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Abstract

It is known that multiple M2-branes on various backgrounds are described by

the N = 4 super Chern-Simons theories. After applying the localization technique,

these theories reduce to matrix models which we call the super Chern-Simons matrix

models. And the super Chern Simons matrix models without rank differences are

described with the Fredholm determinant for the quantum curves. At the same

time, those matrix models are expressed by the brane configurations in a circle in

the IIB string theory. In this thesis, from the correspondences between the brane

configurations and the quantum curves, we explain the new brane transitions and

the hidden structure behind the brane transitions, which were found in my doctoral

course.

From the correspondences between the brane configurations and the quantum

curves, we can regard the Weyl groups which are the symmetries of the curves, as

the brane transitions. Then after separating the Hanany-Witten transitions, the

new brane transitions were found (called local rule).

Moreover, by the duality cascades with the Hanany-Witten transitions, the affine

Weyl group appears in the space of the brane configurations naturally. We found

that the fundamental domain (that the Hanany-Witten transitions do not cause the

duality cascades) in the Weyl chamber is nothing but the affine Weyl chamber. The

affine Weyl group takes any brane configuration into the fundamental domain by

the translations in the space of the brane configurations, which realize the duality

cascades. At the same time, it is found that the fundamental domain is a convex

polytope that can fill the space of the brane configurations.

Also, in the correspondences between the quantum curves and the brane configu-

rations, the Weyl groups of the curves interpreted as the brane transitions are smaller

than the original symmetries of the curves by Z2 folding. However, by introducing

the super determinant operator interpreted as the insertion of the Fayet-Iliopoulos

parameters, we can regard the full Weyl group as the brane transitions.

For the brane configurations relating to the super Chern-Simons matrix models

in the case that the symmetries of the quantum curves are not fully known yet, we

cannot construct the affine Weyl group. However, from the property of the Hanany-

Witten transitions, the fundamental domains of the duality cascades are at least

polytopes whose planes facing each other are parallel.

This dissertation is mainly based on the joint research with Professor Sanefumi

Moriyama, Tomoki Nakanishi and Kazunobu Matsumura [1, 2].
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1 Introduction

The goal of physics is to explain our mother nature. However, due to its complexity, we

often construct simple solvable models to capture its essence (such as ideal gas). Par-

ticularly, in particle physics, we have been searching for an ultimate theory unifying all

interactions. At present, M theory and string theory are expected to be one of the best

candidates. We would like to find the essence of these theories from the correspondence

to the integrable systems. The integrable systems are solvable by the high symmetries,

such as soliton equations and Painlevé equations.

Here, string theory is a ten-dimensional theory consisting of strings (one-dimensional

objects) and branes (higher-dimensional objects), naturally contain not only electromag-

netic, weak and strong interactions but also gravity and perturbatively five types of such

a theory are known. And in the low energy limit, there are the supergravity theories cor-

responding to the string theories. Furthermore, the supergravity theory is composed up

to eleven dimension. M theory is given as the theory containing it in the low energy limit

and string theory by compactifying one dimension. Due to the T and S dualities among

string theories, all string theories are derived from M theory, therefore the M theory is

expected as an ultimate theory unifying all interactions.

Although the M theory and the string theories were mysterious for a long time, var-

ious interesting aspects become clearer by now. As explained below, ABJM theory and

its generalizations describe multiple M2-branes. Since they have a large number of su-

persymmetries, we expect them to have a simple and systematic structure such as the

integrable systems. Indeed, in previous works, the partition function and some super-

symmetric correlation functions of these theories were reduced to matrix models [3]; the

non-perturbative instanton effects were computed exactly [4–7] and related to the free

energy of topological string theories [8,9]; the relation between the ABJM theory and the

Painlevé equation was observed [10].

Besides, in my doctoral course, with my collaborators, we have added many interesting

structures. We clarified the group-theoretical structure and the multi-covering structure

of the quantum A-period [11]; we revealed the correspondence between the ABJM matrix

model and the two-dimensional Toda lattice (and mKP) hierarchy [12, 13]; we revealed
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the correspondence between the duality cascades and the affine Weyl groups [2]. In my

doctoral thesis, I mainly focus on the last topic of the correspondence between the duality

cascades and the affine Weyl groups in the main text. I also add appendices to cover

various other structures and to introduce our works in my doctoral course.

