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1 Introduction

The main topic of this thesis is the Hardy-Sobolev inequality

WECERNAC
TN(Y) (/Q dw) S/Q(|Vu|2+)\u2)dx.

|z[*

The bounded embedding H'(Q) «— L2 ()(Q, |z|~*dzx) is non-compact when
0 € Q, and thus existence of the minimizer of the largest possible constant
,ui\{A(Q) is non-trivial. Concerning this problem, the position of the origin in
bounded domain 2 plays a crucial role. Moreover, non-invariance of the scale
of the domain is also important. This is completely different from the best
constant on the embedding H}(Q) < L2 ()(Q,|z|~*dx). Related to the scale,
we can see that the inequality with the pair (A?,Q) is equivalent to that with
the pair (1, AQ2), and thus we can control the scale by the positive parameter \.

In section 2, we consider interior singularity case, that is 0 € Q. In this
case, we show existence and non-existence of the minimizer depending on the
parameter \. More precisely, the borderline exists uniquely and the minimizer
exists when A is less than the borderline, and does not exists when A is greater
than the borderline.

The situation of boundary singularity case (0 € 99) is more complicated.
The mean curvature at the origin is important role. In the positive mean
curvature case, the existence result is obtained. We study the non-positive
mean curvature case in section 3 and section 4. In this case, assuming that
the dimension is greater than 3, we prove existence and non-existence of the
minimizer depending on the parameter A. These results are same as section 2
and different from that in the positive case. In addition, if A is on the borderline,
we can obtain existence result. Thus the minimizer exists if and only if A is
less than or equal to the borderline. In order to prove these results, we use
technique of the blow-up analysis. We consider the asymptotic behavior of
the least-energy solutions for the corresponding elliptic equation as A — oo.
By obtaining the fine properties of the least-energy solutions, we can obtain
the asymptotic behavior of ué\’[ 1 (£2). We can show existence and non-existence
result by using the behavior of ui,\f 1 (). In section 3, we prove uniqueness of
the minimizer other than these above results. We can prove this result by
considering the asymptotic behavior of the least-energy solutions as A — 0.

Section 5 is a joint work with Megumi Sano (Osaka City University). In
section 5, we change topic and consider the embedding H'(Q2) — L)(Q).
The function space LQ(')(Q) is the Lebesgue space with a variable exponent.
In bounded domain case, many researchers have studied so far. In section 5,
we study compactness and non-compactness of the embedding er (;Z(RN ) <
LIO)(RN). Related to the property of a variable exponent ¢, we found the
borderline on compactness and non-compactness explicitly in a certain sense.
As an application of our results, we show existence of the solution for quasilinear
elliptic problem involving a variable exponent.
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2 Minimization problem on the Hardy-Sobolev
inequality

Abstract

We study minimization problems on Hardy-Sobolev type inequality.
We consider the case where singularity is in interior of bounded domain
Q c RY. The attainability of best constants for Hardy-Sobolev type
inequalities with boundary singularities have been studied so far, for ex-
ample [5] [6] [9] etc.... According to their results, the mean curvature
of 0N at singularity affects the attainability of the best constants. In
contrast with boundary singularity case, in interior singularity case it is
well known that the best Hardy-Sobolev constant

9 N |u|2*(5)
ws(2) := / |Vu|"dz|u € Hy (), / de =1
Q

o lzf?
is never achieved for all bounded domain 2. We can see that the position
of singularity on domain is related to the existence of minimizer. In
this section, we consider the attainability of the best constant for the
embedding H' () < L2 ®)(Q, || ~*dz) for bounded domain Q with 0 €
Q. In this problem, scaling invariance doesn’t hold and we can not obtain
information of singularity like mean curvature.

2.1 Introduction

We study minimization problems on the Hardy-Sobolev type inequalities. Let
N >3, Qis a bounded domain in RV, 9 satisfies the cone property, 0 < s < 2,
and 2*(s) := 2(N —s)/(N —2). Unless otherwise stated, we assume that 0 € Q.
The Hardy-Sobolev inequality asserts that there exists a positive constant C'
such that

2
2% (s) 2% (s)
c( '“W d:z:) g/ V| 2da (1)
Q Q

for all u € Hg(£2). For s = 0, the inequality (1) is called Sobolev inequality and
for s = 2, the inequality (1) is called Hardy inequality.

In the non-singular case (s = 0), it is well known that the best Sobolev
constant S is independent of domain 2 and S is never achieved for all bounded
domains. But if Q = RY and H{ () is replaced by the function space of u €
L2N/(N=2)(Q) with Vu € L?(f), then S is achieved by the function u(z) = ¢(1+
|2[2)2=N)/2 and hence the value S = N(N — 2)x[['(N/2)/T(N)]*/N explicitly
(see [1], [13] and [16]).

In the case of s = 2, the best constant for the Hardy inequality is [(N —2)/2]?
and this constant is never achieved for all bounded domains and RY. This fact
suggests that it is possible to improve this inequality. For example Brezis and
Vazquez [2], many people research the optimal inequality of (1). In other words,
the best remainder term for (1) is studied actively.




In the case of 0 < s < 2, the best Hardy-Sobolev constant is defined by

2*(s)
we HY(Q), i e = 1} .

s (2 ::{ Vul|’dx
@ =1 [ Ivu B

Q

This constant has some similar properties to these of the best Sobolev constant.
Indeed, due to scaling invariance, p(€2) is independent of €2, and thus ps :=
1s(Q) = ps(RY) is not attained for all bounded domains. If = RY, then s,
is attained by

ya() = [a(N — 8)(N = 2)]775 (a + [2]>*) 5>

for some a > 0 and hence

W—1F2]¥:ss =
wor T >> o)

ps = (N =2)(N — s) < =
= T
(see [9] and [13]) where wy_; is the area of the unit sphere in RY.
In boundary singularity case, the result of the attainability for us(Q) is quite
different from that in the situation of 0 € Q. By Ghoussoub and Robert [6], it
has proved that if 2 has smooth boundary and the mean curvature of 9f2 at 0
is negative, then the extremal of ps(f2) exists for all N > 3. Recently, Lin and
Wadade [14] have studied the following minimization problem;

3 2" (s)
12 (9Q) = inf {/ Vul?dz + A (/ u|”dm> we HAQ), / Pl ™ g = 1}
Q Q Q

|z[*
where A € R and 2 < p < 2N/(N — 2). Furthermore, as related results, Hsia,
Lin and Wadade [10] studied the existence of the solution of double critical
elliptic equations related with :“;\72* (Q), that is, they have showed the existence
of the solution for

—Au+u? "+ ER =0, u>0, in Q
u=20 on 0f

uz*(s)—l

under the appropriate conditions where 2* = 2N/(N — 2). To prove these
results, we use the theorem of Egnell [4]. He showed that the existence of the
extremal for (Q2) if Q is a half space RY or an open cone. The open cone C is
written of the form C := {x € RV |z = rf, § € X} where ¥ is connected domain
on the unit sphere SV =1 in RY. By this result, we can see that i4(C) > ps(RY)

and there is a positive solution for

2% (s)—1 .
{Au =M g,

ER

u=0 ondC, and u(z)=o(z|>N)asz— co.

The Neumann case also has been studied. Let € has C? boundary and the
mean curvature of 9 at 0 is positive. Ghoussoub and Kang [5] have showed



that there is a least energy solution for

fAqu)\u:% in Q,
%:0 on 0f)

for N >3, A > 0.

Like these results, if 0 € 02, we can use the benefit of the mean curvature
of 900 at 0 to show the results. However if 0 € 2, we cannot obtain the
information of singularity such the mean curvature, and the fact causes some
technical difficulties.

In this section, we consider the attainability for the following minimization
problem

2*(s)
u € HY(Q), [l de =15,
o |=f°

Né\{,\(Q) = inf {/ (|Vul? 4+ Mu?)dz
Q

where X is a positive parameter. This parameter means the scale of Q. Ac-
tually uffl(ﬁﬂ) = ui\fA(Q) and attainability of uévl(\ﬂﬂ) is equivalent to
attainability of MQI 1 (). The main theorem is as follows:

Theorem 2.1. There exist a positive constant Ay = A (Q) such that the fol-
lowing statements hold.

(1) ué\;\(Q) is attained for any 0 < XA < A
(1I) ui\;\(Q) is not attained for any A > X,.

(III) We have

A > s (/ m|_sdx) |Q|_1
Q

where ps is defined in (2), || is the N-dimensional Lebesque measure of
domain €.

The rest of this section is organized as follows. In 2.2 we introduce three
lemmas to prove Theorem 2.1. Then in 2.3 we prove Theorem 2.1 using the
lemmas in 2.2. In Section 2.4, as an application, we consider the case when
the singularity is on the boundary of domain. Then we introduce a new result
concerning the attainability of ,ui\f 1 () in boundary singularity case.

2.2 Preparation

In this subsection, we prepare some lemmas to prove Theorem 2.1.

Lemma 2.2. (i) ,u,i\”)\(Q) < us holds for any A > 0.



(i) ué\fk (Q) is continuous and non-decreasing with respect to \.

(i) limy_q M?&(Q) =0.
Proof. We show (i). For € > 0 we set

Ue

Ud(z) = (e + |22, ue(z) = o(@)Us(x), ve=

2% (s)

T
u 2%(s)

where ¢ € C°() is a cut-off function such that 0 < ¢ < 1in Q, ¢ = 1 in
Br(0), » =01in Q\ Byr(0). Due to Lemma 11.1 in [9], we have

O(e77) (N >5)
[ IVuPde =+ 03, [ 2ar= ooty (N =1),
’ ’ O0(e=7) (N =3)

as € — 0. Hence we obtain (i). (ii) is obtained immediately by the definition of

1Y, (). In order to prove (iii) we use a constant. Set C' = ([, |x|*5dx)71/2*(s).
Then C satisfies the constraint of ul, () and
2
N 2 - o
e A () < )\/ Cdx = \|Q| / |x| " *dx .
’ Q Q
Letting A — 0 and hence we obtain (iii). O

Lemma 2.3. There exists a positive constant C which depends on only 2 such
that

2*(s) PO
w ([ ME20) ™ < [1wuparve [ e wem@y o)
Q Q Q

jz]?

Before beginning the proof, we make a remark. H. Jaber [12] has shown
that the following theorem.

Theorem 2.4. ( [12]) If (M,g) is a compact Riemannian manifold without
boundary and 0 € M, there is a constant C = C(M, g) such that

2*(s) )

Is ( u|dvg> < / |Vu|?dv, +C/ u?dv, (u€ H'(M))
M dg(7,0)* M Q

where dg is the Riemannian distance on M.

Different from Theorem 2.4, Q is bounded domain of R and therefore O
has a boundary, thus we can show the inequality (3) simply.



Proof. Let 0 € Q1 C Q2 C Q and these two subdomain are taken suitable again
later. A cut-off function is defined by ¢ which satisfies

peCT(), 0<¢p<1in, ¢=1on, ¢=00nN)\N.
Here, we construct a partition of unity 71, 72 defined by

. ¢? - (1—¢)? .
P?+ (1 - )%’ #?+ (1 - 9¢)?

Note that 771%, 172% € C?(Q) by the definition. We may assume that u € C*°(Q)N
H'(Q2) by density. We have

_2
‘u|2*(s) 2% (s) )
MS( o o = psllel a2 ooy

L2 ()/2(9, ] =)

S ps Z ||niu2HL2*(5)/2(Q,\w|—S)
i=1
2 1 2% (s)
_ |77i2“|2 (=)
= s ; </Q EE d
= L+

We estimate I, I> for each.
For I, since suppn: C §2 we can use the Hardy-Sobolev inequality. We get

that
2%
L o= /"7“" /|v ngu)|2dz
||®

/\Vu\ mdx—l—/v ne) - V(nu?)de.

1
Since n{ € C?(Q) we may integrate by parts the second term and hence we
obtain

L < /|Vu\ nldx—/A 1% S utde (4)



For I, since 0 ¢ suppre and taking account to that » = 0 on €2, we have

2 2
3,127 (s) GO 3,,127(5) e
Lo= [T / s ul” ™ 4,
Q |z O\ |z
L Eae)
peva [ mdul Vo
Q\Qy

<
< s |Q\QFE (/ 772;U|2*d$>
O\
< psa-|Q\ %—%S(Q,Ql)—l/ IV (nF w)|?de
O\
= psra- |\ %‘%S(Q,Ql)*l/ IV (0} u)da
Q

where a := dist(0,9Q;)~2%/2" () and

S(Q,Q) := inf / |Vu|*dz
o\

Here, let us take Qp C Q. It is clearly that a < dist(0,980) 2/ (®),
On the other hand, for u € H*(2\ 1) such that v = 0 on 9y, we define
v e HY(Q\ Q) by

uEHl(Q)7u:Oon8§21,/ lu* de =1} .
o\

u in Q\ O
V=
0 in Ql\Qo.

By identifying u € H(Q\ 1) with v € H*(Q\ Q) concerning the calculation
of the Sobolev quotient, we may see that

{fue H(Q\ Q)|u=00n 0} C {uc H(Q\ Q)|u=0on dQ}.

Hence we obtain S(Q, ;) > S(Q,Qp). Consequently, if ; is sufficiently large,
a and S(Q,Q;)~! is bounded from above uniformly. By choosing €2; and s
close to €2 we obtain

1 1
h<i / V(2 w)|2de.
Q

Therefore
1
Izg/ |Vu|2n2dx+/ (V03 [Pud. (5)
Q Q

11
Here, since 77, n3 € C%(f) there is a positive constant C such that
1 C

A2 < =

max |A(ng ) < 3,

This constant depends on only ).



Consequently (4), (5) and (6) yield that
W2 \TE
( J;) <L+ < / |Vu|2dx + C'/ uldx
|z[° Q )

Lemma 2.5. The following statements hold true;

(i) If /Lg)\(ﬂ) < s, then u (Q) is attained.

(ii) If there exist A, such that /,Lé\)])\*(Q) = ps, then yé\fA(Q) is not attained for
all A > A,

Proof of Lemma 2.5 (i). Assume {u,}2>, C H'(Q) is a minimizing sequence
of ,ué\f)\(Q). By the constraint of ,u?jA(Q) we have

" (s)
o dr=1 7
L g
for all n € N and which implies
/(\Vun|2 + Mud)dz = pll\(Q) +o(1)  (n— o0). (8)
Q

Thus u,, is bounded in H'(£2). So we can suppose, up to a subsequence,

Up —u  in HY(Q)
u, »u in LP(Q) (1 <p<2%)
U, = u in LYQ, |z|"%dx) (1 < q<2%(s))

Uy — U a.e.in )

as n — 0o.
For this limit function u, we show that u Z 0 a.e. in 2. Assume that u =0
a.e. in . By the inequality (3) in Lemma 2.3,

|u |2 2*(5)
,us( Tx\ dx) / [V, dm+C’/ u?dx (9)
Q

holds for all n. Thus (7), (8), (9) and u,, — 0 in L?(Q) yield
prs < i () + o(1).

