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Abstract

Ringel’s right-strongly quasi-hereditary algebras are a special class of quasi-hereditary al-
gebras introduced by Cline–Parshall–Scott. We give characterizations of these algebras
in terms of heredity chains, right rejective subcategories and coreflective subcategories.
As applications, we prove the following results. One is that any artin algebra of global
dimension at most two is always right-strongly quasi-hereditary. The others are char-
acterizations of Auslander algebras and Auslander–Dlab–Ringel algebras to be strongly
quasi-hereditary. We show that the Auslander algebra of a representation-finite algebra
A is strongly quasi-hereditary if and only if A is a Nakayama algebra. We show that the
Auslander–Dlab–Ringel algebra of an artin algebra A is strongly quasi-hereditary if and
only if the global dimension of A is at most two.
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1 Introduction

1.1 Background

Quasi-hereditary algebras were introduced by Cline, Parshall and Scott [CPS88, PS88,
Sco87] to study highest weight categories in the representation theory of semisimple com-
plex Lie algebras and algebraic groups. Since the introduction of quasi-hereditary alge-
bras, many classes of algebras arising from algebraic Lie theory naturally were shown to be
quasi-hereditary. For example, Schur algebras and q-Schur algebras have quasi-hereditary
structures (cf. [PW91, Theorem 11.5.2]).

On the other hand, quasi-hereditary algebras were widely studied by Dlab and Ringel
from the viewpoint of the representation theory of algebras [DR89a, DR89b, DR89c, DR92].
They proved that any algebra of global dimension at most two have a quasi-hereditary
structure [DR89c]. In particular, each Auslander algebra has a quasi-hereditary structure
[DR89a]. Moreover Iyama showed finiteness of the representation dimension of artin al-
gebras by using quasi-hereditary algebras. This theorem states that any artin algebra A
can be written as eBe for some quasi-hereditary algebra B and an idempotent e of B
[Iya03a, Iya03b]. One can regard this theorem as a generalization of [DR89b].

Motivated by Iyama’s finiteness theorem, Ringel introduced the notion of right-strongly
quasi-hereditary algebras from the viewpoint of highest weight categories and he proved
that the algebra B in Iyama’s finiteness theorem is not only quasi-hereditary, but even
right-strongly quasi-hereditary. One of the advantages of right-strongly quasi-hereditary
algebras is that they have better upper bound on global dimension than that of general
quasi-hereditary algebras [Rin10, §4].

Recently right-strongly (resp. left-strongly) quasi-hereditary algebras are studied in-
tensely. It was shown that various algebras have right-strongly (resp. left-strongly) quasi-
hereditary structures. For example, cluster-tilted algebras for preprojective algebras [GLS07,
IR11], Auslander–Dlab–Ringel algebras [Con16, Con17, CE18], nilpotent quiver algebras
[ES17], matrix algebras of d-systems [Cou17], and so on [Eir17, HP17, KK18].

In this thesis, we discuss categorical aspects of right-strongly quasi-hereditary algebras
following an approach in [Iya03b, Section 2], which is unpublished. In particular, we give a
characterization of right-strongly quasi-hereditary algebras in terms of the following three
notions (Theorem 3.35).

• right-strongly heredity chains (Definition 3.1),

• total right rejective chains (Definition 3.19),

• coreflective chains (Definition 3.33).

As an application, we sharpen a well-known result of Dlab–Ringel [DR89c, Theorem
2] stating that any artin algebra of global dimension at most two is quasi-hereditary. We
prove that such an algebra is always right-strongly (resp. left-strongly) quasi-hereditary
(Theorem 4.1). We give a detailed proof following the strategy of [Iya03b, Theorem 3.6].
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In particular, Auslander algebras are right-strongly quasi-hereditary. We show that the
Auslander algebra of a representation-finite algebra A is strongly quasi-hereditary if and
only if A is a Nakayama algebra. By [Con16], Auslander–Dlab–Ringel algebras are left-
strongly quasi-hereditary. We give several characterizations of Auslander–Dlab–Ringel
algebras to be strongly quasi-hereditary.

1.2 Our results

Recall that right-strongly (resp. left-strongly) quasi-hereditary algebras are defined as
quasi-hereditary algebras whose standard modules have projective dimension at most one
(Definition 2.7). Our starting point is the following observation which gives a characteri-
zation of right-strongly (resp. left-strongly) quasi-hereditary algebras in terms of heredity
chains.

Proposition 1.1 (Proposition 3.7). Let A be an artin algebra. Then A is right-strongly
(resp. left-strongly) quasi-hereditary if and only if there exists a heredity chain

A = H0 > H1 > · · · > Hn = 0

such that Hi is a projective right (resp. left) A-module for any 0 ≤ i ≤ n− 1.

We call such a heredity chain a right-strongly (resp. left-strongly) heredity chain.
Moreover we give categorical interpretations of right-strongly (resp. left-strongly) hered-

ity chains. For an artin algebra A, there exists a bijection between idempotent ideals of
A and full subcategories of the category projA of finitely generated projective A-modules
given by AeA 7→ add eA. This gives a bijection between chains of idempotent ideals of A
and chains of full subcategories of projA. A key idea of this thesis is to translate properties
of idempotent ideals into properties of full subcategories of projA.

For an artin algebra A and an arbitrary factor algebra B of A, we naturally regard
modB as a full subcategory of modA. In this case, each X ∈ modA has a right (resp.
left) (modB)-approximation of X which is monic (resp. epic) in modA. More generally,
subcategories of an additive category with these properties are called right (resp. left)
rejective subcategories in [Iya03a, Iya03b, Iya04]. They are a special class of coreflective
(resp. reflective) subcategories (see Definition 3.29) appearing in the classical theory of
localizations of abelian categories [Ste75].

Using the notion of right rejective (resp. left rejective, coreflective, reflective) subcate-
gories, we introduce the notion of total right rejective (resp. total left rejective, coreflective,
reflective) chains of an additive category (Definitions 3.19 and 3.33). The following main
theorem in this thesis characterizes right-strongly (resp. left-strongly) quasi-hereditary al-
gebras in terms of these chains.

Theorem 1.2 (Theorem 3.23 and 3.35). Let A be an artin algebra and

A = H0 > H1 > · · · > Hn = 0 (1-1)

a chain of idempotent ideals of A. For 0 ≤ i ≤ n− 1, we write Hi = AeiA, where ei is an
idempotent of A. Then the following statements are equivalent:
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(i) (1-1) is a right-strongly (resp. left-strongly) heredity chain.

(ii) The following chain is a total right (resp. left) rejective chain of projA.

projA = add e0A ⊃ add e1A ⊃ · · · ⊃ add enA = 0.

(iii) (1-1) is a heredity chain of A and the following chain is a coreflective (resp. reflective)
chain of projA.

projA = add e0A ⊃ add e1A ⊃ · · · ⊃ add enA = 0.

We apply total right (resp. left) rejective chains to study right-strongly (resp. left-
strongly) quasi-hereditary algebras. We give the following result by [Iya03b, Theorem 3.6]
and Theorem 1.2.

Theorem 1.3 (Theorem 4.1). Let A be an artin algebra. If gldimA ≤ 2, then A is a
right-strongly (resp. left-strongly) quasi-hereditary algebra.

An artin algebra which has a heredity chain such that it is a right-strongly heredity
chain and a left-strongly heredity chain is called a strongly quasi-hereditary algebra. They
have global dimension at most two [Rin10], but algebras with global dimension at most two
are not necessarily strongly quasi-hereditary. Applying our results on rejective chains, we
give the following characterization of Auslander algebras to be strongly quasi-hereditary.

Theorem 1.4 (Theorem 4.6). Let A be a representation-finite artin algebra and B the
Auslander algebra of A. Then B is a strongly quasi-hereditary algebra if and only if A is
a Nakayama algebra (see [ARS95, §4.2] for the definition of Nakayama algebras).

Note that Theorem 1.4 can be obtained by a different method using a recent result
[Eir17, Theorem 3].

Since the Auslander–Dlab–Ringel algebra of a Nakayama algebra coincides with the
Auslander algebra of the Nakayama algebra, it is strongly quasi-hereditary algebra by
Theorem 1.4. However, Auslander–Dlab–Ringel algebras are not necessarily strongly quasi-
hereditary algebras. We give characterizations of strongly quasi-hereditary Auslander–
Dlab–Ringel algebras by using Theorem 1.2.

Theorem 1.5 (Theorem 4.12). Let A be an artin algebra with Loewy length m ≥ 2 and

G :=
m⊕
i=1

A/J(A)i. Let B := EndA(G) be the Auslander–Dlab–Ringel algebra of A. Then

the following statements are equivalent.

(i) B is a strongly quasi-hereditary algebra.

(ii) gldimB = 2.

(iii) For any i ∈ I, P (i)J(A) ∈ addG.
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Moreover we consider the Auslander–Dlab–Ringel algebras of semilocal modules intro-
duced by [LX93]. Since any artin algebra is a semilocal module, it is a generalization of the
Auslander–Dlab–Ringel algebra in the sense of Theorem 1.5. In [LX93], they prove that
Auslander–Dlab–Ringel algebras of semilocal modules are quasi-hereditary. We sharpen
this result.

Theorem 1.6 (Theorem 4.16). The Auslander–Dlab–Ringel algebra of any semilocal mod-
ule is left-strongly quasi-hereditary.

As an application, we give a tightly upper bound on global dimension of an Auslander–
Dlab–Ringel algebra.
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2 Preliminaries

Notation. For background materials in the representation theory of algebras, we refer to
[ARS95, ASS06]. Let A be an artin algebra. Let J(A) be the Jacobson radical of A. We
denote by gldimA the global dimension of A. We write modA for the category of finitely
generated right A-modules and projA for the full subcategory of modA consisting of the
finitely generated projective A-modules. For M ∈ modA, we denote by addM the full
subcategory of modA whose objects are direct summands of finite direct sums of copies of
M .

We fix a complete set of representatives of isomorphism classes of simple A-modules
{S(i) | i ∈ I}. For i ∈ I, we denote by P (i) the projective cover of S(i) and I(i) the
injective hull of S(i). For X ∈ modA, we write [X : S(i)] for the composition multiplicity
of S(i). We denote by k a field.

2.1 Quasi-hereditary algebras and highest weight categories

We start with recalling definitions of quasi-hereditary algebras and highest weight cate-
gories.

Definition 2.1 (Cline–Parshall–Scott [CPS88], Dlab–Ringel [DR89c]). Let A be an artin
algebra.