The ABJM theory is the N = 6 superconformal Chern-Simons theory with the two

bifundamental matters and the gauge group U(N1)k×U(N2)−k [14–16] where the subscripts
denote the Chern-Simons levels with k > 0. It is known that this theory describes the

worldvolume theory of the multiple M2-branes with min(N1,N2) M2-branes and ∣N1 −N2∣
flactional M2-branes on C4/Zk. In the IIB string theory, this situation is described by a

brane configuration with 5-branes (an NS5-brane and a (1, k)5-brane) aligned in a circle

and D3-branes located at the two intervals between the 5-branes.

The ABJM theory is reduced to the matrix model by applying the localization tech-

nique on S3 [3,17]. This is called ABJM matrix model. Also, we can apply the localization

technique to the vacuum expectation values of the BPS Wilson loops [18] besides the par-

tition function. It was also found that the dualities between the vacuum expectation

values of the half BPS Wilson loops and the partition function [19, 20]. The two-point

functions were constructed as the generalizations of the one-point functions of the half

BPS Wilson loops [21]. Furthermore, it was found that the correlation functions satisfy

many relations deeply concerning with the integrable systems [12, 22, 23] and correspond

to the soliton models [13]. In particular, the one- and two-point functions correspond to

the mKP and two-dimensional Toda lattice (2DTL) equations respectively. The reduction

from the two-point functions to the one-point functions agrees with the reduction from

the 2DTL equations to the mKP equations in the correspondence.

In the ABJM matrix model, by the Fermi gas formalism [8, 24], when we regard the

gauge rank min(N1,N2) as the number of free fermions, we can consider the grand canon-

ical partition function by introducing the fugacity z. Also, in the ’t Hooft expansion,

for the partition function of the ABJM matrix model, it was found that the perturba-

tive corrections are summed up to the Airy function and reproduce the degree of freedom

N3/2 [25,26]. Furthermore, This expansion allows us to reveal the non-perturbative effects,

worldsheet instantons [27] and membrane instantons [28].

In the case with equal ranks N1 = N2 = N , the grand canonical partition function is

described by the Fredholm determinant with the spectral operator Ĥ,

Ξk(z) =
∞
∑
N=0

zNZk(N) = det(1 + zĤ−1), (1.1)
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where the spectral operator takes the form as Ĥ = Q̂P̂ with the hyperbolic cosine operators

Q̂ = Q̂ 1
2 + Q̂− 1

2 , P̂ = P̂ 1
2 + P̂ − 1

2 , (Q̂ = eq̂, P̂ = ep̂), (1.2)

and z denotes the fugacity which relates to the chemical potential µ as z = eµ. In this

canonical quantization, the Chern-Simons level k plays the role of the Plank constant as

h̵ = 2πk and the above operators q̂ and p̂ satisfy the commutation relation [q̂, p̂] = ih̵. If

we consider the WKB expansion for the grand canonical partition function, the surface of

the phase space becomes the Fermi surface. From the area of this Fermi surface, it was

found not only that the ABJM matrix model reproduces the degree of freedom of the N

multiple M2-branes N3/2 in the large N limit but also that the partition function is the

Airy function [8]. Furthermore from the shape of the Fermi surface, it was found that the

Fermi surface relates to the dual toric diagram associated with the local P1×P1. Actually,

this spectral operator is derived by quantizing the mirror curve of the local P1 × P1 [29],

therefore we also call this operator the quantum curve.

In the non-perturbative effects, both the worldsheet instantons and the membrane

instantons are divergent at some values of k. But, by considering the bound states of

them, the divergences are canceled among the instantons [6]. Also, if we redefine the

fugacity properly, the contributions from the bound states are included in the worldsheet

instantons and we can take a simpler view that the cancelations for the divergences of

the instantons appear between the worldsheet instantons and the membrane instantons.

Also, from the geometric viewpoint, we can reexamine this discussion for the instantons as

follows. First, we can compute the two periods by integrating along two cycles, A-period

and B-period, for the algebraic curve of genus one. As mentioned above, the ABJM matrix

model is described by the quantum curve associated with the algebraic curve of genus one.

Thus, we can construct the quantum corrected periods and compute them [7,30]. As the

result, the quantum A- and B-period give the redefinition of the chemical potential and

the derivatives of the free energy respectively. The B-period is well analyzed and it was

found that it is determined by the BPS indices and has the group-theoretical structure

and the multi-covering structure [31–34]. Here, the group-theoretical structure means that

the B-period is written in terms of the characters for the symmetries of the curve. And

the multi-covering structure means that the instanton effects of high degree include those

of lower degrees. And in our works, we found that there is the same structures for the

quantum A-period [11,34].

