOEP in the cavity was estimated within 0.5
degrees. The c-axis of the crystal is perpendicular to the porphyrin plane, while the N-N directions are

nearly parallel to the a- or b-axes. An oxygen-free copper wedge was used for mounting the crystal.

3.2.3 Quantum chemical calculations

Quantum chemical calculations of the spin Hamiltonian parameters including g-tensor, D-tensor, A-tensor
of 57Fe and 59Co nuclei, and Q-tensor of 5°Co nuclei were carried out by means of DFT. Because ruffled
structure of porphyrin ring plays important role on their electronic states, we used the solid state geometry
of diamagnetic NilOEP host molecule determined from X-ray crystallography, [19] by substituting Ni
atom to Fe or Co. Position of Cl atom in Fell)(CI)OEP was optimized at the UTPSS/Sapporo-DZP level,
and Cartesian coordinates of all other atoms were fixed during geometry optimization. The optimized Fe—
Cl bond length is 2.413 A.

The magnetic tensors were calculated at the UTPSS/Sapporo-DZP level. In the D-tensor calculations
the first order spin—spin dipolar contributions (DSS terms) were calculated by using the natural orbitals
constructed from the unrestricted Kohn—Sham determinant, in conjunction with the McWeeny—Mizuno
equation. [25] The second order spin—orbit contributions (DSO terms) were evaluated by using the natural
orbital-based Pederson—Khanna (NOB-PK) method [8] with the one-electron spin—orbit Hamiltonian with
effective nuclear charges. The NOB-PK method, which is recently proposed by Dr. Sugisaki and co-
workers (Osaka City University), utilizes a single Slater determinant consisting of natural orbitals as the
ground state wavefunction in conjunction with the Pederson—Khanna (PK)-type determinant-based
perturbation theory. The NOB-PK method gives more accurate DSO-tensors in [Mnll(terpy)X2] (terpy =
2,2°:6,2’-terpyridine, X = NCS, Cl, Br, and I), [Mn!(tpa)X>] (tpa = tris-2-picolylamine, X = Cl, Br, and I),
and (NBus)2[RelVX4(0x)] (0x = oxalate, NBus = tetra-n-butylammonium cation, X = CI and Br) systems
than the conventional PK [26] and quasi-restricted orbital (QRO) [27] approaches.

The g-, A-, Q-, and DSS-tensors were calculated by using ORCA software (version 3.0.0), [28] and the

DSO-tensors were computed by means of GAMESS-US program suite [29] and laboratory-made source
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code.

The electronic configuration in the spin-sextet ground state of FellI(CI)OEP is
(dx2)1(dy2)1(d22)(dxy)!(dx2—y2)! without any ambiguity. However, determining electronic configuration of
the spin-quartet ground state of CollOEP needs special care, because of the presence of low-lying excited
electronic states arising from ruffled structure of porphyrin ring. In order to elucidate electronic structure
of the ground state of ColOEP, we have carried out 10 single point calculations with the different initial
guess 3d-electron configurations. According to the single point calculations the energy-lowest electronic
configuration is (dxz)!(dyz)'(d-2)2(dxy)2(dx2—2)!, but the electronic states having (dx,)?(dyz)!(d-2)(dxy)2(dx2-
y2)! and (dxz)!(dy2)2(d-2)!(dxy)?2(dx2—y2)! configurations are calculated only 273 and 274 cm-!, respectively,
above from the ground state. Here, the x and y axes were defined to be parallel to the Co—N coordination
bond and the z axis was to be parallel to the pseudo-Ss axis. The quasi-degeneracy of these two electronic
states is rationalized from the pseudo-Si: symmetry of Col!OEP. The electronic state described as
(dx2)2(dy2)?(d22)1(dxy)'(dx2-y2)! configuration, expected from the crystal field of square planar coordination,
is calculated 1909 cm! higher in energy than the ground state. Note that other spin-quartet electronic
states are calculated to have higher energy (AE > 20000 cm-') than the ground state at the UTPSS/
Sapporo-DZP level.

Because low-lying electronic states are energetically very close to each other and it is hard to
determine the ground state electronic configuration only from the DFT calculations, we also carried out
the CASSCF(7¢,50)/6-31G* calculations for Co!'lPor (Por = porphyrin) molecule. The molecular
geometry of CollPor is prepared from the solid state geometry of NillOEP, by substituting Ni to Co, and
ethyl groups to H atoms. The CASSCF active space consists of valence 3d orbitals and electrons. During
the SCF calculation state averaging is done for 10 spin-quartet states. According to the CASSCF
calculation the lowest quartet state is described mainly by the (dx)2(dyz)2(d2)!(dxy)!(dx2—2)! configuration
with the expansion coefficient C = 0.99. The first and second excited quartet states are located to be 717
cm! and 718 cm!, respectively, higher in energy from the ground state. Both the first and second excited
quartet states have multiconfigurational character and the main configurations are 0.80
[(dxz)2(dyz)1(dz2)2(dxy) ! (dx2-y2)!], +0.58 [(dxz)!(dy2)2(d22) (dxy)2(dx2-y2)!] and 0.81 [(dxz)?(dyz)'(d2)(dxy)*(dx2-
y2)1, —0.58 [(dxz)'(dy2)? (d-2)*(dxy)!(dx2—2)!], respectively. The third excited quartet state is described
mainly by the (dxz)!(dyz)!(dz2)?(dxy)?(dx2y2)! configuration, which is the energy-lowest configuration in the
UTPSS/Sapporo-DZP single point calculations. The excitation energy of the third excited quartet state is
2522 cm-! at the CASSCF level. From the DFT and CASSCEF calculations, we expect that the ground
state electronic configuration must be (dxz)2(dy2)2(dz2)!(dxy)!(dx2—y2)! or (dxz)'(dyz)!(d22)2(dxy)*(dx2—y2)! and

magnetic tensor calculations have been carried out for these two electronic configurations.

Spin density distributions of Fell(Cl)OEP and CollOEP are plotted in Fig. 3.3 with an isosurface value

Fig. 3.3 The calculated spin density distributions and principal axes of D-, g- and A-tensors of
FellI(CI)OEP (left) and CoUOEP (center: (dxz)2(dyz)!(d-2)!(dxy)?(dx2-y2)! configuration, right:
(dx2)?(dy2)?(d-2)1(dxy)!(dx2-y2)! configuration) calculated at the UTPSS/Sapporo-DZP level of theory.
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is set to be 0.005, and Mulliken atomic spin densities on the metal center, chlorine, and nitrogen atoms are
summarized in Table 3.2. In both molecules most of unpaired electrons are located on the metal center,
and non-negligible amount of spin densities are distributed onto the coordinated chlorine and nitrogen

atoms.

Table 3.2 Mulliken Atomic Spin Densities of Felll(CI)OEP and ColOEP Calculated at the UTPSS/
Sapporo-DZP Level

Molecule Felll(CI)OEP CollOEP

Electronic (dxz)1(dyz)1(d2)! (dxz)!(dy2)'(d-2)? (dx2)*(dyz)*(d-2)!
configuration (de)!(d22)! (dyy)(d22)! (de)!(d22)!
Metal center 3.966 2.522 2.668

Cl 0.329

4N 0.376 0.205 0.331

Table 3.3 Magnetic Tensors Calculated at the UTPSS/Sapporo-DZP level

Molecule Felll(C1)OEP CollOEP

Electronic (dxz)(dyz)'(dz2) (dxy)! (dxz)'(dyz)1(dz2)2(dxy)? (dxz)2(dyz)*(dz2)!(dxy)!
configuration (dx2y2)! (dx2y2)! (dx2y2)!
DSStSO/MHz +2.301 x 105 —6.403 x 105 +2.174 x 10614l
[E55+80/DSS+S0 0.0481 0.0015 0.0000 [a]

xx 2.0149 2.0792 2.0948

&y 2.0166 2.0793 2.0947

g 2.0075 2.0226 2.0093

Ziso 2.0130 2.0604 2.0663
Ax(M)/MHz 20.97 148.01 352.68
A,,(M)/MHz 22.24 148.08 352.66
Az:(M)/MHz 18.38 148.49 158.02
aiso(M)/MHz 20.53 148.19 287.79
Ox(*Co)/MHz ~2.773 -0.768
0yy(*Co)MHz -2.767 -0.764
0-:(3*Co)/MHz 5.540 1.532

[a] The spin—orbit CI result in Co"Por (Por = porphyrin) using CASSCF(7¢,50)/6-31G* wavefunctions as

the non-relativistic wavefunctions.

The calculated magnetic tensors of Felll(CI)OEP and ColOEP are summarized in Table 3.3. In
Felll(CI)OEP the D-, g-, A(5Fe)-tensors are roughly coaxial to each other. The D.: axis is nearly parallel
to the Fe—Cl bond. The Dy, axis is approximately parallel to the direction connecting Fe and carbon atom

of meso position. The DSS contribution to D-value is about 600 MHz and therefore DSO term is dominant.
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Analysis of the theoretical DSO-tensor based on the orbital region partitioning technique (ORPT) [30]
revealed that the most important excitation on the DSO contributions are dx2-y2(at) — dxy(B) excitation,
which raises D.. principal value about 3 x 105 MHz. The dx2-y2(a) — dyz(B) and dx2y2(a) — dxz(B)
excitations contribute mainly to Dx and D), principal values, respectively, which act to decrease the D
value about 0.7 x 105 MHz. The g-tensor is slightly shifted positively from the g value of free electron
(2.0023) but the shift is small compared with that of ColOEP. The A(57Fe)-tensor has small anisotropy
reflecting the d5 high spin electronic configuration.

In ColOEP of the (dx)!(dyz)'(d-2)2(dxy)?(dx2—y2)! electron configuration, the negative DSS+SO value is
predicted. The D: axis is perpendicular to the porphyrin ring. According to the ORPT, the most important
excited electronic configurations are dx2-y2(ot) — dy-(B) and dx2-y2(ot) — dxz(B). These excitations work to
raise Dy and Dy, principal values, as discussed in the DSO-tensor analysis of Felll(CI)OEP. The A(5°Co)-
tensor has very small anisotropy reflecting the electronic configuration.

In the DSO-tensor calculation of Col'OEP in (dxz)2(dyz)?(d-2)!(dxy)!(dx2-y2)'electronic configuration we
have encountered difficulties in DFT-based approach. In the single determinant comprised of natural
orbitals the highest occupied spin-a (dx2-y2) orbital has higher energy than the lowest unoccupied spin-3
(dxy) orbital (e(dx2—y2)(a) = —0.111576 Hartree and &(dxy)(B) = —0.114939 Hartree). This means that spin-
doublet excited configuration has lower energy than the spin-quartet state, although in the CASSCF
calculations the (dxz)?(dyz)2(dz2)%(dxy)!(dx2-y2)! spin-quartet state is the ground state. The theoretical DSO
value calculated based on the NOB-PK method is —5.496 x 10¢ MHz. However, the ORPT analysis
revealed that the dx2-y2(a) — dxy(B) excited configuration contributes dominantly to the DSO value (-5.664
x 106 MHz), which has the above mentioned negative orbital energy difference. If this excited spin-
doublet configuration has positive orbital energy difference like in CASSCF energy orderings, the sign of
the DSO value becomes positive. We note that such orbital energy order inversion occurs in the Kohn—
Sham orbital of both Felll(C)OEP and CollOEP, and therefore the DSO values of Felll(C)OEP and
ColOEP of (dxz)!(dyz)'(d22)2(dxy)?(dx2y2)! configuration calculated by means of conventional PK method
has opposite absolute sign to those calculated by NOB-PK.

In order to estimate DSO-tensor of CollOEP in (dxz)2(dyz)2(dz2)!(dxy)!(dx2y2)! configuration other than
the DFT-based methods, spin—orbit CI (SO-CI) based on the CASSCF(7¢,50)/6-31G* wavefunction in
CollPor system was adopted. In the SO-CI calculations, the 50-state-averaged (40 doublets and 10
quartets) CASSCF wavefunctions as the non-relativistic wavefunctions were used. The DSO and ESO
values are calculated directly from the energy differences between spin sublevels. The obtained DSO value
is positive as expected (DSO = +2.174 x 106 MHz), and £50 value is less than 1 MHz. Note that at the SO-
CI method the DSO value of (dxz)!(dyz)!(d22)?(dxy)?(dx2—y2)! configuration (the third excited quartet state) is
—7.725 x 105 MHz, which is close to the NOB-PK-based theoretical value.

The A(59Co)-tensor of CollOEP in (dxz)2(dyz)2(d-2)!(dxy)'(dx2-y2)! configuration calculated at UTPSS/
Sapporo-DZP shows large axial anisotropy: Axx ~ Ayy > Az, because two unpaired electrons occupy in-
molecular-plane orbitals (dxy and dx2y2 orbitals). Since the dxy orbital is doubly occupied in
(dxz)1(dyz)!(d22)?(dxy)?(dx2—y2)! configuration and singly occupied in (dxz)2(dyz)2(dz2)!(dxy)!(dx2y2)!, the
smaller Q-tensor is obtained in (dxz)2(dyz)2(dz2)!(dxy)!(dx2-y2)! configuration than in

(dxz)1(dyz)1(d-2)2(dxy)2(dx2-y2)! reflecting the occupation number.
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3.3 Results and Discussions
3.3.1 Electronic structure of Felll(C1)OEP (S = 5/2) magnetically diluted in

the diamagnetic NillOEP single-crystal as studied by cw-/pulsed-ESR and
14N-ENDOR spectroscopy

Pulsed ESR experiments, particularly transient nutation spectroscopy, were carried out only mostly for the
principal z-axis orientation of Felll(CI)OEP because the time resolution of the microwave pulse generation
was not enough to detect the fast relaxation of the magnetization for the principal x- and y-axis
orientations. This is because the SOC is strong with the static magnetic field lying in the porphyrin plane.
Figure 3.4 shows the observed fine-structure CW X-band spectra of Felll(CI)OEP with B// the crystal a-,
b- and c-axes.

One-dimensional electron spin transient nutation (1D-ESTN) spectroscopy observed in the vicinity of
the principal z-axis orientation was carried out to confirm that Fel(CI)OEP is in the spin-sextet ground
state. [22] The observed nutation frequencies, as shown in Fig. 3.5, were interpreted by the transition
probability/moment between the dominant |Ms = £1/2> states under the assumption of the true g-tensor
(Table 3.4), illustrating that the observed transition arises from the spin-sextet state in a straightforward
manner. The theoretical nutation frequency, which corresponds to the transition moment between the
dominant Kramers doublet, was calculated by using all the experimentally derived magnetic tensors,
based on the full spin Hamiltonian. The theoretical value is three times greater than that for the doublet

spin state. As given in Fig. 3.5, the theoretical ratio 3.03 of the nutation frequency (S = 5/2)/the frequency

B // a axis

B // b axis

B // c axis

— L . 1 . 1

0.1 0.2 0.3 0.4

MAGNETIC FIELD /T
Fig. 3.4 The fine-structure CW X-band single-crystal ESR spectra of Felll( CI)OEP magnetically diluted in
the diamagnetic Ni"OEP single-crystal with B// the crystal a-, b- and c-axes at 3.2 K. [23] The true g-
values and 4 = E/D are derived from the analytical expressions for the geff—gtrue relationships with S = 5/2.
The splitting seen in the spectrum arises from the symmetry lowering of the molecular structure of
Felll(CI)OEP at liquid helium temperatures, and the four molecules in the unit cell are energetically
distinguishable. Frequency: 9.48159 GHz for B//a and b-axes and 9.618412 GHz for B//c-axis.
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(S = 1/2) reproduced the experimental value (36.9 MHz/12.2 MHz), where 12.2 MHz was the calibration
frequency from a single crystal of DPPH (S = 1/2), indicating that the experimentally determined
magnetic tensors for Felll(Cl)OEP are reasonably accurate. In Fig. 3.5(b), the nutation frequency observed
at 344.790 mT directly shows that the cw-ESR signal is attributable to the sextet Felll(CI)OEP in a

T T T T T

v =9.77476 GHz ©

®) L

-
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‘(a) 302.426 m'll I w = |'2A55 MHz u./':] =36.9 MHz ‘
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(b) 344.790 mT
*
(c) 348.197 mT
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Fig. 3.5 (Top) Echo-detected ESR spectrum at X-band applied to Fell(ClI)OEP (S = 5/2) magnetically
diluted in the diamagnetic Nil!lOEP single-crystal with the static magnetic field along the principal z-axis
at 4 K. The positions marked by (a)—(c) correspond to the external magnetic field at which the 1D-ESTN
experience were carried out at 3 K (middle). All the signals arise from the Felll(CI)OEP molecules with
different molecular orientations with respect to the static magnetic field. The signal appearing at 12.55
MHz was attributed to a proton nutation frequency. The peaks assigned with asterisks were analytical
artifacts. (Bottom) The nutation spectrum calculated by the set of the full spin Hamiltonian parameters
experimentally determined. The calculated nutation frequency is 3.03 times greater than the notation
frequency, 12.2 MHz of DPPH (S = 1/2) used as an external to be the transition between the |+1/2>-
dominant spin sublevels of the spin-sextet state. The nutation spectroscopy for the reference signal was
detected by using a different scheme of the detection from that for Felll(CI)OEP, enabling us to
experimentally discriminate the nutation frequency of the reference from that of Felll( CI)OEP.
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different molecular orientation.
The sign of the D-value was determined to be positive. The principal gtrue-values and the ratio 4 (= £/

D) were determined by using the analytical expressions derived for S = 5/2, in light of the fact that the

2D*-value ( D*=+D’ +3E* ) was independently determined in the pulse-based relaxation experiments:
giie = 2.010, gtrue = 2,008, g.true = 2.005, |E/D| = 0.002. The spin-lattice relaxation time of Felll(CI)OEP
was measured as a function of temperature at liquid helium temperatures. [22] Assuming a dominant
Orbach process occurring among the magnetic sublevels, we estimated the ZFS between the Kramers
doublets to be 2D* ~ 14 cm-L. [22,31-33]

The spectrum observed with the static magnetic field along the crystal g-axis (Fig. 3.4) indicates that
the tetragonal symmetry of the Fell(CI)OEP molecule was lowered below 4 K and the four
crystallographically equivalent molecules (Z = 4) became energetically distinguishable. The observed
symmetry reduction due to subtle distortion is suggestive of the possible occurrence of a static pseudo
Jahn-Teller (JT) regime in the tetragonal symmetry. In the static regime, the Cl ion as the fifth ligand to
the central Fell ion plays an essential role in lowering the tetragonal symmetry. The detection of the four
distorted structures is indicative of the occurrence of more than two JT-active vibrational modes. There is
no possible occurrence of temperature-reversible structural phase transitions of NillOEP at liquid helium
temperatures, because there is no observation of the distortion for 65SCullOEP magnetically diluted in the
NillOEP lattice. The swift spectral transition from the static to dynamical regimes was observed on
elevating temperature from 3 K. Detailed theoretical analyses in terms of the pseudo-JT interactions are
the future works.

