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Introduction

In mathematics, submanifolds in Euclidean spaces are fundamental objects
and have been studied by many researchers. From the view point of extrinsic
differential geometry there are two important of generalizations of them. One
generalization is given by submanifolds in Riemannian manifolds. Here Rie-
mannian manifolds are always assumed to be of finite dimension throughout
this thesis. The other generalization is given by submanifolds in Hilbert spaces
which can be either of finite or infinite dimension. Submanifolds in Rieman-
nian manifolds have been studied by many geometers since a long time ago.
Submanifolds in Hilbert spaces were studied first by C.-L. Terng in 1980’s and
also by G. Thorbergsson, E. Heintze and other geometers. In both cases many
interesting problems and profound results are known.

In this thesis we investigate submanifolds in Hilbert spaces which are proper
Fredholm (PF), minimal, and having certain symmetries.

Submanifolds in Hilbert spaces

Strictly speaking, a submanifold in a Hilbert space is a Hilbert manifold
smoothly immersed in a separable Hilbert space. Here a Hilbert manifold is
defined as a smooth manifold locally modeled on a separable Hilbert space.

A motivation to study submanifolds in Hilbert spaces may come from a
natural question asking differences or similarities between the finite and infi-
nite dimensional cases. It is known that the standard theorems of differential
calculus such as the inverse function theorem and the unique existence theo-
rem for ordinary differential equations are still valid in the infinite dimensional
case ([33]). A Riemannian metric g on a Hilbert manifold M is defined sim-
ilarly to the finite dimensional case and a pair (M, g) is called a Riemannian
Hilbert manifold. The Levi-Civita connection and geodesics for a Riemannian
Hilbert manifold are defined just as in the finite dimensional case. However
the Hopf-Rinow theorem does not hold in infinite dimensions ([1], [2]). A
Hilbert manifold equipped with a smooth group structure is called a Hilbert
Lie group, where subgroups and homomorphisms are defined similarly to the
finite dimensional case. However despite the finite dimensional affirmative re-
sult the Hilbert’s 5th problem is not true in infinite dimensions; an unusual
example of a Hilbert manifold with a non-differentiable topological group struc-
ture appears in connection with affine Kac-Moody algebras. Also in this thesis
a critical difference between finite and infinite dimensional submanifolds will
become clear (Section 4.1).

A systematic study of submanifolds in Hilbert spaces was initiated by Terng
[50]. The second fundamental form, the shape operator and the normal con-
nection of a submanifold in a Hilbert space are defined just as in the finite
dimensional case. However the spectral theory of the shape operator are com-
plicated in general and infinite dimensional differential topology ([48]) and
Morse theory ([40], [47]) can not be applied easily to submanifolds in Hilbert
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spaces without further restrictions. From this viewpoint she introduced a
suitable class of submanifolds in Hilbert spaces, namely proper Fredholm sub-
manifolds (shortly, PF submanifolds). Roughly speaking a PF submanifold
is a submanifold in a Hilbert space where the shape operators are compact
operators and the distance functions satisfy the Palais-Smale condition ([40],
[47]). In [50] Terng gave examples of PF submanifolds which are orbits of the
gauge transformations and studied isoparametric PF submanifolds. After that,
the relation between isoparametric PF submanifolds and affine Kac-Moody al-
gebras was discussed by her with coworkers ([50], [21]) and then a profound
result on homogeneous property of isoparametric PF submanifolds was shown
by Heintze and Liu [19]. These lead us to the concept of affine Kac-Moody
symmetric spaces, which are the infinite dimensional analogue to finite dimen-
sional Riemannian symmetric spaces ([16], [43], [10]).

In the study of submanifolds in Hilbert spaces an important tool is given
by a certain Riemannian submersion ΦK : Vg → G/K which is called the
parallel transport map. Here G/K is a compact normal homogeneous space
and Vg := L2([0, 1], g) the Hilbert space of all L2-paths with values in the
Lie algebra g of G (see Section 1.3). It is known ([52]) that if N is a closed
submanifold of G/K then its inverse image Φ−1

K (N) is a PF submanfold of
Vg. Thus via the parallel transport map we can obtain many examples of PF
submanifolds. Moreover the parallel transport map is also known as a tool to
linearlize geometrical problems in G/K: we can reduce a non-linear problem
in G/K into a linear problem in the Hilbert space Vg (e.g. [52], [11], [9]). From
these perspectives it is important to study the geometrical relation between N
and Φ−1

K (N). For example, it was shown ([29], [31], [20]) that if N is minimal
then the PF submanifold Φ−1

K (N) is also minimal. Here, for precise definitions
of minimal PF submanifolds, see Section 1.4 and references therein.

Minimal submanifolds with symmetries: the Riemannian case

In Riemannian manifolds (always assumed to be finite dimensional) there
are several kinds of minimal submanifolds with certain symmetries.

An austere submanifold is a minimal submanifold of a Riemannian manifold
which has a local symmetry. More precisely a submanifold M immersed in a
Riemannian manifold M̄ is called austere if for each normal vector ξ the set
of eigenvalues with multiplicities of the shape operator Aξ is invariant under
the multiplication by (−1). This notion was originally introduced by Harvey
and Lawson [15] in the study of calibrated geometry. Except for the case of
surfaces the austere condition is much stronger than the minimal one. It is an
interesting problem to classify austere submanifolds under suitable conditions
(e.g. [4], [7], [27], [26], [28]).

In [26] Ikawa Sakai and Tasaki introduced a certain kind of austere sub-
manifold which has a global symmetry, which they call a weakly reflective
submanifold. A submanifold M immersed in a Riemannian manifold M̄ is
called weakly reflective if for each normal vector ξ at each p ∈ M there exists

viii



an isometry νξ of M̄ which satisfies

νξ(p) = p, dνξ(ξ) = −ξ, νξ(M) = M.

Here we call νξ a reflection with respect to ξ. A reflective submanifold ([34]),
defined as a connected component of the fixed point set of an involutive isom-
etry on M̄ , is an example of a weakly reflective submanifold. Another example
is a singular orbit of a cohomogeneity one action, which was essentially shown
to be weakly reflective by Podestà [44]. It is an interesting problem to study
submanifold geometry of orbits under isometric actions of Lie groups and to
determine their weakly reflective orbits (e.g. [26], [39], [8]).

Recently Taketomi [49] introduced a generalized concept of weakly reflec-
tive submanifolds, namely arid submanifolds. A submanifold M immersed in
a Riemannian manifold M̄ is called arid if for each nonzero normal vector ξ
at each p ∈ M there exists an isometry φξ of M̄ which satisfies

φξ(p) = p, dφξ(ξ) ̸= ξ, φξ(M) = M.

Here we call φξ an isometry with respect to ξ. From this definition we have:

austere
⇒ ⇒

reflective ⇒ weakly reflective minimal.⇒ ⇒arid

In [49] he gave an example of an arid submanifold which is not an austere
submanifold (therefore not a weakly reflective submanifold). Also he showed
that any isolated orbit of a proper isometric action is an arid submanifold. It
is a problem for a given proper isometric action to determine its arid orbits
which are not isolated.

Note that those submanifolds are defined and studied only in the finite
dimensional Riemannian case.

The purpose and main results

The purpose of this thesis is:

(i) to define reflective PF submanifolds, weakly reflective PF submanifolds,
austere PF submanifolds and arid PF submanifolds in Hilbert spaces,

(ii) to study the geometrical relations between a submanifold N of compact
normal homogeneous space G/K and the PF submanifold Φ−1

K (N) of the
Hilbert space Vg, where ΦK : Vg → G/K denotes the parallel transport
map, and

(iii) to obtain many examples of minimal PF submanifolds with symmetries.

In fact we define such PF submanifolds with symmetries just as in the fi-
nite dimensional case (Section 1.5). Then we show the following geometrical
relations, which are main results of this thesis:
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Theorem A. Let G/K be a compact normal homogeneous space. Then each
fiber of the parallel transport map ΦK : Vg → G/K is a weakly reflective PF
submanifold of Vg.

Theorem B. Let G/K be an irreducible Riemannian symmetric space of com-
pact type. If N is a weakly reflective submanifold of G/K then Φ−1

K (N) is a
weakly reflective PF submanifold of Vg.

Theorem C. Let N be a closed submanifold of the l-dimensional sphere G/K,
where (G,K) = (SO(l + 1), SO(l)). Then the the following are equivalent:

(i) N is an austere submanifold of G/K,
(ii) Φ−1

K (N) is an austere PF submanifold of Vg.

Theorem D. Let G/K be an irreducible Riemannian symmetric space of com-
pact type. If N is an arid submanifold of G/K then Φ−1

K (N) is an arid PF
submanifold of Vg.

Note that these theorems except for Theorem C are proved under somewhat
weaker assumptions; for details see Theorems 3.1.2, 3.2.1, 3.3.1, 3.4.1 and
their corollaries. Applying these theorems to examples of weakly reflective
submanifolds, austere submanifolds and arid submanifolds in G/K we obtain
many examples of weakly reflective PF submanifolds, austere PF submanifolds
and arid PF submanifolds respectively in the Hilbert space Vg (cf. Section 3).

Notice that all known examples of such minimal submanifolds in G/K are
homogeneous, that is, orbits of isometric actions by certain Lie groups. Then
it follows that so obtained minimal PF submanifolds are also homogeneous.
Note also that except for rare cases so obtained PF submanifolds are not totally
geodesic (and thus not reflective). More precisely the following theorem will
be shown (Corollary 2.3.2):

Theorem E. Let G/K be a compact normal homogeneous space and N a
connected closed submanifold of G/K through eK ∈ G/K. Denote by c(g) the
center of the Lie algebra g of G. Then the following are equivalent:

(i) Φ−1
K (N) is a totally geodesic PF submanifold of Vg,

(ii) N is a totally geodesic submanifold of G/K such that T⊥
eKN ⊂ c(g).

As a consequence we obtain the following corollary (Theorem 4.1.2):

Corollary. In infinite dimensional Hilbert spaces there exist many homoge-
neous minimal PF submanifolds which are not totally geodesic.

This corollary shows a critical difference between finite and infinite dimensional
submanifolds because it is known that in finite dimensional Euclidean spaces
all homogeneous minimal submanifolds are totally geodesic ([46]).

The organization of this thesis

In Section 1 we review the fundamental facts and results related to PF
submanifolds in Hilbert spaces. In Section 1.1 we review definitions and the
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fundamental properties of PF submanfiolds and PF actions. In Sections 1.2
and 1.3 we prepare the setting of P (G,H)-actions and the parallel transport
map. In Section 1.4 we review definitions and the fundamental properties for
minimal PF submanifolds. In Section 1.5 we define reflective PF submani-
folds, weakly reflective PF submanifolds, austere PF submanifolds and arid
PF submanifolds in Hilbert spaces, and study their fundamental properties.

In Section 2 we study submanifold geometry of PF submanifolds obtained
through the parallel transport map. In Sections 2.1 and 2.2 we give explicit
formulas for the second fundamental forms and the shape operators of so ob-
tained PF submanifolds. Using these formulas we study their totally geodesic
property and principal curvatures in Sections 2.3 and 2.4 respectively. All
these results are interesting themselves and also will be the foundations for
the later sections.

In Section 3 we study the symmetric properties for PF submanifolds. In
Section 3.1 we define the canonical reflection of the Hilbert space Vg and show
that each fiber of the parallel transport map is a weakly reflective PF subman-
ifold of Vg. Motivated by this result, in Sections 3.2, 3.3 and 3.4 we study the
weakly reflective property, austere property and arid property for PF subman-
ifolds obtained through the parallel transport map. Moreover we show many
examples of minimal PF submanifolds with such symmetries.

In Section 4 we focus on homogeneous minimal PF submanifolds. In Section
4.1 we show the critical difference between finite and infinite dimensional cases
and in Sections 4.2 and 4.3 we mention the related problems.
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1 Fundamental facts

1.1 PF submanifolds and PF actions

In this subsection we review the definitions and the fundamental properties
for PF submanifolds and PF actions.

Let V be a separable Hilbert space over R and M a Hilbert manifold
immersed in V . Suppose that for each p ∈ M the tangent space TpM is a
closed subspace of TpV ∼= V . We denote by T⊥M the normal bundle of M .
The end point map Y : T⊥M → V is defined by Y (ξ) := p+ ξ for ξ ∈ T⊥

p M .

Definition (Terng [50]). M is called a proper Fredholm (PF) submanifold of
V if it satisfies the following two conditions:

(i) the end point map Y is Fredholm, that is, the differential dY(p,ξ) at each
(p, ξ) ∈ T⊥M is a Fredholm operator,

(ii) the restriction of Y to a normal disc bundle of any finite radius is proper.

Note that if V is of finite dimension then the condition (i) is automatically
satisfied.

The following proposition gives the fundamental properties of PF subman-
ifolds in Hilbert spaces. For a proof, see [50, Propositions 2.7 and 2.16].

Proposition 1.1.1 (Terng [50]). Let M be a PF submanifold of V .

(i) For each p ∈ M and each ξ ∈ T⊥
p M the shape operator Aξ : TpM → TpM

is a self-adjoint compact operator.
(ii) For each u ∈ V the function f : M → R defined by f(p) := ∥p − u∥2

satisfies the Palais-Smale condition ([40], [47]): For any sequence {xn}
in M satisfying supn |f(xn)| < ∞ and ∥dfxn∥ → 0 it follows that {xn}
has a convergent subsequence.

From the first condition the spectral theory of the shape operator is some-
what simplified and we can deal with principal curvatures of PF submanifolds.
However note that the shape operator is not of trace class in general and
thus there is no natural definition of mean curvatures of PF submanifolds (cf.
Section 1.4). The second condition implies that we can apply infinite dimen-
sional Morse theory to PF submanifolds. In this thesis we mainly use the fist
condition.

Let G be a Hilbert Lie group, that is, a Hilbert manifold with a smooth
group structure. Suppose that G acts on a separable Hilbert space V . The G-
action is called proper if the map G×V → V , (g, u) 7→ (g ·u, u) is proper, and is
called Fredholm if for each u ∈ V the map G → V , g 7→ g ·u is Fredhlom. Note
that if G and V are of finite dimension then the G-action on V is automatically
Fredholm. For a proof of the next proposition, see [41, Theorem 7.1.6].

Proposition 1.1.2 (Palais-Terng [41]). Suppose that G is an infinite dimen-
sional Hilbert Lie group acting on a separable Hilbert space V . If the action is
isometric, proper and Fredholm then every orbit is a PF submanifold of V .
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An important example of a PF action is the P (G,H)-action, which we
review in the next subsection.

1.2 The P (G,H)-action

In this subsection we prepare the setting of P (G,H)-actions.
Let G be a (finite dimensional) connected compact Lie group with Lie

algebra g. Choose an Ad(G)-invariant inner product of g and equip the cor-
responding bi-invariant Riemannian metric with G. For simplicity of notation
we regard G as a subgroup of a general linear group. We set

G := H1([0, 1], G), Vg := H0([0, 1], g),

where H1([0, 1], G) denotes the Hilbert Lie group of all Sobolev H1-paths in
G parametrized on [0, 1] and H0([0, 1], g) the Hilbert space of all Sobolev H0-
paths (i.e. L2-paths) in g parametrized on [0, 1]. Note that from the Sobolev
embedding theorem any Sobolev H1-path is continuous. The Lie algebra LieG
of G is the Hilbert sapce H1([0, 1], g) of all Sobolev H1-paths in g. The expo-
nential map expG of G is given by

(expG Z)(t) := expG(Z(t)), Z ∈ LieG, t ∈ [0, 1],

where expG denotes the exponential map of G. We denote by ˆ the map which
associates to each a ∈ G (resp. x ∈ g) the constant path â ∈ G (resp. x̂ ∈ Vg)
which values at a (resp. x).

Define the G-action on Vg via the gauge transformations:

g ∗ u := gug−1 − g′g−1, g ∈ G, u ∈ Vg, (1.2.1)

where g′ denotes the weak derivative of g with respect to the parameter on
[0, 1]. The differential d(g∗)0̂ of the transformation g∗ : V → V , u 7→ g ∗ u at
0̂ ∈ Vg is given by

d(g∗)0̂(X) = gXg−1, X ∈ T0̂Vg
∼= Vg.

Thus the G-action on Vg is isometric. Also it can be easily seen that the
G-action on Vg is transitive ([51, p. 132]). Moreover we know ([50, p. 89]):

Proposition 1.2.1 (Terng [50]). The G-action on Vg is proper and Fredholm.

Let H be a closed subgroup of G × G with Lie algebra h. Define a Lie
subgroup P (G,H) of G by

P (G,H) := {g ∈ G | (g(0), g(1)) ∈ H}

with Lie algebra

LieP (G,H) = {Z ∈ H1([0, 1], g) | (Z(0), Z(1)) ∈ h}.
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The induced action of P (G,H) on Vg is called the P (G,H)-action ([51]). Note
that P (G,H) is the inverse image of H under the Lie group homomorphism
Ψ : G → G×G which is defined by

Ψ(g) := (g(0), g(1)), g ∈ G,

with differential

(dΨ)(Z) = (Z(0), Z(1)), Z ∈ LieG. (1.2.2)

This together with Proposition 1.2.1 shows that the P (G,H)-action is also
proper and Fredholm ([51, p. 132]). Thus by Proposition 1.1.2 every orbit of
the P (G,H)-action is a PF submanifold of Vg.

Since
d

ds

∣∣∣∣
s=0

(
expG sZ

)
∗ 0̂ = −Z ′, Z ∈ LieP (G,H), (1.2.3)

the tangent space of the orbit P (G,H) ∗ 0̂ through 0̂ ∈ Vg is written by

T0̂(P (G,H) ∗ 0̂) = {−Z ′ ∈ H0([0, 1], g) | Z ∈ LieP (G,H)}. (1.2.4)

We know that if H = {e} × G then P (G,H) = P (G, {e} × G) acts on Vg

transitively and freely ([52, Corollary 4.2]). Similarly P (G,G × {e}) acts on
Vg transitively and freely.

The structure of the P (G,H)-action can be understood by the parallel
transport map, which we review in the next subsection.

1.3 The parallel transport map

In this subsection we prepare the setting of the parallel transport map.
As in the last subsection we denote by G a connected compact Lie group

with a bi-invariant Riemannian metric. Define a map E : Vg → P (G, {e}×G),
u 7→ Eu by the unique solution to the linear ordinary differential equation{

E−1
u E ′

u = u,
Eu(0) = e.