There are generalizations of the ABJM theory which keep N = 4 while increasing the

number of the 5-branes [35–39]. The matrix models obtained from the theories by the
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localization technique, are the super Chern-Simons matrix models with the gauge group

∏r
i=1U(Ni) and the Chern-Simons levels given by

ka =
k

2
(sa − sa−1), sa = ±1, (a = 1,2,⋯, r), (1.3)

where the models are of the circular type with the identification s0 = sr. Then, the brane

configurations are constructed with the 5-branes that an NS5-brane and a (1, k)5-brane
are respectively labeled by sa = +1 and sa = −1 and they are arranged in the sequence of

sa. For example, in the case that sa are arranged as

{s1, s2,⋯} = {+1,⋯,+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p1

−1,⋯,−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

q1

+1,⋯,+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p2

−1,⋯,−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

q1

,⋯}, (1.4)

the corresponding brane configuration is

⟨● ● ⋯●
´¹¹¹¹¸¹¹¹¹¹¶

p1

○ ○ ⋯○
´¹¹¹¹¸¹¹¹¹¹¶

q1

● ● ⋯●
´¹¹¹¹¸¹¹¹¹¹¶

p2

○ ○ ⋯○
´¹¹¹¹¸¹¹¹¹¹¶

q2

⋯⟩, (1.5)

where ● and ○ respectively correspond to an NS5-brane and a (1, k)5-brane, also the

grand canonical partition function of the corresponding matrix model is described with

the quantum curve taking the form as

Ĥ = ⋯Q̂q2P̂p2Q̂q1P̂p1 , (1.6)

we call this model (p1, q1, p2, q2,⋯) model.

In the case with the rank differences, there are the above super Chern-Simons matrix

models generalized from the ABJM matrix model. However, the grand canonical partition

functions in those models have not been fully described by the Fredholm determinant, and

the quantum curves corresponding to those matrix models are not clear (see [40] for recent

progress). To overcome the difficulties, the correspondences between the quantum curves

and the brane configurations with the rank differences were constructed by the Hanany-

Witten transitions [41],

⋯K ○L ○M⋯ = ⋯K ○K −L +M ○M⋯, (1.7)

⋯K ●L ●M⋯ = ⋯K ●K −L +M ●M⋯, (1.8)

⋯K ●L ○M⋯ = ⋯K ○K −L +M + k ●M⋯, (1.9)

⋯K ○L ●M⋯ = ⋯K ●K −L +M + k ○M⋯, (1.10)

in addition to the correspondences between the quantum curves and the brane configura-

tions without the rank differences. Here, ● and ○ respectively denote an NS5-brane and

7



a (1, k)5-brane, also K, L and M denote D3-branes in each interval of 5-branes. These

transitions can be stated as the conservation of the RR-charge for an NS5-brane,

qRR = −
1

2
((#D5)∣L − (#D5)∣R) + (#D3)∣L − (#D3)∣R, (1.11)

and that for a (1, k)5-brane,

qRR = −
k

2
((#NS5)∣L − (#NS5)∣R) + (#D3)∣L − (#D3)∣R, (1.12)

where (#D5)∣L/R and (#NS5)∣L/R are respectively the numbers of the D5-branes and the

NS5-branes on the left/right sides of an original 5-brane (NS5 and (1, k)5-brane), and
(#D3)∣L or R denotes the number of the D3-branes ending to the original 5-brane from the

left/right.

In this thesis, we consider the curves whose parameters are transformed by the known

groups. Namely, for certain brane configurations, the corresponding quantum curves con-

structed in (1.6) has nice classical counterparts known as the del Pezzo curves. The

transformations of the parameters of these curves form the Weyl group of exceptional Lie

algebras. In particular, the A1, D5 and E7 curves correspond respectively to the brane con-

figurations with (one NS5-brane, one (1, k)5-brane), (two NS5-branes, two (1, k)5-branes)
and (two NS5-branes, four (1, k)5-branes). And if we regard the Weyl group symmetries

of the curves as the brane transitions, it is found that there are the new brane transitions

after separating the Hanany-Witten transitions [1, 42].

