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1 Introduction

The main topic of this thesis is the Hardy-Sobolev inequality

µNs,λ(Ω)

(∫
Ω

|u|2∗(s)

|x|s
dx

)2/2∗(s)

≤
∫
Ω

(|∇u|2 + λu2)dx.

The bounded embedding H1(Ω) ↪→ L2∗(s)(Ω, |x|−sdx) is non-compact when
0 ∈ Ω, and thus existence of the minimizer of the largest possible constant
µNs,λ(Ω) is non-trivial. Concerning this problem, the position of the origin in
bounded domain Ω plays a crucial role. Moreover, non-invariance of the scale
of the domain is also important. This is completely different from the best
constant on the embedding H1

0 (Ω) ↪→ L2∗(s)(Ω, |x|−sdx). Related to the scale,
we can see that the inequality with the pair (λ2,Ω) is equivalent to that with
the pair (1, λΩ), and thus we can control the scale by the positive parameter λ.

In section 2, we consider interior singularity case, that is 0 ∈ Ω. In this
case, we show existence and non-existence of the minimizer depending on the
parameter λ. More precisely, the borderline exists uniquely and the minimizer
exists when λ is less than the borderline, and does not exists when λ is greater
than the borderline.

The situation of boundary singularity case (0 ∈ ∂Ω) is more complicated.
The mean curvature at the origin is important role. In the positive mean
curvature case, the existence result is obtained. We study the non-positive
mean curvature case in section 3 and section 4. In this case, assuming that
the dimension is greater than 3, we prove existence and non-existence of the
minimizer depending on the parameter λ. These results are same as section 2
and different from that in the positive case. In addition, if λ is on the borderline,
we can obtain existence result. Thus the minimizer exists if and only if λ is
less than or equal to the borderline. In order to prove these results, we use
technique of the blow-up analysis. We consider the asymptotic behavior of
the least-energy solutions for the corresponding elliptic equation as λ → ∞.
By obtaining the fine properties of the least-energy solutions, we can obtain
the asymptotic behavior of µNs,λ(Ω). We can show existence and non-existence

result by using the behavior of µNs,λ(Ω). In section 3, we prove uniqueness of
the minimizer other than these above results. We can prove this result by
considering the asymptotic behavior of the least-energy solutions as λ→ 0.

Section 5 is a joint work with Megumi Sano (Osaka City University). In
section 5, we change topic and consider the embedding H1(Ω) ↪→ Lq(·)(Ω).
The function space Lq(·)(Ω) is the Lebesgue space with a variable exponent.
In bounded domain case, many researchers have studied so far. In section 5,
we study compactness and non-compactness of the embedding W 1,p

rad(RN ) ↪→
Lq(·)(RN ). Related to the property of a variable exponent q, we found the
borderline on compactness and non-compactness explicitly in a certain sense.
As an application of our results, we show existence of the solution for quasilinear
elliptic problem involving a variable exponent.
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2 Minimization problem on the Hardy-Sobolev
inequality

Abstract

We study minimization problems on Hardy-Sobolev type inequality.
We consider the case where singularity is in interior of bounded domain
Ω ⊂ RN . The attainability of best constants for Hardy-Sobolev type
inequalities with boundary singularities have been studied so far, for ex-
ample [5] [6] [9] etc. . . . According to their results, the mean curvature
of ∂Ω at singularity affects the attainability of the best constants. In
contrast with boundary singularity case, in interior singularity case it is
well known that the best Hardy-Sobolev constant

µs(Ω) :=

{∫
Ω

|∇u|2dx

∣∣∣∣∣u ∈ H1
0 (Ω),

∫
Ω

|u|2
∗(s)

|x|s dx = 1

}

is never achieved for all bounded domain Ω. We can see that the position
of singularity on domain is related to the existence of minimizer. In
this section, we consider the attainability of the best constant for the
embedding H1(Ω) ↪→ L2∗(s)(Ω, |x|−sdx) for bounded domain Ω with 0 ∈
Ω. In this problem, scaling invariance doesn’t hold and we can not obtain
information of singularity like mean curvature.

2.1 Introduction

We study minimization problems on the Hardy-Sobolev type inequalities. Let
N ≥ 3, Ω is a bounded domain in RN , ∂Ω satisfies the cone property, 0 < s < 2,
and 2∗(s) := 2(N −s)/(N −2). Unless otherwise stated, we assume that 0 ∈ Ω.
The Hardy-Sobolev inequality asserts that there exists a positive constant C
such that

C

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫
Ω

|∇u|2dx (1)

for all u ∈ H1
0 (Ω). For s = 0, the inequality (1) is called Sobolev inequality and

for s = 2, the inequality (1) is called Hardy inequality.
In the non-singular case (s = 0), it is well known that the best Sobolev

constant S is independent of domain Ω and S is never achieved for all bounded
domains. But if Ω = RN and H1

0 (Ω) is replaced by the function space of u ∈
L2N/(N−2)(Ω) with∇u ∈ L2(Ω), then S is achieved by the function u(x) = c(1+
|x|2)(2−N)/2 and hence the value S = N(N − 2)π[Γ(N/2)/Γ(N)]2/N explicitly
(see [1], [13] and [16]).

In the case of s = 2, the best constant for the Hardy inequality is [(N−2)/2]2

and this constant is never achieved for all bounded domains and RN . This fact
suggests that it is possible to improve this inequality. For example Brezis and
Vazquez [2], many people research the optimal inequality of (1). In other words,
the best remainder term for (1) is studied actively.
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In the case of 0 < s < 2, the best Hardy-Sobolev constant is defined by

µs(Ω) :=

{∫
Ω

|∇u|2dx
∣∣∣∣u ∈ H1

0 (Ω),

∫
Ω

|u|2∗(s)

|x|s
dx = 1

}
.

This constant has some similar properties to these of the best Sobolev constant.
Indeed, due to scaling invariance, µs(Ω) is independent of Ω, and thus µs :=
µs(Ω) = µs(RN ) is not attained for all bounded domains. If Ω = RN , then µs
is attained by

ya(x) = [a(N − s)(N − 2)]
N−2

2(2−s) (a+ |x|2−s)
2−N
2−s

for some a > 0 and hence

µs = (N − 2)(N − s)

(
ωN−1

2− s

Γ2(N−s
2−s )

Γ( 2(N−s)
2−s )

) 2−s
N−s

(2)

(see [9] and [13]) where ωN−1 is the area of the unit sphere in RN .
In boundary singularity case, the result of the attainability for µs(Ω) is quite

different from that in the situation of 0 ∈ Ω. By Ghoussoub and Robert [6], it
has proved that if Ω has smooth boundary and the mean curvature of ∂Ω at 0
is negative, then the extremal of µs(Ω) exists for all N ≥ 3. Recently, Lin and
Wadade [14] have studied the following minimization problem;

µλs,p(Ω) := inf

{∫
Ω

|∇u|2dx+ λ

(∫
Ω

|u|pdx
) 2

p

∣∣∣∣∣u ∈ H1
0 (Ω),

∫
Ω

|u|2∗(s)

|x|s
dx = 1

}

where λ ∈ R and 2 ≤ p ≤ 2N/(N − 2). Furthermore, as related results, Hsia,
Lin and Wadade [10] studied the existence of the solution of double critical
elliptic equations related with µλs,2∗(Ω), that is, they have showed the existence
of the solution for{

−∆u+ λu2
∗−1 + u2∗(s)−1

|x|s = 0, u > 0, in Ω

u = 0 on ∂Ω

under the appropriate conditions where 2∗ = 2N/(N − 2). To prove these
results, we use the theorem of Egnell [4]. He showed that the existence of the
extremal for µs(Ω) if Ω is a half space RN+ or an open cone. The open cone C is
written of the form C := {x ∈ RN |x = rθ, θ ∈ Σ} where Σ is connected domain
on the unit sphere SN−1 in RN . By this result, we can see that µs(C) > µs(RN )
and there is a positive solution for{

−∆u = |u|2
∗(s)−1

|x|s in C,
u = 0 on ∂C, and u(x) = o(|x|2−N ) as x→ ∞.

The Neumann case also has been studied. Let Ω has C2 boundary and the
mean curvature of ∂Ω at 0 is positive. Ghoussoub and Kang [5] have showed
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that there is a least energy solution for{
−∆u+ λu = |u|2

∗(s)−1

|x|s in Ω,
∂u
∂ν = 0 on ∂Ω

for N ≥ 3, λ > 0.
Like these results, if 0 ∈ ∂Ω, we can use the benefit of the mean curvature

of ∂Ω at 0 to show the results. However if 0 ∈ Ω, we cannot obtain the
information of singularity such the mean curvature, and the fact causes some
technical difficulties.

In this section, we consider the attainability for the following minimization
problem

µNs,λ(Ω) := inf

{∫
Ω

(|∇u|2 + λu2)dx

∣∣∣∣u ∈ H1(Ω),

∫
Ω

|u|2∗(s)

|x|s
dx = 1

}
,

where λ is a positive parameter. This parameter means the scale of Ω. Ac-
tually µNs,1(

√
λΩ) = µNs,λ(Ω) and attainability of µNs,1(

√
λΩ) is equivalent to

attainability of µNs,λ(Ω). The main theorem is as follows:

Theorem 2.1. There exist a positive constant λ∗ = λ∗(Ω) such that the fol-
lowing statements hold.

(I) µNs,λ(Ω) is attained for any 0 < λ < λ∗

(II) µNs,λ(Ω) is not attained for any λ > λ∗.

(III) We have

λ∗ ≥ µs

(∫
Ω

|x|−sdx
) 2

2∗(s)

|Ω|−1

where µs is defined in (2), |Ω| is the N -dimensional Lebesgue measure of
domain Ω.

The rest of this section is organized as follows. In 2.2 we introduce three
lemmas to prove Theorem 2.1. Then in 2.3 we prove Theorem 2.1 using the
lemmas in 2.2. In Section 2.4, as an application, we consider the case when
the singularity is on the boundary of domain. Then we introduce a new result
concerning the attainability of µNs,λ(Ω) in boundary singularity case.

2.2 Preparation

In this subsection, we prepare some lemmas to prove Theorem 2.1.

Lemma 2.2. (i) µNs,λ(Ω) ≤ µs holds for any λ > 0.
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(ii) µNs,λ(Ω) is continuous and non-decreasing with respect to λ.

(iii) limλ→0 µ
N
s,λ(Ω) = 0.

Proof. We show (i). For ε > 0 we set

Uε(x) = (ε+ |x|2−s)
2−N
2−s , uε(x) = ϕ(x)Uε(x), vε =

uε(∫
Ω
u
2∗(s)
ε

|x|s dx
) 1

2∗(s)

,

where ϕ ∈ C∞
c (Ω) is a cut-off function such that 0 ≤ ϕ ≤ 1 in Ω, ϕ = 1 in

BR(0), ϕ = 0 in Ω \B2R(0). Due to Lemma 11.1 in [9], we have

∫
Ω

|∇vε|2dx = µs +O(ε
N−2
2−s ),

∫
Ω

v2εdx =


O(ε

2
2−s ) (N ≥ 5)

O(ε
2

2−s log 1
e ) (N = 4)

O(ε
1

2−s ) (N = 3)

,

as ε→ 0. Hence we obtain (i). (ii) is obtained immediately by the definition of

µNs,λ(Ω). In order to prove (iii) we use a constant. Set C =
(∫

Ω
|x|−sdx

)−1/2∗(s)
.

Then C satisfies the constraint of µNs,λ(Ω) and

µNs,λ(Ω) ≤ λ

∫
Ω

C2dx = λ|Ω|
(∫

Ω

|x|−sdx
)− 2

2∗(s)

.

Letting λ→ 0 and hence we obtain (iii).

Lemma 2.3. There exists a positive constant C which depends on only Ω such
that

µs

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫
Ω

|∇u|2dx+ C

∫
Ω

u2dx (u ∈ H1(Ω)). (3)

Before beginning the proof, we make a remark. H. Jaber [12] has shown
that the following theorem.

Theorem 2.4. ( [12]) If (M, g) is a compact Riemannian manifold without
boundary and 0 ∈M , there is a constant C = C(M, g) such that

µs

(∫
M

|u|2∗(s)

dg(x, 0)s
dvg

) 2
2∗(s)

≤
∫
M

|∇u|2dvg + C

∫
Ω

u2dvg (u ∈ H1(M))

where dg is the Riemannian distance on M .

Different from Theorem 2.4, Ω is bounded domain of RN and therefore Ω
has a boundary, thus we can show the inequality (3) simply.
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Proof. Let 0 ∈ Ω1 ⊂ Ω2 ⊂ Ω and these two subdomain are taken suitable again
later. A cut-off function is defined by ϕ which satisfies

ϕ ∈ C∞
c (Ω), 0 ≤ ϕ ≤ 1 in Ω, ϕ = 1 on Ω1, ϕ = 0 on Ω \ Ω2.

Here, we construct a partition of unity η1, η2 defined by

η1 :=
ϕ2

ϕ2 + (1− ϕ)2
, η2 :=

(1− ϕ)2

ϕ2 + (1− ϕ)2
.

Note that η
1
2
1 , η

1
2
2 ∈ C2(Ω) by the definition. We may assume that u ∈ C∞(Ω)∩

H1(Ω) by density. We have

µs

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

= µs
∥∥u2∥∥

L2∗(s)/2(Ω,|x|−s)

= µs

∥∥∥∥∥
2∑
i=1

ηiu
2

∥∥∥∥∥
L2∗(s)/2(Ω,|x|−s)

≤ µs

2∑
i=1

∥∥ηiu2∥∥L2∗(s)/2(Ω,|x|−s)

= µs

2∑
i=1

(∫
Ω

|η
1
2
i u|2

∗(s)

|x|s
dx

) 2
2∗(s)

= I1 + I2.

We estimate I1, I2 for each.
For I1, since suppη1 ⊂ Ω we can use the Hardy-Sobolev inequality. We get

that

I1 = µs

(∫
Ω

|η
1
2
1 u|2

∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫
Ω

|∇(η
1
2
1 u)|2dx

=

∫
Ω

|∇u|2η1dx+

∫
Ω

∇(η
1
2
1 ) · ∇(η

1
2
1 u

2)dx.

Since η
1
2
1 ∈ C2(Ω) we may integrate by parts the second term and hence we

obtain

I1 ≤
∫
Ω

|∇u|2η1dx−
∫
Ω

∆(η
1
2
1 )η

1
2
1 u

2dx (4)
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For I2, since 0 ̸∈ suppη2 and taking account to that η = 0 on Ω1 we have

I2 = µs

(∫
Ω

|η
1
2
2 u|2

∗(s)

|x|s
dx

) 2
2∗(s)

= µs

(∫
Ω\Ω1

|η
1
2
2 u|2

∗(s)

|x|s
dx

) 2
2∗(s)

≤ µs · a

(∫
Ω\Ω1

|η
1
2
2 u|2

∗(s)dx

) 2
2∗(s)

≤ µs · a · |Ω \ Ω1|
2

2∗(s)
− 2

2∗

(∫
Ω\Ω1

|η
1
2
2 u|2

∗
dx

) 2
2∗

≤ µs · a · |Ω \ Ω1|
2

2∗(s)
− 2

2∗ S(Ω,Ω1)
−1

∫
Ω\Ω1

|∇(η
1
2
2 u)|2dx

= µs · a · |Ω \ Ω1|
2

2∗(s)
− 2

2∗ S(Ω,Ω1)
−1

∫
Ω

|∇(η
1
2
2 u)|2dx

where a := dist(0, ∂Ω1)
−2s/2∗(s) and

S(Ω,Ω1) := inf

{∫
Ω\Ω1

|∇u|2dx

∣∣∣∣∣u ∈ H1(Ω), u = 0 on ∂Ω1,

∫
Ω\Ω1

|u|2
∗
dx = 1

}
.

Here, let us take Ω0 ⊂ Ω1. It is clearly that a ≤ dist(0, ∂Ω0)
−2s/2∗(s).

On the other hand, for u ∈ H1(Ω \ Ω1) such that u = 0 on ∂Ω1, we define
v ∈ H1(Ω \ Ω0) by

v :=

{
u in Ω \ Ω1

0 in Ω1 \ Ω0.

By identifying u ∈ H1(Ω \Ω1) with v ∈ H1(Ω \Ω0) concerning the calculation
of the Sobolev quotient, we may see that

{u ∈ H1(Ω \ Ω1)|u = 0 on ∂Ω1} ⊂ {u ∈ H1(Ω \ Ω0)|u = 0 on ∂Ω0}.

Hence we obtain S(Ω,Ω1) ≥ S(Ω,Ω0). Consequently, if Ω1 is sufficiently large,
a and S(Ω,Ω1)

−1 is bounded from above uniformly. By choosing Ω1 and Ω2

close to Ω we obtain

I2 ≤ 1

2

∫
Ω

|∇(η
1
2
2 u)|2dx.

Therefore

I2 ≤
∫
Ω

|∇u|2η2dx+

∫
Ω

|∇η
1
2
2 |2u2dx. (5)

Here, since η
1
2
1 , η

1
2
2 ∈ C2(Ω) there is a positive constant C such that

max
x∈Ω

|∆(η
1
2
1 )| ≤

C

2
, max

x∈Ω
|∇η

1
2
2 |2 ≤ C

2
. (6)

This constant depends on only Ω.
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Consequently (4), (5) and (6) yield that

µs

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤ I1 + I2 ≤
∫
Ω

|∇u|2dx+ C

∫
Ω

u2dx.

Lemma 2.5. The following statements hold true;

(i) If µNs,λ(Ω) < µs, then µ
N
s (Ω) is attained.

(ii) If there exist λ∗ such that µNs,λ∗
(Ω) = µs, then µ

N
s,λ(Ω) is not attained for

all λ > λ∗.

Proof of Lemma 2.5 (i). Assume {un}∞n=1 ⊂ H1(Ω) is a minimizing sequence
of µNs,λ(Ω). By the constraint of µNs,λ(Ω) we have∫

Ω

|un|2
∗(s)

|x|s
dx = 1 (7)

for all n ∈ N and which implies∫
Ω

(|∇un|2 + λu2n)dx = µNs,λ(Ω) + o(1) (n→ ∞). (8)

Thus un is bounded in H1(Ω). So we can suppose, up to a subsequence,

un ⇀ u in H1(Ω)

un → u in Lp(Ω) (1 ≤ p < 2∗)

un → u in Lq(Ω, |x|−sdx) (1 ≤ q < 2∗(s))

un → u a.e. in Ω

as n→ ∞.
For this limit function u, we show that u ̸≡ 0 a.e. in Ω. Assume that u ≡ 0

a.e. in Ω. By the inequality (3) in Lemma 2.3,

µs

(∫
Ω

|un|2
∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫
Ω

|∇un|2dx+ C

∫
Ω

u2ndx (9)

holds for all n. Thus (7), (8), (9) and un → 0 in L2(Ω) yield

µs ≤ µNs,λ(Ω) + o(1).