Note that the inverse map Ē : P (G, {e} ×G) → Vg of E is given by

Ē(g) = g−1 ∗ 0̂, g ∈ P (G, {e} ×G).

From (1.2.3) the differential dĒ : TêP (G, {e} ×G) → T0̂Vg at ê is given by

(dĒ)ê(Z) = Z ′.

Thus the differential of (dE)0̂ : T0̂Vg → TêP (G, {e} ×G) at 0̂ is given by

(dE)0̂(X) =

∫ t

0

X(t)dt, X ∈ T0̂Vg
∼= Vg. (1.3.1)
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From the direct computations we have ([51, Proposition 1.1]):

Eg∗u = Eug
−1, g ∈ P (G, {e} ×G), u ∈ Vg.

Thus defining the right invariant Riemannian metric ⟨·, ·⟩ on P (G, {e}×G) by

⟨Z,W ⟩ := ⟨Z ′,W ′⟩L2 , Z,W ∈ TêP (G, {e} ×G),

the map E : Vg → P (G, {e}×G) becomes an isometry ([29, Proposition 3.2]).

Definition (Terng [51]). The parallel transport map Φ : Vg → G is defined by

Φ(u) := Eu(1), u ∈ Vg.

Let H be a closed subgroup of G×G. Then H acts on G isometrically by

(b1, b2) · a := b1ab
−1
2 , a ∈ G, (b1, b2) ∈ H. (1.3.2)

It follows ([51, Proposition 1.1]) that for each g ∈ P (G,H) and u ∈ Vg

Φ(g ∗ u) = (g(0), g(1)) · Φ(u) (1.3.3)

and that for each u ∈ Vg

P (G,H) ∗ u = Φ−1(H · Φ(u)). (1.3.4)

Thus we have the following commutative diagram:

G ⊃ P (G,H) ↷ Vg ⊃ P (G,H) ∗ u = Φ−1(H · Φ(u))
Ψ ↓ Ψ ↓ Φ ↓ Φ ↓
G×G ⊃ H ↷ G ⊃ H · Φ(u).

From (1.2.2) and (1.3.1) the differential (dΦ)0̂ : T0̂Vg → g of the parallel
transport map Φ at 0̂ ∈ Vg is given by

(dΦ)0̂(X) =

∫ 1

0

X(t)dt, X ∈ T0̂Vg
∼= Vg.

From this we obtain the orthogonal direct sum decomposition

T0̂Vg = ĝ⊕Ker(dΦ)0̂, X =

(∫ 1

0

X(t)dt

)
⊕
(
X −

∫ 1

0

X(t)dt

)
. (1.3.5)

Moreover the following properties holds ([52, p. 686], [52, Lemma 5.1]):

Proposition 1.3.1 (Terng-Thorbergsson [52]).

(i) Φ is a Riemannian submersion.
(ii) Any two fibers of Φ are congruent under the isometries on Vg.
(iii) P (G, {e} × {e}) acts on each fiber of Φ transitively and freely.
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(iv) Φ is a principal P (G, {e} × {e})-bundle.
(v) If N is a closed submanifold of G then Φ−1(N) is a PF submanifold of

Vg.

LetK be a closed subgroup of G with Lie algebra k. Denote by g = k+m the
orthogonal direct sum decomposition. Restricting the Ad(G)-invariant inner
product of g to m we define the induced G-invariant Riemannian metric on the
homogeneous space G/K. Thus G/K is a compact normal homogeneous space.
We denote by π : G → G/K the natural projection, which is a Riemannian
submersion with totally geodesic fiber. For each x ∈ g, xk and xm denote the
k- and m-components, respectively.

Definition (Terng-Thorbergsson [52]). The parallel transport map ΦK over
G/K is defined by

ΦK := π ◦ Φ : Vg → G → G/K. (1.3.6)

Note that if K = {e} then ΦK = Φ. Note also that ΦK has the similar
properties as in Proposition 1.3.1.

In the rest of this subsection, we mention several facts which will be used
later. By (1.3.3) the following diagram commutes for each g ∈ P (G,G×{e}):

Vg
g∗−−−→ Vg

Φ

y Φ

y
G

(g(0), e)−−−−→ G.

(1.3.7)

Let G, K be as above. For a ∈ G we denote by la the left translation by a
and La the isometry on G/K defined by La(bK) := abK for b ∈ G. Then the
diagram

G
la−−−→ G

π

y π

y
G/K

La−−−→ G/K

(1.3.8)

commutes. Combining (1.3.7) with (1.3.8), the following diagram commutes
for g ∈ P (G,G× {e}) and a := g(0):

Vg
g∗−−−→ Vg

ΦK

y ΦK

y
G/K

La−−−→ G/K.

(1.3.9)

Let G, H be as above. For each a ∈ G, set Ha := (a, e)−1H(a, e). We
have H · a = la(H

a · e). Then it follows from (1.3.3) (ii) and (1.3.7) that for
g ∈ P (G,G× {e}), u := g ∗ 0̂ and a := Φ(u) = g(0),

P (G,H) ∗ u = g ∗ (P (G,Ha) ∗ 0̂). (1.3.10)
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1.4 Minimality for PF submanifolds

In this subsection we review the fundamental facts on minimality for PF
submanifolds. Since there is no infinite dimensional version of Lebesgue mea-
sure on Hilbert spaces, the volume of PF submanifolds with respect to the
induced metric is not meaningful and thus the minimality of PF submanifolds
can not be defined via the local variation of the volume. Moreover the shape
operator of a PF submanifold is a self-adjoint compact operator which is not
of trace class and thus there is no natural definition of mean curvatures for PF
submanifolds in general.

Fortunately for a suitable class of PF submanifolds the trace of the shape
operator can be defined and thus the minimality is defined so that the trace
vanishes. At present there are three kinds of definitions for the trace of the
shape operator (mean curvature) and respectively there are three kinds of
definitions for minimal PF submanifolds:

Definition (King-Terng [29], Heintze-Liu-Olmos [20], Koike [31]).
Let M be a PF submanifold of a separable Hilbert space V and ξ ∈ T⊥M .

We denote by
µ1 ≤ µ2 ≤ · · · < 0 < · · · ≤ λ2 ≤ λ1.

the eigenvalues repeated with multiplicities of the shape operator Aξ. Also
denote by {κk}∞k=1 the set of all distinct non-zero eigenvalues of Aξ arranged
so that

|κk| > |κk+1| or κk = −κk+1 ≥ 0,

and by mk the multiplicity of κk.
We say that Aξ is ζ-regularizable ([29]) if

∑
k λ

s
k +

∑
k |µk|s < ∞ for all

s > 1 and

trζ Aξ := lim
s↘1

(∑
k

λs
k −

∑
k

|µk|s
)

exists. Then we call trζ Aξ the ζ-regularized mean curvature in the direction
of ξ. M is called ζ-regularizable if Aξ is ζ-regularizable for all ξ ∈ T⊥M . If
M is ζ-regularizable and trζ Aξ vanishes for all ξ ∈ T⊥M we say that M is
ζ-minimal.

We say that Aξ is regularizable ([20]) if trA2
ξ < ∞ and

trr Aξ :=
∞∑
k=1

(λk + µk)

converges, where we regard λk or µk as zero if there are less than k positive
or negative eigenvalues, respectively. Then we call trr Aξ the regularized mean
curvature in the direction of ξ. M is called regularizable if Aξ is regularizable
for all ξ ∈ T⊥M . If M is regularizable and trr Aξ vanishes for all ξ ∈ T⊥M we
say that M is r-minimal.
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We say that Aξ is formally regularizable (shortly f-regularizable) if

trf Aξ :=
∞∑
k=1

mkκk

converges. Then we call trf Aξ the f-regularized mean curvature in the direction
of ξ. M is called f-regularizable if Aξ is regularizable for all ξ ∈ T⊥M . If M is
f-regularizable and trf Aξ vanishes for all ξ ∈ T⊥M we say thatM is f -minimal
([31]).

For proofs of the following facts, see [29, Theorem 4.12], [20, Lemma 5.2].

Proposition 1.4.1 (King-Terng [29], Heintze-Liu-Olmos [20]).
Let G be a connected compact Lie group with a bi-invariant Riemannian

metric, Φ the parallel transport map and N a closed submanifold of G. Then

(i) the PF submanifold Φ−1(N) is both ζ-regularizable and regularizable,
(ii) for each X ∈ T⊥Φ−1(N) the following mean curvatures coincide:

(a) The ζ-regularized mean curvature of Φ−1(N) in the direction of X,
(b) The regularized mean curvature of Φ−1(N) in the direction of X,
(c) the mean curvature of N in the direction of dΦ(X) ∈ T⊥N .

(iii) the following are equivalent:
(a) Φ−1(N) is ζ-minimal, (b) Φ−1(N) is r-minimal, (c) N is minimal.

Note that the parallel transport map ΦK : Vg → G/K satisfies the same
properties as in Proposition 1.4.1.

1.5 Symmetric properties for PF submanifolds

In this subsection we define and study reflectivity, weak reflectivity, auster-
ity and aridity for PF submanifolds in Hilbert spaces. They are defined just
as in the finite dimensional case:

Definition. Let M be a PF submanifold of a separable Hilbert space V . M
is called reflective if it is a connected component of the fixed point set of an
involutive isometry of V . M is called totally geodesic if its second fundamental
form is identically zero. M is called weakly reflective if for each p ∈ M and
each ξ ∈ T⊥

p M there exists an isometry νξ of V which satisfies

νξ(p) = p, (dνξ)pξ = −ξ, νξ(M) = M.

Here we call such an isometry νξ a reflection with respect to ξ. M is called
austere if for each ξ ∈ T⊥M the set of eigenvalues with their multiplicities
of the shape operator Aξ is invariant under the multiplication by (−1). M is
called arid if for each p ∈ M and each ξ ∈ T⊥

p M\{0} there exists an isometry
φξ of V which satisfies

φξ(p) = p, dφξ(ξ) ̸= ξ, φξ(M) = M.
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Reflective PF submanifolds in Hilbert spaces are characterized as follows:

Proposition 1.5.1. Let M be a connected PF submanifold of V . Then the
following are equivalent:

(i) M is a reflective PF submanifold of V ,
(ii) M is a totally geodesic closed PF submanifold of V ,
(iii) M is a closed affine subspace of V .

Proof. We can assume without loss of generality that M is through 0 ∈ V .
“(i) ⇒ (iii)”: Suppose that σ : V → V is an involutive isometry such that the
connected component of the fixed point set of σ coincides with M . Then σ
is a linear orthogonal transformation of V and its fixed point set is a closed
linear subspace of V . This shows (iii). “(iii) ⇒ (i)”: Since M is a closed
subspace of V there is the orthogonal direct sum decomposition V = M⊕M⊥.
Defining σ : V → V by σ(x ⊕ y) := x ⊕ (−y) for x ⊕ y ∈ M ⊕ M⊥ = V it
follows that M is a reflective PF submanifold of V . “(iii) ⇒ (ii)”: Since
M is a closed subspace of V then it is invariant under the linear orthogonal
transformation V → V , v 7→ −v. Thus the second fundamental form α of M
satisfies −α(−x,−y) = α(x, y) for x, y ∈ TM , which shows α is identically
zero and thus M is totally geodesic. “(ii) ⇒ (iii)”: Since M is totally geodesic
it follows that the geodesic in V along each x ∈ TM lies in M ([33, Chapter
XIV, Corollary 1.4]). Since the geodesic of V is a straight line t 7→ tx our
claim follows.

Similarly to the finite dimensional case we have the following relation:

austere PF
⇒reflective PF ⇒ weakly reflective PF ⇒

arid PF.

Moreover the following properties hold:

Proposition 1.5.2. Let M be a PF submanifold of V .

(i) (a) Suppose M is regularizable. If M is austere, then it is r-minimal.
(b) Suppose M is ζ-regularizable. If M is austere, then it is both ζ-

minimal and r-minimal.
(ii) (a) Suppose that M is ζ-regularizable and that for each p ∈ M the map

T⊥
p M → R, ξ 7→ trζ Aξ is linear. If M is arid, then it is ζ-minimal.

(b) Suppose that M is regularizable and that for each p ∈ M the map
T⊥
p M → R, ξ 7→ trr Aξ is linear. If M is arid, then it is r-minimal.

Proof. (i): (a) is clear. (b): Since M is austere, the series
∑

k(λk + µk) con-
verges absolutely and thus trζ Aξ = trr Aξ holds for any ξ ∈ T⊥M (see [20,
Remark in Section 4]). Thus (b) follows. (ii): Choose a basis {e1, · · · , er} of
T⊥
p M . From the assumption the mean curvature vector Hp of M at p ∈ M is

well-defined by

Hp :=
r∑

i=1

trζ(Aei)ei.
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Note that Hp is invariant under any isometry φ of V satisfying φ(p) = p and
φ(M) = M because the eigenvalues of Aei and Adφ(ei) coincide. Thus if M is
arid, then Hp must be zero. This shows that trζ(Aei) = 0 for any i ∈ {1, · · · , r}
and hence we obtain (a). By similar arguments (b) also follows.

Since PF submanifolds obtained through the parallel transport map satisfy
all assumptions in Proposition 1.5.2 (see [29, Theorem 4.12], [20, Lemma 5.2])
we obtain the following corollary:

Corollary 1.5.3. Let G/K be a compact normal homogeneous space, ΦK :
Vg → G/K the parallel transport map and N a closed submanifold of G/K.

(i) If the PF submanifold Φ−1
K (N) is austere then it is both ζ-minimal and

r-minimal.
(ii) If the PF submanifold Φ−1

K (N) is arid then it is both ζ-minimal and r-
minimal.

In other cases it is not clear that austere PF submanifolds and arid PF sub-
manifolds are ζ-minimal or r-minimal. However it will not interfere our pur-
pose because we will give attention to PF submanifolds obtained through the
parallel transport map, where austerity or aridity implies both ζ-minimality
and r-minimality due to the above corollary.

Later we show that each fiber of the parallel transport map ΦK : Vg → G/K
is a weakly reflective PF submanifold of Vg (Section 3.1). After that we will see
many examples of weakly reflective PF submanifolds, austere PF submanifolds
and arid PF submanifolds in Hilbert spaces (Sections 3.2, 3.3 and 3.4).

2 Submanifold geometries

via the parallel transport map

2.1 Second fundamental forms and shape operators I

In this subsection we study the second fundamental form and the shape
operator of a PF submanifold obtained through the parallel transport map.

Let G be a connected compact Lie group equipped with a bi-invariant
Riemannian metric and Φ : Vg → G the parallel transport map. We write F :=
Φ−1(e) for the fiber of Φ at e ∈ G. Denote by ι : F → Vg the inclusion map and
regard F as a submanifold of Vg. Recall that the subgroup P (G, {e}×{e}) acts
on F transitively and freely. Thus by (1.2.4) we have the following expression
of the tangent space:

T0̂F = {−Q′ ∈ Vg | Q ∈ H1([0, 1], g), Q(0) = Q(1) = 0}. (2.1.1)

Note that by (1.3.5) we have T⊥
0̂
F = ĝ. Define a map E : T0̂Vg → Γ(ι∗TVg) by

E(X)g∗0̂ := gXg−1, X ∈ T0̂Vg, g ∈ P (G, {e} × {e}). (2.1.2)

Thus E(X) is the P (G, {e} × {e})-equivariant vector filed along F .
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Lemma 2.1.1. The Levi-Civita connection ∇TF , the second fundamental form
αF , the shape operator AF , and the normal connection ∇T⊥F of F satisfy the
following. For −Q′,−R′ ∈ T0̂F , ξ̂ ∈ T⊥

0̂
F ,

(i) ∇TF
−Q′ E(−R′) = [Q,−R′]−

∫ 1

0

[Q,−R′](t)dt,

(ii) αF (−Q′,−R′) =

∫ 1

0

[Q,−R′](t)dt,

(iii) AF
ξ̂
(−Q′) = −[Q, ξ̂] +

[∫ 1

0

Q(t)dt, ξ

]
,

(iv) ∇T⊥F
−Q′ E(ξ̂) =

[∫ 1

0

Q(t)dt, ξ

]
.

Proof. Since Vg is flat, it follows from (2.1.2) that

∇ι∗TVg

−Q′ E(−R′) =
d

ds

∣∣∣∣
s=0

E(−R′)(exp sQ)∗0̂ = [Q,−R′],

∇ι∗TVg

−Q′ E(ξ̂) = d

ds

∣∣∣∣
s=0

E(ξ̂)(exp sQ)∗0̂ = [Q, ξ̂].

By (1.3.5) our claim follows.

The following theorem gives the Lie algebraic formulas for the second fun-
damental form and the shape operator of a PF submanifold obtained through
the parallel transport map Φ.

Theorem 2.1.2. Let N be a closed submanifold of G through e ∈ G. Denote
respectively by αN and AN the second fundamental form and the shape operator
of N , and by αΦ−1(N) and AΦ−1(N) those of Φ−1(N). For X,Y ∈ T0̂Φ

−1(N),

ξ̂ ∈ T⊥
0̂
Φ−1(N)(⊂ ĝ),

(i) αΦ−1(N)(X,Y ) = αN

(∫ 1

0

X(t)dt,

∫ 1

0

Y (t)dt

)
+

1

2

[∫ 1

0

X(t)dt,

∫ 1

0

Y (t)dt

]⊥
−
(∫ 1

0

[∫ t

0

X(s)ds, Y (t)

]
dt

)⊥

,

(ii) A
Φ−1(N)

ξ̂
(X)(t) = AN

ξ

(∫ 1

0

X(t)dt

)
− 1

2

[∫ 1

0

X(t)dt, ξ

]⊤
+

[∫ t

0

X(s)ds, ξ

]
−
[∫ 1

0

∫ t

0

X(s)dsdt, ξ

]⊥
,

where ⊤ and ⊥ denote the projections of g onto TeN and T⊥
e N , respectively.

