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Preface 
This study was undertaken at Osaka City University, Graduate School of Science during 2013 to 2017 

academic year under the supervision of Professor Kazunobu Sato and Professor Emeritus Takeji Takui. 
This doctoral thesis is presented by the author in partial fulfillment of the requirements of Graduate 
School of Science for the Degree of Doctor of Science at Osaka City University. 

Since Zavoisky measured for the first time an electron spin resonance (ESR) signal of a copper ion, a 
vast number of ESR spectra have been reported for organic and inorganic substances. Especially, ESR 
spectra for metallocomplexes show various line shapes of signals, which reflect the differences of 

environments around the metal sites and metals themselves with unpaired electrons, i.e., the electronic 
structures featuring in their electronic spin states. Therefore, ESR spectroscopy has extensively been 
applied to open shell metals in proteins at an early stage in its development (for example, even a single-

crystal study on hemoglobin or myoglobin), and now widely extended to single-molecule magnets,  
catalysts and molecular spin qubits, etc. Magnetic tensors can afford quantum-chemically essential 
information on the electronic structures of targeting open shell compounds, such as g- (electronic-spin 
interactions with an external magnetic field), A- (hyperfine, electronic-spin interactions with non-zero 

nuclear spins) and D-tensors (zero-field splitting as abbreviated to ZFS, electronic-spin interactions 
between electron spins or with orbitals, vanishing for S = 1/2). In high spin systems (S ≥ 1), the ZFS 
tensor is essentially important since they can be sensitive to the symmetry of the metallionic site, which is 

governed by ligands, particularly binding ligands in metallocomplexes. A role or quantitatively evaluated 
contribution of spin–orbit interactions to the ZFS tensors has been a long-standing issue in chemistry, and 
nowadays the possible tuning of the spin–orbit couplings by exploiting molecular optimization is the 
focus of advanced molecule-based magnetism and various realms of electron spin science and technology 

such as rational molecular designs for g-engineered molecular qubits. The energy gap generated by ZFS 
often exceeds the energy of the irradiated microwave for ESR transitions, simply because ZFS mainly 
originates in the spin–orbit couplings in high spin metalloion complexes. When this is the case for half-

integer spins, ESR transition can occur between the same Kramers doublet ±MS (MS = S, S – 1, … –S), 
and the analyses using effective or fictitious spin-1/2 approaches give effective g-values (geff), where only 
allowed MS = ±1/2 transitions give implicit information on the contributions from the ZFS tensors and 
true g-tensors, resulting in geff > 2 without explicitly providing us with magnetic parameters relevant to 

the ZFS tensors. Recent progress in quantum chemical calculations enables us to compare the experiment 
with the theory in terms of detailed electronic structures governed by electrostatic interactions and spin–
orbit couplings in metallocomplexes of their well-defined molecular structures. In this context, 

experimentally determined true g-tensors together with any significant physical quantities relevant to the 
ZFS tensors are required for high spin systems with sizable ZFS parameters. From the experimental 
viewpoint such as ESR spectral analyses, spectral simulations can deal with full spin Hamiltonians 
incorporating appropriate ZFS terms, which the fictitious spin-1/2 approaches neglect. On the other hand, 

the spin-1/2 approaches can afford the geff-values in a straightforward manner without any ambiguity due 
to overparameterization. Thus, if the exact analytical relationships which can be bridged between the geff 
and gtrue-values are available, the relationships and relevant analytical formulas will give a facile useful 

method and significantly contribute to development in chemistry or materials science dealing with open 
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shell high spin metallocomplexes and biological science. The author has noticed that recent remarkable 

advance in high-field/high-frequency ESR spectroscopy can afford the reliable experimental 
determination fo the sizable ZFS tensors and the high-field/high-frequency scheme has its own right in 
spite of the difficulties in having access to the facilities. Thus, importantly the author emphasizes that the 

present method is free from the magnitude of static magnetic fields and microwave frequencies relevant 
to resonance fields. Even the zero or low magnetic fields except for the intrinsic sensitivity given in 
conventional X-band experiments with bipolar static magnetic field swept themes serve for key 
transitions. The present method does not require sophisticated experimental setups. From the theoretical 

viewpoint, however the method requires exact or extremely accurate analytical expressions for ESR 
transitions of high spin systems with sizable ZFS tensors, which should be included in an appropriate full 
spin Hamiltonian such as a Hamiltonian with rank-2 ZFS/fine-structure tensor terms + electronic Zeeman 

interaction terms. Once the exact analytical expressions are acquired, the exact (or extremely accurate) 
analytical formulas for the geff–gtrue relationships as a function of the ZFS tensor are derived, affording the 
conversion of the effective g-values into the corresponding true g-values. The relationships can be 
describable as a function of the ratio of the ZFS parameters, E/D (= λ), where 3λ denotes the asymmetric 

parameter of the rank-2 ZFS tensor. To the author’s knowledge, the exact analytical approach above has 
been documented only for S = 3/2. A similar approach based on the numerical diagonalization of the spin 
Hamiltonian with the ZFS/fine-structure terms and electronic Zeeman terms has been reported S = 3/2 

and 5/2. The author has for the first time exactly and analytically solved the eigenvalue/eigenfunction 
problems of the rank-2 ZFS/fine-structure tensor spin Hamiltonians with electronic Zeeman interactions 
for S’s greater than S = 3/2 and derived the geff–gtrue relationships for high spin states with S’s up to S = 
7/2. The analytical formulas for the relationships are general and can afford the conversion of the 

experimentally determined effective g-values into the true g-values, with which reliable quantum 
chemical calculations can be compared in order to get insights into the electronic structures of open shell 
high spin systems. 

From the viewpoint of providing a facile and general method to analyze sizable ZFS tensors, the 
author has demonstrated that the large ZFS parameters can quantitatively be evaluated by using of 
conventional ESR spectroscopy, exemplifying three important cases of an FeIII(Cl)porphyrin in the sextet 
ground state, CoIIporphyrin in the quartet ground state and rhenium(IV) mononuclear and rhenium(III,IV) 

binuclear complexes in the mixed-valence state. The author has emphasized that the possible spectral 
assignment of off-principal axis peaks (off-axis extra peaks/lines) is important to accurately evaluate the 
ZFS parameters and g-values and the present method can afford the differentiation between the canonical 

and off-axis peaks, which avoids ambiguous or misassignment of spectral transitions for unknown peaks: 
Any fine-structure canonical peaks can be assignable by using their exact analytical formulas. 

The author has also for the first time derived the general relationships between the effective spin-1/2 
g-values and true g-values based on the genuine Zeeman perturbation treatment, in which the electronic 

Zeeman terms are treated as the perturbation to the second/third order and the rank-2 ZFS-tensor energy 
matrixes including the off-diagonal ones are analytically diagonalized by invoking the symmetry 
properties of spin functions. The use of the symmetry reduces the overall size of the dimension of the 

energy matrixes, enabling us to analytically solve the corresponding eigenvalue/eigenfunction problems. 
The easy-to-access relationships are derived for S’s up to S = 7/2, comparing the perturbation with the 
exact numerical results to estimate the accuracy. The genuine Zeeman perturbation formalism gives the 
exact solutions for S = 3/2 and for higher S’s it is much more accurate than the pseudo Zeeman 
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perturbation approaches documented so far (A. Abragam, B. Bleaney, Electron paramagnetic Resonance 

of Transition Metal Ions, 1970; J. R. Pilbrow, J. Magn. Reson. 1978, 31, 479; F. Trandafir et al., Appl. 

Magn. Reson. 2007, 31, 553; M. Fittipaldi, et al., J. Phys. Chem. B 2008, 112, 3859), in which the E(Sx2 – 
Sy2) term described in the principal coordinate system is putatively treated to the second order. The error 

between the exact and approximate solutions and the transition probabilities between |±MS>-dominant 
transitions are also estimated. These topics are discussed in Chapter 2. 

In Chapter 3, the analysis of single-crystal ESR spectra from high spin cobalt(II) and iron(III) 
metalloporphyrins (S = 3/2 and 5/2, respectively) magnetically diluted in the corresponding diamagnetic 

Ni(II)porphyrin crystals are described, determining all the magnetic tensors appearing th efictitious 
spin-1/2 or full spin Hamiltonians. The author has empowered the analyses of high spin ESR spectra 
originating in sizable ZFS parameters by invoking the full spin Hamiltonians having the ZFS tensors 

which are neglected in the effective (fictitious spin-1/2) spin Hamiltonian approaches. The usefulness of 
pulse-based transient electron nutation spectroscopy in order to assign the ESR transitions for the iron 
porphyrin system has been demonstrated. 

In Chapter 4, the author has revealed the magnetic properties of a new rhenium(IV) mononuclear 

complex and rhenium(III,IV) binuclear complexes in the mixed-valence state with large ZFS parameters 
by using of single-crystal ESR spectroscopy in the principal-axis coordinate system and SQUID 
measurements. The ReIV moiety in the binuclear complexes is ESR active, while the ReIII unit is found to 

have a singlet ground state with an excited triplet state located above at least 500 cm–1. The ZFS and 
hyperfine tensors of ReIV complexes in the pseudo-octahedral environment have been a long-standing 
issue and the determination of the ZFS parameters is the focus of current subjects in advanced physical 
chemistry and materials science. Both experimentally and theoretically, the present results of the magnetic 

tensors will contribute to further progress in chemistry of rhenium complexes. 
In this work, sophisticated quantum chemical calculations including relativistic effects have been 

carried out for the high spin metallocomplexes under study in order to obtain the theoretical magnetic 

tensors, comparing the experimental values derived on the basis of the spectral analyses with the full spin 
Hamiltonians. The author has invoked the updated quantum chemical calculation approach instead of 
traditional/conventional ligand field theory/fictitious spin-1/2 approaches such as Griffith Hamiltonian 
incorporating spin–orbit interactions to interpret the experimental values in terms of quantum chemistry.  

The author has tested the quantum chemical calculations, whose coded software has been laboratory 
made. 
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Chapter 1: General Introduction 



Metallocomplexes have a lot of crucial functions (metabolism, respiration, synthesis, etc.) as proteins 

and enzymes in our bodies. Countless combinations of metals and ligands generate vast numbers of  
complexes. 

Molecules with unpaired electron(s) can be observed by using of ESR spectroscopy. The studies of 

electronic structures and spin dynamics of metallocomplexes with unpaired electrons are the subjects of 
ESR spectroscopy. [1–8] ESR spectroscopy is applicable to various systems (e.g., materials, [8,9–11] 
devices, [12] catalysts, [13] proton-electron dynamics [14] and biological systems [6,15,16]) and samples 
(single-crystal, poly crystal, powder, solutions). ESR spectra give us a lot of information on the static or 

dynamic characters of molecules or the environments around paramagnetic centers through the magnetic 
tensors such as g-, hyperfine A-, zero-field splitting (ZFS) D- and quadrupole Q-tensors. The magnetic 
tensors (usually as a form of 3 × 3 matrix or merely the principal values) are obtained with the 

diagonalization or perturbation treatment of the effective spin Hamiltonian (Eq. (1.1)). [17] 

"  (1.1) 
The first term is electron-Zeeman interaction (S is electron spin-operator, B is the static magnetic vector, 

β is Bohr magneton). The second term is known as fine-structure or ZFS term. The third term is hyperfine 
interaction (I is nuclear spin-operator).The fourth term is nuclear-Zeeman interaction (βn is nuclear Bohr 
magneton and gn is nuclear g-value). The last term is nuclear electric quadrupole interaction which can be 
included when I ≥ 1. Note that the higher order terms such as Si2Sj2 are not concerned throughout this 

work. 
Not only the continuous wave (cw-)ESR spectroscopy but also relevant pulsed or double resonance 

technology can afford to reveal the magnetic structures of metallocomplexes. The pulsed electron 

transient nutation spectroscopy allows us to determine the MS-sublevels contributing to ESR transitions. 
[18] The determination of the ground spin-state can be a matter of the design and the reaction of catalysts. 
[19] Electron-nuclear double resonance (ENDOR) spectroscopy [1,3,20,21] can distinguish the transition 
between nuclear states and determine the A- and Q-tensor for I ≥ 1 nuclei. Not only A-tensor of the metal 

but also the contributions from the ligand atoms are essential for the electronic structure. The distance 
between the metal ion and the ligands can be measured with ENDOR spectroscopy. The direction of the 
principal axis and the magnitude of the principal values of the hyperfine tensor is related with the spin 

manipulation of quantum bits (qubits) in the field of quantum computing/quantum information processing 
technology (QC/QIP) sometimes called A-tensor engineering. The spin-relaxation times are also key 
factors for the ESR experiments and applications. [1–3,6,7] 

ESR spectra of metalloporphyrin were reported for the first time on copper(II) porphyrin by Roberts 

and Koski in 1960. [22] The electronic structure based on the spin Hamiltonian was discussed. Since then, 
interesting molecules such as utilizing the symmetry of the porphyrin skeletons imitating the reactions in 
proteins were synthesized and ESR measurements were carried out. [10,11,18,23,24] Neutral porphyrin 

itself does not have unpaired electron spin while the excited spin-triplet state can be detected with ESR. 
Recently, Di Valentin and co-workers reported that a porphyrin in the photo-excited triplet state can be 
used as a spin labeling molecule for measuring the spin-spin distance by using of pulsed electron-electron 
double resonance (ELDOR) spectroscopy. [25] 

We deal with the systems with sizable ZFS parameters. Systems with S ≥ 1 (S is a spin quantum 
number) may have ZFS and this interaction is sensitive to the environment or the symmetry around the 
paramagnetic metal center. For example, Hou and co-workers obtained two set of the ZFS tensors of 

chromium(III) (d3, S = 3/2) doped in SnO2 single crystal, due to the symmetry of the crystal site by using 

H = βS ig iB+ S iD iS+ S iA i I −βng nI iB+ I iQ i I
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of ESR and optical spectroscopy. [26] Thus ZFS can form a fundamental contribution as well as the 

electron-Zeeman term in the spin Hamiltonian. In the field of magnetism, ZFS interaction is directly 
connected with the blocking temperature of the single-molecule magnets which characterizes the 
molecules. Metallocomplexes with sizable ZFS parameters can be good candidates of quantum memory 

devices for QC/QIP. [4,5] 
When the ZFS parameter is larger than the energy of microwave (for example, it is about 0.3 cm–1 for 

conventional X-band), ESR spectra of metallocomplex (assuming half-integer spin system) get to be 
simple because the ESR transitions occur between only the same MS-sublevels. In order to simplify the 

assignment of transitions, the fictitious spin-1/2 Hamiltonian approaches are used. The fictitious spin-1/2 
Hamiltonian is written as Eq. (1.2), [1,27–29] 

"  (1.2) 
where Seff is effective electron spin-operator (Seff = 1/2), geff is effective g-tensor, Aeff is effective A-
tensor, which can be altered from the principal values of A-tensor since the projection factor ((2S)–1) 
changed. The fictitious spin-1/2 Hamiltonian approach [1,20] is useful to estimate the sizable ZFS 

principal values in the high spin states, and particularly reports relevant to the evaluation of the ratio of |
E/D| have been documented. [14] Particularly, the analysis of g-value of high spin Fe3+ complexes (S = 
5/2) are of interest and the g-value dependence of E/D were derived in the early 1960s. [30,31] We have 
revisited the derivation of analytical expressions for the relationship between effective g-values (geff) 

obtained from Eq. (1.2) and true principal g-values (gtrue) from the “true” spin Hamiltonian (Eq. (1.1)). 
The general analytical expressions give more insights into the validity of the experimental parameters 
based on the effective spin Hamiltonian approach. The general expressions empower the effective spin 

Hamiltonian approach in quest for molecular design and optimization in terms of sizable ZFS tensors, 
which underlie the effective g-anisotropy. Two analytical approaches are introduced: One is exact, and the 
other is also analytical but based on Rayleigh-Schrödinger perturbation theory. We also attempt to 
interpret the appearance of any ZFS effects on the spectra in terms of analytical solutions by Zeeman 

perturbation treatment in the principal-axis coordinate system. The geff–gtrue relationships for each spin-
state will be derived in Chapter 2. 

To illustrate the usefulness of our approaches, we exploit FeIII(Cl)OEP (S = 5/2) (OEP: 

2,3,7,8,12,13,17,18-octaethylporphyrin) and CoIIOEP (S = 3/2) well magnetically diluted in the 
diamagnetic host crystal lattice of NiIIOEP, which has a similar molecular structure and thus incorporates 
the paramagnetic counterparts without deformation of the guest molecule due to the host-guest mismatch. 
The advantage of the single-crystal ESR spectroscopy lies in the fact that the molecular information on 

the principal axes of the magnetic tensors such as g- and ZFS tensors are crucial in comparing with the 
results of the magnetic properties from reliable quantum chemical calculations. In high spin states of 
some metallocomplexes with sizable ZFS in pseudo-octahedral symmetry, their fine-structure ESR 

transitions with the static magnetic field along the principal z-axis appear in the lower field far from g ~ 2 
at X-band (9.5 GHz). These are the topics of Chapter 3. The appearance disagrees with the putative 
intuitive picture of the relevant high spin ESR. We have chosen ReIII,IV binuclear complex (dimer) in the 
mixed valence state exemplifying such a case (Chapter 4).  

H eff = βSeff igeff iB+ Seff iAeff i I −βng nI iB+ I iQ
eff i I
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Chapter 2: Analyses of Sizable ZFS Tensors of High Spin 
Metallocomplexes by Conventional ESR Spectroscopy: 
Exact Analytical and Genuine Zeeman Perturbation 
Expressions for Converting Fictitious Spin-1/2 g-values 
into True Principal g-values with the ZFS Parameters 



2.1 Introduction 
Effective spin Hamiltonian formalism has played the most important role in many field of modern science 
relevant to electronic magnetic properties of substances. [1,2] Particularly, in the field of magnetic 

resonance and magnetism, the formalism is an essential tool to bridge the gap between magnetic 
phenomena/resonance observations and their theoretical/spectral interpretations in microscopic terms 
such as crystal field (CF), ligand field (LF) and molecular orbital (MO) theories since early 1950s. [1–3] 
Importantly, noting that CF/LF or MO Hamiltonians are theoretical ones, the spin Hamiltonian formalism 

is derived from them, and the relevant interrelationships have been documented so far in order to 
eliminate the confusions. [4–9] The formalism is a remarkable simplification of the most complex 
intractable problem to interpret electronic magnetic experimental data or phenomena in terms of quantum 

mechanical protocols instead of solving, in an explicit manner, complicated magnetic energy levels 
originating in many electronic and nuclear terms appearing in Schrödinger equation. The formalism is 
generally applicable to any spin, intrinsic or fictitious, quantum numbers, and termed the effective spin 
Hamiltonian for Kramers doublets and non-Kramers doublets [10,11] for an odd and even electron 

system, respectively. Noticeably, from the theoretical viewpoint the latter has been important in indicating 
a break of the accepted meaning or protocols of the effective Hamiltonian involving the issues of 
inversion symmetry relevant to electromagnetic irradiations if electric field induced transitions are 

mediated. [12] The break is significant in terms of both quest for the materials design or molecular 
optimization underlying/exhibiting novel electromagnetic multifunctionalities and recent advance in 
emerging quantum spin technology allowing us to manipulate molecular spin quantum bits (qubits) as 

well-defined open shell entities by use of both pulsed magnetic and electric field irradiations. The 
molecular optimization in both realms symmetry considerations of effective Hamiltonians with respect to 
the external irradiation fields becomes crucial. [13] 

Confining ourselves to conventional magnetic dipole transitions, the accepted meaning of the effective 

Hamiltonian formalism is clear and the fictitious spin-1/2 formalism seems to be well established and 
practically the putative method in analyzing ESR experimental data on high spin metallocomplexes with 
sizable zero-field splitting (ZFS; fine structure) parameters. As well known, in paramagnetic 

metallocomplexes the spin–orbit coupling (SOC), as the symmetry breaker, relevant to the central metal 
ions is influential and governs the magnetic properties and tensors such as ZFS. The magnetic tensors of 
experimentally well-characterized transition metal ion complexes serve as a testing ground for advanced 
quantum chemical calculations of magnetic tensors. [14,15] Progress in performance of computing 

resources and algorithms has enabled us to calculate magnetic tensors taking into account the higher order 
relativistic effects. Especially, DFT calculations of spin Hamiltonian parameters have become a useful 
tool for large metallocomplexes, [15] and DFT approaches for magnetic tensors such as metalloporphyrin 

have been reported. [16–18] Nonetheless, the capability of DFT for the quantitative calculations of 
magnetic tensors, especially for molecules including transition elements, is still a controversial issue. [19] 
Quantitative evaluations of the g-, ZFS (D-) and hyperfine (A-) tensors of metallocomplexes in various 
symmetric environments are challenging themes for quantum chemistry because their accurate 

evaluations are essential for the molecular optimization of emerging quantum spin technology. 
We note that ligand field theory has played an important role in understanding the electronic structures 

and ligand surroundings of central metal ions, as underlain by the semi-quantitative interpretation of their 

g- and hyperfine tensors. [20,21] From the theoretical viewpoint, spin Hamiltonian terms relevant to 
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electron magnetic resonance are derived from the generalized relativistic Dirac equation, i.e., Breit-Pauli 

Hamiltonian which is a two-electron component mediated pseudo-relativistic Hamiltonian. Nowadays 
quantum chemical approaches to theoretical magnetic tensors are based on the Breit-Pauli Hamiltonian 
and can afford more accurate interpretations on experimental data. Thus, the bridging the differences 

between the experimental magnetic parameters on the basis of effective Hamiltonian and those derived 
from full spin Hamiltonian based analyses is more and more important, because the former cannot be 
compared with the corresponding theoretical values. 

The fictitious spin-1/2 Hamiltonian approach is useful to estimate the sizable ZFS principal values in 

the high spin states, and particularly reports relevant to the evaluation of the ratio of |E/D| have been 
documented. [22–37] In this chapter, we have revisited the derivation of analytical expressions for the 
relationship between the effective (fictitious spin-1/2) principal g-values (geff) and true principal g-values 

(gtrue) for S = 1, 3/2, 2, 5/2, 3 and 7/2 in a more comprehensive manner. The facile conversion of the 
former into the latter is crucial in comparison with the theoretical interpretation of the experiment. The 
cases for integer S’s such as S = 1 seem trivial if we confine ourselves to pure magnetic dipole transitions. 
The general analytical expressions give more insights into the validity of the experimental parameters 

based on the fictitious spin-1/2 Hamiltonian approach. The general expressions empower the fictitious 
spin-1/2 Hamiltonian approach in quest for molecular design and optimization in terms of sizable ZFS 
tensors, which underlie the effective g-anisotropy. 

In this work, two analytical approaches or methods are introduced: One is exact, and the other is also 
analytical but based on Rayleigh-Schrödinger perturbation theory. We emphasize that the fictitious 
spin-1/2 Hamiltonian approach is not always applicable for electronic high spin systems and the exact 
analytical expressions for the geff–gtrue relationships presented in this work are general, but derived under 

the limited conditions to spin Hamiltonian terms. The expressions are only derived as necessary 
conditions. Generally speaking, for the cases for integer S’s the assumption is not always useful because 
of the symmetry of the spinfunctions. In this context, all the analytical expressions on the basis of the 

genuine Zeeman perturbation are general and useful. 
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2.2 Results and Discussions 
2.2.1 Effective spin Hamiltonian based g-values versus true principal g-

values derived from full spin Hamiltonians for S = 1, 3/2, 2, 5/2, 3, 7/2  
and 4 
The fictitious spin-1/2 Hamiltonian approach as the putative method to analyze conventional fine-
structure/hyperfine ESR spectra of high spin metallocomplexes with low symmetry and sizable ZFS gives 

salient principal g-values far from g = 2 without explicitly affording the principal values for their ZFS in 
most cases. [4,5,8,9] Indeed, the derived effective (fictitious spin-1/2) g-values significantly larger than g 
= 2 are indicative of the occurrence of their high spin states with a measurable value of |E/D| in some 

cases, but naturally they never agree with those (true g-values) acquired by quantum chemical 
calculations such as sophisticated reliable DFT or ab initio MOs. The fictitious spin-1/2 Hamiltonian 
approach is useful and important in many fields, particularly biological/medical science and materials 
science, but from a viewpoint of quantum chemistry there have been superficial misunderstandings 

between the effective and true principal g-values. It is important to differentiate between the effective and 
true g-values and to experimentally derive the latter as accurately as possible in order to interpret 
electronic structures of high spin molecular systems, or to achieve the molecular optimization of 

metallocomplexes for advanced technical purposes. Importantly, we notice that the fictitious spin-1/2 
Hamiltonian approach itself is not always applicable to high spin systems, and some ESR fine-structure 
transitions treated in the fictitious spin-1/2 Hamiltonian approximation, whose resonance fields do not 
obey the identity relation with respect to resonance fields, do not lead to correct information on the true g-

tensors. This point will be discussed later. Note that the principal axis system based on the eigenvectors of 
the ZFS Hamiltonian is considered here and the vanishing of ZFS tensor for particular local site 
symmetry such as cubic are excluded throughout this work. [38–40] 

The analytical expressions for the geff–gtrue relationship help us determine the value of |E/D| or the 
principal values of the D-tensor for some favorable cases. There can be derived any analytical expressions 
of relationships between the effective principal g-values (geff) and those (gtrue) derived from the full 
(ZFS+Zeeman) spin Hamiltonians, which include fine-structure terms from D-tensors for high spin 

multiplicities. Referred to the resonance fields in high spin states, the analytical expressions of the 
eigenfield values for spin multiplicities up to nonet states (S = 4) have been documented. [41] Practically, 
the exact (or very accurate) analytical expressions of the geff–gtrue relationship for S = 3/2 and 5/2 are 

important, and indeed those for S = 3/2 have often been exploited. The exact (or very accurate) analytical 
expressions for S = 5/2 or higher spins, however, have not explicitly been documented and the numerical 
diagonalizations of the spin Hamiltonian matrixes have illustrated some typical relationships for the 
principal values of ZFS tensors for S = 5/2, showing how powder-pattern fine-structure ESR spectra 

behave as a function of the ratios of |E/D| with particular D-values. [42–44] Any analytical expressions 
for the geff–gtrue relationships for the higher spins empower to understand the electronic structures of 
heavy metal ions such as actinide series, being in harmony with advanced quantum chemical calculation. 

Throughout this work, we neglect the contributions from higher order terms of the spin operators such 
as Si2Sj2 allowed in the spin Hamiltonian terms for high spin states. We emphasize that the inclusion of the 
higher terms is tractable in the present treatment and for simplicity in this work the ZFS Hamiltonian 

includes only the rank-2 ZFS terms. We assume the following full spin Hamiltonian, termed the 
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ZFS+Zeeman spin Hamiltonian, in the principal-axis system; 

"  (2.1) 

where the g- and rank-2 ZFS tensors are assumed to be collinear. The definitions for the fine-structure 
constants, i.e., D- and E-values are as follows: 

"  (2.2) 

|Dz| > |Dx| ≥ |Dy| and 0 ≤ |E/D| ≤ 1/3. The choice of the principal axes, x, y and z is not trivial, but is 
relevant to the symmetry of the tensor. For the axial symmetric case, the symmetry axis corresponds to 

the z-axis, and the other two axes have to be designated so as to define the sign of the E-value. For the 
rhombic symmetry, the axis corresponding to the largest principal value is designated to the z-axis. A 
comprehensive discussion of the standardization of the ZFS tensor has been given by Rudowicz and co-

workers. [45,46] Note that the ZFS tensor vanishes in the fictitious electron spin state (S’ = 1/2). [47–49] 
The absolute sign for E requires the definition for the principal x- and y-axes with respect to the 

system under study. In this approach, the resonance condition can be written simply as 

"  (2.3) 
where geff is an effective g-value. 

There are two approaches to derive the analytical expressions for the geff–gtrue relationships. One is to 
exploit the analytical exact solutions for energy eigenvalues of the full (ZFS+Zeeman) spin Hamiltonian 

in the principal-axis system. We have revisited the pioneering work by McGarvey, [50–53] and extended 
to the higher spin multiplicities, giving explicitly analytical exact expressions of the geff–gtrue relationships 
for high spin systems, which particularly are useful for half-integer spins. The exact eigenvalues of the 

ZFS spin Hamiltonian matrixes or the approximated ZFS energies up to S = 3 have been documented so 
far, [48,49,54–59] and the eigenvalues of ZFS+Zeeman spin Hamiltonian (Eq. (2.1)) in the principal-axis 
system for E = 0 were described up to S = 5/2, [48,49] and those with non-vanishing E-value for S = 1 and 
3/2 appeared in many books so far. [49,60] In this work, we have obtained the exact analytical 

expressions for the eigenenergies/eigenfunctions of the spin Hamiltonian (2.1) with S = 2, 5/2, 3 and 7/2 
in the principal-axis coordination system, for the first time. They all are useful for analyzing the canonical 
peaks and identifying off-principal-axis peaks in fine-structure ESR spectroscopy operating at 

conventional X- or Q-band. 
The other approach to the analytical expressions for the geff–gtrue relationships is to invoke Zeeman 

perturbation treatment to solve the energy eigenvalues/eigenfunctions of the spin systems with sizable 
ZFS, which exceeds relevant Zeeman splitting. The Zeeman perturbation treatment is applicable to any 

spin multiplicity, but subject to errors due to the order of the perturbation or the perturbation scheme, i.e., 
the zeroth order eigenfunctions. There are two Zeeman perturbation treatments available, depending on 
the zeroth order functions, i.e., genuine and pseudo-Zeeman perturbation schemes. The latter has been the 

putative method, [3,33–37] and the former, which is more general and accurate, is given in the next 
subsection. The latter approach does not lead to the direct derivation of the analytical expressions for the 
geff–gtrue relationships, and the former gives more significant insights into interpretations of ZFS effects 
on electron magnetic resonance. 

H = βS i g i B+ S iD i S

= β gxSxBx + gySyBy + gzSzBz( )+ D Sz
2 − 1
3
S S +1( )⎡

⎣⎢
⎤
⎦⎥
+ E Sx

2 − Sy
2( )

D = 3
2
Dz

E = 1
2
Dx − Dy( )

EMS
− EMS '

= geffβB
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(a) Spin triplet state (S = 1) 

Yang and co-workers [61] reported copper porphyrin dimeric complexes with the ground triplet state 
which exhibit ∆MS = ±2 transition in X-band ESR spectroscopy. For triplet states, the geff–gtrue 
relationships derived from the exact analytical solution of the ZFS and electronic Zeeman interaction 

Hamiltonian are trivial in terms of purely magnetic dipole transitions for the non-Kramers doublet. The 
triplet state gives the simplest case for the protocols of non-Kramers doublet fictitious spin-1/2 
Hamiltonian approaches to the issues with electric field induced transitions in magnetic resonance [13] in 
which the symmetry considerations of the fictitious spin-1/2 Hamiltonian are required. More generalized 

protocols are relevant to spin quintet and septet states because the spin sublevel subject to the parity 
symmetry increases in number. 

For spin triplet states, the spin Hamiltonian having ZFS and electron-Zeeman interactions is given in 

the matrix form as follows; 

"  

The exact eigenenergies (Fig. 2.1) and eigenfunctions are obtained, 

"  (2.4a) 

"  (2.4b) 

"  (2.4c) 

"  (2.5a) 

HZFS+eZ,z
triplet =

D
3
+ gz

trueβB 0 E

0 − 2D
3

0

E 0 D
3
− gz

trueβB

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

.

E+1 =
D
3
+ E2 + gz

trueβB( )2

E−1 =
D
3
− E2 + gz

trueβB( )2

E0 = − 2D
3

Ψ+1 =
1
Nz

E2 + gz
trueβB( )2 + gztrueβB⎛

⎝⎜
⎞
⎠⎟ +1 + E −1⎡

⎣⎢
⎤
⎦⎥
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Fig. 2.1 Energy diagram in spin-triplet states for some E/D values in the case of B//z (red line) and B//x 
(broken green line).



"  (2.5b) 

"  (2.5c) 
The subscripts MS in EMS and φMS is referred as the spin-sublevels at the limit of E → 0 or for the high-

field approximation. Equalizing the energy difference between E+1 and E–1 to gzeffβB gives 

"  

Squaring the both side of the equation above yields the identical equation. 

"  
Taking gzeff/gztrue > 0, 

"  (2.6) 

with λ = E/D and B’ = B/D. Equation (2.6) contains the term with the static magnetic field B, indicating 
that the relationship independent of the magnetic field does not exist in general and this is true for other 

integer spin systems (Fig. 2.2). The special solution is gzeff/gztrue = 2 if and only if λ = 0 (i.e., E = 0). 

Multiple-frequency measurements or magnetic susceptibility measurements provide us the possibility 

of determining the true set of magnetic parameters including ZFS constants. 
It is worth calculating the transition probability Pi = |<φMs’|Si|φMs>|2 (i = x, y, z) between the MS = ±1 

dominant transitions (Fig. 2.3). 

"  

Note that the shape of the probability function depends on the ratio gztrueβB/D and Pz close to unity for 
small gztrueβB/D. 

When the static magnetic field is along the principal x-axis, the Hamiltonian matrix is represented as 

Ψ−1 =
1
Nz

−E +1 + E2 + gz
trueβB( )2 + gztrueβB⎛

⎝⎜
⎞
⎠⎟ −1⎡

⎣⎢
⎤
⎦⎥

Ψ0 = 0

E+1 − E−1 = 2 E2 + gz
trueβB( )2 = gzeffβB

gz
effβB( )2 = 4E2 + 4 gz

trueβB( )2

gz
eff

gz
true = 4 + 4λ 2

gz
trueβB '( )2

Pz = ϕ−1 Sz ϕ+1
2

= 1
Nz

4 −E +1 + E2 + gz
trueβB( )2 + gztrueβB⎛

⎝⎜
⎞
⎠⎟ −1⎡

⎣⎢
⎤
⎦⎥
Sz E2 + gz

trueβB( )2 + gztrueβB⎛
⎝⎜

⎞
⎠⎟ +1 + E −1⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

2

= 4E
2

Nz
4 E2 + gz

trueβB( )2 + gztrueβB⎡
⎣⎢

⎤
⎦⎥

2

.
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"  

The eigenenergies (green dashed line in Fig. 2.1) and eigenfunctions are 

"  (2.7a) 

"  (2.7b) 

"  (2.7c) 

"  (2.8a) 

"  (2.8b) 

"  (2.8c) 

where the subscripts ±1, 0 is taken over the counterparts in the case of B//z, and Nx,±1 are the normalized 

HZFS+eZ,x
triplet =

D
3

2gx
trueβB
2

E

2gx
trueβB
2

− 2D
3

2gx
trueβB
2

E 2gx
trueβB
2

D
3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

.

Ex,+1 =
−D + 3E

6
+ 1
2

D + E( )2 + 4 gx
trueβB( )2

Ex,−1 =
−D + 3E

6
− 1
2

D + E( )2 + 4 gx
trueβB( )2

Ex,0 =
D
3
− E

Ψ x,+1 =
1

Nx,+1

+1 −
D + E − D + E( )2 + 4 gx

trueβB( )2
2gx

trueβB
0 + −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Ψ x,−1 =
1

Nx,−1

+1 −
D + E + D + E( )2 + 4 gx

trueβB( )2
2gx

trueβB
0 + −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Ψ x,0 =
+1 − −1

2
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Fig. 2.4 geff/gtrue relationship in the case of triplet for some values of the ratio gβB’. (left) The external 
magnetic field is parallel to the principal x-axis (Eq. (2.9)), (right) the external magnetic field is parallel to 
the principal y-axis.
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Fig. 2.3 Transition probabilities Pz calculated with the external magnetic field aligned to principal z-axis 
for gztrueβB’ = 0.1. Pz takes maximum value of 0.91 at E/D = 0.31797. In the case of B//x, y, transition 
probability is zero for any E/D.



factors. Equalizing the energy difference between E±1 to gxeffβB gives the following identity equation with 

respect to B; 

"  

"  (2.9) 

where λ = E/D, B’ = B/D, and gxeff/gxtrue > 0. In this case, there is no general and special solution 
independent of external field B in the range of 0 ≤ λ ≤ 1/3 (Fig. 2.4 (left)). The same relationship are also 
given by exploiting the cyclic permutation relationship between the principal axes, replacing D → 

"  and E → "  in Eq. (2.6). For B//y, replacing D → "  and E → "  

yields the corresponding gyeff–gytrue relationship (depicted in the right side of Fig. 2.3). [45,46,62,63] 
Under B//x, the transition probability Pi = |<Ψ–1|Si|Ψ+1>|2 (i = x, y, z) between the MS = ±1 dominant 

transitions is different from that in B//z (Fig. 2.5). 

"  

For the arbitrary direction of the magnetic field in the principal-axis coordinate system, the spin 

Hamiltonian with ZFS and electron-Zeeman interaction terms is 

"  

where θ and φ are the angles with respect to the principal-axis system of the tensors (Fig. 2.6). The 
eigenenergies of the spin Hamiltonian are the solutions of the following cubic equation (the superscript 
“true” is omitted for simplicity); 

E+1 − E−1 = D + E( )2 + 4 gx
trueβB( )2 = gxeffβB,

gx
eff

gx
true = 4 + λ +1( )2

gx
trueβB '( )2

,

1
2 3E − D( ) − 1

2 E + D( ) − 1
2 3E + D( ) 1

2 E − D( )

Ψ−1 Sx Ψ+1
2

= 1
N−1

1
N+1

+1 −
E + D + E + D( )2 + 4 gx

trueβB( )2
2gx

trueβB
0 + −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
Sx +1 −

E + D − E + D( )2 + 4 gx
trueβB( )2

2gx
trueβB

0 + −1
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

2

=
3E + 3D + E + D( )2 + 4 gx

trueβB( )2
2gx

trueβB

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

.

HZFS+eZ,arb
triplet =

Dz
2 + gzβBcosθ

βB
2 gx sinθ cosϕ − igy sinθ sinϕ( ) Dx−Dy

2

βB
2 gx sinθ cosϕ + igy sinθ sinϕ( ) Dx + Dy

βB
2 gx sinθ cosϕ − igy sinθ sinϕ( )

Dx−Dy
2

βB
2 gx sinθ cosϕ + igy sinθ sinϕ( ) Dz

2 − gzβB

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟
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"  

According to the Viete’s method, 

"  (n = 0, 1, 2) 

with 

"  

The resonance fields are obtained from the eigenfield 
method. [64] 

(b) Spin-quartet state (S = 3/2) 
For spin-quartet states, considering electron-Zeeman and fine-structure terms, spin Hamiltonian is 
expanded in the basis of {|MS>}; 

"  

This matrix can be divided into 2 × 2 matrices of which the basis set are {|+3/2>, |–1/2>} and {|–3/2>, |
+1/2>}, respectively; 

"  

"  

Exact eigenenergies and eigenfunctions are obtained with diagonalizing the Hamiltonian matrix (Fig. 
2.7). 

"  (2.10a) 

x3 = px + q

p = 1
23

6Dz
2 + 2 Dx − Dy( )2 + 4 gzβB( )2 1+ cos2θ( )

+ gxβB( )2 2 − 2cos2θ + 2cos2ϕ − cos 2ϕ + 2θ( )− cos 2ϕ − 2θ( )( )
+ gyβB( )2 2 − 2cos2θ + 2cos2ϕ − cos 2ϕ + 2θ( )− cos 2ϕ − 2θ( )( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

q = − 1
63

54Dz
3 − 54Dz Dx − Dy( )2 −108Dz gzβB( )2 1+ cos2θ( )

+ 27
2

Dz − Dx + Dy( ) gxβB( )2 2 − 2cos2θ + 2cos2ϕ − cos 2ϕ + 2θ( )− cos 2ϕ − 2θ( )( )

+ 27
2

Dz + Dx − Dy( ) gyβB( )2 2 − 2cos2θ + 2cos2ϕ − cos 2ϕ + 2θ( )− cos 2ϕ − 2θ( )( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

xn = 2acos arccos
b
2a

⎛
⎝⎜

⎞
⎠⎟ +

2nπ
3

⎡
⎣⎢

⎤
⎦⎥

a = p
3

b = q
a2
.

HZFS+eZ,z
quartet =

D + 3
2
gz
trueβB 0 3E 0

0 −D + 1
2
gz
trueβB 0 3E

3E 0 −D − 1
2
gz
trueβB 0

0 3E 0 D − 3
2
gz
trueβB

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
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"  (2.10b) 

"  (2.11a) 

"  (2.11b) 

where 

"  

here, EMS and φMS denotes the energy eigenvalues and spin eigenfunctions of the MS-sublevel dominant 

admixed state in the presence of the Zeeman terms. Both upper and lower signs should be chosen in the 
double signs. Equalizing the energy differences between the same set of MS to gzeffβB gives the 
relationship between effective g-value (geff) and “true” g-value (gtrue) can be written as a function of |E/D| 
(= λ). 

"  (2.12) 

where the upper and lower signs represent the transition between MS = ±1/2 and MS = ±3/2 dominant 
doublets, respectively. 

According to the eigenfield method, [64] the resonance field B in the case of B//z are 

"  

(h is the Planck constant and ν is a frequency of the irradiating microwave) and the solutions of the 

following equation; 

"  
with 

E
z,±1
2

= ∓ 1
2
gz
trueβB − D ∓ gz

trueβB( )2 + 3E2

Ψ
z,± 3
2

= cosθz± ± 3
2

+ sinθz± ∓
1
2

Ψ
z,±1
2

= cosθz∓ ±
1
2

− sinθz∓ ∓
3
2

tan2θz± =
3E

D ± gz
trueβB

gz
eff = gz

true 1∓ 2
1+ 3λ 2

⎛
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B =
±12D ±2 −12E2 + hν( )2

2gz
trueβ

a4
2B8 + 2a4a2 − a3

2( )B6 + 2a4a0 − a2
2 − 2a3a1( )B4 + 2a2a0 − a1

2( )B2 + a02 = 0
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Fig. 2.7 Energy diagrams for spin quartet states for some E/D values in the case of B//z (red line) and B//x 
(dashed green line).



"  

Replacing B2 with B yields the quartic equation. 

"  

In order to eliminate B3 term, replacing B with  yields 

"  
with 

"  

The resultant cubic of the quartic equation is 

"  

In order to eliminate the u2 term, replacing u with  yields 

"  (*) 

with 

"  

According to the Viete’s method, one of the solution of the cubic is 

"  

with 

"  

The quartic equation can be rewritten as the product of the two quadratic equations with u0; 

"  

Therefore, the solutions of the original quartic equation are 

" . (**) 

In the case of B//x, the spin Hamiltonian is 
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trueβhν

a0 = −12E2 − 4D2 + hν( )2⎡⎣ ⎤⎦ hν( )2
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4
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"  

The eigenenergies and eigenfunctions are 

"  (2.13a) 

"  (2.13b) 

"  (2.14a) 

"  (2.14b) 

where 

"  

The same set of equations can be obtained with the transformation of D → "  and E → 

"  based on the cyclic permutation of the subscript for the principal-axes, z → x, x → y and z → 

x. [45,46,62,63] 
In the case of B//y, the spin Hamiltonian and diagonalized energies are 

" . 

"  (2.15a) 

"  (2.15b) 

"  (2.16a) 

"  (2.16b) 

where 

"  

The same set of equations can be obtained with the transformation of D → "  and E → 
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"  based on the cyclic permutation. [45,46,62,63] Noting that the zero-field energy is independent 

for the axis (see the next section). 
The use of the transformation leads to the simplification of the derivation for the other principal axis 

orientations, as frequently described in textbooks. We note that importantly the transformation is relevant 

to the spin-space rotation with significant physical consequences, some part of which is described with 
the case of S = 3 in this work (see Table 2A.3 in Appendix 2.2). All the geff–gtrue relationships for S = 3/2, 
Eqs. (2.17a)–(2.17c) are derived under the necessary conditions with the identity relation with respect to 
resonance fields. 