Letting n — oo, we obtain pgs < ué\f/\(Q) and which is a contradiction in the

assumption of Mi‘\,fk () < ps. Consequently u # 0.
By the theorem of Brezis and Lieb (see [3]), we obtain

2%(s) 27(s) — )27
/%dm:/ ful . der/ %dz+o(l)
o |7l o |7 Q |z

10




and it follows that

2
2% (s) PO
()
Q Iw\s
- (/ W /Q EE dm) o)
2
|u|2 (s) / |Un 5% (5)
1).
(Q e e o)

On the other hand, we have

( Juf*” (S) )2*” (/ Jun — uf*" ) )22<>
|z]* B

Jo(IVul* + xu?)d N Jo IV (un, = u)[? + Ay — uw)?da
- A (Q) 1 ()
Viun|? + Au2)d
MS,)\(Q)
= 14 o(1).

Hence there exist a limit and we obtain

2
— )27 () 27 (s)
n—oo \ Jo |$|S Q ||
( sy )zw (/m e ><>
n—00 || ||

By the equality condition of the above, we get either

!
g

=0 aeinQ or u,—»u#0 inL¥E(Q, |z dx).

Since u # 0 we obtain u, — u % 0in L2 ()(Q, |z|~*dz) and [, |u|*" ) /|z|*dz =
1. Hence this v is the minimizer of u¥ (Q). O

Proof of Lemma 2.5 (ii). We assume that A > A,, v is a minimizer of ui\f/\(Q)
and derive a contradiction. We have

i) = (Va4 ad > [l + Ao = i (@),
RN i
By Lemma 2.2 and the assumption ,ui\f/\* (Q) = ps we have

fs = ui\,&(ﬂ) > qu\f,\*(ﬂ) = Us.

This is a contradiction. O

11



2.3 Proof of Theorem 2.1

In this section, we prove Theorem 2.1.
Proof. Define a positive constant A, by
A« = inf {C > 0 | Inequality (3) holds.}
By the definition of A\, we have
N .
P A (€2) < pus if A<\
paa(Q) =ps i A=A

Consequently by Lemma 2.5 we obtain (i) and (ii). Finally, from the definition
of A\, we have

|u|2*(s)

ps(Jo M de) T = [ [Vul*de
fQUQdJ?

> ( / |x|-édw) 0.
Q

A = sup ue HY(Q)\ {0}

2.4 Singularity on the boundary

Throughout this subsection, we assume that 0 € 0. A situation where 92 €
C? and the mean curvature of 9Q at 0 is positive has studied by [5]. In this
subsection we assume that 0Q is “flat” near 0, that is for Q after rotation
there exists 7 > 0 such that B,(0) N Q = B, (0) := B,(0) NRY, where RY :=
{(z',zn) € R¥|z,, > 0} is a half space. This condition is a special case of
vanishing of the mean curvature of 02 at 0. We show the following results by
using the strategy in 2.2 and 2.3.

Theorem 2.6. Let Q C RY be bounded domain, 0 € 0 and 0 is flat near
0. Then there exists a positive constant A = s (Q) such that the following
statements hold;

(1) ,ui,\{A(Q) is attained for any 0 < A < Ayx

(II) u?{A(Q) is not attained for any A > ..

(III) We have

2
2% (s)
A 2'[;{;. <A $|_Sd$) |Q|—1

12



We prove the theorem in the same way as in Section 2 and Section 3. Dif-
ferent from the proof of Theorem 2.1, we need the following lemma instead of
Lemma 2.3.

Lemma 2.7. There is a positive constant C' depends on only 0 such that

2" (s)

BO)
l:f ( Ju d;zc) S/ |Vu\2dx+0/u2da? (u € HY()). (10)
ov=: \Jo |z[° Q Q

Proof. By the hypothesis of 2 we take a constant » > 0 such that B.(0)NQ =
B (0). For u € H*(Q) we have

2 2
2"(s) 27(s) 2*(s) 2*(s) (3
( i da:) = / it dm+/ = g
o |zl By |7l o\Bt©) |7l
_2 _2
)T )
dzx + dx
</Bi(o) |z[* o\Bro) |7l

= J1+ Jo.

IN

For u € HY(B;5(0)), @ € H'(B,(0)) is defined by the even reflection for the
direction z, that is,

., u(z', zn) ifo<zy<1
U(.’E 7xN) = .
u(r',—xn) i —1<ay<O.

Concerning Ji1, by Lemma 2.3 we have

2
2% (s) =5
J1 = / |u‘ N dx
Bfo) |TI°
2 . sy
(1)2*@ / |a|? (s)d ()
- X
2 B,(0) |T|*

2

1\ =
() pyt / |Va|*dx + Cy / a*dx
2 B,(0) B, (0)

2

1\ =@
= () pst -2 / |Vu|2dx—|—01/ u?dx
2 B (0) B (0)
—1
< /;Lss) / |Vu\2dx+01/ u?dx
2N=s B (0) B (0)

for some positive constant Cy depends on only B,.(0).
Next, we estimate Jz. Let § > 0 for sufficiently small. We consider {¢; }/,

a partition of unity on  \ B;(0) such that ‘257:% € C' and [suppg;| < 4 for all 4.

IN

13



Since |z|7% < r~* for z € Q\ B;}(0) we have

2

_2 -

b ([ ()
2 = < kel NN
st |7° — \Ja\sro) |zI°

2

()
— % 2% (s) )
T Z </Q\B+(0) 2 ul dm)

By Holder inequalities it follows that

/ ¢ ul* P da < [suppe;|T® =
Q\B;(0)

IN

1
(@) 2 ||¢7?U\|iz*(Q\Bi(0))

2
ST~

IN

“HLz*(Q\B+(0)>

for each i € N. Since 0 is sufficiently small, by using the Sobolev inequalities (If
necessary we use the Sobolev inequalities of mixed boundary condition version.)

we have
Hs 2
J2 < ( — ) E / u) dx.
213775 Q\B;(0)) |

Consequently we have

~1
J2 < < /:f ) / |Vu\2dx+02/ u?dz | .
2N=s OB (0) OB (0)

for some positive constant Cy depends on only Q \ B;f(Q2). Combining the
estimates of J; and Jy we obtain

( ) §J1+J2§< PEry ) (/ |Vl dx—l—C/ 2dac>
o |z

for some positive constant C' depends on (). O
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3 Asymptotic behavior of the least-energy so-
lutions of a semilinear elliptic equation with
the Hardy-Sobolev critical exponent

Abstract

We investigate the existence, the non-existence and the asymptotic
behavior of the least-energy solutions of a semilinear elliptic equation
with the Hardy-Sobolev critical exponent. In the boundary singularity
case, it is known that the mean curvature of the boundary at origin plays
a crucial role on the existence of the least-energy solutions. In this section,
we study the relation between the asymptotic behavior of the solutions
and the mean curvature at origin.

3.1 Introduction

Let N > 3, Q ¢ RY bounded domain with smooth boundary, 0 < s < 2,
2*(s) = 2(N — s)/(N — 2) and A\ be a positive parameter. In this section
we assume that 0 € 992. We study the existence, the non-existence and the
asymptotic behavior as A — oo of the least-energy solutions of

—Au+ Au = “2;;7271, u>0 in Q, (11)
% =0 on 0f).

The existence of the least-energy solution of (11) is equivalent to the existence
of the minimizer for the corresponding minimization problem

2 (s)
we mi(), [

iN\(9) = in {/ (IVul? + Mu2)dz
Q

do = 1} . (12)

o |zl

Actually, if the minimizer u) for ui\f/\(Q) exists then vy := ué\f)\ (Q)YN=2)/(4=25)y,
is a least-energy solution of (11) and vise versa.

Minimization problems and semilinear elliptic equations on the Hardy-Sobolev
type inequality have been studied extensively by many authors. The Dirichlet

case, that is, concerning the attainability for

A

2%(s)
u € Hy(Q), [ul dazzl}
o |z

pP(Q) = inf {/ \Vu|?dx
Q

is studied in [8-11,13,15]. In the interior singularity case, the remainder term
of the Hardy-Sobolev inequality is studied by [16]. The optimal Hardy-Sobolev
inequality on compact Riemannian manifold is also studied due to [14].

In the Neumann case, we have obtained some results. In the interior singu-
larity case, the existence and non-existence results of the minimizer for ,ui\f A ()
are obtained by [12]. In the boundary singularity case, some results are due
to [5,8,12]. Due to these results, the attainability for ,uﬁv/\(Q) is different for
each situation. In both the Dirichlet case and the Neumann case, the position
of 0 on Q affects the attainability for the best constant.
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There are many results on the least-energy solutions of the Neumann prob-
lem

(13)

—dAu+u=uP, u>0 in Q,
%20 on Of)

where d > 0 is a constant. It is shown that the least-energy solution of (13)
exists by [1,23] and so on. Moreover, by for instance [3,4,24,25] Lin-Ni’s con-
jecture is studied, that is, they investigate that for d sufficiently large whether
the solution of (13) is only constant or not.

The asymptotic behavior of the least-energy solutions as d — 0 is studied
particularly by [2,17-21]. In the subcritical case 1 < p < (N + 2)/(N — 2),
the least-energy solution has only one maximum point and this point lies on
the boundary. Moreover, this maximum point approaches the boundary point
of maximum mean curvature as d — 0 and the peak is bounded from above
uniformly with respect to d. On the other hand, in the critical case p = (INV +
2)/(N — 2), it is proved that peak is at most one and blows up on a boundary
point. By [21] we know that the asymptotic behavior of the best constant for
the embedding H'(Q) c L*N/(N=2)(Q), that is,

SN (Q) = inf {/ (|Vul® + %uQ)dm
Q

ue Hl(Q),/ u| ¥ dy = 1}
Q

as d — 0. On the asymptotic behavior of the least-energy solutions of (13) and
S¥ the mean curvature of 9 plays a crucial role.

Our main purpose of this section is to investigate the asymptotic behavior
of the least-energy solutions of (11) as A — oo. In [5,8], the existence of the
least energy solutions of (11) is guaranteed for any A > 0 if the mean curvature
of 00 at 0 is positive. Thus it is natural that we investigate the asymptotic
behavior of the least-energy solutions of (11). However in the case when the
mean curvature at 0 is non-positive, the existence of the least-energy solutions
of (11) is not studied so far. As our second purpose of this section we obtain the
answer of this problem through the investigation into the asymptotic behavior.

This section is organized as follows. In 3.2 we prepare the useful facts
and some lemmas. In 3.3 we consider the asymptotic behavior of the least-
energy solution of (11). In 3.4 we consider the behavior of ui\f/\ (Q) as A = 0.
Throughout these two subsections we assume the existence of the least-energy
solutions of (11) for any Q. In 3.5 we show some results on the minimization
problem of MQ/)\(Q).

Remark 3.1. Since the nonlinear term in (11) has a singularity at 0, solutions
are not classical solutions. Indeed, if u € H'(Q) is a weak solution of (11) by
the elliptic reqularity theory u € C3 (2 \ {0}) and u € C**(Q) (see [5, 9]).
Therefore we should regard 8/0v as the bounded linear operator from W?2P ()
to LP(0Q) at 0.

3.2 Preliminaries

In this section we prepare some useful facts.
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We recall that some facts about a diffeomorphism straightening a boundary
portion around a point P € 99, which was introduced in [17-20]. Through
translation and rotation of the coordinate system we may assume that P is
the origin and inner normal to 02 at P is pointing in the direction of the
positive zy-axis. In a neighborhood N around P, there exists a smooth function
('), ' = (z1,...,2zN_1) such that 9Q NN can be represented by

N-1
1
= yY(a') = B} Z iz + o(|a'|?)
i=1

where a1, ...,ay_; are the principal curvatures of 9Q at P. For y € RN with
ly| sufficiently small, we define a mapping = = ®(y) = (®1(y),...,Pn(y)) by

yn +¥(y) j=N.

The differential map D® is

@, _{yj—yzvgﬁ;(y’) j=1,...,N -1
i(y) =

02 0
i~ o e ()
DO (y) = 0 ;
-— () 1
Ox; 1<i,j<N—1

and near y =0
[J@(y)| = |detDP(y)| = 1 — (N — 1) H(P)yn + O(ly|*).

We write as ¥U(x) = (¥y(z),..., ¥y (z)) instead of the inverse map ®~1(x).
B,.(a) denotes a open ball with center a and radius r. In addition, suppose
B, = B,(0) and B} ={y € B,|yny > 0}.

We consider the function as

T 2—s T 2—s

Note that U(0) = 1 and U is a minimizer for

s := inf {/ |Vu|?dz
RN

which is the best constant for the Hardy-Sobolev inequality. For U define the

scaling function by
Ucdz) = "5U (g) .

2%(s)
ue DW(RN),/ [l e = 1} (15)

Ry |z[*

We have the following lemma regarding Mi\,/ L ().

Lemma 3.2. (i) MQIA(Q) is continuous and non-decreasing with respect to \.
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(i) For any X\ >0, u,(Q) < ps 238/ (N=s),

(%) limy_sq ,ué\{/\(Q) =0.

Proof. We show only part (ii).