Proof. (i) Recall that Φ is a Riemannian submersion with decomposition (1.3.5).
We use superscripts h and v to denote the projections of T0̂Vg onto ĝ and T0̂F ,
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respectively. Set N̄ := Φ−1(N). Then

αN̄(X,Y ) = αN̄(Xh, Y h) + αN̄(Xh, Y v) + αN̄(Xv, Y h) + αN̄(Xv, Y v)

= αN(dΦ(X), dΦ(Y ))

+ (∇T⊥F
Y v E(Xh))T⊥

0̂
N̄ + (∇T⊥F

Xv E(Y h))T⊥
0̂
N̄ + αF (Xv, Y v)T⊥

0̂
N̄ .

Define Q,R ∈ H1([0, 1], g) by{
Xv = −Q′,
Q(0) = Q(1) = 0,

{
Y v = −R′,
Y (0) = Y (1) = 0.

Explicitly Q and R are

Q = tXh −
∫ t

0

X(s)ds, R = tY h −
∫ t

0

Y (s)ds.

By Lemma 2.4.4 we have

αN̄(X,Y )− αN(dΦ(X), dΦ(Y ))

=

[∫ 1

0

R(t)dt,Xh

]⊥
+

[∫ 1

0

Q(t)dt, Y h

]⊥
+

(∫ 1

0

[Q,−R′](t)dt

)⊥

.

Let us calculate each term above.[∫ 1

0

R(t)dt,Xh

]
=

1

2
[Y h, Xh]−

[∫ 1

0

∫ t

0

Y (s)dsdt,Xh

]
,[∫ 1

0

Q(t)dt, Y h

]
=

1

2
[Xh, Y h]−

[∫ 1

0

∫ t

0

X(s)dsdt, Y h

]
.

For the third term, note that integrating by parts we have∫ 1

0

tY (t)dt =

[
t

∫ t

0

Y (s)ds

]1
0

−
∫ 1

0

∫ t

0

Y (s)dsdt = Y h −
∫ 1

0

∫ t

0

Y (s)dsdt.

Using this we have∫ 1

0

[Q,−R′](t)dt =

∫ 1

0

[
tXh −

∫ t

0

X(s)ds, Y (t)− Y h

]
dt

=

[
Xh,

∫ 1

0

tY (t)dt

]
− 1

2
[Xh, Y h]

−
∫ 1

0

[∫ t

0

X(s)ds, Y (t)

]
dt+

[∫ 1

0

∫ t

0

X(s)dsdt, Y h

]
=

1

2

[
Xh, Y h

]
−
[
Xh,

∫ 1

0

∫ t

0

Y (s)dsdt

]
−
∫ 1

0

[∫ t

0

X(s)ds, Y (t)

]
dt+

[∫ 1

0

∫ t

0

X(s)dsdt, Y h

]
.
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From these calculations we obtain (i).
(ii) By (i) and Ad(G)-invariance of the inner product of g, we have

⟨AN̄
ξ̂
(X), Y ⟩L2 = ⟨αN̄(X,Y ), ξ̂⟩L2

=

⟨
AN

ξ (X
h)− 1

2
[Xh, ξ] +

[∫ t

0

X(s)ds, ξ

]
, Y

⟩
L2

.

This proves (ii).

LetN be a closed submanifold ofG through e ∈ G. Since Φ is a Riemannian
submersion we have the orthogonal direct sum decomposition:

T0̂Φ
−1(N) ∼= T0̂F ⊕ TeN, X = −Q′ ⊕ v,

where Q is as in (2.1.1). With respect to this decomposition, Theorem 2.1.2
(ii) can be described as follows:

Corollary 2.1.3. Let N be a closed submanifold of G through e ∈ G. For
ξ ∈ T⊥

e N , y ∈ TeN , −Q′ ∈ T0̂F ,

(i) A
Φ−1(N)

ξ̂
(v̂)(t) = AN

ξ (v) +

(
t− 1

2

)
[v, ξ],

(ii) A
Φ−1(N)

ξ̂
(−Q′) = −[Q, ξ̂] +

[∫ 1

0

Q(t)dt, ξ

]⊥
.

Finally we show the second fundamental form and the shape operator of a
P (G,H)-orbit. Recall the Lie algebraic expression of the tangent space (1.2.4).

Theorem 2.1.4. Let G be a connected compact Lie group with a bi-invariant
Riemannian metric and H be a closed subgroup of G × G. Then the sec-
ond fundamental form αP (G,H)∗0̂ and the shape operator AP (G,H)∗0̂ of the orbit
P (G,H)∗ 0̂ through 0̂ ∈ Vg are given as follows. For −Z ′,−W ′ ∈ T0̂(P (G,H)∗
0̂), ξ̂ ∈ T⊥

0̂
(P (G,H) ∗ 0̂),

(i) αP (G,H)∗0̂(−Z ′,−W ′) =

∫ 1

0

{[Z,−W ′](t)}⊥dt,

(ii) A
P (G,H)∗0̂
ξ̂

(−Z ′) = −[Z, ξ̂] +

[∫ 1

0

Z(t)dt, ξ

]⊥
,

where ⊤ and ⊥ denote the projections of g onto Te(H · e) and T⊥
e (H · e),

respectively.

To prove this theorem we show the following proposition which describes
the second fundamental form and the shape operator of the H-orbit through
e ∈ G. Note that the tangent space of the orbit H · e is

Te(H · e) = {x− y ∈ g | (x, y) ∈ h}.
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Proposition 2.1.5. Let G, H be as in Theorem 2.1.4. Then the second funda-
mental form αH·e and the shape operator AH·e of the orbit H · e through e ∈ G
are given as follows. For x− y, z − w ∈ Te(H · e), ξ ∈ T⊥

e (H · e),

(i) αH·e(x− y, z − w) = −1

2
[x− y, z + w]⊥ = −1

2
([x,w]− [y, z])⊥ ,

(ii) AH·e
ξ (x− y) = −1

2
[x+ y, ξ]⊤.

Proof. (i) Denote by ∆G the diagonal of G×G. Set (G1, K1) := (H,H ∩∆G)
and (G2, K2) := (G×G,∆G) so that the diffeomorphism H · e ∼= G1/K1 and
the isometry G ∼= G2/K2 hold. For i = 1, 2 we denote by πi : Gi → Gi/Ki

the projection and by gi = ki + mi the orthogonal direct sum decomposition
associated to the pair (Gi, Ki). Also denote by i : G1 → G2 the inclusion and
by f : G1/K1 → G2/K2 the induced map. Then we have the commutative
diagram

G1
i−−−→ G2

π1

y π2

y
G1/K1

f−−−→ G2/K2.

Note that di(m1) ̸⊂ m2 in general. For each X ∈ g2 we denote by X∗ the basic
vector field on G2/K2, that is,

X∗
aK2

:=
d

dt

∣∣∣∣
t=0

(exp tX) · aK2, aK2 ∈ G2/K2.

Note that ifX ∈ di(m1) thenX∗ restricted to f(G1/K1) is tangent to f(G1/K1).
Then for (x, y), (z, w) ∈ m1 we have

αf ((x, y), (z, w)) =
(
∇T (G2/K2)

di(x,y)∗ di(z, w)∗
)⊥
eK2

= −[di(x, y)m2 , di(z, w)k2 ]
⊥

= −
[
1

2
(x− y,−(x− y)),

1

2
(z + w, z + w)

]⊥
= −1

4
([x− y, z + w],−[x− y, z + w])⊥.

Thus by the identification (g× g)/∆g ∼= g, (x, y) 7→ x− y we obtain

αH·e(x− y, z − w) = −1

4
([x− y, z + w] + [x− y, z + w])⊥

= −1

2
[x− y, z + w]⊥

= −1

2
([x, z] + [x,w]− [y, z]− [y, w])⊥.
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Since (x, y), (z, w) ∈ h we have ([x, z], [y, w]) ∈ h, which shows [x, z]− [y, w] is
tangent to H · e. Hence (i) follows. (ii) For each z − w ∈ Te(H · e) we have

⟨AH·e
ξ (x− y), z − w⟩ = ⟨αH·e(z − w, x− y), ξ⟩

= −1

2
⟨[z − w, x+ y], ξ⟩

= −1

2
⟨[x+ y, ξ], z − w⟩.

Thus the desired formula follows.

Proof of Theorem 2.1.4. Set N := H · e and N̄ := P (G,H) ∗ 0̂ so that N̄ =
Φ−1(N). By Theorem 2.1.2 (i), Proposition 2.1.5 (i) and the fact that αN is a
symmetric bilinear form, we have

αN̄(−Z ′,−W ′)

= αN(W (0)−W (1), Z(0)− Z(1)) +
1

2
[Z(0)− Z(1),W (0)−W (1)]⊥

−
(∫ 1

0

[Z(0)− Z(t),−W ′(t)] dt

)⊥

= −1

2
[W (0)−W (1), Z(0) + Z(1)]⊥ +

1

2
[Z(0)− Z(1),W (0)−W (1)]⊥

−
([

Z(0),

∫ 1

0

−W ′(t)dt

]
−
∫ 1

0

[Z,−W ′] (t)dt

)⊥

=

(∫ 1

0

[Z,−W ′] (t)dt

)⊥

.

This proves (i). (ii) follows from Theorem 2.1.2 (ii) and Proposition 2.1.5
(ii).

2.2 Second fundamental forms and shape operators II

In this subsection we study the second fundamental form and the shape
operator of a PF submanifold obtained through the parallel transport map
over a compact normal homogeneous space.

Let G/K be a compact normal homogeneous space with projection π :
G → G/K. Denote by g = k + m the orthogonal direct sum decomposition.
Suppose that a closed submanifold N of G/K through eK is given. Since π is
a Riemannian submersion we have the orthogonal direct sum decomposition

Teπ
−1(N) = k⊕ TeKN, v = vk ⊕ vm.

Denote respectively by αN and AN the second fundamental form and the shape
operator of N , and by απ−1(N), Aπ−1(N) those of π−1(N).
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Proposition 2.2.1. For v, w ∈ Teπ
−1(N) ⊂ g, ξ ∈ T⊥

eKN
∼= T⊥

e π−1(N) ⊂ m,

(i) απ−1(N)(v, w) = αN(vm, wm)−
1

2
[vk, wm]

⊥ +
1

2
[vm, wk]

⊥,

(ii) A
π−1(N)
ξ (v) = AN

ξ (vm)−
1

2
[vm, ξ]k +

1

2
[vk, ξ]

⊤.

where ⊤ and ⊥ denote the projections of g onto Teπ
−1(N) and T⊥

e π−1(N),
respectively.

Proof. (i) By identification TeG ∼= g we regard v and w as left invariant vector
fields on G. On the other hand we denote respectively by ṽm and w̃m the
right invariant vector fields on G such that ṽm(e) = vm(e) and w̃m(e) = wm(e).
Then ṽm|π−1(eK) and w̃m|π−1(eK) are the horizontal lift of dπ(v(e)) and dπ(w(e)).
Since π : G → G/K is a Riemannian submersion with totally geodesic fiber
π−1(eK) = K we have

απ−1(N)(v(e), w(e)) = απ−1(N)(vm(e), wm(e)) + απ−1(N)(vm(e), wk(e))

+ απ−1(N)(vk(e), wm(e)) + απ−1(N)(vk(e), wk(e))

= αN(vm(e), wm(e)) +
(
∇T⊥π−1(eK)

wk(e)
(ṽm|π−1(eK))

)⊥
+
(
∇T⊥π−1(eK)

vk(e)
(w̃m|π−1(eK))

)⊥
+ απ−1(eK)(vk(e), wk(e))

= αN(vm(e), wm(e)) + (∇TG
wk(e)

ṽm)
⊥ + (∇TG

vk(e)
w̃m)

⊥ + 0

= αN(vm(e), wm(e)) +
1

2
[w̃k, ṽm](e)

⊥ +
1

2
[ṽk, w̃m](e)

⊥

= αN(vm(e), wm(e))−
1

2
[wk, vm](e)

⊥ − 1

2
[vk, wm](e)

⊥

= αN(vm(e), wm(e))−
1

2
[vk, wm](e)

⊥ +
1

2
[vm, wk](e)

⊥.

Thus we obtain the desired formula.
(ii) Using (i) we have

⟨Aπ−1(N)
ξ (v), w⟩ = ⟨απ−1(N)(w, v), ξ⟩

= ⟨αN(wm, vm), ξ⟩ −
1

2
⟨[wk, vm], ξ⟩+

1

2
⟨[wm, vk], ξ⟩

= ⟨AN
ξ (vm), wm⟩ −

1

2
⟨[vm, ξ], wk⟩+

1

2
⟨[vk, ξ], wm⟩

= ⟨AN
ξ (vm), w⟩ −

1

2
⟨[vm, ξ]k, w⟩+

1

2
⟨[vk, ξ], w⟩

=

⟨
AN

ξ (vm)−
1

2
[vm, ξ]k +

1

2
[vk, ξ], w

⟩
.

Therefore we obtain

A
π−1(N)
ξ (v) = AN

ξ (vm)−
1

2
[vm, ξ]

⊤
k +

1

2
[vk, ξ]

⊤

= AN
ξ (vm)−

1

2
[vm, ξ]k +

1

2
[vk, ξ]

⊤.
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This proves (ii).

Combining Theorem 2.1.2 with Proposition 2.2.1 we easily obtain the fol-
lowing relational formulas:

Corollary 2.2.2. Let G/K be a compact normal homogeneous space and N a
closed submanifold of G/K through eK ∈ G/K. Denote respectively by αN and

AN the second fundamental form and the shape operator of N , and by αΦ−1
K (N)

and AΦ−1
K (N) those of Φ−1

K (N). For X,Y ∈ T0̂Φ
−1
K (N), ξ̂ ∈ T⊥

0̂
Φ−1

K (N)(⊂ ĝ),

(i) αΦ−1
K (N)(X,Y ) = αN

(∫ 1

0

X(t)mdt,

∫ 1

0

Y (t)mdt

)
− 1

2

[∫ 1

0

X(t)kdt,

∫ 1

0

Y (t)mdt

]⊥
+

1

2

[∫ 1

0

X(t)mdt,

∫ 1

0

Y (t)kdt

]⊥
+

1

2

[∫ 1

0

X(t)dt,

∫ 1

0

Y (t)dt

]⊥
−
(∫ 1

0

[∫ t

0

X(s)ds, Y (t)

]
dt

)⊥

,

(ii) A
Φ−1

K (N)

ξ̂
(X)(t) = AN

ξ

(∫ 1

0

X(t)mdt

)
− 1

2

[∫ 1

0

X(t)mdt, ξ

]
k

+
1

2

[∫ 1

0

X(t)kdt, ξ

]⊤
− 1

2

[∫ 1

0

X(t)dt, ξ

]⊤
+

[∫ t

0

X(s)ds, ξ

]
−
[∫ 1

0

∫ t

0

X(s)dsdt, ξ

]⊥
,

where ⊤ and ⊥ denote the projections of g onto TeN and T⊥
e N , respectively.

For later use we give a simple expression of the shape operator A
Φ−1

K (N)

ξ̂
as

follows. Denote by FK := Φ−1
K (eK) = Φ−1(K) the fiber of ΦK at eK ∈ G/K.

Since
FK = Φ−1(({e} ×K) · e) = P (G, {e} ×K) ∗ 0̂,

from (1.2.4) we have

T0̂FK = {−Z ′ | Z ∈ H1([0, 1], g), Z(0) = 0, Z(1) ∈ k}. (2.2.1)

In particular we have

T0̂F = {−Q′ | Q ∈ H1([0, 1], g), Q(0) = Q(1) = 0}. (2.2.2)

Since Φ and ΦK are Riemannian submersions we have the orthogonal direct
sum decompositions

T0̂Φ
−1
K (N) ∼= T0̂FK ⊕ TeKN ∼= T0̂F ⊕ k⊕ TeKN.

We fix a normal vector ξ of N at eK. Then its horizontal lift at 0̂ ∈ Φ−1
K (N)

is given by the constant path ξ̂.
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Proposition 2.2.3. Suppose [m,m] ⊂ k. For −Q′ ∈ T0̂F , x ∈ k, y ∈ TeKN

(i) A
Φ−1

K (N)

ξ̂
(−Q′) = −[Q, ξ̂] +

[∫ 1

0

Q(t)dt, ξ

]⊥
,

(ii) A
Φ−1

K (N)

ξ̂
(x) = −1

2
[x, ξ]⊥ + t[x, ξ],

(iii) A
Φ−1

K (N)

ξ̂
(y) = AN

ξ (y)− (1− t)[y, ξ],

where ⊥ denote the projection from g onto T⊥
eKN(⊂ m).

Proof. The formula (i) follows from Corollary 2.1.3 (ii). Also from Corollary
2.1.3 (i) we have the following formula: for v ∈ Teπ

−1(N)

A
Φ−1

K (N)

ξ̂
(v) = A

π−1(N)
ξ (v) +

(
t− 1

2

)
[v, ξ].

This together with Proposition 2.2.1 (ii) and the assumption [m,m] ⊂ k we
obtain the formulas (ii) and (iii).

Corollary 2.2.4. Suppose [m,m] ⊂ k. For −Z ′ ∈ T0̂FK

A
Φ−1

K (N)

ξ̂
(−Z ′) = −[Z, ξ̂] +

[∫ 1

0

Z(t)dt, ξ

]⊥
.

Proof. Set Q := Z − tZ(1) and x := −Z(1) so that −Z ′ = −Q′ + x. By
Proposition 2.2.3 (i) and (ii) the desired formula follows.

2.3 The totally geodesic property

In this subsection we study the totally geodesic property of a PF subman-
ifold obtained through the parallel transport map. As a consequence we will
see that so obtained PF submanifolds are not totally geodesic except for rare
cases. This leads us to a remarkable property of homogeneous minimal PF
submanifolds in Hilbert spaces (Section 4.1).

Let G be a connected compact Lie group with a bi-invariant Riemannian
metric. Denote by gss = [g, g] the semisimple part and c(g) the center of g.
We know the orthogonal direct sum decomposition g = gss ⊕ c(g). We write
Gss for the connected subgroup of G generated by gss.