(1) A two-sided ideal H of A is called heredity if it satisfies the following conditions:

(a) H is an idempotent ideal (i.e. H2 = H), or equivalently, there exists an idem-
potent e such that H = AeA [DR89c, Statement 6];

(b) H is projective as a right A-module;

(c) HJ(A)H = 0.

(2) A chain of idempotent ideals of A

A = H0 > H1 > · · · > Hi > Hi+1 > · · · > Hn = 0

is called a heredity chain if Hi/Hi+1 is a heredity ideal of A/Hi+1 for 0 ≤ i ≤ n− 1.

(3) A is called a quasi-hereditary algebra if there exists a heredity chain of A.

Quasi-hereditary algebras are strongly related to highest weight categories defined be-
low. In fact, an artin algebra A is quasi-hereditary if and only if there exists a partial order
≤ on I such that (modA,≤) is a highest weight category (see [CPS88, Theorem 3.6]).

Definition 2.2. Let ≤ be a partial order on the index set I of simple A-modules.

(1) For each i ∈ I, we denote by ∆(i) the maximal factor module of P (i) whose com-
position factors have the form S(j) for some j ≤ i. The module ∆(i) is called the
standard module corresponding to i.
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(2) For each i ∈ I, we denote by ∇(i) the maximal submodule of I(i) whose composition
factors have the form S(j) for some j ≤ i. The module ∇(i) is called the costandard
module corresponding to i.

Let ∆ := {∆(i) | i ∈ I} be the set of standard modules. We denote by F(∆) the full
subcategory of modA whose objects are the modules which have a ∆-filtration, namely
M ∈ F(∆) if and only if there exists a chain of submodules

M =M0 ⊇M1 ⊇ · · · ⊇Ml = 0

such that Mi/Mi+1 is isomorphic to a module in ∆. For M ∈ F(∆), we denote by
(M : ∆(i)) the filtration multiplicity of ∆(i), which dose not depend on the choice of
∆-filtrations (cf. [Don98, A.1 (7)]). Dually, we define the full subcategory F(∇) of modA.

Definition 2.3 (Cline-Parshall-Scott [CPS88]). We say that a pair (modA,≤) is a highest
weight category if there exists a short exact sequence

0→ K(i)→ P (i)→ ∆(i)→ 0

for any i ∈ I with the following properties:

(a) K(i) ∈ F(∆) for any i ∈ I;

(b) if (K(i) : ∆(j)) ̸= 0, then we have i < j.

Remark 2.4. We can also give the definition of highest weight categories by using the notion
of costandard modules. A pair (modA,≤) is a highest weight category if and only if there
exists a short exact sequence

0→ ∇(i)→ I(i)→ I(i)/∇(i)→ 0

for any i ∈ I with the following properties:

(a) I(i)/∇(i) ∈ F(∇) for any i ∈ I;

(b) if (I(i)/∇(i) : ∇(j)) ̸= 0, then we have i < j.

For a highest weight category (modA,≤) and a refinement ≤′ of ≤, it is clear that
(modA,≤′) is also a highest weight category whose standard modules coincide with those
of (modA,≤). Therefore, without loss of generality, one can assume that the partial order
≤ on I is a total order.

To explain a connection between quasi-hereditary algebras and highest weight categories
more explicitly, we introduce the following notion.

Definition 2.5 (Uematsu-Yamagata [UY90]). Let A be an artin algebra. A chain of
idempotent ideals

A = H0 > H1 > · · · > Hn = 0

is called maximal if the length of the chain is the number of simple modules.
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Any heredity chain of an artin algebra can be refined to a maximal heredity chain
[UY90, Proposition 1.3].

Let A be an artin algebra with simple A-modules {S(i) | i ∈ I} and εi a primitive
idempotent of A corresponding to S(i). Then there is a bijection

{total orders on I} 1:1←→ {maximal chains of idempotent ideals}

given by setting Hj := A(εij+1
+ · · ·+ εin)A and

(i1 < i2 < · · · < in) 7→ (A = H0 > H1 > · · · > Hn). (2-2)

Proposition 2.6 (Cline-Parshall-Scott [CPS88, §3]). Let A be an artin algebra and ≤ a
total order on I.

(1) A pair (modA,≤) is a highest weight category with standard modules {∆(i1), . . . ,∆(in)}
if and only if the corresponding maximal chain of idempotent ideals is a heredity chain.

(2) If the condition in (1) are satisfied, then we have Hj/Hj+1
∼= ∆(ij)

mj as right A-
modules for some positive integer mj.

2.2 Right-strongly (resp. left-strongly) quasi-hereditary algebras

Ringel introduced the notion of right-strongly quasi-hereditary algebras as a special class of
quasi-hereditary algebras. First we recall the definition of right-strongly quasi-hereditary
algebras.

Definition 2.7 (Ringel [Rin10, §4]). Let A be an artin algebra and ≤ a partial order on
I.

(1) We say that a pair (A,≤) (or simply A) is right-strongly quasi-hereditary if there
exists a short exact sequence

0→ K(i)→ P (i)→ ∆(i)→ 0

for any i ∈ I with the following properties:

(a) K(i) is a direct summand of projective modules P (j) with i < j;

(b) If [∆(i)J : S(j)] ̸= 0, then we have i < j.

(2) We say that a pair (A,≤) (or simply A) is left-strongly quasi-hereditary if (Aop,≤) is
right-strongly quasi-hereditary.

We can easily check that Definition 2.7 is equivalent to the following condition which
is frequently used in this thesis.

Proposition 2.8. Let A be an artin algebra and ≤ a partial order on I. Then the following
statements are equivalent.
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(i) A pair (A,≤) is right-strongly quasi-hereditary.

(ii) There exists a short exact sequence

0→ K(i)→ P (i)→ ∆(i)→ 0

for any i ∈ I with the following properties:

(a) K(i) ∈ F(∆) for all i ∈ I;
(b) if (K(i) : ∆(j)) ̸= 0, then we have i < j;

(c) K(i) is a projective right A-module, or equivalently, the right A-module ∆(i)
has projective dimension at most one.

Proof. (i) ⇒ (ii): This is clear by [Rin10, Proposition in §4].
(ii) ⇒ (i): If P (j) is a direct summand of K(i), then (K(i) : ∆(i)) ̸= 0, and hence we

have i < j. Since A is quasi-hereditary, we obtain that

[∆(i) : S(j)] = (∇(i) : ∇(j)) + (I(i)/∇(i) : ∇(j))

by (I(i) : ∇(j)) = [∆(i) : S(j)]. If j ̸= i, then [∆(i)J : S(j)] = (I(i)/∇(i) : ∇(j)). Thus if
[∆(i)J : S(j)] ̸= 0, then we have j > i. If j = i, then

[∆(i) : S(i)] = (∇(i) : ∇(i)) + (I(i)/∇(i) : ∇(i)) = 1 + 0 = 1.

The proof is complete.

Since the properties (a) and (b) in Proposition 2.8 implies that (modA,≤) is a highest
weight category, any right-strongly quasi-hereditary algebra is quasi-hereditary.

As before, for a right-strongly quasi-hereditary algebra (A,≤) and a refinement ≤′ of
≤, it is clear that (A,≤′) is also a right-strongly quasi-hereditary algebra whose standard
modules coincide with those of (A,≤). Therefore, without loss of generality, one can
assume that the partial order ≤ on I is a total order.

In this thesis, for a quiver Q and arrows α : x → y and β : y → z in Q, we denote by
αβ the composition. We denote by ϵi the idempotent corresponding to a vertex i.

Example 2.9. Let n ≥ 2 be an integer and let An be the k-algebra defined by the quiver

1
α1 // 2
β1

oo
α2 // · · ·
β2

oo
αi−1 // i
βi−1

oo
αi // i+ 1
βi

o o
αi+1 // · · ·
βi+1

oo
αn−1 / / n
βn−1

oo

with relations αi−1αi, βiβi−1, βi−1αi−1− αiβi for 2 ≤ i ≤ n− 1 and βn−1αn−1. The algebra
An is Morita equivalent to a block of a Schur algebra (see [DR94, Erd93]).

If n = 2, then the indecomposable projective modules P (i) have the following shapes:

1
2
1

2
1
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For the total order {1 < 2}, we have ∆(1) = S(1) and ∆(2) = P (2). Hence A2 is right-
strongly quasi-hereditary.

If n > 2, then the indecomposable projective modules P (i) have the following shapes:

1
2
1

2
1 3

2
· · ·

i
i− 1 i+ 1

i
· · ·

n
n− 1

Thus An is quasi-hereditary with respect to the total order {1 < 2 < · · · < n}. However
An is not right-strongly quasi-hereditary with respect to any order.

It is well known that (A,≤) is quasi-hereditary if and only if so is (Aop,≤) (see [CPS88,
Lemma 3.4] and [DR89c, Statement 9]). However, even if (A,≤) is right-strongly quasi-
hereditary, it does not necessarily hold that (Aop,≤) is right-strongly quasi-hereditary (or
equivalently, (A,≤) is left-strongly quasi-hereditary). In fact, Ringel gave an example of a
right-strongly quasi-hereditary algebra which is not left-strongly quasi-hereditary for any
partial order on I (see [Rin10, A2 (1)]).

Example 2.10. Let A be the k-algebra defined by the quiver

1
γ

��=
==

==

2

α
@@�����

3
β

oo

with relations αγ and βα. Then the indecomposable projective A-modules P (i) have the
following shapes:

1
3
2

2
1

3
2

For the total order {1 < 2 < 3}, we have ∆(1) = S(1) and ∆(i) = P (i) for i = 2, 3. Hence
A is right-strongly quasi-hereditary. On the other hand, the indecomposable projective
Aop-modules have the following shapes:

1op

2op
2op

3op

1op

3op

1op

For the total order {1 < 2 < 3}, we have ∆op(i) = Sop(i) for i = 1, 2 and ∆op(3) = P op(3).
Hence A is not left-strongly quasi-hereditary. However, for the total order {2 < 1 < 3}, A
is not right-strongly quasi-hereditary but A is left-strongly quasi-hereditary.
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3 Characterizations of right-strongly quasi-hereditary

algebras

3.1 Right-strongly heredity chains

In this subsection, we give a characterization of right-strongly (resp. left-strongly) quasi-
hereditary algebras in terms of heredity chains.

Definition 3.1. Let A be an artin algebra and

A = H0 > H1 > · · · > Hi > Hi+1 > · · · > Hn = 0 (3-3)

a chain of idempotent ideals.