For the brane configurations in a circle, the Hanany-Witten transitions may reduce

the number of the D3-branes at the interval of the 5-branes. The number of the D3-

branes corresponds to the rank of the gauge group in the field theory and if we continue

to apply this process to reduce the rank, finally we arrive at the situation of either the

lower ranks do not appear or a rank becomes negative. The negative rank is regarded as

the anti-D3-branes in the string theory, so when a negative rank appears, it is interpreted

as the supersymmetry is broken. The process reducing the ranks is known as the duality

cascade [43–46]. For the supersymmetric brane configurations in a circle, we can ask

following questions,

• Is the process of the duality cascades always completed regardless of the initial brane

configuration?

• Is the endpoint of the duality cascades unique regardless of the flow path of the

duality cascades?
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• After applying the duality cascades, if the brane configurations appearing in the

duality cascades are all identified, what the fundamental domain of duality cascades

is, more concretely, whether it is finite and whether it is the connected one?

As in the following paragraph, we can answer these questions with the help of the affine

Weyl groups.

When we consider the correspondences between the supersymmetric brane configura-

tions and the quantum curves, we need to choose the lowest rank as the reference and Weyl

groups act to the brane configurations so that the reference rank is invariant. However,

through the Hanany-Witten transitions, we may encounter one of the ranks lower than

the reference rank. In this case, we need to choose the lowest rank as a new reference

rank again. And we can continue this process until no lower ranks appear. This series

of the duality transformations is nothing but the duality cascade [46]. And, from the

symmetries of the quantum curves we investigate carefully the fundamental domain of the

duality cascades that the lower ranks do not appear by the Hanany-Witten transitions.

The symmetries of the quantum curves are the Weyl groups and regarded as the brane

transitions. Then since the reference rank is fixed, of course, the duality cascade chang-

ing the reference rank is not included there. However, after we identify the fundamental

domain of the duality cascades, by considering the reflections about the boundary planes

of the region, we can extend the Weyl groups to the affine Weyl groups and it is found

that the extensions agree with the duality cascades. Then, it is also found that the overall

rank plays a role of the eigenvalue of the grading operator of the affine Weyl groups. Fur-

thermore, the fundamental domain divided by the Weyl group is no other than the affine

Weyl chamber, therefore it is found that the endpoint of the duality cascades is unique

and the fundamental domain is a convex polytope that can fill the space of the brane

configurations.

Also, when we relate the brane configurations in a circle to the quantum curve, only

part of the Weyl group surviving in the Z2 folding remains as symmetries and we shall

regard them as brane transitions. Concretely, the B3 Weyl group for the D5 curve and F4

Weyl group for E7 curve are regarded as brane transitions. In this thesis, we show that

the full Weyl group of the quantum curve can be regarded as brane transitions by the

deformation with the FI parameters. Then, from the full Weyl group of the curve, the

brane transitions interpreted as “halves” Hanany-Witten transitions appear.

In section 2, we discuss the correspondences between the quantum curves and the

cyclic brane configurations. And we propose the local rule as the new brane transitions
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after separating the Hanany-Witten transitions. In section 3, we derive the affine Weyl

groups from duality cascades. This is a main topic in this thesis. In section 4, we discuss

advanced topics for the case when the symmetries regarded as the brane transitions is not

known and the case with the deformation with the FI parameters.

2 Quantum curves and brane configurations

In this section, we explain several topics. First, we explain that the super Chern-Simons

matrix models without the rank differences are represented with the Fredholm determinant

of the quantum curves briefly. Afterwards, we consider the generalizations to the case with

the rank differences. Then we can embed the space of the brane configurations into the

space of the parameters of the quantum curves. And at the same time, the Weyl group

symmetries of the curve are folded to the smaller symmetries. Since the Weyl group

acting to the subspace of the brane configurations in the parameter space of the curves

includes the transitions interpreted as the Hanany-Witten transitions, by regarding the

Weyl groups as the brane transitions, we can propose the new brane transitions after

separating the Hanany-Witten transitions [1, 42].

2.1 Super Chern-Simons matrix models and quantum curves

In this subsection, we explain the relation between the super Chern-Simons matrix models

and quantum curves (see appendix A for detail calculations).