The relationship between effective and “true” g-values in B//x or y can be written as a function of |E/
D| (= λ) in a similar manner in the case of B//z. The geff–gtrue relationships in each direction (x, y or z) is as 
follows: Figure 2.8 depicts geff/gtrue as a function of |E/D| (= λ) relationships. [24–31] 

"  (2.17a) 

"  (2.17b) 

"  (2.17c) 

where gieff and gitrue (i = x, y or z) denotes the principal values of g-tensor obtained from effective and full 
spin Hamiltonian approach, respectively. In those formulas, the upper and lower signs represent the 
transition between MS = ±1/2 and MS = ±3/2 doublets, respectively. When E/D approaches to 1/3, the ratio 

gieff/gitrue reaches 1 (i = x),  (i = y),  (i = z) for the ±1/2 doublets and 1 (i = x),  (i = 

y), "  (i = z) for the ±3/2 doublets. If we have the principal values of effective g-tensor, 

corresponding values of “true” g-tensor and E/D can be estimated with this relationship. As can be seen in 
the right side of Fig. 2.8, the small E/D gives gieff/gitrue ~ 2 (i = x, y) and ~ 1 (i = z). Assuming that gitrue = 

2, typical value, gieff ~ 4 (i = x, y or sometimes represented as ⊥) and ~ 2 (i = z) which are well reported in 

literature. 
All the principal values can be identified once one of the principal values of the gtrue-values or ZFS 

tensors are determined, experimentally or theoretically. Otherwise, full spin Hamiltonian based spectral 

analyses identify relevant magnetic tensors in a quantitative manner. 

1
2 E − D( )

gx
eff

gx
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1+ 3λ 2
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true = 1±

1+ 3λ
1+ 3λ 2
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2
1+ 3λ 2

1+ 3 −1+ 3 −1+ 3
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Fig. 2.8 The geff/gtrue exact relationships as a function of the ratios of |E/D| for S = 3/2. The subscripts, x, y 
and z denote the principal axes of the g- and ZFS tensors. The curves of the exact relationships are given 
in the solid lines. Those derived by the genuine Zeeman perturbation treatment to the second order 
coincide with the exact curves which is overlapping by using of the broken lines. The values at the end of 
the curves are for geff/gtrue at the E/D = 1/3 limit.



It is noteworthy that some combinations of D- and E-values for S = 3/2 do not give real resonance 

fields. General conditions for such case can be derived under necessary conditions in solving the 
corresponding quadratic equation. 

It is worth calculating the transition probabilities of the |MS = ±3/2> and |±1/2>-dominant transitions. 

We consider only the “quantum-mechanical/group-theoretic” transition probabilities P±MS = |<φ–MS|Sx|

φ+MS>|2 and exclude the Boltzmann factor depending on the energy differences for simplicity(Fig. 2.9). 

For the |MS = ±3/2>-dominant transition, 

"  

and for the |MS = ±1/2>-dominant transition, 

"  

where the definition of θz,± has already been given above. 

Let us calculate the exact eigenenergies at an arbitrary direction. The spin Hamiltonian matrix is 

"  

here, the superscript “true” was omitted for simplicity. The secular equation is 

"  
with 

"  

"  

P
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3
2
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⎢
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⎥

2
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3
2
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2
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⎡
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⎢
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⎥

2
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3
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3
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⎛
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⎜
⎜
⎜
⎜
⎜
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+ 9Dz

2 + 5 gzβB( )2 cos2θ + 5 gxβB( )2 cos2ϕ  sin2θ + 5 gyβB( )2
sin2ϕ  sin2θ⎡

⎣⎢
⎤
⎦⎥

q = −3 βB( )2 2Dz gz
2 cos2θ + Dx − Dy − Dz( )gx2 cos2ϕ − Dx − Dy + Dz( )gy2 sin2ϕ⎡⎣ ⎤⎦sin
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Fig. 2.9 The transition probabilities for the |±MS>-dominant transitions, |<Ψ–MS|Sx|Ψ+MS>|2 calculated with 
equations in the text for gtrueβB’ = 0.1. The subscripts, x, y and z denote the principal axes of the g- and 
ZFS tensors. In the right figure, the line for B//z is broken for clarity.



"  

Following the procedure to solve the quadratic equation (from Eqs. (*) to (**) in p.18), the eigenenergies 
are 

"  

with 

"  

Both the upper and lower signs should be chosen in the double sign ±1, while they should be chosen 

freely in the double signs ±1 and ±2. 

(c) Spin-quintet state (S = 2) 

It is, for example, high spin Mn(III) complex that takes spin quintet state. Hori and co-workers measured 
the multi-frequency ESR spectra (up to 122 GHz) and determined the ZFS values of Mn(III) 
protoporphyrin IX reconstituted myoglobin. [32] For the quintet states, the geff–gtrue relationships are 
analytically derived from the five exact energy eigenvalues in the presence of the Zeeman terms. We note 

that geff/gtrue = 2 relevant to the dominant |±1> sublevels with the energies of  for 

the principal z-axis orientation is only valid for E = 0. For the other transitions the analytically exact 
expressions of the geff–gtrue relationships are not always acquired as simple formulas for a given value of 
the static magnetic field. In this context, we suggest that the corresponding formulas derived from the 
genuine Zeeman perturbation treatment and given in the later section are facile generalizations for 

practical use with extreme accuracy. The exact energy eigenvalues (Fig. 2.10) and eigenfunctions with the 
static magnetic field along the principal axes also are given in later. Particular admixture occurring 
because of the symmetry of the spin functions in the quintet state is considered, leading to the derivation 

of the analytical exact expressions for the geff–gtrue relationships for the transitions among the admixed 

states of the permutation-symmetric spin functions such as Ψ+±2 = (|+2> + |–2>)/√2, Ψ+±1 = (|+1> + |–
1>)/√2, and Ψ0 = |0>. 

The spin Hamiltonian matrix of fine-structure and electron-Zeeman terms in the static magnetic field 

lies in z-direction is 

r = 9
16

Dx − Dy( )4
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Dz
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⎥
⎥
⎥
⎥
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"  

This Hamiltonian is divided into two matrixes of which the basis sets are {|+1>, |–1>} and {|+2>, |0>, |–
2>}, respectively. The eigenvalues and eigenfunctions of the former 

"  

are 

"  (2.18) 

"  (2.19) 
where 

"  

Equalizing the energy difference between E±1 to gzeffβB, 

"  
leading to 

"  (2.20a) 

" .  (2.20b) 
with λ = E/D and B’ = B/D. Similar to the case of spin-triplet states, comparing the coefficients of B in Eq. 
(2.20) provides the specific relation gzeff/gztrue = 2 if and only if E = 0. Otherwise the general gzeff–gztrue 
relationship does not hold and depends on gztrueβB (Fig. 2.11). 
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⎜
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⎜
⎜
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⎜
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Fig. 2.10 Energy diagrams for spin-quintet states for some E/D values in the case of B//z (red line) and 
B//x (dashed green line).



The matrix representation of "  in the basis of {|+2>, |0>, |–2>} with B//z is as follows; 

"  

The eigenenergies of this matrix are the solutions of the following cubic equation; 

"  

In order to use the Viete’s method, which is one of the treatments to obtain the exact solution, eliminating 

the x2 term by replacing x with  yields 

"  

The trigonometric solutions for the above cubic equation are 

"  (n = 0, 1, 2) 

where 

"  

and n = 0, 1, 2 correspond to the |MS = +2>, |0> and |–2>-dominant states, respectively. Thus the 
eigenenergies and corresponding eigenfunctions are in the following. 

"  (2.21) 

"  (2.22) 

"  (n = 0, 1, 2). 

The gzeff–gztrue relationship for the |MS = ±2>-dominant transition is obtained with Eq. (2.3), which is 
generally field-dependent and the special solution is gzeff/gztrue = 4 if and only if E = 0. Figure 2.11 depicts 
the gzeff/gztrue relationships as a function of |E/D| for some values of gztrueβB’. 

According to Abragam and Bleaney, the energy difference between |+2> and |–2> (i.e. |∆MS| = 4 
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Fig. 2.11 The gzeff/gztrue relationships as a function of the ratios of |E/D| for S = 2 based on the exact 
solutions with the spin Hamiltonian parameters as follows gztrueβB’ = 0.1, 0.3, 0.5 and 1. The special 
solutions of geff/gtrue = 4 and 2 for |MS = ±2> and |±1>-dominant transitions, respectively, are obtained if 
and only if E/D = 0.



transition) is represented as, [3,32] 

"  (2.23a) 

"  (2.23b) 
The disagreement of Eq. (2.23a) or (2.23b) and the counterpart form the exact relationship (Eq. (2.20a) or 
(2.20b)) could be attributed to the pseudo perturbation approach (Fig. 2.12). 

We note that spin-quintet chemical entities with intermediate ZFS values give off-principal-axis extra 
peaks in their powered spectra, which lead to the spectral complexity and misassignment of the canonical 

peaks. [65,66] The analytical formulas given above can afford much more facile spectral assignments of 
all the canonical peaks than the eigenfield approach. [65,66] 

(d) Spin-sextet state (S = 5/2) 
For spin-sextet states, Gaffney and Silverstone have comprehensively treated ESR spectroscopy of ferric 
iron complexes in proteins, giving the geff–gtrue relationships, as a function of |E/D|, with the ESR 

transition assignments and transition intensities by invoking numerical diagonalizations of the full spin 
Hamiltonian for particular cases of the D-values amounting to 2–10 cm–1. [44] The electronic structures 
of iron and manganese complexes in the spin-sextet state are so important that the geff–gtrue relationships 
have been obtained by using of the pseudo-Zeeman perturbation treatment. [34,35] However, most of the 

relationships can be used under the limited range of |E/D| value (e.g. |E/D| < 0.1). Here, we have derived 
the analytical expressions for the geff–gtrue relationships as a function of |E/D|, as given below for the 
principal orientations. Once the relationships in the principal z-orientation is provided, those of the other 

two principal axes will be given with the cyclic permutation of the subscript for the axes. The energy 
eigenvalues/eigenfunctions for S = 5/2 in the presence of the Zeeman terms are analytically solved, but 
the identity procedure for a given value of the static magnetic field leading to the analytical expressions of 
the geff–gtrue relationships gives too lengthy and complex formulas, as expected from the eigenfield 

method. [41] In the following, the analytical expressions are derived from the exact ones in a desired 
series of expansions, and the formulas below are given to the second order of the expansion for 
trigonometric functions relevant to the exact energy eigenvalues for the principal z-axis orientation. 

In this point of view, consider the case that the static magnetic field is parallel to the principal z-axis. 

In sextet states, ZFS and electron-Zeeman Hamiltonian (B//z), " , in the basis of electron-Zeeman 

state {|MS>} can be represented as 
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based on the exact solutions with the spin Hamiltonian parameters as follows gztrueβB’ = 0.1, 0.3, 0.5 and 
1. The curves from Eq. (2.23b) are depicted in the broken curves.
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"  

This matrix can be divided into two conjugate matrixes whose basis sets are {|+5/2>, |–3/2>, |+1/2>} and 

{|–5/2>, |+3/2>, |–1/2>}, respectively. The former is 

"  

In order to obtain the eigenenergies and eigenfunctions, we solve the corresponding secular equation as 

follows; 

"  

In order to eliminate x2 term, replacing x with  yields 

"  

According to the Viete’s method, the set of the three exact eigenenergies and corresponding 

eigenfunctions are given as 

"  (2.24) 

"  (2.25) 

where 

"  

"  

and n = 0, 1, 2 correspond to |MS = +5/2>, |+1/2> and |–3/2>-dominant states, respectively (Fig. 2.13). 
The counterpart eigenvalues and eigenfunctions in the basis of {|–5/2>, |+3/2>, |–1/2>} can be obtained 

with replacing B with –B. The analytical formulas given above are explicitly derived for the first time 
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together with those for S = 7/2 as given in later in this work. In order to obtain geff–gtrue relationship, we 

took Maclaurin’s (Taylor’s) expansion for arccosine and cosine in Eq. (2.24); 

"  

Replacing x with b/2a gives rise to the following expanded energy eigenvalues. 

"  

"  

"  

The other eigenenergies corresponding to the conjugate spin states {E–5/2, E–1/2, E+3/2} are derived by 
replacing B with –B. The energy difference between conjugate spin states is equated to gzeffβB, i.e., E+MS – 

E–Ms = gzeffβB, yielding identities with respect to B. In the second order expansion in this case, we solved 
the second or fourth order algebraic equations, acquiring the gzeff–gztrue relationships as a function of λ = |
E/D|. The most reasonable gzeff–gztrue relationship for MS = ±5/2 doublets is one of the solution of the 

second order algebraic equation for gzeff from the coefficient of the B2 term of an identity (see Appendix 
2.1). 

The derived expressions based on the expansion above are not so simple as those for quartet states, as 
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Fig. 2.13 Energy diagrams for spin-sextet states for some E/D values in the case of B//z (red line) and B//
x (broken green line).



expected. The analytical formulas are rather complex due to the admixture allowed among the Kramers 

doublets. The eigenvalues include the Zeeman terms, and thus they are different from those at zero-field. 
The trigonometric-function based representations give more physical insights of the admixture between 
the Kramers doublets as the function of the D-value and the ratios of E/D, and the representations are 

useful to acquire numerical accuracy to compute the eigenvalues/eigenfunctions. We note, however, that 
for the simplicity and practical use of the geff–gtrue relationships of S = 5/2, without loss of generality, 
those based on the genuine Zeeman perturbation treatment are much easier to access and useful enough to 
give extreme accuracy equal to the exact relationships for a given value of the static magnetic field. The 

transition probabilities relevant to the principal orientations are easily calculated in terms of the 
eigenfunctions to the second order of the Zeeman terms (detailed formulas are given in the next section). 
The similar approximation can be applied in the case of B//x and y, the discrepancies are much larger than 

that in the case of B//z for second-order expansion (see Appendix 2.1). Although higher-order 
approximation may approach to the exact geff–gtrue relationships, that formula will be useless because we 
will need to solve sixth or higher order algebraic equation which the general solution does not exist. 

Figure 2.14 depicts geff/gtrue as a function of the ratios of |E/D| for S = 5/2 together with the 

relationships derived room the genuine Zeeman perturbation treatment to the second order. The geff–gtrue 
relationships in the solid and dotted curves are based on the expansion given here and on the analytical 
formulas by the genuine Zeeman perturbation treatment described in the later section, respectively. 

Discrepancy between the two relationships is extremely small, and naturally on increasing the static 
magnetic field/microwave frequency used both the expansion and perturbation approaches gives less 
accuracy. 
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Fig. 2.14 geff/gtrue relationships as a function of the ratios of |E/D| for S = 5/2. The subscripts, x, y and z 
denote the principal axes of the g- and ZFS tensors. The curves of the exact relationships in the broken 
lines are based on the exact solutions with the spin Hamiltonian parameters as follows: gtrueβB’ = 0.1. 
Those derived by the genuine Zeeman perturbation treatment to the second order are depicted in the solid 
curves based on Eqs. (2.51a)–(2.51c). The values of geff/gtrue at the extreme limit of |E/D| = 1/3 are given.



For B//x or y, the cyclic permutation for D and E gives the relationships, i.e., D → "  and E 

→ "  for B//x, and D → "  and E → "  for B//y. [45,46,62,63] Figure 2.14 

depicts the geff–gtrue relationships from the exact and the genuine Zeeman perturbation treatment. 

(e) Spin-septet state (S = 3) 
For spin-septet states, the geff–gtrue relationships are derived from all the eigenvalues and eigenfunctions in 
the presence of the Zeeman terms for the principal orientations, as given below. All the formulas are 

analytical and exact. Referred to septet spin states, genuinely organic molecular high spin entities and 
metalloion complexes based high spin clusters are of particular interest, and their ZFS values won’t be 
sizable but relatively large because they are reduced due to the projection factors of the resultant spins in 
the strong exchange coupling scheme. The derived expressions apply to these molecular high spins with 

some modifications. 
The spin Hamiltonian with ZFS and electron-Zeeman interactions are 

"  

This matrix can be divided into two matrices "  and "  whose basis sets are {|+3>, |+1>, |–

1>, |–3>} and {|+2>, |0>, |–2>}, respectively. 

"  

"  

Let us consider the eigenvalues of " . The corresponding secular equation is 

"  

In order to eliminate the x3 term, replacing x with x + D yields 
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The resolvent cubic of this quartic equation is 
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"  

"  

Following the similar way from Eqs. (*) to (**) in p.18, the exact eigenenergies of the Hamiltonian is 

"  (2.26) 

with 

"  

"  

Both the upper and lower signs should be chosen in the double sign ±1, while they should be chosen 
freely in the double signs ±1 and ±2. 

Next, we focus on the eigenenergies of " . The secular equation of this matrix is 

"  

In order to use the Viete’s method, replacing y with "  yields 

"  

Thus the eigenenergies in trigonometric form are 

"  (n = 0, 1, 2)  (2.27) 

where 

"  

and n = 0, 1 and 2 correspond to the energies of |MS = +2>, |–2> and |0>-dominant states, respectively. 

The geff–gtrue relationships as a function of λ = E/D between the |±MS>-dominant sates can be obtained 
from Eq. (2.3). Considering this equation as identities with respect to B, we obtained the specific 
solutions gzeff/gztrue = 6, 4 and 2, of the |MS = ±3>, |±2> and |±1>-dominant transition, respectively, if and 
only if E/D = 0. Figure 2.15 depicts gzeff–gztrue relationships for some gztrueβB’ values. 

We note that the protocols of the eigenfunctions transformation with respect to the change of the 
principal axis are governed by the rotation group of spin space, as described above in the case of S = 3/2. 
In this work, we have illustrated that the global invariance of the eigenenergies with respect to the 

principal-axis transformation explicitly holds for S = 3 in Appendix 2.2 (see Table 2A.3). More 
importantly, the protocols can afford the reduction of the order of the fine-structure spin Hamiltonian, 
enabling us to analytically and exactly solve the eigenvalues/eigenfunctions for spins higher than S = 7/2, 
which will be the future work. 
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(f) Spin-octet state (S = 7/2) 
Spin-octet state can be achieved with f-orbital atoms or spin couplings between radical species. [67–75] 
Spin Hamiltonian considering ZFS and electron-Zeeman interaction in B//z can be written as 

"  

This matrix can be divided two matrixes of which the basis are {|+7/2>, |–5/2>, |+3/2>, |–1/2>} and {|–
7/2>, |+5/2>, |–3/2>, |+1/2>}, respectively. The former is 

"  

The exact eigenenergies are the solutions of the following quartic equation. 

"  

In order to eliminate the x3 term, replacing x with x + gztrueβB/2 yields, 

"  
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Fig. 2.15 geff/gtrue relationships as a function of the ratios of |E/D| for S = 3 based on the exact solutions 
with the spin Hamiltonian parameters as follows gztrueβB’ = 0.1, 0.2, 0.3, 0.5 and 1. The special solutions 
of geff/gtrue = 6, 4 and 2 for |MS = ±3>, |±2> and |±1>-dominant transitions, respectively, are obtained if 
and only if E/D = 0.
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According to the series of Eqs. (*) through (**), the exact eigenenergies of the Hamiltonian is 

"  (2.28) 

with 

"  

"  

"  

The eigenenergies of the conjugate Hamiltonian are obtained with replacing B with –B in the solutions 
above. The geff–gtrue relationship between the |±MS>-dominant states are obtained from Eq. (2.3). Figure 
2.16 depicts geff/gtrue as a function of |E/D| together with the genuine-Zeeman perturbation approach. 

So far, there are few papers of the spin-octet system with magnetic parameters, however the multi-spin 
systems are the promising candidates as quantum memory devices for the QC/QIP or as single-molecule 
magnets. Table 2.1 shows the selected magnetic parameters of the spin-octet systems. 
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Fig. 2.16 The geff/gtrue relationships as a function of the ratios of |E/D| for S = 7/2. The subscripts x, y and 
z denote the principal axes of g- and ZFS tensors. The curves of the exact relationships in the broken lines 
are based on the exact solutions with the spin Hamiltonian parameters as follows: gtrueβB’= 0.1. Those 
derived by the genuine Zeeman perturbation treatment to the second order are depicted in the solid 
curves. The departure of the perturbation treatment from the exact one is only within the third order of the 
Zeeman terms.
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Table 2.1 Reported Spin Hamiltonian Parameters of the Spin-Octet Systems 

(f) Spin-nonet state (S = 4) 

The matrix representation of the spin Hamiltonian in the spin-octet state is 

Paramagnetic 
center

D/cm–1 |E/D| g-value Ref.

Mn(III)3Mn(II) –0.013 no data 1.92 [67]

Fe(II)2 +7(2) 0.11(2) 2.3, 2.2, 2.1 [68]

Fe(II)Fe(III) +4 0 2.04, 2.04, 2.3 [69]

Eu(II) –0.50 
+1.0

0 
0

1.92 
1.97

[70]

Eu(II) +0.575 0.111 2.00 [70]

Gd(III) 0.108 0.08 2.018 [71]

Gd(III) 0.804 0.168 2.08, 2.07, 2.14 [72]

Gd(III) 0.048 0.013 1.99 [73]

Gd(III) –0.019 0 1.99 [73]

Gd(III) +0.2100 0.0857 1.9900, 1.9900, 
2.0000

[74]

Gd(III) +0.2575 0.02718 2.0090, 2.0100, 
1.9775

[74]

Tm(II) not available not available 1.074 
3.069 
5.668

[70]

Yb(III)2 –4.209 no data 1.14 [75]
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"  

This Hamiltonian matrix can be divided into two matrixes in which the basis sets are {|+3>, |+1>, |–1>, |–
3>} and {|+4>, |+2>, |0>, |–2>, |–4>}. The former is 

"  

"  

In order to eliminate the x3 term, replacing x with x – 15D, 

"  

The eigenenergies of  is given explicitly using uz (Fig. 2.17). 

"  (2.29a) 

with 
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"  

"  

"  

The eigenenrgies in the case of B//x are prepared here for the counterpart. 

"  (2.29b) 
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"  

"  
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Fig. 2.17 The energy diagrams derived from the analytical diagonalization for the spin nonet state for E/D 
= 0, 0.1, 0.2 and 0.3. Actual E/D value used in the case of “E/D ≈ 0.3” is 0.29552163.



"  

These values are the part of the solutions of the following Hamiltonian matrix. Figure 2.18 depicts the 
geff/gtrue relationships between |MS = ±3> and |±1>-dominant transitions. 

On the other hand, the ZFS Hamiltonian in the basis of {|+4>, |+2>, |0>, |–2>, |–4>} is 

"  

The secular equation of this Hamiltonian is quintic so that the general solution does not exist except the 
special cases of the parameters. [76] 
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Fig. 2.18 geff/gtrue relationships as a function of the ratios of |E/D| for S = 4 based on the exact solutions 
with the spin Hamiltonian parameters as follows gztrueβB’ = 0.1, 0.2, 0.3, 0.5 and 1. The special solutions 
of geff/gtrue = 54 and 18 for |MS = ±3> and |±1>-dominant transitions, respectively, are obtained if and only 
if E/D = 0.
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2.2.2 Zeeman perturbation treatments of fine-structure spin Hamiltonians: 

Rayleigh-Schrödinger perturbation theory 
The eigenfield method can afford the exact resonance fields [41] of general spin Hamiltonians in a 
straightforward manner, instead of solving energy eigenvalue/eigenfunction problems of full spin 
Hamiltonians, and thus potentially a powerful approach for analyzing fine-structure ESR spectra of high 

spin entities with sizable ZFS. Analytical formulas of eigenfields for spin multiplicities up to S = 4 only 
with the fine-structure spin Hamiltonian are available. There are, however, practical disadvantages of the 
relevant numerical diagonalization procedure despite its intrinsic advantages. [77] The relevant eigenfield 

matrixes are n2 × n2 generalized ones and give complex eigenvalues of resonance fields while the original 
matrixes are n × n Hermitian. In order to practically avoid the pitfall in the numerical diagonalization 
procedure for the generalized matrixes, a hybrid eigenfield method has been proposed, which enormously 
saves CPU time. [41] In the hybrid method, only transition probabilities are solved as the original energy 

eigenvalue/eigenfunction problems with the known calculated eigenfields. To our knowledge, the 
eigenfield mediated analytical expressions for arbitrary orientation of the static magnetic field are too 
lengthy, and the formulas even for the principal-axis orientations are so complex as to serve as useful 

tools for deriving the geff–gtrue relationships, as a given static magnetic field, for the high spin states with 
sizable ZFS. The eigenfield based relationships are less capable of replacing the exact ones given in the 
above section in terms of mathematical complexity. Instead, in this section we afford facile analytical 
formulas to be equal to the exact relationships with extreme accuracy by invoking the Zeeman 

perturbation treatments. 
Zeeman perturbation treatments provide physical insights into any possible influence de to dominating 

or perturbing terms in the full spin Hamiltonian, predicting spectroscopic behavior without mathematical 

complexity. Particularly, the fine structure/hyperfine ESR spectra for spin multiplicities higher than triplet 
with sizable ZFS hardly give the magnitudes of their ZFS principal values in an intuitive manner. [3,33–
37] We have derived the Zeeman perturbation based analytical formulas for geff/gtrue as a function of |E/D| 
for S = 3/2, 2, 5/2, 3 and 7/2. We have estimated the discrepancy of the Zeeman perturbation approach 

from the exact treatment given in the preceding section. Our perturbation method is based on Rayleigh-
Schrödinger perturbation theory. 

There are two approaches in the Zeeman perturbation treatment. One is based on the genuine Zeeman 

perturbation and the other based on the pseudo-Zeeman perturbation. [3,33–37] In the genuine Zeeman 
perturbation, the unperturbed Hamiltonian H0 is the ZFS term (S•D•S), and the perturbed term is the 
electron-Zeeman term (H’ = βS•g•B). The genuine approach completely solves all the admixtures, due to 
the symmetry of spin eigenfunctions, between different spin sublevels such as |MS + 1> and |MS – 1> by 

the unitary transformation of zero-field fine-structure spin Hamiltonians and then treat resultant Zeeman 
terms as the perturbation to the first/second order or higher. This approach is practically applicable to the 
spin quantum number up to S = 4 except for particular cases. The pseudo approach treats all the off-

diagonal terms including asymmetric ZFS terms in the second order of the degenerate Rayleigh-
Schrödinger perturbation, (H0 = D[Sz2 – S(S + 1)/3] and H' = E(Sx2 – Sy2) + βS•g•B) and thus applicable to 
any spin multiplicity despite the fact that increasing |E/D| generally gives rise to less accuracy. In order to 
increase the accuracy the perturbation, a trick of transferring to the Brillouin-Wigner perturbation is 

useful to derive approximate geff–gtrue relationships. 
Note that the energy eigenvalues acquired by the genuine perturbation are exact in terms of the ZFS 
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terms, and only the Zeeman perturbation effects to the energies are treated in the first/second order or 

higher. Thus, the calculated transition frequencies and resonance fields are accurate even of the cases of 
large asymmetric ZFS parameters (3E/D). The pseudo perturbation approach is not appropriate for such 
cases. For conventional ESR spectroscopy, the second order treatment of the genuine Zeeman 

perturbation is accurate enough, and the departure from the exact treatment is in the third order. Low-
field/multi-microwave frequency ESR spectroscopy enhances the genuine Zeeman perturbation approach, 
enabling to estimate sizable ZFS parameters, in spite of the fact that recent instrumentation development 
of very high-field/high-microwave frequency ESR spectroscopy is remarkable. [78,79] In the genuine 

Zeeman perturbation, cross terms between the Zeeman interaction and ZFS terms, appearing as diagonal 
or off-diagonal elements, are treated as Zeeman effects at a given static magnetic field. The contribution 
of the Zeeman effect is quantitatively estimated, and gives clues to the magnitudes of the ZFS principal 

values, as shown below. Derivations of the geff–gtrue relationships for half-integer spin systems with the 
pseudo-Zeeman perturbation are shown in Appendix 2.3. [3,33–37] 

(a) Spin-triplet state (S = 1) 

In this approach, we prepare the spin Hamiltonian in the basis of ZFS eigenfunctions. The matrix 
representation of the ZFS Hamiltonian is 

"  

The secular cubic equation of this matrix is 

"  

The eigenenergies "  and the corresponding eigenfunctions "  of the Hamiltonian are 

"  (2.30a) 

"  (2.30b) 

"  (2.31a) 

"  (2.31b) 

The electron-Zeeman term expanded with the new basis { " , " , " } are with B//z 

" . 

Since the perturbing electron-Zeeman Hamiltonian includes only non-diagonal terms, the interaction with 
respect to the magnetic field will be taken to the second-order energy. 
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"  (2.32b) 

And perturbed spin-functions to the first order are 

"  (2.33a) 

"  (2.33b) 

The normalization factor was omitted for simplicity. Using Eq. (2.3) yields the gzeff–gztrue relationship. 

"  

"  (2.34) 

"  

with λ = E/D and B’ = B/D. Since gzeff/gztrue depends on the external magnetic field, there is no general and 
even specific gzeff–gztrue relationship in this approach. 

Note that according to the Brillouin-Wigner perturbation theory, the equations for the perturbed 
energies E’BW,±1 to the second-order can be represented as 

"  

"  

Solving these equations for the energies yields the exact solutions (2.4a) and (2.4b). 

(b) Spin-quartet state (S = 3/2) 
The perturbed energies and wave functions for the spin-quartet case were discussed by Pilbrow. [80] The 
matrix representation of the ZFS Hamiltonian in the principal-axis system is 

"  

The secular equation of the matrix is 

"  

The diagonalized eigenenergies &  and corresponding eigenfunctions &  are in the  following. 
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"  (2.36b) 

where 

"  
and 

"  or "  

Phases of the eigenfunctions are chosen such that when E → 0,  → |MS>. The electron-Zeeman 

Hamiltonian rewritten spin Hamiltonian H’eZ is 

"  

Thus the second-order energies and first-order spin-functions are 
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"  (2.37c) 

"  (2.37d) 

"  (2.38a) 

"  (2.38b) 

"  (2.38c) 

"  (2.38d) 

here the normalization factors are omitted for simplicity. Noticeably, these perturbed energies are 
equivalent to the set of the exact energies derived in the previous section. It is important that the zeroth-
order energy and the second-order contributions varnishes in the energy differences between the same 
Kramers doublet, resulting in equal to exact solutions. Equation (2.3) gives the relationships between 

effective g-value (gzeff) and g-value from the full spin Hamiltonian (gztrue) can be written as a function of λ 
(= E/D). 
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"  (2.39b) 

The geff–gtrue relationship in the case of B//x or y can be obtained by the cyclic permutation with 

respect to x, y, and z, i.e., for B//x, D → " , E → " , for B//y, D → " , E →

" . [45,46,62,63] The zeroth-order energy D* holds for the cyclic permutation (see Appendix 2.2). 

For B//x, 

"  

and for B//y, 

" . 

The definition of θ was chosen such as the arguments in arctangent does not diverge in  λ → 0 limit. 

Figure 2.8 depicts the geff/gtrue as a function of |E/D| with solid line as well as the exact solutions. 

(c) Spin-quintet state (S = 2) 
The ZFS matrix in the spin quintet case is 

"  

and the coefficients of the secular equation are 

"  

where 

"  
The coefficient of the highest term (x5) is set to be the unit. The second highest term (x4 in this case) 
disappears due to the traceless of the ZFS Hamiltonian. This remains for the other spin states. 

The ZFS Hamiltonian in the spin-quintet state can be divided into two matrixes "  and "  

with the size of 2 × 2 and 3 × 3 of which the basis sets are {|+1>, |–1>} and {|+2>, |0>, |–2>}, 
respectively. The former is 

" . 

The diagonalized energies and eigenfunctions are 

"  (2.40a) 

"  (2.41a) 

The perturbing electron-Zeeman Hamiltonian in the basis of { " , " } is; 
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" . 

Being different from the spin-quartet case, the electron-Zeeman terms exist in the off-diagonal elements 
in the perturbing Hamiltonian. Thus the perturbation effects are taken to the second order in the Rayleigh-
Schrödinger perturbation theory. This is due to the spin symmetry of the system. 

The ZFS Hamiltonian in the basis of {|+2>, |0>, |–2>} is 

" . 

The diagonalized eigenenergies and eigenfunctions are 

"  (2.40b) 

"  (2.40c) 

"  (2.40d) 

"  (2.41b) 

"  (2.41c) 

"  (2.41d) 

where 

"  

"  

and 

"  

The electron-Zeeman Hamiltonian can be transformed in the basis of { " , " , " } with B//z, 

"  

The perturbed energies to the second order and the wave functions to the first order are 

"  (2.42a) 

"  (2.42b) 

"  (2.42c) 

"  (2.42d) 

"  (2.42e) 
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"  (2.43a) 

"  (2.43b) 

"  (2.43c) 

"  (2.43d) 

"  (2.43e) 

The geff–gtrue relationship for the |MS = ±1>-dominant transition is 

"  

"  (2.44a) 

"  

with λ = E/D and B’ = B/D. For the |±2>-dominant transition, 

"  

"  (2.44b) 

" . 

Both Eqs. (2.46a) and (2.46b) do not have the field-independent general and special solutions in the 
range of 0 ≤ λ ≤ 1/3, exemplifying a trivial case of gztrue = 0. 

Now, let us consider the transformation of the Hamiltonian " . According to the eigenvalues 

(2.40b)–(2.40d), it is equivalent that the transformation of the Hamiltonian; 

" . 

The basis of the matrix in the right side is not {|+2>, |0>, |–2>} anymore. 

(d) Spin-sextet state (S = 5/2) 
The ZFS Hamiltonian in the spin sextet state is 
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"  

and the coefficients of the secular equation are 

"  

The definition of the coefficients were mentioned in the spin-quintet state. 

The ZFS Hamiltonian "  can be divided by two equivalent 3 × 3 matrices whose conjugate basis 

sets are {|+5/2>, |–3/2>, |+1/2>} and {|–5/2>, |+3/2>, |–1/2>}, respectively; 

" . 

The secular cubic equation of this Hamiltonian is 

"  

According to the Viete’s method, the three eigenenergies and three corresponding eigenfunctions are 

"  (n = 0, 1, 2) (2.45) 

"  (2.46) 
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"  
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"  (n = 0, 1, 2). 

Here, n = 0, 1 and 2 correspond to the |MS = +5/2>, |+1/2> and |–3/2>-dominant states, respectively. The 

perturbing Hamiltonian in the basis of { & } with B//z is 

"  

The conjugate Hamiltonian in the corresponding basis of {|–5/2>, |+3/2>, |–1/2>} can be obtained by 

replacing B with –B. The perturbed energies to the second order are 

"  

 (2.47a) 

"  

 (2.47b) 

"  

 (2.47c) 
and the perturbed spin-functions to the first order are 

"  

 (2.48a) 

"  

 (2.48b) 

"  

 (2.48c) 
where N±5/2, N±3/2 and N±1/2 are the normalization factors. Notice that the zeroth and the contributions of 

the second-order energies varnish the energy differences between ±MS, E’+MS – E’–MS, are taken. Thus, 

gzeff–gztrue relationships as a function of λ (= |E/D|) are obtained with equation (2.3); 

"  (2.49a) 

for the |MS = ±5/2>-dominating transitions, 
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"  (2.49b) 

for the |MS = ±3/2>-dominating transitions and 

"  (2.49c) 

for the |MS = ±1/2>-dominating transitions. Here and λ = E/D. 

The transition probabilities between |±MS>-dominant transitions are functions of λ = E/D and B. 
Similar to the case of spin-quartet state, here we consider the group-theoretic quantum transition 

probabilities described as  (Fig. 2.19). For the |MS = ±5/2>-dominant transition, 

"  

For the |MS = ±3/2>-dominant transition, 

"  

For the |MS = ±1/2>-dominant transition, 

"  

The energy corrections to the third order "  (n = 0, 1, 2) are given in the following; 

for the |MS = +5/2>-dominant state, 
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Fig. 2.19 The transition probabilities |<φ’–MS|Sx|φ’+MS>|2 for S = 5/2. The subscripts x, y and z denote the 
principal axes of the g- and ZFS tensors. The curves are based on the genuine Zeeman perturbation 
treatment to the first order with the spin Hamiltonian parameters with gtrueβB’ = 0.1.
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 (2.50a) 
for |MS = –3/2>-dominant transition, 
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 (2.50b) 
and for the |MS = +1/2>-dominant transition, 
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 (2.50c) 
The third-order energies corresponding to the |MS = –5/2>, |+3/2> and |–1/2>-dominant states are 

obtained with replacing B with –B in the energy equations for the conjugate |MS = +5/2>, |–3/2> and |

+1/2>-dominant states, respectively. The geff–gtrue relationships are obtained from Eq. (2.3). Figure 2.20 
depicts geff/gtrue as a function of the rations of |E/D| for S = 5/2, as derived from the genuine Zeeman 
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perturbation treatment to the third order and exact solutions for a particular set of the spin Hamiltonian 

parameters given in the caption. 

(e) Spin-septet state (S = 3) 

The ZFS Hamiltonian in the case of spin-septet state is 

"  HZFS
septet =

5D 0 15E 0 0 0 0
0 0 0 30E 0 0 0
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"50

|MS = ±5/2>-dominant

|MS = ±3/2>-dominant |MS = ±1/2>-dominant

Fig. 2.20 The geff/gtrue relationships as a function of the ratios of |E/D| for S = 5/2. The subscripts x, y, and z 
denote the principal axes of the g- and ZFS tensors. The curves of the exact relationships in the brown lines 
are based on the exact solutions of the spin  Hamiltonian parameters with gztrueβB’ = 0.3. Those derived by 
the genuine Zeeman perturbation treatment to the third order are depicted in the solid curves.
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Fig. 2.21 Spin eigenenergies in the case of B//y, E/D = 0.011. MS = ±3/2 dominant states crosses at 
gtrueβB/D = 0.30 so that geff/gtrue = 0.



and the coefficients of the secular equation of "  are 

"  

The ZFS Hamiltonian "  can be divided into two matrixes, "  and " , with the basis sets are 

{|+3>, |+1>, |–1>, |–3>} and {|+2>, |0>, |–2>}, respectively. The former is 

"  

The eigenenergies and corresponding eigenfunctions of this matrix are 

"  (2.51a) 

"  (2.51b) 

"  (2.52a) 

"  (2.52b) 
where 

"  

"  

"  

"  

(n = ±1, ±3) 
The matrix elements of the perturbing electron-Zeeman Hamiltonian can be represented as 

"  
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ϕ±3
0( ) =α ±3 +3 + β±3 +1 + γ ±3 −1 +δ ±3 −3

ϕ±1
0( ) =α ±1 +3 + β±1 +1 + γ ±1 −1 +δ ±1 −3

α n

δ n

=
1 if n = +1,+3( )
−1 if n = −1,−3( )

⎧
⎨
⎪

⎩⎪

γ n

δ n

= βn

α n

= εn
0( ) − 5D
15E

βn

δ n

= α n

δ n

βn

α n

=

εn
0( ) − 5D
15E

 if n = +1,+3( )

− εn
0( ) − 5D
15E

 if n = +1,+3( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

δ n
2 = 2 +

2 εn
0( ) − 5D( )
15E2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

H eZ,1
septet( )l ,m = gz

trueβB Sz( )l ,m → H 'eZ,1( )l ,m = 3α lαm + βlβm − γ lγ m − 3δ lδm( )gztrueβB

= 3α l

δ l

αm

δm

+ βl

δ l

βm

δm

− γ l

δ l

γ m

δm

− 3
⎛
⎝⎜

⎞
⎠⎟
δ lδmgz

trueβB

=

0 if lm > 0( )
ε l

0( ) − 5D( ) εm0( ) − 5D( )− 45E2⎡
⎣

⎤
⎦gz

trueβB

ε l
0( ) − 5D( )2

+15E2 εm
0( ) − 5D( )2

+15E2
if lm < 0( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪
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where l, m = ±1, ±3. For example, (H’eZ,1)+3,–1 corresponds to . The perturbed energies 

will be obtained with the Hamiltonian H’eZ,1. 
The matrix representation of the ZFS Hamiltonian in the basis of {|+2>, |0>, |–2>} is 

"  

The eigenenergies and corresponding eigenfunctions are 

"  (2.51c) 

"  (2.51d) 

"  (2.51e) 

"  (2.52c) 

"  (2.52d) 

"  (2.52e) 
where 

"  

"  

Thus the perturbing electron-Zeeman Hamiltonian can be rewritten as follows; 

"  

Summarizing the perturbed energies to the second-order and the spin functions to the first-order; 

"  (2.53a) 

"  (2.53b) 

"  (2.53c) 

"  (2.53d) 

ϕ+3
0( ) H 'eZ,1 ϕ−1

0( )

HZFS,2
septet =

0 30E 0
30E −4D 30E
0 30E 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ε+2
0( ) = −2D + 2 D2 +15E2

ε−2
0( ) = 0

ε0
0( ) = −2D − 2 D2 +15E2

ϕ+2
0( ) =α+2 +2 + β+2 0 + γ +2 −2

ϕ−2
0( ) =

+2 − −2
2

ϕ0
0( ) =α 0 +2 + β0 0 + γ 0 −2

α+2

β+2

= γ +2

β+2

= 30E
−2D + D2 +15E2

,  β+2
2 = 1+ 15E2

2D2 +15E2 − 2D D2 +15E2

⎡

⎣
⎢

⎤

⎦
⎥

−1

α 0

β0

= γ 0

β0

= 30E
−2D − D2 +15E2

,  β0
2 = 1+ 15E2

2D2 +15E2 + 2D D2 +15E2

⎡

⎣
⎢

⎤

⎦
⎥

−1

H eZ,2
septet = gz

trueβB
2 0 0
0 0 0
0 0 −2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
→ H 'eZ,2 = 2gz

trueβB
0 0 α+2

0 0 α 0

α+2 α 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

E '+3 = ε+3
0( ) +

gz
trueβB( )2 ε+3

0( ) − 5D( ) ε−1
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦
2

ε+3
0( ) − ε−1

0( )⎡⎣ ⎤⎦ ε+3
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

ε−1
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

+
gz
trueβB( )2 ε+3

0( ) − 5D( ) ε−3
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦
2

ε+3
0( ) − ε−3

0( )⎡⎣ ⎤⎦ ε+3
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

ε−3
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

E '+2 = −2D + 2 D2 +15E2 −
2 gz

trueβB( )2α+2
2

D − D2 +15E2

E '+1 = ε+1
0( ) +

gz
trueβB( )2 ε+1

0( ) − 5D( ) ε−1
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦

ε+1
0( ) − ε−1

0( )⎡⎣ ⎤⎦ ε+1
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

ε−1
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

+
gz
trueβB( )2 ε+1

0( ) − 5D( ) ε−3
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦

ε+1
0( ) − ε−3

0( )⎡⎣ ⎤⎦ ε+1
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

ε−3
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

E '0 = −2D − 2 D2 +15E2 −
2 gz

trueβB( )2α 0
2

D + D2 +15E2
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"  (2.53e) 

"  (2.53f) 

"  (2.53g) 

"  (2.54a) 

"  (2.54b) 

"  (2.54c) 

"  (2.54d) 

"  (2.54e) 

"  (2.54f) 

"  (2.54g) 

E '−1 = ε−1
0( ) +

gz
trueβB( )2 ε−1

0( ) − 5D( ) ε+3
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦

ε−1
0( ) − ε+3

0( )⎡⎣ ⎤⎦ ε−1
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

ε+3
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

+
gz
trueβB( )2 ε−1

0( ) − 5D( ) ε+1
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦

ε−1
0( ) − ε+1

0( )⎡⎣ ⎤⎦ ε−1
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

ε+1
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

E '−2 =
gz
trueβB( )2α+2

2

2D − 2 D2 +15E2
+

gz
trueβB( )2α 0

2

2D + 2 D2 +15E2

E '−3 = ε−3
0( ) +

gz
trueβB( )2 ε−3

0( ) − 5D( ) ε+3
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦
2

ε−3
0( ) − ε+3

0( )⎡⎣ ⎤⎦ ε−3
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

ε+3
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

+
gz
trueβB( )2 ε−3

0( ) − 5D( ) ε+1
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦
2

ε−3
0( ) − ε+1

0( )⎡⎣ ⎤⎦ ε−3
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

ε+1
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

ϕ '+3 =ϕ+3
0( ) +

gz
trueβB( ) ε+3

0( ) − 5D( ) ε−1
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦ −1

ε+3
0( ) − ε−1

0( )⎡⎣ ⎤⎦ ε+3
0( ) − 5D( )2 +15E2 ε−1

0( ) − 5D( )2 +15E2

+
gz
trueβB( ) ε+3

0( ) − 5D( ) ε−3
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦ −3

ε+3
0( ) − ε−3

0( )⎡⎣ ⎤⎦ ε+3
0( ) − 5D( )2 +15E2 ε−3

0( ) − 5D( )2 +15E2

ϕ '+2 =α+2 +2 + β+2 0 + 1− gz
trueβB

D − D2 +15E2

⎛
⎝⎜

⎞
⎠⎟
γ +2 −2

ϕ '+1 =ϕ+1
0( ) +

gz
trueβB( ) ε+1

0( ) − 5D( ) ε−1
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦ −1

ε+1
0( ) − ε−1

0( )⎡⎣ ⎤⎦ ε+1
0( ) − 5D( )2 +15E2 ε−1

0( ) − 5D( )2 +15E2

+
gz
trueβB( ) ε+1

0( ) − 5D( ) ε−3
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦ −3

ε+1
0( ) − ε−3

0( )⎡⎣ ⎤⎦ ε+1
0( ) − 5D( )2 +15E2 ε−3

0( ) − 5D( )2 +15E2

ϕ '0 =α 0 +2 + β0 0 + 1− gz
trueβB

D + D2 +15E2

⎛
⎝⎜

⎞
⎠⎟
γ 0 −2

ϕ '−1 =ϕ−1
0( ) +

gz
trueβB( ) ε−1

0( ) − 5D( ) ε+3
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦ +3

ε−1
0( ) − ε+3

0( )⎡⎣ ⎤⎦ ε−1
0( ) − 5D( )2 +15E2 ε+3

0( ) − 5D( )2 +15E2

+
gz
trueβB( ) ε−1

0( ) − 5D( ) ε+1
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦ +1

ε−1
0( ) − ε+1

0( )⎡⎣ ⎤⎦ ε−1
0( ) − 5D( )2 +15E2 ε+1

0( ) − 5D( )2 +15E2

ϕ '−2 =
1
2
+

gz
trueβBα+2

D − D2 +15E2

⎛
⎝⎜

⎞
⎠⎟
+2 +

gz
trueβBα 0

D + D2 +15E2
0 − 1

2
−2

ϕ '−3 =ϕ−3
0( ) +

gz
trueβB( ) ε−3

0( ) − 5D( ) ε+3
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦ +3

ε−3
0( ) − ε+3

0( )⎡⎣ ⎤⎦ ε−3
0( ) − 5D( )2 +15E2 ε+3

0( ) − 5D( )2 +15E2

+
gz
trueβB( ) ε−3

0( ) − 5D( ) ε+1
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦ +1

ε−3
0( ) − ε+1

0( )⎡⎣ ⎤⎦ ε−3
0( ) − 5D( )2 +15E2 ε+1

0( ) − 5D( )2 +15E2
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gzeff/gztrue relationship as a function of λ = E/D for the |MS = ±3>-dominant transition is calculated 

from Eq. (2.3). 