For given ¢ € C1(QNNy) we set ¢(y) = ¢(®(y)), where A is a neighborhood
around 0 such that Q NNy = ®(BY). If é(y) is a radially symmetric function,
we have

6
2 _ WN-1 N—1]7/2
L vetta = 5 [

_ (N_l)ﬂ—N;I 6TN 212 (1) dr
WrOREm O [ P re

+ / " O 2 dr, (16)

) 5
2y = N1 V162 (r)dr ™) |62 (r)dr
| tetwkir = 2 g [Foe a7

2*(s) s .
/ alhiid —dx = wN*l/ V=512 (S)(r)dr
QNNy |x| 2 0
s 7.(_Nz—l (5
—(N-1) [1 - } H(O)/ N2 )y
2(N +1)] D(&H 0
s
T /0 O(N =) O, (18)

where wy_1 is the surface area of a unit sphere. Set a cut-off function n(y) =
n(ly|) such that support of 7 is in Bs and 7 = 1 in Bj/,. Choosing n(y)U.(y
as ¢ in (16), (17) and (18) and hence we obtain

fQ(|V(77UE)|2d£E + )\|T]U€‘2)dl‘

(Jy 20 )

(;) = pis — ctH(0)e + [X (c2 + O(elloge])) + O(e)] £ (N >5)
) @) e H 00+ [ (20 (Jogel ) + O] logel (V=4

(;) = fis — c1H(0)e[loge| + [A (c2 + O(e)) + O(1)] e (N = 3)

where c1, co are positive constants which depend only on N. Tending € to 0
and we obtain the estimate of part (ii). O

Lemma 3.3. We have either
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(i) There exist X such that for X\ > X

paa(Q) = (2> i s, (19)

(i) For all X the equality (19) does not hold and

im 5(@) = (3) e (20)

A—00 2

where ps is defined by (15).
To prove this lemma, we prepare one proposition.

Proposition 3.4. Fiz ¢ > 0 sufficiently small. Then there exists a positive
constant C = C(e) such that for u € H*(Q)

1\ 7= 2§27 ()
(2)" ()
2 o |z

Proof of Proposition 3.4. We choose small constant § > 0, » > 0 and V which
is a neighborhood around 0 such that

2/2*(s)
< (1+5)/ |Vu|2dﬂc+C/u2dx. (21)
Q Q

N—-1
1
on =vo(a') = 5 Y asi +o(la),  |Vi(a)| <5 on 00NV,
=1

and {(2',zn — ¥o)|(z/,zn) € ANV} = B/
Due to [12] there exists a positive constant C' = C(B,) such that

L2(9) 2/2*(s)
fs (/ dx) S/ |Vu|2da:—|—0/ u?dz. (22)
B, |z[° B, B
By the transformation vy = #’, yny = zn — ¥p(2’) and the inequality (22),
it follows that
) 2/2"(s)
lu’s 8/2 dl'
anv (|2/|? + |xn — ¥ol?)

L 12% (s 2/2%(s)
= n (1/ i )dy>
2 Jpr lyl*
1\ 2/2°(9)
< <> / (IV,a|? + Ca?)dy
2 B:—

255 (14 (N — 1)5 + 62) / |V,ul? + Ci’dx
QNv

IN
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where 4(y) = u(y’, yn + ¥o). On the other hand, if |x| sufficiently small
(J2'[? + | = wol?)*/? = (J2* — 2002w +13)*> < (1 + Cola])||*.

Now, we may assume that diamV < C;6 for some C;. Consequently taking e
such that
1+ (N —2)§+ 62
l14+e=
1+ CyC1é

and we obtain

1\ 7= w2 () 2/2"(s)
() Is (/ de) <1+ E)/ |Vul|?dx + C u?dz.
2 anv || onv anv

In Q\ V, taking into account that |z|~® has not a singularity and we have

2—s " 2/2%(s)
1\ M=+ u? (s)
() Is / dx <(1+e¢) / |Vul|?dz + C u?dz.
2 o lzf* Q\V onv

The detail of calculations is in [12]. Hence we obtain (21). O

Proof of Lemma 3.3. If there exist A such that (19) holds, then by part (i) and
part (ii) of Lemma 3.2 we can prove part (i).

Assume that for all A > 0, the equality (19) does not hold. For any € > 0
and A > 0, there exist uy . such that

MﬁYA(Q) > / |Vuy |2 dz + A/ uiedx —¢
Q Q

We choose A = A(g) such that A = oo as € — 0 and A > C where C' is given in
Proposition 3.4. From the above inequality and (21) we have

N F N , 1\ ¥=5
0< <2) /usfps,)\(Q) §€/ ‘VUA,5| dr+e<eql+ <2> s +E .
Q

Hence tending ¢ to 0 and we obtain the equality (20). O

By the next lemma we can see the relation between the value of ué\f 4 (92) and
the existence of the minimizer of u[), (€2).

Lemma 3.5. (i) If ﬂ?{/\(Q) < pug 2@/ (N=5) then ,ui,\f/\(Q) is attained.

(ii) If there exist a positive constant \ such that “iVS\(Q) = pug /20278 (N=s)
then ,ui\fA(Q) is not attained for all X > \.

Proof. (i) proved by the proof of Proposition 2.1 in [5].
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We prove (ii). Let A > A and uy be a minimizer of uiv)\(ﬂ) Then we have

2—s

1\ ¥=s B
(2) pe= 5@ < [ (VP + e
’ Q

1

< [avup s =@ < (5)7 ne
Q

This is a contradiction. O

3.3 Asymptotic behavior I

In this section and the next section we assume that the least-energy solution of
(11) exists.

We investigate the asymptotic behavior of the least-energy solution of (11)
as A — oo. In order to prove Theorem 3.6, we apply the strategy in [17-20] to
the equation (11). We assume vy is a least-energy solution of (11) and define
ay and (8 as

2
2

ax = [[alle () = valzr), Br =y N=2

Theorem 3.6. We obtain the following results;
(i) For all x € Q, vy(z) — 0,
(i) 0l /A= () = o,

(i) |zx| = o(Bx)

as A\ — oco. For any e > 0 and § > 0 there exists a positive constant Ao such
that for all A > Ao

v () (\I&(x)) ‘ )
-U <e in QN Bgsys,
a B ho

(v) v < 2eX J:‘L’i)exp(—yog(x))\%) in Q\ Bs,

(iv)

where U is defined in (14), £(x) = min{no, dist(z, Q2 N Bs)}, no = no() and
Yo = Y0(2,€) are positive constants.

Lemma 3.7. There exist a positive constant C which is independent of \ such
that

4
-2

N
N
>C.
N =
Proof. For simplicity, we write v = vy and o = a for each. Cy, C1,Cs, Cs are
positive constants which depends only on domain 2. We have

/ VuVédr + A / vodr < o (972 Y0 gy (23)
Q Q

o lzl®
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for all ¢ € H () satisfying ¢ > 0. For B > 1, we define a function H €
C1([0,00)) by setting H(t) = t° and G(¢ fo |H'(s)|?ds = 25 £t We
easily find that

vG' (v) > G(v). (24)
Replacing ¢ in (23) by G(v) we have
/ VoVG(v)da + A / vG(v)de < o ()2 / ”G(f)dx.
Q Q o |zl
The chain rule, the definition of G and (24) yield
/ |VH (v)? Ve < o ()~ Md:c (25)
Q o |zf°

For )\ 1 > 1, by the Hardy-Sobolev inequality it follows that

N H(U)Q*(S) :1:)22(5) ) 2da B? ) 2da
Q)(/QW d g/QWH( )[2d +A26_1/QH()d (26)

where pY (Q) = inf { [,(|Vu[? + u?)dz|u € HY(Q), [, [u[*" ) /|z|*dz = 1}. Since

H(w) =", vH'(v)=pv? (27)
Combining (25), (26) and (27) we have

1
B (2%(s)—-2)% 52 2
10122 028 0 ) < C ol (725 57 0] 726 (0, )~ #dar)

For m =0,1,2,--- we define S,,,11 = (2*(s)/2)™, then we have

2
||U||L2*( $)Bm41 (Q,)z|~dx)

™ (2 (8)=2)5=— 2Pm
< 005 +1 s B +1 ﬁ:”-iil ||UHL2ﬁm+1(Q,|x\*Sda:)
* eaeyou
- HCW* 7AYo (2"(4) =) el (2 2(‘9)) I ol ol (28)
Note that

S (26 s 2(5)\ " 2°(s)
Zl( 9 ) < (l-‘rl)( 9 ) Sm
Tending m — oo in (28), and thus

2) so—ts *
Jo]|%, < Cral® *>2vwwm9xsm = C102 O 0l[32 (0 o)
(2, ]z|
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Using the Holder inequality we have

) 02 02 s/2 , 1—s/2
FoZa(cage-rany = /mg(/m) (/dx)
L2(Q,|z|~#dz) NEE o |22 0
1—s/2
< Oy (/ v2dx> .
Q

1 1—-s/2
< oF)-2 (/ v2dx>
CiCy — Q

Consequently

Therefore we obtain

Lemma 3.8.
lzx] = O(By)

Proof. Step 1. First of all, we show that dist(xy, Q) = O(B8)). We assume
that d 50
ist
lim dist(zy, 09)
A—o00 /8)\
and derive a contradiction. Assume that )\ is positive increasing sequence such
that Ay — oo as k — oco. By the assumption of (29) we may take a positive
constant R such that

= oo (29)

N—s

1 N-s
|Br(0)| > iSN(Q)_luf’s and =z, + Or, 2 €Q forall ze Bsr(0) (30)

where |Bgr(0)| is N-dimensional volume of Br(0) and

/ |u|%d:)§ = 1}
Q

is the best constant of the critical Sobolev embedding. We set

SV(Q) = inf{/Q(VuQ +u?)de

Ui (x)\lc + /BAICZ)
Oz,\k

Since vy, € C%_(Q\ {0}) 0y satisfies

wi(z) == z € Bsg(0).

—Awk + )\BQ’U)]C = kié in B3R(0)




Note that from (29) and Lemma 3.7

—S

LA =o(l) as k—oo for ze€ Bspq). (31)

Baw

By using the elliptic regularity theory there exists w such that

Ak/BAk — C7

+ z

w e CQ(BR(O)), wE — w in 02(BR(O))
and
—Aw+Cw=0 in Bg(0).

In addition 0 < w(z) < 1in Bgr(0) and w(0) = 1 since 9%(0) = 1. By the strong
maximum principle w = 1. But

|Br(0)]

2N . 25 . =
wN¥-2dz = lim w, ~dz= lim vy dx
Br(0) o0 JBR(0) F=o0 g, m(way)
2

N
lim [ vy dz < klir& Sny(Q)~! /Q (Vo3 +v3,) da

k—o0 Q

IA

N-—s

1
= SN

which contradicts the choice of R in (30).
Step 2. To end of the proof of this lemma we show that

xx A x forall zedQ\ {0}

We assume that there exists a point xg € 92\ {0} such that |xy — zo| = O(8)
and derive a contradiction.

By translation and rotation of the coordinate system we may consider the
equation

lag+z[*

%:O on 0f2.

2% (s)—1
{—Am FAam =2 inQ (32)

and z) — 0, where ag € 90\ {0}. Set A\, — oo and z), — 0 as k — co. For ¢
small sufficiently put 0y, (y) = va, (P(y)) for y € E;:; and
. =+
- O, (Y) Yy € By
=+
o (s —yn) (Y —yn) € Bas.
We define a function wy (k =1,2,...) by

17>\k (Q)\k + B}\k Z)
(€5Y

where Qx, = ¥(zx,) = (¢4, Bres 4. Ba)s @ri/Bre = Qoo = (¢h, %) as k —
00. By Step 1, |Qso| < 0.

wi(z) =

zZ e Bg/g/\k
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We take a positive constant R such that

|BR(0)] > Sn ()~ pr+

in the same way as Step 1. Set a function & as

fk(z) _ ¢<Q/\k + B/\kz) (ZN qu)
(g, + 2B —(an, +28)Bx) (v < —aq)))-

Then wy, satisfies

8w w2 (71
- Z PR Zbk B TR = T
i,j=1 | B*k |
in Bg Zn = —qy }, where af;, b% is defined as follows (here definitions is
in Bp(0 1, where af;, bt is defined as follows (here definitions i
same as those in Step 2 in the section 4 in [20]):
8\11
) = ® 1<ij<N 33
5(0) Zaxk NP @) 1] (33)
bi(y) = (A¥;)(®(y) 1<j<N. (34)
Then define
ak( ): aZJ(QAk +6>\k ) ZN 2 q/\ka
N (=1)%n 0% ag;((gh, +2)Bxe — (@R, +2n)Ba) 2y <4y
bE(z) = bj(Qx, + Br.?) N > =4y,
! (—1)%%b;((dh, + 2)Bre> (@), +28)Br.)  2n < —an,-

By applying the elliptic regularity theory in [20] and arguing in the same manner
as in Step 1 we have

w € C*(Br(0)), wp —w in C?*(Bg(0))

and w = 1. It follows that

N—s

2N Nes
|Br(0)] = / w%dz < lim 2/ U;\\;*zdz < SN<Q)_1,US275.
Br q

k—o0
This contradicts the choice of R. O

Proof of Theorem 3.6 (ii), (i), (iv). We can see xy — 0 from Lemma 3.8. Put
k — oo and define Ag, xy,, Oy, Ox,, @, Wk and & respectively as those in
Step 2 of the proof of Lemma 3.8. wy, satisfies

- Z + B Z bk (2 awk + )\kﬁ,\kwk

1,j=1 |5>\k|

2*(3)—1
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in Bas/g,, (0) \ {zn = —qy }. By the definition of & we have |¢/8x,] —

|Qoo + 2|.
For any L > 0 and some r > N/2 by the Holder inequality we have

w2 (-1
/ Y | d:<ow) <. (35)
Br(=Qo) By,

By applying the elliptic regularity theory in [20] there exists a function w such
that

wecloc(BL QOO)\{ Qoo} wr = w in COQ(BL( QOO)) (BL(_QOO>)-

Moreover, w satisfies w(0) = 1 and w € DV2(RY). In fact

/|Vw|2dz = lim |Vwl|*dz
RN L

L—oo Jp

IN

L—00 k—o00

lim lim 2/(|Vvk|2+)\kv,%)dx
Q

IN

=

@
|

Thus

w e CZQOC(RN \ {_QOO})v W — W in CO Q(RN) N Hlloc(RN)’

loc

and w is a weak solution of
w? (s)—1

Aw+Cw=—2 __ in RV, 36
Qu s ar (36)

where C is defined in (31). Define the function f: RN \ {-Qu.} x R = R by

Then we can see w and f satisfy the all conditions of the following proposition:
Proposition 3.9 (Claim 5.3 in [7]). Let f € CO((RN \ {0}) x R) and let
u € DYP(RY) N CHRN \ {0} N HL (RN \ {0}) be a weak solution of

~Apu = f(x,u) in RY,

where Apu := div(|Vul|P~2Vu) is p-Laplacian. Difine F(z,u) = [}’ f
and assume that F € C1((RY \ {0}) x R). Moreover, along the solutzon u,
assume that uf(-,u), F(-,u) and x - (VzF)(-,u) € Ll(RN). Then

/ [N_puf(x,u) — NF(z,u) —x- (V,F)(-,u)| dz =0.
RN p
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Applying this proposition to (36) and we obtain C' = 0. Furthermore we
have

2"(s)

2%(s) v
/ widz < lim 2/ A g
rY [(Qoo +2)[° koo Jqo |zf®

: N N=s
= lim u&/\k(Q) 2=s
k—oo
N-—s
2—s
= Us .