The N = 4 superconformal Chern-Simons theories describe the brane configurations

with 5-branes in a circle in the IIB string theory. By the localization technique, they

reduce to the super Chern-Simons matrix models. In the matrix model with the gauge

group ∏r
a=1U(N)ka , the partition function labeled by p1+q1+p2+q2+⋯ = r corresponding

to the brane configuration in (1.5), is denoted by

Z
(p1,q1,⋯)
k (N) = ∫

r

∏
a=1

DNx(a)

N !

r

∏
a=1

∆(N)(x(a−1), x(a)), (2.1)

with

DNx(a) =
N

∏
ℓ=1

dx
(a)
ℓ

2π
e

isa
4πk
(x(a)

ℓ
)2 , (2.2)

∆(N)(x(a−1), x(a)) = ∏
N
m<m′ 2k sinh

x
(a−1)
m −x(a−1)

m′
2k ∏N

n<n′ 2k sinh
x
(a)
n −x(a)

n′
2k

∏N
m=1∏N

n=1 2k cosh
x
(a−1)
m −x(a)n

2k

. (2.3)
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The partition function in the matrix model is also shown in the case with the rank differ-

ences. However, since the relation between the matrix model and the quantum curve is

not fully known and it is enough to consider the case without the rank differences for our

discussions for the quantum curves below, we give only the partition function without the

rank differences here.

And we proceed with the analysis by using the Fermi gas formalism [8, 24]. In the

formalism, by regarding the rank of the gauge group N as the number of free fermions,

the grand canonical partition function is represented as

Ξ
(p1,q1,⋯)
k (z) =

∞
∑
N=0

Z
(p1,q1,⋯)
k (N)zN , (2.4)

with the fugacity z. By introducing the operators q̂ and p̂ satisfying the commutation

relation [q̂, p̂] = ih̵, this grand canonical partition function (without the rank differences)

is expressed by the Fredholm determinant of the spectral operator Ĥ−1 as

Ξ
(p1,q1,⋯)
k (z) = det(1 + zĤ−1(p1,q1,⋯)), (2.5)

where the spectral operator is represented in terms of the hyperbolic cosine operators (1.2)

as

Ĥ−1(p1,q1,⋯) = P̂
−p1Q̂−q1⋯. (2.6)

Since the matrix models describing the brane configurations are realized by the spectral

operators, we would like to analyze the brane configuration in the viewpoint of the spectral

operators. Therefore, we consider the quantum curves obtained from the del Pezzo curves

through the quantization. When we choose the parameters of the quantum curves specially,

the spectral operators in the case without the rank differences are reproduced. And in this

section, we reveal that the symmetries of the parameters of the quantum curves contain the

transitions interpreted as the Hanany-Witten transitions by identifying the parameters of

the quantum curves and the rank differences. Furthermore, by regarding the symmetries of

the curves as the brane transitions, we propose the new brane transitions after separating

the Hanany-Witten transitions [1, 42].

2.2 Symmetries of curves

To investigate the correspondences between quantum curves and brane configurations,

the quantum curves need to be written in terms of the product of the hyperbolic cosine
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operators. Therefore, in this subsection, we give the quantum curves associated with the

A1, D5 and E7 del Pezzo curves [1, 29, 42, 47, 48]. These quantum curves are constructed

by replacing the variables of the algebraic curves with the operators q̂ and p̂ satisfying

the commutation relation [q̂, p̂] = ih̵. In this quantization, the operator order is important

because the operators must be ordered so that the Hamiltonian becomes the same function

before and after the quantization.

When the mirror curves of the A1, D5 and E7 del Pezzo curves are denotedH(A1), H(D5)

and H(E7) respectively and they are the functions of exponentials like H =H(ex, ey), these
curves are quantized as Ĥ = Ĥ(Q̂, P̂) by introducing the q-order1,

[Q̂α1P̂ β1Q̂α2P̂ β2⋯]q = q−
αβ
2 Q̂αP̂ β, (q = eih̵). (2.7)

The A1, D5 and E7 quantum curves associated with the del Pezzo curves Ĥ(1), Ĥ(5) and

Ĥ(7) are respectively given as

Ĥ(A1)

α
=[Q̂ 1

2 P̂
1
2 + Q̂ 1

2 P̂ −
1
2 + Q̂− 1

2 P̂
1
2 +mQ̂−

1
2 P̂ −

1
2 ]q, (2.8)

Ĥ(D5)

α
=[e3e4Q̂−1P̂ + (e3 + e4)P̂ + Q̂P̂

+ e3e4(
e5
h2

+ e6
h2

)Q̂−1 + E

α
+ ( 1

e1
+ 1

e2
)Q̂

+ 1

e1e2

h2
1

e7e8
Q̂−1P̂ −1 + 1

e1e2
(h1

e7
+ h1

e8
)P̂ −1 + 1

e1e2
Q̂P̂ −1]q, (2.9)

Ĥ(E7)