Theorem 2.3.1. Let G be a connected compact Lie group with bi-invariant
Riemannian metric, Φ : Vg → G the parallel transport map and N a closed
connected submanifold of G through e ∈ G. Then the following are equivalent:

(i) Φ−1(N) is a totally geodesic PF submanifold of Vg.
(ii) N is a closed subgroup of G such that gss ⊂ TeN .
(iii) N is a closed subgroup of G such that T⊥

e N ⊂ c(g).
(iv) N is a closed subgroup of G which contains Gss.
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Proof. Equivalence of (ii), (iii) and (iv) is clear. (iii) ⇒ (i): Since N is totally
geodesic and T⊥

e N ⊂ c(g), it follows from Theorem 2.1.2 (ii) that Φ−1(N)
is totally geodesic at 0̂ ∈ Vg. Since N is a closed subgroup of G, we have
Φ−1(N) = Φ−1(({e} × N) · e) = P (G, e × N) ∗ 0̂ and in particular Φ−1(N) is
homogeneous. Thus Φ−1(N) is a totally geodesic PF submanifold of Vg. (i)
⇒ (iii): Let ξ ∈ T⊥

e N and x ∈ g. Since Φ is a Riemannian submersion, N is
totally geodesic. Thus by Corollary 2.1.3 (i) we have

0 = A
Φ−1(N)

ξ̂
(x̂)(t) = (t− 1

2
)[x, ξ]

for all t ∈ [0, 1]. This shows [x, ξ] = 0 and thus we obtain T⊥
e N ⊂ c(g),

which is equivalent to gss ⊂ TeN . Then TeN is a Lie subalgebra of g because
gss = [g, g]. Since N is connected and totally geodesic, N is identical to a
connected Lie subgroup of G generated by TeN . Hence N is a closed subgroup
of G and (iii) follows.

Corollary 2.3.2. Let G/K be a compact normal homogeneous space, ΦK :
Vg → G/K the parallel transport map and N a connected closed submanifold
of G/K through eK ∈ G/K. Then the following are equivalent:

(i) Φ−1
K (N) is a totally geodesic PF submanifold of Vg,

(ii) N is a totally geodesic submanifold of G/K such that T⊥
eKN ⊂ c(g).

Corollary 2.3.3. Let G/K, ΦK be as above.

(i) If G is abelian then Φ−1
K (N) is a totally geodesic PF submanifold of Vg

for any closed connected totally geodesic submanifold N of G/K.
(ii) If G is semisimple then for a closed connected submanifold N of G the

following are equivalent: (a) Φ−1
K (N) is a totally geodesic PF submanifold

of Vg. (b) N = G/K. (c) Φ−1
K (N) = Vg.

For fibers of the parallel transport map, we have the following corollaries.

Corollary 2.3.4. Let G/K, ΦK be as above.Then the following are equivalent.

(i) The fiber of ΦK at eK is a totally geodesic PF submanifold of Vg.
(ii) Each fiber of ΦK is a totally geodesic PF submanifold of Vg.
(iii) m ⊂ c(g).

Corollary 2.3.5. Let G be a connected compact Lie group with a bi-invariant
Riemannain metric and Φ : Vg → G the parallel transport map. Then the
following are equivalent:

(i) The fiber of Φ at e ∈ G is a totally geodesic PF submanifold of Vg.
(ii) Each fiber of Φ is a totally geodesic PF submanifold of Vg.
(iii) G is a torus.

Remark 2.3.6. Recall that Φ : Vg → G is a principal P (G, {e}× {e})-bundle
which is not trivial in general. Corollary 2.3.5 shows that Φ is a Hilbert space
bundle if and only if G is a torus. In this case it can be checked that Φ is the
trivial bundle. This agrees with Kuiper’s theorem ([3, p. 67]), stating that any
Hilbert space bundle must be trivial.
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2.4 Principal curvatures

In this subsection we calculate the principal curvatures of PF submanifolds
obtained through the parallel transport map. For technical reasons, here we
will restrict our attention to PF submanifolds obtained from curvature adapted
submanifolds in compact symmetric spaces. Although such a subject has been
studied by Koike [31] there are some inaccuracies in his eigenspace decomposi-
tion and so here we give the corrected formula with another elementary proof
by using the formulas for shape operators given in Section 2.2.

Recall that a submanifold M immersed in a Riemannian manifold M̄ is
called curvature adapted if for each p ∈ M and each ξ ∈ T⊥

p M the Jacobi
operator Rξ := R̄(·, ξ)ξ : TpM̄ → TpM̄ , where R̄ denotes the curvature tensor
of M̄ , satisfies

Rξ(TpM) ⊂ TpM and AM
ξ ◦Rξ|TpM = Rξ|TpM ◦ AM

ξ ,

where AM
ξ denotes the shape operator of M in the direction of ξ.

Let G be a connected compact Lie group and K a closed subgroup of G.
Suppose that K is symmetric, that is, there exists an involutive automorphism
θ of G such that Gθ

0 ⊂ K ⊂ Gθ, where Gθ is the fixed point subgroup of θ
and Gθ

0 the identity component. Denote by g and k the Lie algebras of G
and K respectively and by g = k + m the direct sum decomposition into the
±1-eigenspaces of dθ. We fix an inner product ⟨·, ·⟩ of g which is invariant
under both Ad(G) and θ. Then the above direct sum decomposition is or-
thogonal with respect to this inner product ⟨·, ·⟩. We equip the corresponding
bi-invariant Riemannian metric with G and a normal homogeneous metric with
G/K. Then G/K is a compact symmetric space and the natural projection
π : G → G/K is a Riemannian submersion with totally geodesic fiber. We
denote by ΦK : Vg → G/K the parallel transport map.

Let N be a curvature adapted closed submanifold of G/K. Note that in
order to calculate the principal curvatures of a PF submanifold Φ−1

K (N) we can
assume without loss of generality that N contains eK and moreover it suffices
to consider normal vectors only at 0̂ ∈ Φ−1

K (N) because of the commutativity
(1.3.9). Thus in the rest of this subsection we fix ξ ∈ T⊥

eKN and calculate the

principal curvatures of Φ−1
K (N) in the direction of ξ̂ ∈ T⊥

0̂
Φ−1

K (N). Note that
in this case the Jacobi operator is given by Rξ = − ad(ξ)2 : m → m.

Denote by {
√
−1 ν} the set of all distinct eigenvalues of the skew adjoint

operator ad(ξ) : g → g. Consider the complexification ad(ξ) : gC → gC and
the eigenspace decomposition

gC = gC0 +
∑
ν ̸=0

gν ,

g0 := {x ∈ g | ad(ξ)(x) = 0},
gν := {z ∈ gC | ad(ξ)(z) =

√
−1 νz}.
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Since ḡν = g−ν we can write

gC = gC0 +
∑
ν>0

(gν + g−ν)

and thus we obtain
g = g0 +

∑
ν>0

(gν + g−ν)R,

(gν + g−ν)R = {x ∈ g | ad(ξ)2(x) = −ν2x},

which is nothing but the eigenspace decomposition with respect to ad(ξ)2 :
g → g. Since ad(ξ)2 commutes with involution θ we have the simultaneous
eigenspace decomposition

k = k0 +
∑
ν>0

kν , m = m0 +
∑
ν>0

mν , (2.4.1)

k0 := {x ∈ k | ad(ξ)(x) = 0},
m0 := {y ∈ m | ad(ξ)(y) = 0},
kν := {x ∈ k | ad(ξ)2(x) = −ν2x},
mν := {y ∈ m | ad(ξ)2(y) = −ν2y}.

By similar arguments as in [36, p. 60], for each ν > 0 we can take bases
{xν

1, · · · , xν
m(ν)} of kν and {yν1 , · · · , yνm(ν)} of mν wherem(ν) := dim kν = dimmν

such that
[ξ, xν

k] = −νyνk , [ξ, yνk ] = νxν
k. (2.4.2)

Thus a linear isomorphism φν : kν → mν is defined by

φν(x) := −1

ν
[ξ, x]. (2.4.3)

Let {λ} denote the set of all distinct eigenvalues of the shape operator AN
ξ .

Set
Sλ := Ker(AN

ξ − λ id).

Since N is curvature adapted, for each ν ≥ 0 we have the decomposition

m = TeKN ⊕ T⊥
eKN

∪ ∪ ∪
mν = mν ∩ TeKN ⊕ mν ∩ T⊥

eKN

=∑
λ(mν ∩ Sλ).

For each ν ≥ 0 we set

m(ν, λ) := dim(mν ∩ Sλ), m(ν,⊥) := dim(mν ∩ T⊥
eKN).
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For each ν ≥ 0 and λ, choose

{y(ν,λ)1 , · · · , y(ν,λ)m(ν,λ)} : a basis of mν ∩ Sλ,

{y(ν,⊥)
1 , · · · , y(ν,⊥)

m(ν,⊥)} : a basis of mν ∩ T⊥
eKN .

Then for each ν ≥ 0 we obtain

{y(ν,λ)1 , · · · , y(ν,λ)m(ν,λ)}λ ∪ {y(ν,⊥)
1 , · · · , y(ν,⊥)

m(ν,⊥)} : a basis of mν .

Thus for each ν > 0, via an isomorphism (2.4.3) we obtain

{x(ν,λ)
1 , · · · , x(ν,λ)

m(ν,λ)}λ ∪ {x(ν,⊥)
1 , · · · , x(ν,⊥)

m(ν,⊥)} : a basis of kν .

For ν = 0 we choose and denote by

{x0
1, · · · , x0

dim k0
} : a basis of k0.

Note that these satisfy

[ξ, x0
i ] = 0, [ξ, y

(0,λ)
j ] = [ξ, y

(0,⊥)
l ] = 0,

[ξ, x
(ν,λ)
k ] = −ν y

(ν,λ)
k , [ξ, y

(ν,λ)
k ] = ν x

(ν,λ)
k ,

[ξ, x
(ν,⊥)
r ] = −ν y

(ν,⊥)
r , [ξ, y

(ν,⊥)
r ] = ν x

(ν,⊥)
r .

Set V (g) := Vg = H0([0, 1], g). We decompose

V (g) =
∑
ν≥0

V (kν) +
∑
ν≥0

(
V (mν ∩ TeKN) + V (mν ∩ T⊥

eKN)
)

and equip a basis with each term above. Recall that there are well-known
three kinds of orthonormal bases in H0([0, 1],R):

{1,
√
2 cos 2nπt,

√
2 sin 2nπt}∞n=1 , (2.4.4)

{1,
√
2 cosnπt}∞n=1 , (2.4.5)

{
√
2 sinnπt}∞n=1 . (2.4.6)

For ν = 0 we consider the following bases:

a basis of V (k0) : {x0
i sinnπt}i, n ,

a basis of V (m0 ∩ TeKN) : {y(0,λ)j }λ, j ∪ {y(0,λ)j cosnπt}λ, j, n ,

a basis of V (m0 ∩ T⊥
eKN) : {y(0,⊥)

l }l ∪ {y(0,⊥)
l cosnπt}l, n .

For each ν > 0 we consider the following bases:

a basis of V (kν) : {x(ν,λ)
k sinnπt}λ, k, n ∪ {x(ν,⊥)

r sinnπt}r, n ,

a basis of V (mν ∩ TeKN) : {y(ν,λ)k }λ, k ∪ {y(ν,λ)k cosnπt}λ, n, k ,

a basis of V (mν ∩ T⊥
eKN) : {y(ν,⊥)

r }r ∪ {y(ν,⊥)
r cosnπt}n, r .
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Clearly all these bases form a basis of V (g) = Vg. Identifying T0̂Vg
∼= Vg and

considering the orthogonal direct sum decomposition

T0̂Vg = T0̂Φ
−1
K (N)⊕ T⊥

eKN, X =

(
X −

∫ 1

0

X(t)⊥dt

)
⊕
∫ 1

0

X(t)⊥dt

we consequently obtain the following basis of T0̂Φ
−1
K (N):

{x0
i sinnπt}i, n ∪ {y(0,λ)j }λ, j ∪ {y(0,λ)j cosnπt}λ, j, n ∪ {y(0,⊥)

r cosnπt}r, n

∪
∪
ν>0

(
{x(ν,λ)

k sinnπt}λ, k, n ∪ {y(ν,λ)k }λ, k ∪ {y(ν,λ)k cosnπt}λ, k, n
)

∪
∪
ν>0

(
{x(ν,⊥)

r sinnπt}r,n ∪ {y(ν,⊥)
r cosnπt}r, n

)
.

Lemma 2.4.1.

(i) A
Φ−1

K (N)

ξ̂
(x0

i sinnπt) = 0, A
Φ−1

K (N)

ξ̂
(y

(0,λ)
j ) = λy

(0,λ)
j ,

(ii) A
Φ−1

K (N)

ξ̂
(y

(0,λ)
j cosnπt) = A

Φ−1
K (N)

ξ̂
(y

(0,⊥)
l cosnπt) = 0,

(iii) A
Φ−1

K (N)

ξ̂
(x(ν,⊥)

r sinnπt) = − ν

nπ
y(ν,⊥)
r cosnπt,

A
Φ−1

K (N)

ξ̂
(y(ν,⊥)

r cosnπt) = − ν

nπ
x(ν,⊥)
r sinnπt,

(iv) A
Φ−1

K (N)

ξ̂
(y

(ν,λ)
k ) = λy

(ν,λ)
k +

2ν

π

∞∑
n=1

1

n
(x

(ν,λ)
k sinnπt),

(v) A
Φ−1

K (N)

ξ̂
(x

(ν,λ)
k sinnπt) = − ν

nπ
y
(ν,λ)
k (−1 + cosnπt),

(vi) A
Φ−1

K (N)

ξ̂
(y

(ν,λ)
k cosnπt) = − ν

nπ
x
(ν,λ)
k sinnπt.

Proof. (i) and (ii): The second equality of (i) follows from Proposition 2.2.3
(iii). Let Q be

1

nπ
x0
i cosnπt, − 1

nπ
y
(0,λ)
j sinnπt or − 1

nπ
y
(0,⊥)
l sinnπt.

By Proposition 2.2.3 (i), we obtain the first formula of (i) and formulas in (ii).
(iii): Set

Z1 :=
1

nπ
x(ν,⊥)
r (−1 + cosnπt), Z2 := − 1

nπ
y(ν,⊥)
r sinnπt.

Then we have

[ξ, Z1] = − ν

nπ
y(ν,⊥)
r (−1 + cosnπt), [ξ, Z2] = − ν

nπ
x(ν,⊥)
r sinnπt.

Thus we have[
ξ,

∫ 1

0

Z1(t)dt

]⊥
=

ν

nπ
y(ν,⊥)
r ,

[
ξ,

∫ 1

0

Z2(t)dt

]⊥
= 0.
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Hence by Corollary 2.2.4 the desired equalities follow. (iv): By Proposition
2.2.3 (iii), we have

A
Φ−1

K (N)

ξ̂
(y

(ν,λ)
k ) = λy

(ν,λ)
k + (1− t) νx

(ν,λ)
k .

Since
∫ 1

0
(1 − t) sinnπt dt = (nπ)−1 the Fourier expansion with respect to a

basis (2.4.6) of a function f : [0, 1] → R, t 7→ 1− t is given by

f =
2

π

∞∑
n=1

1

n
(sinnπt).

This shows the desired equality. (v) and (vi): Set

Z1 :=
1

nπ
x
(ν,λ)
k (−1 + cosnπt), Z2 := − 1

nπ
y
(ν,λ)
k sinnπt.

Then we have

[ξ̂, Z1] = − ν

nπ
y
(ν,λ)
k (−1 + cosnπt), [ξ̂, Z2] = − ν

nπ
x
(ν,λ)
k sinnπt,

Thus we have [
ξ,

∫ 1

0

Z1(t)dt

]⊥
=

[
ξ,

∫ 1

0

Z2(t)dt

]⊥
= 0.

Hence by Corollary 2.2.4 we obtain the desired formulas.

We come now to the principal curvatures of a PF submanifold Φ−1
K (N):

Theorem 2.4.2. Let G/K be a compact symmetric space, ΦK : Vg → G/K
the parallel transport map, N a curvature adapted closed submanifold of G/K
through eK ∈ G/K, and ξ ∈ T⊥

eKN ⊂ m. Denote by {
√
−1 ν} the set of

all distinct eigenvalues of ad(ξ) : g → g and by {λ} the set of all distinct
eigenvalues of the shape operator AN

ξ . For each ν > 0, each λ and each m ∈ Z
we set

µ = µ(ν, λ,m) :=
ν

arctan ν
λ
+mπ

,

where we set arctan(ν/λ) := π/2 if λ = 0. Then the principal curvatures of a
PF submanifold Φ−1

K (N) in the direction of ξ̂ ∈ T⊥
0̂
Φ−1(N) are given by{

0, λ,
ν

nπ
, µ(ν, λ,m)

}
λ, ν>0, n∈Z\{0}, m∈Z

.

The eigenfunctions and the multiplicities are given in the following table.

Remark 2.4.3. Let a be a maximal abelian subspace of m and ∆+ the set
of positive roots satisfying α(ξ) ≥ 0 for each α ∈ ∆+. Then for each ν > 0
there exists α ∈ ∆+ such that ν = α(ξ) and thus the above eigenvalues coincide
with those given by Koike [31, Theorem 3.3]. However note that the eigenspace
decomposition [31, p. 73, line 3] does not hold in general.
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eigenvalue basis of eigenfunctions multiplicity

0 {x0
i sinnπt, y

(0,λ)
j cosnπt, y

(0,⊥)
l cosnπt}n∈Z≥1, λ, i, j, l ∞

λ {y(0,λ)j }j m(0, λ)

ν

nπ
{x(ν,⊥)

r sinnπt− y
(ν,⊥)
r cosnπt}r m(ν,⊥)

µ(ν, λ,m)
{∑

n∈Z
ν

nπµ+ν
(x

(ν,λ)
k sinnπt+ y

(ν,λ)
k cosnπt)

}
k

m(ν, λ)

Proof of Theorem 2.4.2. By Lemma 2.4.1 (i) - (iii) it follows that 0, λ and ν
nπ

are eigenvalues of A
Φ−1

K (N)

ξ̂
with eigenfunctions described above. Let W denote

a subspace of T0̂Φ
−1
K (N) spanned by all such eigenfunctions and consider its

orthogonal complements W⊥ in T0̂Φ
−1
K (N). We know that one basis of W⊥ is

given by ∪
ν>0

(
{y(ν,λ)k }λ, k ∪ {x(ν,λ)

k sinnπt, y
(ν,λ)
k cosnπt}λ, k, n∈Z≥1

)
.