Hence w is a minimizer of p. Since 0 < w < 1 and w(0) = 1, we obtain w = U
and Qs = 0. Therefore part (ii) and (iii) is proved.
For z € Bé/ﬂxk we set

() = 2eOn2) (37)
Oé,\k
Then since @, /B, — 0 as k — oo we have
wy, — U in ClOO’g (RN) n Hlloc(RN)
as k — oo. Hence part (iv) is obtained. O
Lemma 3.10. We assume that u € H'(Q) satisfy that u > 0 and
uz*(s)71 .
;Au < ER in Q (38)
5 =0 on 0.

Then for any r > 0 there exist positive constants p = () and C = C(Q,r)
such that for any Q € RN we have

2 \TO
sup wu(z) <C / ———dz (39)
zeQNB,.(Q) QN B2, (Q) ||

provided that

2%(s)
/ uigdx < .
QQBM“(Q) |l'|

Proof. We prove Lemma 3.10 in the same way as the strategy of the proof of
Lemma 2.13 in [18] . O

Proof of Theorem 3.6 (i). From Lemma 3.2, if uy is a minimizer for ué\f/\(Q)
then [|ux|/z2() = O(1/A). Thus we have uy(xz) — 0 a.e. in Q. Since vy =
uﬁA(Q)(N_Q)/(‘l_QS)u)\ we have vy(z) = 0 a.e. in Q.

For all x € Q, there exists a positive constant x such that 0 € QN By, (x).

We have 2(s)
lim kA —dx = 0.
A=oo JonB,, () |z
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By Lemma 3.10 we obtain

v2*(5) 2%(5)
una(z) < sup  wp(z)<C / R —0
QOBQK(Z

z€QNB,, (x) ) ‘x|q
as A — oo. O

Proof of Theorem 8.6 (v). Foralle > 0and § > 0 by part (i) there exists Ag > 0
such that vy(x) < € in Q\ Bs for all A > \g. We set wy = \~(N=2)/(4=25)y,
then w) satisfies

1 wz*(b)fl i
—sAwy +wy = in Q
% =0 on Of.

v

For wy, we use the strategy of the proof of Theorem 2.3 (iii) in [20].

Proposition 3.11 (Lemma 4.2 in [6]). Assume that € > 0 and A is a domain.
Let ¢ be a C? function satisfying Lo = £20;(a;x0r9) + q(x,€)¢ = 0 in A, with
q(z,e) < —a < 0 in A. Then there exists a positive constant u = p(a,a, A)
such that

né

|¢(z)] < 2(sup|o(z)|)e” =,
where §(z) = dist(z, D.A).

In the interior of Q \ Bs we can apply Proposition 3.11 to w) directly.
In the neighborhood around 99 \ Bs we apply Proposition 3.11 to wy =
A~ (N=2)/(4=25)5, * where 0y is defined in Step 2 of the proof of Lemma 3.8.
Hence Theorem 3.6 (v) is proved. O

3.4 Asymptotic behavior 11

In this section, we consider the asymptotic behavior of ,ui\” 1 (). Suppose vy is
a least-energy solution of (11). Define for f € H(Q)

JoUVfI? +\f?)dz
[F]27 () 2/2%(s) "
(fg Wdff)

Theorem 3.12. Assume that N > 5. There exist positive constants Cy and
Cy such that as A — 00

Qx(f) =

—s

2=s
N—s

u%@D=Qmw)=<;> ps — CLH(0)e + Coe® X\ 4 o(£2N).

where and H(0) is the mean curvature at 0

(o H(©0) >0,
0<5{4uxﬂ)zﬂmgo
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Proof. The approaches to prove Theorem 3.12 are very close to those in [21].
Therefore we omit the proof of Lemma 3.13 and Lemma 3.17.

Suppose that A is a neighborhood around 0 satisfying @ NNy = ®(BJ;).
For y € B;;; put ¥ and vy as in Step 2 of the proof of Lemma 3.8. By using
(33) and (34) we define an elliptic operator L by

N N
iy (1) g, g+ D i
ij=1 6%8% i=1
where
~ a;j(2) zy > 0,
a;i\z2) =
]( ) {(—1)6iN+5jNaij(Z/, —ZN)) zy <0,
~ bj(z) zy >0,
bj(z) =1 " O
(7 ) J bJ(Z >*ZN)B>\;C) zn < 0.
Since vy, is a least-energy solution of (11) ¥, satisfies
527 ()1
— Ly + A0y = 22— (40)
[@(y)l°

a.e. in Bys. Set

(Vo, Vi), Z/B

i,j=1"Bs(0)

op . oY
o ( <y>m<y>) TP dy.

(6.0), = (V6.90), +A [ gulsaldy,
B;(0)
VoI5 = (Vo, V), ol = (6, ) -

From Theorem 3.6, we have
N
Jim_ [Vaa2 = = lim )\/ o3]J@|dy =0, lim |[Voy — VU, ||, = 0.
A—00 B; A—o0

Define the projection P : H(B;s) — H(Bs) by u = Pv such that
Lu = Lv.
By the definition of L if v(y’,yn) = v(v', —yn) then u(y/,yn) = u(y', —yn)-

We set
hy =wvx— Pvy, ¢.=U.— PU;

and we can see by part (v) of Theorem 3.6 and the maximum principle

0< hy= O(Eivﬁ) in E,;.
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We can see

dIN]

N-—-2

o (res B Y

M = {cPU.|c € R, ,0 <e <1}, dist(u, M) = jnf, Ju— ¢llx,

Let

and

0
e = {s e @0, U, = (0. 2p0.) <o},
A
We obtain the following lemma.

Lemma 3.13. Suppose that N > 5. Then for \ sufficiently large dist(Pvy, M)
is attained by cxPU., where € = ¢(X). Moreover,

i—)l and ¢y — 1

B
as A — oo.

By this lemma we may write
Pvuy = c\PU, + wy

where wy € E(g,N) satisfying |lwallx = o(1), ||Pusll3 = E||PU|3 + [Jwall3.
Thus
vy = c\PU: + wy + hy.

We investigate the detail of the estimates for wy.

Lemma 3.14. We assume that N > 5 and ¢ = () is given in Lemma 3.15.
Then there exists o > 0 and Ao such that for all w € E(e,\) and X > Ao we

have
2*(s)—2 2

e w
2% (s —1—|—a/ ZE | Jdldy < ||w|3.
(27(s) ) T | J®| [wll

Proof. Suppose the above lemma does not hold. Then there exist sequences
An = 00, {wn} C E(ep, Ay) such that

2"(s)=2 2
w
@) =1 o1) [ T DBy 2 e}
Bs |®WI° A
where g, = (). We may assume that ||w,||x, = 1 without loss of generality.
Define 9, (z) = 5%N_2)/2wn(enz) for z € Bs/ey,. Then we have

U2*(s)—2w2

1<(2%(s) — 1+ 0(1))/ o) |Sn |D®(e,2)|dz (41)

Bé/an
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On the other hand we have

1 = ||Wn %\,L
> 3 [ o) (G220 ) palay+a, [ w2Dsiay
o 7 Bs Y yi Jy; " Bs
> (o) [ Vun(e)Pd: “2)
Bs/ep,
and
1= el

Y
Q
N
5
&

Sz
=
[S]
e
.
<
N———
:

Il
Q
—~
—
_|_
2
—
SN~—
SN—
~~
5
=
Szl
| |2
)
IsH
x
N———
2

Therefore after passing to a subsequence we have
Un = oo weakly in DV2(RY), and 1, — thoe  strongly in L2 (RV).

loc loc

We can see that

0
<v'l/)o<>7 VU>L2(RN) = 07 <v'l/)oov \Y% <a)\

U>> S0
A=1 L2(RN)

Moreover from (41) and (42) it follows that

U2 (s)=24,2
| oalaz <1< @@ 1) [
RN BN >
and hence f - |2d
RN 0o z «
*(s)— SQ(S)—l (44)
fRN %dz

However, (43) and (44) contradict the following lemma.

Lemma 3.15 ( [22]). We consider the eigenvalue problem:
“Ap=pPey i RY, (45)
1 € DL2(RY).

Then the first two eigenvalues of (45) are py = 1, pa = 2*(s) — 1 and the
corresponding eigenfunction Y1 and Yo satisfy
d
Ug}
e=1

1 €span{U.} and 9 € span {ds

respectively.
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O

Recall that Lhy = 0 and hy, = O(¢~"V}). Multiplying (40) by wy and
integrating on Bj by parts, we have

PU. +h 27(e)-1
||w>\‘|§\+0(€—'yﬁ)uw/\”)\:/ (caxPU: + hy + w)) W
Bs

Do|dy.
S Dol

For the right hand side we have

/ (C)\PUE —|—h>\—|—w,\)2*(5)_1w>\
Bs

| D®|dy
|D(y)|*
. P2 -1
@ 1/ PU= 2 Doy
B |2(y)]
« 2% (5)—2 PUZ )~ w? /X
+(2%(s) = D)c . WW@@‘FO(H%\H,\ + e VM |wallx)
)

where o = min {3,2*(s)}. Thus we have

*(g)— PU “(s)—2 2
loall3 — (2(s) — 1>ci =2 [ 22 A D|dy
PNTIOIE
*(s)— PUE
= 497 iq) 2|D@dy + O(rll§ + &7 eoalln)- - (46)
PTIOIE

Since 0 < PU, < U. and from Lemma 3.14 we have

2%(s)—1+4o pUZ 71y,
2 £
N = ——(1+4+o0(1 / ———=|D®|dy
H ||)\ p ( ( )) Bs ‘(I)(y)|s ‘ ‘
+0(e™ M fwall)- (47)
> 1713
- o 2
Q) = ( 7o ) 27276
fBa 1)
Lemma 3.16.
1 -
Qx(vy) = —=Qx(cPU)
N—s
2—s
1\ V=5 N-—2 PU? (s) 10.))\
1+4+o0 () s o ——=|D®|dy
( ( )) 2 s B ‘(I)(y”s ‘ ‘
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Proof. From Theorem 3.6 it follows
meN |Vua|2 + Avide

@a(va) - = )20 2/2%(s) O(eﬂﬁ)
(j‘slﬂNo |w\“ d)
1 ~ _
= =)+ 06 VN |wallx) (48)

Since 0y = ¢\ PU, + w) + h) we have
195113 = llexPULJ3 + [lwsll3 + O(e™7Y?).
On the other hand,

2% (s) 2/2%(s)
/ N 1pa|d
= Yy
Bs [2(Y)]*

2/2%(s) 2% (s) 2/2%(s)—1
(exPU.)> ) 2 / (exPU.)
— NTe) " Doy + D®|dy
</B ar P? 7o) \ s, w7

2%(s) (exPUL)> @V wy + ZEE =D (¢ ppyy? (-2 2
* Ddy
Bs [©(y)|*

+O([lwallS + e V).

Hence we obtain

Qx(vy)
1 -
= Qx(exPUL) [1+ (14 0(1))
N—s
Uz ()=1,, U2 (s)—2 2
N~ 7@ o PPl L S5, e |D2dy
PU.|3 U2
lexPUIR e f, 22 |¢>(y)\s | D®|dy A Is, Tt P21y
O(llwall§ + e lwallx)-
Using (46), (47), (48), cx =14 o(1), and
pUZ® Nos
lim |PU.|3 = Jim |D®|dy = ps ™",
A—00 elia = A—00 Bs |(I>( )‘
we obtain
1 -
Qa(va) = —Qx(eaPU:)
I2N—s
2= 2% (s)—1
1\ N-s _N=2 PU; W
—(14+o0(1) (= s 70 ——————|D®|d
(1 +of1)) (2) e
O(llwll§ + ™Y lwallx).
O
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Lemma 3.17.

lawallx = O(e™V) + {O (e +2e?) (N>7)

o(Xe) (N =5,6).
and ©
PU? ()1 _JOo(e* + \%?) (N>17)
o, Dk = {OM (N =5.6)
Hence
o1 X O (g2 4+ X2%e%) (N>T1)
QA(UA) = 2% QA(CAPUE) + O(e ) + {0()@2) (N — 5,6).

To end the proof of Theorem 3.12 we calculate Q,\(C,\PUE). We replace
exPU; by ¢ in (16), (17) and (18). When 2 satisfies H(0) > 0 we recall that

vy exists and
1\ 7=
Qa(vy) < <2> s

Consequently we have

1

Qa(vy) = () o fts—C1H (0)e+Care2+o(Ae?), &= {0(1/ A) - H(0)>0,

2 o(1/AY%)  H(0) <0.

O

3.5 Minimization problem

Theorem 3.18. Assume that N > 5 and  satisfies H(0) < 0. Then there
exist A = A (Q) such that

(i) If 0 < XA < Ay then ué\{/\(Q) is attained.
(i) If X > X, then ui,\f)\(ﬂ) is not attained.

Proof. By Theorem 3.12 the minimizer of ué\f () does not exist for A sufficiently
large (if the minimizer exists, ,ui\f/\(ﬂ) > p15/2379)/(N=5) and this contradicts
(ii) in Lemma 3.2). Thus there exists A, = A\.(£) such that part (i) of Lemma

3.3 holds true as A = .. Consequently from Lemma 3.5 we can prove (i) and
(ii) immediately. O

The following theorem holds for all domains (we don’t require the condition
of the mean curvature at 0).

Theorem 3.19. There exist Aex > 0 such that if A < Aex then the minimizer
of ué\j/\(Q) is unique.
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Proof. In order to prove this theorem we argue in the same way as [25]. Assume
that vy is a least-energy solution of (11). Then

2 (s) y
/UA dmzué\/)\(ﬂ)%ﬁo as A —0.
o |zf° ’

From Lemma 3.10 we have |[vx||peq) — 0 as A — 0.

Set \; — 0 as i — oo. Let u;,v; be the least-energy solutions of (11)
when A = \; such that ||u; — vi||p~(q) # 0. Define A; = |lu; — vil| L~ () and
z; = A7 ' (u; — v;). Then z; satisfies 0 < z; < 11in Q, ||z]| () = 1, and

2*(5)7171)‘2*(5)71

—Azi+ Az =4 TP | in Q,
% =0 on 0f.