(1) We call (3-3) a right-strongly (resp. left-strongly) heredity chain if the following con-
ditions hold for any 0 ≤ i ≤ n− 1:

(a) Hi is projective as a right (resp. left) A-module;

(b) (Hi/Hi+1)J(A/Hi+1)(Hi/Hi+1) = 0.

(2) We call (3-3) a strongly heredity chain if the following conditions hold for any 0 ≤
i ≤ n− 1:

(a) Hi is projective as a right A-module and as a left A-module;

(b) (Hi/Hi+1)J(A/Hi+1)(Hi/Hi+1) = 0.

Proposition 3.2. Any right-strongly (resp. left-strongly) heredity chain of A is a heredity
chain.

Proof. Let (3-3) be a right-strongly heredity chain. It is enough to show that Hi/Hi+1 is
projective as a right (A/Hi+1)-module for any 0 ≤ i ≤ n−1. Since (3-3) is a right-strongly
heredity chain, we have that Hi is projective as a right A-module for any 0 ≤ i ≤ n − 1.
Hence Hi ⊗A (A/Hi+1) = Hi/Hi+1 is projective as a right (A/Hi+1)-module for any 0 ≤
i ≤ n− 1.

Example 3.3. Let A be an artin algebra. Then A is hereditary if and only if any chain
of idempotent ideals of A is a strongly heredity chain.

Proof. The “only if” part is clear. By [DR89c, Theorem 1], A is hereditary if and only if
any chain of idempotent ideals of A is a heredity chain. Therefore the “if” part follows.

Example 3.4. Any heredity chain of length at most two is clearly a right-strongly (resp.
left-strongly) heredity chain.
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Example 3.5. Let A be the Auslander algebra of the truncated polynomial algebra
k[x]/(xn). Namely A is given by the quiver

1
α1 // 2
β1

oo
α2 // · · ·
β2

oo
αi−1 // i
βi−1

oo
αi // i+ 1
βi

o o
αi+1 // · · ·
βi+1

oo
αn−1 / / n
βn−1

oo

with relations βiαi − αi+1βi+1 (1 ≤ i ≤ n− 2) and βn−1αn−1. Then

A > A(ε2 + · · ·+ εn)A > · · · > AεnA > 0

is a strongly heredity chain of A. This example can be explained by Theorem 4.6.

We prepare the following easy observation.

Lemma 3.6. Let A be an artin algebra and A = H0 > H1 > · · · > Hn = 0 a chain of
two-sided ideals. Then the following conditions are equivalent:

(i) Hi is projective as a right (resp. left) A-module for 0 ≤ i ≤ n− 1.

(ii) The projective dimension of Hi/Hi+1 as a right (resp. left) A-module is at most one
for 0 ≤ i ≤ n− 1.

Proof. (i) ⇒ (ii): This is clear from the short exact sequence

0→ Hi+1 → Hi → Hi/Hi+1 → 0.

(ii) ⇒ (i): Since 0 → H1 → H0 → H0/H1 → 0 is a short exact sequence such that
H0 = A is a projective A-module, H1 is also projective as a right A-module. Thus we
obtain the assertion inductively.

Now, we are ready to prove the following main observation in this subsection.

Proposition 3.7. Let A be an artin algebra, ≤ a total order on I and

A = H0 > H1 > · · · > Hn = 0 (3-4)

a maximal chain of idempotent ideals corresponding to ≤ by (2-2). Then (A,≤) is a right-
strongly (resp. left-strongly) quasi-hereditary algebra if and only if (3-4) is a right-strongly
(resp. left-strongly) heredity chain.

Proof. Both conditions imply that (3-4) is a heredity chain by Proposition 2.6 (1) and
Proposition 3.2. Moreover we have an isomorphism

Hj/Hj+1
∼= ∆(ij)

mj (3-5)

as right A-modules for some positive integer mj by Proposition 2.6 (2).
By (3-5), the pair (A,≤) is right-strongly quasi-hereditary if and only if the projective

dimension of Hj/Hj+1 as a right A-module is at most one for any 0 ≤ j ≤ n−1. By Lemma
3.6, this is equivalent to that Hj is projective as a right A-module for any 0 ≤ j ≤ n− 1.
Hence (3-4) is a right-strongly heredity chain.
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Thought this thesis, we frequently use the following basic observations.

Lemma 3.8. Let A be an artin algebra and e an idempotent of A. Then we have the
following statements.

(1) If AeA is projective as a right A-module, then AeA ∈ add eA.

(2) If Ae is projective as a right (eAe)-module, then the functor HomA(eA,−) : modA→
mod eAe preserves projective modules. In particular, gldim eAe ≤ gldimA.

(3) If AeA is projective as a right A-module, then Ae is a projective right (eAe)-module.

Proof. (1) Take an epimorphism f : (eAe)l ↠ Ae in mod(eAe). Composing f ⊗eAe eA :
(eA)l ↠ Ae⊗eAe eA with the multiplication map Ae⊗eAe eA↠ AeA, we have an epimor-
phism (eA)l ↠ AeA of right A-modules.

(2) For any P ∈ projA, we have that HomA(eA, P ) = Pe is a direct summand of a
finite direct sum of copies of HomA(eA,A) = Ae. Hence the assertion holds.

(3) Since AeA is a projective A-module, it follows from (1) that AeA ∈ add eA. Hence
we obtain that Ae = AeAe = HomA(eA,AeA) is projective as a right (eAe)-module.

We end this subsection with the following observations which show that right-strongly
(resp. left-strongly) quasi-hereditary algebras are closed under idempotent reductions.

Proposition 3.9. Let A be an artin algebra with a right-strongly (resp. left-strongly) hered-
ity chain

A = H0 > H1 > · · · > Hn = 0.

Then the following statements hold.

(1) For 0 < i ≤ n− 1, A/Hi has a right-strongly (resp. left-strongly) heredity chain

A/Hi = H0/Hi > H1/Hi > · · · > Hi−1/Hi > Hi/Hi = 0.

(2) Let ei ∈ A be an idempotent of A such that Hi = AeiA for 0 ≤ i ≤ n−1. Then eiAei
has a right-strongly (resp. left-strongly) heredity chain

eiAei = eiHiei > eiHi+1ei > · · · > eiHnei = 0.

Proof. (1) It is enough to show that Hj/Hi is projective as a right (A/Hi)-module for
1 ≤ j < i. This is immediate since Hj is projective as a right A-module and the functor
−⊗A (A/Hi) : modA→ modA/Hi reflects projectivity.

(2) We prove that eiHjei is a projective right (eiAei)-module. By Lemma 3.8 (3), we
have that Aei is projective as a right (eiAei)-module. It follows from Lemma 3.8 (2) that
Hjei is projective as a right (eiAei)-module. Since Hjei = eiHjei ⊕ (1 − ei)Hjei, we have
eiHjei ∈ proj(eiAei).
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3.2 Right rejective subcategories

In this subsection, we recall the definitions of right rejective subcategories. Using them,
we characterize right-strongly (resp. left-strongly) quasi-hereditary algebras. We refer to
[ASS06, Appendix] for background on category theory.

Let C be an additive category, and put C(X,Y ) := HomC(X,Y ). In the rest of this the-
sis, we assume that any subcategory is full and closed under isomorphisms, direct sums and
direct summands. We denote by JC the Jacobson radical of C, and by ind C the set of iso-
classes of indecomposable objects in C. For a subcategory C ′ of C, we denote by [C ′] the ideal
of C consisting of morphisms which factor through some object of C ′. For an ideal I of C, the
factor category C/I is defined by ob(C/I) := ob(C) and (C/I)(X,Y ) := C(X,Y )/I(X,Y )
for any X,Y ∈ C. Recall that an additive category C is called Krull–Schmidt if any object
of C is isomorphic to a finite direct sum of objects whose endomorphism rings are local.

Definition 3.10 (Auslander–Smalø [AS80]). Let C be an additive category and C ′ a sub-
category of C. We say that f ∈ C(Y,X) is a right C ′-approximation of X if the following
equivalent conditions are satisfied.

(i) Y ∈ C ′ and C(−, Y )
f◦−−−→ C(−, X)→ 0 is exact on C ′.

(ii) Y ∈ C ′ and the induced morphism C(−, Y )
f◦−−−→ [C ′](−, X) is an epimorphism on C.

Dually, a left C ′
-approximation is defined.

Now, we introduce the following key notions in this thesis.

Definition 3.11 (Iyama [Iya03a, 2.1(1)]). Let C be an additive category and C ′ a subcat-
egory of C.

(1) We call C ′ a right (resp. left) rejective subcategory of C if the inclusion functor C ′ ↪→ C
has a right (resp. left) adjoint with a counit ε− (resp. unit ε+) such that ε−X is a
monomorphism (resp. ε+X is an epimorphism) for X ∈ C.

(2) We call C ′ a rejective subcategory of C if C ′ is a right and left rejective subcategory
of C.

We often use the following equivalent conditions.

Proposition 3.12 (Iyama [Iya03b, Definition 1.5]). Let C be an additive category and C ′
a subcategory of C. Then the following are equivalent:

(i) C ′ is a right (resp. left) rejective subcategory of C.

(ii) For any X ∈ C, there exists a monic right (resp. epic left) C ′-approximation fX ∈
C (Y,X) (resp. fX ∈ C (X,Y )) of X.
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Proof. (i) ⇒ (ii): If the inclusion functor F : C ′ ↪→ C has a right adjoint G with a counit
ε−, then ε−X : G(X)→ X is a right C ′-approximation of X ∈ C. Thus the assertion follows.

(ii)⇒ (i): We assume that, for any X ∈ C, there exists a monic right C ′-approximation
of X. We construct a right adjoint functor G : C → C ′ as follows. For X ∈ C, take a monic
right C ′-approximation fX : CX → X. For a morphism φ ∈ C(X,Y ), there exists a unique
morphism Cφ : CX → CY making the following diagram commutative.

CX
Cφ ��

fX // X
φ
��

CY
fY // Y.

It is easy to check that G(X) := CX and G(φ) := Cφ give a right adjoint functor G : C → C ′
of the inclusion functor F : C ′ → C and f gives a counit.

Right rejective subcategories of modA are characterized as follows.

Proposition 3.13 (Iyama [Iya03b, Proposition 1.5.2]). Let A be an artin algebra and C a
subcategory of modA. Then C is a right (resp. left) rejective subcategory of modA if and
only if C is closed under factor modules (resp. submodules).

Proof. We show the “if” part. For M ∈ modA, we put G(M) :=
∑

X∈C,f∈HomA(X,M) f(X).