In particular Lemma 2.4.1 (iv) - (vi) show that for each ν > 0, λ and k, a
subspace of T0̂Φ

−1
K (N) spanned by

{y(ν,λ)k } ∪ {x(ν,λ)
k sinnπt, y

(ν,λ)
k cosnπt}n∈Z≥1

is invariant under A
Φ−1

K (N)

ξ̂
. We denote such a subspace by W⊥

(λ,ν,k). Suppose

that for constants an, bn, c ∈ R

φ := cy
(ν,λ)
k +

∞∑
n=1

{an(x(ν,λ)
k sinnπt) + bn(y

(ν,λ)
k cosnπt)} ∈ W⊥

(λ, ν, k)

is a (nonzero) eigenfunction of A
ΦK(N)

ξ̂
for some eigenvalue µ. By Lemma 2.4.1

(iv) - (vi) we have

A
Φ−1

K (N)

ξ̂
(φ) =

(
cλ+

ν

π

∞∑
n=1

an
n

)
y
(ν,λ)
k

+
ν

π

∞∑
n=1

2c− bn
n

(x
(ν,λ)
k sinnπt)− ν

π

∞∑
n=1

an
n
(y

(ν,λ)
k cosnπt).

Comparing with

µφ = µcy
(ν,λ)
k +

∞∑
n=1

{µan(x(ν,λ)
k sinnπt) + µbn(y

(ν,λ)
k cosnπt)}
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we obtain a system of equations

cλ+
ν

π

∞∑
n=1

an
n

= cµ, (2.4.7)

ν

π

2c− bn
n

= µan, (2.4.8)

− ν

π

an
n

= µbn. (2.4.9)

Summing (2.4.9) with respect to n ∈ Z≥1 we have

−ν

π

∞∑
n=1

an
n

= µ
∞∑
n=1

bn.

Applying this to (2.4.7) we obtain

cλ− µ
∞∑
n=1

bn = cµ. (2.4.10)

On the other hand, multiplying (2.4.9) by µ we have

− ν

nπ
µan = µ2bn.

Applying (2.4.8) to this we obtain

−2c
( ν

nπ

)2
= bn

(
µ2 −

( ν

nπ

)2)
for all n ∈ Z≥1. Note that this implies c ̸= 0, µ ̸= 0 and µ2 − ( ν

nπ
)2 ̸= 0 for

all n ∈ Z. Therefore without loss of generality we can (and will) assume c = 1
from now on, and

bn =
−2r2

n2 − r2
, where r :=

ν

πµ
. (2.4.11)

From (2.4.10), (2.4.11) and the standard formula (see [12, 1.449 - 4]):

∞∑
n=1

1

n2 − a2
=

1

2a2
− π

2a
cot(πa), a ∈ R\Z

we have

λ− µ = µ
∞∑
n=1

bn = −µ+ ν cot(ν/µ).

Thus
µ =

ν

arctan(ν/λ) +mπ
, m ∈ Z.
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By (2.4.11) we have

bn =
−2ν2

(nπµ)2 − ν2
=

−2(arctan(ν/λ) +mπ)2

(nπ)2 − (arctan(ν/λ) +mπ)2

= (arctan(ν/λ) +mπ)

×
(

1

nπ + (arctan(ν/λ) +mπ)
− 1

nπ − (arctan(ν/λ) +mπ)

)
.

By (2.4.9) we have

an = −nπbnµν
−1 =

2nπ(arctan(ν/λ) +mπ)

(nπ)2 − (arctan(ν/λ) +mπ)2

= (arctan(ν/λ) +mπ)

×
(

1

nπ + (arctan(ν/λ) +mπ)
+

1

nπ − (arctan(ν/λ) +mπ)

)
.

Therefore we obtain

φ = y
(ν,λ)
k +

∑
n∈Z\{0}

arctan(ν/λ) +mπ

nπ + (arctan(ν/λ) +mπ)
{(x(ν,λ)

k sinnπt) + (y
(ν,λ)
k cosnπt)}

=
∑
n∈Z

ν

nπµ+ ν
{(x(ν,λ)

k sinnπt) + (y
(ν,λ)
k cosnπt)}.

This proves the theorem.

Considering the case that N = {eK} we obtain:

Corollary 2.4.4. Let G/K be a compact symmetric space. Take ξ ∈ TeK(G/K) =
m. Denote by {

√
−1 ν} the set of all distinct eigenvalues of ad(ξ) : g → g.

Then the principal curvatures of the fiber Φ−1
K (eK) in the direction of ξ̂ ∈

T⊥
0̂
Φ−1

K (eK) are given by {
0,

ν

nπ

}
ν>0, n∈Z\{0}

.

Denoting by {x0
i }i a basis of k0, by {y0j}j a basis of m0 and by {xν

k}k, {yνk}k the
bases defined by (2.4.2), the eigenfunctions and the multiplicities are given in
the following table.

eigenvalue basis of eigenfunctions multiplicity

0 {x0
i sinnπt, y

0
j cosnπt}n∈Z≥1, λ, i, j ∞

ν

nπ
{xν

k sinnπt− yνk cosnπt}k m(ν)
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The principal curvatures of π−1(N) are described as follows:

Proposition 2.4.5. With notation as in Theorem 2.4.2, for each ν > 0 and
each λ we set

κ+ = κ+(ν, λ) :=
1

2
(λ+

√
λ2 + ν2),

κ− = κ−(ν, λ) :=
1

2
(λ−

√
λ2 + ν2).

Then the principal curvatures of π−1(N) in the direction of ξ ∈ T⊥
e π−1(N) ∼=

T⊥
eKN are given by

{0, λ, κ+(ν, λ), κ−(ν, λ)}λ, ν>0 .

The eigenfunctions and the multiplicities are given in the following table.

eigenvalue basis of eigenfunctions multiplicity

0 {x0
i }i, {x(ν,⊥)

r }r, ν dim k0 + dimT⊥
eKN

λ {y(0,λ)j }j m(0, λ)

κ+(ν, λ) {νx(ν,λ)
k + 2κ+y

(ν,λ)
k }k m(ν, λ)

κ−(ν, λ) {νx(ν,λ)
k + 2κ−y

(ν,λ)
k }k m(ν, λ)

Proof. From Proposition 2.2.1 (ii) we have

A
π−1(N)
ξ (x) =

1

2
[x, ξ]⊤, x ∈ k,

A
π−1(N)
ξ (y) = AN

ξ (y)−
1

2
[y, ξ]k, y ∈ TeKN.

From this we have

A
π−1(N)
ξ (x0

k) = 0, A
π−1(N)
ξ (x

(ν,λ)
k ) =

ν

2
y
(ν,λ)
k , A

π−1(N)
ξ (x

(ν,⊥)
k ) = 0

A
π−1(N)
ξ (y

(ν,λ)
k ) =

ν

2
x
(ν,λ)
k + λy

(ν,λ)
k .

Suppose that
φ := ax

(ν,λ)
k + by

(ν,λ)
k , a, b ∈ R

is an eigenfunction of A
π−1(N)
ξ with eigenvalue κ. Then we have

A
π−1(N)
ξ (φ) := aA

π−1(N)
ξ (x

(ν,λ)
k ) + bA

π−1(N)
ξ (y

(ν,λ)
k )

= b
ν

2
x
(ν,λ)
k +

(
a
ν

2
+ bλ

)
y
(λ, ν)
k ,

κφ = κax
(λ, ν)
k + κby

(λ, ν)
k .
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Comparing these we obtain a system of equations

b
ν

2
= κa,

a
ν

2
+ bλ = κb.

If a = 0 then b = 0, which contradicts the fact that φ is an eigenfunction.
Thus a ̸= 0 and hence we can assume without loss of generality that a = 1.
Then we have

bν = 2κ,

ν + 2bλ = 2κb.

From this we easily obtain

b =
λ±

√
λ2 + ν2

ν
, κ =

1

2
(λ±

√
λ2 + ν2).

and

φ = x
(ν,λ)
k +

λ±
√
λ2 + ν2

ν
y
(ν,λ)
k .

Thus our claim follows.

3 Symmetric properties

via the parallel transport map

3.1 The canonical reflection of the path space

In this subsection we focus on the intrinsic symmetry of the parallel trans-
port map and show that each fiber of the parallel transport map is a weakly
reflective PF submanifold.

Let G be a connected compact Lie group with a bi-invariant Riemannian
metric. As in Subsection 1.2 we denote by G := H1([0, 1], G) the Hilbert Lie
group of all SobolevH1-paths inG parametrized on [0, 1] and Vg := H0([0, 1], g)
the Hilbert space of all Sobolev H0-paths in g parametrized on [0, 1]. We write

# for the map which associates to each g ∈ G (resp. u ∈ Vg) the inverse path
g# ∈ G (resp. u# ∈ Vg):

g#(t) := g(1− t), u#(t) := u(1− t).

Definition. The canonical reflection r of Vg is the involutive linear orthogonal
transformation of Vg defined by

r(u) := −u#, u ∈ Vg.
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Since (g#)
′ = −(g′)# for each g ∈ G we have

r(g ∗ 0̂) = g# ∗ 0̂, g ∈ G.

Thus by (1.3.3) we obtain the commutative diagram

Vg
r−−−→ Vg

Φ

y Φ

y
G

i−−−→ G,

(3.1.1)

where Φ denotes the parallel transport map and i the isometry of G defined
by i(a) = a−1 for a ∈ G. Also it follows that the following diagram commutes:

G ⊃ P (G, {e} ×G) ↷ Vg

# ↓ # ↓ r ↓
G ⊃ P (G,G× {e}) ↷ Vg.

(3.1.2)

We can easily see that for each g ∈ P (G, {e} ×G),

g#g(1)
−1 ∈ P (G, {e} ×G) and ((g#)g(1)

−1) ∗ 0̂ = g# ∗ 0̂.

Hence via the isometry E : Vg → P (G, {e} ×G) (cf. Section 1.3) r induces an
involutive isometry r̃ of P (G, {e} ×G):

r̃(g) = g(1)−1g#, g ∈ P (G, {e} ×G).

The reflective submanifold associated to r is described as follows.

Proposition 3.1.1. Let W denote the fixed point set of r. Then

(i) W is a closed linear subspace of Vg,
(ii) W is isomorphic to the Hilbert space H0([0, 1/2], g),
(iii) W is contained in the fiber of Φ at e ∈ G.

Proof. (i) follows from linearity of r. (ii) is clear by the expression W = {u ∈
Vg | ∀t ∈ [0, 1], u(t) = −u(1− t)}. (iii) follows from commutativity (3.1.1).

The following theorem gives a certain class of weakly reflective PF sub-
manifolds in the Hilbert space Vg.

Theorem 3.1.2. Let G be a connected compact Lie group with a bi-invariant
Riemannian metric and H a closed subgroup of G×G. Suppose that the orbit
H · e through e ∈ G satisfies the condition (H · e)−1 = H · e. Then
(i) H · e is a totally geodesic weakly reflective submanifold of G,
(ii) P (G,H) ∗ 0̂ is a weakly reflective PF submanifold of Vg.
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Proof. (i) It is easy to see that the condition (H ·e)−1 = H ·e implies the totally
geodesic property of H · e. Also it can be easily seen that i is a reflection of
H · e with respect to any normal vector at e ∈ G. Thus by homogeneity H · e
is a weakly reflective submanifold of G. (ii) By commutativity (3.1.1) the
canonical reflection r is a reflection of P (G,H) ∗ 0̂ with respect to any normal
vector at 0̂. Since P (G,H) ∗ 0̂ is homogeneous, our claim follows.

An example of H satisfying the condition (H · e)−1 = H · e is that H =
{e} × K or K × {e}, where K is a closed subgroup of G. The following is
another example such that H · e is not a subgroup of G.

Example 3.1.3. For each automorphism σ of G, define a closed subgroup of
G × G by G(σ) := {(a, σ(a)) | a ∈ G}. Then G(σ) acts on G by (1.3.2),
which is called the Conlon’s σ-action ([5]). From now on we suppose that
σ2 = id. Note that G(σ) · e is nothing but the Cartan immersion ([23, p. 347])
G/K → G, aK 7→ aσ(a)−1, whereK is the fixed point set of σ. It easily follows
that H := G(σ) satisfies (H · e)−1 = H · e. Thus by Theorem 3.1.2, G(σ) · e is
a totally geodesic weakly reflective submanifold of G, and P (G,G(σ)) ∗ 0̂ is a
weakly reflective PF submanifold of Vg. Note that G(σ) · e is not a subgroup
of G in general. On the other hand P (G,G(σ)) ∗ 0̂ is not totally geodesic in
most cases by Theorem 2.3.1.

It was essentially proved ([29, Theorem 4.11], [20, Corollary 6.3]) that each
fiber of the parallel transport map is an austere PF submanifold of Vg. The
following corollary asserts that the fibers have higher symmetry.

Corollary 3.1.4. Let G/K be a compact normal homogeneous space. Then
each fiber of the parallel transport map ΦK : Vg → G/K is a weakly reflective
PF submanifold of Vg.

Proof. By Theorem 3.1.2 the fiber of ΦK at eK is a weakly reflective PF
submanifold of Vg. Since any two fibers of ΦK are congruent under the isometry
on Vg, each fiber of ΦK is a weakly reflective PF submanifold of Vg.

Corollary 3.1.5. Let G be a connected compact Lie group with a bi-invariant
Riemannian metric. Then each fiber of the parallel transport map Φ : Vg → G
is a weakly reflective PF submanifold of Vg.

3.2 The weakly reflective property

In this subsection, motivated by the last subsection, we study the weakly
reflective property for PF submanifolds obtained through the parallel transport
map. The main theorem is the following:

Theorem 3.2.1. Let G be a connected compact semisimple Lie group with a
bi-invariant Riemannian metric induced from a negative multiple of the Killing
form and K a symmetric subgroup of G such that the pair (G,K) effective. If
N is a weakly reflective submanifold of the symmetric space G/K then
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(i) π−1(N) is a weakly reflective submanifold of G, and
(ii) Φ−1

K (N) is a weakly reflective PF submanifold of Vg.

From this theorem we obtain the following corollary:

Corollary 3.2.2. Let M be an irreducible Riemannian symmetric space of
compact type. Denote by G the identity component of the group of isometries
of M and by K the isotropy subgroup of G at a fixed p ∈ M . If N is a weakly
reflective submanifold of M = G/K then Φ−1

K (N) is a weakly reflective PF
submanifold of Vg.

To prove Theorem 3.2.1 we need the following lemma:

Lemma 3.2.3. Let M and B be Riemannian Hilbert manifolds, ϕ : M → B
a Riemannian submersion and N a closed submanifold of B. Fix p ∈ ϕ−1(N)
and X ∈ T⊥

p ϕ−1(N). Suppose that νM is an isometry of M fixing p, that νB
is an isometry of B fixing ϕ(p) and that the diagram

M νM−−−→ M

ϕ

y ϕ

y
B νB−−−→ B

commutes. Then the following are equivalent:

(i) νM satisfies νM(ϕ−1(N)) = ϕ−1(N) and dνM(X) = −X,
(ii) νB satisfies νB(N) = N and dνB(dϕ(X)) = −dϕ(X).

Proof. It is easily seen that the condition νM(ϕ−1(N)) = ϕ−1(N) is equivalent
to the condition νB(N) = N . Then by commutativity of the diagram

T⊥
p ϕ−1(N)

dνM−−−→ T⊥
p ϕ−1(N)

dϕ

y dϕ

y
T⊥
ϕ(p)N

dνB−−−→ T⊥
ϕ(p)N,

the condition dνM(X) = −X is equivalent to the condition dνB(dϕ(X)) =
−dϕ(X). This proves the lemma.

Proof of Theorem 3.2.1. (i) Take a ∈ π−1(N) and w ∈ T⊥
a π−1(N). Set η :=

dπ(w) ∈ T⊥
aKN , N ′ := L−1

a (N) and ξ := dL−1
a (η) ∈ T⊥

eKN
′. Denote by v ∈

T⊥
e π−1(N ′) the horizontal lift of ξ. By commutativity of (1.3.7) (ii) we have

la(π
−1(N ′)) = π−1(N) and dla(v) = w. Thus in order to show the existence

of a reflection νw with respect to w it suffices to construct a reflection νv with
respect to v. Let νη be a reflection with respect to η. Then a reflection νξ
with respect to ξ is defined by νξ := L−1

a ◦ νη ◦La. Now we define νv as follows.
Denote by I(G/K) the group of isometries of G/K. From the assumption the
map L : G → I(G/K), a 7→ La is a Lie group isomorphism onto the identity
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component I0(G/K) ([23, Theorem 4.1 in Chapter V]). Since I0(G/K) is a
normal subgroup of I(G/K) an automorphism νv : G → G, b 7→ νv(b) is
defined by

Lνv(b) := νξ ◦ Lb ◦ ν−1
ξ . (3.2.1)

Since the bi-invariant Riemannian metric on G is induced from the Killing
form of g the automorphism νv is an isometry of G. Moreover since

νξ ◦ π(b) = νξ(bK) = νξ ◦ Lb(eK) = νξ ◦ Lb ◦ ν−1
ξ (eK) and

π ◦ νv(b) = νv(b)K = Lνv(b)(eK) = νξ ◦ Lb ◦ ν−1
ξ (eK)

hold for all b ∈ G it follows from Lemma 3.2.3 that νv is a reflection with
respect to v. This proves (i).

(ii) Take u ∈ Φ−1
K (N) and X ∈ T⊥

u Φ−1
K (N). Take g ∈ P (G,G×{e}) so that

u = g ∗ 0̂. Set a := Φ(u) = g(0) and η := dΦK(X) ∈ T⊥
aKN . Define N ′, ξ, v as

in the above (i). Denote by ξ̂ ∈ (T⊥
0̂
Φ−1

K (N ′))\{0} the horizontal lift of ξ with
respect to the Riemannian submersion ΦK : Vg → G/K. By commutativity

of (1.3.9) we have g ∗ Φ−1
K (N ′) = Φ−1

K (N) and d(g∗)ξ̂ = X. Thus in order to
show the existence of a reflection νX with respect to X it suffices to construct
a reflection νξ̂ with respect to ξ̂. By the same way as in (i) we can define

a reflection νv with respect to v ∈ (T⊥
e π−1(N ′))\{0}. Moreover we define a

linear orthogonal transformation νξ̂ of Vg by

νξ̂(u) := dνv ◦ u, u ∈ Vg. (3.2.2)

Since νv is an automorphism of G we have νξ̂(g ∗ 0̂) = (νv ◦ g) ∗ 0̂ for all g ∈ G.
This together with (1.3.3) implies that the following diagram commutes:

Vg

νξ̂−−−→ Vg

Φ

y Φ

y
G

νv−−−→ G.