Note that by the mean value theorem, we can see that

27(s)=1 _ 2" (s)-1

Uy

L —0 as ©— oo.
(u; — v;)|z]*

Thus by the elliptic regularity theory there exists zg € C%*(Q) N H' () such
that z; — 2o in C%%(Q) N H'(Q) and

7AZO =0 in Q,

% =0 on 0f.

Hence zp = 1 since ||2;|| () = 1 for all i.
On the other hand, since u; and v; are solutions of (11) we have

27(s)-2 _ 27(s)-2
/ Yi SU’ u;v;dx = 0.
Q |z|

Since u; > 0 and v; > 0 we see u; — v; changes the sign for all ¢. This is a
contradiction. O
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4 A critical problem on the Hardy-Sobolev in-
equality in boundary singularity case

Abstract

We study a Neumann problem with the Hardy-Sobolev nonlinearity.
In boundary singularity case, the impact of the mean curvature at singu-
larity on existence of least-energy solution is well known. Existence and
nonexistence of least-energy solution is studied by [9] except for lower
dimension case. In this section, we improve this previous work. More
precisely, we study four dimensional case and show existence of minimizer
in critical case in some sense.

4.1 Introduction

Let N > 3, Q be smooth bounded domain in RY, 0 < s < 2, 2*(s) = 2(N —
s)/(N—2) and A > 0. The bounded embedding from H'(Q) to L? (*)(Q, ||~ *dx)
leads to the Hardy-Sobolev inequality

2 2/2* (s)
JTAN(Y) </Q dx) < /Q(|Vu|2 + M) dz,

oF

where the constant ufx 1 (£2) is the largest possible constant defined by

Jo(IVu]? + M?)dx

N .
Mg )\(Q) = m OYOL .
’ weEH(Q)\{0} wl2* () /2*(s)
(Jo i)
The Dirichlet case, that is, the minimization problem of
D) = nf Jo |Vul?dx
Hs uEH(}I?Q)\{O} u|2* (=) 2/2%(s)
(Jo i)

is studied by many researchers in both interior singularity case and boundary
singularity case. In interior singularity case, properties of u2(Q) is similar to
the best constant of the Sobolev inequality. More precisely, 42 (Q) is indepen-
dent of 2 and never achieved. In boundary singularity case, [6-8] showed that
minimizer exists when the mean curvature of 92 at 0 is negative. In addi-
tion, [6] prove the nonexistence result under the assumption 7(Q) C RY for
some rotation 7', where RY is a half-space. After these works [11] investigated
a generalized minimization problem concerning u2 ().

Existence and nonexistence of minimizer of %, () have been studied by
[6,9]. In [6], they showed the existence of minimizer under the positivity of the
mean curvature at 0. However the nonpositive mean curvature case was not
dealt with in [6]. Recently, some part of this problem have been clarified by [9].
The result of nonpositive mean curvature case is completely different from that
of positive mean curvature case. Concerning existence of minimizer of Mé\j A ()
in nonpositive mean curvature case we obtained the following result;
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Theorem 4.1. [9] Assume that N > 5 and the mean curvature of O at 0 is
nonpositive. Then there exists a positive constant A, = A\(Q) such that

(i) If 0 < XA < Ay then ué\f/\(Q) is attained.
(i) If X > A, then ué\f/\(ﬂ) is not attained.

This situation is closed to the three dimensional case of the minimization
problem introduced by Brezis and Nirenberg [3]:

Vul? + \u?)d
Sy\(Q):=  inf JoIVul+ %)fN, AER.
u€ HA ()\{0} (f |u|151j2dx)( -2)/
Q

In [3] they proved that there exists A, (Q) < 0 such that Sy(Q) is attained when
A < A () and S\() is not attained when A > A,(Q). In addition, it is also
proved that if §2 is a ball, existence of a minimizer is equivalent to A < A, ().
After that, by [5] this result was extended to the general bounded domain case.

Our main purpose of this section is to improve Theorem 4.1. More precisely,
we investigate the case when N = 4 and the case when \ = A,.

What is related to the minimization problem ué\f 1 (82) is the following elliptic
equation:

—Au—i—)\u:%, u >0 in Q, (49)
%:O on 0f).

Least-energy solution of (49) is defined by solution of (49) attaining ', ()
and thus existence of least-energy solution of (49) is equivalent to existence of
minimizer of ui\f/\(Q).

Asymptotic behavior of least-energy solution of (49) and pl, () as A — oo
have been studied in [9]. These studies are natural because a 71east—energy SO-
lution exists for any A when the mean curvature at 0 is positive as we know.
However, not only that, these studies play a crucial role in studying the min-
imization problem ,ui\f 1 (82). Theorem 4.1 asserts that least-energy solution of
(49) does not exist for sufficiently large A when the mean curvature at 0 is
nonpositive. In order to prove this fact, we need to investigate the asymptotic
behavior of least-energy solution and ,ué\)[ 1 (2) as A — oo under the assumption
of existence of least-energy solution for any A. This technique of the asymptotic
analysis in [9] is used everywhere in this section.

Our main results is as follows:

Theorem 4.2. Assume N =4 and the mean curvature of Q2 at 0 is nonposi-
tive. Then there exists a positive constant A, = A\(Q) such that

(i) If 0 < XA < Ay then ui\’[)\(ﬂ) is attained.
(i) If X > A\, then ué\f/\(Q) is not attained.
Theorem 4.3. Assume N > 4, the mean curvature at 0 is negative, and A\, is

a constant obtained by Theorem 4.1 or Theorem 4.2. Then ,ui\f)\* (Q) is attained.
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The approaches to prove these theorem are based on [1,2,9,15-17]. The
blow-up analysis for semilinear Neumann problem involving the Sobolev critical
exponent was started by [1,2]. After these [15-17] studied the best constant of
the Sobolev inequality, that is, they studied HQIA(Q) in the case when s = 0,
and [9] studied Mi\,fx (©) in the case when s € (0, 2). In [15] the author studied the
asymptotic analysis for the Neumann problem involving the mean curvature on
the boundary condition. [16] studied minimization problem on exterior domain
by using the techniques in [15]. In [17] they expanded some parts of the results
of [15] into the four dimensional case. Finally [9] investigated the asymptotic
analysis related to ui\f 4 (2) as we mentioned before.

This section is organized as follows. In 4.2 we introduce some useful facts
to prove Theorem 4.2 and Theorem 4.3. In 4.3 we prove Theorem 4.2. In 4.4
we prove Theorem 4.3.

4.2 Preliminaries

In this subsection we prepare some facts in advance to prove Theorem 4.2 and
Theorem 4.3.

s denotes the best constant of the Hardy-Sobolev inequality on R, that
is, ps is defined by

is = inf {/ |Vu|*dz
RN

We set Cnes
Ulz) = (1 L oy |Z)(N — 2)> o (51)

which is a minimizer for ps. In addition, for € > 0 we define a function by

2 (s)
ue Dl’z(]RN),/ [l = = 1} . (50)

Ry |Z[*

Ucla) = "5°U (g) . (52)

The following lemmas are introduced in [9)].

Lemma 4.4. (i) MZA(Q) is continuous and non-decreasing with respect to \.
(ii) For any X\ >0, u2, () < fg )22 =9)/ (N=s)

(iii) Timy o 125 () = 0.

Lemma 4.5. We have either

(i) there exists X such that for A > X

. N
/’LS,)\(Q) = 5 Hs)

or
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(i) for all X\ the equality of (i) does not hold and

lim ) (Q 1)
Jm g5 (8) = (2) [hs-

Lemma 4.6. (i) If ﬂ?{/\(Q) < pug 2@/ (N=5) then ,ui,\f/\(Q) is attained.

(ii) If there exists a positive constant X such that HiV;(Q) = pug /2@ 79)/(N=s)
then ,ui\f/\(Q) is not attained for all X > .

We recall some facts about a diffeomorphism straightening a boundary por-
tion around a point P € 052, which was introduced in [10-14]. Through trans-
lation and rotation of the coordinate system we may assume that P is the
origin and inner normal to 0N at P is pointing in the direction of the posi-

tive xy-axis. In a neighborhood N around P, there exists a smooth function
('), 2’ = (z1,...,zN_1) such that 9Q NN can be represented by

N-1
1
ay =P(a’) = B} Z a;x} + of|a'|?)
i=1

where a1, ...,ay_; are the principal curvatures of 9Q at P. For y € RN with
ly| sufficiently small, we define a mapping = = ®(y) = (®1(y),..., Pn(y)) by

P.i(y) = yj—yNaaij(y,) j=1...,N—-1
’ yn +9(y) j=N.

The differential map D® is

0? 0
Da(y) 5~ G 0~
Yy) = 1 J 7
al(y') 1
Ox; 1<4,j<N—1

and near y =0
[J@(y)| = |detD@(y)| = 1 — (N — 1) H(P)yn + O(ly|*).

We write as U(x) = (VUy(x),..., Ux(x)) instead of the inverse map ®~1(z).

B, (a) denotes a open ball with center a and radius r. In addition, suppose
B, = B,.(0) and B;f = {y € B,lyny > 0}. Define Ny as a neighborhood around
0 such that ®(Bs) = Np.

4.3 Proof of Theorem 4.2

In this subsection we prove Theorem 4.2. In order to prove Theorem 4.2 we
need the following proposition:
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Proposition 4.7. Suppose that there exists a least-energy solution of (49) for
all \. Then there exist positive constants C and Cy such that as X\ — oo

2—s
1\ = 1 1

N _ 2 2 2
u\(Q) = (2> us — C1H(0)e + Cao)e log—Al/Qé_ +0 ()\6 +e log)\l/2€> 5

where H(0) is the mean curvature at 0 and
0 <e=o(1/A1/?).

Assuming that Proposition 4.7 holds, we obtain Theorem 4.2 immediately.
Indeed, by Proposition 4.7 minimizer of x[y (2) does not exist for A sufficiently
large (if the minimizer exists, ué\f/\(ﬂ) > p15/279)/(N=5) and this contradicts
(ii) of Lemma 4.4). This implies the existence of A\, = A\.(Q2) such that part
(i) of Lemma 4.5 holds as A = \,. As a consequence (i) and (ii) follow from
Lemma 4.6.

Proof of Proposition 4.7. We note that 2*(s) = 4 — s. Suppose that vy is a
least-energy solution of (49), that is, vy satisfies

3—s
—Avy + Avy = U‘;Jls , va>0 in Q, (53)
% =0 on ON.
We define o, and ) as
1
ax = |[oallze@), Br=—.
o
From Theorem 3.1 in [9] we have
: 2 L 3= : 2
lim [ |Voalde = -ps™, lim A [ vyde =0. (54)

We set a cut-off function 7, (y) = na(|y|) such that support of 7, is in By,y1/2
and 7y = 1 in Bjgy1/2. We may assume that [V, | < C/\Y2 ) |D%ny| < O/
For simplicity we write 1. For 7, a positive constant e, and U, which is defined
in (52) we set

(¥ (@)U(¥(x)  (z € No),
Vela) = {o (z € RV \ Aj).

Set
<¢,w>A=/V¢vwda:+A/¢wdx, 16]12 = (6, 6),
Q Q

In addition to (54), we have

lim vy — \ZR IIx = 0.
A—00
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Let
M ={eVele €Ry, 0 <e <1}, dist(u, M) = inf [lu— o]y,
€

and 9
een) = {o e e, = (5. 7v.) o,
€/
We have the following lemma corresponding to Lemma 4.2 in [9].
Lemma 4.8. If A is sufficiently large dist(vy, M) is attained by cV., where
c=c(A), e =¢e(N\). Moreover,

€
— =1 and c—1
B

as A — 0o.

From this lemma there exists wy € &\ such that
on=cVetwn, loallX = Vel + loallRs  llwalla = o(1). (55)

By applying the proof of Lemma 4.3 in [9] we have the following lemma:

Lemma 4.9. We assume € = ¢(\) is given in Lemma 4.9. Then there exists
o >0 and Mg such that for all w € E(g, \) and A > Ao we have

2—s, 2
<%Hw/%9nswi
o |z|*

Multiplying (53) by wy and integrating on by parts, we have

Ve +wy ) 5w
fual = [ ST,
Q ||

For the right hand side we have

V'E 3—s
/ (c +w:) W g
Q Ed)

3—s 2—s5,,2
_ C375/ Ve WAdIJr(SiS)szs/ Vs wAdy+O(||w>\H?\),
Q Q

|z[* Ed

where 7 = min {3,4 — s}. Thus we have

V2—s 2
fonly = 3 = )2 [ s
o |z

V37s
_ CH/ = g+ O(lwa ). (56)

o ||

From Lemma 4.9 it follows that
3—s+o VSfSwA

lwal} = ———— (1 + 0(1))/Q €|x|s dz + O([lwxll}), (57)
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where we used that ¢ =14 o(1). Set
JoUVfP? + Af?)dw

(1 ta) ™
xs

Qx(f) =

By using (55) we have

(Ve (eVe)~*w}
Qa(vy) = Qa(cVo){1+ ”W)\H%\ 2fQ EE Adm_(?)—s)fQ T X dr
= g 2 (CVE)4 s (CVE)‘L*S
||CVsH>\ fQ EE dx fQ = dx

+O(flwall3)

Recalling that /5y — 1 as A — oo, we can see

hm Ve = hm /

lx\s 2
Hence from (56) we have

5 2 3—s
Qo) = QY2 — (1+ o275 ™ [ EBdn 0l (59)

For Qx(cV:) we apply the calculations in the proof of (ii) of Lemma 2.1 (see [9]).
It follows that

s
s

1\ i 1 1
Qr(cV) = <2) — C1H(0)e + C’g)\sZIOg/\l/z +0 ()\52 + 5210g/\1/25>
(59)

for some positive constants C; and Cs. In order to finish the proof we prove
the following lemma in the same way as Step 3 of Section 4 in [16].

Lemma 4.10.

VS—swA 1 1/2
/Q €|I|S dr =0 <)\1/25 +e€ <log)\1/2€) ||(,d)\||/\

This lemma and (57) yield that

1 1/2
— 1/2
WN*O<A/E+EO%AM%) ),

and thus -
€ %) 2
ST dx =0 </\s +e log)\l/2 ) (60)
Consequently Proposition 4.7 follows from (58), (59), and (60). O
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4.4 Proof of Theorem 4.3

In this section we prove Theorem 4.3. Note that

Ji @) = @ = (5) 7 (61)

Proof of Theorem 1.3. For any A € (0, \.) we write v, as a least-energy solution
of (49). Recall that by the elliptic regularity theory vy € CZ (2 \ {0}) and
vy € CO%(Q) (see [4,7]).