Letting n → ∞, we obtain µs ≤ µNs,λ(Ω) and which is a contradiction in the

assumption of µNs,λ(Ω) < µs. Consequently u ̸≡ 0.
By the theorem of Brezis and Lieb (see [3]), we obtain∫

Ω

|un|2
∗(s)

|x|s
dx =

∫
Ω

|u|2∗(s)

|x|s
dx+

∫
Ω

|un − u|2∗(s)

|x|s
dx+ o(1)
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and it follows that

1 =

(∫
Ω

|un|2
∗(s)

|x|s
dx

) 2
2∗(s)

=

(∫
Ω

|u|2∗(s)

|x|s
dx+

∫
Ω

|un − u|2∗(s)

|x|s
dx

) 2
2∗(s)

+ o(1)

≤
(∫

Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

+

(∫
Ω

|un − u|2∗(s)

|x|s
dx

) 2
2∗(s)

+ o(1).

On the other hand, we have(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

+

(∫
Ω

|un − u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫
Ω
(|∇u|2 + λu2)dx

µNs,λ(Ω)
+

∫
Ω
(|∇(un − u)|2 + λ(un − u)2dx

µNs,λ(Ω)

=

∫
Ω
(|∇un|2 + λu2n)dx

µNs,λ(Ω)
+ o(1)

= 1 + o(1).

Hence there exist a limit and we obtain

lim
n→∞

(∫
Ω

|u|2∗(s)

|x|s
dx+

∫
Ω

|un − u|2∗(s)

|x|s
dx

) 2
2∗(s)

= lim
n→∞

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

+

(∫
Ω

|un − u|2∗(s)

|x|s
dx

) 2
2∗(s)


= 1.

By the equality condition of the above, we get either

u ≡ 0 a.e. in Ω or un → u ̸≡ 0 in L2∗(s)(Ω, |x|−sdx).

Since u ̸≡ 0 we obtain un → u ̸≡ 0 in L2∗(s)(Ω, |x|−sdx) and
∫
Ω
|u|2∗(s)/|x|sdx =

1. Hence this u is the minimizer of µNs (Ω).

Proof of Lemma 2.5 (ii). We assume that λ > λ∗, u is a minimizer of µNs,λ(Ω)
and derive a contradiction. We have

µNs,λ(Ω) =

∫
Ω

(|∇u|2 + λu2)dx >

∫
RN

(|∇u|2 + λ∗u
2)dx ≥ µNs,λ∗

(Ω).

By Lemma 2.2 and the assumption µNs,λ∗
(Ω) = µs we have

µs ≥ µNs,λ(Ω) > µNs,λ∗
(Ω) = µs.

This is a contradiction.
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2.3 Proof of Theorem 2.1

In this section, we prove Theorem 2.1.

Proof. Define a positive constant λ∗ by

λ∗ = inf {C > 0 | Inequality (3) holds.}

By the definition of λ∗ we have

µNs,λ(Ω) < µs if λ < λ∗

µNs,λ(Ω) = µs if λ ≥ λ∗

Consequently by Lemma 2.5 we obtain (i) and (ii). Finally, from the definition
of λ∗ we have

λ∗ = sup

µs(
∫
Ω

|u|2
∗(s)

|x|s dx)
2

2∗(s) −
∫
Ω
|∇u|2dx∫

Ω
u2dx

∣∣∣∣∣∣u ∈ H1(Ω) \ {0}


≥ µs

(∫
Ω

|x|−sdx
) 2

2∗(s)

|Ω|−1.

2.4 Singularity on the boundary

Throughout this subsection, we assume that 0 ∈ ∂Ω. A situation where ∂Ω ∈
C2 and the mean curvature of ∂Ω at 0 is positive has studied by [5]. In this
subsection we assume that ∂Ω is “flat” near 0, that is for Ω after rotation
there exists r > 0 such that Br(0) ∩ Ω = B+

r (0) := Br(0) ∩ RN+ , where RN+ :=
{(x′, xN ) ∈ RN |xn > 0} is a half space. This condition is a special case of
vanishing of the mean curvature of ∂Ω at 0. We show the following results by
using the strategy in 2.2 and 2.3.

Theorem 2.6. Let Ω ⊂ RN be bounded domain, 0 ∈ ∂Ω and ∂Ω is flat near
0. Then there exists a positive constant λ∗∗ = λ∗∗(Ω) such that the following
statements hold;

(I) µNs,λ(Ω) is attained for any 0 < λ < λ∗∗

(II) µNs,λ(Ω) is not attained for any λ > λ∗∗.

(III) We have

λ∗∗ ≥ µs

2
2−s
N−s

(∫
Ω

|x|−sdx
) 2

2∗(s)

|Ω|−1

12



We prove the theorem in the same way as in Section 2 and Section 3. Dif-
ferent from the proof of Theorem 2.1, we need the following lemma instead of
Lemma 2.3.

Lemma 2.7. There is a positive constant C depends on only Ω such that

µs

2
2−s
N−s

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫
Ω

|∇u|2dx+ C

∫
Ω

u2dx (u ∈ H1(Ω)). (10)

Proof. By the hypothesis of Ω we take a constant r > 0 such that Br(0) ∩Ω =
B+
r (0). For u ∈ H1(Ω) we have

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

=

(∫
B+

r (0)

|u|2∗(s)

|x|s
dx+

∫
Ω\B+

r (0)

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤

(∫
B+

r (0)

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

+

(∫
Ω\B+

r (0)

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

= J1 + J2.

For u ∈ H1(B+
r (0)), ũ ∈ H1(Br(0)) is defined by the even reflection for the

direction xN , that is,

ũ(x′, xN ) :=

{
u(x′, xN ) if 0 ≤ xN < 1

u(x′,−xN ) if − 1 < xN < 0.

Concerning J1, by Lemma 2.3 we have

J1 =

(∫
B+

r (0)

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

=

(
1

2

) 2
2∗(s)

(∫
Br(0)

|ũ|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
(
1

2

) 2
2∗(s)

µ−1
s

(∫
Br(0)

|∇ũ|2dx+ C1

∫
Br(0)

ũ2dx

)

=

(
1

2

) 2
2∗(s)

µ−1
s · 2

(∫
B+

r (0)

|∇u|2dx+ C1

∫
B+

r (0)

u2dx

)

=

(
µs

2
2−s
N−s

)−1
(∫

B+
r (0)

|∇u|2dx+ C1

∫
B+

r (0)

u2dx

)

for some positive constant C1 depends on only Br(0).
Next, we estimate J2. Let δ > 0 for sufficiently small. We consider {ϕi}mi=1

a partition of unity on Ω \B+
r (0) such that ϕ

1
2
i ∈ C1 and |suppϕi| ≤ δ for all i.
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Since |x|−s ≤ r−s for x ∈ Ω \B+
r (0) we have

J2 =

(∫
Ω\B+

r (0)

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
m∑
i=1

(∫
Ω\B+

r (0)

|ϕ
1
2
i u|2

∗(s)

|x|s
dx

) 2
2∗(s)

≤ r−
2s

2∗(s)

m∑
i=1

(∫
Ω\B+

r (0)

|ϕ
1
2
i u|

2∗(s)dx

) 2
2∗(s)

.

By Hölder inequalities it follows that(∫
Ω\B+

r (0)

|ϕ
1
2
i u|

2∗(s)dx

) 2
2∗(s)

≤ |suppϕi|
2

2∗(s)
− 2

2∗ ∥ϕ
1
2
i u∥

2
L2∗ (Ω\B+

r (0))

≤ δ
2

2∗(s)
− 2

2∗ ∥ϕ
1
2
i u∥

2
L2∗ (Ω\B+

r (0))

for each i ∈ N. Since δ is sufficiently small, by using the Sobolev inequalities (If
necessary we use the Sobolev inequalities of mixed boundary condition version.)
we have

J2 ≤
(

µs

2
2−s
N−s

)−1

· 1
2

m∑
i=1

∫
Ω\B+

r (0))

|∇(ϕ
1
2
i u)|

2dx.

Consequently we have

J2 ≤
(

µs

2
2−s
N−s

)−1
(∫

Ω\B+
r (0)

|∇u|2dx+ C2

∫
Ω\B+

r (0)

u2dx

)
.

for some positive constant C2 depends on only Ω \ B+
r (Ω). Combining the

estimates of J1 and J2 we obtain(∫
Ω

|u|2∗(s)

|x|s

) 2
2∗(s)

≤ J1 + J2 ≤
(

µs

2
2−s
N−s

)−1(∫
Ω

|∇u|2dx+ C

∫
Ω

u2dx

)
for some positive constant C depends on Ω.
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3 Asymptotic behavior of the least-energy so-
lutions of a semilinear elliptic equation with
the Hardy-Sobolev critical exponent

Abstract

We investigate the existence, the non-existence and the asymptotic
behavior of the least-energy solutions of a semilinear elliptic equation
with the Hardy-Sobolev critical exponent. In the boundary singularity
case, it is known that the mean curvature of the boundary at origin plays
a crucial role on the existence of the least-energy solutions. In this section,
we study the relation between the asymptotic behavior of the solutions
and the mean curvature at origin.

3.1 Introduction

Let N ≥ 3, Ω ⊂ RN bounded domain with smooth boundary, 0 < s < 2,
2∗(s) = 2(N − s)/(N − 2) and λ be a positive parameter. In this section
we assume that 0 ∈ ∂Ω. We study the existence, the non-existence and the
asymptotic behavior as λ→ ∞ of the least-energy solutions of{

−∆u+ λu = u2∗(s)−1

|x|s , u > 0 in Ω,
∂u
∂ν = 0 on ∂Ω.

(11)

The existence of the least-energy solution of (11) is equivalent to the existence
of the minimizer for the corresponding minimization problem

µNs,λ(Ω) = inf

{∫
Ω

(|∇u|2 + λu2)dx

∣∣∣∣u ∈ H1(Ω),

∫
Ω

|u|2∗(s)

|x|s
dx = 1

}
. (12)

Actually, if the minimizer uλ for µ
N
s,λ(Ω) exists then vλ := µNs,λ(Ω)

(N−2)/(4−2s)uλ
is a least-energy solution of (11) and vise versa.

Minimization problems and semilinear elliptic equations on the Hardy-Sobolev
type inequality have been studied extensively by many authors. The Dirichlet
case, that is, concerning the attainability for

µDs (Ω) = inf

{∫
Ω

|∇u|2dx
∣∣∣∣u ∈ H1

0 (Ω),

∫
Ω

|u|2∗(s)

|x|s
dx = 1

}
is studied in [8–11, 13, 15]. In the interior singularity case, the remainder term
of the Hardy-Sobolev inequality is studied by [16]. The optimal Hardy-Sobolev
inequality on compact Riemannian manifold is also studied due to [14].

In the Neumann case, we have obtained some results. In the interior singu-
larity case, the existence and non-existence results of the minimizer for µNs,λ(Ω)
are obtained by [12]. In the boundary singularity case, some results are due
to [5, 8, 12]. Due to these results, the attainability for µNs,λ(Ω) is different for
each situation. In both the Dirichlet case and the Neumann case, the position
of 0 on Ω affects the attainability for the best constant.
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There are many results on the least-energy solutions of the Neumann prob-
lem {

−d∆u+ u = up, u > 0 in Ω,
∂u
∂ν = 0 on ∂Ω

(13)

where d > 0 is a constant. It is shown that the least-energy solution of (13)
exists by [1, 23] and so on. Moreover, by for instance [3, 4, 24, 25] Lin-Ni’s con-
jecture is studied, that is, they investigate that for d sufficiently large whether
the solution of (13) is only constant or not.

The asymptotic behavior of the least-energy solutions as d → 0 is studied
particularly by [2, 17–21]. In the subcritical case 1 < p < (N + 2)/(N − 2),
the least-energy solution has only one maximum point and this point lies on
the boundary. Moreover, this maximum point approaches the boundary point
of maximum mean curvature as d → 0 and the peak is bounded from above
uniformly with respect to d. On the other hand, in the critical case p = (N +
2)/(N − 2), it is proved that peak is at most one and blows up on a boundary
point. By [21] we know that the asymptotic behavior of the best constant for
the embedding H1(Ω) ⊂ L2N/(N−2)(Ω), that is,

SNd (Ω) = inf

{∫
Ω

(|∇u|2 + 1

d
u2)dx

∣∣∣∣u ∈ H1(Ω),

∫
Ω

|u|
2N

N−2 dx = 1

}
as d→ 0. On the asymptotic behavior of the least-energy solutions of (13) and
SNd the mean curvature of ∂Ω plays a crucial role.

Our main purpose of this section is to investigate the asymptotic behavior
of the least-energy solutions of (11) as λ → ∞. In [5, 8], the existence of the
least energy solutions of (11) is guaranteed for any λ > 0 if the mean curvature
of ∂Ω at 0 is positive. Thus it is natural that we investigate the asymptotic
behavior of the least-energy solutions of (11). However in the case when the
mean curvature at 0 is non-positive, the existence of the least-energy solutions
of (11) is not studied so far. As our second purpose of this section we obtain the
answer of this problem through the investigation into the asymptotic behavior.

This section is organized as follows. In 3.2 we prepare the useful facts
and some lemmas. In 3.3 we consider the asymptotic behavior of the least-
energy solution of (11). In 3.4 we consider the behavior of µNs,λ(Ω) as λ → ∞.
Throughout these two subsections we assume the existence of the least-energy
solutions of (11) for any Ω. In 3.5 we show some results on the minimization
problem of µNs,λ(Ω).

Remark 3.1. Since the nonlinear term in (11) has a singularity at 0, solutions
are not classical solutions. Indeed, if u ∈ H1(Ω) is a weak solution of (11) by
the elliptic regularity theory u ∈ C2

loc(Ω \ {0}) and u ∈ C0,α(Ω) (see [5, 9]).
Therefore we should regard ∂/∂ν as the bounded linear operator from W 2,p(Ω)
to Lp(∂Ω) at 0.

3.2 Preliminaries

In this section we prepare some useful facts.
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We recall that some facts about a diffeomorphism straightening a boundary
portion around a point P ∈ ∂Ω, which was introduced in [17–20]. Through
translation and rotation of the coordinate system we may assume that P is
the origin and inner normal to ∂Ω at P is pointing in the direction of the
positive xN -axis. In a neighborhoodN around P , there exists a smooth function
ψ(x′), x′ = (x1, . . . , xN−1) such that ∂Ω ∩N can be represented by

xN = ψ(x′) =
1

2

N−1∑
i=1

αix
2
i + o(|x′|2)

where α1, . . . , αN−1 are the principal curvatures of ∂Ω at P . For y ∈ RN with
|y| sufficiently small, we define a mapping x = Φ(y) = (Φ1(y), . . . ,ΦN (y)) by

Φj(y) =

{
yj − yN

∂ψ
∂xj

(y′) j = 1, . . . , N − 1

yN + ψ(y′) j = N.

The differential map DΦ is

DΦ(y) =

δij −
∂2ψ

∂xi∂xj
(y′)yN − ∂ψ

∂xi
(y′)

∂ψ

∂xj
(y′) 1


1≤i,j≤N−1

and near y = 0

|JΦ(y)| = |detDΦ(y)| = 1− (N − 1)H(P )yN +O(|y|2).

We write as Ψ(x) = (Ψ1(x), . . . ,ΨN (x)) instead of the inverse map Φ−1(x).
Br(a) denotes a open ball with center a and radius r. In addition, suppose
Br = Br(0) and B

+
r = {y ∈ Br|yN > 0}.

We consider the function as

U(x) =

(
1 +

|x|2−s

(N − s)(N − 2)

)−N−2
2−s

. (14)

Note that U(0) = 1 and U is a minimizer for

µs := inf

{∫
RN

|∇u|2dx
∣∣∣∣u ∈ D1,2(RN ),

∫
RN

|u|2∗(s)

|x|s
dx = 1

}
(15)

which is the best constant for the Hardy-Sobolev inequality. For U define the
scaling function by

Uε(x) = ε−
N−2

2 U
(x
ε

)
.

We have the following lemma regarding µNs,λ(Ω).

Lemma 3.2. (i) µNs,λ(Ω) is continuous and non-decreasing with respect to λ.
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(ii) For any λ > 0, µNs,λ(Ω) ≤ µs/2
(2−s)/(N−s).

(iii) limλ→0 µ
N
s,λ(Ω) = 0.

Proof. We show only part (ii).
For given ϕ ∈ C1(Ω∩N0) we set ϕ̃(y) = ϕ(Φ(y)), whereN0 is a neighborhood

around 0 such that Ω ∩ N0 = Φ(B+
δ ). If ϕ̃(y) is a radially symmetric function,

we have∫
Ω∩N0

|∇ϕ(x)|2dx =
ωN−1

2

∫ δ

0

rN−1|ϕ̃′|2(r)dr

− (N − 1)π
N−1

2

(N + 1)Γ(N+1
2 )

H(0)

∫ δ

0

rN |ϕ̃′|2(r)dr

+

∫ δ

0

O(rN+1)|ϕ̃′|2(r)dr, (16)

∫
Ω∩N0

|ϕ(x)|2dx =
ωN−1

2

∫ δ

0

rN−1ϕ̃2(r)dr +

∫ δ

0

O(rN )|ϕ2|(r)dr, (17)

∫
Ω∩N0

ϕ2
∗(s)

|x|s
dx =

ωN−1

2

∫ δ

0

rN−s−1ϕ̃2
∗(s)(r)dr

−(N − 1)

[
1− s

2(N + 1)

]
π

N−1
2

Γ(N+1
2 )

H(0)

∫ δ

0

rN−sϕ2
∗(s)dr

+

∫ δ

0

O(rN−s+1)ϕ̃2
∗(s)dr, (18)

where ωN−1 is the surface area of a unit sphere. Set a cut-off function η(y) =
η(|y|) such that support of η is in Bδ and η = 1 in Bδ/2. Choosing η(y)Uε(y)

as ϕ̃ in (16), (17) and (18) and hence we obtain∫
Ω
(|∇(ηUε)|2dx+ λ|ηUε|2)dx(∫

Ω
|ηUε|2∗(s)

|x|s dx
)2/2∗(s)

=



(
1

2

) 2−s
N−s

µs − c1H(0)ε+ [λ (c2 +O(ε|logε|)) +O(ε)] ε2 (N ≥ 5)(
1

2

) 2−s
N−s

µs − c1H(0)ε+
[
λ
(
c2 +O

(
|logε|−1

))
+O(1)

]
ε2|logε| (N = 4)(

1

2

) 2−s
N−s

µs − c1H(0)ε|logε|+ [λ (c2 +O(ε)) +O(1)] ε (N = 3)

where c1, c2 are positive constants which depend only on N . Tending ε to 0
and we obtain the estimate of part (ii).