"  (2.55a) 
for the |MS = ±2>-dominant transition, 

"  

"  

 (2.55b) 

"  

and for the |MS = ±1>-dominant transition, 

"  (2.55c) 
Considering Eqs. (2.55a)–(2.55c) as identities with respect to B, we obtain the special solution gzeff/

gztrue = 0 for the |MS = ±2>-dominant transition if and only if E/D = 0, while no special solutions for the |
MS = ±3> and |±1>-dominant transitions. 

Exploiting the approximate formulas in the following, a simplified expression for E’+3 can be 
obtained. 

"  

"  

"  

(f) Spin-octet state (S = 7/2) 

The ZFS Hamiltonian in the case of spin-octet state is 

"  

and the coefficients of the secular equation are 

E '+3− E '−3 = gz
effβB

E '+2− E '−2 = −2D + 2 D2 +15E2 −
4 gz

trueβB( )2α+2
2

D − D2 +15E2
−
2 gz

trueβB( )2α+2
2

D + D2 +15E2
= gz

effβB

15gz
effβBE2 = gz

trueβB( )2 4 D + D2 +15E2( )α+2
2 + 2 D − D2 +15E2( )α 0

2⎡
⎣⎢

⎤
⎦⎥ − 30E

2 D − D2 +15E2( )α 0
2

gz
eff

gz
true = gz

trueβB
4 D + D2 +15E2( )α+2

2 + 2 D − D2 +15E2( )α 0
2⎡

⎣⎢
⎤
⎦⎥

15E2 −
2 D − D2 +15E2( )α 0

2

gz
trueβB

E '+1− E '−1 = gz
effβB

2D2 − 3DE + 3E2 ≈ 2D2 − 3 D2E
2 2D

+ 15E2

16 2D2

2D2 + 3DE + 3E2 ≈ 2D2 + 3 D2E
2 2D

+ 15E2

16 2D2

E '+3 ≈ D + 3E + 2 2 2D2 − 3 D2E
2 2D

+ 15E2

16 2D2

⎛

⎝
⎜

⎞

⎠
⎟

+

gz
trueβB( ) 2 ε+3

0( ) − 5D( ) ε−1
0( ) − 5D( )− 45E2⎡

⎣
⎤
⎦

ε+3
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

ε−1
0( ) − 5D( )2 +15E2⎡

⎣⎢
⎤
⎦⎥

6E + 2 2 2D2 − 3 D2E
2 2D

+ 15E2

16 2D2

⎛

⎝
⎜

⎞

⎠
⎟ − 2 2 2D2 + 3 D2E

2 2D
+ 15E2

16 2D2

⎛

⎝
⎜

⎞

⎠
⎟

HZFS
octet =

7D 0 21E 0 0 0 0 0
0 D 0 3 5E 0 0 0 0
21E 0 −3D 0 2 15E 0 0 0
0 3 5E 0 −5D 0 2 15E 0 0
0 0 2 15E 0 −5D 0 3 5E 0
0 0 0 2 15E 0 −3D 0 21E
0 0 0 0 3 5E 0 D 0
0 0 0 0 0 21E 0 7D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

"54



"  

The ZFS Hamiltonian (E ≠ 0) in spin-octet states can be divided into two equivalent 4 × 4 matrixes whose 
basis sets are {|+7/2>, |–5/2>, |+3/2>, |–1/2>} and {|–7/2>, |+5/2>, |–3/2>, |+1/2>}, respectively. The basis 
sets are conjugate. The former is 

"  

The secular quartic equation of the Hamiltonian is 

" . 
The solutions of the secular equation are 

"  

with 

"  

"  

In the range of 0 ≤ |E/D| ≤ 1/3, the values in square root is always larger than zero. The eigenenergies "  

and corresponding eigenfunctions "  are, 

"  (2.56a) 

"  (2.56b) 

"  (2.56c) 

"  (2.56d) 

"  (2.57a) 

a6
octet = −84 D2 + 3E2( )
a5
octet = −128 D3 − 9DE2( )
a4
octet = 1974 D2 + 3E2( )2
a3
octet = 5376 D2 + 3E2( ) D3 − 9DE2( )
a2
octet = −4 1181D6 + 38277D4E2 − 23409D2E 4 + 59535E6( )
a1
octet = −13440 D3 − 9DE2( ) D2 + 3E2( )2

a0
octet = 11025 D2 + 3E2( )4

HZFS,1
octet =

7D 0 21E 0
0 D 0 3 5E
21E 0 −3D 2 15E
0 3 5E 2 15E −5D

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

.

x4 − 42 D2 + 3E2( )x2 − 64 D3 − 9DE2( )x +105 D2 + 3E2( )2 = 0

xn =
1
2

±1 u0 ±2 84 D2 + 3E2( )− u0 ±1
128 D3 − 9DE2( )

u0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

u0 = 2a0 cos
1
3
arccos b0

2a0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ + 28 D2 + 3E2( )

a0 = 4 21 D2 + 3E2( )
b0 =

24 3D2 + E2( ) D2 − 4DE + 7E2( ) D2 + 4DE + 7E2( )
7 D2 + 3E2( )2

εMS

0( )

ϕMS

0( )

ε
+7
2

0( ) = x1 =
1
2

u0 + −2p − u0 −
2q
u0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε
−5
2

0( ) = x2 =
1
2

u0 − −2p − u0 −
2q
u0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε
+ 3
2

0( ) = x3 =
1
2

− u0 + −2p − u0 +
2q
u0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε
−1
2

0( ) = x4 =
1
2

− u0 − −2p − u0 +
2q
u0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ϕ
+7
2

0( ) =ϕ1 = α1 +
7
2

+ β1 −
5
2

+ γ 1 +
3
2

+δ1 −
1
2
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"  (2.57b) 

"  (2.57c) 

"  (2.57d) 

with 

"  

"  (n = 1, 2, 3, 4). 

The elements of the perturbing electron-Zeeman Hamiltonian are given as 

"  (i, j = 1, 2, 3, 4). 

For example, (H’eZ)12 corresponds to . The perturbed energies to the 

second order and corresponding spin-functions to the first order are 

"  (2.58a) 

"  (2.58b) 

"  (2.58c) 

"  (2.58d) 

"  (2.59a) 

"  (2.59b) 

"  (2.59c) 

"  (2.59d) 

where N1, N2, N2 and N4 are the normalization factors. The other sets {φ’–7/2, φ’+5/2, φ’–3/2, φ’+1/2,} are 

obtained with replacing B with –B. Since the zeroth and the second-order terms vanish when the energy 
difference between the same Kramers doubles are taken, gzeff/gztrue can be represented form Eq. (2.3) as 

"  

(n = 1, 2, 3, 4). (2.60) 

ϕ
−5
2

0( ) =ϕ2 = α 2 +
7
2

+ β 2 −
5
2

+ γ 2 +
3
2

+δ 2 −
1
2

ϕ
+ 3
2

0( ) =ϕ3 = α 3 +
7
2

+ β 3 −
5
2

+ γ 3 +
3
2

+δ 3 −
1
2

ϕ
−1
2

0( ) =ϕ4 = α 4 +
7
2

+ β 4 −
5
2

+ γ 4 +
3
2

+δ 4 −
1
2

α n

γ n

= 21E
xn − 7D

,  δ n

γ n

= 1
2 15E

xn + 3D − 21E2

xn − 7D
⎛
⎝⎜

⎞
⎠⎟

,  β n

γ n

= 3 5E
xn − D

δ n

γ n

,

γ n
2 = 21E2

xn − 7D( )2
+ 3
4 xn − D( )2

xn + 3D − 21E2

xn − 7D
⎛
⎝⎜

⎞
⎠⎟

2

+ 1
60E2 xn + 3D − 21E2

xn − 7D
⎛
⎝⎜

⎞
⎠⎟

2

+1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

H 'eZ( )ij = + 7
2
α iα j −

5
2
β iβ j +

3
2
γ iγ j −

1
2
δ iδ j

⎛
⎝⎜

⎞
⎠⎟ gz

trueβB

ϕ1 H 'eZ ϕ2 = ϕ+ 72

0( ) H 'eZ ϕ− 52

0( )

E '
+7
2

= ε
+7
2

0( ) + + 7
2
α1

2 − 5
2
β1

2 + 3
2
γ 1

2 − 1
2
δ1

2⎛
⎝⎜

⎞
⎠⎟ gz

trueβB + ε
+7
2

2( )

E
−5
2

' = ε
−5
2

0( ) + + 7
2
α 2

2 − 5
2
β2

2 + 3
2
γ 2

2 − 1
2
δ 2

2⎛
⎝⎜

⎞
⎠⎟ gz

trueβB + ε
−5
2

2( )

E
+ 3
2

' = ε
+ 3
2

0( ) + + 7
2
α 3

2 − 5
2
β3

2 + 3
2
γ 3
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with x’n = xn/D, λ = E/D and n = 1, 2, 3 and 4 correspond to the |MS = ±7/2>, |±5/2>, |±3/2> and |±1/2>-

dominant transition, respectively. Figure 2.16 depicts geff/gtrue for S = 7/2 as a function of the ratios of |E/
D|. In Fig. 2.16, as similarly to the cases of S = 5/2, the comparison is made only between the genuine 
Zeeman perturbation approach and the exact analytical calculations with typical sets of the tinge-structure 

parameters. We emphasize that the behavior of the geff/gtrue relationships for S = 7/2 is not totally 
analogous to that of the sextet state, but there are salient features for the dominant middle Kramers 
doublets as seen in Fig. 2.16. 

The transition probabilities P±Ms = |<φ’–MS|Sx|φ’+MS>|2 (Fig. 2.22): 

For the |MS = ±7/2>-dominant transition, 

"  

for the |±5/2>-dominant transition, 

"  

for the |±3/2>-dominant transition, 

"  

for the |±1/2>-dominant transition, 

"  
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|MS = ±5/2>-dominant transition

y, z

|MS = ±7/2>-dominant transition

y, z

x

|MS = ±3/2>-dominant transition

y, z

x

|MS = ±1/2>-dominant transition

y, z

x

Fig. 2.22 The transition probabilities |<φ’–MS|Sx|φ’+MS>|2 for the spin-octet state. The subscripts x, y and z 
denote the principal axes of the g- and ZFS tensors. The curves are based on the genuine Zeeman 
perturbation treatment to the first order with the spin Hamiltonian parameters with gtrueβB’ = 0.1.



(g) Spin-nonet state (S = 4) 

The matrix representation of the ZFS Hamiltonian is 

"  

and the coefficients of the secular equation are 

"  

The ZFS Hamiltonian in the spin nonet case is 9 × 9 matrix which can be divided into two matrixes. 
(As seen below, it can be divided into three matrixes.) The ZFS Hamiltonian in the basis of {|+3>, |+1>, |–

1>, |–3>} is 

" . 

The secular quartic equation 
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"  

can be factorized into two quadratic equations 

"  (2.61a) 

"  (2.61b) 

and the solutions of Eqs. (2.61a) and (2.61b), i.e., the eigenenergies of the Hamiltonian "  are 

"  

Both the upper and lower signs should be chosen in the double signs ±1, while should be chosen freely in 

the double signs ±1 and ±2. Corresponding eigenstates are 

"  
with 

"  

and 

"  

Some eigenenergies of the Hamiltonian "  are related to those of  

"  

"  

"  belong to the eigenenergies of the ZFS Hamiltonian but the residual 5 × 5 matrix. 

On the other hand, the ZFS Hamiltonian in which the basis set is {|+4>, |+2>, |0>, |–2>, |–4>} is 

"  
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"  

The secular equation of "  is quintic, so that the general algebraic solutions does not exist according 

to the Galois theory except the special cases. However, the secular quintic equation can be factorized into 
quadratic and cubic. 

"  (2.61c) 

"  (2.62) 

As seen above, "  are the eigenenergies of the ZFS Hamiltonian " . Indeed, 

they are the solutions of Eq. (2.61c). 

The solutions of the cubic equation (2.62)  
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can be expressed with the trigonometric form as 

"  
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"  
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"  

"  

Summarize the eigenenergies of the matrix below; 

"  (2.64a) 

"  (2.64b) 

"  (2.64c) 

"  (2.64d) 

"  (2.64e) 

"  (2.64f) 

"  (2.64g) 

"  (2.64h) 

"  (2.64i) 

We see that the secular quintic equation of "  can be decomposed into the quadratic and cubic 

equations. In other words, "  can be divided into two matrixes by the accurate transformation. As 

seen in Appendix 2.2, D2 + 3E2 and D3 – 9DE2 are served with the transformation of the subscripts so that 
the ZFS eigennergies are hold even in the cases of B//x and B//y. 

"  

(h) Spin-dectet state (S = 9/2) 

The secular equation of this case is factorized into two quintet equations which does not solved 
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characters and/or the theory of double group for the rotation. The exact numerical diagonalization gives 

the corresponding relationships. 
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2.3 Conclusion 
In the field of magnetic resonance, the fictitious spin-1/2 Hamiltonian approach has seen the most 
putative and facile method to analyze ESR fine-structure/hyperfine spectra of high spin metallocomplexes 

having sizable ZFS parameters since early 1950s. [1,2] The approach gives their principal g-values far 
from g = 2 without explicitly providing their ZFS values. Naturally, these experimental principal g-values 
do not agree with the true g-values acquired by quantum chemical calculations such as sophisticated DFT 
or reliable ab initio MOs. This fact excludes superficial understanding of the concept relevant to the 

fictitious spin-1/2 Hamiltonian approaches. In this work, in harmony with the recent progress in quantum 
chemical calculations for the g-, hyperfine or ZFS tensors of metallocomplexes, we have derived the geff–
gtrue analytical relationships for high spin systems up to S = 7/2 with sizable ZFS, for the first time. The 

analytical relationships give the facile conversion of the geff values into the principal gtrue ones with the 
information on the ZFS tensors.  

The analytical formulas in the principal-axis coordinate system are derived on the basis of two 
mathematical schemes; one is to exactly solve the full (ZFS+Zeeman) spin Hamiltonian, and the other to 

exactly solve the ZFS Hamiltonian (the genuine Zeeman perturbation) and treat the electronic Zeeman 
terms as the perturbing terms by invoking Rayleigh-Schrödinger perturbation theory to the second order. 
We have derived the analytically exact expressions for the eigenvalues/eigenfunctions with the spin 

quantum number S from S = 2 to 4 under the condition of the presence of the electronic Zeeman 
interaction, for the first time. The analytical expressions are applicable to experimental observations of 
any principal ZFS values including intermediate cases in which the genuine Zeeman perturbation 

treatment breaks down. In this work, we have treated only the rank-2 ZFS tensors in the presence of the 
static magnetic field, and the inclusion of the higher order terms such as Si2Sj2 is tractable. 

The latter scheme gives easy-to-access formulas for the geff–gtrue relationships. The expressions are 
exact or equal to exact ones to the third order in the genuine Zeeman perturbation treatment, and they are 

all useful to derive the true principal g-values from the experimentally analyzed data on the basis of 
fictitious spin-1/2 Hamiltonians, in a straightforward manner. Importantly, the assignment of canonical 
peaks and discrimination from off-principal-axis extra lines can be checked on the basis of the geff–gtrue 

analytical relationships. This procedure gives a clue to the occurrence of high spin states with relatively 
sizable ZFS values. 

The genuine-Zeeman perturbation treatment developed in this work provides us with true principal g-
values which are accurate at conventional X- or Q-band ESR spectroscopy enough to compare with the 

theoretical values. The genuine-Zeeman perturbation based formulas are practically much simpler and 
give high accuracy in conventional ESR spectroscopy. The general formulas for S = 5/2 are explicitly 
given particularly for high spin FeIII ion complexes with sizable ZFS of biological implications in the 

following chapter. The corresponding formulas serve as the purpose of getting physical insights into the 
relationships as a function of the principal ZFS values. 

In this work, we have illustrated that the transformation of the eigenenergies of the ZFS Hamiltonian 
is governed by the symmetry of the rotation group for spin space. This suggests that the symmetry 

consideration of the ZFS Hamiltonian for spins higher than S = 7/2 affords the exact analytical solutions 
for the corresponding eigenvalue/eigenfunctions. Rotation group mediated symmetry approaches to the 
analytical solutions are the future work. 
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Appendix 2.1: Approximate expressions of geff–gtrue relationships 
in the case of S = 5/2 
As mentioned in Section 2.2.1, the diagonalized (exact) eigenenergies of the spin Hamiltonian with 
electron-Zeeman and ZFS terms are expressed in terms of trigonometric functions as a function of λ = E/
D and B. In order to explicitly describe the geff–gtrue relationships as a function of λ = E/D, as given in the 

case of the genuine Zeeman perturbation treatment, we are allowed to exploit a series of the expansion of 
arccosine and cosine at a desired order of the expansion, exemplifying to the first or de in the following; 

"  

"  

"  

"  

According to Eq. (2.24), eigenenergies are approximated as, 

"  (2A.1a) 

"  (2A.1b) 

"  (2A.1c) 

where 

"  

The other eigenvalues corresponding to the conjugate spin states {E”–5/2, E”+3/2, E”–1/2} are derived by 
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Fig. 2A.1 The energy diagrams of the exact (red) and approximate (green) energies of each |MS>-
dominant state for λ = 0, 0.1, 0.2 and 0.3, respectively. Since b1/2a1 in arccosine is a monotonically 
decreasing function of λ, the approximate values become close to the exact ones.



replacing B with –B. Figure 2A.1 compares the exact and approximate energies. The energy difference 

between the conjugate spin-states is equated to gzeffβB, i.e., E”+Ms – E”–Ms = gzeffβB, yielding identities 
with respect to B. In order to obtain the formula of geff/gtrue explicitly, we exemplify the transition between 
|MS = ±5/2>-dominant states. Both sides of the equation are multiplied by a15a25 (a2 is obtained with 

replacing B with –B in a1) to eliminate B from denominators. 

"  (2A.2) 

Then, we separate the group of terms with only the even indices from those with only the odd indices of 

a1 and a2 and transpose the former terms to the opposite side of the equation. Squaring the equation yields 
identities with respect to B. The comparison of the coefficients with respect to the same order of B 
provides the quadratic or quartic equations, acquiring the geff–gtrue relationships as a function of λ = E/D. 
For example, the coefficient of B2 term gives a quadratic equation about geff (or gtrue); 

"  (2A.3) 

One of the solutions, which is too long and complicated to write, gives geff–gtrue relationships as a function 
of E/D (Figs. 2A.2 and 2A.3). An expansion procedure similar to the above is applicable to eigenfield 

solutions, and the analytical expressions for geff–gtrue relationships are all lengthy. There is no significant 
advantage to exploit expansion approaches compared with the genuine Zeeman perturbation treatment. 
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Fig. 2A.2 The geff/gtrue relationships as a function |E/D| for S = 5/2. The subscripts, x, y and z denote the 
principal-axes of the g- and ZFS tensors. The curves derived by the genuine Zeeman perturbation 
treatment to the second order are depicted in the solid curves based on Eqs. (2.49a)–(2.49c). The broken 
lines denote the numerical calculation using E”+MS – E”–MS = gzeffβB assuming gztrueβB’ = 0.1.



The coefficient of B4 term is, however, the quartic equation about geff (or gtrue) (Eq. (2A.4)); 

"  

 (2A.4) 
One of the solutions gives a geff–gtrue relationship as a function of |E/D| (Fig. 2A.4). 

Let us consider another example of the transition between the |MS = ±1/2>-dominant state in the case 
of B//x. A similar procedure as the |±5/2>-dominant state case and cyclic permutation (D → " , 
E → " ) [45,46,62,63] provides the corresponding identity with respect to B. Comparing the 
coefficient of B2 terms yields Eq. (2A.5). 

117649
2187

1+ 3λ 2( )6 ×
1483273860320763gz

eff 4 1+ 3λ 2( )14 + 40361193478116gztruegzeff 3 1+ 3λ 2( )12 403+ 2358λ 2 + 567λ 4( )
−400241898gz

true2gz
eff 2 1+ 3λ 2( )7 32375723+ 3635492943λ 2 + 64803306567λ 4 + 496858522635λ 6

+2003895183105λ 8 + 4486632731469λ10 + 5377784726349λ12 + 2706374452761λ14
⎛

⎝⎜
⎞

⎠⎟

+3025260gz
true3gz

eff 1+ 3λ 2( )5 96748246759 + 4549620034713λ 2 + 79634428149060λ 4 + 721626855686028λ 6 + 3815982806534586λ 8

+12331022648901462λ10 + 24424868199192804λ12 + 28380084292255500λ14 +16603287905659959λ16 + 2944669383537273λ18
⎛

⎝⎜
⎞

⎠⎟

−gz
true4

17978115381100597 + 2235660562386423714λ 2 + 69972479068947331023λ 4 +1022492204814148085556λ 6 + 8244804439929181905837λ 8

+37041130038833989338942λ10 + 69734864519708298071679λ12 −146999234645332103541672λ14 −1217726103251990583424809λ16

−3139792128117707723305218λ18 − 3929395899103993471612347λ 20 −1751595263940022156796364λ 22 +1073294364352201859040327λ 24

+1457889103012700080285794λ 26 + 491910630186565976252013λ 28

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 0

1
2 3E − D( )

− 1
2 E + D( )

"66

Fig. 2A.3 The gzeff/gztrue relationships as a function of the rations of |E/D| between |±5/2>-dominant sub 
levels in terms of the three different derivations. The blue solid line was from the genuine Zeeman 
perturbation approach, blue broken line denotes the numerical calculation using exact eigenenergies (Eq. 
(2.24) and its counterpart) with gztrueβB’= 0.1, purple broken line denotes the numerical calculation using 
E”+5/2 – E”–5/2 = gzeffβB assuming gztrueβB’ = 0.1, and the curve denoted by cyan solid line was obtained by 
solving the quadratic equation (Eq. (2A.3)). The discrepancy between the cyan and purple lines is due to 
the ignorance of the higher-order of series expansion of arccosine and cosine.

Fig. 2A.4 The gzeff/gztrue relationships as a function of the rations of |E/D| between |±5/2>-dominant sub 
levels in terms of the three different derivations. The blue solid line was from the genuine Zeeman 
perturbation approach, blue broken line denotes the numerical calculation using exact eigenenergies (Eq. 
(2.24) and its counterpart) with gztrueβB’ = 0.1, purple broken line denotes the numerical calculation using 
E”+5/2 – E”–5/2 = gzeffβB assuming gztrueβB’ = 0.1, and the curve denoted by cyan solid line was obtained by 
solving the quartic equation (Eq. (2A.4)). The discrepancy between the cyan and purple lines is due to the 
ignorance of the higher-order of series expansion of arccosine and cosine.



"  

 (2A.5) 
One of the solution of this equation is approximate geff/gtrue as a function of E/D (Fig. 2A.5). 

In order to gain more accuracy to the relationship, here takes the expansion of trigonometric functions 

to third order, that is, 

"  
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"  

"  

Thus, the eigenenergies are approximated as, 
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Fig 2A.5 The gxeff/gxtrue relationships as a function of the rations of |E/D| between |±1/2>-dominant sub 
levels in terms of the three different derivations. The red solid line was from the genuine-Zeeman 
perturbation approach, gray broken line denotes the numerical calculation using exact eigenenergies with 
gxtrueβB’ = 0.1, yellow broken line denotes the numerical calculation using E”+1/2 – E”–1/2 = gxeffβB 
assuming gxtrueβB’ = 0.1, and the curve denoted by pink solid line was obtained by solving the quadratic 
equation (2A.5).



"  (2A.6a) 

"  (2A.6b) 

"  (2A.6c) 

Figure 2A.5 compares the energies derived with the exact analytical approach and the series 
expansion of the trigonometric functions. Figure 2A.6 depicts the comparison of the approximate 
calculation and the genuine Zeeman perturbation treatment. The explicit relationships of the geff/gtrue as a 

function of E/D will be obtained by comparing the coefficients of the identity with respect to B, and is 
expected longer and more complicated. 
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Fig. 2A.6 The energy diagrams in the case of S = 5/2. The exact analytical energy (Eq. (2.24)) is given in 
the red lines. The approximate energies based on the expansion of the cosine and arccosine functions are 
depicted in the green (Eqs. (2A.6a)–(2A.6c)) and blue (Eqs. (2A.1a)–(2A.1c)) broken curves.
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Fig. 2A.7 The geff/gtrue relationships as a function |E/D| for S = 5/2. The subscripts, x, y and z denote the 
principal-axes of the g- and ZFS tensors. The curves derived by the genuine Zeeman perturbation 
treatment to the second order are depicted in the solid curves based on Eqs. (2.47a)–(2.47c). The broken 
lines denote the numerical calculation using E’”+MS – E’”–MS = gzeffβB assuming gztrueβB’ = 0.1.
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Appendix 2.2: Global permutation for the ZFS eigenenergies 
ZFS eigenenergies must hold for the orientation of the static magnetic field invoking the permutation of 

the subscripts x, y and z. For B//x, D → " , E → " , and for B//y, D → " , E 

→ "  in the eigenenergies for B//z. [45,46,62,63] 

A2.2.1 Spin-triplet state (S = 1) 

Permutations of the subscripts of x, y and z give rise to the corresponding ZFS energies. " &  

"  

"  

Perturbed energies in the case of B//x, y does not give general solutions for the geff–gtrue relationships 
based on the genuine Zeeman perturbation treatment. 

Table 2A.1 Summarized permutation relationships of the ZFS eigenenergies in the spin-triplet state 

* The numbers (0 and ±1) represent the MS values of the ZFS eigenenergies (e.g., +1 means ). 

The energies and wavefunctions are also referred as Ei and φi (i = X, Y, Z) instead of MS. 

"    "  

"    "  

"     "  

A2.2.2 Spin-quartet state (S = 3/2) 
The zeroth-order energy D* holds in this permutation procedure. 

"  

"  

A2.2.3 Spin-quintet states (S = 2) 

The ZFS energies "  and &  which equal to D* hold for the permutation of the subscripts as seen in 
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the spin quartet case. However, the set of ZFS energies { & , & , & } are related with each other. 

"    "  

"    "  

"    "  

Table 2A.2 Summarized permutation relationships of the ZFS eigenenergies in the spin-quintet state 

* The numbers (0, ±1 and ±2) represent the MS values of the ZFS eigenenergies (e.g., +2 means ). 

A2.2.4 Spin-sextet states (S = 5/2) 
The ZFS eigenenergies for spin-sextet states consist of D2 + 3E2 and D3 – 9DE2. As seen above, D2 + 3E2 
does not change in the permutation of the subscripts. Thus we demonstrate that D3 – 9DE2 also hold for 
the permutation of the subscripts. 

"  

"  

In fact, D3 – 9DE2 is factorized to D(D + 3E)(D – 3E) which the group of the elements close for the 
permutation treatment. 

A2.2.5 Spin-septet state (S = 3) 

Obviously, the ZFS energy "  holds for the permutation of the subscripts. For the other eigenenergies, 
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–2 +1 –1

ε+2
0( )

D3 − 9DE2 B//x⎯ →⎯⎯ 1
2
3E − D( )⎡

⎣⎢
⎤
⎦⎥

3

− 9 1
2
3E − D( )⎡

⎣⎢
⎤
⎦⎥
− 1
2
E + D( )⎡

⎣⎢
⎤
⎦⎥

2

= D3 − 9DE2

D3 − 9DE2 B//y⎯ →⎯⎯ − 1
2
3E + D( )⎡

⎣⎢
⎤
⎦⎥

3

− 9 − 1
2
3E + D( )⎡

⎣⎢
⎤
⎦⎥
1
2
E − D( )⎡

⎣⎢
⎤
⎦⎥

2

= D3 − 9DE2

ε−2
0( )

2 2D2 − 3DE + 3E2 B//x⎯ →⎯⎯ 2 D2 +15E2

2 2D2 − 3DE + 3E2 B//y⎯ →⎯⎯ 2 D2 +15E2

2 2D2 + 3DE + 3E2 B//x⎯ →⎯⎯ 2 2D2 − 3DE + 3E2

2 2D2 + 3DE + 3E2 B//y⎯ →⎯⎯ 2 2D2 + 3DE + 3E2

2 D2 +15E2 B//x⎯ →⎯⎯ 2 2 2D2 + 3DE + 3E2

2 D2 +15E2 B//y⎯ →⎯⎯ 2 2 2D2 − 3DE + 3E2
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Table 2A.3 Summarized permutation relationships of the ZFS eigenenergies in the spin-septet state 

* The numbers (0, ±1, ±2 and ±3) represent the MS values of the ZFS eigenenergies (e.g., +3 means ). 

Interestingly, the same relationships as in Table 2A.1 are reproduced from the row of +1 to –1 in Table 

2A.3 (squared by bold). This is due to the theory of the angular momenta and the fact that the ZFS is the 
2-rank tensor. 

A2.2.6 Spin-octet state (S = 7/2) 
The ZFS energies for the spin-octet state consist of D2 + 3E2 and D3 – 9DE2, both are confirmed to hold 
for the cyclic permutation as seen in the spin-quartet and sextet cases. 

A2.2.7 Spin-nonet state (S = 4) 

From the derivations of eigenenergies (2.66a)–(2.66i), " ,&  and &  hold for the permutation of the 

subscripts. Others are related as the following table. 

B//z B//x B//y

+3 +2 +2

+2 –3 +3

+1 0 0

0 –1 +1

–1 +1 –1

–2 –2 –2

–3 +3 –3

ε+3
0( )

ε+4
0( ) ε+2

0( ) ε0
0( )
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Table 2A.4 Summarized permutation relationships of the ZFS eigenenergies in the spin-nonet state 

* The numbers (0, ±1, ±2, ±3 and ±4) represent the MS values of the ZFS eigenenergies (e.g., +4 means 

" ). 

Similar to the spin-quintet case, the same relationships as in Table 2A.2 are reproduced from the row 
of +2 to –2 in Table 2A.4 (squared by bold). 

B//z B//x B//y

+4 +4 +4

+3 –3 +3

+2 +2 +2

+1 –1 +1

0 0 0

–1 –2 –2

–2 +1 –1

–3 –4 –4

–4 +3 –3

ε+4
0( )
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Appendix 2.3: ZFS eigenenergies for the integer spin systems for  
S > 4 
We derive the eigenenergies and the corresponding eigenfunctions of the ZFS Hamiltonian (E ≠ 0) and 
discuss the mathematical and physical structures of the Hamiltonian. Here, we expand the secular 
equation in the form of  

"  

with " . Due to the traceless of the ZFS Hamiltonian matrix, " . 

(a) S = 5 
The matrix representation of the ZFS Hamiltonian in the case of S = 5 is as follows; 

"  

The coefficients "  of the secular equation of this matrix are listed below. 

"  

The matrix "  can be divided into two matrixes. The Hamiltonian matrix in the basis of {|+5>, |

+3>, |+1>, |–1>, |–3>, |–5>} is as follows. 

an
Sxn

n
∑
a2S+1
S = 1 a2S

S = 0

HZFS
S=5 =

15D 0 3 5E 0 0 0 0 0 0 0 0
0 6D 0 6 3E 0 0 0 0 0 0 0

3 5E 0 −D 0 2 42E 0 0 0 0 0 0
0 6 3E 0 −6D 0 210E 0 0 0 0 0
0 0 2 42E 0 −9D 0 15E 0 0 0 0
0 0 0 210E 0 −10D 0 210E 0 0 0
0 0 0 0 15E 0 −9D 0 2 42E 0 0
0 0 0 0 0 210E 0 −6D 0 6 3E 0
0 0 0 0 0 0 2 42E 0 −D 0 3 5E
0 0 0 0 0 0 0 6 3E 0 6D 0
0 0 0 0 0 0 0 0 3 5E 0 15D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

an
S=5

a9
S=5 = −429 D2 + 3E2( )
a8
S=5 = −1430 D3 − 9DE2( )
a7
S=5 = 59631 D2 + 3E2( )2
a6
S=5 = 353340 D3 − 9DE2( ) D2 + 3E2( )
a5
S=5 = −27 89377D6 +1328693D4E2 +1364579D2E 4 + 2937479E6( )
a4
S=5 = −19698390 D2 + 3E2( )2 D3 − 9DE2( )
a3
S=5 = 6804 D2 + 3E2( ) 1994D6 +161621D4E2 − 233512D2E 4 +197513E6( )
a2
S=5 = 29160 D3 − 9DE2( ) 10678D6 +104677D4E2 + 271156D2E 4 + 296881E6( )
a1
S=5 = 2624400 D2 + 3E2( )2 197D6 − 4646D4E2 +18157D2E 4 −1100E6( )
a0
S=5 = 26244000 D2 + 3E2( ) D3 − 9DE2( ) 9D6 − 262D4E2 + 929D2E 4 −100E6( )

HZFS
S=5
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"  

The secular equation of this matrix is factorized as 

"  (2A.7a) 

"  (2A.7b) 
The solutions of Eqs. (2A.7a) and (2A.7b) will be shown together with the relationships of the 
permutation. 

The ZFS matrix in the basis of in the basis of {|+4>, |+2>, |0>, |–2>, |–4>} is 

"  

The secular equation of this matrix can be decomposed into two equations; 

"  (2A.8) 

"  (2A.7c) 
The solutions of the quadratic equation (2A.8) are 

"  (2A.9) 
x+ and x– correspond to the eigenenergies of the |MS = –2> and |–4>-dominant states, respectively. The 
eigenfunctions are 

"  
with 

"  

"  

"  

"  

"  

This solution is invariant for the permutation of the axis. 

H1
S=5 =

15D 3 5E 0 0 0 0
3 5E −D 2 42E 0 0 0
0 2 42E −9D 15E 0 0
0 0 15E −9D 2 42E 0
0 0 0 2 42E −D 3 5E
0 0 0 0 3 5E 15D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

x3 − 5 D + 3E( )x2 − 141D2 − 210DE + 213E2( )x −135D3 + 225D2E + 2115DE2 + 675E 3 = 0

x3 − 5 D − 3E( )x2 − 141D2 + 210DE + 213E2( )x −135D3 − 225D2E + 2115DE2 − 675E 3 = 0

H 2
S=5 =

6D 6 3E 0 0 0
6 3E −6D 210E 0 0
0 210E −10D 210E 0
0 0 210E −6D 6 3E
0 0 0 6 3E 6D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x2 − 36 D2 + 3E2( ) = 0
x3 +10Dx2 − 36D2 + 528E2( )x − 360 D3 − 4DE2( ) = 0

x± = ±6 D2 + 3E2 = ±6D*

ϕMS

0( ) =α ± +4 + β± +2 + γ ± 0 +δ ± –2 + ε± –4

α ±

β±

= 3E
±D* − D

γ ±

β±

= 6
210E

±D* + D − 3Eα ±

β±

⎡

⎣
⎢

⎤

⎦
⎥ =

6 ±D* − D( ) ±D* + D( )−18E2

210E ±D* − D( )
δ ±

β±

= 1
210E

±6D* +10D( )γ ±

β±

− 210E
⎡

⎣
⎢

⎤

⎦
⎥

=
6 ±D* − D( ) ±D* + D( ) ±6D* +10D( )− 210E2 ±D* − D( )−18E2 ±6D* +10D( )

210E2 ±D* − D( )
ε±

β±

= 1
6 3E

±6D* + 6D( )δ ±

β±

− 210E γ ±

β±

⎡

⎣
⎢

⎤

⎦
⎥

= 1
35 3E 3 ±D* − D( )

±D* − D( ) ±D* + D( )2 ±6D* +10D( )− 70E2 ±D* − D( ) ±D* + D( )
−3E2 ±D* + D( ) ±6D* +10D( )+ 210E 4

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

β±
2 = α ±

β±

⎛
⎝⎜

⎞
⎠⎟

2

+ γ ±

β±

⎛
⎝⎜

⎞
⎠⎟

2

+ δ ±

β±

⎛
⎝⎜

⎞
⎠⎟

2

+ ε±

β±

⎛
⎝⎜

⎞
⎠⎟

2

+1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
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Equations. (2A.7a)–(2A.7c) are related with each other with the permutation relationships; 

"  

Thus the solutions of Eqs. (2A.7a) and (2A.7b) are obtained with the replacement of D and E in the 

solutions of Eq. (2A.7c). Replacing x with "  in Eq. (2A.7c) yields 

"  

The solutions of the Eq. (2A.7c) can be written in the trigonometric form as 

"  (n = 0, 1, 2) 

with 

"  

and n = 0, 1, 2 correspond to the |MS = +4>, |0> and |+2>-dominant states, respectively. The 
corresponding eigenfunctions are 

"  
with 

"  

"  

"  

"  

"  

and 

(2A.7c) B//x⎯ →⎯⎯ (2A.7a) B//x⎯ →⎯⎯ (2A.7b)
(2A.7c) B//y⎯ →⎯⎯ (2A.7b) B//y⎯ →⎯⎯ (2A.7a)

x − 10
3 D

x3 = 16
3
13D2 + 99E2( )+ 64027 D 7D2 −135E2( )

xeven,n = 2aeven cos
1
3
arccos beven

2aeven

⎛
⎝⎜

⎞
⎠⎟
+ 2nπ
3

⎡

⎣
⎢

⎤

⎦
⎥ −
10
3
D

aeven =
4
3
13D2 + 99E2

beven =
40D 7D2 −135E2( )
3 13D2 + 99E2( )

ϕMS

0( ) =α even,n +4 + βeven,n +2 + γ even,n 0 +δ even,n –2 + εeven,n –4

α even,n

βeven,n
=
εeven,n
δ even,n

= 6 3E

x 'even,n−
28
3
D

γ even,n
βeven,n

=
γ even,n
δ even,n

= 1
210E

x 'even,n+
8
3
D − 6 3E

α even,n

βeven,n

⎡

⎣
⎢

⎤

⎦
⎥ =

x 'even,n−
28
3
D⎛

⎝⎜
⎞
⎠⎟ x 'even,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ −108E

2

210E x 'even,n−
28
3
D⎛

⎝⎜
⎞
⎠⎟

δ even,n
βeven,n

= 1
210E

x 'even,n+
20
3
D⎛

⎝⎜
⎞
⎠⎟
γ even,n
βeven,n

− 210E
⎡

⎣
⎢

⎤

⎦
⎥

= 1

210E2 x 'even,n−
28
3
D⎛

⎝⎜
⎞
⎠⎟

x 'even,n−
28
3
D⎛

⎝⎜
⎞
⎠⎟ x 'even,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'even,n+

20
3
D⎛

⎝⎜
⎞
⎠⎟

−210E2 x 'even,n−
28
3
D⎛

⎝⎜
⎞
⎠⎟ −108E

2 x 'even,n+
20
3
D⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

εeven,n
βeven,n

= 1
6 3E

x 'even,n+
8
3
D⎛

⎝⎜
⎞
⎠⎟
δ even,n
βeven,n

− 210E
γ even,n
βeven,n

⎡

⎣
⎢

⎤

⎦
⎥

= 1

1260 3E 3 x 'even,n−
28
3
D⎛

⎝⎜
⎞
⎠⎟

x 'even,n−
28
3
D⎛

⎝⎜
⎞
⎠⎟ x 'even,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟
2

x 'even,n+
20
3
D⎛

⎝⎜
⎞
⎠⎟

−420E2 x 'even,n−
28
3
D⎛

⎝⎜
⎞
⎠⎟ x 'even,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟

−108E2 x 'even,n+
8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'even,n+

20
3
D⎛

⎝⎜
⎞
⎠⎟ + 22680E

4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

βeven,n
2 =

α even,n

βeven,n

⎛

⎝⎜
⎞

⎠⎟

2

+
γ even,n
βeven,n

⎛

⎝⎜
⎞

⎠⎟

2

+
δ even,n
βeven,n

⎛

⎝⎜
⎞

⎠⎟

2

+
εeven,n
βeven,n

⎛

⎝⎜
⎞

⎠⎟

2

+1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
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"  

The solutions of Eqs. (2A.7a) and (2A.7b) are obtained with applying the cyclic permutation. For Eq. 
(2A.7a), 

"  (2A.10a) 

with 

"  

n = 0, 1 and 2 correspond to the |MS = –5>, |–1> and |–3>-dominant states. The eigenfunctions are 

"  
with 

"  

"  

"  

"  

x 'even,n = 2aeven cos
1
3
arccos beven

2aeven

⎛
⎝⎜

⎞
⎠⎟
+ 2nπ
3

⎡

⎣
⎢

⎤

⎦
⎥

xodd,n = 2aodd cos 1
3

arccos bodd

2aodd

⎛
⎝⎜

⎞
⎠⎟
+ 2nπ

3
⎡

⎣
⎢

⎤

⎦
⎥ +

5
3
D − 5E  n = 0,1,2( )

aodd =
4
3
28D2 + 30DE + 54E2

bodd =
20 D − 3E( )(16D2 + 39DE + 9E2 )

42D2 + 45DE + 81E2

ϕodd,n
0( ) =α odd,n +5 + βodd,n +3 + γ odd,n +1 +δ odd,n −1 + εodd,n −3 +ζ odd,n −5

α odd,n

βodd,n
=
ζ odd,n
εodd,n

= 3 5E

x 'odd,n−
40
3
D

γ odd,n
βodd,n

=
δ odd,n
εodd,n

= 1
2 42E

x 'odd,n+
8
3
D − 3 5Eαm

βm

⎡

⎣
⎢

⎤

⎦
⎥ =

x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ − 45E

2

2 42E x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟

δ odd,n
βodd,n

=
γ odd,n
εodd,n

= 1
15E

x 'odd,n+
32
3
D⎛

⎝⎜
⎞
⎠⎟
γ odd,n
βodd,n

− 2 42E
⎡

⎣
⎢

⎤

⎦
⎥

= 1

30 42E2 x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟

x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

32
3
D⎛

⎝⎜
⎞
⎠⎟

−168E2 x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟ − 45E

2 x 'odd,n+
32
3
D⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

εodd,n
βodd,n

= 1
2 42E

x 'odd,n+
32
3
D⎛

⎝⎜
⎞
⎠⎟
δ odd,n
βodd,n

−15E
γ odd,n
βodd,n

⎡

⎣
⎢

⎤

⎦
⎥

= 1

2520E 3 x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟

x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

32
3
D⎛

⎝⎜
⎞
⎠⎟
2

−225E2 x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟

−168E2 x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

32
3
D⎛

⎝⎜
⎞
⎠⎟

−45E2 x 'odd,n+
32
3
D⎛

⎝⎜
⎞
⎠⎟
2

+10125E 4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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"  

"  

and 

"  (2A.10b) 

Replacing E with –E in the equations from Eqs. (2A.10a) to (2A.10b) gives the corresponding 
eigenenergies/eigenvalues for Eq. (2A.7b), where n = 0, 1 and 2 correspond to the |MS = +5>, |+1> and |

+3>-dominant states, respectively. 
Summarize the eigenenergies of the matrix below; 

"  

"  

"  

"  

"  

"  

"  

"  

"  

"  

ζ odd,n
βodd,n

= 1
3 5E

x 'odd,n+
8
3
D⎛

⎝⎜
⎞
⎠⎟
εodd,n
βodd,n

− 2 42E δm

βm

⎡

⎣
⎢

⎤

⎦
⎥

= 1

7560 5E 4 x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟

x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟
2

x 'odd,n+
32
3
D⎛

⎝⎜
⎞
⎠⎟
2

−336E2 x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

32
3
D⎛

⎝⎜
⎞
⎠⎟

−225E2 x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

8
3
D⎛

⎝⎜
⎞
⎠⎟
2

−45E2 x 'odd,n+
8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'odd,n+

32
3
D⎛

⎝⎜
⎞
⎠⎟
2

+28224E 4 x 'odd,n−
40
3
D⎛

⎝⎜
⎞
⎠⎟

+10125E 4 x 'odd,n+
8
3
D⎛

⎝⎜
⎞
⎠⎟ + 7560E

4 x 'odd,n+
32
3
D⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

βodd,n
2 =

α odd,n

βodd,n

⎛

⎝⎜
⎞

⎠⎟

2

+
γ odd,n
βodd,n

⎛

⎝⎜
⎞

⎠⎟

2

+
δ odd,n
βodd,n

⎛

⎝⎜
⎞

⎠⎟

2

+
εodd,n
βodd,n

⎛

⎝⎜
⎞

⎠⎟

2

+
ζ odd,n
βodd,n

⎛

⎝⎜
⎞

⎠⎟

2

+1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

x 'odd,n = 2aodd cos
1
3
arccos bodd

2aodd

⎛
⎝⎜

⎞
⎠⎟
+ 2nπ
3

⎡

⎣
⎢

⎤

⎦
⎥ − 5E

ε+5
0( ) = 2a 'odd cos

1
3
arccos b 'odd

2a 'odd

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +
5
3
D + 5E

ε+4
0( ) = 2aeven cos

1
3
arccos beven

2aeven

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −
10
3
D

ε+3
0( ) = 2a 'odd cos

1
3
arccos b 'odd

2a 'odd

⎛
⎝⎜

⎞
⎠⎟
+ 4π
3

⎡

⎣
⎢

⎤

⎦
⎥ +
5
3
D + 5E

ε+2
0( ) = 2aeven cos

1
3
arccos beven

2aeven

⎛
⎝⎜

⎞
⎠⎟
+ 4π
3

⎡

⎣
⎢

⎤

⎦
⎥ −
10
3
D

ε+1
0( ) = 2a 'odd cos

1
3
arccos b 'odd

2a 'odd

⎛
⎝⎜

⎞
⎠⎟
+ 2π
3

⎡

⎣
⎢

⎤

⎦
⎥ +
5
3
D + 5E

ε0
0( ) = 2aeven cos

1
3
arccos beven

2aeven

⎛
⎝⎜

⎞
⎠⎟
+ 2π
3

⎡

⎣
⎢

⎤

⎦
⎥ −
10
3
D

ε−1
0( ) = 2aodd cos

1
3
arccos bodd

2aodd

⎛
⎝⎜

⎞
⎠⎟
+ 2π
3

⎡

⎣
⎢

⎤

⎦
⎥ +
5
3
D − 5E

ε−2
0( ) = 6 D2 + 3E2

ε−3
0( ) = 2aodd cos

1
3
arccos bodd

2aodd

⎛
⎝⎜

⎞
⎠⎟
+ 4π
3

⎡

⎣
⎢

⎤

⎦
⎥ +
5
3
D − 5E

ε−4
0( ) = −6 D2 + 3E2
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"  

where aodd and bodd are defined above and 

"  

The permutation relationship among the eigenenergies are summarized in Table 2A.5. A part of the 
table is same as Table 2A.3, the spin septet case (surrounded by the bold lines). This is because the ZFS 
tensor considered is rank-2 tensor. 