All the experimentally determined parameters of the magnetic tensors are given in Table 3.6, in which
ENDOR data on the nitrogen nuclei of the porphyrin skeleton observed at 3 K are included. The complete
analysis of the 1¥N-ENDOR data is useful to identify the molecular distortion below 4 K, and in Fig. 3.6
the observed 1“N-ENDOR and simulated spectra are given. Note that all the experimentally determined
magnetic tensors are based on the ZFS+Zeeman spin Hamiltonian including the ZFS-tensor. Figure 3.6
shows the experimental and simulated single-crystal ENDOR spectra of Felll(CI)OEP with the magnetic
field oriented to about the crystal c-axis (which is parallel to the principal z-axis). The “N-ENDOR lines
was simulated assuming that the spin Hamiltonian (3.1) and the porphyrin of Fel(CI)OEP has ruffled

structure and the set of Euler angles of the A-tensor of four porphyrin nitrogens.

Observed

=+ 1/2> |ms—- 1/2>

\ {\ W Simulated

0 2 4 6 8 10
Frequency/MHz

Fig. 3.6 Observed and simulated single-crystal 14N-ENDOR spectra of Fell}(C1)OEP diluted in Nil!OEP in
B//c axis. B=337.0624 mT, vmw = 9.47953 GHz, T'= 3.0 K. [22b]
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H"=BSeg™ e B+Y (SeA T, —g B 1+ B+1+Q" 1) (S=1/2,1=1) (3.1)
i=1

where g,°ff = 5.9584, g,eff = 6.0642, g=tf = 2.0972, A.°ff = 9.0 MHz, 4,°ff = 7.60 MHz, 4:¢ff = 7.80 MHz,
Off = —0.80 MHz, O,¢ff = 1.05 MHz and Q-*ff = —0.25 MHz. The magnetic parameters were determined
by the best fitting procedure.

We also revised the hyperfine splitting parameters of “N nuclei in pyrrole rings measured with
ENDOR spectroscopy. We have not resolved the hyperfine splitting of 35Cl1 (or 37Cl with less natural
abundance) with /= 3/2.

We have now a set of the reliable experimental data, for the first time, on the magnetic tensors of
Felll(CI)OEP in its sextet ground state, whose molecular structure is subject to subtle distortion in the
crystal lattice of diamagnetic NilOEP. We have notes that there were significant errors in the
experimental values for the A(14N)-tensor and Q(!4N)-tensor (electronic quadrupole tensor), in spite of
the fact that the cw-ENDOR measurements were carried out in the molecular principal-axis coordinate
systems. The errors mainly arose from the complexity due to the existence of the four pyrrole nitrogen
nuclei making up the distorted four-sided stricture of FelI(C)OEP in the NilOEP crystal lattice. Indeed,
in N-ENDOR analysis for symmetric four-sided structures such as square, rectangle or thombus, the
degeneracy of the nuclear spin states can afford accurate experimental data on the nitrogen hyperfine and
quadrupolar tensors, but the distorted Felll(CI)OEP is not the case. Nevertheless, any accurate
interpretation on the data is a challenge for quantum chemistry. Quantum chemical calculations for the
spin-sextet ground state were carried out at the UTPSS/Sapporo-DZP level of theory using ORCA [28]
and GAMESS-US [29] program packages. Because the ruffling ring structure of OEP plays a significant
role in the electronic structure, we used the solid-state geometry of the NillOEP host molecule which was
reported from the X-ray crystallography, [19] and in which the central Ni atom was replaced to the Fe—Cl
group. The position of the Cl atom was optimized by consistent geometry optimization with the fixed
Cartesian coordinates of the Fe atom and OEP scaffolds.

The theoretical spin density plot and principal axes of the D-, g- and hyperfine A(57Fe)-tensors of
Felll(CI)OEP were given in Fig. 3.3. Note that their tensors are nearly coaxial, in harmony with the
experiment. Most of the unpaired electrons distribute on the Fe atom and are spin-delocalized onto the
coordinated Cl and four N atoms of the porphyrin ring. The spin—orbit (SO) contributions to the D-tensor
were calculated by invoking the Natural Orbital-Based Pederson—Khanna (NOB-PK) method [8] which
have been very recently proposed as a reliable computational approach to the evaluation of the SO
contributions to open shell metallocomplexes. The theoretical D-value is +2.301 x 102 GHz (+7.675
cm™') and E/D = 0.0481. The orbital region partitioning analysis (ORPT), [30] which can provide a
chemist's intuition-friendly physical picture of the D-tensor, revealed that the large positive D-value is
mainly attributed to the strong SOC with the dx2y2(at) — dxy(P) excited configuration. The theoretical
principal values of the g- and A(57Fe)-tensors are g = 2.0149, g,, = 2.0166, g.. = 2.0075, and A« =
+20.97 MHz, A,, = +22.24 MHz, A.. = +18.38 MHz, respectively. The small anisotropic nature of the
A(5Fe)-tensor arises from the nearly symmetric spin density distribution on the Fe atom due to the d5
high spin electronic configuration. The A(14N)-tensor was calculated to be A = +11.20 MHz, 4,, = +7.95
MHz and 4. = +9.00 MHz, where the 4. principal axis is parallel to the Fe-N coordination bond and the
Az axis is perpendicular to the molecular plane. The quadrupolar tensors for the nitrogen nuclei were not

calculated. Upon comparison, the theoretical D-value (+7.675 cm™!) agrees with the experimental value,

D* =D’ +3E* ~D=+7.0 cm!, and the quantum chemical calculation reasonably well reproduces the
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experimental results for the other magnetic tensors, including the directions of their principal axes.
Importantly, the present theoretical framework of quantum chemistry is not capable of considering any
vibronic issues such as the subtle distortion in the static pseudo-JT regime. However, the location of
nearby electronic excited states suggests the possible occurrence of the vibrational SOC via the JT active

normal e-modes, and the details will be the future work.

Table 3.4 The experimentally determined principal values of the magnetic tensors of Felll(CI)OEP
magnetically diluted in the diamagnetic NillOEP single-crystal. The principal z-axis of the magnetically
diluted in the diamagnetic tensors for the central Felll ion is parallel to the crystallographic c-axis. The
averaged principal values over the four molecules are given. The principal values of the A(14N)- and

t2]

Q(!“N)-tensors are also the averaged ones. The columns denoted by “true” and “effective” spin

Hamiltonian approaches, respectively.

(a) true (b) effective
gx 2.010 6.04
Pt 2.008 5.90
g 2.005 2.005
Ax('“N)/MHz — +9.0
A,(14N)/MHz — +7.60
A:(1“N)/MHz — +7.80
Ox(1“N)/MHz — —0.80
O,(1*N)/MHz — +1.05
O:(*N)/MHz — —0.25
D/cm-! +7.0 Not available
E/D 0.002 Not available
Temperature/K 3-5 3-5
Reference [This work] [22,23]

*Axial ZFS parameters were determined from the measurement of the longitudinal relaxation time.
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3.3.2 Electronic structure of Col!lOEP (S = 3/2) magnetically diluted in
diamagnetic Nil!lOEP single-crystals: Cw-/pulsed-ESR and DFT-based

quantum chemical and ab initio MO calculations of the magnetic tensors

Single crystals of diamagnetic Ni"OEP well incorporating Col!lOEP (S = 3/2) were prepared in the same
manner to Felll(CI)OEP. The actual guest/host concentration ratios were not determined. All the
experiments including pulsed electron spin transient nutation spectroscopy at X-band were carried out at
liquid helium temperatures except otherwise specified. The nuclear Zeeman dominant hyperfine
forbidden transitions were observed and helped accurately determine Co!! the quadrupole couplings. The
single-crystal ESR spectroscopy showed that the principal values/direction cosines of the g-, hyperfine
A(Co!: I = 7/2)- and quadrupolar Q(Col)-tensors of ColOEP (S’ = 1/2; effective) do not maintain
tetragonal S4 symmetry below 20 K. The principal x- or y-axis is along the bisector of the N-N side line,
and thus along the direction of 45 + 2 degrees from the crystal a- or b-axis. The principal values/direction
cosines of the magnetic tensors for the distorted CollOEP were obtained by the numerical diagonalization

of the effective spin Hamiltonian.

Table 3.5 The experimentally determined principal values of the magnetic tensors of ColOEP
magnetically diluted in the diamagnetic NilOEP single-crystal. The principal z-axis of the magnetic
tensors for the central Co!! ion is parallel to the crystallographic c-axis, The experimental principal x- or
y-axis is along the bisector of the N—N side line, and thus along the direction of 45 + 2 degrees from the
crystal a- or b-axis. The molecular structure of CollOEP does not maintain the tetragonal symmetry below
20 K.

(a) true (b) effective
gx 1.7138, 1.7087 3.3915, 3.3232
foct 1.6842,1.6793 3.4036, 3.4532
g 1.5472,1.5572 1.5470, 1.5570
Ax(3*Co)/MHz 682,681 +3 1349.6, 1347.7
A,(3Co)/MHz 679,684 +3 1372.2,1382.3
A:(5°Co)/MHz 625,615+5 624.9, 614.9
Ox(3*Co)/MHz — -0.10,-2.92
0,(3Co)/MHz — —2.20,-3.34
0:(5°Co)/MHz — +2.29, +6.25
D/cm-! >+5.0,+5,0 Not available
E/D 0.007, 0.007 Not available
Temperature/K 4.2 4.2
Reference [This work] [This work, 21]
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Table 3.6 The principal values of the magnetic tensors of ColOEP obtained with effective spin

Hamiltonian (S’ = 1/2) and the direction cosines for the crystal (abc) coordination [21]

Direction cosines

Molecule 1
Principal values a b c
&x 3.4485 0.66210 —0.74936 0.00252
& 3.3287 —0.74941 —0.66210 —0.00173
g 1.5421 —0.00297 0.00074 1.00000
Ax(3°Co)/MHz 1391.5 0.67021 -0.74216 0.00398
A,(3°Co)/MHz 1347.3 —0.74216 —0.67022 —0.0168
A:(5°Co)/MHz 597.5 0.00398 0.00183 0.99999
0:(3Co)/MHz —-0.10 0.74703 0.58062 0.32376
0,(5°Co)/MHz -2.20 0.46618 —0.80473 0.36754
0:(5°Co)/MHz 2.29 —0.47395 0.12364 0.87183
Direction cosines
Molecule 2
Principal values a b c

9x 3.3296 0.67729 0.73571 0.00131
foct 3.4445 0.73569 —0.67729 —0.00603
g 1.5372 —0.00535 0.00312 0.99998
Ax(3°Co)/MHz 1345.2 0.69058 0.72325 0.00211
A,(3Co)/MHz 1390.6 0.72325 —0.69058 —0.00236
A:(5°Co)/MHz 605.0 0.00211 —-0.00121 1.00000
0:(%Co)/MHz -2.92 —0.23227 —0.03435 0.97024
0,(%Co)/MHz -3.34 0.71330 —0.68543 0.14622
0:(5°Co)/MHz 6.25 —-0.66125 0.72732 —-0.18372

In Table 3.6(a) and (b) are given the two sets of the experimentally determined principal values of the

magnetic tensors on the basis of the full and effective spin Hamiltonian approach, respectively.

Noticeably, the sets of the magnetic tensors have different direction cosines, and the principal x-axis (or y-

axis) of one g- and A(5°Co)-tensor are perpendicular to those of the other tensors. The z-axis are collinear.

The true principal g-values were determined by invoking the gefigtrue exact analytical relationships with
the ratio A (= E/D) for S = 3/2, as given by Eqgs. (2.17a)—(2.17c¢). It is noteworthy that all the true principal

g-values are less than 2.0023, the g-value of the free electron, suggesting that the salient electronic

structures of four-coordination Col!OEP in its quarter ground state are disclosed and their values of the
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A(%°Co)-tensor, there is a projection factor (25)-! and thus those based on the effective spin Hamiltonian
approach. However, the projection factor is reduced due to the admixture of the conjugate spin sub levels.
All the experimental data were based on the angular dependence of the spectra from the single crystals
and the spectral fitting procedure.

Also, we carried out the spectral simulation of the X-band powder-pattern spectra of ColOEP

observed at 4 K to estimate the principal values of the ZFS tensors and to confirm that the two dominant
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Fig. 3.7 Powder-pattern ESR fine-structure/hyperfine spectra of Col!lOEP observed at 4 K. The splitting
appearing at the canonical peaks is due to the two molecules of CollOEP with the different sets of the
magnetic tensors in the spin Hamiltonian. (a) Observed with 9.40914 GHz of the microwave frequency
used, (b) and (c) simulated in terms of the effective and full spin Hamiltonians, respectively. Two
components are added with the equal weight in the simulated spectra. The magnetic tensors of the two
components are shown in Table 3.5. The principal values and axes of the magnetic tensors are given in
Table 3.6. Any strain effects of the line width were not considered in the simulation. The canonical and
off-principal-axes extra lines were assigned on the basis of the angular dependence of the resonance
fields, as given in Fig. 3.9. In the simulations (b) and (c), the line width of the single transition was 0.5
mT, which is less than the observed one (> 0.1 mT) in the single-crystal spectroscopy. The narrower line
width was chosen to clearly illustrate the superimposed structure.
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Fig. 3.8 The calculated angular dependence from the principal z- to x-axis in the spectral simulation by
using of the fictitious spin-1/2 Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line
width: 5 mT. Magnetic tensors used: (component 1) geff = 3.3915, g,°ff = 3.4036, g.°ff = 1.5470, A,°ff =
1349.6 MHz, A4, = 1372.2 MHz, A-*ff = 624.9 MHz, Q. = -0.10 MHz, Q, = -2.20 MHz, Q- = 2.29 MHz,
(component 2) gff=3.3232, gy*ff =3.4532, g.cff = 1.5570, A, = 1347.7 MHz, A)T = 1382.3 MHz, A=
614.9 MHz, O, = -2.92 MHz, O, = -3.34 MHz, Q. = 6.25 MHz. The geff-, A¢fl- and Q-tensors of the
component 1 were assumed to be collinear. The relative orientations of each tensor of the component 2
were baed on the direction cosines shown in Table 3.6. The top of the spectrum is the absorption line
corresponding to the summation for the all magnetic field orientations for comparison. Any strain effect
of the line width is not included. The simulated spectra were obtained using EasySpin (ver. 5.1.10) [24]
with varying the angle of the magnetic field one-degree stepwise. The peak denoted by dotted line is
assigned to the occurrence of the off-principal-axis peak. Noticeably, the zx-plane angular dependence of
the fine-structure/hyperfine spectra due to CollOEP reveals marked difference of the behavior of the

transitions appearing in the range of 30 to 60 degrees between the fictitious spin and true spin
Hamiltonian approaches (see Fig. 3.9).
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Fig. 3.9 The calculated angular dependence from the principal z- to x-axis in the spectral simulation by
using of the true spin Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line width: 5
mT. Magnetic tensors used: (component 1) gitrue = 1.7138, gytve = 1,6842, g:true = 1,5472, A tue = 682.0
MHz, 4,trve = 679.0 MHz, A:tve = 625.0 MHz, D = +10 cm-!, E/D = 0.007, O, = -0.10 MHz, O, =-2.20
MHz, Q. = 2.29 MHz, (component 2) g,tree = 1.7087, g,tue = 1.6793, g:trve = 1.5572, A,trve = 681.0 MHz,
Aytue = 684.0 MHz, Ave = 615.0 MHz, D =+10 cm!, £/D = 0.007, Ox =-2.92 MHz, O, = -3.34 MHz,
0: = 6.25 MHz. The gtrue-, Atrve- D- and Q-tensors of the component 1 were collinear. The relative
orientations of each tensor of the component 2 were baed on the direction cosines shown in Table 3.6. The
top of the spectrum is the absorption line corresponding to the summation for the all magnetic field
orientations for comparison. Any strain effect of the line width is not included. The simulated spectra
were obtained using EasySpin (ver. 5.1.10) [24] with varying the angle of the magnetic field one-degree
stepwise. The peak denoted by dotted line is assigned to the occurrence of the off-principal-axis peak.
Noticeably, the zx-plane angular dependence of the fine-structure/hyperfine spectra due to Col'lOEP
reveals marked difference of the behavior of the transitions appearing in the range of 30 to 60 degrees
between the fictitious spin and true spin Hamiltonian approaches (see Fig. 3.8).
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Fig. 3.10 The calculated angular dependence from the crystal a- to c-axis in the spectral simulation by
using of the fictitious spin-1/2 Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line
width: 5 mT. Magnetic tensors used were shown in the caption of Fig. 3.8. The gefi-) Acfl- and Q-tensors
of the component 1 were assumed to be collinear. The relative orientations of each tensor of the
component 2 were baed on the direction cosines shown in Table 3.6. Any strain effect of the line width is
not included. The simulated spectra were obtained using EasySpin (ver. 5.1.10) [24] with varying the

angle of the magnetic field one-degree stepwise.
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Fig. 3.11 The calculated angular dependence from the crystal a- to c-axis in the spectral simulation by
using of the true spin Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line width: 5
mT. Magnetic tensors used are shown in the caption of Fig. 3.9. The gtrue-) Atrue-| D- and Q-tensors of the
component 1 were collinear. The relative orientations of each tensor of the component 2 were baed on the
direction cosines shown in Table 3.6. Any strain effect of the line width is not included. The simulated
spectra were obtained using EasySpin (ver. 5.1.10) [24] with varying the angle of the magnetic field one-

degree stepwise.
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distorted molecules of Col!lOEP in the unit cell were energetically distinguishable. Note that the observed
transition intensities are governed by the superposition of the four but dominantly two quartet species, as
seen below.