Lemma 3.3. We have either
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(i) There exist λ̃ such that for λ ≥ λ̃

µNs,λ(Ω) =

(
1

2

) 2−s
N−s

µs, (19)

or

(ii) For all λ the equality (19) does not hold and

lim
λ→∞

µNs,λ(Ω) =

(
1

2

) 2−s
N−s

µs. (20)

where µs is defined by (15).

To prove this lemma, we prepare one proposition.

Proposition 3.4. Fix ε > 0 sufficiently small. Then there exists a positive
constant C = C(ε) such that for u ∈ H1(Ω)(

1

2

) 2−s
N−s

µs

(∫
Ω

u2
∗(s)

|x|s
dx

)2/2∗(s)

≤ (1 + ε)

∫
Ω

|∇u|2dx+ C

∫
Ω

u2dx. (21)

Proof of Proposition 3.4. We choose small constant δ > 0, r > 0 and V which
is a neighborhood around 0 such that

xN = ψ0(x
′) =

1

2

N−1∑
i=1

αix
2
i + o(|x′|2), |∇ψ0(x

′)| ≤ δ on ∂Ω ∩ V,

and {(x′, xN − ψ0)|(x′, xN ) ∈ Ω ∩ V } = B+
r .

Due to [12] there exists a positive constant C = C(Br) such that

µs

(∫
Br

u2
∗(s)

|x|s
dx

)2/2∗(s)

≤
∫
Br

|∇u|2dx+ C

∫
Br

u2dx. (22)

By the transformation y′ = x′, yN = xN − ψ0(x
′) and the inequality (22),

it follows that

µs

(∫
Ω∩V

|u|2∗(s)

(|x′|2 + |xN − ψ0|2)s/2
dx

)2/2∗(s)

= µs

(
1

2

∫
B+

r

|û|2∗(s)

|y|s
dy

)2/2∗(s)

≤
(
1

2

)2/2∗(s) ∫
B+

r

(|∇yû|2 + Cû2)dy

≤ 2
2−s
N−s

(
1 + (N − 1)δ + δ2

) ∫
Ω∩V

|∇xu|2 + Cû2dx
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where û(y) = u(y′, yN + ψ0). On the other hand, if |x| sufficiently small

(|x′|2 + |xN − ψ0|2)s/2 = (|x|2 − 2ψ0xN + ψ2
0)
s/2 ≤ (1 + C0|x|)|x|s.

Now, we may assume that diamV < C1δ for some C1. Consequently taking ε
such that

1 + ε =
1 + (N − 2)δ + δ2

1 + C0C1δ

and we obtain(
1

2

) 2−s
N−s

µs

(∫
Ω∩V

u2
∗(s)

|x|s
dx

)2/2∗(s)

≤ (1 + ε)

∫
Ω∩V

|∇u|2dx+ C

∫
Ω∩V

u2dx.

In Ω \ V , taking into account that |x|−s has not a singularity and we have

(
1

2

) 2−s
N−s

µs

(∫
Ω\V

u2
∗(s)

|x|s
dx

)2/2∗(s)

≤ (1 + ε)

∫
Ω\V

|∇u|2dx+ C

∫
Ω∩V

u2dx.

The detail of calculations is in [12]. Hence we obtain (21).

Proof of Lemma 3.3. If there exist λ̃ such that (19) holds, then by part (i) and
part (ii) of Lemma 3.2 we can prove part (i).

Assume that for all λ > 0, the equality (19) does not hold. For any ε > 0
and λ > 0, there exist uλ,ε such that

µNs,λ(Ω) ≥
∫
Ω

|∇uλ,ε|2dx+ λ

∫
Ω

u2λ,εdx− ε

We choose λ = λ(ε) such that λ→ ∞ as ε→ 0 and λ ≥ C where C is given in
Proposition 3.4. From the above inequality and (21) we have

0 ≤
(
1

2

) 2−s
N−s

µs − µNs,λ(Ω) ≤ ε

∫
Ω

|∇uλ,ε|2dx+ ε ≤ ε

{
1 +

(
1

2

) 2−s
N−s

µs + ε

}
.

Hence tending ε to 0 and we obtain the equality (20).

By the next lemma we can see the relation between the value of µNs,λ(Ω) and

the existence of the minimizer of µNs,λ(Ω).

Lemma 3.5. (i) If µNs,λ(Ω) < µs/2
(2−s)/(N−s) then µNs,λ(Ω) is attained.

(ii) If there exist a positive constant λ̃ such that µN
s,λ̃

(Ω) = µs/2
(2−s)/(N−s)

then µNs,λ(Ω) is not attained for all λ > λ̃.

Proof. (i) proved by the proof of Proposition 2.1 in [5].
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We prove (ii). Let λ > λ̃ and uλ be a minimizer of µNs,λ(Ω). Then we have

(
1

2

) 2−s
N−s

µs = µN
s,λ̃

(Ω) ≤
∫
Ω

(|∇uλ|2 + λ̃u2λ)dx

<

∫
Ω

(|∇uλ|2 + λu2λ)dx = µNs,λ(Ω) ≤
(
1

2

) 2−s
N−s

µs.

This is a contradiction.

3.3 Asymptotic behavior I

In this section and the next section we assume that the least-energy solution of
(11) exists.

We investigate the asymptotic behavior of the least-energy solution of (11)
as λ→ ∞. In order to prove Theorem 3.6, we apply the strategy in [17–20] to
the equation (11). We assume vλ is a least-energy solution of (11) and define
αλ and βλ as

αλ = ∥vλ∥L∞(Ω) = vλ(xλ), βλ = α
− 2

N−2

λ .

Theorem 3.6. We obtain the following results;

(i) For all x ∈ Ω, vλ(x) → 0,

(ii) α
4

N−2

λ /λ = (λβ2)−1 → ∞,

(iii) |xλ| = o(βλ)

as λ → ∞. For any ε > 0 and δ > 0 there exists a positive constant λ0 such
that for all λ > λ0

(iv)

∣∣∣∣vλ(x)αλ
− U

(
Ψλ(x)

βλ

) ∣∣∣∣ < ε in Ω ∩Bβλδ,

(v) vλ ≤ 2ελ
N−2

(4−2s) exp(−γ0ξ(x)λ
1
2 ) in Ω \Bδ,

where U is defined in (14), ξ(x) = min{η0,dist(x, ∂Ω ∩ Bδ)}, η0 = η0(Ω) and
γ0 = γ0(Ω, ε) are positive constants.

Lemma 3.7. There exist a positive constant C which is independent of λ such
that

α
4

N−2

λ

λ
≥ C.

Proof. For simplicity, we write v = vλ and α = αλ for each. C0, C1, C2, C3 are
positive constants which depends only on domain Ω. We have∫

Ω

∇v∇ϕdx+ λ

∫
Ω

vϕdx ≤ α2∗(s)−2

∫
Ω

vϕ

|x|s
dx (23)
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for all ϕ ∈ H1(Ω) satisfying ϕ ≥ 0. For β ≥ 1, we define a function H ∈
C1([0,∞)) by setting H(t) = tβ and G(t) :=

∫ t
0
|H ′(s)|2ds = β2

2β−1 t
2β−1. We

easily find that
vG′(v) ≥ G(v). (24)

Replacing ϕ in (23) by G(v) we have∫
Ω

∇v∇G(v)dx+ λ

∫
Ω

vG(v)dx ≤ α2∗(s)−2

∫
Ω

vG(v)

|x|s
dx.

The chain rule, the definition of G and (24) yield∫
Ω

|∇H(v)|2dx+ λ
β2

2β − 1

∫
Ω

H(v)2dx ≤ α2∗(s)−2

∫
Ω

|vH ′(v)|2

|x|s
dx (25)

For λ β2

2β−1 ≥ 1, by the Hardy-Sobolev inequality it follows that

µNs (Ω)

(∫
Ω

H(v)2
∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫
Ω

|∇H(v)|2dx+ λ
β2

2β − 1

∫
Ω

H(v)2dx (26)

where µNs (Ω) := inf
{∫

Ω
(|∇u|2 + u2)dx|u ∈ H1(Ω),

∫
Ω
|u|2∗(s)/|x|sdx = 1

}
. Since

H(v) = vβ , vH ′(v) = βvβ (27)

Combining (25), (26) and (27) we have

∥v∥2L2∗(s)β(Ω,|x|−sdx) ≤ C
1
β

0 α
(2∗(s)−2) 1

β β
2
β ∥v∥2L2β(Ω,|x|−sdx)

For m = 0, 1, 2, · · · we define βm+1 = (2∗(s)/2)m, then we have

∥v∥2
L2∗(s)βm+1 (Ω,|x|−sdx)

≤ C
1

βm+1

0 α
(2∗(s)−2) 1

βm+1 β
2

βm+1

m+1 ∥v∥L2βm+1 (Ω,|x|−sdx)

=

m∏
l=0

C
1

2(2∗(s)/2)l

0 α
(2∗(s)−2) 1

(2∗(s)/2)l

(
2∗(s)

2

)l 1

(2∗(s)/2)l

∥v∥L2(Ω,|x|−sdx).(28)

Note that

∞∑
l=0

(
2∗(s)

2

)−l

= lim
m→∞

1−
(

2∗(s)
2

)−m−1

1−
(

2∗(s)
2

)−1 =
2∗(s)

2∗(s)− 2
,

∞∑
l=0

l

(
2∗(s)

2

)−l

≤
∞∑
l=0

(l + 1)

(
2∗(s)

2

)−l

≤ 2∗(s)

(2∗(s)− 2)
2 .

Tending m→ ∞ in (28), and thus

∥v∥2∞ ≤ C1α
(2∗(s)−2)

2∗(s)
2∗(s)−2 ∥v∥2L2(Ω,|x|−sdx) = C1α

2∗(s)∥v∥2L2(Ω,|x|−sdx).
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Using the Hölder inequality we have

∥v∥2L2(Ω,|x|−sdx) =

∫
Ω

v2

|x|s
dx ≤

(∫
Ω

v2

|x|2
dx

)s/2(∫
Ω

v2dx

)1−s/2

< C2

(∫
Ω

v2dx

)1−s/2

.

Consequently

1

C1C2
≤ α2∗(s)−2

(∫
Ω

v2dx

)1−s/2

=

(
α

4
N−2

∫
Ω

v2dx

)1−s/2

≤ C3

(
α

4
N−2

λ

)1−s/2

.

Therefore we obtain
α

4
N−2

λ
> C.

Lemma 3.8.
|xλ| = O(βλ)

Proof. Step 1. First of all, we show that dist(xλ, ∂Ω) = O(βλ). We assume
that

lim
λ→∞

dist(xλ, ∂Ω)

βλ
= ∞ (29)

and derive a contradiction. Assume that λk is positive increasing sequence such
that λk → ∞ as k → ∞. By the assumption of (29) we may take a positive
constant R such that

|BR(0)| >
1

2
SN (Ω)−1µ

N−s
2−s
s and xλk

+ βλk
z ∈ Ω for all z ∈ B3R(0) (30)

where |BR(0)| is N -dimensional volume of BR(0) and

SN (Ω) = inf

{∫
Ω

(|∇u|2 + u2)dx

∣∣∣∣∫
Ω

|u|
2N

N−2 dx = 1

}
is the best constant of the critical Sobolev embedding. We set

wk(z) :=
vλk

(xλk
+ βλk

z)

αλk

z ∈ B3R(0).

Since vλk
∈ C2

loc(Ω \ {0}) ṽk satisfies

−∆wk + λβ2wk =
w

2∗(s)−1
k∣∣∣xλk

βλk

+ z
∣∣∣s in B3R(0).
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Note that from (29) and Lemma 3.7

λkβλk
→ C,

∣∣∣xλk

βλk

+ z
∣∣∣−s = o(1) as k → ∞ for z ∈ B3R(0). (31)

By using the elliptic regularity theory there exists w such that

w ∈ C2(BR(0)), wk → w in C2(BR(0))

and
−∆w + Cw = 0 in BR(0).

In addition 0 ≤ w(z) ≤ 1 in BR(0) and w(0) = 1 since ṽk(0) = 1. By the strong
maximum principle w ≡ 1. But

|BR(0)| =

∫
BR(0)

w
2N

N−2 dz = lim
k→∞

∫
BR(0)

w
2N

N−2

k dz = lim
k→∞

∫
Bβλk

R(xλk
)

v
2N

N−2

λk
dx

≤ lim
k→∞

∫
Ω

v
2N

N−2

λk
dx ≤ lim

k→∞
SN (Ω)−1

∫
Ω

(
|∇v2λk

+ v2λk

)
dx

=
1

2
SN (Ω)−1µ

N−s
2−s
s

which contradicts the choice of R in (30).
Step 2. To end of the proof of this lemma we show that

xλ ̸→ x for all x ∈ ∂Ω \ {0}.

We assume that there exists a point x0 ∈ ∂Ω \ {0} such that |xλ− x0| = O(βλ)
and derive a contradiction.

By translation and rotation of the coordinate system we may consider the
equation {

−∆vλ + λvλ =
v
2∗(s)−1
λ

|a0+x|s in Ω
∂vλ
∂ν = 0 on ∂Ω.

(32)

and xλ → 0, where a0 ∈ ∂Ω \ {0}. Set λk → ∞ and xλk
→ 0 as k → ∞. For δ

small sufficiently put v̂λk
(y) = vλk

(Φ(y)) for y ∈ B
+

2δ and

ṽλk
=

{
v̂λk

(y) y ∈ B
+

2δ

v̂λk
(y′,−yN ) (y′,−yN ) ∈ B

+

2δ.

We define a function wk (k = 1, 2, . . .) by

wk(z) =
ṽλk

(Qλk
+ βλk

z)

αλ
z ∈ Bδ/βλk

where Qλk
= Ψ(xλk

) = (q′λk
βλk

, qNλk
βλk

), Qλk
/βλk

→ Q∞ = (q′∞, q
N
∞) as k →

∞. By Step 1, |Q∞| <∞.
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We take a positive constant R such that

|BR(0)| > SN (Ω)−1µ
N−s
2−s

in the same way as Step 1. Set a function ξk as

ξk(z) =

{
Φ(Qλk

+ βλk
z) (zN ≥ −qNλk

)

Φ((q′λk
+ z′)βλk

,−(qNλk
+ zN )βλk

) (zN < −qNλk
).

Then wk satisfies

−
N∑

i,j=1

akij(z)
∂2wk
∂zi∂zj

+ βλk

N∑
j=1

bkj (z)
∂wk
∂zj

+ λkβ
2
λk
wk =

w
2∗(s)−1
k∣∣a0+ξk
βλk

∣∣s
in BR(0) \ {zN = −qNλk

}, where akij , bkj is defined as follows (here definitions is
same as those in Step 2 in the section 4 in [20]):

aij(y) =

N∑
k=1

∂Ψi
∂xk

(Φ(y))
∂Ψj
∂xk

(Φ(y)) 1 ≤ i, j ≤ N (33)

bj(y) = (∆Ψj)(Φ(y)) 1 ≤ j ≤ N. (34)

Then define

akij(z) =

{
aij(Qλk

+ βλk
z) zN ≥ −qNλk

,

(−1)δiN+δjNaij((q
′
λk

+ z′)βλk
,−(qNλk

+ zN )βλk
) zN < qNλk

,

bkj (z) =

{
bj(Qλk

+ βλk
z) zN ≥ −qNλk

,

(−1)δjN bj((q
′
λk

+ z′)βλk
,−(qNλk

+ zN )βλk
) zN < −qλk

.

By applying the elliptic regularity theory in [20] and arguing in the same manner
as in Step 1 we have

w ∈ C2(BR(0)), wk → w in C2(BR(0))

and w ≡ 1. It follows that

|BR(0)| =

∫
BR

w
2N

N−2 dz ≤ lim
k→∞

2

∫
Ω

v
2N

N−2

λk
dz ≤ SN (Ω)−1µ

N−s
2−s
s .

This contradicts the choice of R.

Proof of Theorem 3.6 (ii), (iii), (iv). We can see xλ → 0 from Lemma 3.8. Put
k → ∞ and define λk, xλk

, v̂λk
, ṽλk

, Qλk
, wk and ξk respectively as those in

Step 2 of the proof of Lemma 3.8. wk satisfies

−
N∑

i,j=1

akij(z)
∂2wk
∂zi∂zj

+ βλk

N∑
j=1

bkj (z)
∂wk
∂zj

+ λkβ
2
λk
wk =

w
2∗(s)−1
k∣∣ ξk
βλk

∣∣s
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in B2δ/βλk
(0) \ {zN = −qNλk

}. By the definition of ξk we have |ξk/βλk
| →

|Q∞ + z|.
For any L > 0 and some r > N/2 by the Hölder inequality we have

∫
BL(−Q∞)

w2∗(s)−1
k∣∣ ξk
βλk

∣∣s
r

dz < C(L) <∞. (35)

By applying the elliptic regularity theory in [20] there exists a function w such
that

w ∈ C2
loc(BL(−Q∞)\{−Q∞}), wk → w in C0,α(BL(−Q∞))∩H1(BL(−Q∞)).

Moreover, w satisfies w(0) = 1 and w ∈ D1,2(RN ). In fact∫
RN

|∇w|2dz = lim
L→∞

∫
BL

|∇w|2dz

≤ lim
L→∞

lim
k→∞

2

∫
Ω

(|∇vk|2 + λkv
2
k)dx

≤ µ
N−s
2−s
s .

Thus

w ∈ C2
loc(RN \ {−Q∞}), wk → w in C0,α

loc (R
N ) ∩H1

loc(RN ),

and w is a weak solution of

−∆w + Cw =
w2∗(s)−1

|(Q∞ + z)|s
in RN , (36)

where C is defined in (31). Define the function f : RN \ {−Q∞} × R → R by

f(x, u) =
|u|2∗(s)−2u

|Q∞ + z|s
− Cu.