Thus by Lemma 3.2.3 νξ̂ is an isometry with respect to ξ̂ and (ii) follows.

Remark 3.2.4. Even if N is reflective in Theorem 3.2.1, Φ−1
K (N) can not

be reflective due to Corollary 2.3.3 (ii). In this case there exists one more
reflective submanifold N⊥ of G/K corresponding to N ([35, p. 328]) and thus
a pair of two weakly reflective PF submanifolds appears in the Hilbert space
Vg.

Remark 3.2.5. Let G/K be a compact normal homogeneous space and ΦK :
Vg → G/K the parallel transport map. The fact that each fiber of ΦK is
a weakly reflective PF submanifold of Vg also follows from Theorem 3.2.1 if
(G,K) satisfies the assumptions in Theorem 3.2.1. The advantage of Corollary
3.1.4 is that it does not require such assumptions. It is also noted that under
such assumptions each of the fibers has at least two different weakly reflective
structures.
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Example 3.2.6. Set M̄ := S2n−1(
√
2) ⊂ R2n and

M := Sn−1(1)× Sn−1(1) ⊂ M̄.

Ikawa, Sakai and Tasaki [26, Example 2.3] showed that M is a weakly reflective
submanifold of M̄ . Set (G,K) := (SO(2n), SO(2n − 1)) so that G/K = M̄ .
Then by Theorem 3.2.1 the inverse image Φ−1

K (M) is a weakly reflective PF
submanifold of Vg.

Example 3.2.7. Ikawa, Sakai and Tasaki ([26, Theorem 4]) classified weakly
reflective submanifolds of the standard sphere given as orbits of s-representations
of irreducible Riemannian symmetric pairs. Applying Theorem 3.2.1 to their
result we obtain weakly reflective PF submanifolds as follows. Let (U,L) be a
compact Riemannian symmetric pair. Suppose that L is connected. Denote by
u = l⊕p the canonical decomposition and Ad : L → SO(p) the isotropy repre-
sentation. If an orbit Ad(L)·x through x ∈ p is a weakly reflective submanifold
of the hypersphere S(∥x∥) in p, then the orbit P (SO(p),Ad(L)× SO(p)x) ∗ 0̂
is a weakly reflective PF submanifold of the Hilbert space Vo(p).

Example 3.2.8. Enoyoshi ([8, Proposition 4]) gave an example of a weakly
reflective submanifold in the symmetric space SO(7)/SO(3) × SO(4) by the
action of the exceptional Lie groupG2. Applying Theorem 3.2.1 to her result an
orbit P (SO(7), G2×(SO(3)×SO(4)))∗ 0̂ is a weakly reflective PF submanifold
of the Hilbert space Vo(7).

In general it is not clear that conversely the weakly reflective property of
Φ−1

K (N) implies the weakly reflective property of N or not. However the next
theorem shows that under suitable assumptions the weakly reflective property
of Φ−1

K (N) is equivalent to that of N . To explain this we now introduce some
terminologies on weakly reflective submanifolds. Let M be a submanifold
immersed in a finite dimensional Riemannian manifold M̄ . Denote by I(M̄)
the group of isometries of M̄ . For a closed subgroup G of I(M̄) we say that
M is G-weakly reflective if for each p ∈ M and each ξ ∈ T⊥

p M there exists a
reflection νξ with respect to ξ satisfying νξ ∈ Gp, where Gp denotes the isotropy
subgroup of G at p. If G = I(M̄) then “G-weakly reflective” is nothing but
“weakly reflective”. The same concepts and relation are also valid for PF
submanifolds in Hilbert spaces.

In the rest of this subsection we denote byG a connected compact Lie group
equipped with a bi-invariant Riemannian metric, K a closed subgroup of G
and G/K the compact normal homogeneous space. Recall that the Hilbert Lie
group G := H1([0, 1], G) acts on Vg via the gauge transformations (1.2.1). We
denote by Gu the isotropy subgroup of G at u ∈ Vg. If u = 0̂ then G0̂ is the set

of constant paths Ĝ := {b̂ ∈ G | b ∈ G}. Thus if u = g ∗ 0̂ for some g ∈ G
then Gu = gĜg−1. Recall also that G × G acts on G by the formula (1.3.2).
We denote by (G×G)a = (a, e)∆G(a, e)−1 the isotropy subgroup of G×G at
a ∈ G, where ∆G := {(b, b) | b ∈ G}. Finally we recall the G-action on G/K
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defined by b · (aK) := (ba)K for a, b ∈ G. We denote by GaK = aKa−1 the
isotropy subgroup of G at aK ∈ G/K.

Theorem 3.2.9.
(i) Let N be a closed submanifold of a compact Lie group G equipped with a

bi-invariant Riemannian metric. Then the following are equivalent:

(a) N is a (G×G)-weakly reflective submanifold of G.
(b) Φ−1(N) is a G-weakly reflective PF submanifold of Vg.

(ii) Let N be a closed submanifold of a compact normal homogeneous space
G/K. Then the following are equivalent:

(a) N is a G-weakly reflective submanifold of G/K.
(b) π−1(N) is a (G×K)-weakly reflective submanifold of G.
(c) Φ−1

K (N) is a P (G,G×K)-weakly reflective PF submanifold of Vg.

Proof. (i) “(a) ⇒ (b)”: Take u ∈ Φ−1(N) and X ∈ T⊥
u Φ−1(N). Take g ∈

P (G,G × {e}) so that u = g ∗ 0̂. Set a := Φ(u) = g(0), η := dΦ(X) ∈ T⊥
a N ,

N ′ := a−1N and ξ := dL−1
a (η) ∈ T⊥

e N ′. Denote by ξ̂ ∈ T⊥
0̂
Φ−1(N ′) the

horizontal lift of ξ. By commutativity of (1.3.7) we have g ∗ (Φ−1(N ′)) =
Φ−1(N) and (dg∗)ξ̂ = X. Thus in order to show the existence of a reflection
νX with respect to X satisfying νX ∈ Gu it suffices to construct a reflection
νξ̂ with respect to ξ̂ satisfying νξ̂ ∈ G0̂. Let νη be a reflection with respect

to η which is given by νη(c) = b′cb−1 for some (b′, b) ∈ (G × G)a. Then a
reflection νξ with respect to ξ is defined by νξ := (a, e)−1 ◦ νη ◦ (a, e), that is,
νξ(c) := bcb−1 for c ∈ G. Now we define a linear orthogonal transformation νξ̂
of Vg by

νξ̂(u) := dνξ ◦ u = bub−1 = b̂ ∗ u, u ∈ Vg.

Clearly νξ̂ ∈ G0̂. Moreover by (1.3.3) the following diagram commutes:

Vg

νξ̂−−−→ Vg

Φ

y Φ

y
G

νξ−−−→ G.

From Lemma 3.2.3 νξ̂ is a refection with respect to ξ̂ and (b) follows.

(i) “(b) ⇒ (a)”: Take a ∈ N and η ∈ T⊥
a N . Fix u ∈ Φ−1(a). Denote

by X ∈ (T⊥
u Φ−1(N)) the horizontal lift of η. Take g ∈ P (G,G × {e}) so

that g ∗ 0̂ = u and define N ′, ξ, ξ̂ as in the above (i). Let νX be a reflection
with respect to X satisfying νX ∈ Gu. Then an isometry νξ̂ with respect to

ξ̂ ∈ (T⊥
0̂
Φ−1(N ′)) is defined by νξ̂ := (g∗)−1 ◦ νX ◦ (g∗). By definition νξ ∈ G0̂

and thus there exists b ∈ G such that νξ̂(u) = bub−1. Hence defining an

isometry νξ of G by νξ(c) := bcb−1 for c ∈ G it follows from Lemma 3.2.3
that νξ is a reflection with respect to ξ satisfying νξ ∈ (G × G)e. Therefore
an isometry νη with respect to η is defined by νη := la ◦ νξ ◦ l−1

a so that
νη ∈ (G×G)a. This shows (a).
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(ii) “(a) ⇒ (b)”: Take a ∈ π−1(N) and w ∈ (T⊥
a π−1(N)). Set η :=

dπ(w) ∈ (T⊥
aKN), N ′ := L−1

a (N) and ξ := dL−1
a (η) ∈ (T⊥

eKN
′). Denote by

v ∈ (T⊥
e π−1(N ′)) the horizontal lift of ξ. By commutativity of (1.3.8) we have

la(π
−1(N ′)) = π−1(N) and dla(v) = w. Thus in order to show the existence of

an isometry νw with respect to w satisfying νw ∈ (G×K)a = (a, e)∆K(a, e)−1 it
suffices to construct an isometry νv with respect to v satisfying νv ∈ (G×K)e =
∆K. Let νη be a reflection with respect to η which is given by νη(cK) = (bc)K
for some b ∈ GaK . Then there exists k ∈ K such that b = aka−1. Thus an
isometry νξ with respect to ξ is defined by νξ := L−1

a ◦ νξ ◦La, that is, νξ = Lk.
Define an isometry νv of G by

νv(c) := kck−1, c ∈ G.

Clearly νv ∈ (G×K)e. Moreover the following diagram commutes:

G
νv−−−→ G

π

y π

y
G/K

νξ−−−→ G/K.

Thus by Lemma 3.2.3 νv is a reflection with respect to v and (b) follows.
(ii) “(b) ⇒ (a)”: Take aK ∈ N and η ∈ T⊥

aKN . Denote by w ∈ T⊥
a π−1(N)

the horizontal lift of η. Define N ′, ξ, v as above. Let νw be a reflection with
respect to w satisfying νw ∈ (G×K)a. Then a reflection with respect to v is
defined by νv := l−1

a ◦ νw ◦ la so that νv ∈ (G×K)e. Then there exists k ∈ K
such that νv(c) = kck−1. Thus defining an isometry νξ of G/K by νξ := Lk

it follows from Lemma 3.2.3 that νξ is a reflection with respect to ξ satisfying
νξ ∈ GeK . Hence an isometry νη with respect to η is defined by νη := la◦νξ◦l−1

a

so that νη ∈ GaK . This shows (b).
Using the fact gP (G,G×K)0̂g

−1 = P (G,G×K)g∗0̂ for g ∈ P (G,G×{e})
the equivalence of (b) and (c) of (ii) follows by the similar arguments to (i).

Corollary 3.2.10. Let G, G/K be as in Theorem 3.2.9.

(i) Let H be a closed subgroup of G×G. Then the following are equivalent:

(a) an orbit H · a through a ∈ G is an H-weakly reflective submanifold
of G,

(b) an orbit P (G,H)∗u through u ∈ Φ(a) is a P (G,H)-weakly reflective
PF submanifold of Vg.

(ii) Let K ′ be a closed subgroup of G. Then the following are equivalent:

(a) an orbit K ′ · aK through aK ∈ G/K is a K ′-weakly reflective sub-
manifold of G/K,

(b) an orbit (K ′ ×K) · a through a ∈ G is a (K ′ ×K)-weakly reflective
submanifold of G,

(c) an orbit P (G,K ′ ×K) ∗ u through u ∈ Φ−1(a) is a P (G,K ′ ×K)-
weakly reflective PF submanifold of Vg.
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Proof. From (1.3.10) we can assume without loss of generality that a = e.
Moreover by homogeneity it suffices to consider normal vectors only at e ∈ G
or 0̂ ∈ Vg. By similar arguments as in Theorem 3.2.9 (i) our claim follows. (ii)
Similarly we can reduce the case a = e and the assertion follows by similar
arguments as in Theorem 3.2.9 (ii).

Example 3.2.11. It was proved ([26, p. 442], [44]) that any singular orbit of
a cohomogeneity one action is weakly reflective. In this case each reflection
is given by the action of the isotropy subgroup. Thus by Corollary 3.2.10 we
have the following examples.

(i) Let G be a connected compact Lie group with a bi-invariant Riemannian
metric and H a closed subgroup of G × G. Suppose that the H-action
is of cohomogeneity 1. If an orbit H · a through a ∈ G is singular, then
H · a is a weakly reflective submanifold of G, and the orbit P (G,H) ∗ u
through u ∈ Φ−1(a) is a weakly reflective PF submanifold of Vg.

(ii) Let G/K be a compact normal homogeneous space and K ′ a closed
subgroup of G. Suppose that the K ′-action is of cohomogeneity 1. If
an orbit K ′ · aK through aK ∈ G/K is singular, then orbits K ′ · aK
and (K ′ × K) · a are weakly reflective submanifolds of G/K and G,
respectively. Moreover the orbit P (G,K ′ ×K) ∗ u through u ∈ Φ−1(a)
is a weakly reflective PF submanifold of Vg.

Example 3.2.12. Let G be a connected compact semisimple Lie group. Let
K = K1 andK ′ = K2 be connected symmetric subgroups of G with involutions
θ1 and θ2, respectively. Suppose that θ1 ◦ θ2 = θ2 ◦ θ1. Ohno ([39, Theorem 5])
gave a sufficient condition for orbits (K2 ×K1) · a and K2 · aK1 to be weakly
reflective submanifolds of G and G/K1, respectively. By Corollary 3.2.10, in
this case the orbits P (G,K2×K1)∗u through u ∈ Φ−1(a) is a weakly reflective
PF submanifold of Vg.

Compared to Corollary 3.2.10 (i) the following proposition covers only H-
orbits through e ∈ G. However the reflection νξ with respect to each normal
vector ξ at e ∈ G need not belong to the isotropy subgroup He at e ∈ G.

Theorem 3.2.13. Let G be a connected compact Lie group with a bi-invariant
Riemannian metric and H be a closed subgroup of G × G. Suppose that the
orbit H · e through e ∈ G is an weakly reflective submanifold of G such that
for each ξ ∈ T⊥

e (H · e) a reflection νξ with respect to ξ is an automorphism
of G. Then the orbit P (G,H) ∗ 0̂ through 0̂ ∈ Vg is an weakly reflective PF
submanifold of Vg.

Proof. Let νξ be a reflection with respect to ξ ∈ T⊥
e (H ·e) which is an automor-

phism of G. Then an isometry νξ̂ with respect to ξ̂ ∈ T⊥
0̂
P (G,H)∗ 0̂ is defined

similarly to (3.2.2). By homogeneity of P (G,H) ∗ 0̂ our claim follows.

Example 3.2.14. LetG,K1,K2 be as in Example 3.2.12. Ohno ([39, Theorem
4]) also gave another sufficient condition for an orbit N := (K2 ×K1) · a to be
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a weakly reflective submanifold of G. In this case νa := la ◦ θ1 ◦ l−1
a was shown

to be a reflection of N with respect to any normal vector at a ∈ G. Applying
Theorem 3.2.13 to his result we can see that Φ−1(N) = P (G,K2 × K1) ∗ u
(u ∈ Φ−1(a)) is a weakly reflective PF submanifold of Vg as follows. Choose
g ∈ P (G,G × {e}) so that u = g ∗ 0̂. Then a = Φ(u) = g(0). Set N ′ :=
a−1N = ((a−1K2a)×K1) · e. Then θ1 is a reflection of N ′ with respect to any
normal vector at e ∈ N ′. Since θ1 is an automorphism of G, it follows from
Theorem 3.2.13 that Φ−1(N ′) is a weakly reflective PF submanifold of Vg. By
commutativity of (1.3.7) we have g ∗ Φ−1(N ′) = Φ−1(N). Thus Φ−1(N) is a
weakly reflective PF submanifold of Vg.

3.3 The austere property

In this subsection we study the austere property of PF submanifolds ob-
tained through the parallel transport map ΦK . Notice that even if N is an
austere curvature adapted submanifold of a compact symmetric space G/K,
it is not clear in general whether the inverse image Φ−1

K (N) is austere or not;
according to Theorem 2.4.2 it is not clear whether the set of eigenvalues with
multiplicities of the shape operator is invariant under the multiplication by
(−1) or not. From this reason here we will restrict our attention further to the
case that G/K is a sphere and show that in this case N is austere if and only
if Φ−1

K (N) is austere (Theorem 3.3.1).
Let Sl(r) = G/K denote the l-dimensional sphere of radius r > 0, where l ∈

Z≥1 and (G,K) = (SO(l+ 1), SO(l)). Note that in this case any submanifold
of G/K is automatically curvature adapted. Let N be a closed submanifold of
G/K. Suppose eK ∈ N and fix ξ ∈ T⊥

eKN . Then for v ∈ TeKN and η ∈ T⊥
eKN

the Jacobi operator Rξ satisfies

Rξ(v) :=
∥ξ∥2

r2
v, Rξ(η) :=

1

r2
{∥ξ∥2η − ⟨η, ξ⟩ξ}.

Thus in this case the eigenspace decomposition (2.4.1) of m is given by

m = m0 +mν , where ν := ∥ξ∥/r,

m0 = Rξ ⊂ T⊥
eKN,

mν = TeKN ⊕ {η ∈ T⊥
eKN | η ⊥ ξ}.

In particular we have

m0 ∩ TeKN = {0}, m0 ∩ T⊥
eKN = Rξ,

mν ∩ TeKN = TeKN, mν ∩ T⊥
eKN = {η ∈ T⊥

eKN | η ⊥ ξ}.

Hence by Proposition 2.4.5 the principal curvatures of π−1(N) in the direction
of ξ ∈ T⊥

e π−1(N) ∼= T⊥
eKN are given by

{0, κ+(∥ξ∥/r, λ), κ−(∥ξ∥/r, λ)}λ . (3.3.1)
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Further by Theorem 2.4.2 the principal curvatures of a PF submanifold Φ−1
K (N)

in the direction of ξ̂ ∈ T⊥
0̂
Φ−1(N) are given by{

0,
∥ξ∥
rnπ

, µ(∥ξ∥/r, λ,m)

}
λ, n∈Z\{0}, m∈Z

. (3.3.2)

Notice that in this case the multiplicities of

λ, κ+(∥ξ∥/r, λ), κ−(∥ξ∥/r, λ), µ(∥ξ∥/r, λ,m)

are the same for each λ.