Then G(M) is a factor module of some module in C. Thus we have G(M) ∈ C. Since the
natural inclusion G(M) ↪→M is a monic right C-approximation of M , the assertion holds.

We show the “only if” part. For a surjection f :M → N with M ∈ C, we show that N
belongs to C. Since C is a right rejective subcategory of modA, there exists a monic right
C-approximation fN : G(N) → N of N . Thus we have a morphism g : M → G(N) such
that f = fN ◦ g. Since f is surjective, we obtain that fN is a bijection. Hence we have
N ∈ C.

Proposition 3.14 (Iyama [Iya03b, Theorem 1.6.1(1)]). Let A be an artin algebra. Then
there exists a bijection between factor algebras B of A and rejective subcategories C of
modA given by B 7→ modB.

Proof. This is clearly from Proposition 3.13 since a full subcategory of modA which is
closed under submodules and factor modules is precisely modB for a factor algebra B of
A.

Example 3.15. Let A be an artin algebra.

(a) Let (T ,F) be a torsion pair on modA. Then T is a right rejective subcategory and
F is a left rejective subcategory of modA by Proposition 3.13.

(b) For a classical tilting A-module T , we put T := {Y ∈ modA | Ext1A(T, Y ) = 0} and
F := {Y ∈ modA | HomA(T, Y ) = 0}. Then (T ,F) is a torsion pair on modA, and
therefore T (resp. F) is a right (resp. left) rejective subcategory of modA.
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(c) Assume that A is right-strongly quasi-hereditary and let T be a characteristic tilting
module (see Definition-Theorem 4.4). Then T is a classical tilting module by [DR92,
Lemma 4.1] and hence (T ,F) is a torsion pair on modA. Since T coincides with the
subcategory

F(∆)⊥ := {Y ∈ modA | ExtiA(F(∆), Y ) = 0 for all i ≥ 1}

(see [DR92, §4]), we have that F(∆)⊥ is a right rejective subcategory of modA.

Right rejective subcategories of projA are characterized as follows.

Proposition 3.16 (Iyama [Iya03b, Theorem 3.2 (2)]). Let A be an artin algebra and e an
idempotent of A. Then add eA is a right (resp. left) rejective subcategory of projA if and
only if AeA is a projective right (resp. left) A-module. In this case, we have gldim eAe ≤
gldimA.

Proof. Assume that add eA is a right rejective subcategory of projA. Then there exists
a ∈ HomA(P,A) with P ∈ add(eA)A such that

P = HomA(A,P )
a◦−−−→ [add eA](A,A) = AeA

is an isomorphism. Hence AeA ∼= P is a projective right A-module.
Conversely, we assume that AeA is a projective right A-module. By Lemma 3.8 (1),

we have AeA ∈ add eA as a right A-module. The inclusion map i : AeA ↪→ A gives a right
(add eA)-approximation of A since

Ae = AeAe = HomA(eA,AeA)
i◦−−−→ HomA(eA,A) = Ae

is an isomorphism.
In this case, Ae is projective as a right (eAe)-module by Lemma 3.8 (3). Thus it follows

from Lemma 3.8 (2) that gldim eAe ≤ gldimA.
By the duality HomA(−, A) : projA → projAop, we have that add eA is left rejective

in projA if and only if addAe is right rejective in projAop. Hence the statement for left
rejective subcategories follows.

To introduce rejective chains, we need the following notion.

Definition 3.17. Let C be a Krull–Schmidt category.

(1) We call C a semisimple category if JC = 0.

(2) A subcategory C ′ of C is called cosemisimple in C if the factor category C/ [C ′] is
semisimple.

We often use the fact that C ′ is a cosemisimple subcategory of C if and only if [C ′](−, X) =
JC(−, X) holds for any X ∈ ind C \ ind C ′.
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Lemma 3.18. Let A be an artin algebra and Ae′A ⊂ AeA idempotent ideals of A. Then
the following conditions are equivalent:

(i) add e′A is a cosemisimple subcategory of add eA.

(ii) J(eAe/eAe′Ae) = 0.

(iii) (AeA/Ae′A)J(A/Ae′A)(AeA/Ae′A) = 0.

Proof. (i) ⇔ (ii): Let C := add eA/[add e′A]. The condition (i) means JC = 0. This is
equivalent to (ii) since JC(eA, eA) = J(EndC(eA)) = J(eAe/eAe′Ae).

(ii) ⇔ (iii): Since J(eAe/eAe′Ae) = eJ(A/Ae′A)e, we have the assertion.

Now, we introduce the following central notion in this thesis.

Definition 3.19 (Iyama [Iya03a, 2.1(2)], [Iya03b, Definition 2.2]). Let C be a Krull–
Schmidt category and

C0 ⊃ C1 ⊃ · · · ⊃ Cn = 0 (3-6)

a chain of subcategories.

(1) We call (3-6) a rejective chain (resp. right rejective, left rejective) if Ci is a cosemisim-
ple rejective (resp. right rejective, left rejective) subcategory of Ci−1 for 1 ≤ i ≤ n.

(2) We call (3-6) a total right (resp. left) rejective chain if the following conditions hold
for 1 ≤ i ≤ n:

(a) Ci is a right (resp. left) rejective subcategory of C;
(b) Ci is a cosemisimple subcategory of Ci−1.

Remark 3.20. (1) Rejective chains are total right rejective chains and total left rejective
chains by [Iya03b, 2.1(3)].

(2) Our total right rejective chains are called right rejective chains in [Iya04, Definition
2.6].

Example 3.21. Let A be the k-algebra given in Example 2.10. Then

projA = addA ⊃ add(ε2 + ε3)A ⊃ add ε3A ⊃ 0

is a total right rejective chain of projA. In fact, the conditions (a) and (b) in Definition
3.19 (2) are satisfied by Proposition 3.16 and ε1J(A)ε1 = 0 = ε2J(A)ε2 respectively.

Total right (resp. left) rejective chains are useful to study the endomorphism algebras
with finite global dimension.

Proposition 3.22 (Iyama [Iya03b, Theorem 2.2.2]). Let A be an artin algebra. If projA
has a total right (resp. left) rejective chain of length n > 0, then gldimA ≤ n.
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Now, we are ready to prove the following main result.

Theorem 3.23. Let A be an artin algebra and let

A = H0 > H1 > · · · > Hn = 0 (3-7)

be a chain of idempotent ideals of A. For 0 ≤ i ≤ n− 1, we write Hi = AeiA, where ei is
an idempotent of A. Then the following conditions are equivalent:

(i) The chain (3-7) is a right-strongly (resp. left-strongly) heredity chain.

(ii) The following chain is a total right (resp. left) rejective chain of projA.

projA = add e0A ⊃ add e1A ⊃ · · · ⊃ add enA = 0.

In particular, an artin algebra A is strongly (resp. right-strongly, left-strongly) quasi-
hereditary if and only if projA has a rejective (resp. total right rejective, total left rejective)
chain.

Proof. It follows from Proposition 3.16 that Hi ∈ projA if and only if add eiA is a right re-
jective subcategory of projA. Thus we have that Hi satisfies the condition (a) in Definition
3.1 (1) if and only if add eiA satisfies the condition (a) in Definition 3.19 (2). From Lemma
3.18, we have that (Hi/Hi+1)J(A/Hi+1)(Hi/Hi+1) = 0 holds if and only if add ei+1A is a
cosemisimple subcategory of add eiA. Thus we obtain that Hi and Hi+1 satisfy the condi-
tion (b) in Definition 3.1 (1) if and only if add eiA and add ei+1A satisfy the condition (b)
in Definition 3.19 (2). Hence the proof is complete.

By combining Proposition 3.22 and Theorem 3.23, we can recover the following result
which was obtained by [Rin10, Proposition in §4].

Corollary 3.24. Let A be a right-strongly (resp. left-strongly) quasi-hereditary algebra with
a right-strongly (resp. left-strongly) heredity chain of length n > 0. Then we have

gldimA ≤ n.

Proof. Since A is a right-strongly quasi-hereditary algebra, projA has a total right rejective
chain of length n > 0 by Theorem 3.23. Hence the assertion follows from Proposition
3.22.

We can rephrase Theorem 3.23 as follows.

Corollary 3.25. Let A be an artin algebra and M a right A-module. Then the following
statements are equivalent.

(i) EndA(M) is a right-strongly (resp. left-strongly) quasi-hereditary algebra.

(ii) projEndA(M) has a total right (resp. left) rejective chain.
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(iii) addM has a total right (resp. left) rejective chain.

Proof. Let B := EndA(M).
(i) ⇔ (ii): This is from Theorem 3.23.
(ii) ⇔ (iii): Since the functor HomA(M,−) (resp. HomB(HomA(−,M), B)) induces an

equivalence addM → projB, we obtain that projB has a total right (resp. left) rejective
chain if and only if addM has a total right (resp. left) rejective chain. This finishes the
proof.

Moreover we have the following well-known result.

Corollary 3.26. Let A be an artin algebra.

(1) (Iyama [Iya03a, Theorem 1.1]) For any M ∈ modA, there exists N ∈ modA such
that addN contains M and has a total right rejective chain.

(2) (Ringel [Rin10, Theorem in §5]) There exists a right-strongly quasi-hereditary algebra
B and an idempotent e of B such that A = eBe.

Proof. (1) For the reader’s convenience, we recall the construction. Let M0 := M and
Mi+1 := J(EndA(Mi))Mi inductively. We take the smallest n > 0 such that Mn = 0, and
let N :=

⊕n−1
k=0 Mk and Ci := add(

⊕n−1
k=i Mk). Then

C0 ⊃ C1 ⊃ · · · ⊃ Cn = 0

is a total right rejective chain by [Iya03a, Lemma 2,2].
(2) Applying (1) toM = A, we obtain thatN ∈ modA such that B = EndA(N) is right-

strongly quasi-hereditary by Corollary 3.25. Let e ∈ B be the idempotent corresponding
to the direct summand A of N . Then eBe = A holds as desired.

We end this subsection with characterizations of cosemisimple right (resp. left) rejective
subcategories. The first one is crucial in the proof of Corollary 3.26 (1).

Proposition 3.27 (Iyama [Iya03b, 1.5.1]). Let C be a Krull–Schmidt category and C ′ a
subcategory of C. Then C ′ is a cosemisimple right (resp. left) rejective subcategory of C
if and only if, for any X ∈ ind C \ ind C ′, there exists a morphism φ : Y → X (resp.