Then we can see w and f satisfy the all conditions of the following proposition:

Proposition 3.9 (Claim 5.3 in [7]). Let f ∈ C0((RN \ {0}) × R) and let
u ∈ D1,p(RN ) ∩ C1(RN \ {0} ∩H1

loc(RN \ {0}) be a weak solution of

−∆pu = f(x, u) in RN ,

where ∆pu := div(|∇u|p−2∇u) is p-Laplacian. Difine F (x, u) :=
∫ u
0
f(x, s)ds

and assume that F ∈ C1((RN \ {0}) × R). Moreover, along the solution u,
assume that uf(·, u), F (·, u) and x · (∇xF )(·, u) ∈ L1(RN ). Then∫

RN

[
N − p

p
uf(x, u)−NF (x, u)− x · (∇xF )(·, u)

]
dx = 0.
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Applying this proposition to (36) and we obtain C = 0. Furthermore we
have ∫

RN

w2∗(s)

|(Q∞ + z)|s
dz ≤ lim

k→∞
2

∫
Ω

v
2∗(s)
λk

|x|s
dx

= lim
k→∞

µNs,λk
(Ω)

N−s
2−s

= µ
N−s
2−s
s .

Hence w is a minimizer of µs. Since 0 ≤ w ≤ 1 and w(0) = 1, we obtain w = U
and Q∞ = 0. Therefore part (ii) and (iii) is proved.

For z ∈ Bδ/βλk
we set

w̃k(z) =
ṽλk

(βλk
z)

αλk

. (37)

Then since Qλk
/βλk

→ 0 as k → ∞ we have

w̃k → U in C0,α
loc (R

N ) ∩H1
loc(RN )

as k → ∞. Hence part (iv) is obtained.

Lemma 3.10. We assume that u ∈ H1(Ω) satisfy that u ≥ 0 and{
−∆u ≤ u2∗(s)−1

|x|s in Ω
∂u
∂ν = 0 on ∂Ω.

(38)

Then for any r > 0 there exist positive constants µ = µ(Ω) and C = C(Ω, r)
such that for any Q ∈ RN we have

sup
x∈Ω∩Br(Q)

u(x) ≤ C

(∫
Ω∩B2r(Q)

u2
∗(s)

|x|s
dx

) 1
2∗(s)

(39)

provided that ∫
Ω∩B4r(Q)

u2
∗(s)

|x|s
dx ≤ µ.

Proof. We prove Lemma 3.10 in the same way as the strategy of the proof of
Lemma 2.13 in [18] .

Proof of Theorem 3.6 (i). From Lemma 3.2, if uλ is a minimizer for µNs,λ(Ω)
then ∥uλ∥L2(Ω) = O(1/λ). Thus we have uλ(x) → 0 a.e. in Ω. Since vλ =

µNs,λ(Ω)
(N−2)/(4−2s)uλ we have vλ(x) → 0 a.e. in Ω.

For all x ∈ Ω, there exists a positive constant κ such that 0 ̸∈ Ω ∩B4κ(x).
We have

lim
λ→∞

∫
Ω∩B4κ(x)

v
2∗(s)
λ

|x|s
dx = 0.
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By Lemma 3.10 we obtain

vλ(x) ≤ sup
x∈Ω∩Bκ(x)

vλ(x) ≤ C

(∫
Ω∩B2κ(x)

v
2∗(s)
λ

|x|s
dx

) 1
2∗(s)

→ 0

as λ→ ∞.

Proof of Theorem 3.6 (v). For all ε > 0 and δ > 0 by part (i) there exists λ0 > 0
such that vλ(x) < ε in Ω \ Bδ for all λ > λ0. We set wλ = λ−(N−2)/(4−2s)vλ,
then wλ satisfies {

− 1
λ∆wλ + wλ =

w
2∗(s)−1
λ

|x|s in Ω
∂wλ

∂ν = 0 on ∂Ω.

For wλ, we use the strategy of the proof of Theorem 2.3 (iii) in [20].

Proposition 3.11 (Lemma 4.2 in [6]). Assume that ε > 0 and A is a domain.
Let ϕ be a C2 function satisfying Lϕ = ε2∂i(aik∂kϕ) + q(x, ε)ϕ = 0 in A, with
q(x, ε) < −a < 0 in A. Then there exists a positive constant µ = µ(aik, a,A)
such that

|ϕ(x)| ≤ 2(sup|ϕ(x)|)e−
µδ
ε ,

where δ(x) = dist(x, ∂A).

In the interior of Ω \ Bδ we can apply Proposition 3.11 to wλ directly.
In the neighborhood around ∂Ω \ Bδ we apply Proposition 3.11 to w̃λ =
λ−(N−2)/(4−2s)ṽλ, where ṽλ is defined in Step 2 of the proof of Lemma 3.8.
Hence Theorem 3.6 (v) is proved.

3.4 Asymptotic behavior II

In this section, we consider the asymptotic behavior of µNs,λ(Ω). Suppose vλ is

a least-energy solution of (11). Define for f ∈ H1(Ω)

Qλ(f) =

∫
Ω
(|∇f |2 + λf2)dx(∫

Ω
|f |2∗(s)

|x|s dx
)2/2∗(s) .

Theorem 3.12. Assume that N ≥ 5. There exist positive constants C1 and
C2 such that as λ→ ∞

µNs,λ(Ω) = Qλ(vλ) =

(
1

2

) 2−s
N−s

µs − C1H(0)ε+ C2ε
2λ+ o(ε2λ).

where and H(0) is the mean curvature at 0

0 < ε =

{
O(1/λ) H(0) > 0,

o(1/λ1/2) H(0) ≤ 0.
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Proof. The approaches to prove Theorem 3.12 are very close to those in [21].
Therefore we omit the proof of Lemma 3.13 and Lemma 3.17.

Suppose that N0 is a neighborhood around 0 satisfying Ω ∩ N0 = Φ(B+
2δ).

For y ∈ B+
2δ put v̂λ and ṽλ as in Step 2 of the proof of Lemma 3.8. By using

(33) and (34) we define an elliptic operator L by

L =

N∑
i,j=1

ãij(y)
∂2

∂yi∂yj
+

N∑
j=1

b̃j(y)
∂

∂yj
,

where

ãij(z) =

{
aij(z) zN ≥ 0,

(−1)δiN+δjNaij(z
′,−zN )) zN < 0,

b̃j(z) =

{
bj(z) zN ≥ 0,

(−1)δjN bj(z
′,−zN )βλk

) zN < 0.

Since vλ is a least-energy solution of (11) ṽλ satisfies

−Lṽλ + λṽλ =
ṽ
2∗(s)−1
λ

|Φ(y)|s
(40)

a.e. in B2δ. Set

⟨∇ϕ,∇ψ⟩g =
N∑

i,j=1

∫
Bδ(0)

aij(y)

(
∂ϕ

∂yj
(y)

∂ψ

∂yk
(y)

)
|JΦ|dy,

⟨ϕ, ψ⟩λ = ⟨∇ϕ,∇ψ⟩g + λ

∫
Bδ(0)

ϕψ|JΦ|dy,

∥∇ϕ∥2g = ⟨∇ϕ,∇ϕ⟩g , ∥ϕ∥2λ = ⟨ϕ, ϕ⟩λ .

From Theorem 3.6, we have

lim
λ→∞

∥∇ṽλ∥2g = µ
N−s
2−s
s , lim

λ→∞
λ

∫
Bδ

ṽ2λ|JΦ|dy = 0, lim
λ→∞

∥∇ṽλ −∇Uβλ
∥g = 0.

Define the projection P : H1(Bδ) → H1
0 (Bδ) by u = Pv such that

Lu = Lv.

By the definition of L if v(y′, yN ) = v(y′,−yN ) then u(y′, yN ) = u(y′,−yN ).
We set

hλ = vλ − Pvλ, ϕε = Uε − PUε

and we can see by part (v) of Theorem 3.6 and the maximum principle

0 < hλ = O(ε−γ
√
λ) in Bδ.
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We can see

ϕε = ε
N−2

2

(
ε2−s +

δ2−s

(N − s)(N − 2)

)−N−2
2−s

.

Let
M = {cPUε|c ∈ R+, 0 < ε ≤ 1} , dist(u,M) = inf

ϕ∈M
∥u− ϕ∥λ,

and

E(ε, λ) =
{
ϕ ∈ H1

0 (Ω)

∣∣∣∣⟨ϕ, PUε⟩λ =

⟨
ϕ,

∂

∂ε
PUε

⟩
λ

= 0

}
.

We obtain the following lemma.

Lemma 3.13. Suppose that N ≥ 5. Then for λ sufficiently large dist(Pvλ,M)
is attained by cλPUε, where ε = ε(λ). Moreover,

ε

βλ
→ 1 and cλ → 1

as λ→ ∞.

By this lemma we may write

Pvλ = cλPUε + ωλ

where ωλ ∈ E(ε, λ) satisfying ∥ωλ∥λ = o(1), ∥Pvλ∥2λ = c2λ∥PUε∥2λ + ∥ωλ∥2λ.
Thus

vλ = cλPUε + ωλ + hλ.

We investigate the detail of the estimates for ωλ.

Lemma 3.14. We assume that N ≥ 5 and ε = ε(λ) is given in Lemma 3.13.
Then there exists σ > 0 and λ0 such that for all ω ∈ E(ε, λ) and λ > λ0 we
have

(2∗(s)− 1 + σ)

∫
Bδ

U
2∗(s)−2
ε ω2

|Φ(y)|s
|JΦ|dy ≤ ∥ω∥2λ.

Proof. Suppose the above lemma does not hold. Then there exist sequences
λn → ∞, {ωn} ⊂ E(εn, λn) such that

(2∗(s)− 1 + o(1))

∫
Bδ

U
2∗(s)−2
ε ω2

n

|Φ(y)|s
|DΦ|dy ≥ ∥ωn∥2λn

where εn = ε(λn). We may assume that ∥ωn∥λn
= 1 without loss of generality.

Define ψn(z) = ε
(N−2)/2
n ωn(εnz) for z ∈ Bδ/εn. Then we have

1 ≤ (2∗(s)− 1 + o(1))

∫
Bδ/εn

U2∗(s)−2ψ2
n

|Φ(εnz)
εn

|s
|DΦ(εnz)|dz (41)
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On the other hand we have

1 = ∥ωn∥2λn

≥
∑
i,j

∫
Bδ

aij(y)

(
∂ωn
∂yi

(y)
∂ωn
∂yj

(y)

)
|DΦ|dy + λn

∫
Bδ

ω2
n|DΦ|dy

≥ (1 + o(1))

∫
Bδ/εn

|∇ψn(z)|2dz (42)

and

1 = ∥ωn∥2λn

≥ C

(∫
Bδ

ω
2N

N−2
n |DΦ|dy

)N−2
N

= C(1 + o(1))

(∫
Bδ/εn

ψ
2N

N−2
n dz

)N−2
N

.

Therefore after passing to a subsequence we have

ψn → ψ∞ weakly in D1,2
loc(R

N ), and ψn → ψ∞ strongly in L2
loc(RN ).

We can see that

⟨∇ψ∞,∇U⟩L2(RN ) = 0,

⟨
∇ψ∞,∇

(
∂

∂λ

∣∣∣∣∣
λ=1

Uλ

)⟩
L2(RN )

= 0. (43)

Moreover from (41) and (42) it follows that∫
RN

|∇ψ∞|2dz ≤ 1 ≤ (2∗(s)− 1)

∫
RN

U2∗(s)−2ψ2
∞

|z|s
dz,

and hence ∫
RN |∇ψ∞|2dz∫

RN

U2∗(s)−2ψ2
∞

|z|s dz
≤ 2∗(s)− 1. (44)

However, (43) and (44) contradict the following lemma.

Lemma 3.15 ( [22]). We consider the eigenvalue problem:{
−∆ψ = µU

2∗(s)−1

|z|s ψ in RN ,
ψ ∈ D1,2(RN ).

(45)

Then the first two eigenvalues of (45) are µ1 = 1, µ2 = 2∗(s) − 1 and the
corresponding eigenfunction ψ1 and ψ2 satisfy

ψ1 ∈ span {Uε} and ψ2 ∈ span

{
d

dε

∣∣∣
ε=1

Uε

}
respectively.
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Recall that Lhλ = 0 and hλ = O(ε−γ
√
λ). Multiplying (40) by ωλ and

integrating on Bδ by parts, we have

∥ωλ∥2λ +O(ε−γ
√
λ)∥ωλ∥λ =

∫
Bδ

(cλPUε + hλ + wλ)
2∗(s)−1wλ

|Φ(y)|s
|DΦ|dy.

For the right hand side we have∫
Bδ

(cλPUε + hλ + wλ)
2∗(s)−1wλ

|Φ(y)|s
|DΦ|dy

= c
2∗(s)−1
λ

∫
Bδ

PU
2∗(s)−1
ε ωλ
|Φ(y)|s

|DΦ|dy

+(2∗(s)− 1)c
2∗(s)−2
λ

∫
Bδ

PU
2∗(s)−2
ε ω2

λ

|Φ(y)|s
|DΦ|dy +O(∥ωλ∥σλ + ε−γ

√
λ∥ωλ∥λ)

where σ = min {3, 2∗(s)}. Thus we have

∥ωλ∥2λ − (2∗(s)− 1)c
2∗(s)−2
λ

∫
Bδ

PU
2∗(s)−2
ε ω2

λ

|Φ(y)|s
|DΦ|dy

= c
2∗(s)−1
λ

∫
Bδ

PU
2∗(s)−1
ε ωλ
|Φ(y)|s

|DΦ|dy +O(∥ωλ∥σλ + ε−γ
√
λ∥ωλ∥λ). (46)

Since 0 < PUε < Uε and from Lemma 3.14 we have

∥ωλ∥2λ =
2∗(s)− 1 + σ

σ
(1 + o(1))

∫
Bδ

PU
2∗(s)−1
ε ωλ
|Φ(y)|s

|DΦ|dy

+O(ε−γ
√
λ∥ωλ∥λ). (47)

Set

Q̃λ(f) :=
∥f∥2λ(∫

Bδ

f2∗(s)

|Φ(y)|s |DΦ|dy
)2/2∗(s) .

Lemma 3.16.

Qλ(vλ) =
1

2
2−s
N−s

Q̃λ(cPU)

−(1 + o(1))

(
1

2

) 2−s
N−s

µ
−N−2

2−s
s

∫
Bδ

PU2∗(s)−1ωλ
|Φ(y)|s

|DΦ|dy

+O(e−
√
λ∥ωλ∥λ).
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Proof. From Theorem 3.6 it follows

Qλ(vλ) =

∫
Ω∩N0

|∇vλ|2 + λv2λdx(∫
Ω∩N0

v
2∗(s)
λ

|x|s dx

)2/2∗(s)
+O(e−γ

√
λ)

=
1

2
2−s
N−s

Q̃λ(ṽλ) +O(ε−γ
√
λ∥ωλ∥λ) (48)

Since ṽλ = cλPUε + ωλ + hλ we have

∥ṽλ∥2λ = ∥cλPUε∥2λ + ∥ωλ∥2λ +O(e−γ
√
λ).

On the other hand,(∫
Bδ

ṽ
2∗(s)
λ

|Φ(y)|s
|DΦ|dy

)2/2∗(s)

=

(∫
Bδ

(cλPUε)
2∗(s)

|Φ(y)|s
|DΦ|dy

)2/2∗(s)

+
2

2∗(s)

(∫
Bδ

(cλPUε)
2∗(s)

|Φ(y)|s
|DΦ|dy

)2/2∗(s)−1

×
∫
Bδ

2∗(s) (cλPUε)
2∗(s)−1

ωλ +
2∗(s)(2∗(s)−1)

2 (cλPUε)
2∗(s)−2

ω2
λ

|Φ(y)|s
|DΦ|dy

+O(∥ωλ∥σλ + e−
√
λ).

Hence we obtain

Qλ(vλ)

=
1

2
2−s
N−s

Q̃λ(cλPUε)

[
1 + (1 + o(1))

×

 ∥ωλ∥2λ
∥cλPUε∥2λ

− 2

∫
Bδ

PU2∗(s)−1
ε ω
|Φ(y)|s |DΦ|dy

cλ
∫
Bδ

PU
2∗(s)
ε

|Φ(y)|s |DΦ|dy
− (2∗(s)− 1)

∫
Bδ

PU2∗(s)−2
ε ω2

λ

|Φ(y)|s |DΦ|dy

c2λ
∫
Bδ

PU
2∗(s)
ε

|Φ(y)|s |DΦ|dy


]

+O(∥ωλ∥σλ + ε−γ
√
λ∥ωλ∥λ).

Using (46), (47), (48), cλ = 1 + o(1), and

lim
λ→∞

∥PUε∥2λ = lim
λ→∞

∫
Bδ

PU
2∗(s)
ε

|Φ(y)|s
|DΦ|dy = µ

N−s
2−s
s ,

we obtain

Qλ(vλ) =
1

2
2−s
N−s

Q̃λ(cλPUε)

−(1 + o(1))

(
1

2

) 2−s
N−s

µ
−N−2

2−s
s

∫
Bδ

PU
2∗(s)−1
ε ωλ
|Φ(y)|s

|DΦ|dy

+O(∥ωλ∥σλ + ε−γ
√
λ∥ωλ∥λ).
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Lemma 3.17.

∥ωλ∥λ = O(e−
√
λ) +

{
O
(
ε+ λε2

)
(N ≥ 7)

o(λε) (N = 5, 6).

and ∫
Bδ

PU2∗(s)−1ωλ
|Φ(y)|s

|DΦ|dy =

{
O(ε2 + λ2ε4) (N ≥ 7)

o(λε2) (N = 5, 6),

Hence

Qλ(vλ) =
1

2
2−s
N−s

Q̃λ(cλPUε) +O(e−
√
λ) +

{
O
(
ε2 + λ2ε4

)
(N ≥ 7)

o(λε2) (N = 5, 6).

To end the proof of Theorem 3.12 we calculate Q̃λ(cλPUε). We replace
cλPUε by ϕ̃ in (16), (17) and (18). When Ω satisfies H(0) > 0 we recall that
vλ exists and

Qλ(vλ) <

(
1

2

) 2−s
N−s

µs.

Consequently we have

Qλ(vλ) =

(
1

2

) 2−s
N−s

µs−C1H(0)ε+C2λε
2+o(λε2), ε =

{
O(1/λ) H(0) > 0,

o(1/λ1/2) H(0) ≤ 0.