Table 2A.5 Summarized permutation relationship of the ZFS eigenenergies in the case of S = 5 

* The numbers (0, ±1, ±2, ±3, ±4, ±5) represent the MS values of the ZFS eigenenergies (e.g., +5 means 

" ). 

(b) S = 6 
The ZFS Hamiltonian can be represented with the 13 × 13 matrix 

ε−5
0( ) = 2aodd cos

1
3
arccos bodd

2aodd

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +
5
3
D − 5E

a 'odd =
4
3
28D2 − 30DE + 54E2

b 'odd =
20 D + 3E( )(16D2 − 39DE + 9E2 )

42D2 − 45DE + 81E2

B//z B//x B//y

+5 +4 +4

+4 –5 +5

+3 +2 +2

+2 –3 +3

+1 0 0

0 –1 +1

–1 +1 –1

–2 –2 –2

–3 +3 –3

–4 –4 –4

–5 +5 –5

ε+5
0( )
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"  

and the coefficients of the secular equation are  

"  

The matrix can be divided into two matrixes H1 and H2. The former is in the basis of {|+5>, |+3>, |

HZFS
S=6 =

22D 0 66E 0 0 0
0 11D 0 165E 0 0
66E 0 2D 0 3 30E 0
0 165E 0 −5D 0 6 10E
0 0 3 30E 0 −10D 0
0 0 0 6 10E 0 −13D
0 0 0 0 2 105E 0
0 0 0 0 0 21E
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2 105E 0 0 0 0 0 0
0 21E 0 0 0 0 0

−14D 0 2 105E 0 0 0 0
0 −13D 0 6 10E 0 0 0

2 105E 0 −10D 0 3 30E 0 0
0 6 10E 0 −5D 0 165E 0
0 0 3 30E 0 2D 0 66E
0 0 0 165E 0 11D 0
0 0 0 0 66E 0 22D

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

a11
S=6 = −1001 D2 + 3E2( )
a10
S=6 = −4862 D3 − 9DE2( )
a9
S=6 = 347347 D2 + 3E2( )2
a8
S=6 = 3038308 D2 + 3E2( ) D3 − 9DE2( )
a7
S=6 = −43126735D6 − 562948011D4E2 − 814807053D2E 4 −1339229241E6

a6
S=6 = −540793358 D2 + 3E2( )2 D3 − 9DE2( )
a5
S=6 = 28 D2 + 3E2( ) 41380643D6 + 2060980056D4E2 − 2259831177D2E 4 + 2805831630E6( )
a4
S=6 = 8 D3 − 9DE2( ) 3997058677D6 + 40610463084D4E2 + 98646714297D2E 4 +112557519270E6( )
a3
S=6 = 6160 D2 + 3E2( )2 11301923D6 − 442520559D4E2 +1393627653D2E 4 − 239085945E6( )
a2
S=6 = −677600 D2 + 3E2( ) D3 − 9DE2( ) 447203D6 +10674765D4E2 −1225395D2E 4 +18724419E6( )
a1
S=6 = −31944000

19409D12 − 364005D10E2 − 4262922D8E 4 +10905462D6E6

+25085133D4E8 + 55117503D2E10 − 7001316E12
⎛

⎝⎜
⎞

⎠⎟

a0
S=6 = 8198960000 D2 + 3E2( )2 D3 − 9DE2( ) 169D6 + 2250D4E2 + 3105D2E 4 + 5292E6( )
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+1>, |–1>, |–3>, |–5>}. 

"  

The secular equation of this matrix can be decomposed of two cubic equations; 

"  
 (2A.11a) 
"  
 (2A.11b) 

The solutions of Eqs. (2A.11a) and (2A.11b) will be shown together with the relationships of the 

permutation. 
The matrix representation in the basis of {|+6>, |+4>, |+2>, |0>, |–2>, |–4>, |–6>} is 

"  

The secular equation of this matrix can also be factorized into the following cubic and quartic equations. 

"  (2A.11c) 

"  (2A.12) 
Equations. (2A.11a)–(2A.11c) are related each other with the permutation of the axes; 

"  

Thus here shows the solutions of Eq. (2A.11c) and the solutions of Eqs. (2A.11a) and (2A.11b) are 

obtained with the permutation treatment. In order to eliminate x2 term, replacing x with  yields 

"  

The solutions of Eq. (2A.11c) are written in the trigonometric form as follows; 

"  

with 

"  

and n = 0, 1, 2 correspond to the |MS = –6>, |–2> and |–4>, respectively. The corresponding eigenstates 
are 

H1
S=6 =

11D 165E 0 0 0 0
165E −5D 6 10E 0 0 0
0 6 10E −13D 21E 0 0
0 0 21E −13D 6 10E 0
0 0 0 6 10E −5D 165E
0 0 0 0 165E 11D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

x3 + 7 D − 3E( )x2 − 133D2 −126DE + 525E2( )x − 715D3 +1155D2E +1815DE2 + 3465E 3 = 0

x3 + 7 D + 3E( )x2 − 133D2 +126DE + 525E2( )x − 715D3 −1155D2E +1815DE2 − 3465E 3 = 0

H 2
S=6 =

22D 66E 0 0 0 0 0
66E 2D 3 30E 0 0 0 0
0 3 30E −10D 2 105E 0 0 0
0 0 2 105E −14D 2 105E 0 0
0 0 0 2 105E −10D 3 30E 0
0 0 0 0 3 30E 2D 66E
0 0 0 0 0 66E 22D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

x3 −14Dx2 − 196D2 + 336E2( )x + 440D3 + 5280DE2 = 0

x4 − 392 D2 + 3E2( )x2 − 2304 D3 − 9DE2( )x + 6160 D2 + 3E2( )2 = 0

(2A.11c) B//x⎯ →⎯⎯ (2A.11a) B//x⎯ →⎯⎯ (2A.11b)
(2A.11c) B//y⎯ →⎯⎯ (2A.11b) B//y⎯ →⎯⎯ (2A.11a)

x + 14
3 D

x3 = 112
3

7D2 + 9E2( )x + 12827 D 143D2 − 783E2( )

xeven,n = 2aeven cos
1
3
arccos beven

2aeven

⎛
⎝⎜

⎞
⎠⎟
+ 2nπ
3

⎡

⎣
⎢

⎤

⎦
⎥ +
14
3
D

aeven =
4 7
3

7D2 + 9E2

beven =
8D 143D2 − 783E2( )
21 7D2 + 9E2( )
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"  
with 

"  

"  

"  

"  

"  

ϕMS

0( ) =α even,n +6 + βeven,n +4 + γ even,n +2 +δ even,n 0 + εeven,n –2 +ζ even,n –4 +ηeven,n –6

α z

βz

=
ηz

ζ z

= 66E

x 'n−
52
3
D

γ z

βz

=
ε z
ζ z

= 1
3 30E

x 'n+
8
3
D − 66Eα z

βz

⎡

⎣
⎢

⎤

⎦
⎥ =

x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ − 66E

2

3 30E x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟

δ z

βz

=
δ z

ζ z

= 1
2 105E

x 'n+
44
3
D⎛

⎝⎜
⎞
⎠⎟
γ z

βz

− 3 30E
⎡

⎣
⎢

⎤

⎦
⎥

=
x 'n−

52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

44
3
D⎛

⎝⎜
⎞
⎠⎟ − 270E

2 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ − 66E

2 x 'n+
44
3
D⎛

⎝⎜
⎞
⎠⎟

90 14E2 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟

ε z
βz

= 1
2 105E

x 'n+
56
3
D⎛

⎝⎜
⎞
⎠⎟
δ z

βz

− 2 105E γ z

βz

⎡

⎣
⎢

⎤

⎦
⎥

= 1

1260 30E 3 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟

x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

44
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

56
3
D⎛

⎝⎜
⎞
⎠⎟

−420E2 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

8
3
D⎛

⎝⎜
⎞
⎠⎟

−270E2 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

56
3
D⎛

⎝⎜
⎞
⎠⎟

−66E2 x 'n+
44
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

56
3
D⎛

⎝⎜
⎞
⎠⎟ + 27720E

4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

ζ z

βz

= 1
3 30E

x 'n+
44
3
D⎛

⎝⎜
⎞
⎠⎟
ε z
βz

− 2 105E δ z

βz

⎡

⎣
⎢

⎤

⎦
⎥

= 1

113400E 4 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟

x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

44
3
D⎛

⎝⎜
⎞
⎠⎟
2

x 'n+
56
3
D⎛

⎝⎜
⎞
⎠⎟

−840E2 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

44
3
D⎛

⎝⎜
⎞
⎠⎟

−270E2 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

44
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

56
3
D⎛

⎝⎜
⎞
⎠⎟

−66E2 x 'n+
44
3
D⎛

⎝⎜
⎞
⎠⎟
2

x 'n+
56
3
D⎛

⎝⎜
⎞
⎠⎟

+113400E 4 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ + 55440E

4 x 'n+
44
3
D⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

"82



"  

"  

Next, the solution of the quartic equation (2A.12) are 

"  

with 

"  

"  

"  

Both the upper and lower signs should be chosen in the double sign ±1, while should be chosen freely in 

the double signs ±1 and ±2. Note that Eq. (2A.12) is invariant for the permutation and thus they 
correspond to |MS = +6>, |+4>, |+2>, |0>-dominant states. The corresponding eigenstates are 

"  
with 

ηz

βz

= 1
66E

x 'n+
8
3
D⎛

⎝⎜
⎞
⎠⎟
ζ z

βz

− 3 30E ε z
βz

⎡

⎣
⎢

⎤

⎦
⎥

= 1

113400 66E5 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟

x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

8
3
D⎛

⎝⎜
⎞
⎠⎟
2

x 'n+
44
3
D⎛

⎝⎜
⎞
⎠⎟
2

x 'n+
56
3
D⎛

⎝⎜
⎞
⎠⎟

−5400E2 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

44
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

56
3
D⎛

⎝⎜
⎞
⎠⎟

−840E2 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

8
3
D⎛

⎝⎜
⎞
⎠⎟
2

x 'n+
44
3
D⎛

⎝⎜
⎞
⎠⎟

−66E2 x 'n+
8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

44
3
D⎛

⎝⎜
⎞
⎠⎟
2

x 'n+
56
3
D⎛

⎝⎜
⎞
⎠⎟

+226800E 4 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

8
3
D⎛

⎝⎜
⎞
⎠⎟

+72900E 4 x 'n−
52
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

56
3
D⎛

⎝⎜
⎞
⎠⎟

+55440E 4 x 'n+
8
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

44
3
D⎛

⎝⎜
⎞
⎠⎟

+17820E 4 x 'n+
44
3
D⎛

⎝⎜
⎞
⎠⎟ x 'n+

56
3
D⎛

⎝⎜
⎞
⎠⎟ − 7484400E

6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

βz
2 =

α z

βz

⎛
⎝⎜

⎞
⎠⎟

2

+
γ z

βz

⎛
⎝⎜

⎞
⎠⎟

2

+
δ z

βz

⎛
⎝⎜

⎞
⎠⎟

2

+
ε z
βz

⎛
⎝⎜

⎞
⎠⎟

2

+
ζ z

βz

⎛
⎝⎜

⎞
⎠⎟

2

+
ηz

βz

⎛
⎝⎜

⎞
⎠⎟

2

+1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

x = 1
2

±1 u0 ±2 −2p − u0 ∓1
2q
u0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

u0 = 2a0 cos
1
3
arccos b0

2a0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −
2
3
p

a0 =
1
3

p2 +12r

b0 =
2p3 − 72pr + 27q2

3p2 + 36r

p = −392 D2 + 3E2( )
q = −2304 D3 − 9DE2( )
r = 6160 D2 + 3E2( )2

ϕn
0( ) =α 0,n +6 + β0,n +4 + γ 0,n +2 +δ 0,n 0 + ε0,n –2 +ζ 0,n –4 +η0,n –6
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"  

Summarize the eigenenergies of the matrix below; 

"  

"  

"  

α z

βz

=
ηz

ζ z

= 66E
xn − 22D

γ z

βz

=
ε z
ζ z

= 1
3 30E

xn − 2D − 66Eα z

βz

⎡

⎣
⎢

⎤

⎦
⎥ =

xn − 22D( ) xn − 2D( )− 66E2

3 30E xn − 22D( )
δ z

βz

=
δ z

ζ z

= 1
2 105E

xn +10D( )γ z

βz

− 3 30E
⎡

⎣
⎢

⎤

⎦
⎥

=
xn − 22D( ) xn − 2D( ) xn +10D( )− 270E2 xn − 22D( )− 66E2 xn +10D( )

90 14E2 xn − 22D( )
ε z
βz

= 1
2 105E

xn +14D( )δ z

βz

− 2 105E γ z

βz

⎡

⎣
⎢

⎤

⎦
⎥

= 1
1260 30E 3 xn − 22D( )

xn − 22D( ) xn − 2D( ) xn +10D( ) xn +14D( )
−420E2 xn − 22D( ) xn − 2D( )
−270E2 xn − 22D( ) xn +14D( )
−66E2 xn +10D( ) xn +14D( )+ 27720E 4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ζ z

βz

= 1
3 30E

xn +10D( ) ε z
βz

− 2 105E δ z

βz

⎡

⎣
⎢

⎤

⎦
⎥

= 1
113400E 4 xn − 22D( )

xn − 22D( ) xn − 2D( ) xn +10D( )2 xn +14D( )
−840E2 xn − 22D( ) xn − 2D( ) xn +10D( )
−270E2 xn − 22D( ) xn +10D( ) xn +14D( )
−66E2 xn +10D( )2 xn +14D( )
+113400E 4 xn − 22D( )+ 55440E 4 xn +10D( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

ηz

βz

= 1
66E

xn − 2D( )ζ z

βz

− 3 30E ε z
βz

⎡

⎣
⎢

⎤

⎦
⎥

= 1
113400 66E5 xn − 22D( )

xn − 22D( ) xn − 2D( )2 xn +10D( )2 xn +14D( )
−540E2 xn − 22D( ) xn − 2D( ) xn +10D( ) xn +14D( )
−840E2 xn − 22D( ) xn − 2D( )2 xn +10D( )
−66E2 xn − 2D( ) xn +10D( )2 xn +14D( )
+226800E 4 xn − 22D( ) xn − 2D( )
+72900E 4 xn − 22D( ) xn +14D( )
+55440E 4 xn − 2D( ) xn +10D( )
+17820E 4 xn +10D( ) xn +14D( )− 7484400E6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

βz
2 =

α z

βz

⎛
⎝⎜

⎞
⎠⎟

2

+
γ z

βz

⎛
⎝⎜

⎞
⎠⎟

2

+
δ z

βz

⎛
⎝⎜

⎞
⎠⎟

2

+
ε z
βz

⎛
⎝⎜

⎞
⎠⎟

2

+
ζ z

βz

⎛
⎝⎜

⎞
⎠⎟

2

+
ηz

βz

⎛
⎝⎜

⎞
⎠⎟

2

+1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

ε+6
0( ) = 1

2
u0 + −2p − u0 −

2q
u0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε+5
0( ) = 2a 'odd cos

1
3
arccos b 'odd

2a 'odd

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +
5
3
D + 5E

ε+4
0( ) = 1

2
u0 − −2p − u0 −

2q
u0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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"  

"  

"  

"  

"  

"  

"  

"  

"  

Table 2A.6 Summarized permutation relationship of the ZFS eigenenergies in the case of S = 6 

* The numbers (0, ±1, ±2, ±3, ±4, ±5 and ±6) represent the MS values of the ZFS eigenenergies (e.g., +6 

means " ). 

ε+3
0( ) = 2a 'odd cos

1
3
arccos b 'odd

2a 'odd

⎛
⎝⎜

⎞
⎠⎟
+ 4π
3

⎡

⎣
⎢

⎤

⎦
⎥ +
5
3
D + 5E

ε+2
0( ) = 1

2
− u0 + −2p − u0 +

2q
u0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε+1
0( ) = 2aodd cos

1
3
arccos bodd

2aodd

⎛
⎝⎜

⎞
⎠⎟
+ 2π
3

⎡

⎣
⎢

⎤

⎦
⎥ −
7
3
D + 7E

ε0
0( ) = 1

2
− u0 − −2p − u0 +

2q
u0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ε−1
0( ) = 2a 'odd cos

1
3
arccos b 'odd

2a 'odd

⎛
⎝⎜

⎞
⎠⎟
+ 2π
3

⎡

⎣
⎢

⎤

⎦
⎥ −
7
3
D − 7E

ε−2
0( ) = 2aeven cos

1
3
arccos beven

2aeven

⎛
⎝⎜

⎞
⎠⎟
+ 2π
3

⎡

⎣
⎢

⎤

⎦
⎥ +
14
3
D

ε−3
0( ) = 2aodd cos

1
3
arccos bodd

2aodd

⎛
⎝⎜

⎞
⎠⎟
+ 4π
3

⎡

⎣
⎢

⎤

⎦
⎥ +
5
3
D − 5E

ε−4
0( ) = 2aeven cos

1
3
arccos beven

2aeven

⎛
⎝⎜

⎞
⎠⎟
+ 4π
3

⎡

⎣
⎢

⎤

⎦
⎥ +
14
3
D

ε−5
0( ) = 2aodd cos

1
3
arccos bodd

2aodd

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +
5
3
D − 5E

B//z B//x B//y

+6 +6 +6

+5 –5 +5

+4 +4 +4

+3 –3 +3

+2 +2 +2

+1 –1 +1

0 0 0

–1 –2 –2

–2 +1 –1

–3 –4 –4

–4 +3 –3

–5 –6 –6

–6 +5 –5

ε+6
0( )
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"  

where aodd and bodd are defined above and 

"  

Similar to the spin-quintet case, the same relationships as in Table 2A.4 are reproduced from the row 
of +4 to –4 in Table 2A.6 (squared by bold). 

(c) S = 7 

The matrix representation of the ZFS Hamiltonian in the case of S = 7 is 

ε−6
0( ) = 2aeven cos

1
3
arccos beven

2aeven

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +
14
3
D

a 'odd =
4
3
28D2 − 30DE + 54E2

b 'odd =
20 D + 3E( )(16D2 − 39DE + 9E2 )

42D2 − 45DE + 81E2
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"  

and the coefficients of the secular equation of this matrix are 

HZFS
S=7 =

91
3 D 0 91E 0 0 0 0

0 52
3 D 0 3 26E 0 0 0

91E 0 19
3 D 0 6 11E 0 0

0 3 26E 0 − 8
3 D 0 5 22E 0

0 0 6 11E 0 − 29
3 D 0 15 3E

0 0 0 5 22E 0 − 44
3 D 0

0 0 0 0 15 3E 0 − 53
3 D

0 0 0 0 0 6 21E 0

0 0 0 0 0 0 28E

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

6 21E 0 0 0 0 0 0 0

0 28E 0 0 0 0 0 0

− 56
3 D 0 6 21E 0 0 0 0 0

0 − 53
3 D 0 15 3E 0 0 0 0

6 21E 0 − 44
3 D 0 5 22E 0 0 0

0 15 3E 0 − 29
3 D 0 6 11E 0 0

0 0 5 22E 0 − 8
3 D 0 3 26E 0

0 0 0 6 11E 0 19
3 D 0 91E

0 0 0 0 3 26E 0 52
3 D 0

0 0 0 0 0 91E 0 91
3 D

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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"  

The matrix can be divided into two matrixes, "  and " . The former is in the basis of {|+7>, |
+5>, |+3>, |+1>, |–1>, |–3>, |–5>, |–7>} 

a13
S=7 = − 6188

3
D2 + 3E2( )

a12
S=7 = − 369512

27
D3 − 9DE2( )

a11
S=7 = 13963222

9
D2 + 3E2( )2

a10
S=7 = 1520676248

81
D2 + 3E2( ) D3 − 9DE2( )

a9
S=7 = − 68

729
5046606505D6 + 61279568667D4E2 +104538155391D2E 4 +152118485757E6( )

a8
S=7 = − 672732748744

81
D2 + 3E2( )2

D3 − 9DE2( )

a7
S=7 = 7

729
D2 + 3E2( ) 4419392579327D6 +152892447575463D4E2

−106912229081211D2E 4 + 232441514003349E6

⎛

⎝⎜
⎞

⎠⎟

 a6
S=7 = 8

19683
D3 − 9DE2( ) 3450100304025127D6 + 34671043965866859D4E2

+85912425749396997D2E 4 + 96772849438319145E6

⎛

⎝⎜
⎞

⎠⎟

a5
S=7 =  56

2187
D2 + 3E2( )2 120951193171268D6 − 7991819490821445D4E2

+21426442674349950D2E 4 − 5814698013738621E6

⎛

⎝⎜
⎞

⎠⎟

a4
S=7 = − 224

59049
D2 + 3E2( ) D3 − 9DE2( ) 19098858238853600D6 + 309973137338617317D4E2 +

239502346071177366D2E 4 + 653752585637982117E6

⎛

⎝⎜
⎞

⎠⎟

a3
S=7 = − 208

531441

882690060961045936D12 −16261234209749931336D10E2

−135039488422286359053D8E 4 + 271776317859222236100D6E6

+1476231862578430940802D4E8 + 2271623040182266458156D2E10

−253714698352400236749E12

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

a2
S=7 = 605696

177147
D2 + 3E2( )2

D3 − 9DE2( ) 272965254367804D6 + 9855688346845587D4E2

−7427940247139994D2E 4 +14769062925466059E6

⎛

⎝⎜
⎞

⎠⎟

 a1
S=7 = 27559168

1594323
D2 + 3E2( )

407562688058944D12 − 3759895157210496D10E2

−40353709822621101D8E 4 +179933647787827380D6E6

+588702042264434994D4E8 + 964629066489983028D2E10

−20181943961038125E12

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 a0
S=7 = 220693817344

14348907
D3 − 9DE2( )

600381907136D12 − 7775277274224D10E2

−43823307552219D8E 4 +117583929014220D6E6

+1095143923237086D4E8 +1356274129063932D2E10

−58839486766875E12

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

HZFS,1
S=7 HZFS,2

S=7
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"  

in the basis of {|+7>, |+5>, |+3>, |+1>, |–1>, |–3>, |–5>, |–7>}. The secular equation of this matrix  can be 
factorized into two quartic equations; 

"  (2A.13a) 

"  (2A.13b) 

The ZFS matrix in the basis of {|+6>, |+4>, |+2>, |0>, |–2>, |–4>, |–6>} is 

"  

The secular equation of this matrix can be factorized into cubic and quartic equations; 

"  (2A.14) 

"  (2A.13c) 

Equation (2A.14) is invariant for the permutation of the axes and thus the energies are expected to be the |
MS = –2>, |–4> and |–6>-dominant states from the analogue in the case of S = 5. The solutions of Eq. (2A.

14) can be written in the trigonometric form as 

"  (n = 0, 1, 2) 

with 

HZFS,1
S=7 =

91
3 D 91E 0 0 0 0 0 0

91E 19
3 D 6 11E 0 0 0 0 0

0 6 11E − 29
3 D 15 3E 0 0 0 0

0 0 15 3E − 53
3 D 28E 0 0 0

0 0 0 28E − 53
3 D 15 3E 0 0

0 0 0 0 15 3E − 29
3 D 6 11E 0

0 0 0 0 0 6 11E 19
3 D 91E

0 0 0 0 0 0 91E 91
3 D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

x4 − 28
3

D − 3E( )x3 − 14
3
137D2 +162DE + 249E2( )x2

− 4
27

D − 3E( ) 6823D2 + 51150DE − 30681E2( )x

+ 91
81

29203D4 + 46284D3E + 59634D2E2 + 277452DE 3 + 54675E 4( ) = 0

x4 − 28
3

D + 3E( )x3 − 14
3
137D2 −162DE + 249E2( )x2

− 4
27

D + 3E( ) 6823D2 − 51150DE − 30681E2( )x

+ 91
81

29203D4 − 46284D3E + 59634D2E2 − 277452DE 3 + 54675E 4( ) = 0

HZFS,2
S=7 =

52
3 D 3 26E 0 0 0 0 0

3 26E − 8
3 D 5 22E 0 0 0 0

0 5 22E − 44
3 D 6 21E 0 0 0

0 0 6 21E − 56
3 D 6 21E 0 0

0 0 0 6 21E − 44
3 D 5 22E 0

0 0 0 0 5 22E − 8
3 D 3 26E

0 0 0 0 0 3 26E 52
3 D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

x3 − 784
3

D2 + 3E2( )x − 1830427
D3 − 9DE2( ) = 0

x4 + 56
3
Dx3 − 56

3
14D2 +123E2( )x2 − 3227 D 4688D2 −11511E2( )

−1456
81

704D4 −10224D2E2 −19683E 4( ) = 0

xn = 2acos
1
3
arccos b

2a
⎛
⎝⎜

⎞
⎠⎟ +

2nπ
3

⎡
⎣⎢

⎤
⎦⎥
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"  

n = 0, 1 and 2 correspond to the |MS = –6>, |–2> and |–4>-dominant states, respectively. The 
corresponding eigenfunctions are; 

"  
Equations (2A.13a)–(2A.13c) are related with each other with the permutation relationship; 

"  

The solutions of Eqs. (2A.13a) and (2A.13b) are obtained with the appropriate replacing of D and E in the 
solution of Eq. (2A.13c); 

"  

with 

"  

"  

"  

Both the upper and lower signs should be chosen in the double sign ±1, while should be chosen freely in 
the double signs ±1 and ±2. The solutions of Eq. (2A.13a) can be obtained with the permutation of the 

principal axes; 

"  

with 

"  

Summarize the eigenenergies of the matrix below; 

a = 28
3

D2 + 3E2

b =
1144 D3 − 9DE2( )
147 D2 + 3E2( )

ϕMS

0( ) =α n −2 + βn −4 + γ n −6

(2A.13c) B//x⎯ →⎯⎯ (2A.13a) B//x⎯ →⎯⎯ (2A.13b)
(2A.13c) B//y⎯ →⎯⎯ (2A.13b) B//y⎯ →⎯⎯ (2A.13a)

xeven =
1
2

±1 ueven,0 ±2 −2peven − ueven,0 ∓1
2qeven
ueven,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 14
3
D

ueven,0 = 2aeven,0 cos
1
3
arccos

beven,0
2aeven,0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 2
3
p

aeven,0 =
1
3

p2 +12r

beven,0 =
2p3 − 27pr + q2

3p2 + 36r
peven = −56 7D2 + 41E2( )
qeven = −256D 9D2 −137E2( )
reven = 112 55D

4 + 626D2E2 + 3159E 4( ).

xodd =
1
2

±1 uodd,0 ±2 −2p − uodd,0 ∓1
2q
uodd,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 7
3
D − 7E

uodd,0 = 2aodd,0 cos
1
3
arccos

bodd,0
2aodd,0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 2
3
podd

aodd,0 =
1
3

podd
2 +12rodd

bodd,0 =
2podd

3 − 27poddrodd + qodd
2

3podd
2 + 36rodd

podd = −112 6D2 + 5DE +13E2( )
qodd = −256 D − 3E( ) 16D2 + 41DE + 7E2( )
rodd = 448 60D

4 +148D3E + 323D2E2 + 222DE 3 + 207E 4( ).
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"  

"  

"  

"  

"  

"  

"  

"  

"  

"  

"  

"  

"  

"  

"  

where a, aodd/even, b, bodd/even, podd/even, qodd/even, rodd/even and uodd,0/even,0 are defined above and 

ε+7
0( ) = 1

2
u 'odd,0 + −2p 'odd− u 'odd,0−

2q 'odd,0
u 'odd,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 7
3
D + 7E

ε+6
0( ) = 1

2
ueven,0 + −2peven − ueven,0 −

2qeven
ueven,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 14
3
D

ε+5
0( ) = 1

2
u 'odd,0 − −2p 'odd− u 'odd,0−

2q 'odd
u 'odd,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 7
3
D + 7E

ε+4
0( ) = 1

2
ueven,0 − −2peven − ueven,0 −

2qeven
ueven,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 14
3
D

ε+3
0( ) = 1

2
− u 'odd,0 + −2p 'odd− u 'odd,0+

2q 'odd
u 'odd,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 7
3
D + 7E

ε+2
0( ) = 1

2
− ueven,0 + −2peven − ueven,0 +

2qeven
ueven,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 14
3
D

ε+1
0( ) = 1

2
− u 'odd,0 − −2p 'odd− u 'odd,0+

2q 'odd
u 'odd,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 7
3
D + 7E

ε+0
0( ) = 1

2
− ueven,0 − −2peven − ueven,0 +

2qeven
ueven,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 14
3
D

ε−1
0( ) = 1

2
− uodd,0 − −2podd − uodd,0 +

2qodd
uodd,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 7
3
D − 7E

ε−2
0( ) = 2acos 1

3
arccos b

2a
⎛
⎝⎜

⎞
⎠⎟ +

2π
3

⎡
⎣⎢

⎤
⎦⎥

ε−3
0( ) = 1

2
− uodd,0 + −2podd − uodd,0 +

2qodd
uodd,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 7
3
D − 7E

ε−4
0( ) = 2acos 1

3
arccos b

2a
⎛
⎝⎜

⎞
⎠⎟ +

4π
3

⎡
⎣⎢

⎤
⎦⎥

ε−5
0( ) = 1

2
uodd,0 − −2podd − uodd,0 −

2qodd
uodd,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 7
3
D − 7E

ε−6
0( ) = 2acos 1

3
arccos b

2a
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

ε−7
0( ) = 1

2
uodd,0 + −2podd − uodd,0 −

2qodd,0
uodd,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ 7
3
D − 7E
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"  

Table 2A.7 Summarized permutation relationship of the ZFS eigenenergies in the case of S = 7 

* The numbers (0, ±1, ±2, ±3, ±4, ±5 ±6 and ±7) represents the MS of the ZFS eigenenergies (e.g., +7 

means " ). 

Similar to the spin-quintet case, the same relationships as in Table 2A.5 are reproduced from the row 
of +5 to –5 in Table 2A.7 (squared by bold). 

u 'odd,0 = 2a 'odd,0 cos
1
3
arccos

b 'odd,0
2a 'odd,0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 2
3
p 'odd

a 'odd,0 =
1
3

p 'odd
2 +12r 'odd

b 'odd,0 =
2podd

3 − 27poddrodd + qodd
2

3podd
2 + 36rodd

p 'odd = −112 6D2 − 5DE +13E2( )
q 'odd = −256 D + 3E( ) 16D2 − 41DE + 7E2( )
r 'odd = 448 60D

4 −148D3E + 323D2E2 − 222DE 3 + 207E 4( )

B//z B//x B//y

+7 +6 +6

+6 –7 +7

+5 +4 +4

+4 –5 +5

+3 +2 +2

+2 –3 +3

+1 0 0

0 –1 +1

–1 +1 –1

–2 –2 –2

–3 +3 –3

–4 –4 –4

–5 +5 –5

–6 –6 –6

–7 +7 –7

ε+7
0( )
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(d) S = 8 

The matrix representation of the ZFS Hamiltonian in the case of S = 8 is 

"  

and the coefficients of the secular equation of this 17 × 17 matrix are 

HZFS
S=8 =

40D 0 2 30E 0 0 0 0 0
0 25D 0 3 35E 0 0 0 0

2 30E 0 12D 0 546E 0 0 0
0 3 35E 0 D 0 2 195E 0 0
0 0 546E 0 −8D 0 3 110E 0
0 0 0 2 195E 0 −15D 0 1155E
0 0 0 0 3 110E 0 −20D 0
0 0 0 0 0 1155E 0 −23D
0 0 0 0 0 0 6 35E 0
0 0 0 0 0 0 0 36E
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

6 35E 0 0 0 0 0 0 0 0
0 36E 0 0 0 0 0 0 0

−24D 0 6 35E 0 0 0 0 0 0
0 −23D 0 1155E 0 0 0 0 0

6 35E 0 −20D 0 3 110E 0 0 0 0
0 1155E 0 −15D 0 2 195E 0 0 0
0 0 3 110E 0 −8D 0 546E 0 0
0 0 0 2 195E 0 D 0 3 35E 0
0 0 0 0 546E 0 12D 0 2 30E
0 0 0 0 0 3 35E 0 25D 0
0 0 0 0 0 0 2 30E 0 40D

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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"  

The ZFS matrix "  can be divided into two matrixes. The one in the basis of {|+7>, |+5>, |+3>, |

+1>, |–1>, |–3>, |–5>, |–7>} is 

a15
S=8 = −3876 D2 + 3E2( )

 a14
S=8 = −33592 D3 − 9DE2( )
a13
S=8 = 5695782 D2 + 3E2( )2

a12
S=8 = 91000728 D2 + 3E2( ) D3 − 9DE2( )
a11
S=8 = −3876 943385D6 +10926891D4E2 + 20598543D2E 4 + 27907821E6( )
a10
S=8 = −85908664008 D2 + 3E2( )2

D3 − 9DE2( )
a9
S=8 = 171 D2 + 3E2( ) 4966130659D6 +135330357483D4E2

−47184835311D2E 4 + 224720709345E6

⎛

⎝⎜
⎞

⎠⎟

a8
S=8 = 8 D3 − 9DE2( ) 4276878691837D6 + 42334571475369D4E2

+107790398181927D2E 4 +119318387928435D6

⎛

⎝⎜
⎞

⎠⎟

a7
S=8 = 360 D2 + 3E2( )2 149101213724D6 − 21248827139637D4E2

+49207208896854D2E 4 −18565005292605E6

⎛

⎝⎜
⎞

⎠⎟

a6
S=8 = −2400 D2 + 3E2( ) D3 − 9DE2( ) 2218895021552D6 + 31367334398913D4E2

+37115607172014D2E 4 + 71307444786849E6

⎛

⎝⎜
⎞

⎠⎟

a5
S=8 = −2000

18150537753904D12 − 408356565832008D10E2 − 3125721579413805D8E 4

+4172949766584900D6E6 + 32700613037985090D4E8

+48032594504553132 D2E10 − 7045627061640429E12

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 a4
S=8 = 960000 D3 − 9DE2( ) D2 + 3E2( )2

 
258668245028D6 + 8235078954417D4E2  
−4830086882574D2E 4 +12891107364921E6

⎛

⎝⎜
⎞

⎠⎟

a3
S=8 = 7200000 D2 + 3E2( )

410175646592D12 − 4536545414976D10E2

−58069906055235D8E 4 + 222320454502284D6E6

+532884123756270D4E8 +1039890859058124D2E10

−52819713052227E12

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

a2
S=8 = 864000000 D3 − 9DE2( )

4687893376D12 − 315518965344D10E2

−2228518635291D8E 4 −1219240365012D6E6

+12521547772254D4E8 +17880584460300D2E10

−7441930892187E12

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

a1
S=8 = −103680000000 D2 + 3E2( )2

171112640D12 + 2228355936D10E2

−114893419167D8E 4 + 612011807676D6E6

−568959600762D4E8 + 800605059804D2E10

−30285942687E12

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

a0
S=8 = 12441600000000 D3 − 9DE2( ) D2 + 3E2( )

846400D12 + 58320720D10E2

+965215899D8E 4 −1309501836D6E6

+3548956194D4E8 − 2126670876D2E10

+2329687899E12

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

HZFS,1
S=8
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"  

in the basis of {|+7>, |+5>, |+3>, |+1>, |–1>, |–3>, |–5>, |–7>}. The secular equation of this matrix are 
decomposed into two quartic equations. 

"  

 (2A.15a) 

"  

 (2A.15b) 
The residual matrix in the basis of {|+8>, |+6>, |+4>, |+2>, |0>, |–2>, |–4>, |–6>, |–8>} is 

"  

in the basis of {|+8>, |+6>, |+4>, |+2>, |0>, |–2>, |–4>, |–6>, |–8>}. The secular equation of this matrix can 
be factorized to quartic and quintic equations; 

"  (2A.15c) 

"  (2A.16) 

The quintic equation (2A.16) is composed of (D2 + 3E2) and (D3 – 9DE2) which meets the global 

invariance for the permutation, and thus the general solution does not exist and the equation itself has 
nothing with the others. 

The solutions of Eq. (2A.15c) are 

"  

with 

HZFS,1
S=8 =

25D 3 35E 0 0 0 0 0 0
3 35E D 2 195E 0 0 0 0 0
0 2 195E −15D 1155E 0 0 0 0
0 0 1155E −23D 36E 0 0 0
0 0 0 36E −23D 1155E 0 0
0 0 0 0 1155E −15D 2 195E 0
0 0 0 0 0 2 195E D 3 35E
0 0 0 0 0 0 3 35E 25D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

x4 +12 D − 3E( )x3 − 6 103D2 − 66DE + 375E2( )x2 − 20 D − 3E( ) 401D2 + 546DE + 657E2( )x
+75 115D4 −180D3E + 4146D2E2 − 7092DE 3 + 4851E 4( ) = 0

x4 +12 D + 3E( )x3 − 6 103D2 + 66DE + 375E2( )x2 − 20 D + 3E( ) 401D2 + 546DE + 657E2( )x
+75 115D4 +180D3E + 4146D2E2 + 7092DE 3 + 4851E 4( ) = 0

HZFS,2
S=8 =

40D 2 30E 0 0 0 0 0 0 0
2 30E 12D 546E 0 0 0 0 0 0
0 546E −8D 3 110E 0 0 0 0 0
0 0 3 110E −20D 6 35E 0 0 0 0
0 0 0 6 35E −24D 6 35E 0 0 0
0 0 0 0 6 35E −20D 3 110E 0 0
0 0 0 0 0 3 110E −8D 546E 0
0 0 0 0 0 0 546E 12D 2 30E
0 0 0 0 0 0 0 2 30E 40D

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

x4 − 24Dx3 − 24 34D2 + 69E2( )x2 +160D 32D2 + 369E2( )x
+1200 64D4 − 48D2E2 + 99E 4( ) = 0
x5 −1392 D2 + 3E2( )x3 −14464 D3 − 9DE2( )x2
+199680 D2 + 3E2( )2 x +1843200 D2 + 3E2( ) D3 − 9DE2( ) = 0

x = 1
2

±1 ueven,0 ±2 −2peven − ueven,0 ∓1
2qeven
ueven,0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 6D

"95



"  

"  

"  

ueven,0 = 2aeven,0 cos
1
3
arccos

beven,0
2aeven,0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 2
3
p

aeven,0 =
1
3

p2 +12r

beven,0 =
2p3 − 27pr + q2

3p2 + 36r
peven = −24 43D2 + 69E2( )
qeven = −256D 25D2 −153E2( )
reven = 148 1547D

4 + 4938D2E2 + 2475E 4( )
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Appendix 2.4: Pseudo-Zeeman perturbation approach for the half-
integer spin systems (S = 3/2, 5/2 and 7/2) 
As mentioned above, the pseudo-Zeeman perturbation approach treats all the off-diagonal terms including 
asymmetric ZFS terms to the second order of the Rayleigh-Schrödinger perturbation. The unperturbed 
term H0 is D[Sz2 – S(S + 1)/3] and the perturbing term H’ = E(Sx2 – Sy2) + βS•g•B. In contrast to the 

genuine Zeeman perturbation, the pseudo-Zeeman perturbation approach is easier to obtain the geff–gtrue 
relationships and applicable to any spin systems because we do not need the eigenfunctions of ZFS 
Hamiltonian. Of course, however, the accuracy of approximation gets worth than the genuine Zeeman 
perturbation treatment. As a similar approach, “the pseudo-nuclear Zeeman effect” gives an aid for the 

interpretations of the magnetic structures of ferric hemoglobins (S = 5/2) with small |E/D|.  [26,37–39] In *

this section, we formalize the geff/gtrue as a function of |E/D| for S = 3/2, 5/2 and 7/2 and discuss the 
limitation of this treatment by comparing with the genuine counterpart. 