Figure 3.7(a) shows the power-pattern X-band ESR fine-structure/hyperfine spectra of CollOEP
observed at 4 K, in which apparent splitting is seen at the three outermost z-canonical peaks, indicating
that there are two dominant molecules of CollOEP in the diluted crystal of diamagnetic Ni"OEP and they
are energetically distinguishable. Figure 3.7(b) and (c) show the simulated powder-pattern spectra on the
basis of the fictitious spin Hamiltonian and ZFS+Zeeman spin Hamiltonian methods, respectively. We
emphasize that the effective spin-1/2 Hamiltonian can also seemingly reproduce the experimental
powder-pattern spectra, particularly with the absorption lines appearing in the range of 310 to 360 mT of
the static magnetic field (Fig. 3.7(a)). The hyperfine lines in this range are subject to significant
contributions of the off-principal-axis extra peaks if there are large ZFS terms and anisotropic g-tensors.
CollOEP in the spin quartet state has sizable D-values (> +5cm!), leading to less contributions of the off-
principal-axis extra peaks in terms of the present genuine Zeeman perturbation treatment. In this context,
the general statement on the appearance of the off-principal-axis extra peaks that the peaks arise from the
appreciable contribution of the second-order corrections in the spin Hamiltonian [34] is valid only in pure
fine-structure spectra. The origin of the observed extra lines is attributable to the large hyperfine
couplings and anisotropic g-tensor of the Co!l ion. Some of their intensities are large, but not assignable to
the canonical orientations. They are assigned to the off-principal-axis extra lines, which appear only in the
powder-pattern spectra. In the fine-structure/hyperfine transitions within the dominant |Ms = £1/2>, the
ZFS contributions vanish to the zeroth and first order, and thus the higher order Zeeman contributions
play a dominant role and appear in the off-principal-axis orientations, giving the stationary points with
respect to the orientation of the static magnetic field. The line shapes of the extra lines appearing at the
divergence with respect to the static magnetic field are markedly different from those of the canonical
absorption peaks, as seen in Fig. 3.7(a). In Fig. 3.7(a), the extra lines are denoted by A. The assignment of
the extra line in ordinary (non-Zeeman) perturbation approaches is useful for the fine-structure spectral
analysis because their resonance fields are sensitive to the accuracy of the set of the magnetic tensors in
the ZFS+Zeeman spin Hamiltonian. [34] The present study was not exactly the case, but the process of
refining the experimental magnetic tensors, particularly the D-tensor in light of the simulation of the extra
lines, allowed us to determine the lowest limit to the D-value, as given the principal values in Table 3.5.

It is worth noting that the of the canonical peaks should be distinguished from the off-axis-principal
extra lines. Figures 3.8-3.11 show the angular dependence of the simulated ESR spectra in the principal-
axis and the crystal-axis system, respectively. The spectra simulated with the fictitious spin-1/2
Hamiltonian are shown in Figs. 3.8 and 3.10 and with the full spin Hamiltonian are shown in Figs. 3.9
and 3.11, respectively. Both fictitious spin-1/2 and full spin Hamiltonian give the off-axis-extra line
attributed by about 5 degrees in the angular dependence (denoted by the dotted line).

It is also noting that the zx-plane angular dependence of the fine-structure/hyperfine spectra due to
ColIOEP reveals marked difference of the behavior of the transitions appearing in the range of 30 to 60
degrees between the fictitious spin and true spin Hamiltonian approaches (see Figs. 3.8 and 3.9). This is
due to the cross terms among the g-, D- and A-tensors of the perturbation energies of the spin
Hamiltonian. This angular dependence of the fine-structure/hyperfine spectra is also significant in the
crystal ac-plane (Figs. 3.10 and 3.11).

Figures 3.12-3.14 shows the single-crystal and randomly-oriented ESR spectra for CollOEP. In the
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Fig. 3.12 The randomly-oriented ESR spectrum of CollOEP diluted in the NillOEP single crystal observed
at 77 K. The dominant contribution was due to a small amount of organic radical species. The spectrum
was broadened in a dynamical regime, which originates in the dynamic Jahn-Teller effect.
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Fig. 3.13 The X-band single-crystal ESR spectrum of CollOEP observed at 4.2 K. (a) Static magnetic
field was parallel to the a-axis. Notations “A—D” depict the nuclear spin 1/2—7/2 and the subscripts “+”
and “—” corresponds to the sign of nuclear spin quantum number. The spectrum (a) was observed with the
static magnetic field parallel to the g-axis and the magnetic field is oriented by 20.5 degrees in the ab-
plane in (b). Two sets of the hyperfine splitting patterns are due to the orientations of the energetically
distinguishable molecules in the unit cell of the crystal lattice are observed for both the allowed and the
forbidden transitions. The appearance of the difference in the intensity is due to non-equivalence of the
weight of the two molecules. The experimental peak-to-peak line widths are in the range of 8 to 14 G.
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Fig. 3.14 X-band powder-pattern ESR spectra for ColOEP (a) in the parallel excitation mode and (b) the
irradiated magnetic field is applied at 45 degrees from the static field. The spectrum is observed as a
superposition of the perpendicular (Fig. 3.12) and the parallel excitation lines above.
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Fig. 3.15 Spectra simulation of the powder-pattern spectra of ColOEP with the parallel excitation mode.
The spectral simulations based on the effective and full spin Hamiltonian are given in blue and red,
respectively. Microwave frequency used: 9.62541 GHz, peak-to-peak line width: 1.0 mT. Magnetic
tensors used are shown in the caption of Figs. 3.7 and 3.8. The g-, A-, D- and Q-tensors of the component
1 were collinear. The relative orientations of each tensor of the component 2 were based on the direction
cosines shown in Table 3.8. Any strain of the line width is not included. The simulated spectra were
obtained using EasySpin (ver. 5.1.10) software. [24]
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case of static magnetic field B parallel to a-axis, two sets of signal due to the different orientation were
overlapped to one hyperfine signal. The principal axis sets of two orientations tilted 45 degrees in ab-
plane. In the randomly-oriented ESR spectrum, splitting observed at the range of 80-300 mT were
assigned to the x-, y-component and signals marked as a—d were identified to the z-component. Other
signals measured around 334 mT were considered as off-axis extra lines. [34]

The two sets of the Co"lOEP molecules in the units cell (Z = 4) are energetically distinguishable due to
the significant distortion in the xy-plane. The departure from the tetragonal symmetry is attributable to the
pseudo JT interaction, and above 20 K the two sets of the ESR hyperfine transitions merged into one
dynamical spectrum, as shown in Fig. 3.12 (powder pattern spectrum) observed at 77 K and Fig. 3.13
(single-crystal ESR). Nearby excited states vibronically coupled with the quartet ground state are
responsible to the dynamical spectra. Detailed investigations including the contribution from vibrational
SOC are the future work.

The principal values of g-tensor were obtained with the relationship Eq. (2.17) with variable E/D. All
principal values of g-tensor for Co"OEP in this work were less than g-value of the free electron (g = 2)
because the other sextet or doublet states exist near the energy giving attention to. [1] Principal values of
true A-tensors in x- and y-direction was about half of corresponding effective tensors, while that in z-
direction remained similar. Simulated spectra of randomly-oriented ESR spectra with the parameters in
Table 3.5 is shown in Fig. 3.15.

We also applied two-dimensional (2D) electron spin transient nutation spectroscopy at X-band to the
quartet state of CollOEP in the NillOEP single crystal with the static magnetic field along the c-axis (//z).
The 2D nutation spectroscopy is the transition moment spectroscopy, and gives the g-tensor and true spin
multiplicities and spin manifolds relevant to the ESR transitions in a straightforward manner. [35] If the
higher order corrections to the nutation frequency are significantly appreciable, information on the
magnitude of the ZFS can be estimated. [35] From the experimental side, the z-orientation was chosen to
avoid fast relaxation influence in the pulsed experiments. Figure 3.17 shows the 2D contour plots of the
nutation frequencies vs. resonance fields, in which the nutation frequency corresponds to the electron spin
transition probability with the nuclear effects originating in any change in the direction of the quantization
axis of the nuclear spin during the electron spin transition. [35] The resonance fields agree with the field-
swept ESR spectrum (Fig. 3.16) measured before the nutation spectra. We note that the nutation
spectroscopy gives a key to the determination of the D-tensors as well as the true g,-value, which is less
far away from g.te = 2. The nutation frequencies coming from the forbidden transitions (dominantly |
Amy = 1 transition) are observed between the allowed transitions in the range of 320-400 mT. Theses
transitions could be also the clue to calculate the theoretical nutation frequency or the transition
probabilities. The angular dependence of the nutation frequency appearing in the highest magnetic field is
shown in Fig. 3.18 as well as the crystal coordinate system lying in the porphyrin plane. The intensity of
the spectrum decreased and the nutation frequency was broaden as increasing the angle form the crystal c-
axis due to the fast spin-relaxation time of the metalloporphyrins.

To date, much effort has been made to theoretically understand particular features of the electronic
structures of four-coordinated Colporphyrins in the quartet ground state, based on experimentally
determined principal g-values and Co!! hyperfine, A(59Co) principal values. The magnetic tensors have
rarely been documented. The putative approaches to reproduce the experimental parameters for the
effective spin invoke the use of ligand field theory combined with configuration interactions and SOC. [1]

Among various Collporphyrins without the fifth coordination, ColOEP has given the extreme case in
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Fig. 3.16 X-band field-swept echo-detected ESR spectrum applied to Col!lOEP magnetically diluted in the
diamagnetic NillOEP single-crystal with the static magnetic field along the crystal c-axis (the principal z-
axis) at 4.2 K. Microwave frequency: 9.653192 GHz. Angular dependence of the nutation frequency was
observed for the peak pointed with an arrow (Fig. 3.18).
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Fig. 3.17 2D contour plot of the electron spin transient nutation spectra of Col!lOEP diluted in the NillOEP
single-crystal with B//c(z). Hamming window functions were applied to detect the original nutation
spectra. Only the observed contour plot is given. The nutation frequencies show a subtle variation with
respect to the nuclear spin transients. The horizontal dotted lines with (a), (b) and (c) denote the
frequencies 9.766, 7.813, 6.836 MHz and (a’), (b’) and (¢’) are their negative counterpart, respectively.
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Fig. 3.18 Angular dependence of 2D contour plot of the ESTN spectra of CollOEP diluted in the Nil!lOEP
single-crystal at 4.2 K were observed at three angles. The peak pointed by the arrow in Fig. 3.16 was
traced. 4 is the polar angle from the crystal ¢ to b-axis as defined in (b). The angles were estimated by the
angular dependence of cw-ESR spectra. The horizontal dotted lines (a)—(c) and (a’)—(c’) depict the same
nutation frequency as in Fig 3.17. [20,21]

terms of the experimental parameters and magnetic properties. In this work, we have carried out both
DFT and ab initio MO quantum chemical calculations as updated approaches for the magnetic tensors.

In contrast to the ground state of Felll(CI)OEP, there are several low-lying electronic states in d’
electronic configurations of the Coll center with the ruffled square planar coordination. The identification
of the electronic configuration for the ground state has been a controversial issue for a long time. In fact,
at the UTPSS/Sapporo-DZP level of calculations the (dxz)!(dyz)!(dx2-y2)%(d22)?(dxy)! configuration gives the
lowest energy, while at the CASSCF(7¢,50)/6-31G* level the spin-quartet ground state is described
mainly by the (dxz)2(dyz)?(dx2-y2)!1(dz2)!(dxy)! single configuration with the CI expansion coefficient C =
0.99. The electronic state described mainly by the (dxz)!(dyz)!(dx2-y2)?(d22)2(dxy)! configuration is located
to the third excited (44A) state at the CASSCF level with the excitation energy AE = 2,522 cm~!. As
discussed below, we concluded that the (dxz)2(dy-)2(dx2y2)!(d-2)!(dxy)! electronic configuration
corresponds to the correct ground state, because the positive D-value is obtained in the (dxz)2(dyz)2(dx2-
y2)1(dz2)1(dxy)! configuration. The positive D-value is consistent with the experimental findings, while the
sign of the D-value from the (dx.)!(dy-)'(dx2-y2)2(d-2)2(dxy)! configuration is negative. Hereafter, we focus
on the magnetic tensors attributable to the (dx;)2(dyz)2(dx2-y2)!(dz2)!(dxy)! electronic configuration. The
calculated results of the magnetic tensors in the (dxz)!(dyz)!(dx2y2)%(d-2)*(dxy)! configuration were given in
the Table 3.3 for comparison with those of the other configurations.

The spin density distribution and principal axes of D-, g- and A(*9Co)-tensors of CollOEP in the
(dxz)?(dyz)?(dx2—y2)!(d-2)!(dxy)! configuration are illustrated in Fig. 3.2. Note that the x- and y-axes are

directions of the porphyrin skeleton. It should be noted that the D-tensor was estimated from the spin—

132



orbit CI calculation of ColPor (Por = porphyrin) with the CASSCF(7¢,50)/6-31G* wavefunctions as the
non-relativistic wavefunctions, rather than the NOB-PK method. The reason is as follows. The DFT-based
NOB-PK calculation exploits the single determinant which consists of the natural orbitals as the ground
state wavefunction. In the NOB-PK calculation, the highest occupied spin-o orbital (dxy) has an orbital
energy higher than the lowest unoccupied spin-f orbital (dx2-y2) and therefore in the NOB-PK calculation
the spin-flip excitation dxy(a) — dx2y2(B) gives the negative orbital energy difference, which is
inconsistent with the S = 3/2 ground state. We note that except for the symmetry argument the theoretical
principal g-values are all larger than 2.0023, suggesting that the possible contributions from the other
excited high spin states need to be considered and suggested that more accurate theoretical treatments

considering the ruffling OEP skeleton are required.

The calculated D-value is +2.174 x 103 GHz (+72.52 cm™!), and the E-value is negligible (£ < 103
GHz), as expected from the tetragonal symmetry for the optimized molecular structure (planar) of
CollPor. The large positive D-value originates from the existence of the low-lying excited spin-doublet
state corresponding to the dxy(a) — dx2-y2(P) excitation, and the excited spin-quartet states are attributed

to the dx2y2 — dxz and dx2-y2 — dy; electron promotions. The comparison with the experimental D- (>

+5.0 cm!) and E-values (< 0.0035 cm™!) (E/D = 0.007) is not straightforward, while the principal axes
agree with the experimental ones. This is mainly due to the occurrence of the symmetry lowering of the
molecular structure, which is attributable to the JT vibronic issue at low temperature, and because the
ruffling effects of CollOEP in the NillOEP lattice are not considered in the D-tensor calculations. To get
insights into the possible reduction of the D-value on lowering the molecular symmetry, we have carried
out a model calculation as follows: The simple optimization procedure for molecular structure naturally
gives the tetragonal symmetry for Col!lOEP in the quartet ground state. Thus, the square and rhombus
planar structures consisting of the four ligand-nitrogen nuclei were assumed with the deviation of the
nuclear positions by 2% from the original ones. This replacement can afford to greatly destabilize the

relevant excited states such as the (dxz)?(dyz)?(dx2-y2)!(dz2)!(dxy)! configuration, as the details by the DFT

calculations shown in Section 3.2.3. The destabilization gives rise to the trend of the reduction in the SOC
contribution. This is only a qualitative interpretation, and for the quantitative interpretation, the
magnitude of the distortion such as the 14N-nuclear displacement has to be determined.

The g-, A(3Co)- and A(!4N)-tensors were calculated at the UTPSS/Sapporo-DZP level, as the same as
for the calculations of Felll(CI)OEP. The theoretical principal values are gy = 2.0948, g,, = 2.0947, g.. =
2.0093, 4:(59Co) = 352.68 MHz, 4,,(5°Co) = 352.66 MHz, A4.:(5°Co) = 158.02 MHz, and 4x(14N) =17.17
MHz, A4,,(1*N) = 12.85 MHz, A(*N) = 13.80 MHz. The An(14N) axis is parallel to the Co—N
coordination bond, and the 4. axis is perpendicular to the molecular plane. The theoretical calculations
never reproduce the experimentally determined principal g-values all less than 2.0023. Particularly,
experimental finding of g:trve = 1.547 gives a clue to understand the salient features of the electronic
structure of Co"OEP with the four-ligand coordination. We note that the pioneering theoretical work on
the basis of the full-CI calculations within d electron configurations by Lin [36] also failed in the
interpretation of the electronic structure of CollOEP in terms of the g-tensor. The present calculation for
the A(5°Co)-tensor underestimates the isotropic part of the principal values because of the insufficient
incorporation of the relativistic effect. The A(5°Co)-tensor has larger anisotropy compared with the
A(°7Fe)-tensor in Fell(CI)OEP, reflecting the fact that three of two unpaired electrons occupy the in-

molecular plane 3d orbitals (dxy and dx2-y2).
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Referred to the A(14N) principal values, preliminary “N-ENDOR measurements on Col!lOEP gave the
experimental ones; Ax(14N) = 2.2155 MHz, 2.4151 MHz, 4,(14N) = 2.276 MHz, 2.5614 MHz, A-(4N) =
5.4474 MHz, 5.4811 MHz. The Q-tensors for the coordinated nitrogen nuclei in the symmetry-lowered
distorted molecular structure give rise to spectroscopic complexity due to the nearly equivalent two
diagonal N nuclei at 4 K (Q.(14N) = —0.7852 MHz, 0.2452 MHz, O,(14N) = 0.2326 MHz, —0.7899 MHz,
O-(14N) = 0.5526 MHz, 0.5446 MHz). [20,21,35b]

The crystal morphology of NilOEP gives its triclinic crystals, in which a planar porphyrin is
maintained and no ruffling of the porphyrin skeleton appears. [37-39] An attempt to prepare magnetically
well diluted ColOEP/NiIOEP crystals is underway. Planer CollOEP gives a testing ground for reliable

and extended theoretical treatments of the g- and D-tensors.
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3.4 Conclusion

The fictitious spin-1/2 Hamiltonian approach is the most putative and facile method to analyze ESR
spectra of high spin metallocomplexes having sizable ZFS parameters. The approach gives their principal
g-values far from g = 2 without providing explicit values for their ZFS. Naturally, these experimental
principal g-values do not agree with the true g-values acquired by quantum chemical calculations such as
sophisticated DFT or reliable ab initio MOs. In this chapter, in harmony with the recent progress in
quantum chemical calculations for the g-, hyperfine or ZFS tensors of metallocomplexes, we have derived
the geff—gtrue analytical relationships for high spin systems up to S = 7/2 with sizable ZFS, for the first
time. The expressions are exact or equal to exact ones to the third order in the genuine Zeeman
perturbation treatment, and they are all useful to derive the true principal g-values from the analyzed data
on the basis of fictitious spin-1/2 Hamiltonians, in a straightforward manner. Importantly, the assignment
of canonical peaks and discrimination from off-principal-axis extra lines can be checked on the basis of
the geff—gtrue analytical relationships. This procedure gives a clue to the occurrence of high spin states with
relatively sizable ZFS values.

The genuine Zeeman perturbation treatment developed in this work provides us with true principal g-
values which are accurate at conventional X- or Q-band ESR spectroscopy enough to compare with the
theoretical values. The genuine Zeeman perturbation based formulas are practically much simpler and
give high accuracy in conventional ESR spectroscopy. The general formulas for S = 5/2 are explicitly
given particularly for high spin Felll ion complexes with sizable ZFS. The corresponding formulas serve
as the purpose of getting physical insights into the relationships as a function of the principal ZFS values.