3.5 Minimization problem

Theorem 3.18. Assume that N ≥ 5 and Ω satisfies H(0) ≤ 0. Then there
exist λ∗ = λ∗(Ω) such that

(i) If 0 < λ < λ∗ then µNs,λ(Ω) is attained.

(ii) If λ > λ∗ then µNs,λ(Ω) is not attained.

Proof. By Theorem 3.12 the minimizer of µNs,λ(Ω) does not exist for λ sufficiently

large (if the minimizer exists, µNs,λ(Ω) > µs/2
(2−s)/(N−s) and this contradicts

(ii) in Lemma 3.2). Thus there exists λ∗ = λ∗(Ω) such that part (i) of Lemma
3.3 holds true as λ̃ = λ∗. Consequently from Lemma 3.5 we can prove (i) and
(ii) immediately.

The following theorem holds for all domains (we don’t require the condition
of the mean curvature at 0).

Theorem 3.19. There exist λ∗∗ > 0 such that if λ < λ∗∗ then the minimizer
of µNs,λ(Ω) is unique.
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Proof. In order to prove this theorem we argue in the same way as [25]. Assume
that vλ is a least-energy solution of (11). Then∫

Ω

v
2∗(s)
λ

|x|s
dx = µNs,λ(Ω)

N−s
2−s → 0 as λ→ 0.

From Lemma 3.10 we have ∥vλ∥L∞(Ω) → 0 as λ→ 0.
Set λi → 0 as i → ∞. Let ui, vi be the least-energy solutions of (11)

when λ = λi such that ∥ui − vi∥L∞(Ω) ̸= 0. Define Ai = ∥ui − vi∥L∞(Ω) and

zi = A−1
i (ui − vi). Then zi satisfies 0 ≤ zi ≤ 1 in Ω, ∥zi∥L∞(Ω) = 1, and{

−∆zi + λzi =
u
2∗(s)−1
i −v2

∗(s)−1
i

(ui−vi)|x|s zi in Ω,
∂zi
∂ν = 0 on ∂Ω.

Note that by the mean value theorem, we can see that

u
2∗(s)−1
i − v

2∗(s)−1
i

(ui − vi)|x|s
→ 0 as i→ ∞.

Thus by the elliptic regularity theory there exists z0 ∈ C0,α(Ω) ∩H1(Ω) such
that zi → z0 in C0,α(Ω) ∩H1(Ω) and{

−∆z0 = 0 in Ω,
∂z0
∂ν = 0 on ∂Ω.

Hence z0 ≡ 1 since ∥zi∥L∞(Ω) = 1 for all i.
On the other hand, since ui and vi are solutions of (11) we have∫

Ω

u
2∗(s)−2
i − v

2∗(s)−2
i

|x|s
uividx = 0.

Since ui > 0 and vi > 0 we see ui − vi changes the sign for all i. This is a
contradiction.
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4 A critical problem on the Hardy-Sobolev in-
equality in boundary singularity case

Abstract

We study a Neumann problem with the Hardy-Sobolev nonlinearity.
In boundary singularity case, the impact of the mean curvature at singu-
larity on existence of least-energy solution is well known. Existence and
nonexistence of least-energy solution is studied by [9] except for lower
dimension case. In this section, we improve this previous work. More
precisely, we study four dimensional case and show existence of minimizer
in critical case in some sense.

4.1 Introduction

Let N ≥ 3, Ω be smooth bounded domain in RN , 0 < s < 2, 2∗(s) = 2(N −
s)/(N−2) and λ > 0. The bounded embedding fromH1(Ω) to L2∗(s)(Ω, |x|−sdx)
leads to the Hardy-Sobolev inequality

µNs,λ(Ω)

(∫
Ω

|u|2∗(s)

|x|s
dx

)2/2∗(s)

≤
∫
Ω

(|∇u|2 + λu2)dx,

where the constant µNs,λ(Ω) is the largest possible constant defined by

µNs,λ(Ω) = inf
u∈H1(Ω)\{0}

∫
Ω
(|∇u|2 + λu2)dx(∫

Ω
|u|2∗(s)

|x|s dx
)2/2∗(s) .

The Dirichlet case, that is, the minimization problem of

µDs (Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
|u|2∗(s)

|x|s dx
)2/2∗(s)

is studied by many researchers in both interior singularity case and boundary
singularity case. In interior singularity case, properties of µDs (Ω) is similar to
the best constant of the Sobolev inequality. More precisely, µDs (Ω) is indepen-
dent of Ω and never achieved. In boundary singularity case, [6–8] showed that
minimizer exists when the mean curvature of ∂Ω at 0 is negative. In addi-
tion, [6] prove the nonexistence result under the assumption T (Ω) ⊂ RN+ for
some rotation T , where RN+ is a half-space. After these works [11] investigated
a generalized minimization problem concerning µDs (Ω).

Existence and nonexistence of minimizer of µNs,λ(Ω) have been studied by
[6,9]. In [6], they showed the existence of minimizer under the positivity of the
mean curvature at 0. However the nonpositive mean curvature case was not
dealt with in [6]. Recently, some part of this problem have been clarified by [9].
The result of nonpositive mean curvature case is completely different from that
of positive mean curvature case. Concerning existence of minimizer of µNs,λ(Ω)
in nonpositive mean curvature case we obtained the following result;
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Theorem 4.1. [9] Assume that N ≥ 5 and the mean curvature of ∂Ω at 0 is
nonpositive. Then there exists a positive constant λ∗ = λ∗(Ω) such that

(i) If 0 < λ < λ∗ then µNs,λ(Ω) is attained.

(ii) If λ > λ∗ then µNs,λ(Ω) is not attained.

This situation is closed to the three dimensional case of the minimization
problem introduced by Brezis and Nirenberg [3]:

Sλ(Ω) := inf
u∈H1

0 (Ω)\{0}

∫
Ω
(|∇u|2 + λu2)dx(∫

Ω
|u|

2N
N−2 dx

)(N−2)/N
, λ ∈ R.

In [3] they proved that there exists λ̃∗(Ω) < 0 such that Sλ(Ω) is attained when
λ < λ̃∗(Ω) and Sλ(Ω) is not attained when λ > λ̃∗(Ω). In addition, it is also
proved that if Ω is a ball, existence of a minimizer is equivalent to λ < λ∗(Ω).
After that, by [5] this result was extended to the general bounded domain case.

Our main purpose of this section is to improve Theorem 4.1. More precisely,
we investigate the case when N = 4 and the case when λ = λ∗.

What is related to the minimization problem µNs,λ(Ω) is the following elliptic
equation: {

−∆u+ λu = u2∗(s)−1

|x|s , u > 0 in Ω,
∂u
∂ν = 0 on ∂Ω.

(49)

Least-energy solution of (49) is defined by solution of (49) attaining µNs,λ(Ω)
and thus existence of least-energy solution of (49) is equivalent to existence of
minimizer of µNs,λ(Ω).

Asymptotic behavior of least-energy solution of (49) and µNs,λ(Ω) as λ→ ∞
have been studied in [9]. These studies are natural because a least-energy so-
lution exists for any λ when the mean curvature at 0 is positive as we know.
However, not only that, these studies play a crucial role in studying the min-
imization problem µNs,λ(Ω). Theorem 4.1 asserts that least-energy solution of
(49) does not exist for sufficiently large λ when the mean curvature at 0 is
nonpositive. In order to prove this fact, we need to investigate the asymptotic
behavior of least-energy solution and µNs,λ(Ω) as λ→ ∞ under the assumption
of existence of least-energy solution for any λ. This technique of the asymptotic
analysis in [9] is used everywhere in this section.

Our main results is as follows:

Theorem 4.2. Assume N = 4 and the mean curvature of ∂Ω at 0 is nonposi-
tive. Then there exists a positive constant λ∗ = λ∗(Ω) such that

(i) If 0 < λ < λ∗ then µNs,λ(Ω) is attained.

(ii) If λ > λ∗ then µNs,λ(Ω) is not attained.

Theorem 4.3. Assume N ≥ 4, the mean curvature at 0 is negative, and λ∗ is
a constant obtained by Theorem 4.1 or Theorem 4.2. Then µNs,λ∗

(Ω) is attained.
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The approaches to prove these theorem are based on [1, 2, 9, 15–17]. The
blow-up analysis for semilinear Neumann problem involving the Sobolev critical
exponent was started by [1,2]. After these [15–17] studied the best constant of
the Sobolev inequality, that is, they studied µNs,λ(Ω) in the case when s = 0,

and [9] studied µNs,λ(Ω) in the case when s ∈ (0, 2). In [15] the author studied the
asymptotic analysis for the Neumann problem involving the mean curvature on
the boundary condition. [16] studied minimization problem on exterior domain
by using the techniques in [15]. In [17] they expanded some parts of the results
of [15] into the four dimensional case. Finally [9] investigated the asymptotic
analysis related to µNs,λ(Ω) as we mentioned before.

This section is organized as follows. In 4.2 we introduce some useful facts
to prove Theorem 4.2 and Theorem 4.3. In 4.3 we prove Theorem 4.2. In 4.4
we prove Theorem 4.3.

4.2 Preliminaries

In this subsection we prepare some facts in advance to prove Theorem 4.2 and
Theorem 4.3.

µs denotes the best constant of the Hardy-Sobolev inequality on RN , that
is, µs is defined by

µs := inf

{∫
RN

|∇u|2dx
∣∣∣∣u ∈ D1,2(RN ),

∫
RN

|u|2∗(s)

|x|s
dx = 1

}
. (50)

We set

U(x) =

(
1 +

|x|2−s

(N − s)(N − 2)

)−N−2
2−s

, (51)

which is a minimizer for µs. In addition, for ε > 0 we define a function by

Uε(x) = ε−
N−2

2 U
(x
ε

)
. (52)

The following lemmas are introduced in [9].

Lemma 4.4. (i) µNs,λ(Ω) is continuous and non-decreasing with respect to λ.

(ii) For any λ > 0, µNs,λ(Ω) ≤ µs/2
(2−s)/(N−s).

(iii) limλ→0 µ
N
s,λ(Ω) = 0.

Lemma 4.5. We have either

(i) there exists λ̃ such that for λ ≥ λ̃

µNs,λ(Ω) =

(
1

2

) 2−s
N−s

µs,

or
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(ii) for all λ the equality of (i) does not hold and

lim
λ→∞

µNs,λ(Ω) =

(
1

2

) 2−s
N−s

µs.

Lemma 4.6. (i) If µNs,λ(Ω) < µs/2
(2−s)/(N−s) then µNs,λ(Ω) is attained.

(ii) If there exists a positive constant λ̃ such that µN
s,λ̃

(Ω) = µs/2
(2−s)/(N−s)

then µNs,λ(Ω) is not attained for all λ > λ̃.

We recall some facts about a diffeomorphism straightening a boundary por-
tion around a point P ∈ ∂Ω, which was introduced in [10–14]. Through trans-
lation and rotation of the coordinate system we may assume that P is the
origin and inner normal to ∂Ω at P is pointing in the direction of the posi-
tive xN -axis. In a neighborhood N around P , there exists a smooth function
ψ(x′), x′ = (x1, . . . , xN−1) such that ∂Ω ∩N can be represented by

xN = ψ(x′) =
1

2

N−1∑
i=1

αix
2
i + o(|x′|2)

where α1, . . . , αN−1 are the principal curvatures of ∂Ω at P . For y ∈ RN with
|y| sufficiently small, we define a mapping x = Φ(y) = (Φ1(y), . . . ,ΦN (y)) by

Φj(y) =

{
yj − yN

∂ψ
∂xj

(y′) j = 1, . . . , N − 1

yN + ψ(y′) j = N.

The differential map DΦ is

DΦ(y) =

δij −
∂2ψ

∂xi∂xj
(y′)yN − ∂ψ

∂xi
(y′)

∂ψ

∂xj
(y′) 1


1≤i,j≤N−1

and near y = 0

|JΦ(y)| = |detDΦ(y)| = 1− (N − 1)H(P )yN +O(|y|2).

We write as Ψ(x) = (Ψ1(x), . . . ,ΨN (x)) instead of the inverse map Φ−1(x).
Br(a) denotes a open ball with center a and radius r. In addition, suppose

Br = Br(0) and B
+
r = {y ∈ Br|yN > 0}. Define N0 as a neighborhood around

0 such that Φ(Bδ) = N0.

4.3 Proof of Theorem 4.2

In this subsection we prove Theorem 4.2. In order to prove Theorem 4.2 we
need the following proposition:
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Proposition 4.7. Suppose that there exists a least-energy solution of (49) for
all λ. Then there exist positive constants C1 and C2 such that as λ→ ∞

µNs,λ(Ω) =

(
1

2

) 2−s
4−s

µs − C1H(0)ε+ C2λε
2log

1

λ1/2ε
+O

(
λε2 + ε2log

1

λ1/2ε

)
,

where H(0) is the mean curvature at 0 and

0 < ε = o(1/λ1/2).

Assuming that Proposition 4.7 holds, we obtain Theorem 4.2 immediately.
Indeed, by Proposition 4.7 minimizer of µNs,λ(Ω) does not exist for λ sufficiently

large (if the minimizer exists, µNs,λ(Ω) > µs/2
(2−s)/(N−s) and this contradicts

(ii) of Lemma 4.4). This implies the existence of λ∗ = λ∗(Ω) such that part
(i) of Lemma 4.5 holds as λ̃ = λ∗. As a consequence (i) and (ii) follow from
Lemma 4.6.

Proof of Proposition 4.7. We note that 2∗(s) = 4 − s. Suppose that vλ is a
least-energy solution of (49), that is, vλ satisfies{

−∆vλ + λvλ =
v3−s
λ

|x|s , vλ > 0 in Ω,
∂vλ
∂ν = 0 on ∂Ω.

(53)

We define αλ and βλ as

αλ = ∥vλ∥L∞(Ω), βλ =
1

αλ
.

From Theorem 3.1 in [9] we have

lim
λ→∞

∫
Ω

|∇vλ|2dx =
1

2
µ

4−s
2−s
s , lim

λ→∞
λ

∫
Ω

v2λdx = 0. (54)

We set a cut-off function ηλ(y) = ηλ(|y|) such that support of ηλ is in Bδ/λ1/2

and ηλ = 1 in Bδ/2λ1/2 . We may assume that |∇ηλ| ≤ C/λ1/2, |D2ηλ| ≤ C/λ.
For simplicity we write η. For η, a positive constant ε, and Uε which is defined
in (52) we set

Vε(x) =

{
η(Ψ(x))Uε(Ψ(x)) (x ∈ N0),

0 (x ∈ RN \ N0).

Set

⟨ϕ, ψ⟩λ =

∫
Ω

∇ϕ∇ψdx+ λ

∫
Ω

ϕψdx, ∥ϕ∥2λ = ⟨ϕ, ϕ⟩λ .

In addition to (54), we have

lim
λ→∞

∥vλ − Vβλ
∥λ = 0.
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Let
M = {cVε|c ∈ R+, 0 < ε ≤ 1} , dist(u,M) = inf

ϕ∈M
∥u− ϕ∥λ,

and

E(ε, λ) =
{
ϕ ∈ H1(Ω)

∣∣∣∣⟨ϕ, Vε⟩λ =

⟨
ϕ,

∂

∂ε
Vε

⟩
λ

= 0

}
.

We have the following lemma corresponding to Lemma 4.2 in [9].

Lemma 4.8. If λ is sufficiently large dist(vλ,M) is attained by cVε, where
c = c(λ), ε = ε(λ). Moreover,

ε

βλ
→ 1 and c→ 1

as λ→ ∞.

From this lemma there exists ωλ ∈ Eε,λ such that

vλ = cVε + ωλ, ∥vλ∥2λ = ∥cVε∥2λ + ∥ωλ∥2λ, ∥ωλ∥λ = o(1). (55)

By applying the proof of Lemma 4.3 in [9] we have the following lemma:

Lemma 4.9. We assume ε = ε(λ) is given in Lemma 4.9. Then there exists
σ > 0 and λ0 such that for all ω ∈ E(ε, λ) and λ > λ0 we have

(3− s+ σ)

∫
Ω

V 2−s
ε ω2

|x|s
dx ≤ ∥ω∥2λ.

Multiplying (53) by ωλ and integrating on Ω by parts, we have

∥ωλ∥2λ =

∫
Ω

(cVε + ωλ)
3−swλ

|x|s
dx.

For the right hand side we have∫
Ω

(cVε + ωλ)
3−swλ

|x|s
dx

= c3−s
∫
Ω

V 3−s
ε ωλ
|x|s

dx+ (3− s)c2−s
∫
Ω

V 2−s
ε ω2

λ

|x|s
dy +O(∥ωλ∥γλ),

where γ = min {3, 4− s}. Thus we have

∥ωλ∥2λ − (3− s)c2−s
∫
Ω

V 2−s
ε ω2

λ

|x|s
dx

= c3−s
∫
Ω

V 3−s
ε ωλ
|x|s

dx+O(∥ωλ∥γλ). (56)

From Lemma 4.9 it follows that

∥ωλ∥2λ =
3− s+ σ

σ
(1 + o(1))

∫
Ω

V 3−s
ε ωλ
|x|s

dx+O(∥ωλ∥γλ), (57)
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where we used that c = 1 + o(1). Set

Qλ(f) :=

∫
Ω
(|∇f |2 + λf2)dx(∫
Ω

|f |4−s

|x|s dx
)2/(4−s) .

By using (55) we have

Qλ(vλ) = Qλ(cVε)

1 +
∥ωλ∥2λ
∥cVε∥2λ

−
2
∫
Ω

(cVε)
3−sωλ

|x|s dx∫
Ω

(cVε)4−s

|x|s dx
−

(3− s)
∫
Ω

(cVε)
2−sω2

λ

|x|s dx∫
Ω

(cVε)4−s

|x|s dx


+O(∥ωλ∥γλ)

Recalling that ε/βλ → 1 as λ→ ∞, we can see

lim
λ→∞

∥cVε∥2λ = lim
λ→∞

∫
Ω

(cVε)
4−s

|x|s
dx =

1

2
µ

4−s
2−s
s .