Firstly, we claim that we only have to show the existence of a positive
constant C' such that [|[vy| Loy < C holds uniformly for A near A.. Indeed, if
loallLe= (@) < C then there exists v such that

vy — v weakly in H'(Q), and wy — v strongly in LQ*(S)(Q, ||~ *dz)
as A — A.. Since vy is a least-energy solution of (49) we have v # 0. Therefore

fQ('V’U|2 + )\*'U2)d(1'j hm fQ(‘vUA‘Q + )\U/Q\)dm N (Q)
[v]2* () 2/2%(s) — Aoy Jo]2* () 2/2%(s) :u’s,)\*
<f9 daz) (fQ dl‘)

|]® |]®

and hence v is a minimizer of ,ué\f/\* (Q).

Next, we show that there exist a positive constant C' such that |[vy ||~ (o) <
C holds. Assume that A\ is a sequence (a suitable subsequence is also written
by Ar) such that Ay — A, as k — co. We suppose that ||vx,[[z~@) — oo as
k — oo and derive a contradiction. Here, we define ay, 8, and z, € Q as

__2
ax, = HUAk ”L‘X’(Q) = Uy (Ikk)a 5)\19 = O‘,\kN_Q'

Step 1. We obtain the following results:
(i) fsz Uik. -0,
(11) |x)\k| = O(ﬁ/\k)7

as k — oo. For any € > 0 and r > 0 there exists a kg such that for all & > kg

O, () ¥(z) :
%U<B>\k>'<€ IHQOBrﬁkk.

Proof. We obtain (ii), (iii) by applying the technique of the proof of (iii), (iv)
of Theorem 3.1 in [9)].

We prove (i). For any R > 0, suppose that Nf* denotes Ny defined in
subsection 4.2 with § = R. From (iii) it follows that

(iii)

v UQ*(S) 1 N-s
lim e g — / ——dx = —us " —v(R), (62)
k— oo QR |£C|S Bt |.’I,"S 2
B)\k R
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where
R - 2 (s)
Qﬁxk = /BAk(Q m~/\/’0 ), v(R) = / dz.

Since (61) we have

. Ux
lim E—dr = v(R). (63)

koo Javaf |z[*
k
Clearly v(R) — 0 as R — co. Here, we observe that
/vikda::/ vikdx—i—/ Uikdﬂﬁzll—i-lg.
Q of o\ef
e e

For I from (62) we have

2% (s)— 2
2% (s 2*(8) 2% (s)
= YUk
I, < |z| =2 dx FE dx o(1),
R R xT
o Qf
as k — oo. For I from (63) we have
2% (s)—2 2
2% (s) 2*(5) 2% (s)
2s UAk
I < |z| =2 dx PE dx
R R Z|
aeg NOf,

= C(Y(R) +o(1))7®

as k — oo. Letting R — oo after kK — oo, we obtain (i).

O
Step 2. We have as k — oo
2—s
1\~ 0O(g?) N>5
N - Y%
Q== — H(0)e + 64
o () <2) e~ H(O) {0(52(1og;);‘) N =4, (69
where € = ¢, is a positive constant such that e — 0 as k — co.
Proof. From Step 1 we have
. 2 1 5= . 2 : 2
lim [ |[Vuy|de=-ps°, lim Mg [ vy de=0, lim [ |V(vs,—Us, )|°dz=0.

Therefore investigating the detail of the asymptotic behavior of ué\’[ A, () as
k — oo (see [9,15-17], and Section 3 in this paper) we obtain (64). O

Consequently if the mean curvature of 02 at 0 is negative (64) contradicts
(ii) of Lemma 4.4, and which implies vy, || () is bounded uniformly. O
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5 Strauss’s radial compactness and nonlinear el-
liptic equation involving a variable critical ex-
ponent

Joint work with Megumi Sano (Osaka City University)

Abstract

We study existence of a non-trivial solution of
—Apu(z) + u(@)P " = u(@)?™@ 7 w@z) >0, zeRY, uwe WLE(RY)

under some conditions on ¢(x), especially, liminf|;_,o g(z) = p. Con-
cerning this problem, we firstly consider compactness and non-compactness
for the embedding from W17 (RY) to L@ (RY). We point out that the
decaying speed of ¢(z) at infinity plays an essential role on the compact-
ness. Secondly, by applying the compactness result, we show the existence

of a non-trivial solution of the elliptic equation.

5.1 Introduction and main results

In this article, we consider the following nonlinear elliptic equation
{—Apu +uPp =401 4 >0 in RY, (65)
u € Wt RY),
for 1 < p < N, where Apu = div (|Vu[P72Vu) is p—Laplacian, and variable
exponent ¢(z) is a measurable function satisfying q(x) > p, liminf|;_, q(z) =
p.

p(z)-Laplacian type elliptic equation is one of the problems with variable
exponent and this type equation on RY is studied by many researchers in sev-
eral subjects: multiplicity of solutions (see e.g. [1,13]), existence of solutions of
equations involving several nonlinearities (see e.g. [2,12]), equations under pe-
riodic assumptions (see e.g. [11,26]) and so on. Moreover, existence of solutions
of the equation (65) involving variable exponent touching the critical exponent,
that is esssupgw g(x) = p* := NN—_’;, is studied by [4,23].

Concerning the critical exponent related to the Sobolev embedding in the
whole space, not only p*, another critical exponent exists and it is p. In the
viewpoint of this, considering the case where essinfg~ g(z) = p is natural as
another critical case. However, even for p-Laplace equation there are no results
in this case. Thus we study the problem (65) at the opening of this article.
In this case, unlike the subcritical case, we need to overcome some difficulties
to show the existence of a non-trivial solution of (65). We will explain them
more precisely after Remark 5.5. Thus in advance of study of the equation
(65), we consider the related embedding to the equation. Namely we study the
embedding from W2 (RYN) to L1 (RN).

rad
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We define the generalized Sobolev spaces W¥*»(*)(Q) with variable exponents
p(z). For a domain Q C RY and a function p € L>(Q) with p(z) > 1 we set

LP@(Q) = {u is a real measurable function on Q ‘ / lu(z)|P® dx < oo} ,
Q
WhP@) () = {u e LP@(Q) ‘D“u € LP@(Q), |a < k} .
These LP(®)(Q) and WFP(#)(Q) are Banach spaces with the following norms:

/u
aQlA

p(z)
dz < 1}, [ullwroe = [llp@ + Y 1D Ulpa)-

||| p(z) = inf {)\ >0
la|<k

When €2 is a bounded domain with the cone property, some results concern-
ing the embedding of W#?(®)(Q) are obtained by [14,17,20]. One of the results
in [14] is the existence of the compact embedding. They consider the situation
when p(x) is uniformly continuous on  and 1 < essinfg p(z) < esssupgp(z) <
N/k. Under this situation there exists a compact embedding from Wk’pé‘r) (Q) to
LI1@)(Q) for g(z) satisfying p(z) < g(z) a.e. in Q and essinfgp*(z) — g(x) > 0,
where p*(z) = Np(z)/(N — kp(x)). On the other hand, for W1P(Q) Kurata
and Shioji [17] consider the critical case, that is esssupgq(z) = p*. They
showed that if there exist zg € ©,Cy > 0,7 > 0, and 0 < ¢ < 1 such that

€ss SUPq)\ B, (a) 4(%) < p* and

. Co

 Thoglz —mol for a.e. x € QN By(zo),

q(z) <p

then the embedding from W'?(Q) to L4*)(Q) is compact. Conversely, if

G
| log |z — w0l |

*

q(z) >p for a.e. x € QN By (20),

then the embedding from W'?(Q) to L4*)(Q) is not compact.

When Q = RY Strauss [24] and Lions [18] showed that the radial Sobolev
space Wr::g(RN) can be embedded to LY(RY) compactly for ¢ € (p,p*). In
addition, related results are in [8,10], and so on. In p(z) case, under the
same conditions as those of bounded domain case the compact embedding from
era’g(x) (RN) to L) (RN) is obtained for ¢(z) satisfying essinfg~ q(2) —p(z) >
0 and essinfg~y p*(z) — ¢(z) > 0 by [15]. On the other hand, the critical case,
that is essinfgpw~ g(x) — p(z) = 0 or essinfr~y p*(2) — ¢(z) = 0, has not been
treated so far even if p(z) = p.

In this paper, we fix p(x) = p. Our first study is to obtain a sufficiently con-
dition of compactness and non-compactness of the embedding from era’g (RM) to
L) (RN) for variable exponent q(z) satisfying ess infgn g(x) = p and ess supgn q(z) =
p*. Based on these results, as the second study we obtain a non-trivial solution
of (65) under the compactness conditions with liminf|,_, ¢(z) = p.

o1



Before introducing main results, we fix several notations. Br denote a open
ball centered 0 with radius R. wy_1 is an area of the unit sphere S¥~! in RV.
Throughout this paper we assume that g(z) € L>(RY) and ¢(z) > 1 for a.e.
z € RV, A letter C denotes various positive constant. If v is a radial function
in RY, then we can write as u(x) = @(]z|) by some function @ = @(r) in R,.
For simplicity we write u(x) = u(]z|) with admitting some ambiguity.

Theorem 5.1. (Non-compactness) If there exist positive constants R, Cy and
a open set I' in SN 1 such that

Co
qlx) <p+ —— forx e (R,+0)xT, 66
(@) <P+ ot (R, +o0) (66)
then the embedding from era’g(RN) to LI@) (RN is not compact.

Theorem 5.2. (Compactness) If there exist positive constants r, R, Cy, Cy, and
k.l €(0,1) such that

Co
<pt_— 0
q(z) <p Toglz][F for x € B,, (67)
Cl N

then the embedding from Wr{a’g(RN) to LY@ (RN is compact.
Remark 5.3. In Theorem 5.2, we don’t need the constraint p < q(z) < p*.
WIPRN) ¢ LI (RN) holds whenever q(x) satisfies q(z) < p* in B, and

rad

q(x) > p in RN\ Bg.

Theorem 5.4. Assume that q(x) satisfies the hypotheses (67), (68) in Theorem
5.2 and essinf ecp, q(x) > p. Then there exists a non-trivial weak solution
u € WEP(RN) of (65) in the sense of

/ <|Vu|”_2VuV¢ +uPlp — uq@)—l(z)) dz =0 (69)
RN

for any ¢ € erazg(RN).

Remark 5.5. If q(z) is a radially symmetric function satisfying the hypotheses
of Theorem 5.4, then we can show that the weak solution u obtained in Theorem
5.4 satisfies u € CL*(RN \ {0}) and u(z) > 0 for all z € RN \ {0}. Indeed,

loc

since u and q(x) are radially symmetric, it follows that for all ¢ € era’g(RN)
/ (|u’(r)|p_2u’(r)¢'(r) +uP e — uq(r)—1¢> rNldr =0,
0

where r = |z|. If for any 1 € C(RYN) we consider the radial function ¥(r) =
waSN*1 P(rw) dS,, then we have

/ <|Vu|p72Vqu/J +uP ey — uq(z)flw) dx
RN

:/ (|u'(r)|p_2u’(7“)\ll’(r) +uP T — uq(r)_l\ll> rN=ldr = 0.
0
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Therefore we see that u satisfies (69) even for non-radial functions ¢. Finally,
by Corollary of Theorem 2 in [9] we have u € CL*(RN \ {0}). And also, by

loc

Theorem 2.5.1 in [21] we have u(x) > 0 for all x € RN \ {0}.

We note the difficulties to obtain Theorem 5.4 caused by the condition
essinf,cpn q(x) = p. Ambrosetti-Rabinowitz condition (AR) is well-known in
order to obtain a non-trivial weak solution to the following problem by mountain
pass method.

—Apu+ [ulP"?u = f(z,u) inRY.

(AR) There are u > p and M > 0 such that for |u| > M,0 < pF(z,u) < uf(z,u),

where F(z,u) := [} f(z,s)ds. Especially, condition (AR) has been used to
establish not only the mountain pass structure of the energy functional but also
the Palais-Smale condition. A weaker condition has also been considered, for
instance, Liu-Wang [19] studied (SQ) which is called super-quadratic condition.

= oo uniformly in z € RV,

(SQ) lim F(z, )

|u|—o00 |’U,‘p

However, assuming that the nonlinear term u(z)?®)~! in (65) is a special case
of the general nonlinear term f(z,w), this does not satisfy even condition (SQ)
when essinf, cgry g(x) = p. From these facts, it seems to be difficult to confirm
whether the energy functional J (see Section 4) corresponding to (65) satisfies
the Palais-Smale condition or not. In more detail, while the fact that bounded
Palais-Smale sequence has a convergent subsequence is straightforward from
Theorem 5.2, boundedness of all Palais-Smale sequence is non-trivial. Besides
that, satisfying the mountain pass structure for J is not trivial since we can not
apply the fibering map method directly.

To overcome these difficulties, in Section 3, we construct a solution of (65)
as a limit of mountain pass solutions of some elliptic equations approaching (65)
in the sense of energy functional. In Section 4, we show an another proof by
using the variant of the mountain pass theorem. More precisely, by introducing
the condition (C) (see Section 4) defined in [7] or [5] instead of the Palais-Smale
condition, we obtain a solution of (65) in a different way from Section 3.

5.2 Compactness and non-compactness of the embedding

We prove Theorem 5.1 and Theorem 5.2. Before beginning the proof we recall
the pointwise estimate and the compactness theorem introduced in [18], and [24]
(p = 2). For the reader’s convenience, the proofs are in Appendix.

Proposition 5.6. For any u € Wrzg(RN) we have
i 1 1
I T E T v
@) = (52=) el Bl e 90l ey (70)
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Proposition 5.7. The embedding from era’g(RN) to LYRYN) is compact for
q€ (p,p").