The gefft-gtrue analytical relationships for S = 5/2 has been tested for the sextet ground state of
Felll(C)OEP (g, = 2.010, g, = 2.008, g = 2.005, D = +7.05 cm'!, £ = 0.014 cm-!, |E/D| = 0.002)
magnetically diluted in the NilOEP diamagnetic host crystal. Fell(CI)OEP in the crystal lattice is subject
to subtle pseudo-JT distortion which gives departure from the tetragonal symmetry. The DFT calculations
have produced the experimental magnetic tensors based on the full spin Hamiltonian approach, in which
the ZFS+Zeeman terms are included as the major ones.

The full spin Hamiltonian approach for powder-pattern fine-structure/hyperfine ESR spectra of spin-
quartet states having sizable ZFS such as ColOEP enables us to reproduce off-principal-axis extra lines,
which are attributable to the large anisotropies of the g- and A-tensors in the genuine Zeeman
perturbation treatment. The appearance conditions for off-principal-axis extra lines in the high spin
systems with sizable ZFS are not analogous to fine-structure perturbation treatments. Col!OEP in the
NillOEP crystal lattice is also subject to the JT distortion, which reduces the tetragonal symmetry. The
complete g-, hyperfine-structure A(*Co)- and ZFS tensors of four-coordinated CollOEP have
experimentally been determined, for the first time. The experimental true principal g-values are all less
than 2, suggesting the occurrence of many low-lying excited states coupled to the quartet ground state via
SOC. The current theoretical treatment of quantum chemical calculations has failed to interpret the salient
trend of the g-values, and further theoretical improvement is required.

High spin metallocomplexes capable of having tunable ZFS via the molecular optimization are
important for their possible applications to ensemble quantum spin memory devices, which coherently
couple with superconducting flux qubit circuits or microwave photon qubits in planar resonators at very
low temperature. The matching of energy depends on the magnitude of the ZFS values, and for the

initialization processes of the qubit memory the sizable values are preferable. All the materials under
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study fulfill such requirements. Particularly, metalloporphyrins and materials analogues whose magnetic
tensors are well characterized are candidates suitable for realistic quantum spin memory devices. For a
viewpoint of molecular optimization in the quantum spin technology above, accurate quantum chemical

calculations for SOC are essential.
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Chapter 4: Electronic Structures of Pseudo-Octahedral
Rhenium(I'V) Mononuclear and Rhenium(I11,IV) Mixed-
Valence Binuclear Complexes



4.1 Introduction

Rhenium can take various oxidation states and their complexes have some functionalities. For example,
some rhenium complexes are known as catalysts for CO2 reduction [1-3]. ESR spectroscopy was adopted
mostly for low-spin Re(VI) (d!, S = 1/2) [2,3] and high spin Re(IV) (d3, S = 3/2) [4-9]. In particular, high
spin rhenium species have sizable zero-field splitting (ZFS) parameters which partly play the key roles for
the functionalities. Rhenium nuclei also have a nuclear spin / = 5/2 which gives rise to six lines due to the
electron-nuclear hyperfine interactions.

Some tetravalent rhenium complexes were reported as single-molecule magnets (SMMs) [7-9] or the
building blocks of single-chain magnets (SCMs). [8] In such systems spin parameters such as ZFS
parameters, which characterize the performance of the SMM, have been studied by using of magnetic
measurements and ESR spectroscopy, especially in high-field/high-frequency. Magnetic properties
including ZFSs were reported for various rhenium systems. [10] Pedersen and co-workers investigated
Znl-Re!V and Nill-Re!V chain magnets and a corresponding monomeric complex, and estimated that D =
23.6 cm!, |E|/D = 0.11, g = 1.69 for (PPh4)2[Re!VF6]-2H20 by using of magnetic susceptibility and high-
field ESR spectroscopy. [7] Martinez-Lillo and co-workers reported 5d-based mononuclear rhenium
SMM with D = =53 em-!, E/D = 0.26 for chloride and D = —73 cm-!, E/D = 0.205 for bromide. [8]
Abramov and co-workers synthesized a rhenium-catecholate complex and determined that D = 572 cm-!,
E/D = 0.25, g = 1.94, by means of magnetic susceptibility measurement. [9] Such large ZFS parameters
are attributed to large spin—orbit coupling (SOC) interaction. SOC is dominant for the contribution to
large ZFSs. SOC constant of rhenium atom or complexes is said to be about ~3000 cm!. [11] The large
SOC can affects the stability of the spin states. Machura and co-workers synthesized various types of
trivalent rhenium (d4) complex and characterized that all compounds take diamagnetic ground states by
means of magnetic measurements and DFT calculations. [12]

Although variety of complexes as well as the various range of the zero-field splitting parameters have
been characterized, there are few examples of ESR study for polynuclear rhenium complexes [13,14] and
the corresponding monomer moieties. In the binuclear complexes we deal with here ESR active site is
only the tetravalent rhenium while the trivalent center is diamagnetic.

Biimidazolate ligand has some coordination structures combined with other complexes through
hydrogen bondings [15] and relevant complexes have various geometries. Tadokoro and co-workers
synthesized a rhenium binuclear complex (Dimer) and reported that the complex is stable in the mixed-
valence state by using of X-ray crystallography, cyclic voltammetry and DFT calculations. [15¢]

Mixed-valence compounds are defined as containing the same atom(s) with different oxidation states.
Robin and Day classified such compounds to Class I-1II according to the electron transferability between

the atoms with different oxidation states. [16,17]

Class I: Each oxidation state is under completely different environment. The energy necessary
for the electron transfer between two sites. That is, no interactions arise between the different oxidation
states, and no specific properties for the mixed-valence state cannot be seen.

Class II: Although each oxidation state experiences different atmosphere as Class I compounds,
the energy barrier is small so that this types of complex show inter valence charge transfer (IVCT).

Class III: In this class, all atoms have equivalent and non-integer oxidation state, and electrons

are delocalized among them. In other words, they interact strongly so that each oxidation state is
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indistinguishable.

Particularly, mixed-valence compounds in Class II may show the unique and interesting properties,
which does not appear in the corresponding “single-valence” ones. The effect of the magnetic properties
in the dimerization has not well studied yet.

Since ESR spectroscopy is applicable to detect the microscopic environment around the unpaired
electrons, studies of electronic property with magnetic measurements were reported. [18-22]

There are few magnetic study for dynamic phenomena such as proton/electron transfer. [23]
Synchronized motion between protons and electrons is an important event in chemistry and recognized as
a key step in ATP synthetic processes of certain biological systems, in which active proton pumps are
involved. Such synchronization is relevant to the conduction of electrons in cytochrome c in living matter.
[24,25] The driving mechanism of the synchronized motion has not been well understood, and thus
relevant dynamics has been the focus of current topics in both biological and materials science. Research
into microscopic mechanisms of the phenomena has been done in solution whereas very few studies are
found in solid. [26] Recently quantum cooperative phenomena associated with the proton and electron
transfer have attracted considerable attention from a viewpoint of multifunctionality. Biimidazolate metal
complexes generate a various type of coordination networks in which “complementary” hydrogen bonds
between the biimidazolate ligands are involved, being model compounds for the quantum cooperative
functionalities. Mixed-valence complexes with multifunctional ligands could be candidate materials for
revealing the mechanism of proton-electron synchronized transfer not only in solution but also in solid.
Moreover, the vibrionic motion involved SOC is a open question. The non-Born-Oppenheimer
approximation is necessary for the theoretical calculation of the vibrionic motions. [27]

In this chapter, the magnetic structures of the rhenium mononuclear complex [Re!VCla(PPr3)2(bim)]
(1-Cl; Hobim = 2,2’-biimidazolate) and the mixed-valence rhenium(IIL,IV) systems with biimidazolate
ligands [Re!VXa(PnPr3)2(bim)][Rell'Y2(PrPr3)2(Hbim)] (2-CICL, X =Y = Cl; 2-BrBr, X =Y = Br and 2-
BrCl, X =Cl, Y = Br) are revealed by use of ESR spectroscopy, magnetic susceptibility measurement and
quantum chemical calculations. Quantum chemical calculations are also carried out for the mononuclear

complex 1-Br in order to compare the magnetic parameters.
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4.2 Samples and Experiments

4.2.1 Samples

All single-crystal and powdered samples were synthesized by Professor Tadokoro and co-workers (Tokyo
University of Science, Japan). Table 4.1 summarizes the crystal parameters of the mononuclear
complexes [RelVCl2(PnPr3)2(bim)] (1-Cl) and [ReClx(P1Pr3)2(Hbim)] (1-CI(1II)). The notation of III in 1-
CI(IIT) denotes that the valence of rhenium center is trivalent (while IV representing tetravalent in 1-Cl is

omitted).

Table 4.1 Crystal Structures of Rhenium Mononuclear Complexes Obtained with X-ray Crystallography

[28]
1-C1 1-CI(111)

Formula C24H46CLaN4P2Re C24H4sCI3N4P2Re
Temperature/K 298 298

Crystal system monoclinic triclinic

Space group Ci/c P-1

VA 8 2

alA 18.662(2) 11.0746(11)
b/A 13.4604(16) 11.6079(11)
c/A 26.395(3) 13.4089(13)
al® 90.00 94.635(2)

pr° 110.547(2) 106.326(2)

/° 90.00 104.534(2)

V/A3 6208.58 1579.91
R-Factor/% 3.96 3.46

There are four complexes with different orientations in the unit cell of 1-Cl. Each of the pair has an
inversion center and thus we can guess that there exist two kinds of magnetically inequivalent complex.
As mentioned later, this is supported since two kinds of the hyperfine splitting due to the rhenium nuclei
was observed in single-crystal and randomly-oriented ESR spectroscopy.

In the complex 1-CI(III), both outside nitrogen atoms have covalent bonds with hydrogens and a
chloride ion works as a counter anion, leading to form trivalent in total. This formation was reported for
other rhenium complexes. [29]

Table 4.2 compares the crystal structures of 2-CICl and previously reported Dimer.
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Table 4.2 Crystal Structures of Rhenium Binuclear Complexes Obtained with X-ray or Neutron

Scattering Crystallography

2-CICI* [28] 2-CIC1 [28] Dimer [15¢]
Formula CasHo2ClsNsPsRe2 C24H47CL12N4P2Re C30Hs9CI2N4P2Re
Temperature/K 4 190 190
Crystal system triclinic triclinic monoclinic
Space group P1 P-1 P2i/c
VA 2 2 4
alA 19.0388(12) 9.53939(7) 11.830(1)
b/A 10.2558(5) 10.2214(14) 18.730(2)
c/A 16.5984(8) 16.7544(18) 16.880(2)
al° 75.148(4) 74.983(11) 90.00
p° 86.169(5) 86.101(7) 96.700(2)
/° 75.154(5) 75.204(10) 90.00
VIA3 3028.12 1534.26 3714.66
R-Factor/% 14.49 12.64 2.8

* with neutron scattering crystallography

The structure of 2-CICI is different from that previously reported Dimer [15¢], in which the
biimidazolate ligands are connected with two hydrogen bondings. In the X-ray crystallographic data
above 90 K, the proton related with the hydrogen bonding observed at two spots with equivalent
probability. In helium temperature, however, the proton motion was getting slow down resulting in
difference of the distribution of the proton (0.77 and 0.23). This disproportionation transferred the
inversion center from the intra-complex to the inter-complex and extended a-axis twice.

Table 4.3 shows the crystallographic data for binuclear complexes 2-BrBr and 2-BrCl.
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Table 4.3 Crystal Structures of Rhenium Binuclear Complexes 2-BrBr and 2-BrCl Obtained with X-ray

Crystallography [28]
2-BrBr 2-BrCl
Formula C24Ha6.5Br2NsP2Re CasHo3BroCloNsPsRe2
Temperature/K 298 298
Crystal system triclinic triclinic
Space group P-1 P1
Z 2 1
alA 9.7280(7) 9.6904(10)
b/A 10.1445(8) 10.1684(11)
c/A 17.0533(12) 16.916(2)
al® 74.8410(10) 74.8770(10)
pr° 86.7900(10) 86.659(2)
/° 75.3190(10) 75.3430(10)
VIA3 1571.23 1556.69
R-Factor/% 5.59 3.24

2-BrBr has also the inversion center between the N(H)-N atoms. In 2-BrCl, there is only one

molecule in a unit cell due to the broken symmetry.

4.2.2 Magnetic measurement

Magnetic susceptibilities were measured with Quantum Design Superconducting Quantum Interference
Device (SQUID) magnetometer MPMS-XL in the temperature range 1.9-298 K at an applied field of 100
mT. Corrections for molecular diamagnetism, estimated from Pascal’s constants, were applied.

In order to increase the accuracy of the data, susceptibility measurement was carried out at two

different magnetic field and susceptibility was obtained with the slope of these points.

_ M(500 mT)— M (400 mT)
x= 100 mT

z= M(s T)I_TM(4 ) , for 1-CI(I1I)

7= M (1500 mT) - M (1000 mT) , for 2-BrBr and
500 mT

for 1-Cl and 2-CICl,

M (600 mT)— M (500 mT)
xX= , for 2-BrCl.
100 mT

The element analysis was carried out in the analysis center (Department of Materials Science,

Graduate School of Science, Osaka City University) subsequently to the susceptibility measurements.
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Data analysis

The paramagnetic magnetization M, is given with the energy E; which is the function of the magnetic

field B,
225l
- oB kT
M, =N, -
zexp(_ﬂ)
- kT

p
here Na is the Avogadro constant, k is the Boltzmann constant and 7 is a temperature. The simulated M-H

4.1)

curves were calculated with this equation, in which Ei(B) were obtained by the exact numerical
diagonalization of the corresponding spin Hamiltonian in each principal axis (xyz). The spin Hamiltonian
including the electron-Zeeman and the ZFS terms is

H=fS+g+B+S+D-S (4.2)
here f is the Bohr magneton, § is a spin operator, B is a magnetic field, g and D is g- and zero-field

splitting tensor, respectively. In our case of S = 3/2, H is 4 x 4 Hermitian matrix. The principal values of
g-tensor and E/D were determined by use of ESR spectroscopy. yp was calculated with the following

equation;

X, =—7F- (4.3)

Calculations of M, and y, were carried out with laboratory-build programs on MATLAB R2014b. The
accuracy of the calculation was examined by comparing with the analytical solution for S = 3/2 case. [30]

For the binuclear complexes 2-XY, the additional contribution from the thermally excited triplet state
(S = 1) of the trivalent rhenium (ground singlet state, S = 0) were considered. The principal values of g-
tensor was taken from the theoretical values, and the zero-field splitting parameter D in the triplet state

and the excitation energy J between the ground singlet state and the triplet state were optimized.

4.2.3 ESR measurement

ESR experiments were carried out with Bruker ESP300/350 (X-band) ESR Spectrometer with a dual
mode resonator ER 4116DM. ESR experiment was carried out with not only conventional perpendicular
mode (BLBi, B is the static magnetic field and B; is the microwave oscillating field) but also parallel
excitation mode (B//B1), where the hyperfine “forbidden” transitions are permitted. [31] Temperature was
controlled with ESR910 (Oxford) helium-gas flow temperature controller.

Principal axes were assumed according to the result of the quantum chemical calculation for the
mononuclear complex 1-Cl (Fig 4.2). In the principal-axis experiments, the crystal was mounted shown in
Fig. 4.1. The way to transform the orthogonal system from the crystal axis system is shown in Appendix
4.1 in this chapter. Angular dependence of the single crystal ESR were measured with the sample

mounted on the quartz rod/wedge rotated with 1D goniometer.

(a) X-band (9.5 GHz) ESR spectroscopy

ESR measurements were performed on single-crystal and powdered samples. ESR experiments were

carried out with Bruker ESP300/350 (X-band) ESR Spectrometer with a dual mode resonator
ER4116DM. ESR experiment was carried out with not only the conventional perpendicular mode (BB,

B is the static magnetic field and Bo is the microwave oscillating field) but also the parallel excitation

mode (B//B1). [31] where the hyperfine “forbidden” transitions are permitted. Temperature was controlled
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The crystal was mounted on (001) plane.
Fig. 4.1 (a) The outer shape of the single-crystal of 2-CICI and Miller indices. (b) The angles of the
designed wedges and the rotation principal-axes. The plane angles were calculated from the X-ray

crystallographic data [28] and quantum chemical calculation for the principal-axes of the magnetic
tensors. The crystals were mounted on the (001) plane.

with Oxford ESR910 helium-gas flow temperature controller.

In the measurement in the crystal axis system, the orthogonal coordination pgr was extended to the
crystal aligning the longest side parallel to ¢ axis, p axis is in the crystal face and r axis is perpendicular
to both p and ¢. In the principal-axis experiments, the crystal was mounted on the designed wedges shown
in Fig. 4.1. The way to transform the orthogonal system from the crystal axis system is shown in
Appendix 4.1. Angular dependence of the single crystal ESR were measured with the sample mounted on
the quartz rod/wedge rotated with 1D goniometer.

In the effective spin Hamiltonian approach, fictitious spin-1/2 Hamiltonian A’ were used (Ew. 4.1).

H'=pS g+ B+S+A-I-5gS"B 4.1
where S” = 1/2, I(175.178Re) = 5/2. In the full spin Hamiltonian approach, Pryce Hamiltonian H were used
(Eq. 4.2).

H=[S+geB+S+D+S+S+A+I-3 g SB 4.2)
where S = 3/2, I(175.178Re) = 5/2 and the description of each term were described above.

(b) Q-band (33 GHz) ESR spectroscopy
Q-band cw-ESR measurement was performed with ELEXSYS E500 spectrometer equipped with Oxford

ESR910 helium-gas flow temperature controller.

(c) High-frequency/high-field ESR spectroscopy

High frequency ESR measurements were carried out using a millimeter-wave vector network analyzer
(MVNA) and a high sensitivity cavity perturbation technique at National High Magnetic Field Laboratory
in Florida State University, USA. [32] Minimum 1.9 K of temperature was achieved using a variable-flow
cryostat. In order to enable in situ rotation of the sample relative to the applied magnetic field, a split-pair
magnet with a horizontal field and a vertical access was employed. Smooth rotation of the entire rigid

microwave probe, relative to the fixed field, was achieved via a room-temperature stepper motor. [33]
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4.2.4 Quantum chemical calculations for the spin Hamiltonian parameters

of the mononuclear complexes 1-Cl and 1-Br

In the RellLlV binuclear mixed valence complex under study, the trivalent rhenium site (d#) is spin-singlet
(S = 0) and we focused on the lowest spin-quartet (S = 3/2) state of the mononuclear complexes 1-Cl and
1-Br for the magnetic tensor calculations. DFT calculations of the g- and D-tensors, and A-tensor of Re
atom were carried out by using TPSS exchange—correlation functional [34] in conjunction with the
Sapporo-DKH3-DZP-2012 [35] and Sapporo-DZP-2012 [36] basis sets for Re and other atoms,
respectively. We used the solid state geometry of RelV monomer in the mixed valence complexes
determined from X-ray crystallography. In the SCF procedure we used the second-order Douglas—Kroll—-
Hess Hamiltonian [37] to include relativistic effects. The DSS- and DSO-tensors were calculated using the
same procedure as the calculations in Felll(CI)OEP and ColOEP (Section 3.2.3).