Hence from (56) we have

Q(vλ) = Q(cVε)− (1 + o(1))2
2

4−sµ
− 2

2−s
s

∫
Ω

V 3−s
ε ωλ
|x|s

dx+O(∥ωλ∥γλ). (58)

For Qλ(cVε) we apply the calculations in the proof of (ii) of Lemma 2.1 (see [9]).
It follows that

Qλ(cVε) =

(
1

2

) 2−s
4−s

µs − C1H(0)ε+ C2λε
2log

1

λ1/2ε
+O

(
λε2 + ε2log

1

λ1/2ε

)
(59)

for some positive constants C1 and C2. In order to finish the proof we prove
the following lemma in the same way as Step 3 of Section 4 in [16].

Lemma 4.10.∫
Ω

V 3−s
ε ωλ
|x|s

dx = O

(
λ1/2ε+ ε

(
log

1

λ1/2ε

)1/2
)
∥ωλ∥λ.

This lemma and (57) yield that

∥ωλ∥λ = O

(
λ1/2ε+ ε

(
log

1

λ1/2ε

)1/2
)
,

and thus ∫
Ω

V 3−s
ε ωλ
|x|s

dx = O

(
λε2 + ε2log

1

λ1/2ε

)
. (60)

Consequently Proposition 4.7 follows from (58), (59), and (60).
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4.4 Proof of Theorem 4.3

In this section we prove Theorem 4.3. Note that

lim
λ→λ∗

µNs,λ(Ω) = µNs,λ∗
(Ω) =

(
1

2

) 2−s
N−s

µs. (61)

Proof of Theorem 1.3. For any λ ∈ (0, λ∗) we write vλ as a least-energy solution
of (49). Recall that by the elliptic regularity theory vλ ∈ C2

loc(Ω \ {0}) and
vλ ∈ C0,α(Ω) (see [4, 7]).

Firstly, we claim that we only have to show the existence of a positive
constant C such that ∥vλ∥L∞(Ω) < C holds uniformly for λ near λ∗. Indeed, if
∥vλ∥L∞(Ω) < C then there exists v such that

vλ ⇀ v weakly in H1(Ω), and vλ → v strongly in L2∗(s)(Ω, |x|−sdx)

as λ→ λ∗. Since vλ is a least-energy solution of (49) we have v ̸≡ 0. Therefore∫
Ω
(|∇v|2 + λ∗v

2)dx(∫
Ω

|v|2∗(s)

|x|s dx
)2/2∗(s) ≤ lim

λ→λ∗

∫
Ω
(|∇vλ|2 + λv2λ)dx(∫
Ω

|v|2∗(s)

|x|s dx
)2/2∗(s) = µNs,λ∗

(Ω)

and hence v is a minimizer of µNs,λ∗
(Ω).

Next, we show that there exist a positive constant C such that ∥vλ∥L∞(Ω) <
C holds. Assume that λk is a sequence (a suitable subsequence is also written
by λk) such that λk → λ∗ as k → ∞. We suppose that ∥vλk

∥L∞(Ω) → ∞ as

k → ∞ and derive a contradiction. Here, we define αλ, βλ, and xλ ∈ Ω as

αλk
= ∥vλk

∥L∞(Ω) = vλk
(xλk

), βλk
= α

− 2
N−2

λk
.

Step 1. We obtain the following results:

(i)
∫
Ω
v2λk

→ 0,

(ii) |xλk
| = o(βλk

),

as k → ∞. For any ε > 0 and r > 0 there exists a k0 such that for all k > k0

(iii)

∣∣∣∣vλk
(x)

αλk

− U

(
Ψ(x)

βλk

) ∣∣∣∣ < ε in Ω ∩Brβλk
.

Proof. We obtain (ii), (iii) by applying the technique of the proof of (iii), (iv)
of Theorem 3.1 in [9].

We prove (i). For any R > 0, suppose that NR
0 denotes N0 defined in

subsection 4.2 with δ = R. From (iii) it follows that

lim
k→∞

∫
ΩR

βλk

v
2∗(s)
λk

|x|s
dx =

∫
B+

R

U2∗(s)

|x|s
dx =

1

2
µ

N−s
2−s
s − γ(R), (62)
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where

ΩRβλk
= βλk

(Ω ∩NR
0 ), γ(R) =

∫
RN

+ \B+
R

U2∗(s)

|x|s
dx.

Since (61) we have

lim
k→∞

∫
Ω\ΩR

βλk

v
2∗(s)
λk

|x|s
dx = γ(R). (63)

Clearly γ(R) → 0 as R→ ∞. Here, we observe that∫
Ω

v2λk
dx =

∫
ΩR

βλk

v2λk
dx+

∫
Ω\ΩR

βλk

v2λk
dx = I1 + I2.

For I1 from (62) we have

I1 ≤

∫
ΩR

βλk

|x|
2s

2∗(s)−2 dx


2∗(s)−2
2∗(s)

∫
ΩR

βλk

v
2∗(s)
λk

|x|s
dx

 2
2∗(s)

= o(1),

as k → ∞. For I2 from (63) we have

I2 ≤

∫
Ω\ΩR

βλk

|x|
2s

2∗(s)−2 dx


2∗(s)−2
2∗(s)

∫
Ω\ΩR

βλk

v
2∗(s)
λk

|x|s
dx

 2
2∗(s)

= C(γ(R) + o(1))
2

2∗(s)

as k → ∞. Letting R→ ∞ after k → ∞, we obtain (i).

Step 2. We have as k → ∞

µNs,λk
(Ω) =

(
1

2

) 2−s
N−s

µs −H(0)ε+

{
O(ε2) N ≥ 5,

O(ε2(log 1
ε )

4
3 ) N = 4,

(64)

where ε = εk is a positive constant such that ε→ 0 as k → ∞.

Proof. From Step 1 we have

lim
k→∞

∫
Ω

|∇vλk
|2dx =

1

2
µ

N−s
2−s
s , lim

k→∞
λk

∫
Ω

v2λk
dx = 0, lim

k→∞

∫
Ω

|∇(vλk
−Uβλk

)|2dx = 0.

Therefore investigating the detail of the asymptotic behavior of µNs,λk
(Ω) as

k → ∞ (see [9, 15–17], and Section 3 in this paper) we obtain (64).

Consequently if the mean curvature of ∂Ω at 0 is negative (64) contradicts
(ii) of Lemma 4.4, and which implies ∥vλk

∥L∞(Ω) is bounded uniformly.
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5 Strauss’s radial compactness and nonlinear el-
liptic equation involving a variable critical ex-
ponent

Joint work with Megumi Sano (Osaka City University)

Abstract

We study existence of a non-trivial solution of

−∆pu(x) + u(x)p−1 = u(x)q(x)−1, u(x) ≥ 0, x ∈ RN , u ∈ W 1,p
rad(R

N )

under some conditions on q(x), especially, lim inf |x|→∞ q(x) = p. Con-
cerning this problem, we firstly consider compactness and non-compactness
for the embedding from W 1,p

rad(R
N ) to Lq(x)(RN ). We point out that the

decaying speed of q(x) at infinity plays an essential role on the compact-
ness. Secondly, by applying the compactness result, we show the existence
of a non-trivial solution of the elliptic equation.

5.1 Introduction and main results

In this article, we consider the following nonlinear elliptic equation{
−∆pu+ up−1 = uq(·)−1, u ≥ 0 in RN ,
u ∈W 1,p

rad(RN ),
(65)

for 1 < p < N , where ∆pu = div ( |∇u|p−2∇u ) is p−Laplacian, and variable
exponent q(x) is a measurable function satisfying q(x) > p, lim inf |x|→∞ q(x) =
p.

p(x)-Laplacian type elliptic equation is one of the problems with variable
exponent and this type equation on RN is studied by many researchers in sev-
eral subjects: multiplicity of solutions (see e.g. [1,13]), existence of solutions of
equations involving several nonlinearities (see e.g. [2, 12]), equations under pe-
riodic assumptions (see e.g. [11,26]) and so on. Moreover, existence of solutions
of the equation (65) involving variable exponent touching the critical exponent,
that is ess supRN q(x) = p∗ := Np

N−p , is studied by [4, 23].
Concerning the critical exponent related to the Sobolev embedding in the

whole space, not only p∗, another critical exponent exists and it is p. In the
viewpoint of this, considering the case where ess infRN q(x) = p is natural as
another critical case. However, even for p-Laplace equation there are no results
in this case. Thus we study the problem (65) at the opening of this article.
In this case, unlike the subcritical case, we need to overcome some difficulties
to show the existence of a non-trivial solution of (65). We will explain them
more precisely after Remark 5.5. Thus in advance of study of the equation
(65), we consider the related embedding to the equation. Namely we study the
embedding from W 1,p

rad(RN ) to Lq(x)(RN ).
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We define the generalized Sobolev spacesW k,p(x)(Ω) with variable exponents
p(x). For a domain Ω ⊂ RN and a function p ∈ L∞(Ω) with p(x) ≥ 1 we set

Lp(x)(Ω) =

{
u is a real measurable function on Ω

∣∣∣∣ ∫
Ω

|u(x)|p(x)dx <∞
}
,

W k,p(x)(Ω) =
{
u ∈ Lp(x)(Ω)

∣∣∣Dαu ∈ Lp(x)(Ω), |α| ≤ k
}
.

These Lp(x)(Ω) and W k,p(x)(Ω) are Banach spaces with the following norms:

∥u∥p(x) = inf

{
λ > 0

∣∣∣∣∣
∫
Ω

∣∣∣∣uλ
∣∣∣∣p(x)dx ≤ 1

}
, ∥u∥Wk,p(x) = ∥u∥p(x) +

∑
|α|≤k

∥Dαu∥p(x).

When Ω is a bounded domain with the cone property, some results concern-
ing the embedding of W k,p(x)(Ω) are obtained by [14,17,20]. One of the results
in [14] is the existence of the compact embedding. They consider the situation
when p(x) is uniformly continuous on Ω and 1 < ess infΩ p(x) ≤ ess supΩ p(x) <
N/k. Under this situation there exists a compact embedding fromW k,p(x)(Ω) to
Lq(x)(Ω) for q(x) satisfying p(x) ≤ q(x) a.e. in Ω and ess infΩ p

∗(x)− q(x) > 0,
where p∗(x) = Np(x)/(N − kp(x)). On the other hand, for W 1,p(Ω) Kurata
and Shioji [17] consider the critical case, that is ess supΩ q(x) = p∗. They
showed that if there exist x0 ∈ Ω, C0 > 0, η > 0, and 0 < ℓ < 1 such that
ess supΩ\Bη(x0) q(x) < p∗ and

q(x) ≤ p∗ − C0

| log |x− x0| |ℓ
for a.e. x ∈ Ω ∩Bη(x0),

then the embedding from W 1,p(Ω) to Lq(x)(Ω) is compact. Conversely, if

q(x) ≥ p∗ − C0

| log |x− x0| |
for a.e. x ∈ Ω ∩Bη(x0),

then the embedding from W 1,p(Ω) to Lq(x)(Ω) is not compact.
When Ω = RN , Strauss [24] and Lions [18] showed that the radial Sobolev

space W 1,p
rad(RN ) can be embedded to Lq(RN ) compactly for q ∈ (p, p∗). In

addition, related results are in [8, 10], and so on. In p(x) case, under the
same conditions as those of bounded domain case the compact embedding from

W
1,p(x)
rad (RN ) to Lq(x)(RN ) is obtained for q(x) satisfying ess infRN q(x)−p(x) >

0 and ess infRN p∗(x) − q(x) > 0 by [15]. On the other hand, the critical case,
that is ess infRN q(x) − p(x) = 0 or ess infRN p∗(x) − q(x) = 0, has not been
treated so far even if p(x) ≡ p.

In this paper, we fix p(x) ≡ p. Our first study is to obtain a sufficiently con-
dition of compactness and non-compactness of the embedding fromW 1,p

rad(RN ) to
Lq(x)(RN ) for variable exponent q(x) satisfying ess infRN q(x) = p and ess supRN q(x) =
p∗. Based on these results, as the second study we obtain a non-trivial solution
of (65) under the compactness conditions with lim inf |x|→∞ q(x) = p.
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Before introducing main results, we fix several notations. BR denote a open
ball centered 0 with radius R. ωN−1 is an area of the unit sphere SN−1 in RN .
Throughout this paper we assume that q(x) ∈ L∞(RN ) and q(x) ≥ 1 for a.e.
x ∈ RN . A letter C denotes various positive constant. If u is a radial function
in RN , then we can write as u(x) = ũ(|x|) by some function ũ = ũ(r) in R+.
For simplicity we write u(x) = u(|x|) with admitting some ambiguity.

Theorem 5.1. (Non-compactness) If there exist positive constants R,C0 and
a open set Γ in SN−1 such that

q(x) ≤ p+
C0

| log |x| |
for x ∈ (R,+∞)× Γ, (66)

then the embedding from W 1,p
rad(RN ) to Lq(x)(RN ) is not compact.

Theorem 5.2. (Compactness) If there exist positive constants r,R,C0, C1, and
k, l ∈ (0, 1) such that

q(x) ≤ p∗ − C0

| log|x| |k
for x ∈ Br, (67)

q(x) ≥ p+
C1

| log|x| |ℓ
for x ∈ RN \BR, (68)

then the embedding from W 1,p
rad(RN ) to Lq(x)(RN ) is compact.

Remark 5.3. In Theorem 5.2, we don’t need the constraint p ≤ q(x) ≤ p∗.
W 1,p

rad(RN ) ⊂ Lq(x)(RN ) holds whenever q(x) satisfies q(x) ≤ p∗ in Br and
q(x) ≥ p in RN \BR.
Theorem 5.4. Assume that q(x) satisfies the hypotheses (67), (68) in Theorem
5.2 and ess infx∈BR

q(x) > p. Then there exists a non-trivial weak solution
u ∈W 1,p

rad(RN ) of (65) in the sense of∫
RN

(
|∇u|p−2∇u∇ϕ+ up−1ϕ− uq(x)−1ϕ

)
dx = 0 (69)

for any ϕ ∈W 1,p
rad(RN ).

Remark 5.5. If q(x) is a radially symmetric function satisfying the hypotheses
of Theorem 5.4, then we can show that the weak solution u obtained in Theorem
5.4 satisfies u ∈ C1,α

loc (RN \ {0}) and u(x) > 0 for all x ∈ RN \ {0}. Indeed,
since u and q(x) are radially symmetric, it follows that for all ϕ ∈W 1,p

rad(RN )∫ ∞

0

(
|u′(r)|p−2u′(r)ϕ′(r) + up−1ϕ− uq(r)−1ϕ

)
rN−1dr = 0,

where r = |x|. If for any ψ ∈ C∞
c (RN ) we consider the radial function Ψ(r) =∫

ω∈SN−1 ψ(rω) dSω, then we have∫
RN

(
|∇u|p−2∇u∇ψ + up−1ψ − uq(x)−1ψ

)
dx

=

∫ ∞

0

(
|u′(r)|p−2u′(r)Ψ′(r) + up−1Ψ− uq(r)−1Ψ

)
rN−1dr = 0.
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Therefore we see that u satisfies (69) even for non-radial functions ϕ. Finally,
by Corollary of Theorem 2 in [9] we have u ∈ C1,α

loc (RN \ {0}). And also, by
Theorem 2.5.1 in [21] we have u(x) > 0 for all x ∈ RN \ {0}.

We note the difficulties to obtain Theorem 5.4 caused by the condition
ess infx∈RN q(x) = p. Ambrosetti-Rabinowitz condition (AR) is well-known in
order to obtain a non-trivial weak solution to the following problem by mountain
pass method.

−∆pu+ |u|p−2u = f(x, u) in RN .

(AR) There are µ > p and M > 0 such that for |u| ≥M, 0 < µF (x, u) ≤ uf(x, u),

where F (x, u) :=
∫ u
0
f(x, s)ds. Especially, condition (AR) has been used to

establish not only the mountain pass structure of the energy functional but also
the Palais-Smale condition. A weaker condition has also been considered, for
instance, Liu-Wang [19] studied (SQ) which is called super-quadratic condition.

(SQ) lim
|u|→∞

F (x, u)

|u|p
= ∞ uniformly in x ∈ RN .

However, assuming that the nonlinear term u(x)q(x)−1 in (65) is a special case
of the general nonlinear term f(x, u), this does not satisfy even condition (SQ)
when ess infx∈RN q(x) = p. From these facts, it seems to be difficult to confirm
whether the energy functional J (see Section 4) corresponding to (65) satisfies
the Palais-Smale condition or not. In more detail, while the fact that bounded
Palais-Smale sequence has a convergent subsequence is straightforward from
Theorem 5.2, boundedness of all Palais-Smale sequence is non-trivial. Besides
that, satisfying the mountain pass structure for J is not trivial since we can not
apply the fibering map method directly.

To overcome these difficulties, in Section 3, we construct a solution of (65)
as a limit of mountain pass solutions of some elliptic equations approaching (65)
in the sense of energy functional. In Section 4, we show an another proof by
using the variant of the mountain pass theorem. More precisely, by introducing
the condition (C) (see Section 4) defined in [7] or [5] instead of the Palais-Smale
condition, we obtain a solution of (65) in a different way from Section 3.

5.2 Compactness and non-compactness of the embedding

We prove Theorem 5.1 and Theorem 5.2. Before beginning the proof we recall
the pointwise estimate and the compactness theorem introduced in [18], and [24]
(p = 2). For the reader’s convenience, the proofs are in Appendix.

Proposition 5.6. For any u ∈W 1,p
rad(RN ) we have

|u(x)| ≤
(

p

ωN−1

) 1
p

|x|−
N−1

p ∥u∥
p−1
p

Lp(RN )
∥∇u∥

1
p

Lp(RN )
. (70)
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Proposition 5.7. The embedding from W 1,p
rad(RN ) to Lq(RN ) is compact for

q ∈ (p, p∗).

Proof of Theorem 5.1. We shall show Theorem 5.1 in the same way as [17].
Set r(x) = q(x)−p for x ∈ RN . Let ϕ ∈ C∞

c (RN ) be a radial function satisfying

ϕ ≡ 1 on B 1
2
and suppϕ ⊂ B1. For m ∈ N, we define ϕm(x) = m−N

p ϕ( xm ).
Then for any m ∈ N we obtain

∥ϕm∥Lp(RN ) = ∥ϕ∥Lp(B1), ∥∇ϕm∥Lp(RN ) = m−1 ∥∇ϕ∥Lp(B1).

Since {ϕm}∞m=1 is a bounded sequence in W 1,p
rad(RN ) and W 1,p

rad(RN ) is reflexive
(see e.g. Proposition 3.20. in [6]), there exist a weakly convergent subsequence
{ϕmj

}∞j=1 and ϕ∞ ∈ W 1,p
rad(RN ) such that ϕmj

⇀ ϕ∞ in W 1,p
rad(RN ) as j → ∞.