Theorem 3.3.1. Let N be a closed submanifold of the l-dimensional sphere
Sl(r) = G/K of radius r > 0, where l ∈ Z≥1 and (G,K) = (SO(l+1), SO(l)).
Then the the following are equivalent:

(i) N is an austere submanifold of G/K,
(ii) π−1(N) is an austere submanifold of G,
(iii) Φ−1

K (N) is an austere PF submanifold of Vg.

Proof. “(i) ⇒ (ii)”: Take a ∈ π−1(N) and w ∈ T⊥
a π−1(N). Set η := dπ(w) ∈

T⊥
aKN , N ′ := L−1

a (N) and ξ := dL−1
a (η) ∈ T⊥

eKN
′. Denote by v ∈ T⊥

e π−1(N ′)
the horizontal lift of ξ. By commutativity of (1.3.7) (ii), we have la(π

−1(N ′)) =

π−1(N) and dla(v) = w. Thus in order to show the austerity of A
π−1(N)
w it

suffices to show that of A
π−1(N ′)
v . For each eigenvalue λ of AN ′

ξ it follows from

the austerity of AN ′

ξ that −λ is also an eigenvalue of AN ′

ξ and

(−1)× κ+(∥ξ∥/r, λ) = κ−(∥ξ∥/r,−λ),

(−1)× κ−(∥ξ∥/r, λ) = κ+(∥ξ∥/r,−λ).

Note that these identities still hold even if the multiplicities are taking account
of. This shows that the set (3.3.1) with multiplicities is invariant under the
multiplication by (−1) and (ii) follows.

“(ii) ⇒ (i)”: Take aK ∈ N and η ∈ T⊥
aKN . Denote by w ∈ T⊥

a π−1(N)
the horizontal lift of η. Defining N ′, ξ, v by the above way it suffices to show
the austerity of AN ′

ξ . Let λ be an eigenvalue of AN ′

ξ . Since the set (3.3.1) is
invariant under the multiplication by (−1) there exist eigenvalues λ′ and λ′′ of
AN ′

ξ such that

(−1)× κ+(∥ξ∥/r, λ) = κ−(∥ξ∥/r, λ′),

(−1)× κ−(∥ξ∥/r, λ) = κ+(∥ξ∥/r, λ′′).

Note that the function R → R>0, x 7→ κ+(∥ξ∥/r, x) is monotonically increas-
ing. Thus the relation

κ−(∥ξ∥/r, x) = −κ+(∥ξ∥/r,−x)
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shows that also the function R → R<0, x 7→ κ−(∥ξ∥/r, x) is monotonically
increasing. From these we obtain λ′ = λ′′ = −λ. Note that this identity still
holds even if the multiplicities are taken account of. This shows (i).

“(i) ⇒ (iii)”: Take u ∈ Φ−1
K (N) and X ∈ T⊥

u Φ−1
K (N). Also take g ∈

P (G,G×{e}) so that u = g ∗ 0̂. Set a := g(0) = Φ(u), η := dΦK(X) ∈ T⊥
aKN ,

N ′ := L−1
a (N) and ξ := dL−1

a (η) ∈ T⊥
eKN

′. Denote by ξ̂ ∈ T⊥
0̂
Φ−1

K (N ′) the

horizontal lift of ξ. By commutativity of (1.3.9) we have g ∗ (Φ−1
K (N ′)) =

Φ−1
K (N) and dg ∗ (ξ̂) = X. Thus in order to show the austerity of A

Φ−1
K (N)

X it

suffices to show that of A
Φ−1

K (N ′)

ξ̂
. For each λ it follows from the austerity of

AN ′

ξ that −λ is also an eigenvalue of AN ′

ξ and

(−1)× µ(∥ξ∥/r, λ,m) = µ(∥ξ∥/r,−λ,−m).

Note that this identity still hold even if the multiplicities are taken account of.
This shows that the set

{µ(∥ξ∥/r, λ,m)}λ, m∈Z

with multiplicities is invariant under the multiplication by (−1). This together

with (3.3.2) shows the austerity of A
Φ−1

K (N ′)

ξ̂
and (iii) follows.

“(iii) ⇒ (i)”: Take aK ∈ N and η ∈ T⊥
aKN . Choose u ∈ Φ−1

K (a). Denote

by X ∈ T⊥
u Φ−1

K (N) the horizontal lift of η. Defining N ′, ξ, ξ̂ by the above way
it suffices to show the austerity of AN ′

ξ . From (3.3.2) and the assumption the
set

{µ(∥ξ∥/r, λ,m)}λ, m∈Z

with multiplicities is invariant under the multiplication by (−1). Thus for each
eigenvalue λ of AN ′

ξ and each m ∈ Z there exists an eigenvalue λ′ of AN ′

ξ and
m′ ∈ Z such that

(−1)× µ(∥ξ∥/r, λ,m) = µ(∥ξ∥/r, λ′,m′).

That is,

− arctan
∥ξ∥
rλ

−mπ = arctan
∥ξ∥
rλ′ +m′π.

Since −π/2 < arctanx < π/2, the above equality shows m′ = −m and

λ′ = −λ.

Note that this identity still holds even if the multiplicities are taking account
of. This shows (i).

Example 3.3.2. Ikawa, Sakai and Tasaki ([26, Theorem 5.1]) classified austere
submanifolds of the standard sphere given as orbits of s-representations of
irreducible Riemannian symmetric pairs. Applying Theorem 3.3.1 to their
result we obtain austere PF submanifolds as follows. Let (U,L) be a compact
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Riemannian symmetric pair, where L is connected. Denote by u = l ⊕ p the
canonical decomposition and by Ad : L → SO(p) the isotropy representation.
If an orbit Ad(L)·x through x ∈ p is an austere submanifold of the hypersphere
S(∥x∥) in p then the orbit P (SO(p),Ad(L) × SO(p)x) ∗ 0̂ is an austere PF
submanifold of the Hilbert space Vo(p).

3.4 The arid property

In this subsection we study the arid property of PF submanifolds obtained
through the parallel transport map ΦK . We see that all theorems on weakly
reflective submanifolds in Section 3.2 are formulated to the arid case. Although
the essential idea of the proof does not change, for convenience we give complete
proofs here. Together with the result in Section 3.3 we show examples of arid
PF submanifolds which are not austere (therefore not weakly reflective) PF
submanifolds.

The following theorem can be thought of an analogue of Theorem 3.2.1.

Theorem 3.4.1. Let G be a connected compact semisimple Lie group equipped
with a bi-invariant Riemannian metric induced from a negative multiple of the
Killing form and K a symmetric subgroup of G such that the pair (G,K)
effective. If N is an arid submanifold of the symmetric space G/K then

(i) π−1(N) is an arid submanifold of G, and
(ii) Φ−1

K (N) is an arid PF submanifold of Vg.

From this theorem we obtain the following corollary:

Corollary 3.4.2. Let M be an irreducible Riemannian symmetric space of
compact type. Denote by G the identity component of the group of isometries
of M and by K the isotropy subgroup of G at a fixed p ∈ M . If N is an arid
submanifold of M = G/K then Φ−1

K (N) is an arid PF submanifold of Vg.

To prove Theorem 3.4.1 we need the following lemma:

Lemma 3.4.3. Let M and B be Riemannian Hilbert manifolds, ϕ : M → B
a Riemannian submersion and N a closed submanifold of B. Fix p ∈ ϕ−1(N)
and X ∈ (T⊥

p ϕ−1(N))\{0}. Suppose that φM is an isometry of M fixing p,
that φB is an isometry of B fixing ϕ(p) and that the diagram

M φM−−−→ M

ϕ

y ϕ

y
B φB−−−→ B

commutes. Then the following are equivalent:

(i) φM satisfies φM(ϕ−1(N)) = ϕ−1(N) and dφM(X) ̸= X.
(ii) φB satisfies φB(N) = N and dφB(dϕ(X)) ̸= dϕ(X).

40



Proof. It is easy to see that the condition φM(ϕ−1(N)) = ϕ−1(N) is equivalent
to the condition φB(N) = N . Then by commutativity of the diagram

T⊥
p ϕ−1(N)

dφM−−−→ T⊥
p ϕ−1(N)

dϕ

y dϕ

y
T⊥
ϕ(p)N

dφB−−−→ T⊥
ϕ(p)N,

the condition dφM(X) ̸= X is equivalent to the condition dφB(dϕ(X)) ̸=
dϕ(X). This shows the lemma.

Proof of Theorem 3.4.1. (i) Let a ∈ π−1(N) and w ∈ (T⊥
a π−1(N))\{0}. Set

η := dπ(w) ∈ T⊥
aKN , N ′ := L−1

a (N) and ξ := dL−1
a (η) ∈ (T⊥

eKN
′)\{0}. Denote

by v ∈ (T⊥
e π−1(N ′))\{0} the horizontal lift of ξ. From commutativity of

(1.3.8) we have la(π
−1(N ′)) = π−1(N) and dla(v) = w. Thus in order to show

the existence of an isometry φw with respect to w it suffices to construct an
isometry φv with respect to v. Let φη be an isometry with respect to η. Then
an isometry φξ with respect to ξ is defined by φξ := L−1

a ◦ φη ◦ La. Now we
define φv as follows. Denote by I(G/K) the group of isometries of G/K. By
the assumption the map L : G → I(G/K), a 7→ La is a Lie group isomorphism
onto the identity component I0(G/K) ([23, Theorem 4.1 in Chapter V]). Since
I0(G/K) is a normal subgroup of I(G/K) an automorphism φv : G → G,
b 7→ φv(b) is defined by

Lφv(b) := φξ ◦ Lb ◦ φ−1
ξ . (3.4.1)

Note that φv is an isometry of G since the bi-invariant Riemannian metric on
G is induced from the Killing form of g. Moreover since

φξ ◦ π(b) = φξ(bK) = φξ ◦ Lb(eK) = φξ ◦ Lb ◦ φ−1
ξ (eK) and

π ◦ φv(b) = φv(b)K = Lφv(b)(eK) = φξ ◦ Lb ◦ φ−1
ξ (eK)

hold for all b ∈ G it follows from Lemma 3.4.3 that φv is an isometry with
respect to v. This shows (i).

(ii) Let u ∈ Φ−1
K (N) and X ∈ (T⊥

u Φ−1
K (N))\{0}. Take g ∈ P (G,G×{e}) so

that u = g ∗ 0̂. Set a := Φ(u) = g(0) and η := dΦK(X) ∈ (T⊥
aKN)\{0}. Define

N ′, ξ, v as in the above (i). Denote by ξ̂ ∈ (T⊥
0̂
Φ−1

K (N ′))\{0} the horizontal
lift of ξ with respect to the Riemannian submersion ΦK : Vg → G/K. From

commutativity of (1.3.9) we have g ∗ Φ−1
K (N ′) = Φ−1

K (N) and d(g∗)ξ̂ = X.
Thus in order to show the existence of an isometry φX with respect to X it
suffices to construct an isometry φξ̂ with respect to ξ̂. By the similar way as

in (i) an isometry φv with respect to v ∈ (T⊥
e π−1(N ′))\{0} can be defined.

Moreover define a linear orthogonal transformation φξ̂ of Vg by

φξ̂(u) := dφv ◦ u, u ∈ Vg. (3.4.2)
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Since φv is an automorphism of G the identity φξ̂(g ∗ 0̂) = (φv ◦ g) ∗ 0̂ holds
for all g ∈ G. This together with (1.3.3) shows that the diagram

Vg

φξ̂−−−→ Vg

Φ

y Φ

y
G

φv−−−→ G

commutes. Hence by Lemma 3.4.3 φξ̂ is an isometry with respect to ξ̂ and we
obtain (ii).

Example 3.4.4. Let m,n ∈ Z≥2. Set M̄ := Smn−1(
√
m) ⊂ Rmn and

M := Sn−1(1)× · · · × Sn−1(1)︸ ︷︷ ︸
m times

⊂ M̄.

Ikawa, Sakai and Tasaki [26, Example 2.3] showed that if m = 2 then M is
a weakly reflective submanifold of M̄ . Taketomi [49, Proposition 3.1] showed
that if m ≥ 3 then M is an arid submanifold of M̄ and is not an austere
submanifold (therefore not a weakly reflective submanifold) of M̄ .

Set G := SO(mn) and K := SO(mn−1) so that M̄ = G/K. If m = 2 then
Φ−1

K (M) is a weakly reflective PF submanifold of Vg by [37, Theorem 8] and
is not a totally geodesic PF submanifold of Vg by [37, Theorem 3]. If m ≥ 3
then Φ−1

K (M) is an arid PF submanifold of Vg by Theorem 3.4.1 and is not an
austere PF submanifold (therefore not a weakly reflective PF submanifold) of
Vg by Theorem 3.3.1.

In general it is not clear that conversely the arid property of Φ−1
K (N) implies

the arid property of N or not. However the next theorem shows that under
suitable assumptions the arid property of Φ−1

K (N) is equivalent to that of N .
To explain this we now introduce some terminologies which are used in a
context slightly wider than [49]. Let M be a submanifold immersed in a finite
dimensional Riemannian manifold M̄ . Denote by I(M̄) the group of isometries
of M̄ . For a closed subgroup G of I(M̄) we say that M is G-arid if for each
p ∈ M and each ξ ∈ T⊥

p M\{0} there exists an isometry φξ with respect to ξ
satisfying φξ ∈ Gp, where Gp denotes the isotropy subgroup of G at p. Clearly
G-weakly reflective submanifols are G-arid submanifolds. If G = I(M̄) then
“G-arid” is nothing but “arid” The same concepts and relation are also valid
for PF submanifolds in Hilbert spaces.

The following theorem can be thought of an analogue of Theorem 3.2.9.

Theorem 3.4.5.
(i) Let N be a closed submanifold of a compact Lie group G equipped with a

bi-invariant Riemannian metric. Then the following are equivalent:

(a) N is a (G×G)-arid submanifold of G.
(b) Φ−1(N) is a G-arid PF submanifold of Vg.
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(ii) Let N be a closed submanifold of a compact normal homogeneous space
G/K. Then the following are equivalent:

(a) N is a G-arid submanifold of G/K.
(b) π−1(N) is a (G×K)-arid submanifold of G.
(c) Φ−1

K (N) is a P (G,G×K)-arid PF submanifold of Vg.

Proof. (i) “(a) ⇒ (b)”: Let u ∈ Φ−1(N) and X ∈ (T⊥
u Φ−1(N))\{0}. Take

g ∈ P (G,G × {e}) so that u = g ∗ 0̂. Set a := Φ(u) = g(0), η := dΦ(X) ∈
(T⊥

a N)\{0}, N ′ := a−1N and ξ := dL−1
a (η) ∈ (T⊥

e N ′)\{0}. Denote by ξ̂ ∈
(T⊥

0̂
Φ−1(N ′))\{0} the horizontal lift of ξ. From commutativity of (1.3.7) we

have g ∗ (Φ−1(N ′)) = Φ−1(N) and (dg∗)ξ̂ = X. Thus in order to show the
existence of an isometry φX with respect to X satisfying φX ∈ Gu it suffices
to construct an isometry φξ̂ with respect to ξ̂ satisfying φξ̂ ∈ G0̂. Let φη

be an isometry with respect to η which is given by φη(c) = b′cb−1 for some
(b′, b) ∈ (G × G)a. Then an isometry φξ with respect to ξ is defined by
φξ := (a, e)−1 ◦ φη ◦ (a, e), that is, φξ(c) := bcb−1 for c ∈ G. Define a linear
orthogonal transformation φξ̂ of Vg by

φξ̂(u) := dφξ ◦ u = bub−1 = b̂ ∗ u, u ∈ Vg.

Note that φξ̂ ∈ G0̂. Moreover by (1.3.3) the diagram

Vg

φξ̂−−−→ Vg

Φ

y Φ

y
G

φξ−−−→ G

commutes. Thus by Lemma 3.4.3 φξ̂ is an isometry with respect to ξ̂ and we
obtain (b).

(i) “(b) ⇒ (a)”: Let a ∈ N and η ∈ (T⊥
a N)\{0}. Fix u ∈ Φ−1(a). Denote

by X ∈ (T⊥
u Φ−1(N))\{0} the horizontal lift of η. Take g ∈ P (G,G × {e}) so

that g ∗ 0̂ = u and define N ′, ξ, ξ̂ as in the above (i). Let φX be an isometry
with respect to X satisfying φX ∈ Gu. Then an isometry φξ̂ with respect to

ξ̂ ∈ (T⊥
0̂
Φ−1(N ′))\{0} is defined by φξ̂ := (g∗)−1 ◦ φX ◦ (g∗). By definition

φξ ∈ G0̂ and thus there exists b ∈ G such that φξ̂(u) = bub−1. Thus defining an

isometry φξ of G by φξ(c) := bcb−1 for c ∈ G it follows from Lemma 3.4.3 that
φξ is an isometry with respect to ξ satisfying φξ ∈ (G×G)e. Hence an isometry
φη with respect to η is defined by φη := la ◦ φξ ◦ l−1

a so that φη ∈ (G × G)a.
Therefore we obtain (a).

(ii) “(a) ⇒ (b)”: Let a ∈ π−1(N) and w ∈ (T⊥
a π−1(N))\{0}. Set η :=

dπ(w) ∈ (T⊥
aKN)\{0}, N ′ := L−1

a (N) and ξ := dL−1
a (η) ∈ (T⊥

eKN
′)\{0}.

Denote by v ∈ (T⊥
e π−1(N ′))\{0} the horizontal lift of ξ. From commuta-

tivity of (1.3.8) we have la(π
−1(N ′)) = π−1(N) and dla(v) = w. Thus in

order to show the existence of an isometry φw with respect to w satisfying
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φw ∈ (G×K)a = (a, e)∆K(a, e)−1 it suffices to construct an isometry φv with
respect to v satisfying φv ∈ (G × K)e = ∆K. Let φη be an isometry with
respect to η which is given by φη(cK) = (bc)K for some b ∈ GaK . Then there
exists k ∈ K satisfying b = aka−1. Thus an isometry φξ with respect to ξ is
defined by φξ := L−1

a ◦ φξ ◦ La, that is, φξ = Lk. Define an isometry φv of G
by

φv(c) := kck−1, c ∈ G.

Note that φv ∈ (G×K)e. Moreover the diagram

G
φv−−−→ G

π

y π

y
G/K

φξ−−−→ G/K

commutes. From Lemma 3.4.3 φv is an isometry with respect to v and we
obtain (b).