Electronic configuration of valence 5d orbitals in the ground state of 1-Cl and 1-Br is (dxz)!(dyz)!(dx2-
v2)1(d-2)0(dxy)?, as expected from the crystal field of octahedral coordination. Definition of the axis (which
is identical to the principal axis of theoretical DSS+SO-tensor) is given in Fig. 4.2, together with the spin
density distribution obtained from the single point calculation. Unpaired electrons distribute mainly onto
RelV center but delocalizes onto Cl- (or Br-) and bim?- groups. According to the Mulliken population
analysis, Re atom carries 2.342 (2.327) of unpaired electrons, and two Cl- (or Br-) and bim2- groups hold
0.325 (0.340) and 0.374 (0.379), respectively, of delocalized spins. Spin densities on the PnPr3 groups are
very small (—0.041 and —0.046, respectively). Mulliken spin density were summarized in Table 4.4.

The calculated DS5+S0 values of 1-Cl and 1-Br are —1.730 % 106 MHz and —2.450 % 106 MHz, and the |
ES5+80/DSs+50] values are 0.205 and 0.201, respectively. As expected, the spin—orbit term dominantly
contributes to the D-tensor and spin—spin dipolar contribution is about 0.2% in the DS5+SO-tensor. The
large E/D value indicates departure of axial symmetry. Such large E/D value is also observed in

[RelVX4(0x)]2 systems (X = Cl and Br). [8]

X

Fig. 4.2 The calculated spin density distributions (isosurface = 0.005) and principal-axis of D-, g- and
A(!87Re)-tensors of the mononuclear complex (a) 1-Cl and (b) 1-Br.

The g- and A(!87Re)-tensors are nearly coaxial to the DSS*SO-tensor (deviations are less than 4
degrees). At the present calculation the principal values of g-tensor of 1-Cl and 1-Br are g, = 2.0345, g,
= 2.0138, gz = 1.9806 (giso = 2.0096), and g = 2.0611, g, = 2.0341, g. = 2.0090 (giso = 2.0347),
respectively. Anisotropic structure of g-tensor is consistent to the non-symmetric SOC and hence non-
axial-symmetric D-tensor. By contrast, A(187Re) tensor is rather symmetric (4x =—3135.02 MHz, 4,, = —
3119.34 MHz, A.. = -3103.09 MHz, ais, = —3119.15 MHz for 1-Cl and A.. = —2840.06 MHz, 4,, = —
2856.66 MHz, A.. = —-2872.59 MHz, ais, = —2856.44 MHz for 1-Br), reflecting the 5d3 electron
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configuration and spin density distributions.

Table 4.4 Mulliken Spin Density Calculated for Solid State of the mononuclear complexes 1-Cl and 1-Br
(8 =3/2). Calculated at the Level of UTPSS/Sapporo-DKH3-DZP-2012 (for Re), Sapporo-DZP-2012 (for

other atoms).

1-C1 (X = Cl) 1-Br (X = Br)
Re 2.34169 2.32736
2X 0.32495 0.33931
(PrPr3) ~0.04053 ~0.04606
bim 0.37389 0.37939
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4.3 Results and Discussions

4.3.1 Structures around rhenium centers of complexes

We considered the geometrical differences among the complexes. Bond length and distortion around the

metal center is shown in Table 4.5.

Table 4.5 Atomic Distances around Rhenium Center from the Crystallographic Data

Complex 1-Cl 1-CI(11I) 2-CICl1 2-CIC1 Dimer [15¢]
TemperatureK 298 P s o o
Re-N(1)/A 2.069 2.100 2.112(tetravalent),  2.096 2.116
2.064(trivalent)
Re-N(3)/A 2.051 2.118 2.155,2.045 2.087 2.102
Re-P(1)/A 2.521 2.466 2.525,2.452 2.481 2.456
Re-P(2)/A 2.510 2.459 2.437,2.532 2.500 2.452
Re-CI(1)/A 2.336 2.347 2.363,2.356 2.355 2.374
Re-CI(2)/A 2.323 2.373 2.383,2.373 2.364 2.382
Average/A 2.302 2.311 2.329,2.304 2.314 2.314
o/A* 0.1888 0.1488 0.1481,0.1853 0.1662 0.1481
Complex 2-CIC1 2-CIC1 2-BrBr 2-BrCl
TemperatureX 4 o 208 08
Re-N(1)/A 2.112(trivalent), 2.096 2.092 2.080(Br),
2.064(tetravalent) 2.114(CD
Re-N(3)/A 2.155,2.045 2.087 2.072 2.052,2.101
Re-P(1)/A 2.525,2.452 2.481 2.492 2.504, 2.494
Re-P(2)/A 2.437,2.532 2.500 2.505 2.466, 2.505
Re-CI(1)/A 2.363,2.356 2.355 - 2.432
Re-CI(2)/A 2.383,2.373 2.364 - 2.456
Re-Br(1)/A - - 2.500 2431
Re-Br(2)/A - - 2.496 2.434
Average/A 2.329,2.304 2314 2.360 2.328,2.350
o/A 0.1481, 0.1853 0.1662 0.1963 0.1869, 0.1734

i

*q is the standard deviation. o = % zi(d. - a’m,e)2
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In order to quantize the distortion (declination from the octahedron) of length, we used the standard
deviation o. In fact, the tetravalent and the trivalent monomer have the different values of o of 0.1888 and
0.1488, respectively. At 190 K, the averaged structure was measured. o was also close to the average.

In order to match the orientation to 2-CICl, we took longer bond as Re-N(1) in 1-Cl, while shorter
bond in 1-CI(III). P(1) was determined to the direction of the left-hand outer product of N(1) and N(3) for
1-Cl and the left side of 2-CICl, while to the direction of the right-hand outer product for 1-CI(III) and
the right side of 2-CICI (Fig. 4.3). CI(1) and CI(2) were opposite against N(1) and N(2), respectively. The
tendencies of Re-P and Re—Cl in 1-CI(IIl) altered from those in 2-CICl. This is because the large

distortion due to the two hydrogens bonded on the two nitrogens.

Ny N@
N ()\ /Y(1)
— /Te\

P N N-H—N" N(1) p Y@

X(2)\ P \:/

Re

xay” | N
p@) N@) N

Fig. 4.3 The numbering of the rhenium binucgar complex 2-XY; {X, Y} = {Cl, Cl}, {Br, Br} or {Br, CI}.
The left side is tetravalent while the right side is trivalent.

The standard deviation for the angel was small in 1-Cl but large in 1-CI(I1I).

Table 4.6 shows the angles related with the rhenium metal centers.

In 2-BrCl, the relationship between two Re—Cl distances altered comparing to those in 2-CICI. This
indicates the oxidation state of the chloride moiety is trivalent. The standard deviation does not show any
tendency among the binuclear complexes. In 2-CICl, o(length) of the trivalent component was smaller
than that of the tetravalent component, but o(angle) was altered between the tetravalent and the trivalent.
In contrast, although the difference in o(length) between tetravalent (bromide) and trivalent (chloride)
moieties in 2-BrCl was not as large as that in 2-CICl, o(angle) of tetravalent moiety was larger than that
of trivalent moiety. This difference suggests that the structure of the complex is affected by the halogen

ligands rather than the oxidation numbers.

Table 4.6 Angles around Rhenium Center from the Crystallographic Data

1-Cl1 1-CI(11I) 2-CIC1 2-CIC1 Dimer
Temperature/K 298 298 4 190 298
N(1)-Re-N(2)/° 78.24 76.19 74.91(trivalent), 76.97 75.79
79.67(tetravalent)
(average = 77.29)
N(@2)-Re-CI(1)/*  91.90 91.14 93.89, 94.52 (94.20) 94.57 93.01
CI(1)-Re-Cl(2)/°*  99.25 100.58 98.15, 94.95 (96.55) 95.96 97.77
Cl(2)-Re-N(1)*  90.70 92.11 93.07,90.61 (91.84) 92.42 93.44
N(1)-Re-P(1)/° 91.82 91.29 88.54,91.75 (90.14) 90.13 89.81
P(1)-Re-CI(1)/° 90.23 89.32 90.49, 91.68 (91.08) 91.21 88.45
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Table 4.6 (continued)

CI(1)-Re-P(2)/° 88.09 89.01 89.16, 88.12 (88.64) 88.79 88.52

P(2)-Re-N(1)/° 89.74 91.92 91.46, 88.36 (89.91) 89.72 93.24

N(2)-Re-P(1)/° 88.00 97.15 88.92,92.58 (90.75) 91.17 88.92

P(1)-Re-Cl(2)/° 89.49 84.92 92.69, 91.78 (92.24) 91.96 91.50

CI(2)-Re-P(2)/° 91.35 88.29 89.14, 89.15 (89.14) 89.08 88.54

Complex 2-CIC1 2-CIC1 2-BrBr 2-BrCl

Temperature/K 4 190 298 298

N(1)-Re-N(2)/° 74.91(trivalent), 76.97 76.39 71.49(Br),
79.67(tetravalent) 80.51(Cl)
(average = 77.29)

N(2)-Re-X(1)/° 93.89, 94.52 94.57 95.15 97.92, 93.46
(94.20)

X(1)-Re-X(2)/° 98.15, 94.95 95.96 94.99 95.45,95.62
(96.55)

X(2)-Re-N(1)/° 93.07, 90.61 92.42 93.37 95.12,90.21
(91.84)

N(1)-Re-P(1)/° 88.54,91.75 90.13 89.68 88.55,91.03
(90.14)

P(1)-Re-X(1)/° 90.49, 91.68 91.21 88.63 91.68,92.10
(91.08)

X(1)-Re-P(2)/° 89.16, 88.12 88.79 91.88 88.35, 88.23
(88.64)

P(2)-Re-N(1)/° 91.46, 88.36 89.72 89.63 91.12, 88.59
(89.91)

N(2)-Re-P(1)/° 88.92,92.58 91.17 87.89 90.97, 90.86
(90.75)

P(1)-Re-X(2)/° 92.69,91.78 91.96 88.95 92.28,92.48
(92.24)

CI(2)-Re-P(2)/° 89.14, 89.15 89.08 92.25 89.32, 87.96
(89.14)

P(2)-Re-N(2)/° 89.31, 86.52 87.79 90.82 87.43, 88.64
(87.92)

Average/° 89.98, 89.97 89.98 89.97 89.97, 89.97
(89.98)

ol° 5.272,3.945 (4.609)  4.528 4.699 6.347,3.619
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4.3.2 Magnetic measurements of the rhenium complexes

Figure 4.4 shows the M-H plot and the y7-T plot of chloride complexes 1-Cl, 1-CI(I1I) and 2-CICI.
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Fig. 4.4 (a) The M-H plot for 1-Cl (black circle) and 2-CICl (red square). Temperature: 1.9 K. (b) yT-T
plot for 1-Cl (black circle), 1-CI(III) (blue diamond) and 2-CICl (red square). Applied magnetic field: 100

mT.

xT value for 1-CI(III) was not observed in the whole range in the measured temperature that indicates
the ground state was singlet (S = 0) [10] and the energy difference between ground state and excited state
was higher than 1 x 103 cm-!. Therefore the trivalent part in 2-CICI was ESR silent and only tetravalent
moiety could be measured in ESR spectroscopy. [9,38—40]

We determined that ZFS parameter D ~ —700 GHz for 1-Cl with the simulation of M-H plot (Fig. 4.5).
However, the maximum value of magnetization of 1-Cl was about 0.6 times lower than that of 2-CICl
(Fig. 4.4). X-ray crystallographic data shows that the single-crystal of 1-Cl includes water molecules in a
unit cell. Element analysis suggests that it contains 3.4 mol per 1 mol of 1-Cl. Assuming this

inconsistency was caused of diamagnetism from water, 150 molecules have to be included.

For 2-CICl, D-value was about —350 GHz which was determined by use of M-H plot. Figure 4.6
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Fig. 4.5 Simulated curves of (a) M-H plot and (b) y7-T plot for 1-Cl. Black circle: experimental; red line:
considering contribution from only tetravalent rhenium with S = 3/2. The principal values of g-tensor (gx

=2.20, g,=2.30, g: = 1.64) and E/D = 0.2778 used in this simulation was determined with ESR spectra in
the crystal axis system.

shows the experimental and simulated y7-T plot for 2-CICl. The slope observed over 50 K was assumed

to be the thermally excited triplet state of trivalent rhenium and we determined that the energy gap 2J =
500 cm-L,

In the magnetic susceptibility measurements, we concluded that tetravalent rhenium moiety was ESR
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active (S = 3/2) and had the large zero-field splitting parameter due to the large spin—orbit interaction and
thus ESR transitions between sublevels (+3/2 <> +1/2 or —3/2 <> —1/2) should not be observed in X-band.

The trivalent rhenium site had the spin state S = 0 with thermally excited magnetic states (S = 1).
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Fig. 4.6 The simulated curves of (a) M-H plot and (b) y7-T plot of 2-CICI. Black circle: experimental;
Blue line: considering contribution from only tetravalent rhenium with S = 3/2. The principal values of g-
tensor (gx = 2.050, g, = 2.240, g. = 1.820), and E/D = 0.2778 in this simulation was determined with ESR
spectra in the principal axis system; green line: considering contribution from only trivalent rhenium with
the ground singlet state and the thermally excited triplet state (we fixed the principal values of g-tensor to
the result of DFT calculation and the axial zero-field splitting parameter D was optimized to be +500
MHz), where the energy gap 2J = 500 cm-!; red line: sum of two lines.

Figure 4.7 shows the H-M plot and the y7-T plot for the complexes 2-CICl, 2-BrBr and 2-BrCl. D-
values were determined to be —500 GHz (-16 cm!) for 2-BrBr and —250 GHz (-8 cm!) for 2-BrCl from
the simulated curve for the H-M plot, respectively. y7 had a slope in the high temperature region for all

complexes due to the thermally excited triplet state of trivalent rheniums.
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Fig. 4.7 a) The M-H plot of 2-CICI (red square), 2-BrBr (black circle) and 2-BrCl (blue diamond).
Temperature: 1.9 K. b) y7-T plot for or 2-CICl (red square), 2-BrBr (black circle) and 2-BrCl (blue

diamond). Applied magnetic field: 100 mT.
Focusing on the temperature under 50 K in the y7-T plot, the gradient in y7 of 2-BrCl changes at
about 25 K and 6 K. The former change was also observed in 2-CIClI and the latter was seen in 2-BrBr.

Therefore, 2-BrCl had the magnetic properties coming from both the chloride moiety and bromide

moiety. The gradient change at 50 K was characteristic of 2-BrBr.

Figure 4.8 shows the simulated curves of the M-H plot and the y7-T plot of 2-BrCI.

153



a) 12000 T T T T T T b) 25

10000 -

8000 -

T 6000
£
2
5
= 4000

2000+

0

-2000

. " . . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 0 50 100 150 200 250 300
Magnetic Field/mT Temperature/K

Fig. 4.8 Simulated curves of a) M-H plot and b) y7-T plot for 2-BrCl. Black circle: experimental; Blue
line: considering contribution from only tetravalent rhenium with S = 3/2. The principal values of g-tensor
(gx = 2.043, g, = 2.220, g: = 1.850), and E/D = 0.33 used in this simulation was determined with ESR
spectra in the principal axis system; green line: considering contribution from only trivalent rhenium with
ground singlet state and thermally excited triplet state (we fixed the principal values of g-tensor of
trivalent rhenium to the result of DFT calculation and zero-field splitting parameter D was optimized to
be +1000 MHz), where the energy gap 2J = 500 cm-!; red line: sum of two lines.

4.3.3 ESR spectroscopy

4.3.3.1 Electronic structure of mononuclear complex 1-Cl by using of single-crystal and

randomly-oriented ESR spectroscopy

(a) Single-crystalline sample

ESR measurement of the tetravalent mononuclear complex 1-Cl was carried out only in the crystal axis
(pgr) system. Figure 4.9 shows the angular dependence of the ESR spectra (measured in the perpendicular
and parallel excitation modes) rotated around three axes with 1D goniometer. The angle at which the
signal appeared in the lowest field was defined to 0 degrees in each plane. Comparing to the experiments
in the principal-axis (xyz) system, a-axis and y-axis, b-axis and x-axis, and c-axis and z-axis are close each
other, respectively. Two sets of six hyperfine splitting due to the rhenium nuclei (nuclear quantum number
I = 5/2) was observed in the low field when the static magnetic field was aligned to the rhenium—
phosphorus direction. As the static field was coming closer to the biimidazolate plane, the resonance field
moves to higher and the line width was broadened and two hyperfine lines get to be indistinguishable.

The magnetic tensors were obtained with full spin Hamiltonian approach considering the two
orientations in one unit cell, which is related with the following direction cosine matrix;

64.01° 146.4° 109.8°

146.4° 1212° 78.69° (4.3)
109.8° 78.69° 157.0°

b) Randomly oriented sample
X-band randomly-oriented ESR spectra of 1-Cl were also obtained in the helium temperature (Fig. 4.11).
Comparing to the spectra in the principal axis system, z-, x-, y-canonical peaks for one orientation
appeared in the range of 0-250 mT, 200450 mT and 400—-600 mT, respectively. The peaks from other
achieved by the rotation spread over the whole range.