Eisenberger and Pershan derived the g⊥eff–g⊥true (⊥ means that the magnetic field lies in the xy-plane) 

relationship for the |MS = ±1/2> dominant state assuming the strong axial zero-field splitting and 

determined the D-value of MetMyoglobin (S = 5/2) by measuring the two different resonance field. [81] 

(a) Spin-quartet state 

The matrix representation of the unperturbed and perturbed terms in the basis of |MS> are 

"      "  

"      " . 

Assuming that E/D is so small that the zeroth-order energies can be approximated to only the axial ZFS 
parameter (D) and D >> gztrueβB, first-order wavefunctions φ’MS and second-order energies E’MS can be 

written as 

"      "  

Note that the zeroth- and second-order terms vanish when the energy difference between the same 
spin subsystems (|±3/2> or |±1/2>) is taken. Therefore, the geff–gtrue relationships for each spin sublevel 

are 

H unperturbed,1
quartet = D 0

0 −D
⎛
⎝⎜

⎞
⎠⎟

H perturbing,1
quartet =

3
2
gz
trueβB 3E

3E − 1
2
gz
trueβB

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

H unperturbed,2
quartet = D 0

0 −D
⎛
⎝⎜

⎞
⎠⎟

H perturbing,2
quartet =

− 3
2
gz
trueβB 3E

3E 1
2
gz
trueβB

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ϕ
+ 3
2

' = + 3
2

+ 3E
2D

− 1
2

ϕ
+1
2

' = + 1
2

− 3E
2D

− 3
2

ϕ
−1
2

' = − 1
2

− 3E
2D

− 1
2

ϕ
− 3
2

' = − 3
2

+ 3E
2D

− 1
2

E
+ 3
2

' = D + 3
2
gz
trueβB + 3E

2

4D

E
+1
2

' = −D + 1
2
gz
trueβB − 3E

2

4D

E
−1
2

' = −D − 1
2
gz
trueβB − 3E

2

4D

E
− 3
2

' = D − 3
2
gz
trueβB + 3E

2

4D

 Although the authors did not declare that they used “the pseudo perturbation treatment” described here, it is obvious *

that their formalization is based on the pseudo-perturbation like approach.
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"  

"  
In the similar sequence, the geff–gtrue relationships in each direction (x, y or z) is as follows: Figure 2A.

8 depicts geff/gtrue as a function of |E/D| (= λ) relationships for ±1/2 doublets. The discrepancies at the 
several E/D values are summarized in Table 2A.10. 

"  (2A.17a) 

"  (2A.17b) 

"  (2A.17c) 

gz
eff = 3gz

true  (for ± 3
2

 doublet)

gz
eff = gz

true  (for ± 1
2

 doublet)

gx
eff

gx
true = 2 − 3λ

gy
eff

gy
true = 2 + 3λ

gz
eff

gz
true = 1
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Figure 2A.8 Comparison of geff/gtrue between the exact analytical treatment (solid line) and pseudo-
Zeeman perturbation (broken line).

z

x

y

Fig. 2A.9 The geff/gtrue relationships as a function of the rations of |E/D| for S = 3/2 for the principal z-axis 
of the g- and ZFS tensors. The curves of the exact relationships (Eqs. (2.17a)–(2.17c)) are given in the 
solid lines Those derived by the pseudo-Zeeman perturbation treatment to the third order are depicted in 
the dashed lines.

|MS = ±3/2>-dominant |MS = ±1/2>-dominant



Table 2A.10 The numerical discrepancies in the exact and pseudo-Zeeman geff/gtrue at several E/D values 

We considered the higher-order correction in the case of B//z where the geff/gtrue was constant for any 
E/D values. The geff/gtrue for the transition between each spin sublevels calculated from the third-order 
perturbation are 

"  

"  

Figure 2A.10 compares the geff/gtrue between the analytical treatment and pseudo-Zeeman perturbation 

(b) Spin-sextet state 
The first-order wavefunctions φ’MS and the second-order energies E’MS derived in the case of B//z are 

E/D 0.05 0.1 0.2 0.3 1/3 limit

x 3.1 × 10–3 0.010 0.022 0.011 0

y 4.3 × 10–3 0.019 0.088 0.21 0.27

z 7.5 × 10–3 0.029 0.11 0.23 0.27

gz
eff

gz
true = 3 1− λ 2( )  (for the ± 3

2 -dominant transition)

gz
eff

gz
true = 1− 3λ 2  (for the ± 1

2 -dominant transition)
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Fig. 2A.10 The geff/gtrue relationships as a function of the rations of |E/D| for S = 3/2 for the principal z-
axis of the g- and ZFS tensors. The curves of the exact relationships (Eq. (2.17c)) are given in the solid 
lines Those derived by the pseudo-Zeeman perturbation treatment to the third order are depicted in the 
dashed lines. The values of gzeff/gztrue in the second-order pseudo-Zeeman perturbation are constant, while 
the gzeff/gztrue relationships depend on the ratios of |E/D|.



"      "  

geff/gtrue relationships in the case of the spin-sextet state are obtained from Eq. (2.3): Figure 2A.11 
depicts geff/gtrue as a function of |E/D| (= λ) relationships. [33–37] 

"  (2A.18a) 

"  (2A.18b) 

"  (2A.18c) 

These relationships are valid within |E/D| is small due to the assumption for the perturbation theory. 
Indeed, gxeff/gxtrue crosses zero at about E/D = 0.25. 

Table 2A.11 The discrepancies in the exact and pseudo-Zeeman geff/gtrue at several E/D values 

* These values were obtained with |gxeff/gxtrue| however gxeff/gxtrue < 0. 

ϕ
+5
2

' = + 5
2

+ 10E
6D

+ 1
2

ϕ
+ 3
2

' = + 3
2

+ 3 2E
2D

− 1
2

ϕ
+1
2

' = + 1
2

− 10E
6D

+ 5
2

− 3 2E
2D

− 3
2

ϕ
−1
2

' = − 1
2

− 3 2E
2D

+ 3
2

− 10E
6D

− 5
2

ϕ
− 3
2

' = − 3
2

+ 3 2E
2D

+ 1
2

ϕ
−5
2

' = − 5
2

+ 10E
6D

− 1
2

E
+5
2

' = 10
3
D + 5

2
gz
trueβB + 5E

2

3D

E
+ 3
2

' = − 2
3
D + 3

2
gz
trueβB + 9E

2

D

E
+1
2

' = − 8
3
D + 1

2
gz
trueβB − 32E

2

3D

E
−1
2

' = − 8
3
D − 1

2
gz
trueβB − 32E

2

3D

E
− 3
2

' = − 2
3
D − 3

2
gz
trueβB + 9E

2

D

E
−5
2

' = 10
3
D − 5

2
gz
trueβB + 5E

2

3D

gx
eff

gx
true = 3−12λ

gy
eff

gy
true = 3+12λ

gz
eff

gz
true = 1

E/D 0.05 0.1 0.2 0.3 1/3 limit

x 7.8 × 10–3 0.026 0.39 (1.12)* (1.43)*

y 0.037 0.19 0.84 1.80 2.16

z 0.040 0.15 0.42 0.64 0.70

"100

y

x

z

Fig. 2A.11 The geff/gtrue relationships as a function of the rations of |E/D| for S = 5/2 and the |MS = ±1/2>-
dominant transition. The subscripts x, y and z denote the principal axis of the g- and ZFS tensors. The 
curves of the exact relationships (Eqs. (2.51a)–(2.51c)) are given in the solid lines Those derived by the 
pseudo-Zeeman perturbation treatment to the second order are depicted in the dashed lines.



"  

"  

Table 2A.12 The discrepancies in the exact and pseudo-Zeeman geff/gtrue at several E/D values 

a |±MS> means |±MS>-dominant transition. 

b These values were obtained with |geff/gtrue| however geff/gtrue < 0. 

E
+5
2

' = 10
3
D + 5

2
gz
trueβB + 5E

2

3D
−
5E2gz

trueβB
9D

E
+ 3
2

' = − 2
3
D + 3

2
gz
trueβB + 9E

2

D
−
9E2gz

trueβB
D2

E
+1
2

' = − 8
3
D + 1

2
gz
trueβB − 32E

2

3D
−
76E2gz

trueβB
9D2

E
−1
2

' = − 8
3
D − 1

2
gz
trueβB − 32E

2

3D
+
76E2gz

trueβB
9D2

E
− 3
2

' = − 2
3
D − 3

2
gz
trueβB + 9E

2

D
+
9E2gz

trueβB
D2

E
−5
2

' = 10
3
D − 5

2
gz
trueβB + 5E

2

3D
+
5E2gz

trueβB
9D

gz
eff

gz
true = 5 −

10
9
λ 2  for the MS = ± 5

2
-dominant state⎛

⎝⎜
⎞
⎠⎟

gz
eff

gz
true = 3−18λ 2  for the MS = ± 3

2
-dominant state⎛

⎝⎜
⎞
⎠⎟

gz
eff

gz
true = 1− 152

9
λ 2  for the MS = ± 1

2
-dominant state⎛

⎝⎜
⎞
⎠⎟

E/D 0.05 0.1 0.2 0.3 1/3 limit

|±5/2>a 2.0 × 10–5 3.2 × 10–4 5.1 × 10–3 0.025 0.037
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Fig. 2A.12 The geff/gtrue relationships as a function of the rations of |E/D| for S = 5/2 for the principal z-
axis of the g- and ZFS tensors. The curves of the exact relationships (Eq. (2.21c)) are given in the solid 
lines Those derived by the pseudo-Zeeman perturbation treatment to the third order are depicted in the 
dashed lines. The values of gzeff/gztrue in the second-order pseudo-Zeeman perturbation are constant, while 
the gzeff/gztrue relationships depend on the ratios of |E/D|.
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(c) Spin-octet state 

The first-order wavefunctions φ’MS and the second-order energies E’MS obtained in the case of B//z are 

"      "  

The second-order energies gives the constant geff/gtrue relationships for the all |±MS>-dominant 

transition. 
The third-order perturbed energies are; 
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"  

It is worth mentioning that some geff–gtrue curves have the zero point at the energy crossing point due 
to the dispersion of the perturbation theory. 
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Fig. 2A.13 The geff/gtrue relationships as a function of the rations of |E/D| for S = 7/2 for the principal z-
axis of the g- and ZFS tensors. The curves of the exact relationships (Eq. (2.21c)) are given in the solid 
lines Those derived by the pseudo-Zeeman perturbation treatment to the third order are depicted in the 
dashed lines. The values of gzeff/gztrue in the second-order pseudo-Zeeman perturbation are constant, while 
the gzeff/gztrue relationships depend on the ratios of |E/D|.
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Chapter 3: Analyses of Sizable ZFS and Magnetic Tensors 
of High Spin Metalloporphyrins, FeIII(Cl)OEP and 
CoIIOEP by X-Band Cw-/Pulsed-ESR and Electron Spin 
Nutation Spectroscopy: Their Electronic Structures Based 
on Quantum Chemical Calculations 



3.1 Introduction 
Porphyrins have attracted continuing attention in a variety of scientific and technological fields. [1,2] 
They have a suitable cavity for binding various transition metals, resulting in the formation of 

metalloporphyrins as the most important active center of hemoproteins such as hemoglobin, exemplifying 
biological molecular functionality, which is subtly regulated by ligation to the central metal ions. Many 
kinds of schemes for molecular assemblages of porphyrin skeletons have given fascinating materials 
models in emerging fields. [1,2] Paramagnetic metalloporphyrins in their ground or excited state are 

important chemical complexes in view of both biological implications and materials science. An 
enormous number of reports have been published on their intrinsic electronic and magnetic properties as 
well as the fascinating biological functions [1,2] until recently. In terms of relevant ground-state 

electronic structures modulated by the ligation, the experimental principal g-values play an essential role 
in understanding the modulation. 

In quest for novel molecular or materials functionalities such as Möbius aromaticity or orbital phase-
topology, expanded porphyrins take a significant role in synthesizing model compounds for Möbius 

molecular strips. [3] Referred to the possible applications of porphyrin scaffolds, one-dimensionally 
extended paramagnetic metalloporphyrins, which undergo g-tensor engineering for molecular spin 
quantum bit (qubit) chains such as (ABC)n-type Lloyd model of universal quantum computers, [4–6] in 

which A, B and C denote distinguishable spin qubits with non-equivalent g-tensors. Importance of the 
porphyrin scaffold is in that viable synthetic approaches to sizable oligomers or infinite chains for 1D 
expanded metalloporphyrins give a possible materials solution for the scalability of qubits, which all the 

physically realized qubits including photon qubits face as the most intractable issue in the field of 
quantum computing and quantum information science. [5] Furthermore, molecular spin qubits are 
emerging in the fields of quantum technology, and the molecular design or optimization for molecular 
spin qubit based quantum computers or quantum information processing systems requires the fine tuning 

of the g-tensor or zero-field splitting (ZFS) magnetic properties in addition to exchange interactions 
within the chain. 

Among high spin metallocomplexes with non-vanishing ZFS tensors, the robust crystals of the 

complexes with sizable principal values of the ZFS tensors serve as ensemble quantum spin memories 
capable of strongly coupling with superconducting flux qubits or microwave photons in planar resonators.
[7] The ensemble spin crystals themselves function as quantum devices, and the magnitude of principal 
ZFS values needs to fulfill coupling conditions, thus the limitation of current superconducting circuit and 

microwave technology. The matching of energy depends on the magnitude of the ZFS values, and for the 
initialization processes of the qubit memory the sizable values are preferable. All the materials under 
study fulfill such requirements. Particularly, metalloporphyrins and materials analogues whose magnetic 

tensors are well characterized are suitable candidates for realistic quantum spin memory devices. 
In paramagnetic metalloporphyrins, the spin–orbit coupling (SOC), as the symmetry breaker, relevant 

to the central metal ions is influential and governs the magnetic properties. The magnetic tensors of 
experimentally well-characterized transition metal complexes serve as a testing ground for advanced 

quantum chemical calculations of magnetic tensors. [8,9] We note that ligand field theory has played an 
important role in understanding the electronic structures and ligand surroundings of central metal ions, as 
underlain by the semi-quantitative interpretation of their g- and hyperfine tensors. [10,11] Even for copper 

complexes, however, the critical defection caused by misleading identification of SO contributions, which 
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are estimated from localized metal hyperfine and molecular Δg-shifts, has been pointed out. [12] Also, as 

well known, relativistic effects are the largest in the Group 11 series of metals even for light copper 
element. Electron nuclear hyperfine interactions between unpaired electrons and central nuclear spins (I ≠ 
0) are mainly caused by spin polarization [13] and the SOCs.[14] Thus, reliable theoretical interpretations 

for the transition metal hyperfine tensors are crucial. [9] Progress in performance of computers and 
computing algorithms has enabled us to calculate magnetic tensors taking into account the higher order 
relativistic effects. Especially, DFT calculations of spin Hamiltonian parameters have become a useful 
tool for large metallocomplexes, [9] and DFT approaches for magnetic tensors of metalloporphyrin have 

been reported. [15–17] Nonetheless, the capability of DFT for the quantitative calculations of magnetic 
tensors, especially for molecules including transition elements, is still a controversial issue. [18] 
Quantitative evaluations of the g-, ZFS and hyperfine tensors of metallocomplexes in various symmetric 

environments are challenging themes for quantum chemistry because their accurate evaluations are 
essential for the molecular optimization of emerging quantum spin technology. 

Prior to the DFT or ab initio MO quantum chemical calculations for metalloporphyrins as model 
chemical entities, we determine the experimental magnetic tensors of metalloporphyrins with sizable ZFS 

principal values as accurately as possible. In this work, we utilize facile approaches to determine the spin 
multiplicities with true g-values and magnetic tensors of high spin metallocomplexes having sizable ZFS, 
instead of performing advanced high-field/high-frequency ESR spectroscopy at cryogenic temperatures. 

The facile approaches are based on the utilization of the exact analytical formulas for the geff–gtrue 
relationships between the principal g-value (geff) based on the fictitious spin-1/2 approach and the true 
principal g-value (gtrue) for high spin states. The analytical formulas convert the experimental principal 
geff-values into the true principal g-values together with the information on the ZFS tensor. The analytical 

expressions for the relationships are derived in the basis of both (1) exact analytical solutions of the full 
spin Hamiltonians having the rank-2 ZFS and electronic Zeeman interaction terms and (2) the genuine 
Zeeman perturbation treatment. Even the latter (2) gives accurate conversion enough for the X-band ESR 

spectroscopy. The complete spectral analyses are based on the full spin Hamiltonians with the ZFS + 
electronic Zeeman terms, comparing theoretical tensors by reliable quantum chemical calculations.  

To illustrate the usefulness of our approaches, we exploit FeIII(Cl)OEP (S = 5/2; OEP: 2, 3, 7, 8, 12, 
13, 17, 18-octaethylporphyrin) and CoIIOEP (S = 3/2) well magnetically diluted in the diamagnetic host 

crystal lattice of NiIIOEP, which has a similar molecular structure and thus incorporates the paramagnetic 
counterparts without deformation of the guest molecule due to the host-guest mismatch. The advantage of 
the single-crystal ESR spectroscopy lies in the fact that the molecular information on the principal axes of 

the magnetic tensors such as g- and ZFS (D) tensors is crucial in comparing with the results of the 
magnetic properties from reliable quantum chemical calculations. In particular, the true g-values of 
CoIIOEP well incorporated in the tetragonal symmetric environment of the single crystal of NiIIOEP 
suggest the occurrence of the peculiar electronic behavior. In high spin states of some metallocomplexes 

with sizable ZFS in pseudo-octahedral symmetry, their fine-structure ESR transitions with the static 
magnetic field along the principal z-axis appear in the lower field far from g = 2 at X-band. The 
appearance disagrees with the putative intuitive picture of the relevant high spin ESR. 

"109



3.2 Samples and Experiments 
3.2.1 Single-crystalline sample 
Magnetically diluted CoIIOEP and FeIII(Cl)OEP in NiIIOEP single-crystals were provided by Professor 
David Dolphin (University of British Columbia, Canada). Table 3.1 shows the crystallographic data for 
the host NiIIOEP. 

Table 3.1 Crystallographic Data for the Host NiIIOEP [19] 

[a] R = Σ|ΔFmeas2|/Σ|Fc2|, R’ = [Σw(ΔFmeas2)/ΣFo4]1/2 and ΔFmeas2 = ||Fmeas2| – |Fcalc2||. 

The central nickel atom is coordinated in a square planner arrangement by four nitrogen atoms. The 

host NiIIOEP molecule has a slightly ruffled structure with S4 symmetry. The molecular principal-axis 
system of the crystal nearly coincides with the crystallographic-axis system. It leads to the facilitation of 
spectral analyses for observed ESR spectra because we can find the crystal axes from the crystal shape. 

Very tiny experimental error due to the setting of the crystal in the cavity (within 2 degree) enables us a 
precise determination of magnetic tensors. The c-axis of the crystal is taken in porphyrin plane vertically 

Formula C36H44N4Ni

Temperature/K 4

Crystal system tetragonal

Space group I4I/a

Z 4

a/Å 14.93(1)

b/Å 14.93(1) 

c/Å 13.84(1) 

V/Å3 3085

R[a] 0.077

R'[a] 0.137
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Fig. 3.1 Host and guest molecules of metalloporphyrins considered in this work.

Guest Host
CoIIOEP (S = 3/2)FeIII(Cl)OEP (S = 5/2) NiIIOEP (S = 0)



while the N–N directions are nearly parallel to the a- or b-axis. 

These two systems show the ruffling structure due to the static and dynamic pseudo Jahn-Teller 
distortion [20–23]. Intensity of ESR spectra for FeIII(Cl)OEP rapidly decrease above 5 K. [22,23] The 
boundary temperature between the static and dynamic distortion is about 36 K for CoIIOEP. [20,21] 

3.2.2 Cw-/pulsed-ESR experiments 
Single crystals of diamagnetic NiIIOEP well incorporating FeIII(Cl)OEP (S = 5/2) were prepared, in which 
actual guest/host concentration ratios were not determined. The Miller indexes of the single crystal were 
assigned to the crystal planes of a square-bipyramidal structure. (the published paper giving the X-ray 
data) [19] Based on the assignment of the Miller indexes an oxygen-free copper wedge was designed and 

prepared for ESR/ENDOR experiments in the principal-axis coordinate systems. Fortunately, the 
bipiramidal plane coincides with the square plane composed of the four nitrogen nuclei of the porphyrin 
skeleton, and an angle between the crystal a-axis (or the b-axis) and the direction of the diagonal nitrogen 

nuclei is only 2 degrees, as shown in Fig. 3.2 (molecular structure vs the principal axis and crystal axis). 
The error of the plane angles of the wedge was less than 0.2 degrees. All the experiments including pulsed 
ESR and electron spin transient nutation spectroscopy at X-band were carried out at liquid helium 
temperatures except otherwise specified. 

Conventional CW ESR experiments were carried out with a Bruker ESP300/350 X-band ESR 
Spectrometer equipped with a dual mode resonator ER4116DM, in which the ESR measurements were 

achieved in a not only conventional perpendicular mode (B⊥B1: B denotes the static magnetic field and 

B1 the micro-wave oscillating field) but also a parallel excitation mode (B//B1). The parallel mode allows 
the fine-structure/hyperfine forbidden transitions allowed. Temperature was controlled with an Oxford 

ESR910 helium-gas flow temperature controller system. CW X-band ENDOR measurements in the 
principal-axis coordinate systems were carried out with the ESP350 based spectrometer equipped with a 
single-circle goniometer. 

Single-crystal X-band pulsed-ESR spectroscopy was carried out with ESP300/380E (BrukerBioSpin) 

spectrometer equipped with a 1 kW TWT microwave amplifier. The relative phase and the intensity of 
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Fig. 3.2 (left) External shape of NiIIOEP single-crystal with assignment of Miller indices. (right) The 
relationship between the crystal axes (abc) and the molecular principal axes (xyz) in NiIIOEP.



microwave pulses were adjusted by using a high speed oscilloscope 9450A, 300 MHz (Lecroy). The 

microwave frequency was monitored with a frequency counter R5373 (Advantest). The temperature was 
regulated with a helium-gas flow controller systems (Oxford). Echo-detected field-swept ESR spectra 
were obtained with the conventional pulse sequence: π/2–τ–π–τ–echo with π/2 = 30 ns, π = 60 ns and τ = 

300 ns. Two-dimensional electron spin transient nutation spectroscopy was carried in the echo-detected 
scheme with a pulse sequence of nutation pulse–t0–π/2–τ–π–τ–echo, where the nutation pulse was 
changed from 16 to 512 ns in the step of 4 ns with π/2 = 30 ns, π = 60 ns, t0 = 40 ns and τ = 300 ns. 
Spectral analysis of ESR spectra of CoIIOEP and FeIII(Cl)OEP were carried out based on the exact 

numerical diagonalization with EasySpin (version 5.1.10) [24] under MATLAB R2014b software. 
The host crystal of NiIIOEP is a tetragonal bipyramidal with the space group I41/a, Z = 4, a = b = 

1.493(1) nm, c = 1.384(1) nm as determined by Mayer [19] and the crystal has a habit of well-developed 

planes with Miller indexes, (110), (100) (minor), (010) (minor), (001) (minor), (–100) (minor), (0–10) 
(minor), (00–1) (minor), (101), (011), (0–11), (–101), (01–1), (10–1), (0–1–1), (–10–1). The host NiIIOEP 
molecule has a slightly ruffled structure of the porphyrin plane with S4 symmetry. The molecular 
principal-axis system of the crystal nearly coincides with the crystallographic-axis system. It facilitates 

the spectral analyses for the observed ESR/ENDOR spectra, giving good accuracy of the determined 
tensors. The experimental error of setting the crystals of NiIIOEP in the cavity was estimated within 0.5 
degrees. The c-axis of the crystal is perpendicular to the porphyrin plane, while the N–N directions are 

nearly parallel to the a- or b-axes. An oxygen-free copper wedge was used for mounting the crystal. 

3.2.3 Quantum chemical calculations 
Quantum chemical calculations of the spin Hamiltonian parameters including g-tensor, D-tensor, A-tensor 
of 57Fe and 59Co nuclei, and Q-tensor of 59Co nuclei were carried out by means of DFT. Because ruffled 
structure of porphyrin ring plays important role on their electronic states, we used the solid state geometry 

of diamagnetic NiIIOEP host molecule determined from X-ray crystallography, [19] by substituting Ni 
atom to Fe or Co. Position of Cl atom in FeIII(Cl)OEP was optimized at the UTPSS/Sapporo-DZP level, 
and Cartesian coordinates of all other atoms were fixed during geometry optimization. The optimized Fe–

Cl bond length is 2.413 Å. 
The magnetic tensors were calculated at the UTPSS/Sapporo-DZP level. In the D-tensor calculations 

the first order spin–spin dipolar contributions (DSS terms) were calculated by using the natural orbitals 
constructed from the unrestricted Kohn–Sham determinant, in conjunction with the McWeeny–Mizuno 

equation. [25] The second order spin–orbit contributions (DSO terms) were evaluated by using the natural 
orbital-based Pederson–Khanna (NOB-PK) method [8] with the one-electron spin–orbit Hamiltonian with 
effective nuclear charges. The NOB-PK method, which is recently proposed by Dr. Sugisaki and co-

workers (Osaka City University), utilizes a single Slater determinant consisting of natural orbitals as the 
ground state wavefunction in conjunction with the Pederson–Khanna (PK)-type determinant-based 
perturbation theory. The NOB-PK method gives more accurate DSO-tensors in [MnII(terpy)X2]  (terpy = 
2,2’:6,2’-terpyridine, X = NCS, Cl, Br, and I), [MnII(tpa)X2] (tpa = tris-2-picolylamine, X = Cl, Br, and I), 

and (NBu4)2[ReIVX4(ox)] (ox = oxalate, NBu4 = tetra-n-butylammonium cation, X = Cl and Br) systems 
than the conventional PK [26] and quasi-restricted orbital (QRO) [27] approaches. 

The g-, A-, Q-, and DSS-tensors were calculated by using ORCA software (version 3.0.0), [28] and the 

DSO-tensors were computed by means of GAMESS-US program suite [29] and laboratory-made source 
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code. 

The electronic configuration in the spin-sextet ground state of Fe III(Cl)OEP is 
(dxz)1(dyz)1(dz2)1(dxy)1(dx2–y2)1 without any ambiguity. However, determining electronic configuration of 

the spin-quartet ground state of CoIIOEP needs special care, because of the presence of low-lying excited 
electronic states arising from ruffled structure of porphyrin ring. In order to elucidate electronic structure 
of the ground state of CoIIOEP, we have carried out 10 single point calculations with the different initial 

guess 3d-electron configurations. According to the single point calculations the energy-lowest electronic 
configuration is (dxz)1(dyz)1(dz2)2(dxy)2(dx2–y2)1, but the electronic states having (dxz)2(dyz)1(dz2)1(dxy)2(dx2–

y2)1 and (dxz)1(dyz)2(dz2)1(dxy)2(dx2–y2)1 configurations are calculated only 273 and 274 cm–1, respectively, 
above from the ground state. Here, the x and y axes were defined to be parallel to the Co–N coordination 

bond and the z axis was to be parallel to the pseudo-S4 axis. The quasi-degeneracy of these two electronic 
states is rationalized from the pseudo-S4 symmetry of CoIIOEP. The electronic state described as 
(dxz)2(dyz)2(dz2)1(dxy)1(dx2–y2)1 configuration, expected from the crystal field of square planar coordination, 

is calculated 1909 cm–1 higher in energy than the ground state. Note that other spin-quartet electronic 
states are calculated to have higher energy (∆E > 20000 cm–1) than the ground state at the UTPSS/
Sapporo-DZP level. 

Because low-lying electronic states are energetically very close to each other and it is hard to 
determine the ground state electronic configuration only from the DFT calculations, we also carried out 
the CASSCF(7e,5o)/6-31G* calculations for CoIIPor (Por = porphyrin) molecule. The molecular 

geometry of CoIIPor is prepared from the solid state geometry of NiIIOEP, by substituting Ni to Co, and 
ethyl groups to H atoms. The CASSCF active space consists of valence 3d orbitals and electrons. During 
the SCF calculation state averaging is done for 10 spin-quartet states. According to the CASSCF 

calculation the lowest quartet state is described mainly by the (dxz)2(dyz)2(dz2)1(dxy)1(dx2–y2)1 configuration 
with the expansion coefficient C = 0.99. The first and second excited quartet states are located to be 717 
cm–1 and 718 cm–1, respectively, higher in energy from the ground state. Both the first and second excited 

quartet states have multiconfigurational character and the main configurations are 0.80 
[(dxz)2(dyz)1(dz2)2(dxy)1(dx2–y2)1], +0.58 [(dxz)1(dyz)2(dz2)1(dxy)2(dx2–y2)1] and 0.81 [(dxz)2(dyz)1(dz2)1(dxy)2(dx2–

y2)1], –0.58 [(dxz)1(dyz)2 (dz2)2(dxy)1(dx2–y2)1], respectively. The third excited quartet state is described 

mainly by the (dxz)1(dyz)1(dz2)2(dxy)2(dx2–y2)1 configuration, which is the energy-lowest configuration in the 
UTPSS/Sapporo-DZP single point calculations. The excitation energy of the third excited quartet state is 
2522 cm–1 at the CASSCF level. From the DFT and CASSCF calculations, we expect that the ground 

state electronic configuration must be (dxz)2(dyz)2(dz2)1(dxy)1(dx2–y2)1 or (dxz)1(dyz)1(dz2)2(dxy)2(dx2–y2)1 and 
magnetic tensor calculations have been carried out for these two electronic configurations. 

Spin density distributions of FeIII(Cl)OEP and CoIIOEP are plotted in Fig. 3.3 with an isosurface value 
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Fig. 3.3 The calculated spin density distributions and principal axes of D-, g- and A-tensors of 
FeIII(Cl)OEP (left) and CoIIOEP (center: (dxz)2(dyz)1(dz2)1(dxy)2(dx2–y2)1 configuration, right: 
(dxz)2(dyz)2(dz2)1(dxy)1(dx2–y2)1 configuration) calculated at the UTPSS/Sapporo-DZP level of theory.
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is set to be 0.005, and Mulliken atomic spin densities on the metal center, chlorine, and nitrogen atoms are 

summarized in Table 3.2. In both molecules most of unpaired electrons are located on the metal center, 
and non-negligible amount of spin densities are distributed onto the coordinated chlorine and nitrogen 
atoms. 

Table 3.2 Mulliken Atomic Spin Densities of FeIII(Cl)OEP and CoIIOEP Calculated at the UTPSS/
Sapporo-DZP Level 

Table 3.3 Magnetic Tensors Calculated at the UTPSS/Sapporo-DZP level 

[a] The spin–orbit CI result in CoIIPor (Por = porphyrin) using CASSCF(7e,5o)/6-31G* wavefunctions as 

the non-relativistic wavefunctions. 

The calculated magnetic tensors of FeIII(Cl)OEP and CoIIOEP are summarized in Table 3.3. In 

FeIII(Cl)OEP the D-, g-, A(57Fe)-tensors are roughly coaxial to each other. The Dzz axis is nearly parallel 
to the Fe–Cl bond. The Dxx axis is approximately parallel to the direction connecting Fe and carbon atom 
of meso position. The DSS contribution to D-value is about 600 MHz and therefore DSO term is dominant. 

Molecule FeIII(Cl)OEP CoIIOEP

Electronic  
configuration

(dxz)1(dyz)1(dz2)1 
(dxy)1(dx2–y2)1

(dxz)1(dyz)1(dz2)2 
(dxy)2(dx2–y2)1

(dxz)2(dyz)2(dz2)1 
(dxy)1(dx2–y2)1

Metal center 3.966 2.522 2.668

Cl 0.329

4N 0.376 0.205 0.331

Molecule FeIII(Cl)OEP CoIIOEP

Electronic 
configuration

(dxz)1(dyz)1(dz2)1(dxy)1 

(dx2–y2)1
(dxz)1(dyz)1(dz2)2(dxy)2 

(dx2–y2)1
(dxz)2(dyz)2(dz2)1(dxy)1 

(dx2–y2)1

DSS+SO/MHz +2.301 × 105 –6.403 × 105 +2.174 × 106 [a]

ESS+SO/DSS+SO 0.0481 0.0015 0.0000 [a]

gxx 2.0149 2.0792 2.0948

gyy 2.0166 2.0793 2.0947

gzz 2.0075 2.0226 2.0093

giso 2.0130 2.0604 2.0663

Axx(M)/MHz 20.97 148.01 352.68

Ayy(M)/MHz 22.24 148.08 352.66

Azz(M)/MHz 18.38 148.49 158.02

aiso(M)/MHz 20.53 148.19 287.79

Qxx(59Co)/MHz –2.773 –0.768

Qyy(59Co)/MHz –2.767 –0.764

Qzz(59Co)/MHz 5.540 1.532
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Analysis of the theoretical DSO-tensor based on the orbital region partitioning technique (ORPT) [30] 

revealed that the most important excitation on the DSO contributions are dx2–y2(α) → dxy(β) excitation, 

which raises Dzz principal value about 3 × 105 MHz. The dx2–y2(α) → dyz(β) and dx2–y2(α) → dxz(β) 
excitations contribute mainly to Dxx and Dyy principal values, respectively, which act to decrease the D 
value about 0.7 × 105 MHz. The g-tensor is slightly shifted positively from the g value of free electron 

(2.0023) but the shift is small compared with that of CoIIOEP. The A(57Fe)-tensor has small anisotropy 
reflecting the d5 high spin electronic configuration. 

In CoIIOEP of the (dxz)1(dyz)1(dz2)2(dxy)2(dx2–y2)1 electron configuration, the negative DSS+SO value is 
predicted. The Dzz axis is perpendicular to the porphyrin ring. According to the ORPT, the most important 

excited electronic configurations are dx2–y2(α) → dyz(β) and dx2–y2(α) → dxz(β). These excitations work to 
raise Dxx and Dyy principal values, as discussed in the DSO-tensor analysis of FeIII(Cl)OEP. The A(59Co)-
tensor has very small anisotropy reflecting the electronic configuration. 

In the DSO-tensor calculation of CoIIOEP in (dxz)2(dyz)2(dz2)1(dxy)1(dx2–y2)1electronic configuration we 
have encountered difficulties in DFT-based approach. In the single determinant comprised of natural 

orbitals the highest occupied spin-α (dx2–y2) orbital has higher energy than the lowest unoccupied spin-β 
(dxy) orbital (ε(dx2–y2)(α) = –0.111576 Hartree and ε(dxy)(β) = –0.114939 Hartree). This means that spin-

doublet excited configuration has lower energy than the spin-quartet state, although in the CASSCF 
calculations the (dxz)2(dyz)2(dz2)2(dxy)1(dx2–y2)1 spin-quartet state is the ground state. The theoretical DSO 

value calculated based on the NOB-PK method is –5.496 × 106 MHz. However, the ORPT analysis 
revealed that the dx2–y2(α) → dxy(β) excited configuration contributes dominantly to the DSO value (–5.664 

× 106 MHz), which has the above mentioned negative orbital energy difference. If this excited spin-
doublet configuration has positive orbital energy difference like in CASSCF energy orderings, the sign of 
the DSO value becomes positive. We note that such orbital energy order inversion occurs in the Kohn–

Sham orbital of both FeIII(Cl)OEP and CoIIOEP, and therefore the DSO values of FeIII(Cl)OEP and 
CoIIOEP of (dxz)1(dyz)1(dz2)2(dxy)2(dx2–y2)1 configuration calculated by means of conventional PK method 

has opposite absolute sign to those calculated by NOB-PK. 
In order to estimate DSO-tensor of CoIIOEP in (dxz)2(dyz)2(dz2)1(dxy)1(dx2–y2)1 configuration other than 

the DFT-based methods, spin–orbit CI (SO-CI) based on the CASSCF(7e,5o)/6-31G* wavefunction in 
CoIIPor system was adopted. In the SO-CI calculations, the 50-state-averaged (40 doublets and 10 
quartets) CASSCF wavefunctions as the non-relativistic wavefunctions were used. The DSO and ESO 

values are calculated directly from the energy differences between spin sublevels. The obtained DSO value 
is positive as expected (DSO = +2.174 × 106 MHz), and ESO value is less than 1 MHz. Note that at the SO-
CI method the DSO value of (dxz)1(dyz)1(dz2)2(dxy)2(dx2–y2)1 configuration (the third excited quartet state) is 

–7.725 × 105 MHz, which is close to the NOB-PK-based theoretical value. 
The A(59Co)-tensor of CoIIOEP in (dxz)2(dyz)2(dz2)1(dxy)1(dx2–y2)1 configuration calculated at UTPSS/

Sapporo-DZP shows large axial anisotropy: Axx ~ Ayy > Azz, because two unpaired electrons occupy in-
molecular-plane orbitals (dxy and dx2–y2 orbitals). Since the dxy orbital is doubly occupied in 

(dxz)1(dyz)1(dz2)2(dxy)2(dx2–y2)1 configuration and singly occupied in (dxz)2(dyz)2(dz2)1(dxy)1(dx2–y2)1, the 

smaller Q-tensor is obtained in (dxz)2(dyz)2(dz2)1(dxy)1(dx2–y2)1 configuration than in 

(dxz)1(dyz)1(dz2)2(dxy)2(dx2–y2)1 reflecting the occupation number.  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3.3 Results and Discussions 
3.3.1 Electronic structure of FeIII(Cl)OEP (S = 5/2) magnetically diluted in 

the diamagnetic NiIIOEP single-crystal as studied by cw-/pulsed-ESR and 
14N-ENDOR spectroscopy 
Pulsed ESR experiments, particularly transient nutation spectroscopy, were carried out only mostly for the 
principal z-axis orientation of FeIII(Cl)OEP because the time resolution of the microwave pulse generation 

was not enough to detect the fast relaxation of the magnetization for the principal x- and y-axis 
orientations. This is because the SOC is strong with the static magnetic field lying in the porphyrin plane. 
Figure 3.4 shows the observed fine-structure CW X-band spectra of FeIII(Cl)OEP with B// the crystal a-, 

b- and c-axes. 
One-dimensional electron spin transient nutation (1D-ESTN) spectroscopy observed in the vicinity of 

the principal z-axis orientation was carried out to confirm that FeIII(Cl)OEP is in the spin-sextet ground 
state. [22] The observed nutation frequencies, as shown in Fig. 3.5, were interpreted by the transition 

probability/moment between the dominant |MS = ±1/2> states under the assumption of the true g-tensor 
(Table 3.4), illustrating that the observed transition arises from the spin-sextet state in a straightforward 
manner. The theoretical nutation frequency, which corresponds to the transition moment between the 

dominant Kramers doublet, was calculated by using all the experimentally derived magnetic tensors, 
based on the full spin Hamiltonian. The theoretical value is three times greater than that for the doublet 
spin state. As given in Fig. 3.5, the theoretical ratio 3.03 of the nutation frequency (S = 5/2)/the frequency 
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Fig. 3.4 The fine-structure CW X-band single-crystal ESR spectra of FeIII(Cl)OEP magnetically diluted in 
the diamagnetic NiIIOEP single-crystal with B// the crystal a-, b- and c-axes at 3.2 K. [23] The true g-
values and λ = E/D are derived from the analytical expressions for the geff–gtrue relationships with S = 5/2. 
The splitting seen in the spectrum arises from the symmetry lowering of the molecular structure of 
FeIII(Cl)OEP at liquid helium temperatures, and the four molecules in the unit cell are energetically 
distinguishable. Frequency: 9.48159 GHz for B//a and b-axes and 9.618412 GHz for B//c-axis.



(S = 1/2) reproduced the experimental value (36.9 MHz/12.2 MHz), where 12.2 MHz was the calibration 

frequency from a single crystal of DPPH (S = 1/2), indicating that the experimentally determined 
magnetic tensors for FeIII(Cl)OEP are reasonably accurate. In Fig. 3.5(b), the nutation frequency observed 
at 344.790 mT directly shows that the cw-ESR signal is attributable to the sextet FeIII(Cl)OEP in a 
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Fig. 3.5 (Top) Echo-detected ESR spectrum at X-band applied to FeIII(Cl)OEP (S = 5/2) magnetically 
diluted in the diamagnetic NiIIOEP single-crystal with the static magnetic field along the principal z-axis 
at 4 K. The positions marked by (a)–(c) correspond to the external magnetic field at which the 1D-ESTN 
experience were carried out at 3 K (middle). All the signals arise from the FeIII(Cl)OEP molecules with 
different molecular orientations with respect to the static magnetic field. The signal appearing at 12.55 
MHz was attributed to a proton nutation frequency. The peaks assigned with asterisks were analytical 
artifacts. (Bottom) The nutation spectrum calculated by the set of the full spin Hamiltonian parameters 
experimentally determined. The calculated nutation frequency is 3.03 times greater than the notation 
frequency, 12.2 MHz of DPPH (S = 1/2) used as an external to be the transition between the |±1/2>-
dominant spin sublevels of the spin-sextet state. The nutation spectroscopy for the reference signal was 
detected by using a different scheme of the detection from that for FeIII(Cl)OEP, enabling us to 
experimentally discriminate the nutation frequency of the reference from that of FeIII(Cl)OEP.



different molecular orientation. 

The sign of the D-value was determined to be positive. The principal gtrue-values and the ratio λ (= E/
D) were determined by using the analytical expressions derived for S = 5/2, in light of the fact that the 

2D*-value ( " ) was independently determined in the pulse-based relaxation experiments: 

gxtrue = 2.010, gytrue = 2.008, gztrue = 2.005, |E/D| = 0.002. The spin-lattice relaxation time of FeIII(Cl)OEP 
was measured as a function of temperature at liquid helium temperatures. [22] Assuming a dominant 
Orbach process occurring among the magnetic sublevels, we estimated the ZFS between the Kramers 
doublets to be 2D* ~ 14 cm–1. [22,31–33] 

The spectrum observed with the static magnetic field along the crystal a-axis (Fig. 3.4) indicates that 
the tetragonal symmetry of the FeIII(Cl)OEP molecule was lowered below 4 K and the four 
crystallographically equivalent molecules (Z = 4) became energetically distinguishable. The observed 

symmetry reduction due to subtle distortion is suggestive of the possible occurrence of a static pseudo 
Jahn-Teller (JT) regime in the tetragonal symmetry. In the static regime, the Cl ion as the fifth ligand to 
the central FeIII ion plays an essential role in lowering the tetragonal symmetry. The detection of the four 

distorted structures is indicative of the occurrence of more than two JT-active vibrational modes. There is 
no possible occurrence of temperature-reversible structural phase transitions of NiIIOEP at liquid helium 
temperatures, because there is no observation of the distortion for 65CuIIOEP magnetically diluted in the 
NiIIOEP lattice. The swift spectral transition from the static to dynamical regimes was observed on 

elevating temperature from 3 K. Detailed theoretical analyses in terms of the pseudo-JT interactions are 
the future works. 

All the experimentally determined parameters of the magnetic tensors are given in Table 3.6, in which 

ENDOR data on the nitrogen nuclei of the porphyrin skeleton observed at 3 K are included. The complete 
analysis of the 14N-ENDOR data is useful to identify the molecular distortion below 4 K, and in Fig. 3.6 
the observed 14N-ENDOR and simulated spectra are given. Note that all the experimentally determined 
magnetic tensors are based on the ZFS+Zeeman spin Hamiltonian including the ZFS-tensor. Figure 3.6 

shows the experimental and simulated single-crystal ENDOR spectra of FeIII(Cl)OEP with the magnetic 
field oriented to about the crystal c-axis (which is parallel to the principal z-axis). The 14N-ENDOR lines 
was simulated assuming that the spin Hamiltonian (3.1) and the porphyrin of FeIII(Cl)OEP has ruffled 

structure and the set of Euler angles of the A-tensor of four porphyrin nitrogens. 