φ : X → Y ) such that Y ∈ C ′ and C(−, Y )
φ◦−−−→ JC(−, X) (resp. C(Y,−) −◦φ−−→ JC(X,−))

is an isomorphism on C.

Proof. We show the “only if” part. For any X ∈ ind C \ ind C ′, we take a morphism

φ : Y → X such that Y ∈ C ′ and C(−, Y )
φ◦−−−→ [C ′](−, X) is an isomorphism on C. This

gives a desired morphism since cosemisimplicity of C ′ implies that JC(−, X) = [C ′](−, X).
We show the “if” part. It suffices to prove that [C ′](−, X) = JC(−, X) for any X ∈

ind C\ind C ′. For anyX ∈ ind C\ind C ′, we take a morphism φ : Y → X such that Y ∈ C ′ and
C(−, Y )

φ◦−−−→ JC(−, X) is an isomorphism on C. Then JC(−, X) ⊆ Im(φ ◦−) ⊆ [C ′](−, X)
holds. Since X ̸∈ C ′, this clearly implies JC(−, X) = [C ′](−, X), and hence we have the
assertion.

18



The second one is a reformulation of Proposition 3.27.

Proposition 3.28 (Iyama [Iya03b, Theorem 3.2(3)]). Let A be a basic artin algebra and e
an idempotent of A. Then add eA is a cosemisimple right (resp. left) rejective subcategory
of projA if and only if (1−e)J(A) ∈ add eA as a right A-module (resp. J(A)(1−e) ∈ addAe
as a left A-module).

Proof. Applying Proposition 3.27 to C := projA and C ′ := add eA, we have that C ′ is
a cosemisimple right rejective subcategory of C if and only if there exists a morphism
φ : Y → (1− e)A with Y ∈ C ′ such that

Y ∼= C(A, Y )
φ◦−−−→ JC(A, (1− e)A) = (1− e)J(A)

is an isomorphism. This means that (1− e)J(A) ∈ C ′ holds.

3.3 Coreflective subcategories

In this subsection, we study a weaker notion of right (resp. left) rejective subcategories
called coreflective (resp. reflective) subcategories. They appeared in the classical theory of
localizations of abelian categories [Ste75]. Let us start with recalling their definitions.

Definition 3.29 (Cf. Stenström [Ste75]). Let C be an additive category and C ′ a sub-
category of C. We call C ′ a coreflective (resp. reflective) subcategory of C if the inclusion
functor C ′ ↪→ C admits a right (resp. left) adjoint.

Clearly right (resp. left) rejective subcategories are coreflective (resp. reflective). The
following proposition is an analogue of Proposition 3.12.

Proposition 3.30. Let C be an additive category and C ′ a subcategory of C. Then the
following conditions are equivalent:

(i) C ′ is a coreflective (resp. reflective) subcategory of C.

(ii) For any X ∈ C, there exists a right (resp. left) C ′-approximation fX ∈ C (Y,X) (resp.

fX ∈ C (X,Y )) of X such that C(−, Y )
fX◦−−−−→ C(−, X) (resp. C(Y,−) −◦fX−−−→ C(X,−))

is an isomorphism on C ′.

We omit the proof since it is similar to Proposition 3.12.
The following proposition is an analogue of Proposition 3.16.

Proposition 3.31 (Iyama [Iya03b, Theorem 3.2 (1)]). Let A be an artin algebra and e
an idempotent of A. Then add eA is a coreflective (resp. reflective) subcategory of projA if
and only if Ae (resp. eA) is a projective right (resp. left) eAe-module.
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Proof. Assume that add eA is a coreflective subcategory of projA. Then there exists a right
(add eA)-approximation a ∈ HomA(P,A) of A such that

HomA(eA, P )
a◦−−−→ HomA(eA,A)

is an isomorphism. Thus we have an isomorphism Ae ∼= Pe ∈ add(eAe) of right (eAe)-
modules and we obtain Ae ∈ proj(eAe).

Conversely, we assume that Ae is projective as right (eAe)-modules. Then there exists
P ∈ add eA as a right A-module such that Pe ∼= Ae as right (eAe)-modules. This is
induced by a morphism a : P → A since HomA(P,A) = HomeAe(Pe,Ae) (see [ARS95,
Proposition 2.1 (a)]). Since

HomA(eA, P )
a◦−−−→ HomA(eA,A)

is an isomorphism, add eA is coreflective in projA.

Right (resp. left) rejective subcategories are coreflective (resp. reflective) subcategories,
but the converse is not true as the following example shows.

Example 3.32. Let A be the preprojective algebra of type A3. It is defined by the quiver

1
α1 // 2
β1

oo
α2 // 3
β2

oo

with relations α1β1, β1α1−α2β2 and β2α2. Then Aε3A is not projective as a right A-module,
but Aε3 is projective as a right ε3Aε3-module. Thus add ε3A is not a right rejective subcat-
egory of projA by Proposition 3.16, but a coreflective subcategory of projA by Proposition
3.31.

We introduce the following analogue of Definition 3.19.

Definition 3.33. Let C be an additive category. We call a chain of subcategories

C = C0 ⊃ C1 ⊃ · · · ⊃ Cn = 0

a coreflective (resp. reflective) chain if Ci is a cosemisimple coreflective (resp. reflective)
subcategory of Ci−1 for 1 ≤ i ≤ n.

Clearly right (resp. left) rejective chains are coreflective (resp. reflective) chains. The
converse is not true as the following example shows.

Example 3.34. Let A be the preprojective algebra of type A2. It is defined by the quiver

1
α // 2
β

oo

with relations βα and αβ. Then

projA = addA ⊃ add ε2A ⊃ 0

is not a right rejective chain, but a coreflective chain of projA. In fact, the conditions
(a) and (b) in Definition 3.33 follow from Proposition 3.31 and ε1J(A)ε1 = 0 respectively.
However the condition (a) in Definition 3.19 dose not hold by Proposition 3.16.
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We are ready to state the following main result in this thesis.

Theorem 3.35. In Theorem 3.23, the conditions (i) and (ii) are equivalent to the following
condition.

(iii) (3-7) is a heredity chain of A and the following chain is a coreflective (resp. reflective)
chain of projA.

projA = add e0A ⊃ · · · ⊃ add en−1A ⊃ add enA = 0.

To prove Theorem 3.35, we need the following lemma.

Lemma 3.36. Let A be an artin algebra and I ′ ⊂ I idempotent ideals of A. Let e and e′ be
idempotents of A such that I = AeA and I ′ = Ae′A. We assume that I/I ′ is a projective
right (resp. left) (A/I ′)-module and TorA2 (A/I,A/I

′) = 0 (resp. TorA2 (A/I
′, A/I) = 0). If

Ae (resp. eA) is a projective right (resp. left) (eAe)-module, then I is a projective right
(resp. left) A-module.

Proof. Let 0 → K → P → I → 0 be a projective cover of the right A-module I. Then
P ∈ add eA as a right A-module and K ⊂ PJ(A) hold. Applying the functor (−)e :
modA → mod eAe, we have a short exact sequence 0 → Ke → Pe → Ie → 0. Since
Ie = Ae and Pe are projective (eAe)-modules and Ke ⊂ PeJ(eAe), we have Ke = 0.

On the other hand, applying the functor − ⊗A (A/I ′) to the short exact sequence
0→ K → P → I → 0, we have an exact sequence

TorA1 (I, A/I
′)→ K/KI ′ → P/PI ′ → I/I ′ → 0,

where TorA1 (I, A/I
′) = TorA2 (A/I,A/I

′) = 0 holds by our assumption. Since I/I ′ is a
projective right (A/I ′)-module, the sequence splits, and hence K/KI ′ is a direct summand
of P/PI ′. On the other hand, K ⊂ PJ(A) implies that K/KI ′ ⊂ (P/PI ′)J(A). Thus
K/KI ′ = 0 holds. Consequently, K = KI ′ ⊂ KI = 0 holds as desired.

We are ready to prove Theorem 3.35.

Proof of Theorem 3.35. Since (ii) ⇒ (iii) clearly holds, it suffices for us to prove that (iii)
⇒ (i). We show this claim by induction on n. If n = 1, then the assertion holds since
H0 = A is projective as a right A-module.

For n ≥ 2 we proceed by induction. Let ei denote the idempotent ei+Hn−1 of A/Hn−1

for 0 ≤ i ≤ n− 2. Firstly, we claim that

A/Hn−1 > · · · > (A/Hn−1)ei(A/Hn−1) > · · · > Hn−1/Hn−1 = 0

is a heredity chain of A/Hn−1 such that add ei(A/Hn−1) is a coreflective subcategory of
proj(A/Hn−1) for 0 ≤ i ≤ n− 2. Since (A/Hn−1)ei(A/Hn−1) = Hi/Hn−1 for 0 ≤ i ≤ n− 2,
the above chain is a heredity chain of A/Hn−1. Since Aei ∈ proj(eiAei), we have that
Aei ⊗eiAei ei(A/Hn−1)ei = (A/Hn−1)ei is projective as a right (ei(A/Hn−1)ei)-module.
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Therefore it follows from Proposition 3.31 that add ei(A/Hn−1) is a coreflective subcategory
of proj(A/Hn−1) for 0 ≤ i ≤ n− 2.

Now, we deduce from the induction hypothesis that Hi/Hn−1 is a projective module
as a right (A/Hn−1)-module for 0 ≤ i ≤ n − 2. For any 0 ≤ i ≤ n − 1, we obtain
from the hypothesis (iii) that add eiA is a coreflective subcategory of projA, and hence
Aei is a projective right (eiAei)-module by Proposition 3.31. Thus we have idempotent
ideals Hn−1, Hi such that Hn−1 is a heredity ideal of A, Hi/Hn−1 is projective as a right
(A/Hn−1)-module and Aei is a projective right (eiAei)-module for 0 ≤ i ≤ n−1. Moreover

TorA2 (A/Hi, A/Hn−1) = Tor
A/Hn−1

2 (A/Hi, A/Hn−1) = 0 holds since Hn−1 is a heredity ideal
of A. Therefore we deduce from Lemma 3.36 that Hi is a projective right A-modules.
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4 Applications

4.1 Algebras of global dimension at most two are right-strongly
quasi-hereditary

The aim of this subsection is to prove the following result.

Theorem 4.1. Let A be an artin algebra such that gldimA ≤ 2. Then the following
statements hold.

(1) A is a right-strongly quasi-hereditary algebra.

(2) (Iyama [Iya03b, Theorem 3.6]). The category projA has a total right rejective chain

projA = add e0A ⊃ · · · ⊃ add en−1A ⊃ add enA = 0.