Considering both the single-crystal and randomly-oriented spectra in the parallel excitation mode,
nuclear-Zeeman dominant at zero degrees [31] while at 90 degrees, nuclear-Zeeman and quadrupole

interaction exist in harmony.
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Fig. 4.9 Angular dependence of X-band cw-ESR spectra for 1-Cl. a) perpendicular mode in pg-plane,
microwave frequency: 9.629930 GHz, microwave power: 1 mW, temperature: 3.2 K; b) parallel mode in
pg-plane, microwave frequency: 9.388330 GHz, microwave power: 1 mW, temperature: 3.2 K; ¢)
perpendicular mode in gr-plane, microwave frequency: 9.629899 GHz, microwave power: 1 mW,
temperature: 3.5 K; d) perpendicular mode in rp-plane, microwave frequency: 9.634107 GHz, microwave
power: 0.5 mW, temperature: 3.1 K.
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Fig. 4.10 Simulated spectra of the angular dependence of single-crystal ESR measurement for 1-Cl.
Black: experimental, red: simulated spectra. One set of magnetic parameters; g1 = 2.20, g2 = 2.50, g3 =
1.68, A1 =—-1290 MHz, 4> = -900 MHz, A3 = -550 MHz, D = -700 GHz, E/D = 0.27. Two orientations
were considered with a rotation matrix calculated from the crystallographic data.
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Fig. 4.11 Experimental spectra of randomly-oriented ESR measurement for 1-Cl in X-band. Red:
perpendicular mode, microwave frequency: 9.634970 GHz, temperature: 8.0 K; blue: parallel excitation
mode, microwave frequency: 9.419585 GHz, temperature: 8.0 K.

Temperature dependence of randomly-oriented ESR spectra for 1-CI

Figure 4.12 shows the temperature dependence of ESR spectra obtained for the randomly-oriented
sample. As increasing temperature, the spectra were getting broader and the site splitting was
indistinguishable. The line width is related with the relaxation time. The broad signal means the short

relaxation time and vice versa. The strong pin-orbit coupling causes the
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Fig. 4.12 Temperature dependence of randomly-oriented ESR spectra for 1-Cl observed in the
perpendicular mode. The numbers written in the right side are the amplification for each spectrum.

High-field/high-frequency ESR experiment for randomly-oriented sample of mononuclear complex 1-Cl
Figure 4.13 shows the multi-frequency ESR spectra up to 609 GHz for randomly-oriented sample of 1-Cl.
Although Some sharp peaks are observed at particular frequencies, assignment of these signals have not

achieved.
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Fig. 4.13 Multi-frequency ESR spectra for randomly-oriented sample of 1-Cl at 5 K.

4.3.3.2 Electronic structures of mixed-valence Rhenium(II1,IV) binuclear complexes as

studied by single-crystal and randomly-oriented ESR spectroscopy

(a) Single-crystal ESR

In high spin states of metallocomplexes with sizable ZFS in pseudo-octahedral symmetry, their fine

structure ESR transitions with the static magnetic field along the principal z-axis appear in the lower field
far from g = 2 at X-band. The appearance disagrees with the putative intuitive picture of the relevant high
spin ESR. A RellllV binuclear complex in the mixed valence state exemplifies the cases, whose fine-
structure/hyperfine ESR spectra of the neat crystals have been analyzed in its principal-axis system. We
note that referred to RelV complexes in their high spin state the magnetic properties as studied by ESR
spectroscopy have been rare, [41] and they invoked sophisticated high-field/high-frequency techniques.
Thus the determination of the magnetic tensors by conventional ESR spectroscopy is a challenging issue.

Figures 4.14—4.16 show the angular dependence of the ESR spectra measured in the crystal axis (pgr)
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Fig. 4.14 Angular dependence of 2-CICl in pg-plane of the crystal axis (pgr) system. (a) perpendicular
mode, microwave frequency: 9.62280 GHz, microwave power: 0.1 mW, temperature: 3.2 K; (b) parallel
mode, microwave frequency: 9.37700 GHz, microwave power: 0.1 mW, temperature: 2.9 K.
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Fig. 4.15 Angular dependence of 2-CIClI in gr-plane of the crystal axis (pgr) system. (a) perpendicular
mode, microwave frequency: 9.62526 GHz, microwave power: 0.05 mW, temperature: 3.2 K; (b) parallel
mode, microwave frequency: 9.36745 GHz, microwave power: 0.1 mW, temperature: 3.3 K.
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Fig. 4.16 Angular dependence of 2-CICl in rp-plane of the crystal axis (pgr) system. (a) perpendicular
mode, microwave frequency: 9.61865 GHz, microwave power: 0.1 mW, temperature: 3.6 K; (b) parallel
mode, microwave frequency: 9.33679 GHz, microwave power: 0.1 mW, temperature: 6.6 K.

system. The crystal was mounted on the quartz rod and rotated around each axis with 1D goniometer.
Detailed fine-structure/hyperfine ESR spectral analyses of the single crystals of the Re(IILIV)
binuclear complex 2-CICl were carried out in the principal-axis coordinate system of the binuclear
complex, shown in Figs. 4.17-4.19. The binuclear complex is composed of 2,2’-biimidazole dichloro
bis(tri-n-propylphosphine)rhenium(III) and 2,2’-biimidazolate dichloro bis(tri-n-
propylphosphine)rhenium(IV). [29] The binuclear complex 2-CICl is in the mixed valence state, and the
spin state of the Relll moiety as the monomer at low temperature is a localized spin-singlet in its ground
state with a triplet excited state located above 500 cm-!, as identified on the basis of SQUID
measurements on the binuclear complex in the polycrystalline state. The principal axes were defined as
those of the magnetic tensors from the result of the quantum chemical calculation for the mononuclear
complex, [RelVCLPnPr3(bim)] as the monomer unit Re!V-monomer (Fig. 4.6). In the principal axis

experiments, the single crystal was mounted on a quartz wedge as shown in Fig. 4.1 in Section 4.2.3. The
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angular dependence of the single-crystal ESR observed with the static magnetic field around the three
principal axes was analyzed on the basis of both the effective spin-1/2 Hamiltonian and the full spin
Hamiltonian including the ZFS terms except the quadrupolar terms. The analyses were carried out based
on the exact numerical diagonalization by using EasySpin (version 5.1.10) [42] under the MATLAB
R2014b software. The spectral simulation of the powder-pattern spectra were also carried out by the
numerical diagonalization. The angular dependence of the ESR spectra illustrated that the spectra
appearing in the magnetic field around g = 5 were exclusively assignable to the transitions of the principal
z-direction. Using the exact geffgtrue relationship for S = 3/2, the true g-principal values and A = E/D were
derived. The derived values of A for the principal x-, y-, and z-axes were 0.3032, 0.2768 and 0.3065,

respectively. These values are close to the corresponding value (E/D = 0.2778 in Table 4.7) obtained from
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Fig. 4.17 Angular dependence of 2-CICl in xy-plane of the principal axis (xyz) system. The static
magnetic field was applied along x-axis at 0 degrees. (a) perpendicular mode, microwave frequency:
9.63736 GHz, microwave power: 0.1 mW, temperature: 3.8 K; (b) parallel mode, microwave frequency:
9.41245 GHz, microwave power: 0.2 mW, temperature: 6.3 K.
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Fig. 4.18 Angular dependence of 2-CICl in yz-plane of the principal axis system. The static magnetic field
was applied along z-axis at 0 degrees. (a) perpendicular mode, microwave frequency: 9.63686 GHz,
microwave power: 0.1 mW, temperature: 4.6 K; (b) parallel mode, microwave frequency: 9.41176 GHz,
microwave power: 0.2 mW, temperature: 5.0 K.

159



(a) (b)

90

Angle / degrees
3

Angle / degrees
D
(=]

"JWWW"“‘ ' 0

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Magnetic field / mT Magnetic field / mT

[
=
v
=

Fig. 4.19 Angular dependence of 2-CICl in zx-plane of the principal axis system. The static magnetic field
was applied along z-axis at 0 degrees. (a) perpendicular mode, microwave frequency: 9.62994 GHz,
microwave power: 0.1 mW, temperature: 4.4 K; (b) parallel mode, microwave frequency: 9.39279 GHz,
microwave power: 0.2 mW, temperature: 5.0 K.

the single-crystal based spectral analysis with the full spin Hamiltonian.

Figures 4.17—19 show the angular dependence of the single-crystal ESR spectra in the principal axis
system for RellllV-dimer. The principal values of the magnetic tensors were estimated on the basis of both
the effective (Fig. 4.20) and true spin Hamiltonians (Fig. 4.21).

Magnetic susceptibility measurements on the RellllV dinuclear complex revealed that the ground state
is spin-quartet (S = 3/2) with a large ZFS parameters. We fixed the principal g-values (gtrie = 2.060, gtrue
= 2.260, g-tve = 1.820), which were derived from the ESR spectral analyses, and analyzed the magnetic
susceptibility data using the full spin Hamiltonian. The fitting of the SQUID data gave D = —11.7 cm-!
with 4 = 0.2778 fixed (Fig. 4.6). The experimental D-value derived from the SQUID measurements is in
good harmony with that estimated from the single-crystal ESR analysis on the basis of the full spin
Hamiltonian.

In the RelLlV binuclear mixed valence complex under study, the Rell site (d4) has a spin-singlet
ground state, and hence only the Re!V moiety of the d3 electronic configuration contributes to the ESR
spectra if the triplet state from the counter-part site of the d* configuration is not low-lying. Actually, the
triplet state is located to be around 500 cm-! above the singlet ground state, which the SQUID
measurements indicated. In this study, we have carried out DFT calculations of the magnetic tensors for
the Re!V-monomer unit using the geometry in the solid state determined from the X-ray crystallography
simply because of the limited computing resource. Thus, the present theoretical approach does not include
any possible dynamic quantum effects due to the proton-electron synchronized transfer between the two
Re sites at liquid helium temperature. In this context, the approach is in a static regime. The D-, g-, and
A('87Re)-tensors were computed by using the TPSS exchange—correlation functional in conjunction with
the Sapporo-DKH3-DZP-2012 and Sapporo-DZP-2012 basis sets for Re and the other atoms,
respectively. In the SCF procedure, relativistic effects were taken into account via the second-order
Douglas—Kroll-Hess Hamiltonian. [36]

The electronic configuration of the RelV-monomer in the spin-quartet ground state is
(dxz)!(dyz)!(dx2-y2)1(d22)%(dxy)0. The spin densities and principal axes of the magnetic tensors are given in

Fig. 46. The principal axes of the theoretical D-, g- and A('87Re)-tensors are collinear. Importantly, they
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Fig. 4.20 Experimental and simulated spectra with fictitious spin-1/2 Hamiltonian approach. (a) xy-plane,
perpendicular mode, (b) xy-plane, parallel mode, (c) yz-plane, perpendicular mode, (d) yz-plane, parallel
mode, (e) zx-plane, perpendicular mode, (f) zx-plane, parallel mode. spin Hamiltonian parameters; g.¢ff =
1.895, gyeff = 1.472, g.#ff = 5.035, Aseff = 2750 MHz, 4, =-1000 MHz, 4. =-1100 MHz.
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Fig. 4.21 Experimental and simulated spectra with full spin Hamiltonian approach. (a) xy-plane,
perpendicular mode, (b) yz-plane, perpendicular mode, (c) zx-plane, perpendicular mode. Spin
Hamiltonian parameters; g. = 2.050, g, = 2.240, g- = 1.820 and 1.720, 4, =—-1290 MHz, 4, = -850 MHz,
A-=-990 MHz, D =-350 GHz, E/D = 0.2778.
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coincide with those determined by the single-crystal ESR spectroscopy in the principal axis system. The
calculated D-value is —1.730 x 103 GHz (-57.72 cm™!), whose magnitude is five times larger than the
experimental one, and the E/D value (= 1) is 0.205, which is comparable with the experimental one. Such
a large E/D value is characteristic of the Re!V mononuclear complexes of tetrahedral coordination. [8,42]
According to the ORPT (Orbital Region Partitioning Analysis), the electron excitations of SOMO(a) —
SOMO(P) are the most important. The absolute sign and magnitude of the D-value are governed by the
strengths of SOC among the three SOMOs (dxz, dyz, and dx2-y2). In the RelV-monomer system under study,
the SO contributions to the D-tensor from the electron transitions between the dx, and dy, orbitals, which
are for the D.: principal value, are considerably smaller than those from the excitations between the dx.
and dx2-y2 orbitals, and the one between the dy, and dx2-y2 orbitals. As a result, the principal values of the
D-tensor become Dy > Dy, > D and hence the D-value becomes negative.

The principal values of the calculated g-tensor are g.. = 1.9806, g, = 2.0138, and g.. = 2.0345. In
contrast to the D- and g-tensors, the A(!87Re)-tensor is rather symmetric (4w = —3135.02 MHz, 4,, =
—3119.34 MHz, A.. = —3103.09 MHz), reflecting the 5d3 electron configuration and spin density
distributions. The magnitudes of the principal values of the theoretical A(187Re)-tensor are about three
times greater than the experimental ones. We note that the comparison between the theoretical and
experimental values in a straightforward manner is not appropriate because the present theoretical
approach is in the static regime and excludes any effects originating in the dimer formation and associated

proton-electron synchronized transfer.

Table 4.7 Principal Values of Magnetic Tensors of Binuclear Complex 2-CICI Derived From True and

Effective spin Hamiltonian

(a) true (b) effective
gx 2.050 1.895
& 2.240 1.472
g 1.820 5.035
A/MHz -1290 -2750
A,/MHz -850 —-1000
A-/MHz -990 —-1100
D/MHz —350 x 10¢ not available
E/D 0.2778 not available

(b) Randomly oriented sample

Figure 4.22 shows the X-band randomly-oriented ESR spectra for 2-CICl observed in the perpendicular
and parallel modes.

In the low field, the spectra seemed to be the superposition of the two spectra with narrow line width.
Broadening of the spectra in the high field region was consistent with the single-crystal ESR results.
Judging from the single-crystal ESR in the principal axis system, signals in the low field (50-250 mT)

was assigned to z-canonical peak, signals in the region of 200450 mT was assigned to x-canonical peak
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Fig. 4.22 Experimental spectra of randomly-oriented ESR measurement for 2-CICl. Red: perpendicular
mode, microwave frequency: 9.632879 GHz, temperature: 5.4 K; blue: parallel mode, microwave
frequency: 9.405467 GHz, temperature: 5.0 K.

and signals in the region of 400-650 mT was assigned to y-canonical peak. In the parallel mode, high
field signal were almost invisible due to the intrinsic low transition probabilities. Figures 4.23 and 4.24

shows the simulated spectra calculated with effective and true spin Hamiltonian parameters.
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Fig. 4.23 Experimental and simulated spectra with fictitious spin-1/2 Hamiltonian approach for
randomly-oriented sample of 2-CICl. (a) perpendicular mode, (b) parallel excitation mode. Magnetic
parameters: g°ff = 1.895, g,eff = 1.472, g.off = 5.035, 4,¢ff = 2750 MHz, 4,<ff = —-1000 MHz, A4+t =—-1100

@ | .. w

Fig. 4.24 Expenmental l\glrnliif“sliJrrnlulated spectra with full spin Hamiltonian apprézic:lil %or randomly oriented
sample of 2-CICIl. (a) perpendicular mode, (b) parallel excitation mode. Magnetic parameters: g» = 2.050,
gy =2.240, g. = 1.820 and 1.720, 4. =-1290 MHz, 4, = -850 MHz, 4. =-990 MHz, D =-350 GHz, E/D

=0.2778.
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(c) Temperature dependence for single-crystal ESR spectra of the binuclear complex 2-CIC1

The dynamics of the protons/electrons can be revealed from the temperature dependence of the spectra.
Temperature dependence for single-crystal ESR spectra of 2-CICI was measured at 0 degrees in pg-plane
(Fig. 4.25a). As increasing temperature, the line width (ABi12) was broadened and merged into one
hyperfine lines above 18 K. This phenomenon was reversible and the spectrum at 5 K was reproduced
after rising over 20 K. The temperature dependence of the line width was fitted with the Arrhenius

equation (4.4) and the activation energy between two proton-localized states AE was estimated that AE =
24 cm-1,

a8, =Aexp| 27 | (44

2
We concluded that the synchronized proton-electron transfer in 2-CICl was the thermally activated

elemental process. Under 10 K, tunneling of the proton occurred between the nitrogen atoms.
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Fig. 4.25 (a) Temperature dependence for single-crystal ESR spectra of 2-CICl. (b) Temperature

dependence of the line width of ESR spectra of 2-CICl. Fitted curve was calculated with Arrhenius
equation.

(d) Q-band cw-ESR measurement of the binuclear complex 2-CIC1
Figure 4.26 shows the experimental and simulated spectra of Q-band cw-ESR for 2-CICI. Two sets of six

lines observed around 400—-600 mT was assigned to z-direction. Broad signal at 800—1400 mT was x- or
y-canonical peaks.
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Fig. 4.26 Experimental (black) and simulated (red) spectra of Q-band cw-ESR for 2-CICIl. Microwave
frequency: 34.01462 GHz, microwave power: 0.5 mW, temperature: 3.4 K, gx = 2.05, g, = 2.24, g. =
1.82/1.72 (superposition of two spectra), Ax =—1290 MHz, 4, = 850 MHz, 4. = 990 MHz, D =-350 GHz,
E/D=0.2778.

4.3.3.3 Electronic structures of 2-BrBr and 2-BrCl by using of single-crystal ESR

spectroscopy
Figures 4.27-4.29 show the angular dependence of ESR spectra of 2-BrBr observed in the crystal-axis
(pgr) system. The crystal was rotated around each axis. Zero degrees was defined as the angle at which

the resonance field was the lowest.
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Fig. 4.27 Angular dependence of ESR spectra for 2-BrBr in the crystal pg-plane. (a) Perpendicular mode,
microwave frequency: 9.628898 GHz, microwave power: 0.1 mW, temperature: 4.2 K; (b) parallel mode,
microwave frequency: 9.393340 GHz, microwave power: 0.1 mW, temperature: 4.5 K.
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Fig. 4.28 Angular dependence of ESR spectra for 2-BrBr in the crystal gr-plane. (a) Perpendicular mode,
microwave frequency: 9.631200 GHz, microwave power: 0.1 mW, temperature: 3.4 K; (b) parallel mode,
microwave frequency: 9.397692 GHz, microwave power: 0.2 mW, temperature: 7.0 K.
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Fig. 4.29 Angular dependence of ESR spectra for 2-BrBr in the crystal rp-plane observed in
perpendicular mode. Microwave frequency: 9.627154 GHz, microwave power: 0.1 mW, temperature: 8.0
K.

helium temperature, spectra appeared in the low magnetic field region showed a superposition of two
hyperfine splitting structure due to the nuclear spin moment of rhenium center. According to the
discussion of crystal structure, 2-BrBr has a symmetry center in the middle of the hydrogen bonding that
leads two complexes are crystallographically equivalent. However, in the low temperature, the symmetry
was broken and was distinguishable two complexes that is these are no longer magnetically unequivalent.
This indicates that this type of complex has a mixed-valence state involving the trivalent and tetravalent
rhenium ions. The difference of the hyperfine spectrum of 2-BrBr was larger than that of 2-CICl, which
means the difference of electronic g-value would be larger which reflects the distortion of the coordinates.
From the result of angular dependence of the ESR spectra in the principal axis system, spectra along with

x-, y- and z-directions appeared at 0-250 mT, 200—500 mT and 300-600 mT, respectively.
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Fig. 4.30 X-band single-crystal ESR spectra of 2-CICl, 2-BrBr and 2-BrCl in the principal axis system.
Microwave frequency: 9.6370 GHz, microwave power: 0.1 mW, temperature: 7.0 K.
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Fig. 4.31 Angular dependence of 2-BrCl in the principal axis (xyz) system. (a) xy-plane, microwave
frequency: 9.6369 GHz, microwave power: 0.1 mW, temperature: 7.0 K; (b) yz-plane, microwave
frequency: 9.6372 GHz, microwave power: 0.1 mW, temperature: 7.0 K; (c) zx-plane microwave
frequency: 9.6310 GHz, microwave power: 0.1 mW, temperature: 6.0 K.