D* = D2 + 3E2
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Fig. 3.6 Observed and simulated single-crystal 14N-ENDOR spectra of FeIII(Cl)OEP diluted in NiIIOEP in 
B//c axis. B = 337.0624 mT, νMW = 9.47953 GHz, T = 3.0 K. [22b]

Frequency/MHz



"  (S = 1/2, I = 1) (3.1) 

where gxeff = 5.9584, gyeff = 6.0642, gzeff = 2.0972, Axeff = 9.0 MHz, Ayeff = 7.60 MHz, Azeff = 7.80 MHz, 
Qxeff = –0.80 MHz, Qyeff = 1.05 MHz and Qzeff = –0.25 MHz. The magnetic parameters were determined 
by the best fitting procedure. 

We also revised the hyperfine splitting parameters of 14N nuclei in pyrrole rings measured with 
ENDOR spectroscopy. We have not resolved the hyperfine splitting of 35Cl (or 37Cl with less natural 
abundance) with I = 3/2. 

We have now a set of the reliable experimental data, for the first time, on the magnetic tensors of 
FeIII(Cl)OEP in its sextet ground state, whose molecular structure is subject to subtle distortion in the 
crystal lattice of diamagnetic NiIIOEP. We have notes that there were significant errors in the 
experimental values for the A(14N)-tensor and Q(14N)-tensor (electronic quadrupole tensor), in spite of 

the fact that the cw-ENDOR measurements were carried out in the molecular principal-axis coordinate 
systems. The errors mainly arose from the complexity due to the existence of the four pyrrole nitrogen 
nuclei making up the distorted four-sided stricture of FeIII(Cl)OEP in the NiIIOEP crystal lattice. Indeed, 

in 14N-ENDOR analysis for symmetric four-sided structures such as square, rectangle or rhombus, the 
degeneracy of the nuclear spin states can afford accurate experimental data on the nitrogen hyperfine and 
quadrupolar tensors, but the distorted FeIII(Cl)OEP is not the case. Nevertheless, any accurate 
interpretation on the data is a challenge for quantum chemistry. Quantum chemical calculations for the 

spin-sextet ground state were carried out at the UTPSS/Sapporo-DZP level of theory using ORCA [28] 
and GAMESS-US [29] program packages. Because the ruffling ring structure of OEP plays a significant  
role in the electronic structure, we used the solid-state geometry of the NiIIOEP host molecule which was 

reported from the X-ray crystallography, [19] and in which the central Ni atom was replaced to the Fe–Cl 
group. The position of the Cl atom was optimized by consistent geometry optimization with the fixed 
Cartesian coordinates of the Fe atom and OEP scaffolds. 

The theoretical spin density plot and principal axes of the D-, g- and hyperfine A(57Fe)-tensors of 

FeIII(Cl)OEP were given in Fig. 3.3. Note that their tensors are nearly coaxial, in harmony with the 
experiment. Most of the unpaired electrons distribute on the Fe atom and are spin-delocalized onto the 
coordinated Cl and four N atoms of the porphyrin ring. The spin–orbit (SO) contributions to the D-tensor 

were calculated by invoking the Natural Orbital-Based Pederson–Khanna (NOB-PK) method [8] which 
have been very recently proposed as a reliable computational approach to the evaluation of the SO 
contributions to open shell metallocomplexes. The theoretical D-value is +2.301 × 102 GHz (+7.675 
cm−1) and E/D = 0.0481. The orbital region partitioning analysis (ORPT), [30] which can provide a 

chemist's intuition-friendly physical picture of the D-tensor, revealed that the large positive D-value is 
mainly attributed to the strong SOC with the dx2–y2(α) → dxy(β) excited configuration. The theoretical 

principal values of the g- and A(57Fe)-tensors are gxx = 2.0149, gyy = 2.0166, gzz = 2.0075, and Axx = 
+20.97 MHz, Ayy = +22.24 MHz, Azz = +18.38 MHz, respectively. The small anisotropic nature of the 
A(57Fe)-tensor arises from the nearly symmetric spin density distribution on the Fe atom due to the d5 

high spin electronic configuration. The A(14N)-tensor was calculated to be Axx = +11.20 MHz, Ayy = +7.95 
MHz and Azz = +9.00 MHz, where the Axx principal axis is parallel to the Fe–N coordination bond and the 
Azz axis is perpendicular to the molecular plane. The quadrupolar tensors for the nitrogen nuclei were not 
calculated. Upon comparison, the theoretical D-value (+7.675 cm−1) agrees with the experimental value, 

D* =  ~ D = +7.0 cm–1, and the quantum chemical calculation reasonably well reproduces the 

H eff = βS i geff i B+ S iAi
eff i Ii − gnβnIi i B+ Ii iQi

eff i Ii( )
i=1

4

∑

D2 + 3E2
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experimental results for the other magnetic tensors, including the directions of their principal axes. 

Importantly, the present theoretical framework of quantum chemistry is not capable of considering any 
vibronic issues such as the subtle distortion in the static pseudo-JT regime. However, the location of 
nearby electronic excited states suggests the possible occurrence of the vibrational SOC via the JT active 

normal e-modes, and the details will be the future work. 

Table 3.4 The experimentally determined principal values of the magnetic tensors of  FeIII(Cl)OEP 
magnetically diluted in the diamagnetic NiIIOEP single-crystal. The principal z-axis of the magnetically 

diluted in the diamagnetic tensors for the central FeIII ion is parallel to the crystallographic c-axis. The 
averaged principal values over the four molecules are given. The principal values of the A(14N)- and 
Q(14N)-tensors are also the averaged ones. The columns denoted by “true” and “effective” spin 

Hamiltonian approaches, respectively. 

*Axial ZFS parameters were determined from the measurement of the longitudinal relaxation time. 

(a) true (b) effective

gx 2.010 6.04

gy 2.008 5.90

gz 2.005 2.005

Ax(14N)/MHz — +9.0

Ay(14N)/MHz — +7.60

Az(14N)/MHz — +7.80

Qx(14N)/MHz — –0.80

Qy(14N)/MHz — +1.05

Qz(14N)/MHz — –0.25

D/cm–1 +7.0 Not available

E/D 0.002 Not available

Temperature/K 3–5 3–5

Reference [This work] [22,23]
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3.3.2 Electronic structure of CoIIOEP (S = 3/2) magnetically diluted in 

diamagnetic NiIIOEP single-crystals: Cw-/pulsed-ESR and DFT-based 

quantum chemical and ab initio MO calculations of the magnetic tensors 
Single crystals of diamagnetic NiIIOEP well incorporating CoIIOEP (S = 3/2) were prepared in the same 

manner to FeIII(Cl)OEP. The actual guest/host concentration ratios were not determined. All the 
experiments including pulsed electron spin transient nutation spectroscopy at X-band were carried out at 
liquid helium temperatures except otherwise specified. The nuclear Zeeman dominant hyperfine 

forbidden transitions were observed and helped accurately determine CoII the quadrupole couplings. The 
single-crystal ESR spectroscopy showed that the principal values/direction cosines of the g-, hyperfine 
A(CoII: I = 7/2)- and quadrupolar Q(CoII)-tensors of CoIIOEP (S’ = 1/2; effective) do not maintain 

tetragonal S4 symmetry below 20 K. The principal x- or y-axis is along the bisector of the N–N side line, 
and thus along the direction of 45 ± 2 degrees from the crystal a- or b-axis. The principal values/direction 
cosines of the magnetic tensors for the distorted CoIIOEP were obtained by the numerical diagonalization 
of the effective spin Hamiltonian. 

Table 3.5 The experimentally determined principal values of the magnetic tensors of CoIIOEP 
magnetically diluted in the diamagnetic NiIIOEP single-crystal. The principal z-axis of the magnetic 

tensors for the central CoII ion is parallel to the crystallographic c-axis, The experimental principal x- or 
y-axis is along the bisector of the N–N side line, and thus along the direction of 45 ± 2 degrees from the 
crystal a- or b-axis. The molecular structure of CoIIOEP does not maintain the tetragonal symmetry below 
20 K. 

(a) true (b) effective

gx 1.7138, 1.7087 3.3915, 3.3232

gy 1.6842, 1.6793 3.4036, 3.4532

gz 1.5472, 1.5572 1.5470, 1.5570

Ax(59Co)/MHz 682, 681 ± 3 1349.6, 1347.7

Ay(59Co)/MHz 679, 684 ± 3 1372.2, 1382.3

Az(59Co)/MHz 625, 615 ± 5 624.9, 614.9

Qx(59Co)/MHz — –0.10, –2.92

Qy(59Co)/MHz — –2.20, –3.34

Qz(59Co)/MHz — +2.29, +6.25

D/cm–1 > +5.0, +5,0 Not available

E/D 0.007, 0.007 Not available

Temperature/K 4.2 4.2

Reference [This work] [This work, 21]

"121



Table 3.6 The principal values of the magnetic tensors of CoIIOEP obtained with effective spin 

Hamiltonian (S’ = 1/2) and the direction cosines for the crystal (abc) coordination [21] 

In Table 3.6(a) and (b) are given the two sets of the experimentally determined principal values of the 

magnetic tensors on the basis of the full and effective spin Hamiltonian approach, respectively. 
Noticeably, the sets of the magnetic tensors have different direction cosines, and the principal x-axis (or y-
axis) of one g- and A(59Co)-tensor are perpendicular to those of the other tensors. The z-axis are collinear. 

The true principal g-values were determined by invoking the geff–gtrue exact analytical relationships with 
the ratio λ (= E/D) for S = 3/2, as given by Eqs. (2.17a)–(2.17c). It is noteworthy that all the true principal 
g-values are less than 2.0023, the g-value of the free electron, suggesting that the salient electronic 
structures of four-coordination CoIIOEP in its quarter ground state are disclosed and their values of the 

Molecule 1
Direction cosines

Principal values a b c

gx 3.4485 0.66210 –0.74936 0.00252

gy 3.3287 –0.74941 –0.66210 –0.00173

gz 1.5421 –0.00297 0.00074 1.00000

Ax(59Co)/MHz 1391.5 0.67021 –0.74216 0.00398

Ay(59Co)/MHz 1347.3 –0.74216 –0.67022 –0.0168

Az(59Co)/MHz 597.5 0.00398 0.00183 0.99999

Qx(59Co)/MHz –0.10 0.74703 0.58062 0.32376

Qy(59Co)/MHz –2.20 0.46618 –0.80473 0.36754

Qz(59Co)/MHz 2.29 –0.47395 0.12364 0.87183

Molecule 2
Direction cosines

Principal values a b c

gx 3.3296 0.67729 0.73571 0.00131

gy 3.4445 0.73569 –0.67729 –0.00603

gz 1.5372 –0.00535 0.00312 0.99998

Ax(59Co)/MHz 1345.2 0.69058 0.72325 0.00211

Ay(59Co)/MHz 1390.6 0.72325 –0.69058 –0.00236

Az(59Co)/MHz 605.0 0.00211 –0.00121 1.00000

Qx(59Co)/MHz –2.92 –0.23227 –0.03435 0.97024

Qy(59Co)/MHz –3.34 0.71330 –0.68543 0.14622

Qz(59Co)/MHz 6.25 –0.66125 0.72732 –0.18372
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A(59Co)-tensor, there is a projection factor (2S)–1 and thus those based on the effective spin Hamiltonian 

approach. However, the projection factor is reduced due to the admixture of the conjugate spin sub levels. 
All the experimental data were based on the angular dependence of the spectra from the single crystals 
and the spectral fitting procedure. 

Also, we carried out the spectral simulation of the X-band powder-pattern spectra of CoIIOEP 
observed at 4 K to estimate the principal values of the ZFS tensors and to confirm that the two dominant 
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Fig. 3.7 Powder-pattern ESR fine-structure/hyperfine spectra of CoIIOEP observed at 4 K. The splitting 
appearing at the canonical peaks is due to the two molecules of CoIIOEP with the different sets of the 
magnetic tensors in the spin Hamiltonian. (a) Observed with 9.40914 GHz of the microwave frequency 
used, (b) and (c) simulated in terms of the effective and full spin Hamiltonians, respectively. Two 
components are added with the equal weight in the simulated spectra. The magnetic tensors of the two 
components are shown in Table 3.5. The principal values and axes of the magnetic tensors are given in 
Table 3.6. Any strain effects of the line width were not considered in the simulation. The canonical and 
off-principal-axes extra lines were assigned on the basis of the angular dependence of the resonance 
fields, as given in Fig. 3.9. In the simulations (b) and (c), the line width of the single transition was 0.5 
mT, which is less than the observed one (> 0.1 mT) in the single-crystal spectroscopy. The narrower line 
width was chosen to clearly illustrate the superimposed structure.

(a)

(b)

(c)

A
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Fig. 3.8 The calculated angular dependence from the principal z- to x-axis in the spectral simulation by 
using of the fictitious spin-1/2 Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line 
width: 5 mT. Magnetic tensors used: (component 1) gxeff = 3.3915, gyeff = 3.4036, gzeff = 1.5470, Axeff = 
1349.6 MHz, Ayeff = 1372.2 MHz, Azeff = 624.9 MHz, Qx = –0.10 MHz, Qy = –2.20 MHz, Qz = 2.29 MHz, 
(component 2) gxeff = 3.3232, gyeff = 3.4532, gzeff = 1.5570, Axeff = 1347.7 MHz, Ayeff = 1382.3 MHz, Azeff = 
614.9 MHz, Qx = –2.92 MHz, Qy = –3.34 MHz, Qz = 6.25 MHz. The geff-, Aeff- and Q-tensors of the 
component 1 were assumed to be collinear. The relative orientations of each tensor of the component 2 
were baed on the direction cosines shown in Table 3.6. The top of the spectrum is the absorption line 
corresponding to the summation for the all magnetic field orientations for comparison. Any strain effect 
of the line width is not included. The simulated spectra were obtained using EasySpin (ver. 5.1.10) [24] 
with varying the angle of the magnetic field one-degree stepwise. The peak denoted by dotted line is 
assigned to the occurrence of the off-principal-axis peak. Noticeably, the zx-plane angular dependence of 
the fine-structure/hyperfine spectra due to CoIIOEP reveals marked difference of the behavior of the 
transitions appearing in the range of 30 to 60 degrees between the fictitious spin and true spin 
Hamiltonian approaches (see Fig. 3.9).

B//z

B//x
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Fig. 3.9 The calculated angular dependence from the principal z- to x-axis in the spectral simulation by 
using of the true spin Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line width: 5 
mT. Magnetic tensors used: (component 1) gxtrue = 1.7138, gytrue = 1.6842, gztrue = 1.5472, Axtrue = 682.0 
MHz, Aytrue = 679.0 MHz, Aztrue = 625.0 MHz, D = +10 cm–1, E/D = 0.007, Qx = –0.10 MHz, Qy = –2.20 
MHz, Qz = 2.29 MHz, (component 2) gxtrue = 1.7087, gytrue = 1.6793, gztrue = 1.5572, Axtrue = 681.0 MHz, 
Aytrue = 684.0 MHz, Aztrue = 615.0 MHz, D = +10 cm–1, E/D = 0.007, Qx = –2.92 MHz, Qy = –3.34 MHz, 
Qz = 6.25 MHz. The gtrue-, Atrue-, D- and Q-tensors of the component 1 were collinear. The relative 
orientations of each tensor of the component 2 were baed on the direction cosines shown in Table 3.6. The 
top of the spectrum is the absorption line corresponding to the summation for the all magnetic field 
orientations for comparison. Any strain effect of the line width is not included. The simulated spectra 
were obtained using EasySpin (ver. 5.1.10) [24] with varying the angle of the magnetic field one-degree 
stepwise. The peak denoted by dotted line is assigned to the occurrence of the off-principal-axis peak. 
Noticeably, the zx-plane angular dependence of the fine-structure/hyperfine spectra due to CoIIOEP 
reveals marked difference of the behavior of the transitions appearing in the range of 30 to 60 degrees 
between the fictitious spin and true spin Hamiltonian approaches (see Fig. 3.8).

B//z

B//x
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B//a

B//c

Fig. 3.10 The calculated angular dependence from the crystal a- to c-axis in the spectral simulation by 
using of the fictitious spin-1/2 Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line 
width: 5 mT. Magnetic tensors used were shown in the caption of Fig. 3.8. The geff-, Aeff-, and Q-tensors 
of the component 1 were assumed to be collinear. The relative orientations of each tensor of the 
component 2 were baed on the direction cosines shown in Table 3.6. Any strain effect of the line width is 
not included. The simulated spectra were obtained using EasySpin (ver. 5.1.10) [24] with varying the 
angle of the magnetic field one-degree stepwise.

B//a

B//c

Fig. 3.11 The calculated angular dependence from the crystal a- to c-axis in the spectral simulation by 
using of the true spin Hamiltonian. Microwave frequency: 9.62541 GHz, peak-to-peak line width: 5 
mT. Magnetic tensors used are shown in the caption of Fig. 3.9. The gtrue-, Atrue-, D- and Q-tensors of the 
component 1 were collinear. The relative orientations of each tensor of the component 2 were baed on the 
direction cosines shown in Table 3.6. Any strain effect of the line width is not included. The simulated 
spectra were obtained using EasySpin (ver. 5.1.10) [24] with varying the angle of the magnetic field one-
degree stepwise.



distorted molecules of CoIIOEP in the unit cell were energetically distinguishable. Note that the observed 

transition intensities are governed by the superposition of the four but dominantly two quartet species, as 
seen below. 

Figure 3.7(a) shows the power-pattern X-band ESR fine-structure/hyperfine spectra of CoIIOEP 

observed at 4 K, in which apparent splitting is seen at the three outermost z-canonical peaks, indicating 
that there are two dominant molecules of CoIIOEP in the diluted crystal of diamagnetic NiIIOEP and they 
are energetically distinguishable. Figure 3.7(b) and (c) show the simulated powder-pattern spectra on the 
basis of the fictitious spin Hamiltonian and ZFS+Zeeman spin Hamiltonian methods, respectively. We 

emphasize that the effective spin-1/2 Hamiltonian can also seemingly reproduce the experimental 
powder-pattern spectra, particularly with the absorption lines appearing in the range of 310 to 360 mT of 
the static magnetic field (Fig. 3.7(a)). The hyperfine lines in this range are subject to significant 

contributions of the off-principal-axis extra peaks if there are large ZFS terms and anisotropic g-tensors.  
CoIIOEP in the spin quartet state has sizable D-values (> +5cm–1), leading to less contributions of the off-
principal-axis extra peaks in terms of the present genuine Zeeman perturbation treatment. In this context, 
the general statement on the appearance of the off-principal-axis extra peaks that the peaks arise from the 

appreciable contribution of the second-order corrections in the spin Hamiltonian [34] is valid only in pure 
fine-structure spectra. The origin of the observed extra lines is attributable to the large hyperfine 
couplings and anisotropic g-tensor of the CoII ion. Some of their intensities are large, but not assignable to 

the canonical orientations. They are assigned to the off-principal-axis extra lines, which appear only in the 
powder-pattern spectra. In the fine-structure/hyperfine transitions within the dominant |MS = ±1/2>, the 
ZFS contributions vanish to the zeroth and first order, and thus the higher order Zeeman contributions 
play a dominant role and appear in the off-principal-axis orientations, giving the stationary points with 

respect to the orientation of the static magnetic field. The line shapes of the extra lines appearing at the 
divergence with respect to the static magnetic field are markedly different from those of the canonical 
absorption peaks, as seen in Fig. 3.7(a). In Fig. 3.7(a), the extra lines are denoted by A. The assignment of 

the extra line in ordinary (non-Zeeman) perturbation approaches is useful for the fine-structure spectral 
analysis because their resonance fields are sensitive to the accuracy of the set of the magnetic tensors in 
the ZFS+Zeeman spin Hamiltonian. [34] The present study was not exactly the case, but the process of 
refining the experimental magnetic tensors, particularly the D-tensor in light of the simulation of the extra 

lines, allowed us to determine the lowest limit to the D-value, as given the principal values in Table 3.5.  
It is worth noting that the of the canonical peaks should be distinguished from the off-axis-principal 

extra lines. Figures 3.8–3.11 show the angular dependence of the simulated ESR spectra in the principal-

axis and the crystal-axis system, respectively. The spectra simulated with the fictitious spin-1/2 
Hamiltonian are shown in Figs. 3.8 and 3.10 and with the full spin Hamiltonian are shown in Figs. 3.9 
and 3.11, respectively. Both fictitious spin-1/2 and full spin Hamiltonian give the off-axis-extra line 
attributed by about 5 degrees in the angular dependence (denoted by the dotted line). 

It is also noting that the zx-plane angular dependence of the fine-structure/hyperfine spectra due to 
CoIIOEP reveals marked difference of the behavior of the transitions appearing in the range of 30 to 60 
degrees between the fictitious spin and true spin Hamiltonian approaches (see Figs. 3.8 and 3.9). This is 

due to the cross terms among the g-, D- and A-tensors of the perturbation energies of the spin 
Hamiltonian. This angular dependence of the fine-structure/hyperfine spectra is also significant in the 
crystal ac-plane (Figs. 3.10 and 3.11). 

Figures 3.12–3.14 shows the single-crystal and randomly-oriented ESR spectra for CoIIOEP. In the 
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Magnetic Field/

Fig. 3.13 The X-band single-crystal ESR spectrum of CoIIOEP observed at 4.2 K. (a) Static magnetic 
field was parallel to the a-axis. Notations “A–D” depict the nuclear spin 1/2–7/2 and the subscripts “+” 
and “–” corresponds to the sign of nuclear spin quantum number. The spectrum (a) was observed with the 
static magnetic field parallel to the a-axis and the magnetic field is oriented by 20.5 degrees in the ab-
plane in (b). Two sets of the hyperfine splitting patterns are due to the orientations of the energetically 
distinguishable molecules in the unit cell of the crystal lattice are observed for both the allowed and the 
forbidden transitions. The appearance of the difference in the intensity is due to non-equivalence of the 
weight of the two molecules. The experimental peak-to-peak line widths are in the range of 8 to 14 G.

Magnetic Field/

Fig. 3.12 The randomly-oriented ESR spectrum of CoIIOEP diluted in the NiIIOEP single crystal observed 
at 77 K. The dominant contribution was due to a small amount of organic radical species. The spectrum 
was broadened in a dynamical regime, which originates in the dynamic Jahn-Teller effect.

Magnetic Field/
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Fig. 3.15 Spectra simulation of the powder-pattern spectra of CoIIOEP with the parallel excitation mode. 
The spectral simulations based on the effective and full spin Hamiltonian are given in blue and red, 
respectively. Microwave frequency used: 9.62541 GHz, peak-to-peak line width: 1.0 mT. Magnetic 
tensors used are shown in the caption of Figs. 3.7 and 3.8. The g-, A-, D- and Q-tensors of the component 
1 were collinear. The relative orientations of each tensor of the component 2 were based on the direction 
cosines shown in Table 3.8. Any strain of the line width is not included. The simulated spectra were 
obtained using EasySpin (ver. 5.1.10) software. [24]

Fig. 3.14 X-band powder-pattern ESR spectra for CoIIOEP (a) in the parallel excitation mode and (b) the 
irradiated magnetic field is applied at 45 degrees from the static field. The spectrum is observed as a 
superposition of the perpendicular (Fig. 3.12) and the parallel excitation lines above.

Magnetic Field/

a)

b)



case of static magnetic field B parallel to a-axis, two sets of signal due to the different orientation were 

overlapped to one hyperfine signal. The principal axis sets of two orientations tilted 45 degrees in ab-
plane. In the randomly-oriented ESR spectrum, splitting observed at the range of 80–300 mT were 
assigned to the x-, y-component and signals marked as a–d were identified to the z-component. Other 

signals measured around 334 mT were considered as off-axis extra lines. [34] 
The two sets of the CoIIOEP molecules in the units cell (Z = 4) are energetically distinguishable due to 

the significant distortion in the xy-plane. The departure from the tetragonal symmetry is attributable to the 
pseudo JT interaction, and above 20 K the two sets of the ESR hyperfine transitions merged into one 

dynamical spectrum, as shown in Fig. 3.12 (powder pattern spectrum) observed at 77 K and Fig. 3.13 
(single-crystal ESR). Nearby excited states vibronically coupled with the quartet ground state are 
responsible to the dynamical spectra. Detailed investigations including the contribution from vibrational 

SOC are the future work. 
The principal values of g-tensor were obtained with the relationship Eq. (2.17) with variable E/D. All 

principal values of g-tensor for CoIIOEP in this work were less than g-value of the free electron (g ≈ 2) 
because the other sextet or doublet states exist near the energy giving attention to. [1] Principal values of 

true A-tensors in x- and y-direction was about half of corresponding effective tensors, while that in z-
direction remained similar. Simulated spectra of randomly-oriented ESR spectra with the parameters in 
Table 3.5 is shown in Fig. 3.15. 

We also applied two-dimensional (2D) electron spin transient nutation spectroscopy at X-band to the 
quartet state of CoIIOEP in the NiIIOEP single crystal with the static magnetic field along the c-axis (//z). 
The 2D nutation spectroscopy is the transition moment spectroscopy, and gives the g-tensor and true spin 
multiplicities and spin manifolds relevant to the ESR transitions in a straightforward manner. [35] If the 

higher order corrections to the nutation frequency are significantly appreciable, information on the 
magnitude of the ZFS can be estimated. [35] From the experimental side, the z-orientation was chosen to 
avoid fast relaxation influence in the pulsed experiments. Figure 3.17 shows the 2D contour plots of the 

nutation frequencies vs. resonance fields, in which the nutation frequency corresponds to the electron spin 
transition probability with the nuclear effects originating in any change in the direction of the quantization 
axis of the nuclear spin during the electron spin transition. [35] The resonance fields agree with the field-
swept ESR spectrum (Fig. 3.16) measured before the nutation spectra. We note that the nutation 

spectroscopy gives a key to the determination of the D-tensors as well as the true gz-value, which is less 
far away from gztrue ≈ 2. The nutation frequencies coming from the forbidden transitions (dominantly |
∆mI| = 1 transition) are observed between the allowed transitions in the range of 320–400 mT. Theses 

transitions could be also the clue to calculate the theoretical nutation frequency or the transition 
probabilities. The angular dependence of the nutation frequency appearing in the highest magnetic field is 
shown in Fig. 3.18 as well as the crystal coordinate system lying in the porphyrin plane. The intensity of 
the spectrum decreased and the nutation frequency was broaden as increasing the angle form the crystal c-

axis due to the fast spin-relaxation time of the metalloporphyrins. 
To date, much effort has been made to theoretically understand particular features of the electronic 

structures of four-coordinated CoIIporphyrins in the quartet ground state, based on experimentally 

determined principal g-values and CoII hyperfine, A(59Co) principal values. The magnetic tensors have 
rarely been documented. The putative approaches to reproduce the experimental parameters for the 
effective spin invoke the use of ligand field theory combined with configuration interactions and SOC. [1] 
Among various CoIIporphyrins without the fifth coordination, CoIIOEP has given the extreme case in 
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Fig. 3.17 2D contour plot of the electron spin transient nutation spectra of CoIIOEP diluted in the NiIIOEP 
single-crystal with B//c(z). Hamming window functions were applied to detect the original nutation 
spectra. Only the observed contour plot is given. The nutation frequencies show a subtle variation with 
respect to the nuclear spin transients. The horizontal dotted lines with (a), (b) and (c) denote the 
frequencies 9.766, 7.813, 6.836 MHz and (a’), (b’) and (c’) are their negative counterpart, respectively.

Fig. 3.16 X-band field-swept echo-detected ESR spectrum applied to CoIIOEP magnetically diluted in the 
diamagnetic NiIIOEP single-crystal with the static magnetic field along the crystal c-axis (the principal z-
axis) at 4.2 K. Microwave frequency: 9.653192 GHz. Angular dependence of the nutation frequency was 
observed for the peak pointed with an arrow (Fig. 3.18).



terms of the experimental parameters and magnetic properties. In this work, we have carried out both 

DFT and ab initio MO quantum chemical calculations as updated approaches for the magnetic tensors. 
In contrast to the ground state of FeIII(Cl)OEP, there are several low-lying electronic states in d7 

electronic configurations of the CoII center with the ruffled square planar coordination. The identification 

of the electronic configuration for the ground state has been a controversial issue for a long time. In fact, 
at the UTPSS/Sapporo-DZP level of calculations the (dxz)1(dyz)1(dx2–y2)2(dz2)2(dxy)1 configuration gives the 

lowest energy, while at the CASSCF(7e,5o)/6-31G* level the spin-quartet ground state is described 
mainly by the (dxz)2(dyz)2(dx2–y2)1(dz2)1(dxy)1 single configuration with the CI expansion coefficient C = 

0.99. The electronic state described mainly by the (dxz)1(dyz)1(dx2–y2)2(dz2)2(dxy)1 configuration is located 
to the third excited (44A) state at the CASSCF level with the excitation energy ∆E = 2,522 cm−1. As 

discussed below, we concluded that the (dxz)2(dyz)2(dx2–y2)1(dz2)1(dxy)1 electronic configuration 

corresponds to the correct ground state, because the positive D-value is obtained in the (dxz)2(dyz)2(dx2–

y2)1(dz2)1(dxy)1 configuration. The positive D-value is consistent with the experimental findings, while the 

sign of the D-value from the (dxz)1(dyz)1(dx2–y2)2(dz2)2(dxy)1 configuration is negative. Hereafter, we focus 

on the magnetic tensors attributable to the (dxz)2(dyz)2(dx2–y2)1(dz2)1(dxy)1 electronic configuration. The 
calculated results of the magnetic tensors in the (dxz)1(dyz)1(dx2–y2)2(dz2)2(dxy)1 configuration were given in 

the Table 3.3 for comparison with those of the other configurations. 
The spin density distribution and principal axes of D-, g- and A(59Co)-tensors of CoIIOEP in the 

(dxz)2(dyz)2(dx2–y2)1(dz2)1(dxy)1 configuration are illustrated in Fig. 3.2. Note that the x- and y-axes are 
directions of the porphyrin skeleton. It should be noted that the D-tensor was estimated from the spin–
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Fig. 3.18 Angular dependence of 2D contour plot of the ESTN spectra of CoIIOEP diluted in the NiIIOEP 
single-crystal at 4.2 K were observed at three angles. The peak pointed by the arrow in Fig. 3.16 was 
traced. θ is the polar angle from the crystal c to b-axis as defined in (b). The angles were estimated by the 
angular dependence of cw-ESR spectra. The horizontal dotted lines (a)–(c) and (a’)–(c’) depict the same 
nutation frequency as in Fig 3.17. [20,21]



orbit CI calculation of CoIIPor (Por = porphyrin) with the CASSCF(7e,5o)/6-31G* wavefunctions as the 

non-relativistic wavefunctions, rather than the NOB-PK method. The reason is as follows. The DFT-based 
NOB-PK calculation exploits the single determinant which consists of the natural orbitals as the ground 
state wavefunction. In the NOB-PK calculation, the highest occupied spin-α orbital (dxy) has an orbital 

energy higher than the lowest unoccupied spin-β orbital (dx2–y2) and therefore in the NOB-PK calculation 

the spin-flip excitation dxy(α) → dx2–y2(β) gives the negative orbital energy difference, which is 
inconsistent with the S = 3/2 ground state. We note that except for the symmetry argument the theoretical 
principal g-values are all larger than 2.0023, suggesting that the possible contributions from the other 

excited high spin states need to be considered and suggested that more accurate theoretical treatments 
considering the ruffling OEP skeleton are required. 

The calculated D-value is +2.174 × 103 GHz (+72.52 cm−1), and the E-value is negligible (E < 10–3 

GHz), as expected from the tetragonal symmetry for the optimized molecular structure (planar) of 

CoIIPor. The large positive D-value originates from the existence of the low-lying excited spin-doublet 
state corresponding to the dxy(α) → dx2–y2(β) excitation, and the excited spin-quartet states are attributed 

to the dx2–y2 → dxz and dx2–y2 → dyz electron promotions. The comparison with the experimental D- (> 

+5.0 cm–1) and E-values (< 0.0035 cm−1) (E/D = 0.007) is not straightforward, while the principal axes 

agree with the experimental ones. This is mainly due to the occurrence of the symmetry lowering of the 
molecular structure, which is attributable to the JT vibronic issue at low temperature, and because the 
ruffling effects of CoIIOEP in the NiIIOEP lattice are not considered in the D-tensor calculations. To get 
insights into the possible reduction of the D-value on lowering the molecular symmetry, we have carried 

out a model calculation as follows: The simple optimization procedure for molecular structure naturally 
gives the tetragonal symmetry for CoIIOEP in the quartet ground state. Thus, the square and rhombus 
planar structures consisting of the four ligand-nitrogen nuclei were assumed with the deviation of the 

nuclear positions by 2% from the original ones. This replacement can afford to greatly destabilize the 

relevant excited states such as the (dxz)2(dyz)2(dx2–y2)1(dz2)1(dxy)1 configuration, as the details by the DFT 

calculations shown in Section 3.2.3. The destabilization gives rise to the trend of the reduction in the SOC 
contribution. This is only a qualitative interpretation, and for the quantitative interpretation, the 

magnitude of the distortion such as the 14N-nuclear displacement has to be determined. 
The g-, A(59Co)- and A(14N)-tensors were calculated at the UTPSS/Sapporo-DZP level, as the same as 

for the calculations of FeIII(Cl)OEP. The theoretical principal values are gxx = 2.0948, gyy = 2.0947, gzz = 
2.0093, Axx(59Co) = 352.68 MHz, Ayy(59Co) = 352.66 MHz, Azz(59Co) = 158.02 MHz, and Axx(14N) = 17.17 

MHz, Ayy(14N) = 12.85 MHz, Azz(14N) = 13.80 MHz. The Axx(14N) axis is parallel to the Co–N 
coordination bond, and the Azz axis is perpendicular to the molecular plane. The theoretical calculations 
never reproduce the experimentally determined principal g-values all less than 2.0023. Particularly, 

experimental finding of gztrue = 1.547 gives a clue to understand the salient features of the electronic 
structure of CoIIOEP with the four-ligand coordination. We note that the pioneering theoretical work on 
the basis of the full-CI calculations within d electron configurations by Lin [36] also failed in the 
interpretation of the electronic structure of CoIIOEP in terms of the g-tensor. The present calculation for 

the A(59Co)-tensor underestimates the isotropic part of the principal values because of the insufficient 
incorporation of the relativistic effect. The A(59Co)-tensor has larger anisotropy compared with the 
A(57Fe)-tensor in FeIII(Cl)OEP, reflecting the fact that three of two unpaired electrons occupy the in-

molecular plane 3d orbitals (dxy and dx2–y2). 
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Referred to the A(14N) principal values, preliminary 14N-ENDOR measurements on CoIIOEP gave the 

experimental ones; Ax(14N) = 2.2155 MHz, 2.4151 MHz, Ay(14N) = 2.276 MHz, 2.5614 MHz, Az(14N) = 
5.4474 MHz, 5.4811 MHz. The Q-tensors for the coordinated nitrogen nuclei in the symmetry-lowered 
distorted molecular structure give rise to spectroscopic complexity due to the nearly equivalent two 

diagonal N nuclei at 4 K (Qx(14N) = –0.7852 MHz, 0.2452 MHz, Qy(14N) = 0.2326 MHz, –0.7899 MHz, 
Qz(14N) = 0.5526 MHz, 0.5446 MHz). [20,21,35b] 

The crystal morphology of NiIIOEP gives its triclinic crystals, in which a planar porphyrin is 
maintained and no ruffling of the porphyrin skeleton appears. [37–39] An attempt to prepare magnetically 

well diluted CoIIOEP/NiIIOEP crystals is underway. Planer CoIIOEP gives a testing ground for reliable 
and extended theoretical treatments of the g- and D-tensors. 

"134



3.4 Conclusion 
The fictitious spin-1/2 Hamiltonian approach is the most putative and facile method to analyze ESR 
spectra of high spin metallocomplexes having sizable ZFS parameters. The approach gives their principal 

g-values far from g = 2 without providing explicit values for their ZFS. Naturally, these experimental 
principal g-values do not agree with the true g-values acquired by quantum chemical calculations such as 
sophisticated DFT or reliable ab initio MOs. In this chapter, in harmony with the recent progress in 
quantum chemical calculations for the g-, hyperfine or ZFS tensors of metallocomplexes, we have derived 

the geff–gtrue analytical relationships for high spin systems up to S = 7/2 with sizable ZFS, for the first 
time. The expressions are exact or equal to exact ones to the third order in the genuine Zeeman 
perturbation treatment, and they are all useful to derive the true principal g-values from the analyzed data 

on the basis of fictitious spin-1/2 Hamiltonians, in a straightforward manner. Importantly, the assignment 
of canonical peaks and discrimination from off-principal-axis extra lines can be checked on the basis of 
the geff–gtrue analytical relationships. This procedure gives a clue to the occurrence of high spin states with 
relatively sizable ZFS values.  

The genuine Zeeman perturbation treatment developed in this work provides us with true principal g-
values which are accurate at conventional X- or Q-band ESR spectroscopy enough to compare with the 
theoretical values. The genuine Zeeman perturbation based formulas are practically much simpler and 

give high accuracy in conventional ESR spectroscopy. The general formulas for S = 5/2 are explicitly 
given particularly for high spin FeIII ion complexes with sizable ZFS. The corresponding formulas serve 
as the purpose of getting physical insights into the relationships as a function of the principal ZFS values.  

The geff–gtrue analytical relationships for S = 5/2 has been tested for the sextet ground state of 
FeIII(Cl)OEP (gx = 2.010, gy = 2.008, gz = 2.005, D = +7.05 cm–1, E = 0.014 cm–1, |E/D| = 0.002) 
magnetically diluted in the NiIIOEP diamagnetic host crystal. FeIII(Cl)OEP in the crystal lattice is subject 
to subtle pseudo-JT distortion which gives departure from the tetragonal symmetry. The DFT calculations 

have produced the experimental magnetic tensors based on the full spin Hamiltonian approach, in which 
the ZFS+Zeeman terms are included as the major ones. 

The full spin Hamiltonian approach for powder-pattern fine-structure/hyperfine ESR spectra of spin-

quartet states having sizable ZFS such as CoIIOEP enables us to reproduce off-principal-axis extra lines, 
which are attributable to the large anisotropies of the g- and A-tensors in the genuine Zeeman 
perturbation treatment. The appearance conditions for off-principal-axis extra lines in the high spin 
systems with sizable ZFS are not analogous to fine-structure perturbation treatments. CoIIOEP in the 

NiIIOEP crystal lattice is also subject to the JT distortion, which reduces the tetragonal symmetry. The 
complete g-, hyperfine-structure A(59Co)- and ZFS tensors of four-coordinated CoIIOEP have 
experimentally been determined, for the first time. The experimental true principal g-values are all less 

than 2, suggesting the occurrence of many low-lying excited states coupled to the quartet ground state via 
SOC. The current theoretical treatment of quantum chemical calculations has failed to interpret the salient 
trend of the g-values, and further theoretical improvement is required. 

High spin metallocomplexes capable of having tunable ZFS via the molecular optimization are 

important for their possible applications to ensemble quantum spin memory devices, which coherently 
couple with superconducting flux qubit circuits or microwave photon qubits in planar resonators at very 
low temperature. The matching of energy depends on the magnitude of the ZFS values, and for the 

initialization processes of the qubit memory the sizable values are preferable. All the materials under 
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study fulfill such requirements. Particularly, metalloporphyrins and materials analogues whose magnetic 

tensors are well characterized are candidates suitable for realistic quantum spin memory devices. For a 
viewpoint of molecular optimization in the quantum spin technology above, accurate quantum chemical 
calculations for SOC are essential. 
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Chapter 4: Electronic Structures of Pseudo-Octahedral 
Rhenium(IV) Mononuclear and Rhenium(III,IV) Mixed-
Valence Binuclear Complexes 



4.1 Introduction 
Rhenium can take various oxidation states and their complexes have some functionalities. For example, 
some rhenium complexes are known as catalysts for CO2 reduction [1–3]. ESR spectroscopy was adopted 

mostly for low-spin Re(VI) (d1, S = 1/2) [2,3] and high spin Re(IV) (d3, S = 3/2) [4–9]. In particular, high 
spin rhenium species have sizable zero-field splitting (ZFS) parameters which partly play the key roles for 
the functionalities. Rhenium nuclei also have a nuclear spin I = 5/2 which gives rise to six lines due to the 
electron-nuclear hyperfine interactions. 

Some tetravalent rhenium complexes were reported as single-molecule magnets (SMMs) [7–9] or the 
building blocks of single-chain magnets (SCMs). [8] In such systems spin parameters such as ZFS 
parameters, which characterize the performance of the SMM, have been studied by using of magnetic 

measurements and ESR spectroscopy, especially in high-field/high-frequency. Magnetic properties 
including ZFSs were reported for various rhenium systems. [10] Pedersen and co-workers investigated 
ZnII-ReIV and NiII-ReIV chain magnets and a corresponding monomeric complex, and estimated that D = 

23.6 cm–1, |E|/D = 0.11, g = 1.69 for (PPh4)2[ReIVF6]⋅2H2O by using of magnetic susceptibility and high-

field ESR spectroscopy. [7] Martínez-Lillo and co-workers reported 5d-based mononuclear rhenium 

SMM with D = –53 cm–1, E/D = 0.26 for chloride and D = –73 cm–1, E/D = 0.205 for bromide. [8] 
Abramov and co-workers synthesized a rhenium-catecholate complex and determined that D = 572 cm–1, 
E/D = 0.25, g = 1.94, by means of magnetic susceptibility measurement. [9] Such large ZFS parameters 

are attributed to large spin–orbit coupling (SOC) interaction. SOC is dominant for the contribution to 
large ZFSs. SOC constant of rhenium atom or complexes is said to be about ~3000 cm–1. [11] The large 
SOC can affects the stability of the spin states. Machura and co-workers synthesized various types of 
trivalent rhenium (d4) complex and characterized that all compounds take diamagnetic ground states by 

means of magnetic measurements and DFT calculations. [12] 
Although variety of complexes as well as the various range of the zero-field splitting parameters have 

been characterized, there are few examples of ESR study for polynuclear rhenium complexes [13,14] and 

the corresponding monomer moieties. In the binuclear complexes we deal with here ESR active site is 
only the tetravalent rhenium while the trivalent center is diamagnetic. 

Biimidazolate ligand has some coordination structures combined with other complexes through 
hydrogen bondings [15] and relevant complexes have various geometries. Tadokoro and co-workers 

synthesized a rhenium binuclear complex (Dimer) and reported that the complex is stable in the mixed-
valence state by using of X-ray crystallography, cyclic voltammetry and DFT calculations. [15e] 

Mixed-valence compounds are defined as containing the same atom(s) with different oxidation states. 

Robin and Day classified such compounds to Class I–III according to the electron transferability between 
the atoms with different oxidation states. [16,17] 

 Class I: Each oxidation state is under completely different environment. The energy necessary 

for the electron transfer between two sites. That is, no interactions arise between the different oxidation 
states, and no specific properties for the mixed-valence state cannot be seen. 

 Class II: Although each oxidation state experiences different atmosphere as Class I compounds, 

the energy barrier is small so that this types of complex show inter valence charge transfer (IVCT). 
 Class III: In this class, all atoms have equivalent and non-integer oxidation state, and electrons 

are delocalized among them. In other words, they interact strongly so that each oxidation state is 
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indistinguishable. 

Particularly, mixed-valence compounds in Class II may show the unique and interesting properties, 
which does not appear in the corresponding “single-valence” ones. The effect of the magnetic properties 

in the dimerization has not well studied yet. 
Since ESR spectroscopy is applicable to detect the microscopic environment around the unpaired 

electrons, studies of electronic property with magnetic measurements were reported. [18–22] 
There are few magnetic study for dynamic phenomena such as proton/electron transfer. [23] 

Synchronized motion between protons and electrons is an important event in chemistry and recognized as 
a key step in ATP synthetic processes of certain biological systems, in which active proton pumps are 
involved. Such synchronization is relevant to the conduction of electrons in cytochrome c in living matter. 