Proof of Theorem 5.1. We shall show Theorem 5.1 in the same way as [17].
Set r(x) = g(z) —p for z € RN, Let ¢ € C=°(RY) be a radial function satisfying

¢ =1on B% and supp¢ C By. For m € N, we define ¢,,(x) = mf%(b(%)
Then for any m € N we obtain

émllLe@yy = 18llr 1), 1VOmllLe@yy =m™" VOl Lo (sy)-

Since {¢m}2°_, is a bounded sequence in W, 2(RN) and WP (RV) is reflexive
(see e.g. Proposition 3.20. in [6]), there exist a weakly convergent subsequence
{bm; 132, and ¢ € WLE(RN) such that Gm,; = Poo In WEPRN) as j — oc.
By compactness of the embedding from WL?(RN) to L"(RYN) for p < r < p*,
we have ¢, — ¢oo in L"(RY) and ¢y, — doo a.e. in RN which yields that
¢ = 0. On the other hand, we have

9(@) gp — —%<p+r(x>>‘ xz
[ @ de= [ m o ()

m

q(z)

T

= | () dy
By

> / m= %" (mY) dy.
B1\B1
2 4

Since I' is open in SN~1, there exists a smooth subset D C SV~! such that
D C T. By using the polar coordinates as y = sw (s > 0,w € S’ 1) we obtain

/ | (2)|9) da > /2 / m~ v Tms) N=1ggqs,
RN s=% JweD

By the assumption (66), we obtain r(msw) < Co| logms|~! for large m, s €
(1/4,1/2), and w € D C I". Moreover for s € (1/4,1/2) and large m, it holds
logms = logm + log s > %logm which yields that

r(msw) < Togm’

Therefore we obtain

2C
/ | (2)]1) daz > / / e v o8 g N 1454,
RN s=3 JweD

27N _ 47N
= HNil(D) e ZCI"N T > 0

Nl

for large m, where H? is the d—dimensional Hausdorff measure. Thus, if we
assume the embedding from era’g(RN) to L4®) (RN) is compact, then we have

Jan |600]?® dz > 0 which contradicts ¢o, = 0. Hence the embedding from
WLP(RN) to L9 (RN) is not compact. -

e
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Proof of Theorem 5.2. We assume that r < R without loss of generality. Let
{um}25_, be a bounded sequence in W7 (RN). We shall show the existence of a
strongly convergence subsequence of {u,, }>°_, in LY@ (RN). By the reflexivity
of era’g (RY), there exist a subsequence {uy,, 1521 and ug € eralg (RY) such
that u,;,; — ug in era’g(RN) as j — oo. Especially it also holds that u,,, — uo
in WHP(RY) as j — oo. And also, by Proposition 5.7 we have u,,, — ug in

L4(RYN) for any q € (p,p*) and
Um; — Ug a.e. in RY as j — oo. (71)

Furthermore, {um,|p,}52, C W"P(B,) is a bounded sequence and the em-
bedding from W'?(B,) to Li*)(B,) is compact by the assumption (67) (see
Remark 2 in [17]). Thus there exist a subsequence of {u,,|p,}52; (We use
{tm; B, }521 again for simplicity) and v € L9@)(B,) such that the followings
hold true:

Um,|B, — Vo in wWh?(B,),
Um,|B, = vo in LQ(”)(BT),
Um,|B, — vo in LP(B,),

Um,|B, — vo a.e. in B, asj— co. (72)
By (71) and (72), we can check that ug|p, = vo a.e. in B, which yields that
Um,|B, = uo|B, in L‘I(‘"”)(BT) as j — oo. (73)
In the similar way as above, we also obtain the followings

U, | Bic\B, = U0l B\, 10 Wi (Bk \ Br),
Um; | Bi\B, — Uo|B\B, in LYBgk \ B,), (74)
umj IBK\B,. — u0|BK\BT' a.e. in BK \B,.
for any K > 0 and any ¢ > 1 as j — oo since the embedding from erazg(BK\BT)
to LY(Bg \ B,) is compact for any K, q.
Set Uy, = Um; — uo. In order to make good use of (73) and (74) we divide
Jan |m, (2)|7®)dz into three terms as follows:

[t ()11 75)

RN

= / |Umj($)|q(x)d$+/ |vmj(:c)\q(””)dx+/ |Umj(:c)|q(“’)dz
Br\B-

RN\Bg

T

= Il(])+IQ(J7K)+IB(]aK)a

where K is sufficiently large.
Firstly, by (73) we have

I (5) = o(1) as j — oo. (76)
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Next, for I>(j, K) we have

IQ(j, K) :/ |’Umj ($)|Q(I)d$ S/ "Umj ($)|d$+/ |/Umj (z)|HQHLoo(RN) de.
Bg\B; Bk \B- K\ By
Thus, by (74) we obtain
I>(j, K) = o(1) as j — oo for fixed K > 0. (77)

Finally we shall estimate I3(j, ). Since

P P _N-1 N1
omy @1 = (52 ) o, Iy lal ™5 < Clal ™

by Proposition 5.6 and the boundedness of {v;,, }32, we can assume [v,,; ()| <
1 for x € RN \ By with large K. Therefore by the assumption (68) we obtain

I3(j, K) =/ |vmj|‘1($>dx§/ [, [PHO (o812 ™ g
RN\ By RN\ Bg

oo

N —£

< E : |Umj |p+Cl(nlogK) dr
n—2 BKn\BKn_l

N_1\Ci(nlogK)~*
) dx

o0
< / o, 17 (Ol
7;2 Brn\Bgn-1 ’

o0
< Ccl(ZlOgK)JHUmj||€V1,p(RN) ZKﬁ N=1(n—1)Ci(nlog K )~*

n=2

<Y eyt
n=2 n=1
1—¢

where 6; = 6;(K) := K= s K)™ 0 as K — oo. Since Yooy =
S+ [ 62" "dx < oo for each &1 € (0,1), we have

o0
1—¢
Z 07 —0 as K — oo.
n=1
Hence we have

I5(j, K) = o(1) uniformly inj as K — oo. (78)

We go back (75) and by (76), (77), and (78) we have
lim |V, ()1 dz = 0.

j—o0 RN

As a consequence we obtain u,,; — ug in L@ (RN, O
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5.3 Approximation method : Proof of Theorem 5.4

In this section, we show Theorem 5.4 by using Theorem 5.2. First, we prepare
the mountain pass theorem (Theorem 5.8) introduced in [22,25], and so on
which are based on [3]. Let V be a Banach space and E € C1(V,R). We define
a Palais-Smale sequence for E as {u,,} C V satisfying |E(un,)| < ¢ uniformly
in m, and E’(uy,) — 0 in V*, where E’(-) is Fréchet derivative and V* is the
dual space of V. We say that F satisfies (P.-S.) condition if any Palais-Smale
sequence has a strongly convergent subsequence.

Theorem 5.8 ( [22,25]). Suppose E € C*(V,R) satisfies (P.-S.) condition.
Assume that
(i) E(0)=0
(i) There exist p > 0, a > 0 such that E(u) > « for any u € V with ||u|| = p.
(iii) There exists up € V' such that ||ui]] > p and E(u1) < a.
Define
P={peC([0,1],V) | p(0) =0, p(1) = u }.

Then

= inf sup E(p(t
B il sup, (p(t))

is a critical value.
Proof of Theorem 5.4. Step 1. We may assume that R in the hypotheses of
Theorem 5.2 is sufficiently large such that essinf,ep, ¢(z) = p + Oy (logR)~*

without loss of generality. For m € Nlet {R,,} be a sequence such that Ry = R,
R,, — o0 as m — o0o. Then we set functions as

q (x) _ q(x) if Q(x) >p+ Cl(long)_éa
" p+ Ci(logRy) =" if q(x) < p+ Ci(logRy,) "

Define a functional J,, from WL?(RY) to R by

1 1
Im(u :f/ VulP + |ul? dx—/ ™ g,
= [0V e = [

We can check that J,, € CY(WLP(RN),R). Moreover, for each m, J,, satisfies
as follows:

(i) J, satisfies (P.-S.) condition.
(ii) J(0) =0,

111 ere exist positive constants o, p suc at Jp(u) 2 o tor any u €
iii) Th i iti t p such that J, > af y
1, .
WAERN) with [|ullynzy) = p,

(iv) There exists v € Wb

ra

P(RN) such that [[v]lyre@y) = p, Jm(v) < a.
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By Theorem 5.8 there exists a critical point u,, € era’g (RY) of J,, such that

Jm(um) = Bmv

where (,, is defined in the same way as 8 in Theorem 5.8. Thus u,, is a
non-trivial weak solution of

—Apw + [w[P~ 2w = wi’”(m_l in RV, (79)
We can also see that u,, > 0 by multiplying both sides of (79) by (um)—.
Proposition 5.9. {uy,} is bounded in era’g(RN).

We will prove this proposition at last of this section.
Step 2. Since {u,,} is a bounded sequence, there exists ug € W2(RN) such
that u, — ug weakly in W.P(RN). Put

G = <|Vum\p72Vum — [Vug|P~*Vug, Vi, — Vu0>RN—|—(uﬁ;1—ug_1)(um—uo).

Then we have

Gmdx:/ (VP +ub)) dIE*/ (| VU [P ™2V, Vitg + uBy M ug) d + R,
RN RN RN

where Ay = [on [|Vu0|p_2Vuo(Vu0 — V) +ub ™ (up — um)} dr = o(1) as
m — 00. Moreover, from (86) and (87) in the proof of Proposition 5.9 it follows
that

/ (IVum|P 4+ ub)) da:—/ (| V't |P~ 2Vt Vg + P tug) dae
RN RN

m(x)—1
= [ ) ()~ ) da
RN
<2 ”ugﬁn(x)fl ||%Hum — U()Hq(x)
= 2 ||t llg(e) [[tm — vollg()

by the generalized Holder inequality (see e.g. [16] Theorem 2.1). By the bound-
edness of {u,,} in W 2(RN) and Theorem 5.2 we have | | g () [t =0 || g(z) =
o(1) as m — oo. Hence

Grdz = o(1) (80)
RN
as m — o0o. Recall that for p > 1, a,b € R? we have

227P|h — alP it p>2

<‘b|p—2b - |a|p—2a7 b— a> > { p—2

(p—Db—alP(l+a*> +b]*)= if 1<p<2

From this inequality and (80) it follows that

[ (¥t = Tl 4 ~ waP ) = o(1)
R
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which is equivalent to u,, — ug strongly in W1?(RY). Thus ug satisfies
—Ajug+ul = w7 g >0 in RV,

Step 3. Finally, we have to show ug # 0. From the boundedness of {u,,} and
Proposition 5.6, we see that u,, < 1in RY \ By, for large L. Therefore we have

/ (|Vum|p+ufn)dm:/ u?,;"("”)dxg/ uﬁldac—i—/
RN RN RN B

By the Sobolev inequality it follows that

"
/ uP, do < / ul de < STF (/ |Vum|pdx) . (82)
B, RN RN

T

* ”q”LOO(RN)
ub, dx—f—/ Um dz.
B \B,

(81)

r

Moreover, we have

llall L oo (v
/ Um ETED d
Br\B,

el oo Ny
P

A
Q

/ (Vi |? + [t |P)der
B \B,

IN

lal o @)

()

Put g. := min{p*, [|q|| Lo m~)}. From (81), (82), and (83), we obtain

IN

ax

o= (fmr)”
RN

where we used that wu,, # 0. By Theorem 5.2 we have

C < lim |V |Pdx
m—oo fpN
= lim [ (~u® +ulr®)dx
m—oo JpN
< / ug(x)dx.
RN
Consequently we have ug #Z 0. O

Proof of Proposition 5.9. We take a smooth radial function ¢ > 0 on RY.
Since

KP K@)
In(Kt) < — (IVa|P + |a|P) dax —
RN Br q(z)

KP KP+Ci(log R) N
< B[ gvap s - S [ i an o o
P Jav esssupp, 4(v) Jp,

TR

99

pl*
c/ |vum\P+/ [P dz | B\ B
Br\B- Br\B:
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as K — +oo, there exists K > 0 independent of m such that J,, (K@) < 0. If
we set p(t) = tKa for ¢t € [0,1], then we see that

pe P ={peC(o,1,WR®R) | p(0) =0, p(1) = Ka } .

rad

Moreover, we have

Bm = ,}nga Jax Im(p(t)) < Joax, T (B(1))
tP ta(x) (@)
= max {/ (|Vﬁ|p+|ﬁ|p)dx—/ ——a¥ dm} <C. (84)
0<t<K | D JrN Br q(z)

On the other hand, since u,, is a critical point of .J,, at 3,, we have

1 1
m = = Vg, [P+ [tm|? d:c—/ —(up) i Pdx 85
B = o [ (VP ) o= [ ) (55)

and for any ¢ € WF(RN),

rad
/ (| YVt [P 2Vt Vo + |t [P 2t ) da — / ()™ pdz = 0. (86)
RN RN

In particular,

[Vl e ydo = [ un) s =o. (87)
RN RN

From (84), (85), and (87), it follows that

/RN (117 - qml(m)> (um) 4P d < C.

Furthermore, by ¢(z) < ¢n(z) we have

/RN (; _ q(lx)> ()" P < C. (88)

Thus for any L > 0 there exists a positive constant C'(L) such that

/ ()™ dz < O(L). (89)
Br,

Here, we take a constant Ry > R sufficiently large (This Ry will be chosen
again later) and we have

”u”l”gVLP(RN) < O(Ro) —|—/ (um)‘in(w) dx (90)
RN\Bg,
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by (87) and (89). Set 6 = C1(logRg)~* and A,, ., := {z € BR’(’)L\BRgfl | gm () <
p+ 6}. Then we obtain

/ (wm )4 @) g
RN\ Bg,

<

(wm) ()" de

) da +/
{z€RN\BRr, | gm (z)<p+d}

o0 _e o]
)t Odo+ 3 [ 7O e 3 ()
n=2 n,m n=2 n,m

/{JERN | gm (z)>p+6}

<

‘/{IGRN | gm (2)>p+0}
= Ll + L2 + L37

where third inequality comes from the assumption (68). We shall estimate L1,
Lo, and Ls. For Ly, by (88) we have

0 pts) LG sh)eree o

In order to estimate Ly and L3, we prepare an estimate of ||y, [|zr (4, ,,)- For
each n,m € N we have

[ wndn < 2uml o, o1 o
by the generalized Holder inequality, where r,,(z) := qq?;(;rlp. Now we as-

sume ||t || pam @ (a, ) > 1 and [ 1| rmea, ) > 1 (If not, the proof is much

simpler). By Proposition 2.2. in [15] we have
S S
p+(nlog Rg)~
Jumllamercan < | [t do ([ e |
. 4 Anom

n,m

) (ess.inmeAmm lIm(I))71

Since

1 1 - 11
U%”(a:) = < N ) / < - ) U;IT"L"(Z) dx < C(nlog R, 47
A"“"" B p p + (n 1Og RO)_E RN p qm(x) — ( 0)

we obtain

14
[l Lam @ (a,.,.) < C(nlog Ro)r+rios ko=t (92)

In the same way as above, we have

Lv.m(z)(Amm) S (/ dx
An,7n

1 P
PP S e 1+pC] L (log Ro)?
g |An,m|1+pcl (log Rg) S CRO pCy g g

1]

b

> (ess.infmgAnYme(x))il

(93)
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where the second inequality comes from

ess.infyea, . rm(x) =1+ P >1+ Poq + pCy t(log Ro)*.
: €ss.SUPgca,, . dm (x)—p )
From (92) and (93) we obtain
—_— pt
/ ulydr < CRy ™ 7 (nlog Ry) ritmos o (94)
Anm

For Lo, by using (94) and Proposition 5.6, we have

H=1)(n—1)C1(nlogRo)~*
O S L I R
An,m
) Cq1(nlog Rg)—*
(N-1)Cy 1—2¢ —2 P
7+ (n—1)"""(logRo)
< Clunllynen S Be 7 [
n=2 Anm
oo M( D' (logRo) " M 04
< C'HumHW1 »(RY) ZRO p+p2Cy ' (log Ro)? (nlog RO)7P+("103R0)72
n=2
i 1—4£
= CH“mHI;}Vl,p(RN)Zél(nyRO)(n_l) d2(n, Ro).
n=2
Since

£Cq
da(n, Ry) = (nlog Rg) »+(noe o)~ Tnlos R0 ™ s — o0 o Ry — o0,

there exists a positive constant C' which is independent of n and Ry such that
82(n, Ry) < C. (95)

On the other hand, for large Ry we obtain

~ 1 (log R *‘3[<N‘1L 1 n )i c1(v-1) -
g Ro) 7 =T (+21) -=1 (log Ro)™*
4 2 1+pCT L (log Rp)e \ ™ 7+1 g 1o
(51(77,,R0) = RO P B < RO e

which yields that
41 = 01(n, Ro) — 0 uniformly in n as Ry — oc. (96)
From (95) and (96) we have
> n_1)1—¢
Ly < Cllumllfinny D81 = 0()llumllfyspn) as Bo = o0
in the same way as the proof of Theorem 5.2. Thus for sufficiently large Ry we
have

Ly < 3HumHW1 P(RN)* (97)
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In the same way as Lo, we obtain the estimate of L3 for large Ry as follows.