Note that for an artin algebra A of global dimension at most two, we can similarly
construct a total left rejective chain

projA = add ϵ0A ⊃ · · · ⊃ add ϵn−1A ⊃ add ϵnA = 0.

Hence such an algebra is left-strongly quasi-hereditary. However it is not necessarily
strongly quasi-hereditary.

We need the following preparation.

Lemma 4.2 (Iyama [Iya03b, Lemma 3.6.1]). Let A be an artin algebra with gldimA = m,
where 2 ≤ m < ∞. Then there exists simple right A-modules S and S ′ such that the
projective dimensions of S and S ′ are m− 1 and m respectively.

Proof. Existence of S ′ is clear since gldimA is supremum of the projective dimensions of
simple A-modules. Let 0 → X → P → S ′ → 0 be an exact sequence with a projective
A-module P . Then the projective dimension of X is precisely m− 1. We assume that X
is not simple. Then there exists a proper simple submodule L of X. Consider the short
exact sequence

0→ L→ X → X/L→ 0.

Since the projective dimension of X is m− 1 and gldimA = m, the projective dimension
of L is at most m− 1. We assume that the projective dimension of L is strictly less than
m− 1. Then the projective dimension of X/L is precisely m− 1. Therefore we obtain the
assertion by replacing X by X/L and repeating this argument.

We are ready to prove the main theorem in this subsection.

Proof of Theorem 4.1. (2) We show by induction on the number of simple modules. We
may assume that A is basic. Let n be the number of simple A-modules.

Assume that n = 1. Since A is simple, the assertion holds.
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For n ≥ 2 we proceed by induction. If A is semisimple, then the assertion is obvious.
Thus we assume that A is non-semisimple. It follows from Lemma 4.2 that there exists a
simple A-module S such that the projective dimension of S is precisely one since gldimA =
1 or gldimA = 2. Let f be a primitive idempotent of A such that S = f(A/J(A)). Let
e := 1− f and A′ := eAe.

(i) We claim that add eA is a cosemisimple right subcategory of projA and gldimA′ ≤
gldimA ≤ 2. There exists a short exact sequence

0→ fJ(A)
φ−→ fA→ S → 0.

Since the projective dimension of S is one, we have fJ(A) ∈ projA. Since fA is not an
indecomposable direct summand of fJ(A), we have fJ(A) ∈ add eA as a right A-module.
It follows from Proposition 3.28 that add eA is a cosemisimple right rejective subcategory
of projA. Thus A/AeA is simple. Since add eA is a right rejective subcategory of projA, it
follows from Proposition 3.16 that gldimA′ ≤ gldimA ≤ 2.

(ii) We claim that any monomorphism in add eA is monic in projA. Let a : P1 → P0 be
a monomorphism in add eA. Then we have an exact sequence

0→ Ker a→ P1
a−→ P0 → Cok a→ 0

in modA. Since gldimA ≤ 2, we obtain that P2 := Ker a ∈ projA. Since a is a monomor-
phism in add eA, we have P2e = HomA(eA, P2) = 0. This implies that P2 is a module over
a simple algebra A/AeA. Thus we obtain that P2 is isomorphic to Sl for some l ≥ 0. If
l > 0, then S is projective as a right A-module. This is a contradiction since the projective
dimension of S is one. Therefore we have l = 0 and P2 = 0. Thus a is a monomorphism of
A-modules, and hence the assertion follows.

(iii) We claim that any right rejective subcategory C of add eA is also right rejective
in projA. In fact, A = eA ⊕ fA and add eA has a right C-approximation which is monic
in add eA and hence it is also monic in projA by (ii). Similarly, composing a right C-
approximation of fJ(A) ∈ add eA and φ : fJ(A) ↪→ fA, we have a right C-approximation
of fA which is monic in add eA, and hence in projA by (ii).

(iv) We complete the proof by induction on the number of simple A-modules. By
induction hypothesis, projA′ ≃ add eA has a total right rejective chain.

projA′ ≃ add eA ⊃ C1 ⊃ · · · ⊃ Cn−1 ⊃ Cn = 0.

Composing it with projA ⊃ add eA, and applying (iii), we have a total right rejective chain
of projA.

(1) The assertion follows from (2) and Theorem 3.23.

If A is a strongly quasi-hereditary algebra, then the global dimension of A is at most
two [Rin10]. The converse is not true as the following example shows.
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Example 4.3. Let Q be the quiver 1 ← 2 → 3 whose underlying graph is the Dynkin
graph A3 and A the Auslander algebra of kQ. Then A is defined by the quiver

1
α

��=
==

==
4

ϵ

��=
==

==

2

β
@@�����

δ ��=
==

==
6

3
γ

@@�����
5

φ

@@�����

with relations αβ, γδ and βϵ− δφ. The global dimension of A is two. However we can not
construct a strongly heredity chain of A. This example can be explained by Theorem 4.6.

We end this subsection with describing a certain class of artin algebras which is called
Ringel self-dual. We recall the following result.

Definition-Theorem 4.4 (Ringel [Rin91, Theorem 5]). Let A be a quasi-hereditary alge-
bra and a partially ordered set I := {1 < · · · < n}. Then there exist the indecomposable
A-modules T (1), T (2), . . . , T (n) such that T (i) is Ext-injective in F(∆) and the standard
module ∆(i) is embedded to T (i) with T (i)/∆(i) ∈ F(∆(j) | j < i). Let T :=

⊕n
i=1 T (i)

and R(A) := EndA(T )
op. Then R(A) is a quasi-hereditary algebra with respect to the op-

posite order of ≤. We call R(A) a Ringel dual of A and T a characteristic tilting module.

Let (A,≤A) and (B,≤B) be quasi-hereditary algebras with simpleA-modules {SA(i) | i ∈
I} and simple B-modules {SB(i′) | i′ ∈ I ′}. We say that (A,≤A) is isomorphic to (B,≤B)
as a quasi-hereditary algebra if there exists an algebra isomorphism f : A

∼−→ B such that
the induced map φ : I → I ′ is a poset isomorphism.

Let (A,≤) be a quasi-hereditary algebra and ≤op the opposite order of ≤. We say that
A is Ringel self-dual if (A,≤A) is isomorphic to (R(A),≤op) as a quasi-hereditary algebra.

Corollary 4.5. Let A be a Ringel self-dual algebra. Then the following conditions are
equivalent:

(i) A has global dimension at most two.

(ii) A is strongly quasi-hereditary.

(iii) A is right strongly quasi-hereditary.

Proof. (ii) ⇒ (i): This is shown in [Rin10].
(i) ⇒ (iii): This follows from Theorem 4.1 immediately.
(iii)⇒ (ii): Let A be a right strongly quasi-hereditary algebra. Since the Ringel dual of

a right-strongly quasi-hereditary algebra is left-strongly quasi-hereditary with the opposite
order by [Rin10, Proposition A.2], A is strongly quasi-hereditary.

25



4.2 Strongly quasi-hereditary Auslander algebras

In this subsection, we study strongly quasi-hereditary Auslander algebras. We start this
subsection with recalling the definition of Auslander algebras. Let A be a representation-
finite artin algebra and M a direct sum of all pairwise non-isomorphic indecomposable
A-modules. Then the endomorphism algebra B := EndA(M) is called the Auslander
algebra of A. It is well known that B is an Auslander algebra if and only if gldimB ≤ 2 ≤
dom.dimB [Aus71, Theorem in § 4].

Since the global dimensions of Auslander algebras are at most two, it follows from
Theorem 4.1 that each Auslander algebra is right-strongly quasi-hereditary. However it
is not necessarily true that each Auslander algebra is strongly quasi-hereditary. The aim
of this subsection is to provide the following characterization of Auslander algebras which
are strongly quasi-hereditary. Recall that an artin algebra A is a Nakayama algebra if and
only if every indecomposable A-module is uniserial (see for example [ARS95, §4.2]).

Theorem 4.6. Let A be a representation-finite artin algebra and B the Auslander algebra
of A. Then the following conditions are equivalent.

(i) B is strongly quasi-hereditary.

(ii) projB has a rejective chain.

(iii) A is a Nakayama algebra.

To prove Theorem 4.6, we need the following observation.

Lemma 4.7. Let A be an artin algebra and B a factor algebra of A such that modB is a
cosemisimple subcategory of modA. Then the following statements hold.

(1) Let X be an indecomposable A-module which does not belong to modB. Then X is
a projective-injective A-module such that XJ(A) is an indecomposable B-module.

(2) B is a Nakayama algebra if and only if A is a Nakayama algebra.

Proof. (1) By Proposition 3.27, there exists a morphism φ : Y → X of A-modules such

that Y ∈ modB and HomA(−, Y )
φ◦−−−→ JmodA(−, X) is an isomorphism on modA. Then

φ is a minimal right almost split morphism of X in modA. If X is not a projective A-
module, then φ is surjective and hence X ∈ modB, a contradiction. Therefore X is a
projective A-module, and φ is an inclusion map XJ(A) → X. Thus XJ(A) = Y is a
B-module. The dual argument shows that X is an injective A-module, and hence XJ(A)
is indecomposable.

(2) Since the “if” part is obvious, we prove the “only if” part. Let M be an indecom-
posable A-module which is either projective or injective. We show that M is a uniserial
A-module. If M is a B-module, then this is clear. Assume that M is not a B-module.
By (1), M is a projective-injective A-module such that MJ(A) is an indecomposable B-
module. Since B is a Nakayama algebra,MJ(A) is uniserial. HenceM is also uniserial.
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We are ready to show the main theorem in this subsection.

Proof of Theorem 4.6. It suffices to show from Theorem 3.23 that (ii) is equivalent to (iii).
(ii) ⇒ (iii): We show by induction on the length l(A) of A as a right A-module. If

l(A) = 1, then this is clear. For l(A) ≥ 2 we proceed by induction. Since B is a strongly
quasi-hereditary algebra, it follows from Theorem 3.23 that projB ≃ modA has a rejective
chain

modA ⊃ C1 ⊃ · · · ⊃ Cn ⊃ 0.

Since C1 is a rejective subcategory of modA, there exists a two-sided ideal I of A such that
C1 = mod(A/I) by Proposition 3.14. It follows from the induction hypothesis that A/I is
a Nakayama algebra. Therefore we obtain from Lemma 4.7 (2) that A is also a Nakayama
algebra.