[24,25] The driving mechanism of the synchronized motion has not been well understood, and thus 
relevant dynamics has been the focus of current topics in both biological and materials science. Research 
into microscopic mechanisms of the phenomena has been done in solution whereas very few studies are 
found in solid. [26] Recently quantum cooperative phenomena associated with the proton and electron 

transfer have attracted considerable attention from a viewpoint of multifunctionality. Biimidazolate metal 
complexes generate a various type of coordination networks in which “complementary” hydrogen bonds 
between the biimidazolate ligands are involved, being model compounds for the quantum cooperative 

functionalities. Mixed-valence complexes with multifunctional ligands could be candidate materials for 
revealing the mechanism of proton-electron synchronized transfer not only in solution but also in solid. 
Moreover, the vibrionic motion involved SOC is a open question. The non-Born-Oppenheimer 
approximation is necessary for the theoretical calculation of the vibrionic motions. [27] 

In this chapter, the magnetic structures of the rhenium mononuclear complex [ReIVCl2(PnPr3)2(bim)]  
(1-Cl; H2bim = 2,2’-biimidazolate) and the mixed-valence rhenium(III,IV) systems with biimidazolate 
ligands [ReIVX2(PnPr3)2(bim)][ReIIIY2(PnPr3)2(Hbim)] (2-ClCl, X = Y = Cl; 2-BrBr, X = Y = Br and 2-

BrCl, X = Cl, Y = Br) are revealed by use of ESR spectroscopy, magnetic susceptibility measurement and 
quantum chemical calculations. Quantum chemical calculations are also carried out for the mononuclear 
complex 1-Br in order to compare the magnetic parameters. 
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4.2 Samples and Experiments 
4.2.1 Samples 
All single-crystal and powdered samples were synthesized by Professor Tadokoro and co-workers (Tokyo 
University of Science, Japan). Table 4.1 summarizes the crystal parameters of the mononuclear 
complexes [ReIVCl2(PnPr3)2(bim)] (1-Cl) and [ReIIICl2(PnPr3)2(Hbim)] (1-Cl(III)). The notation of III in 1-

Cl(III) denotes that the valence of rhenium center is trivalent (while IV representing tetravalent in 1-Cl is 
omitted). 

Table 4.1 Crystal Structures of Rhenium Mononuclear Complexes Obtained with X-ray Crystallography 

[28] 

There are four complexes with different orientations in the unit cell of 1-Cl. Each of the pair has an 
inversion center and thus we can guess that there exist two kinds of magnetically inequivalent complex. 
As mentioned later, this is supported since two kinds of the hyperfine splitting due to the rhenium nuclei 
was observed in single-crystal and randomly-oriented ESR spectroscopy. 

In the complex 1-Cl(III), both outside nitrogen atoms have covalent bonds with hydrogens and a 
chloride ion works as a counter anion, leading to form trivalent in total. This formation was reported for 
other rhenium complexes. [29] 

Table 4.2 compares the crystal structures of 2-ClCl and previously reported Dimer. 

1-Cl 1-Cl(III)

Formula C24H46Cl2N4P2Re C24H48Cl3N4P2Re

Temperature/K 298 298

Crystal system monoclinic triclinic

Space group C2/c P-1

Z 8 2

a/Å 18.662(2) 11.0746(11)

b/Å 13.4604(16) 11.6079(11)

c/Å 26.395(3) 13.4089(13)

α/º 90.00 94.635(2)

β/º 110.547(2) 106.326(2)

γ/º 90.00 104.534(2)

V/Å3 6208.58 1579.91

R-Factor/% 3.96 3.46
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Table 4.2 Crystal Structures of Rhenium Binuclear Complexes Obtained with X-ray or Neutron 

Scattering Crystallography 

* with neutron scattering crystallography 

The structure of 2-ClCl is different from that previously reported Dimer [15e], in which the 
biimidazolate ligands are connected with two hydrogen bondings. In the X-ray crystallographic data 
above 90 K, the proton related with the hydrogen bonding observed at two spots with equivalent 

probability. In helium temperature, however, the proton motion was getting slow down resulting in 
difference of the distribution of the proton (0.77 and 0.23). This disproportionation transferred the 
inversion center from the intra-complex to the inter-complex and extended a-axis twice. 

Table 4.3 shows the crystallographic data for binuclear complexes 2-BrBr and 2-BrCl. 

2-ClCl* [28] 2-ClCl [28] Dimer [15e]

Formula C48H92Cl4N8P4Re2 C24H47Cl2N4P2Re C30H59Cl2N4P2Re

Temperature/K 4 190 190

Crystal system triclinic triclinic monoclinic

Space group P1 P-1 P21/c

Z 2 2 4

a/Å 19.0388(12) 9.53939(7) 11.830(1)

b/Å 10.2558(5) 10.2214(14) 18.730(2)

c/Å 16.5984(8) 16.7544(18) 16.880(2)

α/º 75.148(4) 74.983(11) 90.00

β/º 86.169(5) 86.101(7) 96.700(2)

γ/º 75.154(5) 75.204(10) 90.00

V/Å3 3028.12 1534.26 3714.66

R-Factor/% 14.49 12.64 2.8
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Table 4.3 Crystal Structures of Rhenium Binuclear Complexes 2-BrBr and 2-BrCl Obtained with X-ray 

Crystallography [28] 

2-BrBr has also the inversion center between the N(H)–N atoms. In 2-BrCl, there is only one 
molecule in a unit cell due to the broken symmetry. 

4.2.2 Magnetic measurement 
Magnetic susceptibilities were measured with Quantum Design Superconducting Quantum Interference 
Device (SQUID) magnetometer MPMS-XL in the temperature range 1.9–298 K at an applied field of 100 

mT. Corrections for molecular diamagnetism, estimated from Pascal’s constants, were applied. 
In order to increase the accuracy of the data, susceptibility measurement was carried out at two 

different magnetic field and susceptibility was obtained with the slope of these points. 

"  for 1-Cl and 2-ClCl, 

" , for 1-Cl(III) 

" , for 2-BrBr and 

" , for 2-BrCl. 

The element analysis was carried out in the analysis center (Department of Materials Science, 
Graduate School of Science, Osaka City University) subsequently to the susceptibility measurements. 

2-BrBr 2-BrCl 

Formula C24H46.5Br2N4P2Re C48H93Br2Cl2N8P4Re2

Temperature/K 298 298

Crystal system triclinic triclinic

Space group P-1 P1

Z 2 1

a/Å 9.7280(7) 9.6904(10) 

b/Å 10.1445(8) 10.1684(11)

c/Å 17.0533(12) 16.916(2) 

α/º 74.8410(10) 74.8770(10) 

β/º 86.7900(10) 86.659(2) 

γ/º 75.3190(10) 75.3430(10) 

V/Å3 1571.23 1556.69

R-Factor/% 5.59 3.24

χ =
M 500 mT( )−M 400 mT( )

100 mT

χ =
M 5 T( )−M 4 T( )

1 T

χ =
M 1500 mT( )−M 1000 mT( )

500 mT

χ =
M 600 mT( )−M 500 mT( )

100 mT
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Data analysis 

The paramagnetic magnetization Mp is given with the energy Ei which is the function of the magnetic 
field B, 

"  (4.1) 

here NA is the Avogadro constant, k is the Boltzmann constant and T is a temperature. The simulated M-H 
curves were calculated with this equation, in which Ei(B) were obtained by the exact numerical 
diagonalization of the corresponding spin Hamiltonian in each principal axis (xyz). The spin Hamiltonian 

including the electron-Zeeman and the ZFS terms is 

"  (4.2) 
here β is the Bohr magneton, S is a spin operator, B is a magnetic field, g and D is g- and zero-field 

splitting tensor, respectively. In our case of S = 3/2, H is 4 × 4 Hermitian matrix. The principal values of 
g-tensor and E/D were determined by use of ESR spectroscopy. χp was calculated with the following 
equation; 

" . (4.3) 

Calculations of Mp and χp were carried out with laboratory-build programs on MATLAB R2014b. The 
accuracy of the calculation was examined by comparing with the analytical solution for S = 3/2 case. [30] 

For the binuclear complexes 2-XY, the additional contribution from the thermally excited triplet state 

(S = 1) of the trivalent rhenium (ground singlet state, S = 0) were considered. The principal values of g-
tensor was taken from the theoretical values, and the zero-field splitting parameter D in the triplet state 
and the excitation energy J between the ground singlet state and the triplet state were optimized. 

4.2.3 ESR measurement 
ESR experiments were carried out with Bruker ESP300/350 (X-band) ESR Spectrometer with a dual 
mode resonator ER 4116DM. ESR experiment was carried out with not only conventional perpendicular 

mode (B⊥B1, B is the static magnetic field and B1 is the microwave oscillating field) but also parallel 

excitation mode (B//B1), where the hyperfine “forbidden” transitions are permitted. [31] Temperature was 
controlled with ESR910 (Oxford) helium-gas flow temperature controller. 

Principal axes were assumed according to the result of the quantum chemical calculation for the 

mononuclear complex 1-Cl (Fig 4.2). In the principal-axis experiments, the crystal was mounted shown in 
Fig. 4.1. The way to transform the orthogonal system from the crystal axis system is shown in Appendix 
4.1 in this chapter. Angular dependence of the single crystal ESR were measured with the sample 

mounted on the quartz rod/wedge rotated with 1D goniometer. 

(a) X-band (9.5 GHz) ESR spectroscopy 
ESR measurements were performed on single-crystal and powdered samples. ESR experiments were 

carried out with Bruker ESP300/350 (X-band) ESR Spectrometer with a dual mode resonator 

ER4116DM. ESR experiment was carried out with not only the conventional perpendicular mode (B⊥B1, 

B is the static magnetic field and B0 is the microwave oscillating field) but also the parallel excitation 
mode (B//B1). [31] where the hyperfine “forbidden” transitions are permitted. Temperature was controlled 

M p = NA

− ∂Ei

∂B
⎛
⎝⎜

⎞
⎠⎟ exp − Ei

kT
⎛
⎝⎜

⎞
⎠⎟i

∑
exp − Ei

kT
⎛
⎝⎜

⎞
⎠⎟i

∑

H = βS i g i B+ S iD i S

χp =
M p

H
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with Oxford ESR910 helium-gas flow temperature controller. 

In the measurement in the crystal axis system, the orthogonal coordination pqr was extended to the 
crystal aligning the longest side parallel to q axis, p axis is in the crystal face and r axis is perpendicular 
to both p and q. In the principal-axis experiments, the crystal was mounted on the designed wedges shown 

in Fig. 4.1. The way to transform the orthogonal system from the crystal axis system is shown in 
Appendix 4.1. Angular dependence of the single crystal ESR were measured with the sample mounted on 
the quartz rod/wedge rotated with 1D goniometer. 

In the effective spin Hamiltonian approach, fictitious spin-1/2 Hamiltonian H’ were used (Ew. 4.1). 

"  (4.1) 
where S’ = 1/2, I(175,178Re) = 5/2. In the full spin Hamiltonian approach, Pryce Hamiltonian H were used 
(Eq. 4.2). 

"  (4.2) 
where S = 3/2, I(175,178Re) = 5/2 and the description of each term were described above. 

(b) Q-band (33 GHz) ESR spectroscopy 
Q-band cw-ESR measurement was performed with ELEXSYS E500 spectrometer equipped with Oxford 
ESR910 helium-gas flow temperature controller. 

(c) High-frequency/high-field ESR spectroscopy 
High frequency ESR measurements were carried out using a millimeter-wave vector network analyzer 
(MVNA) and a high sensitivity cavity perturbation technique at National High Magnetic Field Laboratory 

in Florida State University, USA. [32] Minimum 1.9 K of temperature was achieved using a variable-flow 
cryostat. In order to enable in situ rotation of the sample relative to the applied magnetic field, a split-pair 
magnet with a horizontal field and a vertical access was employed. Smooth rotation of the entire rigid 

microwave probe, relative to the fixed field, was achieved via a room-temperature stepper motor. [33] 

H ' = βS 'i g 'i B+ S 'iA 'i I − βngnS 'i B

H = βS i g i B+ S iD i S+ S iA i I − βngnS i B
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Fig. 4.1 (a) The outer shape of the single-crystal of 2-ClCl and Miller indices. (b) The angles of the 
designed wedges and the rotation principal-axes. The plane angles were calculated from the X-ray 
crystallographic data [28] and quantum chemical calculation for the principal-axes of the magnetic 
tensors. The crystals were mounted on the (001) plane.

sample
sample

The crystal was mounted on (001) plane.

(a)

(b)

sample



4.2.4 Quantum chemical calculations for the spin Hamiltonian parameters 

of the mononuclear complexes 1-Cl and 1-Br 
In the ReIII,IV binuclear mixed valence complex under study, the trivalent rhenium site (d4) is spin-singlet 
(S = 0) and we focused on the lowest spin-quartet (S = 3/2) state of the mononuclear complexes 1-Cl and 
1-Br for the magnetic tensor calculations. DFT calculations of the g- and D-tensors, and A-tensor of Re 

atom were carried out by using TPSS exchange–correlation functional [34] in conjunction with the 
Sapporo-DKH3-DZP-2012 [35] and Sapporo-DZP-2012 [36] basis sets for Re and other atoms, 
respectively. We used the solid state geometry of ReIV monomer in the mixed valence complexes 

determined from X-ray crystallography. In the SCF procedure we used the second-order Douglas–Kroll–
Hess Hamiltonian [37] to include relativistic effects. The DSS- and DSO-tensors were calculated using the 
same procedure as the calculations in FeIII(Cl)OEP and CoIIOEP (Section 3.2.3). 

Electronic configuration of valence 5d orbitals in the ground state of 1-Cl and 1-Br is (dxz)1(dyz)1(dx2–

y2)1(dz2)0(dxy)0, as expected from the crystal field of octahedral coordination. Definition of the axis (which 

is identical to the principal axis of theoretical DSS+SO-tensor) is given in Fig. 4.2, together with the spin 
density distribution obtained from the single point calculation. Unpaired electrons distribute mainly onto 
ReIV center but delocalizes onto Cl– (or Br–) and bim2– groups. According to the Mulliken population 

analysis, Re atom carries 2.342 (2.327) of unpaired electrons, and two Cl– (or Br–) and bim2– groups hold 
0.325 (0.340) and 0.374 (0.379), respectively, of delocalized spins. Spin densities on the PnPr3 groups are 
very small (–0.041 and −0.046, respectively). Mulliken spin density were summarized in Table 4.4. 

The calculated DSS+SO values of 1-Cl and 1-Br are –1.730 × 106 MHz and –2.450 × 106 MHz, and the |
ESS+SO/DSS+SO| values are 0.205 and 0.201, respectively. As expected, the spin–orbit term dominantly 
contributes to the D-tensor and spin–spin dipolar contribution is about 0.2% in the DSS+SO-tensor. The 
large E/D value indicates departure of axial symmetry. Such large E/D value is also observed in 

[ReIVX4(ox)]2– systems (X = Cl and Br). [8] 

The g- and A(187Re)-tensors are nearly coaxial to the DSS+SO-tensor (deviations are less than 4 

degrees). At the present calculation the principal values of g-tensor of 1-Cl and 1-Br are gxx = 2.0345, gyy 
= 2.0138, gzz = 1.9806 (giso = 2.0096), and gxx = 2.0611, gyy = 2.0341, gz = 2.0090 (giso = 2.0347), 
respectively. Anisotropic structure of g-tensor is consistent to the non-symmetric SOC and hence non-

axial-symmetric D-tensor. By contrast, A(187Re) tensor is rather symmetric (Axx = –3135.02 MHz, Ayy = –
3119.34 MHz, Azz = –3103.09 MHz, aiso = –3119.15 MHz for 1-Cl and Axx = –2840.06 MHz, Ayy = –
2856.66 MHz, Azz = –2872.59 MHz, aiso = –2856.44 MHz for 1-Br), reflecting the 5d3 electron 
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Fig. 4.2 The calculated spin density distributions (isosurface = 0.005) and principal-axis of D-, g- and 
A(187Re)-tensors of the mononuclear complex (a) 1-Cl and (b) 1-Br.

(b)(a)



configuration and spin density distributions. 

Table 4.4 Mulliken Spin Density Calculated for Solid State of the mononuclear complexes 1-Cl and 1-Br 
(S = 3/2). Calculated at the Level of UTPSS/Sapporo-DKH3-DZP-2012 (for Re), Sapporo-DZP-2012 (for 

other atoms). 

1-Cl (X = Cl) 1-Br (X = Br)

Re 2.34169 2.32736

2X 0.32495 0.33931

(PnPr3)2 –0.04053 −0.04606

bim 0.37389 0.37939
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4.3 Results and Discussions 
4.3.1 Structures around rhenium centers of complexes 
We considered the geometrical differences among the complexes. Bond length and distortion around the 
metal center is shown in Table 4.5.  

Table 4.5 Atomic Distances around Rhenium Center from the Crystallographic Data 

*σ is the standard deviation. "  

Complex 1-Cl 1-Cl(III) 2-ClCl 2-ClCl Dimer [15e]

Temperature/K 298 298 4 190 190

Re–N(1)/Å 2.069 2.100 2.112(tetravalent), 
2.064(trivalent)

2.096 2.116

Re–N(3)/Å 2.051 2.118 2.155, 2.045 2.087 2.102

Re–P(1)/Å 2.521 2.466 2.525, 2.452 2.481 2.456

Re–P(2)/Å 2.510 2.459 2.437, 2.532 2.500 2.452

Re–Cl(1)/Å 2.336 2.347 2.363, 2.356 2.355 2.374

Re–Cl(2)/Å 2.323 2.373 2.383, 2.373 2.364 2.382

Average/Å 2.302 2.311 2.329, 2.304 2.314 2.314

σ/Å* 0.1888 0.1488 0.1481, 0.1853 0.1662 0.1481

Complex 2-ClCl 2-ClCl 2-BrBr 2-BrCl

Temperature/K 4 190 298 298

Re–N(1)/Å 2.112(trivalent), 
2.064(tetravalent)

2.096 2.092 2.080(Br), 
2.114(Cl)

Re–N(3)/Å 2.155, 2.045 2.087 2.072 2.052, 2.101

Re–P(1)/Å 2.525, 2.452 2.481 2.492 2.504, 2.494

Re–P(2)/Å 2.437, 2.532 2.500 2.505 2.466, 2.505

Re–Cl(1)/Å 2.363, 2.356 2.355 - 2.432

Re–Cl(2)/Å 2.383, 2.373 2.364 - 2.456

Re–Br(1)/Å - - 2.500 2.431

Re–Br(2)/Å - - 2.496 2.434

Average/Å 2.329, 2.304 2.314 2.360 2.328, 2.350

σ/Å 0.1481, 0.1853 0.1662 0.1963 0.1869, 0.1734

σ = 1
N

di − dave( )2i∑
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In order to quantize the distortion (declination from the octahedron) of length, we used the standard 

deviation σ. In fact, the tetravalent and the trivalent monomer have the different values of σ of 0.1888 and 
0.1488, respectively. At 190 K, the averaged structure was measured. σ was also close to the average. 

In order to match the orientation to 2-ClCl, we took longer bond as Re–N(1) in 1-Cl, while shorter 

bond in 1-Cl(III). P(1) was determined to the direction of the left-hand outer product of N(1) and N(3) for 
1-Cl and the left side of 2-ClCl, while to the direction of the right-hand outer product for 1-Cl(III) and 
the right side of 2-ClCl (Fig. 4.3). Cl(1) and Cl(2) were opposite against N(1) and N(2), respectively. The 
tendencies of Re–P and Re–Cl in 1-Cl(III) altered from those in 2-ClCl. This is because the large 

distortion due to the two hydrogens bonded on the two nitrogens. 

The standard deviation for the angel was small in 1-Cl but large in 1-Cl(III). 
Table 4.6 shows the angles related with the rhenium metal centers. 
In 2-BrCl, the relationship between two Re–Cl distances altered comparing to those in 2-ClCl. This 

indicates the oxidation state of the chloride moiety is trivalent. The standard deviation does not show any 
tendency among the binuclear complexes. In 2-ClCl, σ(length) of the trivalent component was smaller 
than that of the tetravalent component, but σ(angle) was altered between the tetravalent and the trivalent. 
In contrast, although the difference in σ(length) between tetravalent (bromide) and trivalent (chloride) 

moieties in 2-BrCl was not as large as that in 2-ClCl, σ(angle) of tetravalent moiety was larger than that 
of trivalent moiety. This difference suggests that the structure of the complex is affected by the halogen 
ligands rather than the oxidation numbers. 

Table 4.6 Angles around Rhenium Center from the Crystallographic Data 

1-Cl 1-Cl(III) 2-ClCl 2-ClCl Dimer

Temperature/K 298 298 4 190 298

N(1)–Re–N(2)/º 78.24 76.19 74.91(trivalent), 
79.67(tetravalent)
(average = 77.29)

76.97 75.79

N(2)–Re–Cl(1)/º 91.90 91.14 93.89, 94.52 (94.20) 94.57 93.01

Cl(1)–Re–Cl(2)/º 99.25 100.58 98.15, 94.95 (96.55) 95.96 97.77

Cl(2)–Re–N(1)/º 90.70 92.11 93.07, 90.61 (91.84) 92.42 93.44

N(1)–Re–P(1)/º 91.82 91.29 88.54, 91.75 (90.14) 90.13 89.81

P(1)–Re–Cl(1)/º 90.23 89.32 90.49, 91.68 (91.08) 91.21 88.45
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Fig. 4.3 The numbering of the rhenium binuclear complex 2-XY; {X, Y} = {Cl, Cl}, {Br, Br} or {Br, Cl}. 
The left side is tetravalent while the right side is trivalent.



Table 4.6 (continued) 

Cl(1)–Re–P(2)/º 88.09 89.01 89.16, 88.12 (88.64) 88.79 88.52

P(2)–Re–N(1)/º 89.74 91.92 91.46, 88.36 (89.91) 89.72 93.24

N(2)–Re–P(1)/º 88.00 97.15 88.92, 92.58 (90.75) 91.17 88.92

P(1)–Re–Cl(2)/º 89.49 84.92 92.69, 91.78 (92.24) 91.96 91.50

Cl(2)–Re–P(2)/º 91.35 88.29 89.14, 89.15 (89.14) 89.08 88.54

Complex 2-ClCl 2-ClCl 2-BrBr 2-BrCl

Temperature/K 4 190 298 298

N(1)–Re–N(2)/º 74.91(trivalent), 
79.67(tetravalent) 
(average = 77.29)

76.97 76.39 71.49(Br), 
80.51(Cl)

N(2)–Re–X(1)/º 93.89, 94.52 
(94.20)

94.57 95.15 97.92, 93.46

X(1)–Re–X(2)/º 98.15, 94.95 
(96.55)

95.96 94.99 95.45, 95.62

X(2)–Re–N(1)/º 93.07, 90.61 
(91.84)

92.42 93.37 95.12, 90.21

N(1)–Re–P(1)/º 88.54, 91.75 
(90.14)

90.13 89.68 88.55, 91.03

P(1)–Re–X(1)/º 90.49, 91.68 
(91.08)

91.21 88.63 91.68, 92.10

X(1)–Re–P(2)/º 89.16, 88.12 
(88.64)

88.79 91.88 88.35, 88.23

P(2)–Re–N(1)/º 91.46, 88.36 
(89.91)

89.72 89.63 91.12, 88.59

N(2)–Re–P(1)/º 88.92, 92.58 
(90.75)

91.17 87.89 90.97, 90.86

P(1)–Re–X(2)/º 92.69, 91.78 
(92.24)

91.96 88.95 92.28, 92.48

Cl(2)–Re–P(2)/º 89.14, 89.15 
(89.14)

89.08 92.25 89.32, 87.96

P(2)–Re–N(2)/º 89.31, 86.52 
(87.92)

87.79 90.82 87.43, 88.64

Average/º 89.98, 89.97 
(89.98)

89.98 89.97 89.97, 89.97

σ/º 5.272, 3.945 (4.609) 4.528 4.699 6.347, 3.619
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4.3.2 Magnetic measurements of the rhenium complexes 
Figure 4.4 shows the M-H plot and the χT-T plot of chloride complexes 1-Cl, 1-Cl(III) and 2-ClCl. 

χT value for 1-Cl(III) was not observed in the whole range in the measured temperature that indicates 

the ground state was singlet (S = 0) [10] and the energy difference between ground state and excited state 
was higher than 1 × 103 cm–1. Therefore the trivalent part in 2-ClCl was ESR silent and only tetravalent 
moiety could be measured in ESR spectroscopy. [9,38–40] 

We determined that ZFS parameter D ~ –700 GHz for 1-Cl with the simulation of M-H plot (Fig. 4.5). 
However, the maximum value of magnetization of 1-Cl was about 0.6 times lower than that of 2-ClCl 
(Fig. 4.4). X-ray crystallographic data shows that the single-crystal of 1-Cl includes water molecules in a 
unit cell. Element analysis suggests that it contains 3.4 mol per 1 mol of 1-Cl. Assuming this 

inconsistency was caused of diamagnetism from water, 150 molecules have to be included. 

 
For 2-ClCl, D-value was about –350 GHz which was determined by use of M-H plot. Figure 4.6 

shows the experimental and simulated χT-T plot for 2-ClCl. The slope observed over 50 K was assumed 

to be the thermally excited triplet state of trivalent rhenium and we determined that the energy gap 2J = 
500 cm–1. 

In the magnetic susceptibility measurements, we concluded that tetravalent rhenium moiety was ESR 
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(a) (b)

Fig. 4.4 (a) The M-H plot for 1-Cl (black circle) and 2-ClCl (red square). Temperature: 1.9 K. (b) χT-T 
plot for 1-Cl (black circle), 1-Cl(III) (blue diamond) and 2-ClCl (red square). Applied magnetic field: 100 
mT.

(a) (b)

Fig. 4.5 Simulated curves of (a) M-H plot and (b) χT-T plot for 1-Cl. Black circle: experimental; red line: 
considering contribution from only tetravalent rhenium with S = 3/2. The principal values of g-tensor (gx 
= 2.20, gy = 2.30, gz = 1.64) and E/D = 0.2778 used in this simulation was determined with ESR spectra in 
the crystal axis system.



active (S = 3/2) and had the large zero-field splitting parameter due to the large spin–orbit interaction and 

thus ESR transitions between sublevels (+3/2 ↔ +1/2 or –3/2 ↔ –1/2) should not be observed in X-band. 
The trivalent rhenium site had the spin state S = 0 with thermally excited magnetic states (S = 1). 

Figure 4.7 shows the H-M plot and the χT-T plot for the complexes 2-ClCl, 2-BrBr and 2-BrCl. D-
values were determined to be –500 GHz (–16 cm–1) for 2-BrBr and –250 GHz (–8 cm–1) for 2-BrCl from 
the simulated curve for the H-M plot, respectively. χT had a slope in the high temperature region for all 

complexes due to the thermally excited triplet state of trivalent rheniums. 

Focusing on the temperature under 50 K in the χT-T plot, the gradient in χT of 2-BrCl changes at 

about 25 K and 6 K. The former change was also observed in 2-ClCl and the latter was seen in 2-BrBr. 
Therefore, 2-BrCl had the magnetic properties coming from both the chloride moiety and bromide 
moiety. The gradient change at 50 K was characteristic of 2-BrBr. 

Figure 4.8 shows the simulated curves of the M-H plot and the χT-T plot of 2-BrCl. 
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Fig. 4.6 The simulated curves of (a) M-H plot and (b) χT-T plot of 2-ClCl. Black circle: experimental; 
Blue line: considering contribution from only tetravalent rhenium with S = 3/2. The principal values of g-
tensor (gx = 2.050, gy = 2.240, gz = 1.820), and E/D = 0.2778 in this simulation was determined with ESR 
spectra in the principal axis system; green line: considering contribution from only trivalent rhenium with 
the ground singlet state and the thermally excited triplet state (we fixed the principal values of g-tensor to 
the result of DFT calculation and the axial zero-field splitting parameter D was optimized to be +500 
MHz), where the energy gap 2J = 500 cm–1; red line: sum of two lines.

(a) (b)

a) b)

Fig. 4.7 a) The M-H plot of 2-ClCl (red square), 2-BrBr (black circle) and 2-BrCl (blue diamond). 
Temperature: 1.9 K. b) χT-T plot for or 2-ClCl (red square), 2-BrBr (black circle) and 2-BrCl (blue 
diamond). Applied magnetic field: 100 mT.



4.3.3 ESR spectroscopy 

4.3.3.1 Electronic structure of mononuclear complex 1-Cl by using of single-crystal and 

randomly-oriented ESR spectroscopy 
(a) Single-crystalline sample 
ESR measurement of the tetravalent mononuclear complex 1-Cl was carried out only in the crystal axis 
(pqr) system. Figure 4.9 shows the angular dependence of the ESR spectra (measured in the perpendicular 
and parallel excitation modes) rotated around three axes with 1D goniometer. The angle at which the 

signal appeared in the lowest field was defined to 0 degrees in each plane. Comparing to the experiments 
in the principal-axis (xyz) system, a-axis and y-axis, b-axis and x-axis, and c-axis and z-axis are close each 
other, respectively. Two sets of six hyperfine splitting due to the rhenium nuclei (nuclear quantum number 

I = 5/2) was observed in the low field when the static magnetic field was aligned to the rhenium–
phosphorus direction. As the static field was coming closer to the biimidazolate plane, the resonance field 
moves to higher and the line width was broadened and two hyperfine lines get to be indistinguishable. 

The magnetic tensors were obtained with full spin Hamiltonian approach considering the two 

orientations in one unit cell, which is related with the following direction cosine matrix; 

"  (4.3) 

(b) Randomly oriented sample 
X-band randomly-oriented ESR spectra of 1-Cl were also obtained in the helium temperature (Fig. 4.11). 
Comparing to the spectra in the principal axis system, z-, x-, y-canonical peaks for one orientation 

appeared in the range of 0–250 mT, 200–450 mT and 400–600 mT, respectively. The peaks from other 
achieved by the rotation spread over the whole range. 

Considering both the single-crystal and randomly-oriented spectra in the parallel excitation mode, 
nuclear-Zeeman dominant at zero degrees [31] while at 90 degrees, nuclear-Zeeman and quadrupole 

interaction exist in harmony. 

64.01º 146.4º 109.8º
146.4º 121.2º 78.69º
109.8º 78.69º 157.0º
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"154

a) b)

Fig. 4.8 Simulated curves of a) M-H plot and b) χT-T plot for 2-BrCl. Black circle: experimental; Blue 
line: considering contribution from only tetravalent rhenium with S = 3/2. The principal values of g-tensor 
(gx = 2.043, gy = 2.220, gz = 1.850), and E/D = 0.33 used in this simulation was determined with ESR 
spectra in the principal axis system; green line: considering contribution from only trivalent rhenium with 
ground singlet state and thermally excited triplet state (we fixed the principal values of g-tensor of 
trivalent rhenium to the result of DFT calculation and zero-field splitting parameter D was optimized to 
be +1000 MHz), where the energy gap 2J = 500 cm–1; red line: sum of two lines.
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Fig. 4.10 Simulated spectra of the angular dependence of single-crystal ESR measurement for 1-Cl. 
Black: experimental, red: simulated spectra. One set of magnetic parameters; g1 = 2.20, g2 = 2.50, g3 = 
1.68, A1 = –1290 MHz, A2 = –900 MHz, A3 = –550 MHz, D = –700 GHz, E/D = 0.27. Two orientations 
were considered with a rotation matrix calculated from the crystallographic data.

Fig. 4.9 Angular dependence of X-band cw-ESR spectra for 1-Cl. a) perpendicular mode in pq-plane, 
microwave frequency: 9.629930 GHz, microwave power: 1 mW, temperature: 3.2 K; b) parallel mode in 
pq-plane, microwave frequency: 9.388330 GHz, microwave power: 1 mW, temperature: 3.2 K; c) 
perpendicular mode in qr-plane, microwave frequency: 9.629899 GHz, microwave power: 1 mW, 
temperature: 3.5 K; d) perpendicular mode in rp-plane, microwave frequency: 9.634107 GHz, microwave 
power: 0.5 mW, temperature: 3.1 K.
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Temperature dependence of randomly-oriented ESR spectra for 1-Cl 

Figure 4.12 shows the temperature dependence of ESR spectra obtained for the randomly-oriented 
sample. As increasing temperature, the spectra were getting broader and the site splitting was 
indistinguishable. The line width is related with the relaxation time. The broad signal means the short 

relaxation time and vice versa. The strong pin-orbit coupling causes the  

High-field/high-frequency ESR experiment for randomly-oriented sample of mononuclear complex 1-Cl 
Figure 4.13 shows the multi-frequency ESR spectra up to 609 GHz for randomly-oriented sample of 1-Cl. 
Although Some sharp peaks are observed at particular frequencies, assignment of these signals have not 

achieved. 

"156

Fig. 4.12 Temperature dependence of randomly-oriented ESR spectra for 1-Cl observed in the 
perpendicular mode. The numbers written in the right side are the amplification for each spectrum.

Fig. 4.11 Experimental spectra of randomly-oriented ESR measurement for 1-Cl in X-band. Red: 
perpendicular mode, microwave frequency: 9.634970 GHz, temperature: 8.0 Κ; blue: parallel excitation 
mode, microwave frequency: 9.419585 GHz, temperature: 8.0 Κ.



4.3.3.2 Electronic structures of mixed-valence Rhenium(III,IV) binuclear complexes as 

studied by single-crystal and randomly-oriented ESR spectroscopy 
(a) Single-crystal ESR 
In high spin states of metallocomplexes with sizable ZFS in pseudo-octahedral symmetry, their fine 
structure ESR transitions with the static magnetic field along the principal z-axis appear in the lower field 

far from g = 2 at X-band. The appearance disagrees with the putative intuitive picture of the relevant high 
spin ESR. A ReIII,IV binuclear complex in the mixed valence state exemplifies the cases, whose fine-
structure/hyperfine ESR spectra of the neat crystals have been analyzed in its principal-axis system. We 

note that referred to ReIV complexes in their high spin state the magnetic properties as studied by ESR 
spectroscopy have been rare, [41] and they invoked sophisticated high-field/high-frequency techniques. 
Thus the determination of the magnetic tensors by conventional ESR spectroscopy is a challenging issue. 

Figures 4.14–4.16 show the angular dependence of the ESR spectra measured in the crystal axis (pqr) 
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(a) (b)

Fig. 4.14 Angular dependence of 2-ClCl in pq-plane of the crystal axis (pqr) system. (a) perpendicular 
mode, microwave frequency: 9.62280 GHz, microwave power: 0.1 mW, temperature: 3.2 K; (b) parallel 
mode, microwave frequency: 9.37700 GHz, microwave power: 0.1 mW, temperature: 2.9 K.
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Fig. 4.13 Multi-frequency ESR spectra for randomly-oriented sample of 1-Cl at 5 K.
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system. The crystal was mounted on the quartz rod and rotated around each axis with 1D goniometer. 

Detailed fine-structure/hyperfine ESR spectral analyses of the single crystals of the Re(III,IV) 
binuclear complex 2-ClCl were carried out in the principal-axis coordinate system of the binuclear 
complex, shown in Figs. 4.17–4.19. The binuclear complex is composed of 2,2’-biimidazole dichloro 

b i s ( t r i -n-propylphosphine) rhenium(I I I ) and 2 ,2’ -b i imidazola te d ich loro b i s ( t r i -n -
propylphosphine)rhenium(IV). [29] The binuclear complex 2-ClCl is in the mixed valence state, and the 
spin state of the ReIII moiety as the monomer at low temperature is a localized spin-singlet in its ground 
state with a triplet excited state located above 500 cm–1, as identified on the basis of SQUID 

measurements on the binuclear complex in the polycrystalline state. The principal axes were defined as 
those of the magnetic tensors from the result of the quantum chemical calculation for the mononuclear 
complex, [ReIVCl2PnPr3(bim)] as the monomer unit ReIV-monomer (Fig. 4.6). In the principal axis 

experiments, the single crystal was mounted on a quartz wedge as shown in Fig. 4.1 in Section 4.2.3. The 
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(a) (b)

Fig. 4.16 Angular dependence of 2-ClCl in rp-plane of the crystal axis (pqr) system. (a) perpendicular 
mode, microwave frequency: 9.61865 GHz, microwave power: 0.1 mW, temperature: 3.6 K; (b) parallel 
mode, microwave frequency: 9.33679 GHz, microwave power: 0.1 mW, temperature: 6.6 K.

(a) (b)

Fig. 4.15 Angular dependence of 2-ClCl in qr-plane of the crystal axis (pqr) system. (a) perpendicular 
mode, microwave frequency: 9.62526 GHz, microwave power: 0.05 mW, temperature: 3.2 K; (b) parallel 
mode, microwave frequency: 9.36745 GHz, microwave power: 0.1 mW, temperature: 3.3 K.



angular dependence of the single-crystal ESR observed with the static magnetic field around the three 

principal axes was analyzed on the basis of both the effective spin-1/2 Hamiltonian and the full spin 
Hamiltonian including the ZFS terms except the quadrupolar terms. The analyses were carried out based 
on the exact numerical diagonalization by using EasySpin (version 5.1.10) [42] under the MATLAB 

R2014b software. The spectral simulation of the powder-pattern spectra were also carried out by the 
numerical diagonalization. The angular dependence of the ESR spectra illustrated that the spectra 
appearing in the magnetic field around g = 5 were exclusively assignable to the transitions of the principal 
z-direction. Using the exact geff–gtrue relationship for S = 3/2, the true g-principal values and λ = E/D were 

derived. The derived values of λ for the principal x-, y-, and z-axes were 0.3032, 0.2768 and 0.3065, 
respectively. These values are close to the corresponding value (E/D = 0.2778 in Table 4.7) obtained from 
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(a) (b)

Fig. 4.17 Angular dependence of 2-ClCl in xy-plane of the principal axis (xyz) system. The static 
magnetic field was applied along x-axis at 0 degrees. (a) perpendicular mode, microwave frequency: 
9.63736 GHz, microwave power: 0.1 mW, temperature: 3.8 K; (b) parallel mode, microwave frequency: 
9.41245 GHz, microwave power: 0.2 mW, temperature: 6.3 K.

(a) (b)

Fig. 4.18 Angular dependence of 2-ClCl in yz-plane of the principal axis system. The static magnetic field 
was applied along z-axis at 0 degrees. (a) perpendicular mode, microwave frequency: 9.63686 GHz, 
microwave power: 0.1 mW, temperature: 4.6 K; (b) parallel mode, microwave frequency: 9.41176 GHz, 
microwave power: 0.2 mW, temperature: 5.0 K.



the single-crystal based spectral analysis with the full spin Hamiltonian. 

Figures 4.17–19 show the angular dependence of the single-crystal ESR spectra in the principal axis 
system for ReIII,IV-dimer. The principal values of the magnetic tensors were estimated on the basis of both 
the effective (Fig. 4.20) and true spin Hamiltonians (Fig. 4.21). 

Magnetic susceptibility measurements on the ReIII,IV dinuclear complex revealed that the ground state 
is spin-quartet (S = 3/2) with a large ZFS parameters. We fixed the principal g-values (gxtrue = 2.060, gytrue 
= 2.260, gztrue = 1.820), which were derived from the ESR spectral analyses, and analyzed the magnetic 
susceptibility data using the full spin Hamiltonian. The fitting of the SQUID data gave D = –11.7 cm–1 

with λ = 0.2778 fixed (Fig. 4.6). The experimental D-value derived from the SQUID measurements is in 
good harmony with that estimated from the single-crystal ESR analysis on the basis of the full spin 
Hamiltonian. 

In the ReIII,IV binuclear mixed valence complex under study, the ReIII site (d4) has a spin-singlet 
ground state, and hence only the ReIV moiety of the d3 electronic configuration contributes to the ESR 
spectra if the triplet state from the counter-part site of the d4 configuration is not low-lying. Actually, the 
triplet state is located to be around 500 cm–1 above the singlet ground state, which the SQUID 

measurements indicated. In this study, we have carried out DFT calculations of the magnetic tensors for 
the ReIV-monomer unit using the geometry in the solid state determined from the X-ray crystallography 
simply because of the limited computing resource. Thus, the present theoretical approach does not include 

any possible dynamic quantum effects due to the proton-electron synchronized transfer between the two 
Re sites at liquid helium temperature. In this context, the approach is in a static regime. The D-, g-, and 
A(187Re)-tensors were computed by using the TPSS exchange–correlation functional in conjunction with 
the Sapporo-DKH3-DZP-2012 and Sapporo-DZP-2012 basis sets for Re and the other atoms, 

respectively. In the SCF procedure, relativistic effects were taken into account via the second-order 
Douglas–Kroll–Hess Hamiltonian. [36]  

The electronic configuration of the ReIV-monomer in the spin-quartet ground state is 

(dxz)1(dyz)1(dx2−y2)1(dz2)0(dxy)0. The spin densities and principal axes of the magnetic tensors are given in 
Fig. 46. The principal axes of the theoretical D-, g- and A(187Re)-tensors are collinear. Importantly, they 
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(a) (b)

Fig. 4.19 Angular dependence of 2-ClCl in zx-plane of the principal axis system. The static magnetic field 
was applied along z-axis at 0 degrees. (a) perpendicular mode, microwave frequency: 9.62994 GHz, 
microwave power: 0.1 mW, temperature: 4.4 K; (b) parallel mode, microwave frequency: 9.39279 GHz, 
microwave power: 0.2 mW, temperature: 5.0 K.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.20 Experimental and simulated spectra with fictitious spin-1/2 Hamiltonian approach. (a) xy-plane, 
perpendicular mode, (b) xy-plane, parallel mode, (c) yz-plane, perpendicular mode, (d) yz-plane, parallel 
mode, (e) zx-plane, perpendicular mode, (f) zx-plane, parallel mode. spin Hamiltonian parameters; gxeff = 
1.895, gyeff = 1.472, gzeff = 5.035, Axeff = –2750 MHz, Ayeff = –1000 MHz, Azeff = –1100 MHz.

(a) (b) (c)

Fig. 4.21 Experimental and simulated spectra with full spin Hamiltonian approach. (a) xy-plane, 
perpendicular mode, (b) yz-plane, perpendicular mode, (c) zx-plane, perpendicular mode. Spin 
Hamiltonian parameters; gx = 2.050, gy = 2.240, gz = 1.820 and 1.720, Ax = –1290 MHz, Ay = –850 MHz, 
Az = –990 MHz, D = –350 GHz, E/D = 0.2778.



coincide with those determined by the single-crystal ESR spectroscopy in the principal axis system. The 

calculated D-value is −1.730 × 103 GHz (−57.72 cm−1), whose magnitude is five times larger than the 
experimental one, and the E/D value (= λ) is 0.205, which is comparable with the experimental one. Such 
a large E/D value is characteristic of the ReIV mononuclear complexes of tetrahedral coordination. [8,42] 

According to the ORPT (Orbital Region Partitioning Analysis), the electron excitations of SOMO(α) → 
SOMO(β) are the most important. The absolute sign and magnitude of the D-value are governed by the 
strengths of SOC among the three SOMOs (dxz, dyz, and dx2−y2). In the ReIV-monomer system under study, 

the SO contributions to the D-tensor from the electron transitions between the dxz and dyz orbitals, which 
are for the Dzz principal value, are considerably smaller than those from the excitations between the dxz 

and dx2−y2 orbitals, and the one between the dyz and dx2−y2 orbitals. As a result, the principal values of the 
D-tensor become Dxx > Dyy > Dzz and hence the D-value becomes negative. 

The principal values of the calculated g-tensor are gxx = 1.9806, gyy = 2.0138, and gzz = 2.0345. In 

contrast to the D- and g-tensors, the A(187Re)-tensor is rather symmetric (Axx = −3135.02 MHz, Ayy = 
−3119.34 MHz, Azz = −3103.09 MHz), reflecting the 5d3 electron configuration and spin density 
distributions. The magnitudes of the principal values of the theoretical A(187Re)-tensor are about three 

times greater than the experimental ones. We note that the comparison between the theoretical and 
experimental values in a straightforward manner is not appropriate because the present theoretical 
approach is in the static regime and excludes any effects originating in the dimer formation and associated 
proton-electron synchronized transfer. 

Table 4.7 Principal Values of Magnetic Tensors of Binuclear Complex 2-ClCl Derived From True and 
Effective spin Hamiltonian 

(b) Randomly oriented sample 

Figure 4.22 shows the X-band randomly-oriented ESR spectra for 2-ClCl observed in the perpendicular 
and parallel modes. 

In the low field, the spectra seemed to be the superposition of the two spectra with narrow line width. 