0 100 200 300 400 500 600 700 0 100 200 500 600 700 0 100 200

Fig. 4.32 Experimental (black) and simulated (red) spectra with full spin Hamiltonian approach (S = 3/2)
for randomly-oriented sample of 2-BrCl in (a) xy-plane, (b) yz-plane and (c) zx-plane in the principal axis
system; gx = 2.043, g, =2.220, g- = 1.850, Ax =—1140 MHz, 4, = —-880 MHz, 4. = -1000 MHz, D =-350
GHz, E/D = 0.33, electric quadrupole interaction was omitted. Any gradient in the tensors are not
included.
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Fig. 4.33 X-band cw-ESR spectra of 2-BrBr observed at an angle (red) and rotated 180 degrees (black) in
the crystal axis system. The lowest red line was obtained after one hour standing under 0.5 mT of the
static field.

Unusual electric properties observed for 2-BrBr

Figure 4.33 shows the X-band cw-ESR spectra for 2-BrBr measured at an angle in the crystal axis system
and the angle rotated 180 degrees. Some signals in the low field become silent and recovered in the high
field at a certain angle. Moreover, all signal disappeared after one hour under the weak static magnetic
field. We concluded that the electric ordering among the whole crystal was enhanced by the static
magnetic field. When the motion of the proton related to the hydrogen bonding was fixed due to the static
magnetic field, electric dipole was created. The alignment of the direction of the dipole causes the
dielectric loss and the ESR signals get invisible. It can be a kind of the ferroelectric effect derived by the

static magnetic field.

High-field/high-frequency cw-ESR spectra of single-crystal 2-BrBr
High-field/high-frequency ESR measurements were carried out for 2-BrBr. Figures 4.34 and 4.35 shows
the typical spectra.

Six lines were observed at two resonance fields in each sweep. The splitting interval was about 60 mT,
indicating this splitting was attributed to the hyperfine interaction.

Figure 4.36 shows the frequency dependence of the single-crystal ESR for 2-BrBr at a direction. The
red line was drawn in accordance with the resonance field in each frequency. The slope (the ratio of

Frequency/Field, corresponding to g-value) of 2.2 was close to the g, value (= 2.220).
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Fig. 4.34 High-field ESR spectra for 2-BrBr. Black Line: Up sweep, Red Line: Down sweep; Microwave
frequency: 93.28 GHz, temperature: 1.4 K.

Intensity/arbitrary unit
N
W

Intensity/arbitrary unit
Intensity/arbitrary unit

2 2,05 2.1 2.15 22 225 23 235 24 245 25 ;2.(» 2.65 2.7 275 28 2.85 29 2.95 3 3.05 3.1
Magnctic Field/T Magnetic Field/T

Fig. 4.35 close-up spectra of the peak in Figure 4.3. (left) 2-2.5 T, (right) 2.6-3.1 T. Black line: up sweep,
red line: down sweep; microwave frequency: 93.28 GHz, temperature: 1.4 K.
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Fig. 4.36 Multi-frequency ESR spectra for 2-BrBr. Frequency range: 93—415 GHz, temperature: 1.6 K.
The red line is the plotted line of the resonance fields.

4.3.4 Experimentally and calculated magnetic parameters

In the mixed-valence complexes under study, the Re!l! side (d4) has a spin-singlet ground state, and hence
only the RelV moiety of the d3 electronic configuration contributes to the ESR spectra if the triplet state
from the counterpart site of the d4 configuration is not low-lying. Actually, the triplet state is located to be
around 500 cm! above the singlet ground state, which was indicated by the SQUID measurements. In
this study, we have carried out DFT calculations of the magnetic tensors for both the Re!V-monomer units
(1-CI and 1-Br) and the Re-monomer units (1-CI(III) and 1-Br(IIl)) using the geometry in the solid
state determined from the X-ray crystallography simply because of the limited computational resources.
Thus, the present theoretical approach does not include any possible dynamic quantum effects due to the
proton-electron synchronized transfer between the two rhenium sites at liquid helium temperature as seen
in the ESR spectra. In this context, the approach is in the static regime. The D-, g- and A(!87Re)-tensors
were computed by using TPSS exchange—correlation functional [34] in conjunction with the Sapporo-
DKH3-DZP-2012 [35] and Sapporo-DZP-2012 [36] basis sets for Re and other atoms, respectively. In the
SCF procedure, relativistic effects were taken into account via the second-order Douglas—Kroll-Hess
Hamiltonian. [37]

The electronic configuration of the mononuclear chloride complex 1-Cl in the spin-quartet ground
state is (dxz)!(dyz)'(dx2—y2)!(d2)%(dxy)?. The spin densities and principal axes of the magnetic tensors are
given in Fig. 4.2. The principal axes of the theoretical D-, g- and A(!87Re)-tensors are collinear.
Importantly, they coincide with those determined by single-crystal ESR spectroscopy in the principal-axis
system. The calculated D-value of 1-Cl is —1.730 x 103 GHz (-57.72 cm!), whose magnitude is five
times larger than the experimental one, and the E/D value (= A) is 0.205, which is comparable with the
experimental one. The calculated D-value of 1-Br is —2.450 x 103 GHz (-81.73 cm!) and the E/D value

is 0.201. Such a large E/D value is a characteristic of the Re!V mononuclear complexes of tetrahedral
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coordination. [8,43] According to ORPT, [44] the electron excitations of SOMO(a) — SOMO(p) are the
most important. The absolute sign and magnitude of the D-value are governed by the strengths of SOC
among the three SOMOs (dxz, dyz, and dx2y2). In the RelV-monomer system under study, the SO
contributions to the D-tensor from the electron transitions between the dx, and dy, orbitals, which are for
the Dz principal value, are considerably smaller than those from the excitations between dx, and dx2-y2
orbitals, and the one between the dy, and dx2_y2 orbitals. As a result, the principal values of the D-tensor
become Dxx > Dyy > D;, and hence the D-value becomes negative.

The principal values of the calculated g-tensor of 1-Cl and 1-Br for the single point calculation are g
=2.0345, g,, = 2.0138, g- = 1.9806, and g« = 2.0611, g, = 2.0341, g. = 2.0090, respectively. In contrast
to the D- and g-tensors, the A(!187Re)-tensor is rather symmetric (4x = —3135.02 MHz, 4,, = -3119.34
MHz, A.: =-3103.09 MHz for 1-Cl and 4. = -2840.06 MHz, 4,, = -2856.66 MHz, 4.. = -2872.59 MHz
for 1-Br), reflecting the 5d3 electron configuration and spin density distributions. The magnitudes of the
principal values of the theoretical A(187Re)-tensor are about three times greater than the experimental
ones. We note that the comparison between the theoretical and experimental values in a straightforward
manner is not appropriate because the present theoretical approach is in the static regime and excludes
any effects originating from the dimer formation and associated proton-electron synchronized transfer.
The monomer analogs of 2-CICI help us with the evaluation of the magnetic tensors of the rhenium
dimer, and further synthetic work and quantum chemical calculations are underway.

On the contrast to the experiments, the calculated ground state of the trivalent complexes 1-CI(III) and
1-Br(III) was spin-triplet state, in which the energy gap between the spin-triplet and the spin-singlet states
are about 6 kcal/mol (2100 cm!) and 5 kcal/mol (1750 cm!), respectively. The principal values of
magnetic tensors of trivalent complexes 1-CI(III) and 1-Br(IIl) are summarized in Appendix as well as

ones in the optimized geometry of tetravalent 1-Cl and 1-Br.

4.3.5 Proposed mechanism of proton-electron synchronized transfer

Theoretical calculation indicates that about 10% of spin density are on the biimidazolate ligand. The
delocalization of the spin could be related with the electronic transfer.

The proton related with the hydrogen bonding seems to transfer the surface of double-well potential
which two nitrogen atoms create. The rate of the hydrogen is much slower than that of the electron. The
difference of the valence between two rhenium centers generates the electronic dipole moment (Fig.
4.37). The direction of the dipole moment can be switched with the electron/proton transfer. Once dipole
moments create and the proton is fixed, they could interact with neighboring molecules. The probability

can be related with the depth of the potential.
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Fig. 4.37 Schematic picture of the proton localized state. (a) The difference of the valence between
rhenium center generates the electric dipole. (b) Orientation of dipoles.
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4.4 Conclusion

In this chapter, we applied the experiment and the analysis in the principal axis system to high spin
rhenium(IIL,IV) binuclear complex and compared the electronic structure of the rhenium(IV)
mononuclear complex through the magnetic tensors. Both complexes have the large ZFS parameters due
to the large SOC constants; gx = 2.050, g, = 2.240, g. = 1.820 and 1.720, 4x = —1290 MHz, 4, = -850
MHz, 4- =-990 MHz, D = -350 GHz, E/D = 0.2778 for 2-CICIl. We estimated that the activation energy
between proton localized states was about 24 cm-! from the temperature dependence of the single-crystal
ESR spectroscopy and the mechanism of the synchronized proton-electron transfer in 2-CICl was
expected to be the thermally activated elemental process.

In this chapter, we revealed the electronic structures of three binuclear rhenium complexes 2-CICl, 2-
BrBr and 2-BrCl by using of single-crystal ESR spectroscopy in the principal axis system, magnetic
susceptibility measurements and quantum chemical calculations. Substituted halogen ligands affected the
structural geometry, difference of the principal values of the magnetic tensors and the proton-electron
motion.

The proton related to the hydrogen bonding was observed at the two spot in the X-ray crystallography
of 2-CICl and 2-BrBr in the ambient temperature suggesting the vibrionic motion. In helium
temperatures, the symmetry was broken and the proton was observed with different probabilities. On the
other hand, the proton of 2-BrCl was localized at the chloride moiety even at the room temperature
making the chloride moiety trivalent and the counterpart bromide moiety tetravalent.

Only the tetravalent rhenium was ESR active with S = 3/2, while the trivalent moiety was diamagnetic
and the thermally excited triplet state lying 2J = 500 cm-! above the singlet ground state. We determined
the magnetic parameters of the complexes by using of single-crystal ESR spectroscopy in helium
temperatures and the magnetic susceptibility measurements.

During the ESR experiments of 2-BrBr, we observed the signal disappearing. This is due to the long-
range electric dipole ordering over the crystal enhanced by the localized proton (one kind of the
ferroelectric effect).

Quantum chemical calculations were carried out for the mononuclear complexes 1-Cl and 1-Br
exemplifying the negative and large zero-field splitting parameters as much as —34 cm-! and —60 cm!,
respectively, for the geometry from the X-ray crystallographic data. The main contribution to the ZFSs
was attributed to the large spin—orbit couplings. The determination of the experimental magnetic

parameters of 1-Br is a future work.
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Appendix 4.1: Calculation of coordinates from any oblique

coordinates to the fixed orthogonal system

Here we consider the transformation from arbitrary crystal axis system (abc) to the orthogonal
coordination system (a’bc’) [45]. Figure 4A1 represents the correspondence of each axis. b-axis in the
new system is parallel to b-axis in the crystal system. a’-axis is perpendicular to b-axis and lies in the
crystal ab-plane in the crystal system. ¢’-axis is normal for a’b-plane. Taking vectors 7, j and k as the unit

vectors for a’, b and ¢’, crystal axis vectors can be written in the basis of {7, j, k} as Egs. (4A.1)—(4A.3).

abc: crystal axis system
a’bc’: orthogonal axis system

Fig. 4A.1 The crystal axis (abc) and the new coordination axis (a’bc’). y is an angle between crystal a and
b vectors. 8 and ¢ are the polar angle and the argument of ¢ vector in the basis of a’bc’ system.

siny
a=a| cosy (4A.1a)
0
0
b=b| 1 (4A.1Db)
0
sin@cos¢@ ¢
c¢=c| sinfBsing |=| c, (4A.1c)
cos Cs
where
q:c_cosﬂ—?osycosa (4A22)
siny
¢, =ccoso (4A.2b)

=y —¢’ ¢’ (4A.2¢)

Atomic coordinates are provided as (xa, yb, zc) in the crystal axis (abc) system (x, y, z < 1 if the atom
is within the unit cell), while (x’, y’, z”) in the orthogonal (a’bc’) system. These are related with the

following equations.

xa+by+cz=x"i+y'j+z'k (4A.3)
x'=axsiny +cz (4A.4a)
y'=axcosy+by+c,z (4A.4b)
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'=cy2 (4A.4c)
The normal vector n for the crystal plane (kk/) are given as

n(hkl) = N (ha*+ kb*+ Ic¥) (4A.5)
with

@ =bxc=bei-bek (4A.62)

b*=cxa=—ac,cosyi+ac,siny j+(ac, cosy —ac,siny )k (4A.6b)

¢*= axb=absinyk (4A.6¢)

and N is the normalization factor. The face angle 612 between the planes represented by (41ki/1) and
(h2k2D2) is calculated with
0,, =n(hkl) n(hk,l,) (4A.7)
The propriety of the series of formality are justified by the calculation of the face angles in
dimetylglyoxime single crystal [45,46]. Angles necessary for principal axis experiments can be obtained

with a similar sequence.
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Appendix 4.2 Magnetic tensors of RelV-mononuclear complexes
in the optimized geometry and the “protonated” complex, and the

spin ground state of Relll-complexes: The theoretical study

The magnetic tensor calculations were carried out for the solid state (single-point calculation) as well as
the optimized structures of the mononuclear rhenium complexes 1-Cl and 1-Br. The initial structure was
taken from the X-ray crystallographic data. Calculations were carried out by DFT, using the TPSS
exchange—correlation functional. [34] We used Sapporo-DKH3-DZP-2012 [35] for rhenium, and
Sapporo-DZP-2012 [35] for other atoms. The DFT calculations were done by utilizing ORCA quantum
chemical program package (version 3.0.0). [47] In the SCF procedure relativistic effects were taken into
account by adopting zeroth-order regular approximation (ZORA). [48] In the D-tensor calculations, the
Pederson—Khanna approach [49] with van Wiillen’s prefactors [50] was adopted for the spin—orbit term.
For the spin-spin term DSS computations, McWeeny—Mizuno equation [51] with unrestricted natural
orbitals constructed from the UTPSS calculations. Note that the NOB-PK method was not adopted in the
D-tensor calculations of the calculations here so that the D- and E/D-values are different from those in the
main text. The cartesian coordinates of the optimized geometries of 1-Cl and 1-Br will be shown at the
end of this section (Tables A4.7 and 4.8)

The Mulliken spin density distributions for the single-point and the optimized geometries compares in
Table A4.3. The spin density distribution on the rhenium atom slightly decreased after the geometry

optimization in the both complexes.

Table A4.1 Mulliken Spin Density Calculated for Solid State and Optimized Geometries of the
mononuclear complexes 1-Cl and 1-Br (S = 3/2). Calculated at the Level of UTPSS/Sapporo-DKH3-
DZP-2012 (for Re), Sapporo-DZP-2012 (for other atoms).

Molecule 1-C1 (X =C]) 1-Br (X =Br)
"""""" Geometry ~ Solidsate  Optimized  Solidswe  Optimized
Re 2.34169 2.25478 2.32736 2.21750
2X 0.32495 0.28113 0.33931 0.29559
(PnPr3)2 —0.04053 —-0.02617 —0.04606 —0.02353
bim 0.37389 0.49026 0.37939 0.51044

The calculated magnetic tensors of the solid state and the optimized geometries of 1-Cl and 1-Br
calculated at the UTPSS/Sapporo-DZP level are summarized in Table A4.4. The D-, g-, A(187Re)-tensors
are approximately coaxial. The D, axis nearly parallel to the Re—P bond. The D« axis is approximately

parallel to the direction from the rhenium atom to the biimidazolate ligand.
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Table A4.2 Magnetic tensors of the single point calculation and the geometry optimized structure at the
UTPSS/Sapporo-DZP level.

Molecule 1-Cl 1-Br
"""""" Geometry ~ Solidsate  Optimized  Solidsae  Optimized
Dss+S0/MHz —1.0330 x 10¢ —-0.9367 x 106 —1.8084 x 106 —1.6377 x 106
ES5+50/DSS+50 0.2016 0.1966 0.2173 0.2089
""""" e 205 208 2061 2064
Sy 2.0138 2.0137 2.0341 2.0348
8z 1.9806 1.9768 2.0090 2.0026
""" AOMHZ 310309 305563 284006 28405T
Ayy/MHz -3119.34 -3076.16 —2856.66 —2862.68
Az/MHz -3135.01 —-3095.30 —2872.59 —2883.67

The protonated/deprotonated species [RelVCla(PoPrs3)2(Hbim)][ReMCla(PoPr3)2(bim)] (abbreviated as
2’-CIC)) is the intermediate state in the proton/electron transfer scheme from [Re!VCla(PnPr3)2(bim)]
[RelIClo(PoPr3)>(Hbim)] (2-CICl). Theoretical calculation of the “protonated” tetravalent complex
[RelVCl2(P1Pr3)2(Hbim)]* (abbreviated as 1°-Cl) were also carried out. The calculation conditions are the
same as the optimized geometry of 1-Cl.

The total energy of the protonated/deprotonated species 2°-CICI are higher than that of the parent
species 2-CICl by about 77.9 kcal/mol.

The Mulliken spin density distributions for the single-point and the optimized geometries compares in

Table A4.3. The spin density on the rhenium atom of 1°-Cl increased by about 3%.

Table A4.3 Mulliken Spin Density Calculated for Solid State of the mononuclear complexes 1-Cl and 1'-
Cl (S = 3/2). Calculated at the Level of UTPSS/Sapporo-DKH3-DZP-2012 (for Re), Sapporo-DZP-2012

(for other atoms).