(iii) ⇒ (ii): We show by induction on l(A). If l(A) = 1, then the assertion holds.
For l(A) ≥ 2, we prove that modA has a rejective chain by induction. Since A is a
Nakayama algebra, there exists an indecomposable projective-injective A-module P . Let
M be a direct sum of all indecomposable A-modules which are not isomorphic to P and
C1 := addM . Then C1 is closed under factor modules and submodules. It follows from
Proposition 3.14 that there exists a two-sided ideal I of A such that C1 = mod(A/I).
On the other hand, we have ind(modA) \ ind(C1) = {P}. Since the inclusion map φ :

PJ(A) → P gives an isomorphism HomA(−, PJ(A))
φ◦−−−→ JmodA(−, P ) on modA, we

obtain from Proposition 3.27 that modA/I is a cosemisimple right rejective subcategory
of modA. Since l(A) > l(A/I), we obtain from the induction hypothesis that there exists
a rejective chain mod(A/I) = C1 ⊃ · · · ⊃ Ci ⊃ · · · ⊃ Cn = 0 of mod(A/I). Composing with
modA ⊃ mod(A/I), we have a rejective chain of modA

modA ⊃ C1 = mod(A/I) ⊃ · · · ⊃ Cn ⊃ 0.

The proof is complete.

We end this subsection with providing a strongly quasi-hereditary algebra of dominant
dimension less than two, that is, it is not an Auslander algebra.

Example 4.8. Let A be the k-algebra defined by the quiver

2
d

��=
==

==

1

a
@@�����b //

c ��=
==

==
3 e // 5

4
f

@@�����

with relations ad + be + cf . We can easily check that the global dimension of A is two
and the dominant dimension of A is less than two since A dose not have a projective-
injective module. On the other hand, A is a strongly quasi-hereditary algebra with respect
to {2 < 1 < 3 < 4 < 5}.
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4.3 Strongly quasi-hereditary ADR algebras

Let A be an artin algebra and m > 0 the smallest integer such that J(A)m = 0. In [Aus71],

Auslander studied the endomorphism algebra B̃ := EndA(
⊕m

k=0A/J(A)
k) and proved that

B̃ has finite global dimension. Furthermore, Dlab and Ringel showed that B̃ is a quasi-
hereditary algebra [DR89b]. Hence B̃ is called an Auslander–Dlab–Ringel algebra (for
short ADR algebra). Recently, Conde introduced the notion of left ultra strongly quasi-
hereditary algebras as a special class of left-strongly quasi-hereditary algebras and showed
all ADR algebras are left ultra strongly quasi-hereditary algebras [Con16].

In this subsection, we study a relationship between ADR algebras and strongly quasi-
hereditary algebras. Since the ADR algebra of a Nakayama algebra coincides with the
Auslander algebra of the Nakayama algebra, it is strongly quasi-hereditary algebra by
Theorem 4.6. However, ADR algebras are not necessarily strongly quasi-hereditary alge-
bras.

We start with recalling the quasi-hereditary structure of an ADR algebra. Let

G :=
⊕
i∈I

li⊕
j=1

P (i)/P (i)J(A)j,

where li is the Loewy length of the indecomposable projective A-module P (i). Then

the endomorphism algebra B := EndA(G) is a basic algebra of B̃ and called also an
ADR algebra of A. Note that the basic algebra of a quasi-hereditary algebra is also
quasi-hereditary. Since the indecomposable projective B-modules are given by Pi,j :=
HomA(G,P (i)/P (i)J(A)

j) for i ∈ I and 1 ≤ j ≤ li, we denote by

Λ := {(i, j) | i ∈ I, 1 ≤ j ≤ li}

a label of simple B-modules. For (i, j), (k, l) ∈ Λ, we write (i, j)⊴ (k, l) if j > l. Then ⊴
gives a partial order on Λ. We call the partial order ⊴ the ADR order of B.

Proposition 4.9. (Conde [Con16]) Let A be an artin algebra and B the ADR algebra of
A. Then (B,⊴) is a left-strongly quasi-hereditary algebra.

We can also prove Proposition 4.9 by the following two ways.

(1) Let A be an artin algebra and let A = I0 > I1 > · · · > Im = 0 be a chain of two-sided

ideals such that J(A)In ⊂ In+1 for any n. Let Gn :=
n⊕
i=1

A/Ii for 1 ≤ n ≤ m and

B := EndA(Gm). Then

projB ≃ addGm ⊃ · · · ⊃ addG2 ⊃ addG1 ⊃ 0

is a total left rejective chain by [Iya03b, Example 2.2.3]. Since we can apply this result
to the radical series of A, the ADR algebra (B,⊴) is left-strongly quasi-hereditary
by Theorem 3.23.
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(2) Since A is a semilocal module, B is the ADR algebra in the sense of § 4.4. Hence
Proposition 4.9 follows from Theorem 4.16.

First we consider the case where A is a self-injective algebra. Then we obtain the
following characterization of ADR algebras to be strongly quasi-hereditary.

Proposition 4.10. Let A be a self-injective algebra and B the ADR algebra of A. Then
the following statements are equivalent.

(i) B is a strongly quasi-hereditary algebra.

(ii) A is a Nakayama algebra.

Proof. (i) ⇒ (ii): Since A is a self-injective algebra, we have A ≃ DA ∈ addG. By
[Mül68, Theorem 2], the dominant dimension of B is at least two. On the other hand,
the global dimension of B is at most two since B is a strongly quasi-hereditary algebra.
Hence B is a strongly quasi-hereditary Auslander algebra. By Theorem 4.6, there exists a
Nakayama algebra A′ such that B is the Auslander algebra of A′. By the Morita-Tachikawa
correspondence (see for example [FK11]), we have A is Morita equivalent to A′. Hence A
is a Nakayama algebra.

(ii) ⇒ (i): Since B coincides with the Auslander algebra of A, the assertion follows
from Theorem 4.6.

Even if A is neither self-injective nor Nakayama, the ADR algebra of A can be a strongly
quasi-hereditary algebra as the following example shows.

Example 4.11. Let A be the k-algebra defined by the quiver

1α 99
β // 2

with relations αβ and α2. Then the ADR algebra B of A is given by the quiver

P (1)

b��
c

##GG
GGG

G

S(1)

a
OO

S(2)

with relations ab and ac. We can check that B is strongly quasi-hereditary with respect to
{S(1) > P (1) < S(2)}.

The following theorem is our main result in this subsection.

Theorem 4.12. Let A be an artin algebra with Loewy lengthm ≥ 2 and Gn :=
n⊕
i=1

A/J(A)i

for any 1 ≤ n ≤ m. Let B := EndA(G) be the ADR algebra of A. Then the following
statements are equivalent.
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(i) (B,⊴) is a strongly quasi-hereditary algebra.

(ii) The following chain is a rejective chain of addG.

addG ⊃ addGm−1 ⊃ · · · ⊃ addG1 ⊃ 0.

(iii) gldimB = 2.

(iv) For any i ∈ I, P (i)J(A) ∈ addG.

To prove Theorem 4.12, we need the following lemma.

Lemma 4.13. Let A be an artin algebra. If P (i)J(A) ∈ addG for any i ∈ I, then
P (i)J(A)/P (i)J(A)j ∈ addG for 1 ≤ j ≤ li.

Proof. Since P (i)J(A) ∈ addG, we have P (i)J(A) ∼=
⊕
k,l

P (k)/P (k)J(A)l. For sim-

plicity, we write P (i)J(A) ∼= P (k)/P (k)J(A)l. Then we have P (i)J(A)/P (i)J(A)j ∼=
(P (k)/P (k)J(A)l)/(P (k)J(A)j/P (k)J(A)l) ∼= P (k)/P (k)J(A)j ∈ addG.

Now we are ready to prove Theorem 4.12.

Proof of Theorem 4.12. (i) ⇔ (ii): The assertion follows from Corollary 3.25.
(i) ⇒ (iii): It follows from [Rin10, Proposition A.2] that the global dimension of B is

at most two. It is enough to show that there exists a B-module such that its projective
dimension is two. Let S be a simple A-module. Then we have the following short exact
sequence.

0→ JmodA(G,S)→ HomA(G,S)→ topHomA(G,S)→ 0.

Assume that JmodA(G,S) is a projective right B-module. Then there exists an A-module
Y ∈ addG such that JmodA(G,S) ∼= HomA(G, Y ). By S ∈ addG, there exists a non-zero
morphism f : Y → S such that HomA(G, f) : HomA(G, Y ) → HomA(G,S) is an injective
map. Since the functor HomA(G,−) is faithful, f is an injective map. Hence f is an
isomorphism. This is a contradiction since JmodA(G,S) ∼= HomA(G,S). Therefore we
obtain the assertion.

(iii) ⇔ (iv): This follows from [Sma78, Proposition 2].
(iv) ⇒ (ii): First we show that addGm−1 is a cosemisimple rejective subcategory of

addG. For anyX ∈ ind(addG)\ind(addGm−1), there exists an inclusion map φ : XJ(A) ↪→
X with XJ(A) ∈ addGm−1 by the condition (iv). Since X is a projective A-module such
that its Loewy length coincides with the Loewy length of A, φ induces an isomorphism

HomA(G,XJ(A))
φ◦−−−→ JmodA(G,X).

It follows from Proposition 3.27 that addGm−1 is a cosemisimple right rejective subcat-
egory of addG. Moreover, there exists canonical surjection ψ : X ↠ X/XJ(A)m−1
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with X/XJ(A)m−1 ∈ addGm−1. Since we have f(XJ(A)m−1) ⊂ J(A)m = 0 for any
f ∈ radA(X,G), the map ψ induces the following isomorphism.

HomA(X/XJ(A)
m−1, G)

−◦ψ−−→ JmodA(X,G).

Hence we obtain that addGm−1 is a cosemisimple left rejective subcategory of addG by
Proposition 3.27.

Next we prove that addG has a rejective chain

addG ⊃ addGm−1 ⊃ · · · ⊃ addG1 ⊃ 0

by induction on m. If m = 2, then the assertion holds. Assume that m > 2. Let
X ∈ ind(addGm−1) \ ind(addGm−2). Then X = P (i)/P (i)J(A)m−1 for some i ∈ I and we
have

(P (i)/P (i)J(A)m−1)J(A/Jm−1(A)) ∼= P (i)J(A)/P (i)J(A)m−1.

Since P (i)J(A) ∈ addG, we obtain P (i)J(A)/P (i)J(A)m−1 ∈ addGm−1 by Lemma 4.13.
By induction hypothesis, addGm−1 has the following rejective chain.

addGm−1 ⊃ · · · ⊃ addG1 ⊃ 0.