1 — (_N;I)(n_l)‘s P
Ly < CHumHWLP(RN) ZRO umdx
n=2 An,m
[ —¢
= (log Ro)
0 N-1 ) P
— C1(n—1)(log Ro)
< CllumlBypny D Ro 7 / o da
n=2 Anm
o =10 (n—1)(log Ro) "+ ———=p—— <L (log Ro) ™"
< OHumHgvl,p(RN) ZRO P 14pCy * (log Rg)¢ P (nlOgRo)g”“ogRo)M”_e
n=2
X, —N=10(n—1)(log Ro)~* oy
§ CHumHngvp(RN)ZRO 2p (nlogRo)p(logRO)f_*_n*K

n=2

b AR
< Ollumlfyary D Ro 7

n=2

where the last inequality comes from
o N-1c (n—1)(log Ro)~*
(nlog Rg)pUes Ro)i4n=F = ¢ <R04p (=) (log fio) ) as n — oo or Ry — oo.
Therefore for sufficiently large Ry we have

1
Lz < g”umH%ﬂ,p(RJ\r)- (98)

From (90), (91), (97), and (98) we have

2
H“mHZ{iVl,p(]RN) <C+ g”umHng,p(RN)-

As a consequence u,, is bounded. O

5.4 Mountain pass theorem under the condition (C) :
Proof of Theorem 5.4

In this section, we show Theorem 5.4 by a different method from Section 3.

Cerami [7] and Bartolo-Benci-Fortunato [5] have proposed a variant of (P.-
S.) condition. In this paper, we use the condition (C) introduced by [5,7] and
the mountain pass theorem under the condition (C) (Theorem 5.11). Let V' be
a real Banach space and E € C'(V,R). First, we define the condition (C) based
on [5,7].

Definition 5.10 ( [7], [5] Definition 1.1.). We say that E satisfies the condition
(C) in (c1,¢2), (—00 < ¢1 < cg < +00), if

(i) every bounded sequence {ux} C E~1((c1,ca)), for which { E(u)} is bounded
and E'(ug) — 0, possesses a convergent subsequence, and
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(i1) for any c € (c1,c2) there exist o, p,a > 0 such that [c — o,c+ 0] C (c1,c2)
and for any u € E=Y([c — 0, ¢+ o)) with ||ul] > p, ||E"(w)||«||u]| > .

Theorem 5.11 (Mountain pass theorem under the condition (C)). Let E sat-
isfy the condition (C) in (0,400). Assume that

(1) E(0)=0
(ii) There exist p > 0, a > 0 such that E(u) > « for any u € V with ||u|| = p.
(iii) There exists uy € V such that ||ui]] > p and E(u1) < a.

Define
P={peC([0,1,V) | p(0) =0, p(1) =u1 }.
Then
f=Inf Sup E(p(t)) = o

1s a critical value.

For c € R, we set
E.={ueV |Eu)<c}, K.={ueV |Eu)=0E(u)=c}

Note that Theorem 5.11 can be shown in the same way as the proof of Theorem
6.1 in p.109 in [25] by substituting the following deformation theorem under
the condition (C) for Theorem 3.4 in p.83 in [25].

Theorem 5.12 ( [5] Theorem 1.3.). Let E satisfy the condition (C) in (c1,ca).
If B € (c1,¢2) and N is any neighborhood of Kga, there exist a bounded home-
omorphism 1 of V. onto V' and constants € > € > 0 such that [ —€,8+E] C
(c1,¢2), satisfying the following properties

(1) 0 (Esse\ N) C By
(1) 1 (Ep+e) C Eg—c if Kg=10
(110) 1 (u) = if |B(u) — B] > &
We set a energy functional from era’g(RN ) to R as
() = %/RN(\VW%L [ul?) —/RN ﬁuiﬁ”)dw.
We can check that J € CH(WLE(RN),R).

Proposition 5.13. Assume that q(x) satisfies the hypotheses (67), (68) in
Theorem 5.2 and essinf,cp, q(x) > p. Then J satisfies the condition (C) on
R.
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Proof. We take cy1,co € R with ¢; < ¢ arbitrary. First, we shall show that J
satisfies (i) in Definition 5.10. Let {un,} € WoP(RY) be a bounded sequence
satisfying that J(u.;,) € (¢1,c¢2) and ||J' (um)|l« — 0 as m — +o00. Then the
following holds true for any ¢ € W2 (RN):

/ (| Vit [P2 Vi, Vo + \um|p*2um¢>)dzf/ () pda = o(1). (99)
RN RN

In particular, since {u,,} is bounded it follows that

/ (IVum|? + \um|p)dx7/ ()2 dx = o(1). (100)
RN RN

Likewise since {u,,} is bounded, there exists a subsequence written as {u,,} for
simplicity and ug € era’g(RN) such that u,, — uy weakly in W1P(RY). Put

G = |V [PV, — [Vuo|P "> Vug, Vi, — Vg g +(Wh " —uf ™) (tm—u0)

as in Section 3. In the same way as Step 2 in the proof of Theorem 5.4 in
Section 3 by substituting (99), (100) for (86), (87) respectively we have

G dz = 0o(1)
RN

as m — oo by Theorem 5.2. Recalling that

92-|p — q|P it p>2,

bP=2b — |aP~%a,b — a) > =
(1ol lal )= {(p—1)|b—a|2(1+|a2+b|2)"‘2 if 1<p<2

and consequently we have

lim (IV (um, — u0) [P + |t — wo|?) dz < C' lim G dx = 0.
m—oo JpN m—0o0 JpN
This implies that wu,, — ug strongly in WhP(RY).

Next, we shall show (ii). For any ¢ € (c1,c2), we take some o with [c —
o,¢+ o] C (e1,c2). We will choose suitable p > 0 again later. By deriving a
contradiction, we show that there exists a > 0 such that for any u € J~!([c —
o,c+ o)) with [Ju|| > p, ||J (w)]«]|u|| > «. We assume that there exists {u,,} C
era’g(]RN) such that u, € J~!([c — 0,¢+ o]) with [Jum|wie@y) > p, and
[T () |+ [t [l w1 0 vy =1 @ — 0 as m — +oo. Since J'(Um)um — 0 as
m — 400, we have

€))
||Um||€v1,p(RN) */]RN(um)ix dx S .
which yields that
c+ o> J(um)
1 1
2 = — —— ) () {7 de — . 101
7/]RN <p q(x))( )+ (101)



Moreover, in the same way as the proof of Proposition 5.9, for large m we have
— T pe
/ wP, dz < CRgﬂncl (log Rq)* (nlog Ry) »+nios Fr—7 (102)
Ay

where A, := {z € Bgp \BRSL—I |q(x) < p+d} for n > 2, and Ry is the same
as the proof of Proposition 5.9. By substituting (101), (102) for (88), (94), we
obtain the following estimates:

Jum vy = m < [
WD) RN\ Br,

BRO

2
< O(Ro)(c+ o+ am) + g”uml“%/l,p(RN)7
where C'(Ry) is a positive constant independent of p. Therefore we have

||um||€vl,p(RN) <3{am+C(Ry)(c+o+anm)}
<3{1+C(Ro)(c2+1)} (103)

for large m. If we choose sufficiently large p satisfying p > 3'/P{14C(Rp)(co +
1) }1/P, then we see that (103) contradicts ||tm |[w.@yx) > p-
The proof of Proposition 5.13 is now complete. ]

Proposition 5.14. Assume that q(x) satisfies the hypotheses (67), (68) in
Theorem 5.2 and essinf e g, q¢(x) > p. Then J has the mountain pass geometry,
that is J satisfies (i), (ii) and (i) in Theorem 5.11.

Proof. (i) is obvious. We prove (ii). Let S be the best constant of the Sobolev in-
equality : S[V]2, g, < VU2, v, for v € C(BY). Set ¢* = max{p*, p2, qll o am -

Note that ¢* > p* > pN/(N — 1). For u € era’g(RN) with [|ully1e@yy =7, it
follows that

1 - 1 1 « X
/ —ui( Vde < 7/ |ulP + = / |u|P da:+/ |u|? dx
&y q(7) P JrN p|JB, RN\ B,.
1 1 2 = .
- p - -1 p ’ iy &
< 2 tpas s (7 19urae) T Tl g IVl o K )

p*

1 1 . x
< f/ lulPdx + f/ |VulPdx [5’7777" P+ K(r)vy? _p} ,
D Jry D JrN

where K(r) = (p/wn_1)" /" f]RN\B. ||~ (N=1/Pdzx < oo and the second in-
equality comes from Proposition 5.6. From this if « is sufficiently small, we
have

J(u) > - / \VulPdz [1 R K(r)yff*p] > 0. (104)
RN
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For {u,,} ¢ W-2(RN) and v satisfying [ |lwir@yy = v and (104), we as-

rad

sume that J(um,) — 0 and derive a contradiction. From (104) it follows that
Jan [Vt |Pdz — 0. In addition, for sufficiently large R we have

1 . 1
/ L) @de < L / \um|q(z)dx+/ \um|q(m)da:+/
gy q(x) p B, Br\B, RN\Bg
1 .
< V wnl? + [ funpds+ [
P |JB,. Br RN\ B,
1
— S (H+ Hyt Hy - Hy).

By using the estimates in the calculation of [py (u)i(I)/q(x)dx to show (104)
we have H; = o(1) and Hs = o(1) as m — oco. For Hy we have

Hy < |BR|1—1%5-1/ IV ? = o(1).
RN

We can show that H, is bounded uniformly for m and Hy — 0 as R — oo in
the same way as the estimate of I5(j, K) in the proof of Theorem 2. Therefore

1
/ —— |ty | 1@ dz — 0
ry q(2)

as m — oo, and which implies ||ty [|w1.» @~y — 0 since J(up,) — 0 as m — oo.
This contradicts ||um |lw1.»@y) = -

Finally, we prove (iii). We take a smooth radial function v such that
[vllwir@yy = v, v > 0 in Bg, where R is in the hypothesis (68). Recall-
ing that ¢ := ess inf,cp, ¢(z) > p. By taking sufficiently large ¢t we have

s = U [ e [ O
v) = — v v|P)dz — —v x
P Jrwy ry (@) -
tr 1 a@)
< — (IVolP + |v|P)dz — tL ——vydw
P JrN Br 4(2)
< 0.
Since [[tv|yy1.»@yy > v We prove (iii). O

Proof of Theorem 5.4. From Proposition 5.13, Proposition 5.14, and Theo-

rem 5.11, we can show the existence of a non-trivial critical point u € era’g (RM)

which is a weak solution to —Apu+ |u[P~?u = ui(m)_l in RY. Then we also see
that u > 0 in RY. O

5.5 Appendix

In this section we show Proposition 5.6 and Proposition 5.7.
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|| a(x) da:)

|Um|q* + / |Um|p+01(logm|)ed$]
RN\Bgr



Proof of Proposition 5.6. It is sufficiently to show (70) holds for f € C°(RY)
with radially symmetric. We have that

TN*1|f(r)|p = 7/00 % (sN*1|f(s)|p) ds.

T

By direct calculation we have
MTHASP) = (N = 1)sM 2 f ()P +psV T F(s)[P72F(5).f(5)-

Thus it follows

PP = —(N—l)/oo SN‘QIJ‘(S)I”ds—p/Oo sYTHF(s)IP T2 (5) f(5) ds

< o [P s
< A ey IV -
N-1
Consequently (70) follows immediately. O
Proof of Proposition 5.7. By (70) we have

(o]
/ fu|dz < Cu/ |~ = Cu/ P~ N=D(2-1) g,
RN\Bg RN\Bgr R

a/p 1
where O = (52 )l IV ull gy When (N = 1)(a/p = 1) > 1,

WN—1

that is, ¢ > pN/(N — 1) we have

/ lul?dz < C,R--D(§-1)+1
RN\Br

Let {um} be a sequence such that u,, — 0 weakly in era’g(]RN). Firstly we
show that the case of ¢ € (pN/(N — 1),p*). In this case we have

/ |um|qu < / |um|qdac + CumRi(Nil)(%fl)*H.
RN Br

Since C,, is bounded from above uniformly, letting m — co and R — oo we
have u,, — 0 strongly in L9(RY).
Next, for ¢ € (p,pN/(N — 1)] using interpolation of L? space, we have

|t || Loy < ||um||/2p(RN)HumH}::(/\RN)’

where r € (pN/(N —1),p*). Since ||ty || r@y) — 0 and [[um || L» @) is bounded
we have ||| pa@yy — 0. O
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