Molecule 1-Cl 1’-Cl
Re 2.34169 2.41321
2Cl1 0.32495 0.41334

(PnPr3)2 —0.04053 -0.02723

bim(H) 0.37389 0.20068

The calculated magnetic tensors of 1-Cl and 1°-Cl calculated at the UTPSS/Sapporo-DZP level are
summarized in Table A4.7. In 1°’-Cl the D- and g-tensors are approximately coaxial while the A(!87Re)-

tensor is not coaxial with others. The D,, axis nearly parallel to the Dyy axis of 1-Cl. The Dxx and Dyy axes
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tilt with respect to the principal axes of D-tenser of 1-Cl. The decrease of |DSS+SO| and |DSS+SO/ESS+50-
values of 1’-Cl decreased comparing to those of 1-Cl can be attributed to the spherical spin density
distribution on the rhenium atom. The isotropic hyperfine constant of 1°-Cl increased resulting in the

slight concentration of the spin density to the rhenium atom.

Table A4.4 Magnetic tensors of the single point calculation and the geometry optimized structure at the
UTPSS/Sapporo-DZP level.

Molecule 1-Cl1 1’-Cl1
DSStSO/MHz —1.0330 x 10¢ —0.7957 x 10¢
[ESS+50/)SS+S0 0.2016 —0.0990
e 2045 a4
Sy 2.0138 2.0015
8z 1.9806 2.0178
Ziso 2.0096 2.0169
o aw Swose Sioes
Ayy/MHz -3119.34 —3173.84
A/MHz -3135.01 -3180.28
Aiso/MHz -3119.15 -3174.92

We also calculated the ground spin state and the magnetic tensors of the trivalent mononuclear
complexes 1-CI(III) and 1-Br(III). The calculations were carried out by DFT, using the TPSS exchange—
correlation functional. [34] We used Sapporo DK3-Gen-TK+NOSeC-V-TZP basis set [52] for Rhenium,
and Def2-SVP basis set [53] for other atoms (C, H, N, P, Cl and Br). The DFT calculations were done by
utilizing ORCA quantum chemical program package. [47] In the SCF procedure relativistic effects were
taken into account by adopting zeroth-order regular approximation (ZORA) [48]. In the D-tensor
calculations, the Pederson—Khanna approach [49] was adopted for the spin—orbit term. For the DSS
computations, McWeeny—Mizuno equation [51] was used in conjunction with natural orbitals constructed
from the UTPSS calculations.

The electron configuration of the trivalent complex in the spin-triplet state is (dxz)2(dyz)!(dx2-
v2)1(d2z2)0(dxy)?. The energy gaps between the ground spin-triplet and the spin-singlet state of 1-CI(III) and
1-Br(III) was 6.43 kcal/mol and 5.03 kcal/mol, respectively. We tested the theoretical method dependence
on the energy gap between the spin-singlet ant the spin-triplet states of 1-CI(III), summarized in Table
Ad.4.
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Table A4.5 Theoretical method dependence on the S-T gap of 1-CI(I1I)

Computational conditions
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' AE(S-T)/kcal mol-!

Functionall?] Basis setlb] Relativistic methodlc!

TPSS SDZP/STZP(Re) DKH2 +6.73
TPSS SDZP/STZP(Re)/Uncont DKH2 +6.77
TPSS SDZP/STZP(Re) IORA +4.29
TPSS SDZP/Uncont IORA +5.71
TPSS SDZP/STZP(Re)/Uncont IORA +5.57
RevPBE SDZP/STZP(Re) DKH2 +8.27
RevPBE SDZP/STZP(Re) IORA +3.60
RevPBE SDZP/Uncont IORA +6.27
D3BJTPSS SDZP/Uncont IORA +5.80

[a] D3BJTPSS is a TPSS functional with an empirical dispersion correction. [b] SDZP = Sapporo-
DZP-2012, STZP(Re) = Sapporo-TZP-2012 for Re atom, Uncont = uncontracted basis set. [c] DKH2 =
2nd order Douglas—Kroll-Hess, IORA = Infinite order regular approximation.

The calculated magnetic tensors of the optimized geometries of 1-Cl, 1-CI(III), 1-Br and 1-Br(III)
calculated at the UTPSS/Sapporo-TZP level are summarized in Table A4.5. In 1-Cl, 1-CI(IIl) and 1-Br
the D-, g-, A(187Re)-tensors are approximately coaxial. The D- and g-tensors of 1-Br(IIl) are coaxial but
A('87Re)-tensor is not coaxial with the others. The D, axis of 1-Cl and 1-Br nearly parallel to the Re-P
bond. The Dxx axis is approximately parallel to the direction from the rhenium atom to the biimidazolate
ligand. However, the D, axis of 1-CI(IlI) and 1-Br(III) approximately parallel to the direction from the
rhenium atom to the biimidazolate ligand (i.e., Dxx axis of 1-Cl and 1-Br), and the Dxx axis is nearly

parallel to the Re—P bond (D, axis of 1-Cl and 1-Br).
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Table A4.6 Magnetic tensors of the optimized geometries calculated at the UTPSS/Sapporo-TZP level.

Molecule 1-C1 (S =3/2) 1-CIAID) (S=1)  1-Br(S=32)  1-Br(l)(S=1)
"""""" Electronic  (do)/(d)l(de [@ol2d)ide @)idn)ide (doPdn)'de
configuration  )I(d2)(de)  2)(d2)0dw) D) 2)!(d2)d)
DSS*SO/MHz ~0.6250 x 106 +9.0349 x 106 ~1.2774 x 106 +10.379 x 106
[ESS+S0/Ss+S0 0.2086 0.06388 0.2593 0.03103
""""" o 2027 22000 20660 23060
Sy 2.0092 2.1664 2.0335 2.2421
Qo 1.9784 2.0137 2.0126 2.0354
""" AWMHZ 141458 148623 145901 160910
Ayy/MHz 1400.14 1461.04 1441.68 1921.79
A/MHz 1372.42 1496.52 1417.12 1630.08
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Table 4A.7 Optimized Coordinates of the Optimized Geometries of 1-Cl at the Level of UTPSS/DK3-
Gen-TK+NOSeC-V-TZP (for Re), Def2-SVP (for other atoms)

Coordinates/A Coordinates/A

Re 0.034376 0.022547  —0.159165
Cl 0.402861 1.839381  —-1.667615
Cl 0313315  -1.629621  —1.860401

-0.231232  -3.382912 0.642591
—0.684622  -3.918505 3.331537
—0.079419 3.330334 0.997880
2.486726  —0.064956 0.099086 —0.522491 3.599577 3.729301
—2.384302 0.110288  —0.689778 2.691684 1.243908 2.108031
-0.268066  —1.342216 1.332990 4.278600 0.919788 1.386004

—0.641538  —1.776566 3.560533 3.882410 2.698409 0.341663

—0.208875 1.232051 1.470392 2.250405 2.967332 0.269437

—0.574080 1.445534 3.730869 3.184705 3.731004 2.488775
—0.340495  —2.711989 1.490228 3.855342 4.702364 1.150766
—0.566684  —2.954075 2.838102 4.841170 3.423315 1.904514
—0.222967 2.579623 1.770626 3.019886  —0.762999  —2.135433
—0.444842 2.6883006 3.136557 3.090335 0.984505  —1.972233
-0.460624  —0.836105 2.639125 5.315184 0.783030  -0.731434
—0.429090 0.600230 2.715395 5248471  -0.974952  —0.910142
3.249846 1.251527 1.155096 5282502  -0.724984  -3.430923
3.267380 2.676920 0.574991 6.710083 0.033533  —2.674188
3.818090 3.689798 1.586523 5.356457 1.044488  —3.249672
3.412150 0.044024  —1.493066 4.224577  —-1.342904 1.179432
4.943261  —0.025933  —-1.383625 2.629018  —1.684935 1.873559
5.611897 0.087939  -2.760892 3.694572  -2.799700  —0.802890
3.175642  —1.575619 0.919804 2.065934  -3.077614  —0.191500
3.103364  —2.891160 0.124831 4.663558  —3.917824 1.273295
3.619914  —4.076535 0.949735 3.589273  —5.009534 0.361741
-3.041009  -1.223175  —1.794043 3.006304  —4.225454 1.854459
-3.068146  -2.654413  —-1.235779 —4.056918  —0.908953  —2.094544
-3.583697  -3.651748  —2.281742 -2.410982  -1.192122  -2.700227
—-3.487360 0.056939 0.791291 —2.054169  -2.941796  —0.920493
—4.998235 0.113509 0.509556 -3.707633  -2.696980  —0.336570
—5.819827 0.049571 1.804324 —4.602890  -3.391218  -2.617203
—2.974693 1.582389  —1.645231 -3.617093  —4.674925  —1.871563

—2.934283 2.946240  —0.938652 -2.930006  -3.664312  -3.170536

O O O a0 a0 a0 a0 a0 a0a0a0a0o0o0o0o0o0a0o0a0a0a0aq00aqaz z zZ22zZ-wog
I T ¥ T Z ¥ £ T T T T T T T T T T T £ £ £ £ £ LT T X X X & X I T

—3.394178 4.073022  —-1.873089 -3.228986  —0.862895 1.345134
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Table 4.A7 (continued)

-3.181141 0.892830 1.444352 —4.003792 1.350026  —1.974168

—5.245802 1.041892  —0.033904 —1.908768 3.148221 —0.595246

—-5.290951 0.722623  —0.148685 -3.574787 2.925271  —0.039627

0.885585 2.355955 —2.736261 4.146233  -2.755554

—6.900648 0.093737 1.588558 -3.377844 5.047804  —-1.357113

T T =-m =-m T T

-5.570816 0.889706 2.475000

H

H

H

H -5.620662
H

H —4.423736 3.902106  —2.233954
H

—2.344692 1.616827  —2.551494
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Table 4A.8 Optimized Coordinates of the Optimized Geometries of 1-Br at the Level of UTPSS/DK3-
Gen-TK+NOSeC-V-TZP (for Re), Def2-SVP (for other atoms)

Coordinates/A Coordinates/A
Atom Atom
X y z x ¥ z

Re 0.004699  —0.003890 0.002513 —4.133343 1.280871 1.495552

Br  -0.395249  -1.869389  —-1.659933 —2.520389 1.620484 2.150460
Br  —0.325411 1.765488  —1.773399 -3.085253 0.849832  —1.865807
—2.424660 0.069369 0.310013 —3.145533 0.902542  -1.764812
2404842  -0.080671  —0.517960 2465044  -1.589962  —2.375305
0.250771  —1.241871 1.605282 4.089723  -1.307651  —1.715209
0.320856 1.328524 1.514470 —2.578644  —1.310438 2.279010
0.600144  —1.502956 3.862784 —4.181080  —0.938945 1.616389
0.696056 1.728523 3.747150 4.105604 0.898814  —1.908765
-3.097064 1.539958 1.211610 2.473843 1.180546  —2.551500
0.467268  —0.635218 2.864853 0.108811  —3.325680 1.086534
-3.436839 0.018409  -1.231592 0.305495 3.374232 0.847254
3.048303  —1.551543  —-1.438343 3.246257 0.943868 1.494844
-3.164929  -1.276830 1.343451 3.199296  -0.808614 1.640163
3.087354 1.228284  —1.634405 -5.291641  —0.748725  —0.379495
0.508045 0.801390 2.813764 —5.235222 1.014095  -0.505777

0.534528  —3.655843 3.816000
0.009818 0.009818 0.964196 3.572266  —2.891633 0.195276
—4.958095 0.081056  —1.025680 1.942369  -3.130090  —0.453520
0.633606 2.915839 3.039984 -3.685254 2.825195  -0.443447
0.465932  -2.731937 3.242062 —2.045026 3.104298 0.130649
2983929  -2.916948  —0.738343 -3.863286  -2.664976  —0.180314
-3.069076 2.887937 0.470425 -2.219245  -2.975514 0.370143
-3.221275  -2.681772 0.718037 2.099089 2971015  -0.812170
3.115381 2.672084  —1.110905 3.747242 2.733811  —0.207549
—5.708448 0.008898  —2.363436 -5.419810 0.842673  —3.026651
-3.756989  -3.719275 1.712237 —6.799471 0.058494  -2.209277
5.010865  —0.053272 0.675790 —5.482852  -0.931696  —2.895994
-3.579676 4.028904 1.358774 -3.099313  -3.797519 2.594596
3.504529  —4.036728  —1.648834 -3.821055  —4.716921 1.246319

5.839919 0.058005 1.962309

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0.252501  —-2.593570 1.876722 H 0.760572 3.872570 3.545952

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H 4766702  -3.449327 2.067940
H

P
P
N
N
N
N
C
C
C
C
C
C
C
C
C 0.406345 2.693596 1.688138
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

3.641027 3.641544  -2.177705 5258422 —0.999776 0.165346

183



Table 4.A8 (continued)

H

T T &K T T =

5.299260
—4.609912
—-3.584108
—2.941195

2.892240

3.474606

4.548412

0.759716
3.837308
4.985685
4.151780
—4.117060
—5.012395
-3.851983

—-0.012196
1.706769
0.809606
2.250040

—2.562926

—1.134994

—-1.957700

T T @D T Z T

5.642904
6.919603
5.596157
4.659865
3.678244
2.990418

1.012158
0.007809
—0.757873
3.367073
4.674024
3.636278

2.481436
1.741964
2.663964
—2.502858
—-1.791988
-3.068971
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Concluding remarks

The fictitious spin-1/2 Hamiltonian approach is the most putative and facile method to analyze ESR fine-
structure/hyperfine spectra of high spin metallocomplexes having sizable ZFS parameters. The approach
gives their principal g-values far from g = 2 without providing explicit values for their ZFS. Naturally,
these experimental principal g-values do not agree with the true g-values given by quantum chemical
calculations such as sophisticated DFT or reliable ab initio MOs. In this work, in harmony with the recent
progress in quantum chemical calculations for the g-, hyperfine or ZFS tensors of metallocomplexes, we
have derived the geff—gtrue analytical relationship for high spin systems up to S = 7/2 with sizable ZFS. The
expressions are exact or equal to exact ones to the third order in the genuine Zeeman perturbation
treatment, and they are all useful to derive the true principal g-vales from the analyzed data on the basis
of effective spin Hamiltonians, in a straightforward manner. The genuine Zeeman perturbation treat meant
in this work has provided with true principal g-values which are extremely accurate at conventional X- or
Q-band ESR spectroscopy enough to compare with the theoretical values. The genuine Zeeman
perturbation based formulas are practically much simpler and give high accuracy in conventional ESR
spectroscopy. The general formulas for S = 5/2 are explicitly given particularly for high spin Felll ion
complexes with sizable ZFS. The corresponding formulas serve as the purpose of getting physical insights
into the relationships as a function of the principal ZFS values.

In this work, we demonstrated the usefulness of the analytical treatment with metalloporphyrins
FellICIOEP (S = 5/2) and ColOEP (S = 3/2), a pseudo-octahedral rhenium mononuclear complex
[RelVCIoPrPr3(bim)] (S = 3/2) and mixed-valence rhenium dinuclear complexes [Re!lVXoPnPr3(bim)]
[Relll'Y,PnPr3(Hbim)] (X, Y = Cl or Br; S = 3/2).

In Chapter 3, The gefi—gtrue analytical relationships for S = 5/2 have been tested for the spin-sextet
ground state of Fell(Cl)OEP (g: = 2.0022, g, = 2.0054, g: = 2.0972, D =+7.0 cm™!, E=0.014 cm™!, |E/D|
= 0.002) magnetically diluted in the Ni"OEP diamagnetic host crystal. Felll(CI)OEP in the crystal lattice is
subject to subtle pseudo-JT distortion witch leads to departure from the tetragonal symmetry. The DFT
calculations have produced the experimental magnetic tensors based on the full spin Hamiltonian
approach, in which the ZFS+Zeeman terms are included as the major ones.

The full spin Hamiltonian approach for powder-pattern fine-structure/hyperfine ESR spectra of spin-
quartet states having sizable ZFS such CollOEP enables us to reproduce off-principal-axis extra lines,
which the effective spin Hamiltonian approaches have so far overlooked. The complete g-, A(5°Co)- and
D-tensors of four-coordinated Co"OEP have been experimentally for the first time determined. The
experimental true principal g-values are all less than 2, suggesting the occurrence of many low-lying
excited states coupled to the quartet ground state via SOC. The current theoretical treatment of quantum
chemical calculations have failed to interpret the salient trend of the g-values.

The ground-state spin multiplicity and ZFS tensor of a high spin RellllV complex in pseudo-octahedral
symmetry have been a long-standing issue, and the theoretical estimation of the ZFS, which originates in
dominant SOC, is important of the molecular optimization in quest for new functionality based on tuning
of sizable SOC in high spin metallocomplexes. In Chapter 4, we have experimentally determined the
magnetic tensors of the RellllV binuclear complexes in the mixed valence state, for the first time, by using
the single-crystal ESR spectroscopy at X-band, combined with the SQUID measurements. The DFT

quantum chemical calculations have been invoked only for the Re!V moiety because of the limited
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computational resources under the assumption of the static regime at low temperature. The assumption is
justified on the basis of the observation that the Re'l mononuclear complex having the similar molecular
structure is spin-singlet in the ground state. From the experimental side, the single-crystal ESR
spectroscopy in the principal-axis coordinate system shows directly that the fine structure ESR transitions
with the static magnetic field along the principal z-axis of the Re!V complex in the quartet state appear in
the lower field far from g ~ 2 at X-band. The appearance disagrees with the putative intuitive picture of
the relevant high spin ESR. The significant gap of E/D values of porphyrin and biimidazolate complexes
is related with the structure of the molecules. The resonance position in the principal z-axis was
completely different between two types of complexes.

Notably, from the theoretical viewpoint the effective spin Hamiltonian approach for non-Kramers
doublets has been important in indicating a break of the accepted meaning or protocols of the effective
spin Hamiltonian involving the issues of inversion symmetry relevant to electromagnetic irradiations if
electric field induced transitions are mediated. The break is significant in terms of both quest for materials
design or molecular optimization underlying novel electromagnetic multi-funttionalites and recent
advances in emerging quantum spin technology allowing us to manipulate molecular spin qubits as well-
defined open shell entities by use of both pulsed magnetic and electric field irradiation. In the molecular
optimization in both realms the symmetry considerations of the effective Hamiltonians with respect to the
external irradiation fields become crucial. The exact analytical derivations of the transitions relevant to
the ZFS+Zeeman spin Hamiltonians with electric field irradiation for non-Kramers doublets are the future
work.

This paper will contribute to the complete analysis and the understanding the electronic structures of
ESR spectra for high spin metallocomplexes with sizable ZFS.

October, 2017

Takeshi Yamane
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