(ii) “(b) ⇒ (a)”: Let aK ∈ N and η ∈ (T⊥
aKN)\{0}. Denote by w ∈

(T⊥
a π−1(N))\{0} the horizontal lift of η. Define N ′, ξ, v as above. Let φw be

an isometry with respect to w satisfying φw ∈ (G × K)a. Then an isometry
with respect to v is defined by φv := l−1

a ◦φw ◦ la so that φv ∈ (G×K)e. Thus
there exists k ∈ K such that φv(c) = kck−1. Hence defining an isometry φξ

of G/K by φξ := Lk it follows from Lemma 3.4.3 that φξ is an isometry with
respect to ξ satisfying φξ ∈ GeK . Therefore an isometry φη with respect to η
is defined by φη := la ◦ φξ ◦ l−1

a so that φη ∈ GaK . This proves (b).
Using the fact gP (G,G×K)0̂g

−1 = P (G,G×K)g∗0̂ for g ∈ P (G,G×{e})
the equivalence of (b) and (c) of (ii) follows by similar arguments to (i).

Corollary 3.4.6. Let G, G/K be as in Theorem 3.4.5.

(i) Let H be a closed subgroup of G×G. Then the following are equivalent:

(a) an orbit H · a through a ∈ G is an H-arid submanifold of G,
(b) an orbit P (G,H) ∗ u through u ∈ Φ(a) is a P (G,H)-arid PF sub-

manifold of Vg.

(ii) Let K ′ be a closed subgroup of G. Then the following are equivalent:

(a) an orbit K ′ · aK through aK ∈ G/K is a K ′-arid submanifold of
G/K,

(b) an orbit (K ′×K) · a through a ∈ G is a (K ′×K)-arid submanifold
of G,

(c) an orbit P (G,K ′×K)∗u through u ∈ Φ−1(a) is a P (G,K ′×K)-arid
PF submanifold of Vg.

Proof. (i) By (1.3.10) we can assume without loss of generality that a = e.
Moreover by homogeneity it suffices to consider normal vectors only at e ∈ G
or 0̂ ∈ Vg. Thus by similar arguments as in Theorem 3.4.5 (i) the assertion
follows. (ii) We can similarly reduce the case a = e and by similar arguments
as in Theorem 3.4.5 (ii) our claim follows.
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Example 3.4.7. Let (U,L) be a compact Riemannian symmetric pair where
L connected. Denote by u = l + p the canonical decomposition, by Ad : L →
SO(p) the isotropy representation and by S the standard sphere in p.

Let us first show that there are examples of Ad(L)-orbits which are Ad(L)-
arid submanifolds in S. By Taketomi’s result ([49, Proposition 4.4]) an orbit
N := Ad(L)w through w ∈ S is an Ad(L)-arid submanifold of S if and only
if N is an isolated orbit of the Ad(L)-action on S. One can find such isolated
orbits by considering the fundamental Weyl Chamber. Fix a maximal abelian
subspace a in p and denote by F the fundamental system of the restricted root
system with respect to a. The fundamental Weyl chamber is defined by

C := {w ∈ a | ∀α ∈ F, α(w) > 0}

with closure
C̄ := {w ∈ a | ∀α ∈ F, α(w) ≥ 0}.

It is known ([24, Lemma 1.2]) that C̄ is decomposed by

C̄ =
⨿

∆: subset of F

C∆ : disjoint union,

C∆ := {w ∈ a | ∀α ∈ ∆, α(w) > 0 and ∀β ∈ F\∆, β(w) = 0}.
If a subset ∆ consists of only one element then dimC∆ = 1 and thus the
intersection S ∩C∆ consists of only one point, which implies that in this case
the orbit Ad(L)w through w ∈ C∆ is isolated. In this way we can obtain
examples of Ad(L)-arid submanifolds in the standard sphere S. Notice that
from the classification result of austere Ad(L)-orbits ([26, Theorem 5.1]), in
particular we can choose Ad(L)-arid orbits which are not austere.

Applying Corollary 3.4.6 (ii) to such examples we obtain the orbit

P (SO(p),Ad(L)× SO(p)w) ∗ 0̂

which is an P (SO(p),Ad(L) × SO(p)w)-arid PF submanifolds in the Hilbert
space Vo(p). Moreover by Theorem 3.3.1 such an arid PF submanifold is not
an austere (therefore not a weakly reflective) PF submanifold in Vo(p).

The following theorem can be thought of an analogue of Theorem 3.2.13.

Theorem 3.4.8. Let G be a connected compact Lie group with a bi-invariant
Riemannian metric and H be a closed subgroup of G × G. Suppose that the
orbit H · e through e ∈ G is an arid submanifold of G such that for each
ξ ∈ (T⊥

e (H · e))\{0} an isometry φξ with respect to ξ is an automorphism of
G. Then the orbit P (G,H) ∗ 0̂ through 0̂ ∈ Vg is an arid PF submanifold of
Vg.

Proof. Let φξ be an isometry with respect to ξ ∈ (T⊥
e (H · e))\{0} which is an

automorphism of G. Then similarly to (3.4.2) we can define an isometry φξ̂

with respect to ξ̂ ∈ (T⊥
0̂
P (G,H) ∗ 0̂)\{0}. By homogeneity of P (G,H) ∗ 0̂ the

assertion follows.
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Now we see an example of an arid submanifold H ·e satisfying the condition
in Proposition 3.4.8. Although the following H · e can be shown to be arid by
applying Theorem 3.4.1 (i) to Taketomi’s example [49, Proposition 3.1], here
we give a direct proof in order to see an isometry with respect to each normal
vector explicitly.

Example 3.4.9. Set G := SO(9). Denote by E the 3× 3 unit matrix. Define
Q ∈ G by

Q :=
1√
6

 √
2E

√
3E E√

2E −
√
3E E√

2E 0 −2E

 .

SetK := Q({1}×SO(8))Q−1, K ′ := SO(3)×SO(3)×SO(3) andH := K ′×K.
Then the tangent space of the orbit H · e is given by

Te(H · e) = k′ + k = k′ +Q(0⊕ o(8))Q−1 = Q(Q−1k′Q+ (0⊕ o(8)))Q−1.

Then it follows from the direct computations that each X ∈ Q−1T⊥
e (H · e)Q

is written by

X =

 0 S T
−S 0 0
−T 0 0

 ,

S :=

 s 0 0
0 0 0
0 0 0

 , T :=

 t 0 0
0 0 0
0 0 0

 , s, t ∈ R.

The calculation of QXQ−1 shows that each Y ∈ T⊥
e (H · e) is written by

Y =

 0 U V
−U 0 W
−V −W 0

 ,

U :=

 −2x 0 0
0 0 0
0 0 0

 , V :=

 −x− y 0 0
0 0 0
0 0 0

 , W :=

 x− y 0 0
0 0 0
0 0 0


for x, y ∈ R. For each (i, j) ∈ {(1, 2), (1, 3), (2, 3)} we define Pi,j ∈ O(9) by

P1,2 :=

 0 E 0
E 0 0
0 0 E

 , P1,3 :=

 0 0 E
0 E 0
E 0 0

 , P2,3 :=

 E 0 0
0 0 E
0 E 0


and define an automorphism φij of G by

φij(A) := PijAP
−1
ij , A ∈ G.

Then for each ξ ∈ T⊥
e (H · e) there exists (i, j) such that φij is an isometry

with respect to ξ. Thus H · e is an arid submanifold of G. Since φij is an
automorphism of G it follows from Proposition 3.4.8 that the orbit P (G,H)∗ 0̂
is an arid PF submanifold of Vg. Notice that we can not apply Corollary 3.4.6
(i) to this example since φij is not an inner automorphism of G and thus not
belong to the isotropy subgroup He at e ∈ G.
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4 Homogeneous minimal PF submanifolds

in Hilbert spaces

4.1 A critical difference between finite and infinite di-
mensions

In the finite dimensional Euclidean spaces the following fact is known:

Theorem 4.1.1 (Di Scala [46]). In finite dimensional Euclidean spaces any
homogeneous minimal submanifolds must be totally geodesic.

On the other hand the following fact follows from our results.

Theorem 4.1.2. In infinite dimensional Hilbert spaces there exist many ho-
mogeneous minimal PF submanifolds which are not totally geodesic.

In fact, in Section 3 we have seen many examples of minimal PF submanifolds
which are orbits of the P (G,H)-actions. Moreover from Corollary 2.3.2 such
minimal PF submanifolds are not totally geodesic, which shows Theorem 4.1.2.
Comparing with Theorem 4.1.1, above Theorem 4.1.2 shows a critical difference
between finite and infinite dimensional cases

There is a natural question:

Question 4.1.3. Can any homogeneous minimal PF submanifolds be de-
scribed by an orbit of a P (G,H)-action ?

In the rest of this thesis, aside from this question we propose and discuss more
concrete problems on homogeneous minimal PF submanifolds.

4.2 A problem related to hyperpolar P (G,H)-actions

Recall that an isometric action of a compact Lie group on a Riemannian
manifold M is called polar if there exists a closed connected submanifold S of
M which meets every orbit orthogonally. If S is flat in the induced metric then
such an action is called hyperpolar ([21]). Similarly an isometric PF action of
a Hilbert Lie group on a Hilbert space V is called hyperpolar ([21]) if there
exists a closed affine subspace S of V which meets every orbit orthogonally. It
was shown ([50]) that the P (G,H)-action is hyperpolar if the H-action on G is
hyperpolar. Hyperpolar actions on irreducible Riemannian symmetric spaces
of compact type were classified by Kollross [32].

Notice that almost all examples of minimal PF submanifolds we have seen
in Section 3 are orbits of hyperpolar P (G,H)-actions. Conversely it is also
interesting to consider the following problem:

Problem 4.2.1. Determine minimal orbits in a hyperpolar P (G,H)-action
and classify the symmetric properties they have.
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In order to study the above problem it is noted ([29], [20]) that a P (G,H)-
orbit is minimal if and only if the H-orbit is minimal. This shows that the
determination of minimal P (G,H)-orbits can be reduced to a finite dimen-
sional problem. However the classification of symmetric properties seems not
easy. As we have seen in Section 3.3 the austere property via the parallel
transport map is not clear except for the spherical case. Moreover even if we
classify all austere orbits in H- or P (G,H)-actions it seems very difficult in
general to classify all weakly reflective orbits; it is very hard to assert one
austere orbit is not weakly reflective.

In connection with such a classification problem the author is now giving
attention to the structure of weakly reflective submanifolds. LetM be a weakly
reflective submanifold of a Riemannian manifold M̄ . Denote by I(M̄) the
group of isometries of M̄ and by I0(M̄) its identity component. There are at
least two kinds of weakly reflective submanifolds:

(a) for each p ∈ M and each ξ ∈ T⊥
p M there exists νξ ∈ I0(M̄) (: identity

component) such that νξ(p) = p, dνξ(ξ) = −ξ and νξ(M) = M .
(b) for each p ∈ M there exists an involutive isometry νp ∈ I(M̄) which is

independent of the choice of ξ ∈ T⊥
p M such that νp(p) = p, dνp(ξ) = −ξ

and νp(M) = M .

For example, consider an isometric action of cohomogeneoity one on M̄ . It is
known ([44], [26]) that in this case any singular orbit M is a weakly reflective
submanifold of M̄ . More precisely if M has one codimension in M̄ then M
satisfies the condition (b) because the identity component of each isotropy
subgroup acts transitively on each normal space. On the other hand, if the
codimension of M is equal or greater than two then it can be seen that M
satisfies the condition (a). Note that there exist examples of weakly reflective
submanifolds which satisfy both conditions (a) and (b): a weakly reflective
submanifold M reviewed in Example 3.4.4 (the case m = 2) satisfies (b) for
all n ∈ Z≥2 and in particular if n is even then it also satisfies (a). Although
examples by Ohno [39] and by Kimura-Mashimo [28] satisfy the condition (a),
Enoyoshi’s example ([8]) does not satisfy (a) but (b). It should be also noted
([37]) that under suitable assumptions if M satisfies the condition (b) then
its inverse image under the parallel transport map is a weakly reflective PF
submanifold satisfying the condition (b). It can be a problem to consider
whether weakly reflective submanifolds which does not satisfy both conditions
(a) and (b) exist or not. Also for arid submanifolds similar types may work
and might be useful to study their structure.

4.3 A problem related to affine Kac-Moody symmetric
spaces

In this subsection we mention a problem related to affine Kac-Moody sym-
metric spaces.
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Following [16] (see also [17]) we first review briefly the fundamental facts
on affine Kac-Moody symmetric spaces. Let g be a simple Lie algebra with
Killing form (·, ·)0 and σ : g → g an automorphism of finite order. The twisted
Lie algebra L(g, σ) is defined by

L(g, σ) := {u : R → g : C∞ map | ∀t ∈ R, u(t+ 2π) = σ(u(t))}

with pointwise bracket [u, v]0(t) := [u(t), v(t)]. For each λ ∈ R\{0}, define an
alternating linear 2-form ωλ on L(g, σ) by

ωλ(u, v) := λ

∫ 1

0

(u′(t), v(t))0dt.

The affine Kac-Moody algebra L̂(g, σ) is defined by

L̂(g, σ) := L(g, σ) + Rc+ Rd

with bracket

[u, v] := [u, v]0 + ωλ(u, v)c, [d, u] := u′, [c, x] := 0

u, v ∈ L(g, σ), x ∈ L̂(g, σ),

with derived algebra L(g, σ) + Rc and center Rc. Note that the isomorphism
class of L̂(g, σ) does not depend on λ.

Let G be a simply connected compact simple Lie group with Lie algebra g
and σ : G → G an automorphism of finite order. The twisted loop group

L(G, σ) := {g : R → G : C∞map | ∀t ∈ R, g(t+ 2π) = σ(g(t))}

with pointwise multiplication is a Frechet Lie group with Lie algebra L(g, σ).
Then we define a Frechet Lie group L̃(G, σ) whose Lie algebra is L̃(g, σ) :=
L(g, σ) + Rc. Consider the 2-form ωλ defined above. The induced left in-
variant closed 2-form on L(G, σ) is still denoted by ωλ. We can choose λ so
that 1

2π
ωλ defines an integral cohomology class in H2(L(G, σ),Z). Then there

corresponds a principal S1-bundle P over L(G, σ) with a connection whose
curvature form coincides with ω. Then L̃(G, σ) is defined as a group of all
bundle automorphisms on P preserving the connection. Note that L̃(G, σ) ex-
tends L(G, σ) by S1. Note also that we can (and will) choose λ so that L̃(G, σ)
is simply connected. Finally we define the Kac-Moody group L̂(G, σ) whose
Lie algebra is L̂(g, σ). This is a Frechet Lie group defined by the semi-direct
product

L̂(G, σ) := S1 ⋉ L̃(G, σ).

where the S1-action on L̃(G, σ) is induced from the natural R-action on L(G, σ)
shifting the parameter on loops.
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Define a non-degenerate symmetric bi-linear form of index 1 on L̂(g, σ) by

⟨u+ r1c+ s1d, v + r2c+ s2d⟩ :=
∫ 2π

0

⟨u(t), v(t)⟩0dt+ r1s2 + r2s1

u, v ∈ L(g, σ), ri, sj ∈ R,

where ⟨·, ·⟩0 denotes the negative multiple of the Killing form. By left transla-
tion we can define a metric on L̂(G, σ) so that L̂(G, σ) is a Lorentz manifold.
Since the metric is bi-invariant the map g 7→ g−1 is an involutive isometry and
thus we can think of L̂(G, σ) as a symmetric space.

Roughly speaking, an affine Kac-Moody symmetric space is by definition
either an affine Kac-Moody group Ĝ := L̂(G, σ) with above metric or the
quotient Ĝ/K̂, where K̂ is the fixed point set of an involution θ̂ on Ĝ. More
precisely here we consider an involution of the second kind. There are two
kinds of involutions on Kac-Moody group Ĝ: the first kind involution inducing
the identity on S1 ⊂ L̃(G, σ) and the second one inducing the reflection on
this S1. We consider only the second one so that the extension L(G, σ) to
L̂(G, σ) is not canceled in the quotient. Also we do not mention the manifold
structures of Ĝ and Ĝ/K̂. Actually they are tame Frechet manifolds ([14]),
where the inverse function theorem is valid. Moreover the unique existence
theorem of Levi-Civita connection for Ĝ and Ĝ/K̂ can be proved. For details
of such manifold structures and geometry of Ĝ and Ĝ/K̂, see Popescu [43]. For
classification of involutions of affine Kac-Moody algebras, see Groß [13] and
Heintze-Groß [22]. For complex Kac-Moody groups and the duality of affine
Kac-Moody symmetric spaces, see Freyn [10].

One of the most striking similarities between finite dimensional Rieman-
nian symmetric spaces and affine Kac-Moody symmetric spaces comes from
their isotropy representations. In the finite dimensional case it is known that
the isotropy representation of a symmetric space is polar and the converse es-
sentially holds: any irreducible polar representation is orbit equivalent to the
isotropy representation of a symmetric space (Dadok [6]). Also principal orbits
of the isotropy representation are isoparametric in the sense of Terng [50], and
under suitable assumptions conversely any irreducible isoparametric subman-
ifolds in Euclidean spaces are orbits of polar representation (Thorbergsson
[53]). In the case of affine Kac-Moody symmetric spaces similar properties
hold. For an affine Kac-Moody symmetric space, there corresponds a hyper-
polar PF action on a Hilbert space (Kollross [32], Terng [51], Heintze-Groß
[22]). A principal orbit of the hyperpolar PF action is isoparametric, and the
converse also holds under a suitable assumption (Heintze-Liu [19]).

We now propose the following problem:

Problem 4.3.1. Find similar properties between minimal orbits in the isotropy
representation of Riemannian symmetric spaces and minimal orbits in the
isotropy representation of affine Kac-Moody symmetric spaces.

For example, in the finite dimensional case it was shown that there ex-
ists a unique minimal orbit in each strata of the stratification of orbit types
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(Hirohashi-Song-Takagi-Tasaki [25]). It is interesting to ask whether simi-
lar result also holds for affine Kac-Moody symmetric spaces. In the finite
dimensional case austere orbits and weakly reflective orbits of the isotropy
representation were classified by Ikawa, Sakai abd Tasaki [26]. It may be also
interesting to study similar classification problem for affine Kac-Moody sym-
metric spaces. These problem would also relate with the problem mentioned
in the last subsection.
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