By compactness of the embedding from W 1,p
rad(RN ) to Lr(RN ) for p < r < p∗,

we have ϕmj → ϕ∞ in Lr(RN ) and ϕmj → ϕ∞ a.e. in RN which yields that
ϕ∞ ≡ 0. On the other hand, we have∫

RN

|ϕm(x)|q(x) dx =

∫
Bm

m−N
p (p+r(x))

∣∣∣ϕ( x
m

)∣∣∣q(x) dx
=

∫
B1

m−N
p r(my)|ϕ(y)|q(my) dy

≥
∫
B 1

2
\B 1

4

m−N
p r(my) dy.

Since Γ is open in SN−1, there exists a smooth subset D ⊂ SN−1 such that
D ⊂ Γ. By using the polar coordinates as y = sω (s > 0, ω ∈ SN−1) we obtain∫

RN

|ϕm(x)|q(x) dx ≥
∫ 1

2

s= 1
4

∫
ω∈D

m−N
p r(msω) sN−1dsdSω.

By the assumption (66), we obtain r(msω) ≤ C0 | logms |−1 for large m, s ∈
(1/4, 1/2), and ω ∈ D ⊂ Γ. Moreover for s ∈ (1/4, 1/2) and large m, it holds
logms = logm+ log s ≥ 1

2 logm which yields that

r(msω) ≤ 2C0

logm
.

Therefore we obtain∫
RN

|ϕm(x)|q(x) dx ≥
∫ 1

2

s= 1
4

∫
ω∈D

e−
N
p logm

2C0
log m sN−1dsdSω

= HN−1(D) e−
2C0N

p
2−N − 4−N

N
> 0

for large m, where Hd is the d−dimensional Hausdorff measure. Thus, if we
assume the embedding from W 1,p

rad(RN ) to Lq(x)(RN ) is compact, then we have∫
RN |ϕ∞|q(x) dx > 0 which contradicts ϕ∞ ≡ 0. Hence the embedding from

W 1,p
rad(RN ) to Lq(x)(RN ) is not compact.
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Proof of Theorem 5.2. We assume that r < R without loss of generality. Let
{um}∞m=1 be a bounded sequence inW 1,p

rad(RN ). We shall show the existence of a
strongly convergence subsequence of {um}∞m=1 in Lq(x)(RN ). By the reflexivity
of W 1,p

rad(RN ), there exist a subsequence {umj}∞j=1 and u0 ∈ W 1,p
rad(RN ) such

that umj
⇀ u0 in W 1,p

rad(RN ) as j → ∞. Especially it also holds that umj
⇀ u0

in W 1,p(RN ) as j → ∞. And also, by Proposition 5.7 we have umj
→ u0 in

Lq(RN ) for any q ∈ (p, p∗) and

umj
→ u0 a.e. in RN as j → ∞. (71)

Furthermore, {umj |Br}∞j=1 ⊂ W 1,p(Br) is a bounded sequence and the em-

bedding from W 1,p(Br) to Lq(x)(Br) is compact by the assumption (67) (see
Remark 2 in [17]). Thus there exist a subsequence of {umj

|Br
}∞j=1 (we use

{umj
|Br

}∞j=1 again for simplicity) and v0 ∈ Lq(x)(Br) such that the followings
hold true:

umj |Br ⇀ v0 in W 1,p(Br),

umj
|Br

→ v0 in Lq(x)(Br),

umj
|Br

→ v0 in Lp(Br),

umj
|Br

→ v0 a.e. in Br as j → ∞. (72)

By (71) and (72), we can check that u0|Br
= v0 a.e. in Br which yields that

umj |Br → u0|Br in Lq(x)(Br) as j → ∞. (73)

In the similar way as above, we also obtain the followings

umj
|BK\Br

⇀ u0|BK\Br
in W 1,p

rad(BK \Br),
umj

|BK\Br
→ u0|BK\Br

in Lq(BK \Br), (74)

umj
|BK\Br

→ u0|BK\Br
a.e. in BK \Br

for anyK > 0 and any q ≥ 1 as j → ∞ since the embedding fromW 1,p
rad(BK\Br)

to Lq(BK \Br) is compact for any K, q.
Set vmj

:= umj
− u0. In order to make good use of (73) and (74) we divide∫

RN |vmj
(x)|q(x)dx into three terms as follows:∫
RN

|vmj
(x)|q(x)dx (75)

=

∫
Br

|vmj
(x)|q(x)dx+

∫
BK\Br

|vmj
(x)|q(x)dx+

∫
RN\BK

|vmj
(x)|q(x)dx

=: I1(j) + I2(j,K) + I3(j,K),

where K is sufficiently large.
Firstly, by (73) we have

I1(j) = o(1) as j → ∞. (76)
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Next, for I2(j,K) we have

I2(j,K) =

∫
BK\Br

|vmj
(x)|q(x)dx ≤

∫
BK\Br

|vmj
(x)| dx+

∫
BK\Br

|vmj
(x)|∥q∥L∞(RN ) dx.

Thus, by (74) we obtain

I2(j,K) = o(1) as j → ∞ for fixedK > 0. (77)

Finally we shall estimate I3(j,K). Since

|vmj
(x)| ≤

(
p

ωN−1

) 1
p

∥vmj
∥W 1,p(RN )|x|−

N−1
p ≤ C|x|−

N−1
p

by Proposition 5.6 and the boundedness of {vmj}∞j=1, we can assume |vmj (x)| ≤
1 for x ∈ RN \BK with large K. Therefore by the assumption (68) we obtain

I3(j,K) =

∫
RN\BK

|vmj
|q(x)dx ≤

∫
RN\BK

|vmj
|p+C1( log |x| )−ℓ

dx

≤
∞∑
n=2

∫
BKn\BKn−1

|vmj |p+C1(n logK )−ℓ

dx

≤
∞∑
n=2

∫
BKn\BKn−1

|vmj |p
(
C|x|−

N−1
p

)C1(n logK )−ℓ

dx

≤ CC1( 2 logK )−ℓ

∥vmj
∥p
W 1,p(RN )

∞∑
n=2

K−N−1
p (n−1)C1(n logK )−ℓ

≤ C

∞∑
n=2

δ
(n−1)1−ℓ

1 = C

∞∑
n=1

δn
1−ℓ

1 ,

where δ1 = δ1(K) := K−N−1
p C1( logK )−ℓ

→ 0 as K → ∞. Since
∑∞
n=1 δ

n1−ℓ

1 =

δ1 +
∫∞
1
δx

1−ℓ

1 dx <∞ for each δ1 ∈ (0, 1), we have

∞∑
n=1

δn
1−ℓ

1 → 0 as K → ∞.

Hence we have

I3(j,K) = o(1) uniformly in j as K → ∞. (78)

We go back (75) and by (76), (77), and (78) we have

lim
j→∞

∫
RN

|vmj (x)|q(x)dx = 0.

As a consequence we obtain umj → u0 in Lq(x)(RN ).
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5.3 Approximation method : Proof of Theorem 5.4

In this section, we show Theorem 5.4 by using Theorem 5.2. First, we prepare
the mountain pass theorem (Theorem 5.8) introduced in [22, 25], and so on
which are based on [3]. Let V be a Banach space and E ∈ C1(V,R). We define
a Palais-Smale sequence for E as {um} ⊂ V satisfying |E(um)| ≤ c uniformly
in m, and E′(um) → 0 in V ∗, where E′(·) is Fréchet derivative and V ∗ is the
dual space of V . We say that E satisfies (P.-S.) condition if any Palais-Smale
sequence has a strongly convergent subsequence.

Theorem 5.8 ( [22, 25]). Suppose E ∈ C1(V,R) satisfies (P.-S.) condition.
Assume that

(i) E(0)=0

(ii) There exist ρ > 0, α > 0 such that E(u) ≥ α for any u ∈ V with ∥u∥ = ρ.

(iii) There exists u1 ∈ V such that ∥u1∥ ≥ ρ and E(u1) < α.

Define
P = { p ∈ C([0, 1], V ) | p(0) = 0, p(1) = u1 } .

Then
β = inf

p∈P
sup

0≤t≤1
E(p(t))

is a critical value.

Proof of Theorem 5.4. Step 1. We may assume that R in the hypotheses of
Theorem 5.2 is sufficiently large such that ess infx∈BR

q(x) = p + C1(logR)
−ℓ

without loss of generality. Form ∈ N let {Rm} be a sequence such that R1 = R,
Rm → ∞ as m→ ∞. Then we set functions as

qm(x) =

{
q(x) if q(x) ≥ p+ C1(logRm)−ℓ,

p+ C1(logRm)−ℓ if q(x) < p+ C1(logRm)−ℓ.

Define a functional Jm from W 1,p
rad(RN ) to R by

Jm(u) =
1

p

∫
RN

(|∇u|p + |u|p) dx−
∫
RN

1

qm(x)
u
qm(x)
+ dx.

We can check that Jm ∈ C1(W 1,p
rad(RN ),R). Moreover, for each m, Jm satisfies

as follows:

(i) Jm satisfies (P.-S.) condition.

(ii) Jm(0) = 0,

(iii) There exist positive constants α, ρ such that Jm(u) ≥ α for any u ∈
W 1,p

rad(RN ) with ∥u∥W 1,p(RN ) = ρ,

(iv) There exists v ∈W 1,p
rad(RN ) such that ∥v∥W 1,p(RN ) ≥ ρ, Jm(v) < α.
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By Theorem 5.8 there exists a critical point um ∈W 1,p
rad(RN ) of Jm such that

Jm(um) = βm,

where βm is defined in the same way as β in Theorem 5.8. Thus um is a
non-trivial weak solution of

−∆pw + |w|p−2w = w
qm(x)−1
+ in RN . (79)

We can also see that um ≥ 0 by multiplying both sides of (79) by (um)−.

Proposition 5.9. {um} is bounded in W 1,p
rad(RN ).

We will prove this proposition at last of this section.
Step 2. Since {um} is a bounded sequence, there exists u0 ∈ W 1,p

rad(RN ) such

that um ⇀ u0 weakly in W 1,p
rad(RN ). Put

Gm =
⟨
|∇um|p−2∇um − |∇u0|p−2∇u0,∇um −∇u0

⟩
RN+(up−1

m −up−1
0 )(um−u0).

Then we have∫
RN

Gmdx =

∫
RN

(|∇um|p + upm) dx−
∫
RN

(|∇um|p−2∇um∇u0 + up−1
m u0) dx+ hm,

where hm =
∫
RN

[
|∇u0|p−2∇u0(∇u0 −∇um) + up−1

0 (u0 − um)
]
dx = o(1) as

m→ ∞. Moreover, from (86) and (87) in the proof of Proposition 5.9 it follows
that ∫

RN

(|∇um|p + upm) dx−
∫
RN

(|∇um|p−2∇um∇u0 + up−1
m u0) dx

=

∫
RN

(um)
qm(x)−1
+ ((um)+ − u0) dx

≤ 2 ∥uqm(x)−1
m ∥ q(x)

q(x)−1

∥um − u0∥q(x)

= 2 ∥um∥q(x) ∥um − u0∥q(x)

by the generalized Hölder inequality (see e.g. [16] Theorem 2.1). By the bound-
edness of {um} inW 1,p

rad(RN ) and Theorem 5.2 we have ∥um∥q(x)∥um−u0∥q(x) =
o(1) as m→ ∞. Hence ∫

RN

Gmdx = o(1) (80)

as m→ ∞. Recall that for p ≥ 1, a, b ∈ Rd we have

⟨
|b|p−2b− |a|p−2a, b− a

⟩
≥

{
22−p|b− a|p if p ≥ 2,

(p− 1)|b− a|2(1 + |a|2 + |b|2)
p−2
2 if 1 ≤ p ≤ 2.

From this inequality and (80) it follows that∫
RN

(|∇um −∇u0|p + |um − u0|p)dx = o(1)
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which is equivalent to um → u0 strongly in W 1,p(RN ). Thus u0 satisfies

−∆pu0 + up−1
0 = u

q(x)−1
0 , u0 ≥ 0 in RN .

Step 3. Finally, we have to show u0 ̸≡ 0. From the boundedness of {um} and
Proposition 5.6, we see that um ≤ 1 in RN \BL for large L. Therefore we have∫
RN

(|∇um|p+upm)dx =

∫
RN

uqm(x)
m dx ≤

∫
RN

upmdx+

∫
Br

up
∗

m dx+

∫
BL\Br

u
∥q∥L∞(RN )
m dx.

(81)
By the Sobolev inequality it follows that∫

Br

up
∗

m dx ≤
∫
RN

up
∗

m dx ≤ S− p∗
p

(∫
RN

|∇um|pdx
) p∗

p

. (82)

Moreover, we have

∫
BL\Br

u
∥q∥L∞(RN )
m dx ≤ C

[∫
BL\Br

(|∇um|p + |um|p)dx

] ∥q∥
L∞(RN )

p

≤ C

∫
BL\Br

|∇um|p +

(∫
BL\Br

|um|p
∗
dx

) p
p∗

|BL \Br|1−
p
p∗


∥q∥

L∞(RN )

p

≤ C

(∫
RN

|∇um|p
) ∥q∥

L∞(RN )

p

. (83)

Put q∗ := min{p∗, ∥q∥L∞(RN )}. From (81), (82), and (83), we obtain

C ≤
(∫

RN

|∇um|p
) q∗−p

p

,

where we used that um ̸≡ 0. By Theorem 5.2 we have

C ≤ lim
m→∞

∫
RN

|∇um|pdx

= lim
m→∞

∫
RN

(−upm + uqm(x)
m )dx

≤
∫
RN

u
q(x)
0 dx.

Consequently we have u0 ̸≡ 0.

Proof of Proposition 5.9. We take a smooth radial function û > 0 on RN .
Since

Jm(Kû) ≤ Kp

p

∫
RN

(|∇û|p + |û|p) dx−
∫
BR

Kq(x)

q(x)
û
q(x)
+ dx

≤ Kp

p

∫
RN

(|∇û|p + |û|p) dx− Kp+C1(logR)ℓ

ess supBR
q(x)

∫
BR

û
q(x)
+ dx→ −∞
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as K → +∞, there exists K̂ > 0 independent of m such that Jm(K̂û) < 0. If
we set p̂(t) = tK̂û for t ∈ [0, 1], then we see that

p̂ ∈ P̂ =
{
p ∈ C([0, 1],W 1,p

rad(R
N ))

∣∣∣ p(0) = 0, p(1) = K̂û
}
.

Moreover, we have

βm = inf
p∈P̂

max
0≤t≤1

Jm(p(t)) ≤ max
0≤t≤1

Jm(p̂(t))

= max
0≤t≤K̂

[
tp

p

∫
RN

(|∇û|p + |û|p) dx−
∫
BR

tq(x)

q(x)
û
q(x)
+ dx

]
≤ C. (84)

On the other hand, since um is a critical point of Jm at βm we have

βm =
1

p

∫
RN

( |∇um|p + |um|p ) dx−
∫
RN

1

qm(x)
(um)

qm(x)
+ dx (85)

and for any ϕ ∈W 1,p
rad(RN ),∫

RN

( |∇um|p−2∇um∇ϕ + |um|p−2umϕ ) dx−
∫
RN

(um)
qm(x)−1
+ ϕdx = 0. (86)

In particular, ∫
RN

(|∇um|p + |um|p ) dx−
∫
RN

(um)
qm(x)
+ dx = 0. (87)

From (84), (85), and (87), it follows that∫
RN

(
1

p
− 1

qm(x)

)
(um)

qm(x)
+ dx ≤ C.

Furthermore, by q(x) ≤ qm(x) we have∫
RN

(
1

p
− 1

q(x)

)
(um)

qm(x)
+ dx ≤ C. (88)

Thus for any L > 0 there exists a positive constant C(L) such that∫
BL

(um)
qm(x)
+ dx ≤ C(L). (89)

Here, we take a constant R0 > R sufficiently large (This R0 will be chosen
again later) and we have

∥um∥p
W 1,p(RN )

≤ C(R0) +

∫
RN\BR0

(um)
qm(x)
+ dx (90)
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by (87) and (89). Set δ = C1(logR0)
−ℓ and An,m := {x ∈ BRn

0
\BRn−1

0
| qm(x) ≤

p+ δ}. Then we obtain∫
RN\BR0

(um)
qm(x)
+ dx

≤
∫
{x∈RN | qm(x)>p+δ}

(um)
qm(x)
+ dx+

∫
{x∈RN\BR0

| qm(x)≤p+δ}
(um)

qm(x)
+ dx

≤
∫
{x∈RN | qm(x)>p+δ}

(um)
qm(x)
+ dx+

∞∑
n=2

∫
An,m

(um)
p+C1(nlogR0)

−ℓ

+ dx+

∞∑
n=2

∫
An,m

(um)p+δ+ dx

=: L1 + L2 + L3,

where third inequality comes from the assumption (68). We shall estimate L1,
L2, and L3. For L1, by (88) we have

L1 ≤
(
1

p
− 1

p+ δ

)−1 ∫
RN

(
1

p
− 1

qm(x)

)
(um)

qm(x)
+ dx = C. (91)

In order to estimate L2 and L3, we prepare an estimate of ∥um∥Lp(An,m). For
each n,m ∈ N we have∫

An,m

upm dx ≤ 2∥um∥p
Lqm(x)(An,m)

∥ 1 ∥Lrm(x)(An,m)

by the generalized Hölder inequality, where rm(x) := qm(x)
qm(x)−p . Now we as-

sume ∥um∥Lqm(x)(An,m) > 1 and ∥ 1 ∥Lrm(x)(An,m) > 1 (If not, the proof is much
simpler). By Proposition 2.2. in [15] we have

∥um∥Lqm(x)(An,m) ≤

(∫
An,m

uqm(x)
m dx

)(ess.infx∈An,mqm(x))
−1

≤

(∫
An,m

uqm(x)
m

) 1

p+(n log R0)−ℓ

.