Broadening of the spectra in the high field region was consistent with the single-crystal ESR results. 
Judging from the single-crystal ESR in the principal axis system, signals in the low field (50–250 mT) 
was assigned to z-canonical peak, signals in the region of 200–450 mT was assigned to x-canonical peak 

(a) true (b) effective

gx 2.050 1.895

gy 2.240 1.472

gz 1.820 5.035

Ax/MHz –1290 –2750

Ay/MHz –850 –1000

Az/MHz –990 –1100

D/MHz –350 × 106 not available

E/D 0.2778 not available
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and signals in the region of 400–650 mT was assigned to y-canonical peak. In the parallel mode, high 

field signal were almost invisible due to the intrinsic low transition probabilities. Figures 4.23 and 4.24 
shows the simulated spectra calculated with effective and true spin Hamiltonian parameters. 
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Fig. 4.22 Experimental spectra of randomly-oriented ESR measurement for 2-ClCl. Red: perpendicular 
mode, microwave frequency: 9.632879 GHz, temperature: 5.4 Κ; blue: parallel mode, microwave 
frequency: 9.405467 GHz, temperature: 5.0 Κ.

(a) (b)

Fig. 4.23 Experimental and simulated spectra with fictitious spin-1/2 Hamiltonian approach for 
randomly-oriented sample of 2-ClCl. (a) perpendicular mode, (b) parallel excitation mode. Magnetic 
parameters: gxeff = 1.895, gyeff = 1.472, gzeff = 5.035, Axeff = –2750 MHz, Ayeff = –1000 MHz, Azeff = –1100 

(a) (b)

Fig. 4.24 Experimental and simulated spectra with full spin Hamiltonian approach for randomly-oriented 
sample of 2-ClCl. (a) perpendicular mode, (b) parallel excitation mode. Magnetic parameters: gx = 2.050, 
gy = 2.240, gz = 1.820 and 1.720, Ax = –1290 MHz, Ay = –850 MHz, Az = –990 MHz, D = –350 GHz, E/D 
= 0.2778.



(c) Temperature dependence for single-crystal ESR spectra of the binuclear complex 2-ClCl 

The dynamics of the protons/electrons can be revealed from the temperature dependence of the spectra. 
Temperature dependence for single-crystal ESR spectra of 2-ClCl was measured at 0 degrees in pq-plane 
(Fig. 4.25a). As increasing temperature, the line width (∆B1/2) was broadened and merged into one 

hyperfine lines above 18 K. This phenomenon was reversible and the spectrum at 5 K was reproduced 
after rising over 20 K. The temperature dependence of the line width was fitted with the Arrhenius 
equation (4.4) and the activation energy between two proton-localized states ∆E was estimated that ∆E = 
24 cm–1. 

"  (4.4) 

We concluded that the synchronized proton-electron transfer in 2-ClCl was the thermally activated 
elemental process. Under 10 K, tunneling of the proton occurred between the nitrogen atoms. 

(d) Q-band cw-ESR measurement of the binuclear complex 2-ClCl 

Figure 4.26 shows the experimental and simulated spectra of Q-band cw-ESR for 2-ClCl. Two sets of six 
lines observed around 400–600 mT was assigned to z-direction. Broad signal at 800–1400 mT was x- or 
y-canonical peaks. 

ΔB1
2

= Aexp ΔE
kT

⎡
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(a) (b)

Fig. 4.25 (a) Temperature dependence for single-crystal ESR spectra of 2-ClCl. (b) Temperature 
dependence of the line width of ESR spectra of 2-ClCl. Fitted curve was calculated with Arrhenius 
equation.



4.3.3.3 Electronic structures of 2-BrBr and 2-BrCl by using of single-crystal ESR 

spectroscopy 
Figures 4.27–4.29 show the angular dependence of ESR spectra of 2-BrBr observed in the crystal-axis 
(pqr) system. The crystal was rotated around each axis. Zero degrees was defined as the angle at which 
the resonance field was the lowest. 
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Fig. 4.26 Experimental (black) and simulated (red) spectra of Q-band cw-ESR for 2-ClCl. Microwave 
frequency: 34.01462 GHz, microwave power: 0.5 mW, temperature: 3.4 K, gx = 2.05, gy = 2.24, gz = 
1.82/1.72 (superposition of two spectra), Ax = –1290 MHz, Ay = 850 MHz, Az = 990 MHz, D = –350 GHz, 
E/D = 0.2778.

Fig. 4.27 Angular dependence of ESR spectra for 2-BrBr in the crystal pq-plane. (a) Perpendicular mode, 
microwave frequency: 9.628898 GHz, microwave power: 0.1 mW, temperature: 4.2 K; (b) parallel mode, 
microwave frequency: 9.393340 GHz, microwave power: 0.1 mW, temperature: 4.5 K.

(a) (b)



 

Figure 4.30 compares the X-band single-crystal ESR spectra for 2-ClCl, 2-BrBr and 2-BrCl at each 
principal-axis direction. 

In the spectra in z-direction for 2-BrBr, two sets of six hyperfine splitting were observed as seen for 

other complexes. However this spectrum is different in the intensity. 
Comparing the resonance field of each set of the hyperfine splitting in the z-direction for 2-BrCl, 2-

ClCl and 2-BrBr, the position of the lower set seemed to be close to that of the lower set of 2-BrBr and 
the position of the higher set seemed to be close to that of the higher set of 2-ClCl. The set with lower 

resonance field could be assigned to bromine moiety and the other set could be assigned to chlorine 
moiety. 

Figure 4.31 shows the angular dependence of the ESR spectra for 2-BrCl in the principal axis system. 

The principal values of the magnetic tensors were determined from the simulated spectra (Fig. 4.32). In 

helium temperature, spectra appeared in the low magnetic field region showed a superposition of two 

hyperfine splitting structure due to the nuclear spin moment of rhenium center. According to the 
discussion of crystal structure, 2-BrBr has a symmetry center in the middle of the hydrogen bonding that 
leads two complexes are crystallographically equivalent. However, in the low temperature, the symmetry 

was broken and was distinguishable two complexes that is these are no longer magnetically unequivalent. 
This indicates that this type of complex has a mixed-valence state involving the trivalent and tetravalent 
rhenium ions. The difference of the hyperfine spectrum of 2-BrBr was larger than that of 2-ClCl, which 
means the difference of electronic g-value would be larger which reflects the distortion of the coordinates. 

From the result of angular dependence of the ESR spectra in the principal axis system, spectra along with 
x-, y- and z-directions appeared at 0–250 mT, 200–500 mT and 300–600 mT, respectively. 
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(a) (b)

Fig. 4.28 Angular dependence of ESR spectra for 2-BrBr in the crystal qr-plane. (a) Perpendicular mode, 
microwave frequency: 9.631200 GHz, microwave power: 0.1 mW, temperature: 3.4 K; (b) parallel mode, 
microwave frequency: 9.397692 GHz, microwave power: 0.2 mW, temperature: 7.0 K.

Fig. 4.29 Angular dependence of ESR spectra for 2-BrBr in the crystal rp-plane observed in 
perpendicular mode. Microwave frequency: 9.627154 GHz, microwave power: 0.1 mW, temperature: 8.0 
K.
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2-BrBr
2-ClCl

Fig. 4.30 X-band single-crystal ESR spectra of 2-ClCl, 2-BrBr and 2-BrCl in the principal axis system. 
Microwave frequency: 9.6370 GHz, microwave power: 0.1 mW, temperature: 7.0 K.

(a) (b) (c)

Fig. 4.31 Angular dependence of 2-BrCl in the principal axis (xyz) system. (a) xy-plane, microwave 
frequency: 9.6369 GHz, microwave power: 0.1 mW, temperature: 7.0 K; (b) yz-plane, microwave 
frequency: 9.6372 GHz, microwave power: 0.1 mW, temperature: 7.0 K; (c) zx-plane microwave 
frequency: 9.6310 GHz, microwave power: 0.1 mW, temperature: 6.0 K.

(a) (b) (c)

Fig. 4.32 Experimental (black) and simulated (red) spectra with full spin Hamiltonian approach (S = 3/2) 
for randomly-oriented sample of 2-BrCl in (a) xy-plane, (b) yz-plane and (c) zx-plane in the principal axis 
system; gx = 2.043, gy = 2.220, gz = 1.850, Ax = –1140 MHz, Ay = –880 MHz, Az = –1000 MHz, D = –350 
GHz, E/D = 0.33, electric quadrupole interaction was omitted. Any gradient in the tensors are not 
included.



Unusual electric properties observed for 2-BrBr 

Figure 4.33 shows the X-band cw-ESR spectra for 2-BrBr measured at an angle in the crystal axis system 
and the angle rotated 180 degrees. Some signals in the low field become silent and recovered in the high 
field at a certain angle. Moreover, all signal disappeared after one hour under the weak static magnetic 

field. We concluded that the electric ordering among the whole crystal was enhanced by the static 
magnetic field. When the motion of the proton related to the hydrogen bonding was fixed due to the static 
magnetic field, electric dipole was created. The alignment of the direction of the dipole causes the 
dielectric loss and the ESR signals get invisible. It can be a kind of the ferroelectric effect derived by the 

static magnetic field. 

High-field/high-frequency cw-ESR spectra of single-crystal 2-BrBr 

High-field/high-frequency ESR measurements were carried out for 2-BrBr. Figures 4.34 and 4.35 shows 
the typical spectra. 

Six lines were observed at two resonance fields in each sweep. The splitting interval was about 60 mT, 
indicating this splitting was attributed to the hyperfine interaction. 

Figure 4.36 shows the frequency dependence of the single-crystal ESR for 2-BrBr at a direction. The 
red line was drawn in accordance with the resonance field in each frequency. The slope (the ratio of 
Frequency/Field, corresponding to g-value) of 2.2 was close to the gy value (≈ 2.220). 
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Fig. 4.33 X-band cw-ESR spectra of 2-BrBr observed at an angle (red) and rotated 180 degrees (black) in 
the crystal axis system. The lowest red line was obtained after one hour standing under 0.5 mT of the 
static field.

First measurement

After 1 hour at 0.5 mT

Second measurement

Third measurement
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Fig. 4.34 High-field ESR spectra for 2-BrBr. Black Line: Up sweep, Red Line: Down sweep; Microwave 
frequency: 93.28 GHz, temperature: 1.4 K.
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Fig. 4.35 close-up spectra of the peak in Figure 4.3. (left) 2–2.5 T, (right) 2.6–3.1 T. Black line: up sweep, 
red line: down sweep; microwave frequency: 93.28 GHz, temperature: 1.4 K.



4.3.4 Experimentally and calculated magnetic parameters 
In the mixed-valence complexes under study, the ReIII side (d4) has a spin-singlet ground state, and hence 
only the ReIV moiety of the d3 electronic configuration contributes to the ESR spectra if the triplet state 

from the counterpart site of the d4 configuration is not low-lying. Actually, the triplet state is located to be 
around 500 cm–1 above the singlet ground state, which was indicated by the SQUID measurements. In 
this study, we have carried out DFT calculations of the magnetic tensors for both the ReIV-monomer units 

(1-Cl and 1-Br) and the ReIII-monomer units (1-Cl(III) and 1-Br(III)) using the geometry in the solid 
state determined from the X-ray crystallography simply because of the limited computational resources. 
Thus, the present theoretical approach does not include any possible dynamic quantum effects due to the 
proton-electron synchronized transfer between the two rhenium sites at liquid helium temperature as seen 

in the ESR spectra. In this context, the approach is in the static regime. The D-, g- and A(187Re)-tensors 
were computed by using TPSS exchange–correlation functional [34] in conjunction with the Sapporo-
DKH3-DZP-2012 [35] and Sapporo-DZP-2012 [36] basis sets for Re and other atoms, respectively. In the 

SCF procedure, relativistic effects were taken into account via the second-order Douglas–Kroll–Hess 
Hamiltonian. [37] 

The electronic configuration of the mononuclear chloride complex 1-Cl in the spin-quartet ground 

state is (dxz)1(dyz)1(dx2–y2)1(dz2)0(dxy)0. The spin densities and principal axes of the magnetic tensors are 
given in Fig. 4.2. The principal axes of the theoretical D-, g- and A(187Re)-tensors are collinear. 
Importantly, they coincide with those determined by single-crystal ESR spectroscopy in the principal-axis 

system. The calculated D-value of 1-Cl is –1.730 × 103 GHz (–57.72 cm–1), whose magnitude is five 
times larger than the experimental one, and the E/D value (= λ) is 0.205, which is comparable with the 
experimental one. The calculated D-value of 1-Br is –2.450 × 103 GHz (–81.73 cm–1) and the E/D value  

is 0.201. Such a large E/D value is a characteristic of the ReIV mononuclear complexes of tetrahedral 
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Fig. 4.36 Multi-frequency ESR spectra for 2-BrBr. Frequency range: 93–415 GHz, temperature: 1.6 K. 
The red line is the plotted line of the resonance fields.



coordination. [8,43] According to ORPT, [44] the electron excitations of SOMO(α) → SOMO(β) are the 

most important. The absolute sign and magnitude of the D-value are governed by the strengths of SOC 
among the three SOMOs (dxz, dyz, and dx2–y2). In the ReIV-monomer system under study, the SO 

contributions to the D-tensor from the electron transitions between the dxz and dyz orbitals, which are for 

the Dzz principal value, are considerably smaller than those from the excitations between dxz and dx2–y2 

orbitals, and the one between the dyz and dx2–y2 orbitals. As a result, the principal values of the D-tensor 

become Dxx > Dyy > Dzz and hence the D-value becomes negative. 

The principal values of the calculated g-tensor of 1-Cl and 1-Br for the single point calculation are gxx 

= 2.0345, gyy = 2.0138, gz = 1.9806, and gxx = 2.0611, gyy = 2.0341, gz = 2.0090, respectively. In contrast 
to the D- and g-tensors, the A(187Re)-tensor is rather symmetric (Axx = –3135.02 MHz, Ayy = –3119.34 
MHz, Azz = –3103.09 MHz for 1-Cl and Axx = –2840.06 MHz, Ayy = –2856.66 MHz, Azz = –2872.59 MHz 
for 1-Br), reflecting the 5d3 electron configuration and spin density distributions. The magnitudes of the 

principal values of the theoretical A(187Re)-tensor are about three times greater than the experimental 
ones. We note that the comparison between the theoretical and experimental values in a straightforward 
manner is not appropriate because the present theoretical approach is in the static regime and excludes 

any effects originating from the dimer formation and associated proton-electron synchronized transfer. 
The monomer analogs of 2-ClCl help us with the evaluation of the magnetic tensors of the rhenium 
dimer, and further synthetic work and quantum chemical calculations are underway. 

On the contrast to the experiments, the calculated ground state of the trivalent complexes 1-Cl(III) and 

1-Br(III) was spin-triplet state, in which the energy gap between the spin-triplet and the spin-singlet states 
are about 6 kcal/mol (2100 cm–1) and 5 kcal/mol (1750 cm–1), respectively. The principal values of  
magnetic tensors of trivalent complexes 1-Cl(III) and 1-Br(III) are summarized in Appendix as well as 

ones in the optimized geometry of tetravalent 1-Cl and 1-Br. 

4.3.5 Proposed mechanism of proton-electron synchronized transfer 
Theoretical calculation indicates that about 10% of spin density are on the biimidazolate ligand. The 
delocalization of the spin could be related with the electronic transfer. 

The proton related with the hydrogen bonding seems to transfer the surface of double-well potential 

which two nitrogen atoms create. The rate of the hydrogen is much slower than that of the electron. The 
difference of the valence between two rhenium centers generates the electronic dipole moment (Fig. 
4.37). The direction of the dipole moment can be switched with the electron/proton transfer. Once dipole 

moments create and the proton is fixed, they could interact with neighboring molecules. The probability 
can be related with the depth of the potential. 
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Fig. 4.37 Schematic picture of the proton localized state. (a) The difference of the valence between 
rhenium center generates the electric dipole. (b) Orientation of dipoles.
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4.4 Conclusion 
In this chapter, we applied the experiment and the analysis in the principal axis system to high spin 
rhenium(III,IV) binuclear complex and compared the electronic structure of the rhenium(IV) 

mononuclear complex through the magnetic tensors. Both complexes have the large ZFS parameters due 
to the large SOC constants; gx = 2.050, gy = 2.240, gz = 1.820 and 1.720, Ax = –1290 MHz, Ay = –850 
MHz, Az = –990 MHz, D = –350 GHz, E/D = 0.2778 for 2-ClCl. We estimated that the activation energy 
between proton localized states was about 24 cm–1 from the temperature dependence of the single-crystal 

ESR spectroscopy and the mechanism of the synchronized proton-electron transfer in 2-ClCl was 
expected to be the thermally activated elemental process. 

In this chapter, we revealed the electronic structures of three binuclear rhenium complexes 2-ClCl, 2-

BrBr and 2-BrCl by using of single-crystal ESR spectroscopy in the principal axis system, magnetic 
susceptibility measurements and quantum chemical calculations. Substituted halogen ligands affected the 
structural geometry, difference of the principal values of the magnetic tensors and the proton-electron 
motion. 

The proton related to the hydrogen bonding was observed at the two spot in the X-ray crystallography 
of 2-ClCl and 2-BrBr in the ambient temperature suggesting the vibrionic motion. In helium 
temperatures, the symmetry was broken and the proton was observed with different probabilities. On the 

other hand, the proton of 2-BrCl was localized at the chloride moiety even at the room temperature 
making the chloride moiety trivalent and the counterpart bromide moiety tetravalent.  

Only the tetravalent rhenium was ESR active with S = 3/2, while the trivalent moiety was diamagnetic 

and the thermally excited triplet state lying 2J ≈ 500 cm–1 above the singlet ground state. We determined 
the magnetic parameters of the complexes by using of single-crystal ESR spectroscopy in helium 
temperatures and the magnetic susceptibility measurements. 

During the ESR experiments of 2-BrBr, we observed the signal disappearing. This is due to the long-

range electric dipole ordering over the crystal enhanced by the localized proton (one kind of the 
ferroelectric effect). 

Quantum chemical calculations were carried out for the mononuclear complexes 1-Cl and 1-Br 

exemplifying the negative and large zero-field splitting parameters as much as –34 cm–1 and –60 cm–1, 
respectively, for the geometry from the X-ray crystallographic data. The main contribution to the ZFSs 
was attributed to the large spin–orbit couplings. The determination of the experimental magnetic 
parameters of 1-Br is a future work. 
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Appendix 4.1: Calculation of coordinates from any oblique 
coordinates to the fixed orthogonal system 

Here we consider the transformation from arbitrary crystal axis system (abc) to the orthogonal 
coordination system (a’bc’) [45]. Figure 4A1 represents the correspondence of each axis. b-axis in the 
new system is parallel to b-axis in the crystal system. a’-axis is perpendicular to b-axis and lies in the 

crystal ab-plane in the crystal system. c’-axis is normal for a’b-plane. Taking vectors i, j and k as the unit 
vectors for a’, b and c’, crystal axis vectors can be written in the basis of {i, j, k} as Eqs. (4A.1)–(4A.3). 

 

"  (4A.1a) 

"  (4A.1b) 

"  (4A.1c) 

where 

"  (4A.2a) 

"  (4A.2b) 

"  (4A.2c) 
Atomic coordinates are provided as (xa, yb, zc) in the crystal axis (abc) system (x, y, z ≤ 1 if the atom 

is within the unit cell), while (x’, y’, z’) in the orthogonal (a’bc’) system. These are related with the 
following equations. 

"  (4A.3) 
"  (4A.4a) 
"  (4A.4b) 
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x ' = axsinγ + c1z
y ' = ax cosγ + by + c2z
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abc: crystal axis system 
a’bc’: orthogonal axis system

Fig. 4A.1 The crystal axis (abc) and the new coordination axis (a’bc’). γ is an angle between crystal a and 
b vectors. θ and φ are the polar angle and the argument of c vector in the basis of a’bc’ system.



"  (4A.4c) 
The normal vector n for the crystal plane (hkl) are given as 

"  (4A.5) 
with 

"  (4A.6a) 

"  (4A.6b) 
"  (4A.6c) 

and N is the normalization factor. The face angle θ12 between the planes represented by (h1k1l1) and 
(h2k2l2) is calculated with 

"  (4A.7) 
The propriety of the series of formality are justified by the calculation of the face angles in 

dimetylglyoxime single crystal [45,46]. Angles necessary for principal axis experiments can be obtained 

with a similar sequence. 

z ' = c3z

n hkl( ) = N ha*+ kb*+ lc*( )

a* = b × c = bc3i − bc1k

b* = c × a = −ac3 cosγ i + ac3 sinγ j + ac1 cosγ − ac2 sinγ( )k
c* = a × b = absinγ k

θ12 = n(h1k1l1) ⋅n(h2k2l2 )
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Appendix 4.2 Magnetic tensors of ReIV-mononuclear complexes 
in the optimized geometry and the “protonated” complex, and the 

spin ground state of ReIII-complexes: The theoretical study 
The magnetic tensor calculations were carried out for the solid state (single-point calculation) as well as 

the optimized structures of the mononuclear rhenium complexes 1-Cl and 1-Br. The initial structure was 
taken from the X-ray crystallographic data. Calculations were carried out by DFT, using the TPSS 
exchange–correlation functional. [34] We used Sapporo-DKH3-DZP-2012 [35] for rhenium, and 

Sapporo-DZP-2012 [35] for other atoms. The DFT calculations were done by utilizing ORCA quantum 
chemical program package (version 3.0.0). [47] In the SCF procedure relativistic effects were taken into 
account by adopting zeroth-order regular approximation (ZORA). [48] In the D-tensor calculations, the 
Pederson–Khanna approach [49] with van Wüllen’s prefactors [50] was adopted for the spin–orbit term. 

For the spin-spin term DSS computations, McWeeny–Mizuno equation [51] with unrestricted natural 
orbitals constructed from the UTPSS calculations. Note that the NOB-PK method was not adopted in the 
D-tensor calculations of the calculations here so that the D- and E/D-values are different from those in the 

main text. The cartesian coordinates of the optimized geometries of 1-Cl and 1-Br will be shown at the 
end of this section (Tables A4.7 and 4.8) 

The Mulliken spin density distributions for the single-point and the optimized geometries compares in 
Table A4.3. The spin density distribution on the rhenium atom slightly decreased after the geometry 

optimization in the both complexes. 

Table A4.1 Mulliken Spin Density Calculated for Solid State and Optimized Geometries of the 

mononuclear complexes 1-Cl and 1-Br (S = 3/2). Calculated at the Level of UTPSS/Sapporo-DKH3-
DZP-2012 (for Re), Sapporo-DZP-2012 (for other atoms). 

The calculated magnetic tensors of the solid state and the optimized geometries of 1-Cl and 1-Br 
calculated at the UTPSS/Sapporo-DZP level are summarized in Table A4.4. The D-, g-, A(187Re)-tensors 
are approximately coaxial. The Dzz axis nearly parallel to the Re–P bond. The Dxx axis is approximately 

parallel to the direction from the rhenium atom to the biimidazolate ligand. 

Molecule 1-Cl (X = Cl) 1-Br (X = Br)

Geometry Solid state Optimized Solid state Optimized

Re 2.34169 2.25478 2.32736 2.21750

2X 0.32495 0.28113 0.33931 0.29559

(PnPr3)2 –0.04053 –0.02617 −0.04606 −0.02353

bim 0.37389 0.49026 0.37939 0.51044
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Table A4.2 Magnetic tensors of the single point calculation and the geometry optimized structure at the 

UTPSS/Sapporo-DZP level. 

The protonated/deprotonated species [ReIVCl2(PnPr3)2(Hbim)][ReIIICl2(PnPr3)2(bim)] (abbreviated as 
2’-ClCl) is the intermediate state in the proton/electron transfer scheme from [ReIVCl2(PnPr3)2(bim)]
[ReIIICl2(PnPr3)2(Hbim)] (2-ClCl). Theoretical calculation of the “protonated” tetravalent complex 

[ReIVCl2(PnPr3)2(Hbim)]+ (abbreviated as 1’-Cl) were also carried out. The calculation conditions are the 
same as the optimized geometry of 1-Cl. 

The total energy of the protonated/deprotonated species 2’-ClCl are higher than that of the parent 
species 2-ClCl by about 77.9 kcal/mol.  

The Mulliken spin density distributions for the single-point and the optimized geometries compares in 
Table A4.3. The spin density on the rhenium atom of 1’-Cl increased by about 3%.  

Table A4.3 Mulliken Spin Density Calculated for Solid State of the mononuclear complexes 1-Cl and 1'-
Cl (S = 3/2). Calculated at the Level of UTPSS/Sapporo-DKH3-DZP-2012 (for Re), Sapporo-DZP-2012 
(for other atoms). 

The calculated magnetic tensors of 1-Cl and 1’-Cl calculated at the UTPSS/Sapporo-DZP level are 
summarized in Table A4.7. In 1’-Cl the D- and g-tensors are approximately coaxial while the A(187Re)-
tensor is not coaxial with others. The Dzz axis nearly parallel to the Dyy axis of 1-Cl. The Dxx and Dyy axes 

Molecule 1-Cl 1-Br

Geometry Solid state Optimized Solid state Optimized

DSS+SO/MHz –1.0330 × 106 –0.9367 × 106 –1.8084 × 106 –1.6377 × 106

ESS+SO/DSS+SO 0.2016 0.1966 0.2173 0.2089

gxx 2.0345 2.0368 2.0611 2.0645

gyy 2.0138 2.0137 2.0341 2.0348

gzz 1.9806 1.9768 2.0090 2.0026

Axx/MHz –3103.09 –3055.63 –2840.06 –2840.57

Ayy/MHz –3119.34 –3076.16 –2856.66 –2862.68

Azz/MHz –3135.01 –3095.30 –2872.59 –2883.67

Molecule 1-Cl 1’-Cl

Re 2.34169 2.41321

2Cl 0.32495 0.41334

(PnPr3)2 –0.04053 –0.02723

bim(H) 0.37389 0.20068
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tilt with respect to the principal axes of D-tenser of 1-Cl. The decrease of |DSS+SO| and |DSS+SO/ESS+SO|-

values of 1’-Cl decreased comparing to those of 1-Cl can be attributed to the spherical spin density 
distribution on the rhenium atom. The isotropic hyperfine constant of 1’-Cl increased resulting in the 
slight concentration of the spin density to the rhenium atom. 

Table A4.4 Magnetic tensors of the single point calculation and the geometry optimized structure at the 
UTPSS/Sapporo-DZP level. 

We also calculated the ground spin state and the magnetic tensors of the trivalent mononuclear 
complexes 1-Cl(III) and 1-Br(III). The calculations were carried out by DFT, using the TPSS exchange–
correlation functional. [34] We used Sapporo DK3-Gen-TK+NOSeC-V-TZP basis set [52] for Rhenium, 

and Def2-SVP basis set [53] for other atoms (C, H, N, P, Cl and Br). The DFT calculations were done by 
utilizing ORCA quantum chemical program package. [47] In the SCF procedure relativistic effects were 
taken into account by adopting zeroth-order regular approximation (ZORA) [48]. In the D-tensor 
calculations, the Pederson–Khanna approach [49] was adopted for the spin–orbit term. For the DSS 

computations, McWeeny–Mizuno equation [51] was used in conjunction with natural orbitals constructed 
from the UTPSS calculations. 

The electron configuration of the trivalent complex in the spin-triplet state is (dxz)2(dyz)1(dx2–

y2)1(dz2)0(dxy)0. The energy gaps between the ground spin-triplet and the spin-singlet state of 1-Cl(III) and 

1-Br(III) was 6.43 kcal/mol and 5.03 kcal/mol, respectively. We tested the theoretical method dependence 
on the energy gap between the spin-singlet ant the spin-triplet states of 1-Cl(III), summarized in Table 
A4.4. 

Molecule 1-Cl 1’-Cl

DSS+SO/MHz –1.0330 × 106 –0.7957 × 106

ESS+SO/DSS+SO 0.2016 –0.0990

gxx 2.0345 2.0314

gyy 2.0138 2.0015

gzz 1.9806 2.0178

giso 2.0096 2.0169

Axx/MHz –3103.09 –3170.65

Ayy/MHz –3119.34 –3173.84

Azz/MHz –3135.01 –3180.28

Aiso/MHz –3119.15 –3174.92
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Table A4.5 Theoretical method dependence on the S-T gap of 1-Cl(III) 

[a] D3BJTPSS is a TPSS functional with an empirical dispersion correction. [b] SDZP = Sapporo-

DZP-2012, STZP(Re) = Sapporo-TZP-2012 for Re atom, Uncont = uncontracted basis set. [c] DKH2 = 
2nd order Douglas–Kroll–Hess, IORA = Infinite order regular approximation. 

The calculated magnetic tensors of the optimized geometries of 1-Cl, 1-Cl(III), 1-Br and 1-Br(III) 
calculated at the UTPSS/Sapporo-TZP level are summarized in Table A4.5. In 1-Cl, 1-Cl(III) and 1-Br 
the D-, g-, A(187Re)-tensors are approximately coaxial. The D- and g-tensors of 1-Br(III) are coaxial but  
A(187Re)-tensor is not coaxial with the others. The Dzz axis of 1-Cl and 1-Br nearly parallel to the Re–P 

bond. The Dxx axis is approximately parallel to the direction from the rhenium atom to the biimidazolate 
ligand. However, the Dzz axis of 1-Cl(III) and 1-Br(III) approximately parallel to the direction from the 
rhenium atom to the biimidazolate ligand (i.e., Dxx axis of 1-Cl and 1-Br), and the Dxx axis is nearly 

parallel to the Re–P bond (Dzz axis of 1-Cl and 1-Br). 

Computational conditions
∆E(S–T)/kcal mol–1

Functional[a] Basis set[b] Relativistic method[c]

TPSS SDZP/STZP(Re) DKH2 +6.73

TPSS SDZP/STZP(Re)/Uncont DKH2 +6.77

TPSS SDZP/STZP(Re) IORA +4.29

TPSS SDZP/Uncont IORA +5.71

TPSS SDZP/STZP(Re)/Uncont IORA +5.57

RevPBE SDZP/STZP(Re) DKH2 +8.27

RevPBE SDZP/STZP(Re) IORA +3.60

RevPBE SDZP/Uncont IORA +6.27

D3BJTPSS SDZP/Uncont IORA +5.80
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Table A4.6 Magnetic tensors of the optimized geometries calculated at the UTPSS/Sapporo-TZP level. 

Molecule 1-Cl (S = 3/2) 1-Cl(III) (S = 1) 1-Br (S = 3/2) 1-Br(III) (S = 1)

Electronic 
configuration

(dxz)1(dyz)1(dx2–

y2)1(dz2)0(dxy)0
(dxz)2(dyz)1(dx2–

y2)1(dz2)0(dxy)0
(dxz)1(dyz)1(dx2–

y2)1(dz2)0(dxy)0
(dxz)2(dyz)1(dx2–

y2)1(dz2)0(dxy)0

DSS+SO/MHz –0.6250 × 106 +9.0349 × 106 –1.2774 × 106 +10.379 × 106

ESS+SO/DSS+SO 0.2086 0.06388 0.2593 0.03103

gxx 2.0327 2.2491 2.0660 2.3060

gyy 2.0092 2.1664 2.0335 2.2421

gzz 1.9784 2.0137 2.0126 2.0354

Axx/MHz 1414.58 1486.23 1459.91 1609.10

Ayy/MHz 1400.14 1461.04 1441.68 1921.79

Azz/MHz 1372.42 1496.52 1417.12 1630.08
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Table 4A.7 Optimized Coordinates of the Optimized Geometries of 1-Cl at the Level of UTPSS/DK3-

Gen-TK+NOSeC-V-TZP (for Re), Def2-SVP (for other atoms) 

Atom
Coordinates/Å

Atom
Coordinates/Å

x y z x y z

Re 0.034376 0.022547 –0.159165 H –0.231232 –3.382912 0.642591

Cl 0.402861 1.839381 –1.667615 H –0.684622 –3.918505 3.331537

Cl 0.313315 –1.629621 –1.860401 H –0.079419 3.330334 0.997880

P 2.486726 –0.064956 0.099086 H –0.522491 3.599577 3.729301

P –2.384302 0.110288 –0.689778 H 2.691684 1.243908 2.108031

N –0.268066 –1.342216 1.332990 H 4.278600 0.919788 1.386004

N –0.641538 –1.776566 3.560533 H 3.882410 2.698409 –0.341663

N –0.208875 1.232051 1.470392 H 2.250405 2.967332 0.269437

N –0.574080 1.445534 3.730869 H 3.184705 3.731004 2.488775

C –0.340495 –2.711989 1.490228 H 3.855342 4.702364 1.150766

C –0.566684 –2.954075 2.838102 H 4.841170 3.423315 1.904514

C –0.222967 2.579623 1.770626 H 3.019886 –0.762999 –2.135433

C –0.444842 2.688306 3.136557 H 3.090335 0.984505 –1.972233

C –0.460624 –0.836105 2.639125 H 5.315184 0.783030 –0.731434

C –0.429090 0.600230 2.715395 H 5.248471 –0.974952 –0.910142

C 3.249846 1.251527 1.155096 H 5.282502 –0.724984 –3.430923

C 3.267380 2.676920 0.574991 H 6.710083 0.033533 –2.674188

C 3.818090 3.689798 1.586523 H 5.356457 1.044488 –3.249672

C 3.412150 0.044024 –1.493066 H 4.224577 –1.342904 1.179432

C 4.943261 –0.025933 –1.383625 H 2.629018 –1.684935 1.873559

C 5.611897 0.087939 –2.760892 H 3.694572 –2.799700 –0.802890

C 3.175642 –1.575619 0.919804 H 2.065934 –3.077614 –0.191500

C 3.103364 –2.891160 0.124831 H 4.663558 –3.917824 1.273295

C 3.619914 –4.076535 0.949735 H 3.589273 –5.009534 0.361741

C –3.041009 –1.223175 –1.794043 H 3.006304 –4.225454 1.854459

C –3.068146 –2.654413 –1.235779 H –4.056918 –0.908953 –2.094544

C –3.583697 –3.651748 –2.281742 H –2.410982 –1.192122 –2.700227

C –3.487360 0.056939 0.791291 H –2.054169 –2.941796 –0.920493

C –4.998235 0.113509 0.509556 H –3.707633 –2.696980 –0.336570

C –5.819827 0.049571 1.804324 H –4.602890 –3.391218 –2.617203

C –2.974693 1.582389 –1.645231 H –3.617093 –4.674925 –1.871563

C –2.934283 2.946240 –0.938652 H –2.930006 –3.664312 –3.170536

C –3.394178 4.073022 –1.873089 H –3.228986 –0.862895 1.345134
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Table 4.A7 (continued) 

H –3.181141 0.892830 1.444352 H –4.003792 1.350026 –1.974168

H –5.245802 1.041892 –0.033904 H –1.908768 3.148221 –0.595246

H –5.290951 –0.722623 –0.148685 H –3.574787 2.925271 –0.039627

H –5.620662 –0.885585 2.355955 H –2.736261 4.146233 –2.755554

H –6.900648 0.093737 1.588558 H –3.377844 5.047804 –1.357113

H –5.570816 0.889706 2.475000 H –4.423736 3.902106 –2.233954

H –2.344692 1.616827 –2.551494
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Table 4A.8 Optimized Coordinates of the Optimized Geometries of 1-Br at the Level of UTPSS/DK3-

Gen-TK+NOSeC-V-TZP (for Re), Def2-SVP (for other atoms) 

Atom
Coordinates/Å

Atom
Coordinates/Å

x y z x y z

Re 0.004699 –0.003890 0.002513 H –4.133343     1.280871     1.495552

Br –0.395249 –1.869389 –1.659933 H –2.520389     1.620484     2.150460

Br –0.325411 1.765488 –1.773399 H –3.085253     0.849832    –1.865807

P –2.424660 0.069369 0.310013 H –3.145533    0.902542    –1.764812

P 2.404842 –0.080671 –0.517960 H 2.465044    –1.589962    –2.375305

N 0.250771 –1.241871 1.605282 H 4.089723    –1.307651    –1.715209

N 0.320856 1.328524 1.514470 H –2.578644    –1.310438     2.279010

N 0.600144     –1.502956     3.862784 H –4.181080    –0.938945     1.616389

N 0.696056     1.728523     3.747150 H 4.105604     0.898814    –1.908765

C –3.097064     1.539958     1.211610 H 2.473843     1.180546    –2.551500

C 0.467268    –0.635218     2.864853 H 0.108811    –3.325680     1.086534

C –3.436839     0.018409    –1.231592 H 0.305495     3.374232     0.847254

C 3.048303    –1.551543 –1.438343 H 3.246257     0.943868     1.494844

C –3.164929    –1.276830     1.343451 H 3.199296    –0.808614     1.640163

C 3.087354     1.228284    –1.634405 H –5.291641    –0.748725    –0.379495

C 0.508045     0.801390     2.813764 H –5.235222     1.014095    –0.505777

C 0.252501    –2.593570     1.876722 H 0.760572     3.872570     3.545952

C 0.406345     2.693596     1.688138 H 0.534528    –3.655843     3.816000

C 0.009818     0.009818     0.964196 H 3.572266    –2.891633     0.195276

C –4.958095     0.081056    –1.025680 H 1.942369    –3.130090    –0.453520

C 0.633606     2.915839     3.039984 H –3.685254     2.825195    –0.443447

C 0.465932    –2.731937     3.242062 H –2.045026     3.104298     0.130649

C 2.983929    –2.916948    –0.738343 H –3.863286    –2.664976    –0.180314

C –3.069076     2.887937     0.470425 H –2.219245    –2.975514     0.370143

C –3.221275    –2.681772     0.718037 H 2.099089     2.971015    –0.812170

C 3.115381     2.672084    –1.110905 H 3.747242     2.733811    –0.207549

C –5.708448     0.008898    –2.363436 H –5.419810     0.842673    –3.026651

C –3.756989    –3.719275     1.712237 H –6.799471     0.058494    –2.209277

C 5.010865    –0.053272     0.675790 H –5.482852    –0.931696    –2.895994

C –3.579676     4.028904     1.358774 H –3.099313    –3.797519     2.594596

C 3.504529    –4.036728    –1.648834 H –3.821055    –4.716921     1.246319

C 5.839919     0.058005     1.962309 H –4.766702    –3.449327     2.067940

C 3.641027     3.641544    –2.177705 H 5.258422    –0.999776     0.165346
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Table 4.A8 (continued)  

H 5.299260     0.759716    –0.012196 H 5.642904     1.012158     2.481436

H –4.609912     3.837308     1.706769 H 6.919603     0.007809     1.741964

H –3.584108     4.985685     0.809606 H 5.596157    –0.757873     2.663964

H –2.941195     4.151780     2.250040 H 4.659865     3.367073    –2.502858

H 2.892240    –4.117060    –2.562926 H 3.678244     4.674024    –1.791988

H 3.474606   –5.012395    –1.134994 H 2.990418     3.636278    –3.068971

H 4.548412    –3.851983    –1.957700
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Concluding remarks 
The fictitious spin-1/2 Hamiltonian approach is the most putative and facile method to analyze ESR fine-

structure/hyperfine spectra of high spin metallocomplexes having sizable ZFS parameters. The approach 
gives their principal g-values far from g ≈ 2 without providing explicit values for their ZFS. Naturally, 
these experimental principal g-values do not agree with the true g-values given by quantum chemical 

calculations such as sophisticated DFT or reliable ab initio MOs. In this work, in harmony with the recent 
progress in quantum chemical calculations for the g-, hyperfine or ZFS tensors of metallocomplexes, we 
have derived the geff–gtrue analytical relationship for high spin systems up to S = 7/2 with sizable ZFS. The 
expressions are exact or equal to exact ones to the third order in the genuine Zeeman perturbation 

treatment, and they are all useful to derive the true principal g-vales from the analyzed data on the basis 
of effective spin Hamiltonians, in a straightforward manner. The genuine Zeeman perturbation treat meant 
in this work has provided with true principal g-values which are extremely accurate at conventional X- or 

Q-band ESR spectroscopy enough to compare with the theoretical values. The genuine Zeeman 
perturbation based formulas are practically much simpler and give high accuracy in conventional ESR 
spectroscopy. The general formulas for S = 5/2 are explicitly given particularly for high spin FeIII ion 
complexes with sizable ZFS. The corresponding formulas serve as the purpose of getting physical insights 

into the relationships as a function of the principal ZFS values. 
In this work, we demonstrated the usefulness of the analytical treatment with metalloporphyrins 

FeIIIClOEP (S = 5/2) and CoIIOEP (S = 3/2), a pseudo-octahedral rhenium mononuclear complex 

[ReIVCl2PnPr3(bim)] (S = 3/2) and mixed-valence rhenium dinuclear complexes [ReIVX2PnPr3(bim)]
[ReIIIY2PnPr3(Hbim)] (X, Y = Cl or Br; S = 3/2). 

In Chapter 3, The geff–gtrue analytical relationships for S = 5/2 have been tested for the spin-sextet 
ground state of FeIII(Cl)OEP (gx = 2.0022, gy = 2.0054, gz = 2.0972, D = +7.0 cm–1, E = 0.014 cm–1, |E/D| 

= 0.002) magnetically diluted in the NiIIOEP diamagnetic host crystal. FeIII(Cl)OEP in the crystal lattice is 
subject to subtle pseudo-JT distortion witch leads to departure from the tetragonal symmetry. The DFT 
calculations have produced the experimental magnetic tensors based on the full spin Hamiltonian 

approach, in which the ZFS+Zeeman terms are included as the major ones. 
The full spin Hamiltonian approach for powder-pattern fine-structure/hyperfine ESR spectra of spin-

quartet states having sizable ZFS such CoIIOEP enables us to reproduce off-principal-axis extra lines, 
which the effective spin Hamiltonian approaches have so far overlooked. The complete g-, A(59Co)- and 

D-tensors of four-coordinated CoIIOEP have been experimentally for the first time determined. The 
experimental true principal g-values are all less than 2, suggesting the occurrence of many low-lying 
excited states coupled to the quartet ground state via SOC. The current theoretical treatment of quantum 

chemical calculations have failed to interpret the salient trend of the g-values. 
The ground-state spin multiplicity and ZFS tensor of a high spin ReIII,IV complex in pseudo-octahedral 

symmetry have been a long-standing issue, and the theoretical estimation of the ZFS, which originates in 
dominant SOC, is important of the molecular optimization in quest for new functionality based on tuning 

of sizable SOC in high spin metallocomplexes. In Chapter 4, we have experimentally determined the 
magnetic tensors of the ReIII,IV binuclear complexes in the mixed valence state, for the first time, by using 
the single-crystal ESR spectroscopy at X-band, combined with the SQUID measurements. The DFT 

quantum chemical calculations have been invoked only for the ReIV moiety because of the limited 
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computational resources under the assumption of the static regime at low temperature. The assumption is 

justified on the basis of the observation that the ReIII mononuclear complex having the similar molecular 
structure is spin-singlet in the ground state. From the experimental side, the single-crystal ESR 
spectroscopy in the principal-axis coordinate system shows directly that the fine structure ESR transitions 

with the static magnetic field along the principal z-axis of the ReIV complex in the quartet state appear in 
the lower field far from g ≈ 2 at X-band. The appearance disagrees with the putative intuitive picture of 
the relevant high spin ESR. The significant gap of E/D values of porphyrin and biimidazolate complexes 
is related with the structure of the molecules. The resonance position in the principal z-axis was 

completely different between two types of complexes. 
Notably, from the theoretical viewpoint the effective spin Hamiltonian approach for non-Kramers 

doublets has been important in indicating a break of the accepted meaning or protocols of the effective 

spin Hamiltonian involving the issues of inversion symmetry relevant to electromagnetic irradiations if 
electric field induced transitions are mediated. The break is significant in terms of both quest for materials 
design or molecular optimization underlying novel electromagnetic multi-funttionalites and recent 
advances in emerging quantum spin technology allowing us to manipulate molecular spin qubits as well-

defined open shell entities by use of both pulsed magnetic and electric field irradiation. In the molecular 
optimization in both realms the symmetry considerations of the effective Hamiltonians with respect to the 
external irradiation fields become crucial. The exact analytical derivations of the transitions relevant to 

the ZFS+Zeeman spin Hamiltonians with electric field irradiation for non-Kramers doublets are the future 
work. 

This paper will contribute to the complete analysis and the understanding the electronic structures of 
ESR spectra for high spin metallocomplexes with sizable ZFS. 

 October, 2017 
 Takeshi Yamane 
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