Composing it with addG ⊃ addGm−1, we obtain a rejective chain of addG.

Remark 4.14. Since the global dimension of any strongly quasi-hereditary algebra is at
most two, (iii) ⇒ (i) of Theorem 4.12 implies that if the ADR algebra B is strongly
quasi-hereditary, then B is strongly quasi-hereditary with respect to the ADR order.

4.4 ADR algebras of semilocal modules

In this subsection, we consider a generalization of ADR algebras in § 4.3. This generaliza-
tion was introduced by Lin and Xi [LX93].

Definition 4.15. Let M be a right A-module.

(1) M is called a local module if topM is isomorphic to a simple A-module.

(2) M is called a semilocal module if M is a direct sum of local modules.

Note that any local module is indecomposable.
Throughout this subsection, suppose that M is a semilocal module with Loewy length

ℓℓ(M) = m. We denote by M̃ the basic module of ⊕mi=1M/MJ(A)i. We call B := EndA(M̃)
the ADR algebra ofM . Note that in the caseM = AA, the ADR algebra of A is the original
ADR algebra in § 4.3.

In [LX93], they proved that the ADR algebras of semilocal modules are quasi-hereditary.
In this subsection, we sharpen this result. Namely, we prove the following theorem.
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Theorem 4.16. The ADR algebra of any semilocal module is left-strongly quasi-hereditary.

An advantage of our theorem is to give a better upper bound on global dimension of
the ADR algebras (see Remark 4.23).

In the rest of this subsection, we give a proof of Theorem 4.16. We define the following
sets of the isomorphism classes of indecomposable direct summands of M̃ . Let F be the
set of pairwise non-isomorphic indecomposable direct summands of M̃ and Fi the subset
of F consisting of all modules with Loewy length m − i. We denote by Fi,1 the subset of
Fi consisting of all modules X which do not have a surjective map in JmodA(X,N) for all
modules N in Fi. For any integer j > 1, we inductively define the subsets Fi,j of Fi as
follows: Fi,j consists of all modules X ∈ Fi \

∪
1≤k≤j−1 Fi,k which do not have a surjective

map in JmodA(X,N) for all modules N ∈ Fi \
∪

1≤k≤j−1 Fi,k. We set ni := min{j | Fi =∪
1≤k≤j Fi,k} and nM :=

∑m−1
i=0 ni.

These subsets Fi,j give a partial order on the isomorphism classes of simple B-modules.
In fact, {F0,1 < · · · < F0,n0 < F1,1 < · · · < Fm−1,nm−1} is a partial order on the isomorphism
classes of simple B-modules. If M = AA, then ni = 1 for all 0 ≤ i ≤ m − 1 and such
a partial order coincides with the ADR order in § 4.3. However, the ADR algebra of a
semilocal module is not necessarily left-strongly quasi-hereditary with respect to the ADR
order.

Example 4.17. Let A be the k-algebra defined by the quiver

1 // 2 //

��

3

4

and M := P (1) ⊕ P (1)/S(3) ⊕ P (1)/S(4) ⊕ P (2)/S(3). Then M is a semilocal module.
The ADR algebra B of M is given by the quiver

P (1)/S(4) a // P (1) P (1)/S(3)boo

c

((QQ
QQQ

QQQ

P (1)/P (1)J(A)2
d

iiSSSSSSSSS e

55kkkkkkkkk

f ))SSS
SSSS

SSSS
P (2)/S(3)

S(1)

g
OO

S(2)
h

66mmmmmmmmm

with relations da−eb, ec−fh and gf . Then F0,1 = {P (1)/S(4), P (1)/S(3)}, F0,2 = {P (1)},
F1,1 = {P (1)/P (1)J(A)2, P (2)/S(3)}, F2,1 = {S(1), S(2)}. We can check that B is left-
strongly quasi-hereditary with respect to {F0,1 < F0,2 < F1,1 < F2,1}. However we can
also check that B is not left-strongly quasi-hereditary with respect to the ADR order
{P (1)/S(3), P (1)/S(4), P (1) < P (1)/P (1)J(A)2, P (2)/S(3) < S(1), S(2)}.

We introduce a special right (resp. left) rejective chain which plays crucial role in the
proof of Theorem 4.16.
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Definition 4.18 (Iyama [Iya03b, Definition 2.2]). Let C be a subcategory of modA and

C = C0 ⊃ C1 ⊃ · · · ⊃ Cn = 0 (4-8)

a chain of subcategories. We call (4-8) an A-total right (resp. left) rejective chain if the
following conditions hold for 1 ≤ i ≤ n:

(a) for any X ∈ Ci−1, there exists a monic (resp. epic) in modA right (resp. left) Ci-
approximation of X;

(b) Ci is a cosemisimple subcategory of Ci−1.

Remark 4.19. Let C be a subcategory of modA. All A-total right (resp. left) rejective
chains of C are total right (resp. left) rejective chains. If A ∈ C, then the converse holds.

Recall that if projA has a total left rejective chain, then A is left-strongly quasi-
hereditary by Theorem 3.23. To prove Theorem 4.16, it is enough to show that projA
has a total left rejective chain. For 0 ≤ i ≤ m− 1 and 1 ≤ j ≤ ni, we set

F>(i,j) := F \ ((∪−1≤k≤i−1Fk) ∪ (∪1≤l≤jFi,l)),

Ci,j := add
⊕

N∈F>(i,j)

N,

where F−1 := ∅. Then we have the following result.

Proposition 4.20. Let A be an artin algebra and M a semilocal A-module. Then add M̃
has the following A-total left rejective chain with length nM .

add M̃ =: C0,0 ⊃ C0,1 ⊃ · · · ⊃ C0,n0 ⊃ C1,1 ⊃ · · · ⊃ Cm−1,nm−1 = 0.

Before proving Proposition 4.20, we give a proof of Theorem 4.16.

Proof of Theorem 4.16. By Corollary 3.25, it is enough to show that add M̃ has a total left
rejective chain. Hence the assertion follows from Proposition 4.20.

To show Proposition 4.20, we need the following lemma.

Lemma 4.21. For any M ′ ∈ F0,1, the canonical surjection ρ : M ′ ↠ M ′/M ′J(A)m−1

induces an isomorphism.

φ : HomA(M
′/M ′J(A)m−1, M̃)

−◦ρ−−→ JmodA(M
′, M̃).

Proof. Since φ is a well-defined injective map, we show that φ is surjective. Let N be
an indecomposable summand of M̃ with Loewy length k and let f : M ′ → N be any
morphism in JmodA(M

′, N). Then we show f(M ′J(A)m−1) = 0.
(i) Assume that topM ′ ̸∼= topN or k = m. Then we have Im f ⊂ NJ(A), and hence

f(M ′J(A)m−1) = f(M ′)J(A)m−1 ⊂ (NJ(A))J(A)m−1 = 0.
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(ii) Assume that topM ′ ∼= topN and k < m. Since m− k > 0 holds, we obtain

f(M ′J(A)m−1) = f(M ′)J(A)m−1 ⊂ NJ(A)m−1 = (NJ(A)k)J(A)m−k−1 = 0.

Since f(M ′J(A)m−1) = 0 holds, there exists g : M ′/M ′J(A)m−1 → N such that f =
g ◦ ρ.

0 //M ′J(A)m−1 //

0
%%LL

LLL
LLL

LLL
M ′ ρ //

f
��

M ′/M ′J(A)m−1 //

∃g
wwp p p p p p

0

N

Hence the assertion follows.

Now we are ready to prove Proposition 4.20.

Proof of Proposition 4.20. We show by induction on nM . If nM = 1, then this is clear.
Assume that nM > 1. By Proposition 3.27 and Lemma 4.21, C0,1 is a cosemisimple left

rejective subcategory of add M̃ . Since N := M/(⊕X∈F0,1X) ⊕ (⊕X∈F0,1XJ(A)
m−1) is a

semilocal module satisfying Ñ = M̃/⊕X∈F0,1 X and nN < nM , we obtain that

add Ñ = C0,1 ⊃ · · · ⊃ C0,n0 ⊃ C1,1 ⊃ · · · ⊃ Cm−1,nm−1 = 0

is an A-total left rejective chain by induction hypothesis. By composing C0,0 ⊃ C0,1 and it,
we have the desired A-total left rejective chain.

As an application, we give an upper bound on global dimension on ADR algebras.

Corollary 4.22. Let A be an artin algebra and M a semilocal A-module. Then we have

gldimEndA(M̃) ≤ nM .

Proof. By Proposition 4.20, projB ≃ add M̃ has a total left rejective chain with length nM .
Hence the assertion follows from Proposition 3.22.

Remark 4.23. In [LX93], they showed that the ADR algebra of a semilocal module M is

quasi-hereditary. This implies gldimEndA(M̃) ≤ 2(nM − 1) by [DR89c, Statement 9]. By
Corollary 4.22, we obtain better upper bound on global dimension of ADR algebras.

The following example shows us that the bound on the global dimension in Corollary
4.22 are tightly.

Example 4.24. Let n ≥ 2. Let A be the k-algebra defined by the quiver

1

~~}}
}}
}}
}}

����
��
��
...

��7
77

77
77

$$H
HH

HH
HH

HH
H

2 3 ...... n−1 n

andM a direct sum of all factor modules of P (1). ClearlyM is semilocal. Then gldimB =
n− 1 = nM − 1 for n ≥ 3. In the case n = 2, gldimB = 2 = nM .
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By Remark 4.14, if B is the ADR algebra of A, then its strongly quasi-hereditary
structure can be realized by the ADR order. However, for any semilocal module, the
assertion does not necessarily hold as the following example shows.

Example 4.25. Let A be the k-algebra defined by the quiver

1α 99
β // 2

with relations αβ and α3. Then M := P (1)⊕P (1)/ socP (1)⊕P (2) is a semilocal module.
The ADR algebra B of M is given by the quiver

P (1)

a

}}{{
{{
{{
{{
{{
{{
{{
{

b

**TTT
TTTT

TTTT
TT

P (1)/P (1)J(A)2
c
OO

d ��

P (1)/ socP (1)e
oo

P (2) S(1)
f

44jjjjjjjjjjjjj

with relations eca, fed and cb− df . Then B is not strongly quasi-hereditary with respect
to {F0,1 < F1,1 < F1,2 < F2,1}. However B is strongly quasi-hereditary with respect to
{P (1) < P (1)/P (1)J(A)2 < P (1)/ socP (1) < P (2), S(1)}.

References

[ASS06] I. Assem, D. Simson, and A. Skowroński, Elements of the representation the-
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