Since∫
An,m

uqm(x)
m ≤

(
1

p
− 1

p+ (n logR0)−ℓ

)−1 ∫
RN

(
1

p
− 1

qm(x)

)
uqm(x)
m dx ≤ C(n logR0)

ℓ,

we obtain

∥um∥Lqm(x)(An,m) ≤ C(n logR0)
ℓ

p+(n log R0)−ℓ . (92)

In the same way as above, we have

∥ 1 ∥Lrm(x)(An,m) ≤

(∫
An,m

dx

)(ess.infx∈An,mrm(x))
−1

≤ |An,m |
1

1+pC
−1
1 (log R0)ℓ ≤ CR

n

1+pC
−1
1 (log R0)ℓ

0 ,

(93)
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where the second inequality comes from

ess.infx∈An,m
rm(x) = 1 +

p

ess.supx∈An,m
qm(x)− p

≥ 1 +
p

δ
= 1 + pC−1

1 (logR0)
ℓ.

From (92) and (93) we obtain∫
An,m

upm dx ≤ CR

n

1+pC
−1
1 (log R0)ℓ

0 (n logR0)
pℓ

p+(n log R0)−ℓ . (94)

For L2, by using (94) and Proposition 5.6, we have

L2 ≤ C

∞∑
n=2

∥um∥C1(nlogR0)
−ℓ

W 1,p(RN )
R
(−N−1

p )(n−1)C1(nlogR0)
−ℓ

0

∫
An,m

upm dx

≤ C∥um∥p
W 1,p(RN )

∞∑
n=2

R
− (N−1)C1

2ℓp
(n−1)1−ℓ(logR0)

−ℓ

0

(∫
An,m

upm

)C1(n log R0)−ℓ

p

≤ C∥um∥p
W 1,p(RN )

∞∑
n=2

R
− (N−1)C1

2ℓp
(n−1)1−ℓ(logR0)

−ℓ+
C1n1−ℓ(log R0)−ℓ

p+p2C
−1
1 (log R0)ℓ

0 (n logR0)
ℓC1

p+(n log R0)−ℓ (n logR0)
−ℓ

= C∥um∥p
W 1,p(RN )

∞∑
n=2

δ1(n,R0)
(n−1)1−ℓ

δ2(n,R0).

Since

δ2(n,R0) = (n logR0)
ℓC1

p+(n log R0)−ℓ (n logR0)
−ℓ

→ 1 as n→ ∞ or R0 → ∞,

there exists a positive constant C̃ which is independent of n and R0 such that

δ2(n,R0) ≤ C̃. (95)

On the other hand, for large R0 we obtain

δ1(n,R0) = R
−C1

p (logR0)
−ℓ

[
(N−1)

2ℓ
− 1

1+pC
−1
1 (log R0)ℓ

( n
n−1 )

1−ℓ
]

0 ≤ R
−C1(N−1)

2ℓ+1p
(logR0)

−ℓ

0

which yields that

δ1 = δ1(n,R0) → 0 uniformly in n as R0 → ∞. (96)

From (95) and (96) we have

L2 ≤ C∥um∥p
W 1,p(RN )

∞∑
n=2

δ
(n−1)1−ℓ

1 = o(1)∥um∥p
W 1,p(RN )

as R0 → ∞

in the same way as the proof of Theorem 5.2. Thus for sufficiently large R0 we
have

L2 ≤ 1

3
∥um∥p

W 1,p(RN )
. (97)
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In the same way as L2, we obtain the estimate of L3 for large R0 as follows.

L3 ≤ C∥um∥δW 1,p(RN )

∞∑
n=2

R
(−N−1

p )(n−1)δ

0

∫
An,m

upmdx

≤ C∥um∥p
W 1,p(RN )

∞∑
n=2

R
−N−1

p C1(n−1)(logR0)
−ℓ

0

(∫
An,m

upmdx

)C1
p (logR0)

−ℓ

≤ C∥um∥p
W 1,p(RN )

∞∑
n=2

R
−N−1

p C1(n−1)(logR0)
−ℓ+ n

1+pC
−1
1 (log R0)ℓ

C1
p (logR0)

−ℓ

0 (n logR0)
ℓC1

p(log R0)ℓ+n−ℓ

≤ C∥um∥p
W 1,p(RN )

∞∑
n=2

R
−N−1

2p C1(n−1)(logR0)
−ℓ

0 (n logR0)
ℓC1

p(log R0)ℓ+n−ℓ

≤ C∥um∥p
W 1,p(RN )

∞∑
n=2

R
−N−1

4p C1(n−1)(logR0)
−ℓ

0 ,

where the last inequality comes from

(n logR0)
ℓC1

p(log R0)ℓ+n−ℓ = o

(
R

N−1
4p C1(n−1)(logR0)

−ℓ

0

)
as n→ ∞ or R0 → ∞.

Therefore for sufficiently large R0 we have

L3 ≤ 1

3
∥um∥p

W 1,p(RN )
. (98)

From (90), (91), (97), and (98) we have

∥um∥p
W 1,p(RN )

≤ C +
2

3
∥um∥p

W 1,p(RN )
.

As a consequence um is bounded.

5.4 Mountain pass theorem under the condition (C) :
Proof of Theorem 5.4

In this section, we show Theorem 5.4 by a different method from Section 3.
Cerami [7] and Bartolo-Benci-Fortunato [5] have proposed a variant of (P.-

S.) condition. In this paper, we use the condition (C) introduced by [5, 7] and
the mountain pass theorem under the condition (C) (Theorem 5.11). Let V be
a real Banach space and E ∈ C1(V,R). First, we define the condition (C) based
on [5, 7].

Definition 5.10 ( [7], [5] Definition 1.1.). We say that E satisfies the condition
(C) in (c1, c2), (−∞ ≤ c1 < c2 ≤ +∞), if

(i) every bounded sequence {uk} ⊂ E−1((c1, c2)), for which {E(uk)} is bounded
and E′(uk) → 0, possesses a convergent subsequence, and
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(ii) for any c ∈ (c1, c2) there exist σ, ρ, α > 0 such that [c− σ, c+ σ] ⊂ (c1, c2)
and for any u ∈ E−1([c− σ, c+ σ]) with ∥u∥ ≥ ρ, ∥E′(u)∥∗∥u∥ ≥ α.

Theorem 5.11 (Mountain pass theorem under the condition (C)). Let E sat-
isfy the condition (C) in (0,+∞). Assume that

(i) E(0)=0

(ii) There exist ρ > 0, α > 0 such that E(u) ≥ α for any u ∈ V with ∥u∥ = ρ.

(iii) There exists u1 ∈ V such that ∥u1∥ ≥ ρ and E(u1) < α.

Define
P = { p ∈ C([0, 1], V ) | p(0) = 0, p(1) = u1 } .

Then
β = inf

p∈P
sup

0≤t≤1
E(p(t)) ≥ α

is a critical value.

For c ∈ R, we set

Ec = {u ∈ V | E(u) < c }, Kc = {u ∈ V | E′(u) = 0, E(u) = c }.

Note that Theorem 5.11 can be shown in the same way as the proof of Theorem
6.1 in p.109 in [25] by substituting the following deformation theorem under
the condition (C) for Theorem 3.4 in p.83 in [25].

Theorem 5.12 ( [5] Theorem 1.3.). Let E satisfy the condition (C) in (c1, c2).
If β ∈ (c1, c2) and N is any neighborhood of Kβ, there exist a bounded home-
omorphism η of V onto V and constants ε > ε > 0 such that [β − ε, β + ε ] ⊂
(c1, c2), satisfying the following properties

(I) η (Eβ+ε \N) ⊂ Eβ−ε

(II) η (Eβ+ε) ⊂ Eβ−ε if Kβ = ∅

(III) η (u) = u if |E(u)− β| ≥ ε.

We set a energy functional from W 1,p
rad(RN ) to R as

J(u) =
1

p

∫
RN

(|∇u|p + |u|p)−
∫
RN

1

q(x)
u
q(x)
+ dx.

We can check that J ∈ C1(W 1,p
rad(RN ),R).

Proposition 5.13. Assume that q(x) satisfies the hypotheses (67), (68) in
Theorem 5.2 and ess infx∈BR

q(x) > p. Then J satisfies the condition (C) on
R.
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Proof. We take c1, c2 ∈ R with c1 < c2 arbitrary. First, we shall show that J
satisfies (i) in Definition 5.10. Let {um} ⊂ W 1,p

rad(RN ) be a bounded sequence
satisfying that J(um) ∈ (c1, c2) and ∥J ′(um)∥∗ → 0 as m → +∞. Then the
following holds true for any ϕ ∈W 1,p

rad(RN ):∫
RN

( |∇um|p−2∇um∇ϕ + |um|p−2umϕ ) dx−
∫
RN

(um)
q(x)−1
+ ϕdx = o(1). (99)

In particular, since {um} is bounded it follows that∫
RN

(|∇um|p + |um|p ) dx−
∫
RN

(um)
q(x)
+ dx = o(1). (100)

Likewise since {um} is bounded, there exists a subsequence written as {um} for
simplicity and u0 ∈W 1,p

rad(RN ) such that um ⇀ u0 weakly in W 1,p(RN ). Put

Gm =
⟨
|∇um|p−2∇um − |∇u0|p−2∇u0,∇um −∇u0

⟩
RN+(up−1

m −up−1
0 )(um−u0)

as in Section 3. In the same way as Step 2 in the proof of Theorem 5.4 in
Section 3 by substituting (99), (100) for (86), (87) respectively we have∫

RN

Gm dx = o(1)

as m→ ∞ by Theorem 5.2. Recalling that

⟨
|b|p−2b− |a|p−2a, b− a

⟩
≥

{
22−p|b− a|p if p ≥ 2,

(p− 1)|b− a|2(1 + |a|2 + |b|2)
p−2
2 if 1 ≤ p ≤ 2,

and consequently we have

lim
m→∞

∫
RN

(|∇(um − u0)|p + |um − u0|p) dx ≤ C lim
m→∞

∫
RN

Gm dx = 0.

This implies that um → u0 strongly in W 1,p(RN ).
Next, we shall show (ii). For any c ∈ (c1, c2), we take some σ with [c −

σ, c + σ] ⊂ (c1, c2). We will choose suitable ρ > 0 again later. By deriving a
contradiction, we show that there exists α > 0 such that for any u ∈ J−1([c−
σ, c+σ]) with ∥u∥ ≥ ρ, ∥J ′(u)∥∗∥u∥ ≥ α. We assume that there exists {um} ⊂
W 1,p

rad(RN ) such that um ∈ J−1([c − σ, c + σ]) with ∥um∥W 1,p(RN ) ≥ ρ, and
∥J ′(um)∥∗∥um∥W 1,p(RN ) =: αm → 0 as m → +∞. Since J ′(um)um → 0 as
m→ +∞, we have ∣∣∣∣ ∥um∥p

W 1,p(RN )
−
∫
RN

(um)
q(x)
+ dx

∣∣∣∣ ≤ αm

which yields that

c+ σ ≥ J(um)

≥
∫
RN

(
1

p
− 1

q(x)

)
(um)

q(x)
+ dx− αm. (101)
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Moreover, in the same way as the proof of Proposition 5.9, for large m we have∫
An

upm dx ≤ CR

n

1+pC
−1
1 (log R0)ℓ

0 (n logR0)
pℓ

p+(n log R0)−ℓ , (102)

where An := {x ∈ BRn
0
\ BRn−1

0
| q(x) ≤ p + δ} for n ≥ 2, and R0 is the same

as the proof of Proposition 5.9. By substituting (101), (102) for (88), (94), we
obtain the following estimates:

∥um∥p
W 1,p(RN )

− αm ≤
∫
BR0

(um)
q(x)
+ dx+

∫
RN\BR0

(um)
q(x)
+ dx

≤ C(R0)(c+ σ + αm) +
2

3
∥um∥p

W 1,p(RN )
,

where C(R0) is a positive constant independent of ρ. Therefore we have

∥um∥p
W 1,p(RN )

≤ 3{αm + C(R0) (c+ σ + αm) }

≤ 3{ 1 + C(R0) (c2 + 1) } (103)

for large m. If we choose sufficiently large ρ satisfying ρ > 31/p{ 1+C(R0)(c2+
1) }1/p, then we see that (103) contradicts ∥um∥W 1,p(RN ) ≥ ρ.

The proof of Proposition 5.13 is now complete.

Proposition 5.14. Assume that q(x) satisfies the hypotheses (67), (68) in
Theorem 5.2 and ess infx∈BR

q(x) > p. Then J has the mountain pass geometry,
that is J satisfies (i), (ii) and (iii) in Theorem 5.11.

Proof. (i) is obvious. We prove (ii). Let S be the best constant of the Sobolev in-
equality : S∥v∥p

Lp∗ (RN )
≤ ∥∇v∥p

Lp(RN )
for v ∈ C∞

c (RN ). Set q∗ = max{p∗, p2, ∥q∥L∞(RN )}.
Note that q∗ ≥ p∗ > pN/(N − 1). For u ∈ W 1,p

rad(RN ) with ∥u∥W 1,p(RN ) = γ, it
follows that∫
RN

1

q(x)
u
q(x)
+ dx ≤ 1

p

∫
RN

|u|p + 1

p

[∫
Br

|u|p
∗
dx+

∫
RN\Br

|u|q
∗
dx

]

≤ 1

p

∫
RN

|u|pdx+
1

p

(S−1

∫
RN

|∇u|pdx
) p∗

p

+ ∥u∥q
∗ p−1

p

Lp(RN )
∥∇u∥

q∗
p

Lp(RN )
K(r)


≤ 1

p

∫
RN

|u|pdx+
1

p

∫
RN

|∇u|pdx
[
S− p∗

p γp
∗−p +K(r)γq

∗−p
]
,

where K(r) = (p/ωN−1)
q∗/p ∫

RN\Br
|x|−q∗(N−1)/pdx < ∞ and the second in-

equality comes from Proposition 5.6. From this if γ is sufficiently small, we
have

J(u) ≥ 1

p

∫
RN

|∇u|pdx
[
1− S− p∗

p γp
∗−p −K(r)γq

∗−p
]
> 0. (104)
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For {um} ⊂ W 1,p
rad(RN ) and γ satisfying ∥um∥W 1,p(RN ) = γ and (104), we as-

sume that J(um) → 0 and derive a contradiction. From (104) it follows that∫
RN |∇um|pdx→ 0. In addition, for sufficiently large R we have∫
RN

1

q(x)
(um)

q(x)
+ dx ≤ 1

p

(∫
Br

|um|q(x)dx+

∫
BR\Br

|um|q(x)dx+

∫
RN\BR

|um|q(x)dx

)

≤ 1

p

[∫
Br

|um|p
∗
+

∫
BR

|um|pdx+

∫
RN\Br

|um|q
∗
+

∫
RN\BR

|um|p+C1(log|x|)−ℓ

dx

]

=
1

p
(H1 +H2 +H3 +H4).

By using the estimates in the calculation of
∫
RN (u)

q(x)
+ /q(x)dx to show (104)

we have H1 = o(1) and H3 = o(1) as m→ ∞. For H2 we have

H2 ≤ |BR|1−
p
p∗ S−1

∫
RN

|∇um|p = o(1).

We can show that H4 is bounded uniformly for m and H4 → 0 as R → ∞ in
the same way as the estimate of I3(j,K) in the proof of Theorem 2. Therefore∫

RN

1

q(x)
|um|q(x)dx→ 0

as m→ ∞, and which implies ∥um∥W 1,p(RN ) → 0 since J(um) → 0 as m→ ∞.
This contradicts ∥um∥W 1,p(RN ) = γ.

Finally, we prove (iii). We take a smooth radial function v such that
∥v∥W 1,p(RN ) = γ, v > 0 in BR, where R is in the hypothesis (68). Recall-
ing that q := ess infx∈BR

q(x) > p. By taking sufficiently large t we have

J(tv) =
tp

p

∫
RN

(|∇v|p + |v|p)dx−
∫
RN

tq(x)

q(x)
v
q(x)
+ dx

≤ tp

p

∫
RN

(|∇v|p + |v|p)dx− tq
∫
BR

1

q(x)
v
q(x)
+ dx

< 0.

Since ∥tv∥W 1,p(RN ) > γ we prove (iii).

Proof of Theorem 5.4. From Proposition 5.13, Proposition 5.14, and Theo-
rem 5.11, we can show the existence of a non-trivial critical point u ∈W 1,p

rad(RN )

which is a weak solution to −∆pu+ |u|p−2u = u
q(x)−1
+ in RN . Then we also see

that u ≥ 0 in RN .

5.5 Appendix

In this section we show Proposition 5.6 and Proposition 5.7.
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Proof of Proposition 5.6. It is sufficiently to show (70) holds for f ∈ C∞
c (RN )

with radially symmetric. We have that

rN−1|f(r)|p = −
∫ ∞

r

d

ds

(
sN−1|f(s)|p

)
ds.

By direct calculation we have

(sN−1|f(s)|p)′ = (N − 1)sN−2|f(s)|p + psN−1|f(s)|p−2f(s)f(s)′.

Thus it follows

rN−1|f(r)|p = −(N − 1)

∫ ∞

r

sN−2|f(s)|pds− p

∫ ∞

r

sN−1|f(s)|p−2f(s)f(s)′ds

≤ p

∫ ∞

r

sN−1|f(s)|p−1|f(s)′|ds

≤ p

ωN−1
∥f∥p−1

Lp(RN )
∥∇f∥Lp(RN ).

Consequently (70) follows immediately.

Proof of Proposition 5.7. By (70) we have∫
RN\BR

|u|qdx ≤ Cu

∫
RN\BR

|x|−
N−1

p q = Cu

∫ ∞

R

r−(N−1)( q
p−1)dr,

where Cu =
(

p
ωN−1

)q/p
∥u∥q(p−1)/p

Lp(RN )
∥∇u∥q/p

Lp(RN )
. When (N − 1)(q/p − 1) > 1,

that is, q > pN/(N − 1) we have∫
RN\BR

|u|qdx ≤ CuR
−(N−1)( q

p−1)+1.

Let {um} be a sequence such that um ⇀ 0 weakly in W 1,p
rad(RN ). Firstly we

show that the case of q ∈ (pN/(N − 1), p∗). In this case we have∫
RN

|um|qdx ≤
∫
BR

|um|qdx+ Cum
R−(N−1)( q

p−1)+1.

Since Cum
is bounded from above uniformly, letting m → ∞ and R → ∞ we

have um → 0 strongly in Lq(RN ).
Next, for q ∈ (p, pN/(N − 1)] using interpolation of Lq space, we have

∥um∥Lq(RN ) ≤ ∥um∥λLp(RN )∥um∥1−λ
Lr(RN )

,

where r ∈ (pN/(N−1), p∗). Since ∥um∥Lr(RN ) → 0 and ∥um∥Lp(RN ) is bounded
we have ∥um∥Lq(RN ) → 0.
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