α
=[Q̂2P̂

+ Q̂(F (+)1 P̂ +H(−)1 )

+ F (+)2 P̂ + E

α
+H(−)2 P̂ −1

+ F (+)4 Q̂−1(P̂ + g1)(P̂ + g2)(F (−)1 P̂ + g1g2H(+)1 )P̂ −2

+ F (+)4 Q̂−2(P̂ + g1)(P̂ + g1)(P̂ + g2)(P̂ + g2)P̂ −3]q, (2.10)

with

F
(±)
n ∶= ∑

i1<⋯<in
(fi1⋯fin)

±1
, H

(±)
n ∶= ∑

i1<⋯<in
(hi1⋯hin)

±1
, (2.11)

1The q-order is understood from the Baker-Cambell-Hausdorff formula. For example, if we quantize

eax+by by x → q̂ and y → p̂ as eax+by → eaq̂+bp̂, then we do not need to consider the operator order since

the operaters q̂ and p̂ are commutative in eaq̂+bp̂. However, if we quantize eax+by by ex → Q̂ and ey → P̂ ,

we must consider the operator order so that the operators Q̂ and P̂ are not commutative.
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where m is the parameter of the A1 curve, e1,⋯, e8, h1, h2 are the parameters of the D5

curve and f1, f2, f3, f4, g1, g2, h1, h2, h3, h4 are the parameters of the E7 curve. And α and

E are the overall factor and the constant respectively. Also, in the D5 curve the ten

parameters e1,⋯, e8, h1, h2 satisfy the Vieta’s formula (h1h2)2 = ∏8
i=1 ei, while in the E7

curve the parameters satisfy the Vieta’s formula F
(+)
4 (g1g2)2H

(+)
4 = 1. By calculating the

q-order, the quantum curves are clearly represented as

Ĥ(A1)

α
=q− 1

8 Q̂
1
2 P̂

1
2 + q 1

8 Q̂
1
2 P̂ −

1
2 + q 1

8 Q̂−
1
2 P̂

1
2 + q− 1

8mQ̂−
1
2 P̂ −

1
2 , (2.12)

Ĥ(D5)

α
=q 1

2 e3e4Q̂
−1P̂ + (e3 + e4)P̂ + q−

1
2 Q̂P̂

+ e3e4(
e5
h2

+ e6
h2

)Q̂−1 + E

α
+ ( 1

e1
+ 1

e2
)Q̂

+ q− 1
2

1

e1e2

h2
1

e7e8
Q̂−1P̂ −1 + 1

e1e2
(h1

e7
+ h1

e8
)P̂ −1 + q 1

2
1

e1e2
Q̂P̂ −1, (2.13)

Ĥ(E7)

α
=q−1Q̂2P̂

+ q− 1
2 Q̂(F (+)1 P̂ + q 1

2H
(−)
1 )

+ F (+)2 P̂ + E

α
+H(−)2 P̂ −1

+ q 1
2F
(+)
4 Q̂−1(P̂ + q− 1

2 g1)(P̂ + q−
1
2 g2)(F (−)1 P̂ + q− 1

2 g1g2H
(+)
1 )P̂ −2

+ qF (+)4 Q̂−2(P̂ + q− 3
2 g1)(P̂ + q−

1
2 g1)(P̂ + q−

3
2 g2)(P̂ + q−

1
2 g2)P̂ −3, (2.14)

where we introduce the q-number [n]q for the sum of q,

[n]q ∶=
qn/2 − q−n/2
q1/2 − q−1/2

. (2.15)

By applying the similarity transitions to the quantum curves Ĥ, we adjust the coeffi-

cients of each term and transform Ĥ to make the asymptotic values easier to see,

Ĥ(A1)

α
=Q̂ 1

2 P̂
1
2 + Q̂ 1

2 P̂ −
1
2 + Q̂− 1

2 P̂
1
2 + q− 1

2mQ̂−
1
2 P̂ −

1
2 , (2.16)

Ĥ(D5)

α
=q− 1

2 Q̂−1(Q̂ + q 1
2 e3)(Q̂ + q

1
2 e4)P̂

+ e3e4(
e5
h2

+ e6
h2

)Q̂−1 + E

α
+ ( 1

e1
+ 1

e2
)Q̂

+ q 1
2

1

e1e2
Q̂−1(Q̂ + q− 1

2
h1

e7
)(Q̂ + q− 1

2
h1

e8
)P̂ −1, (2.17)
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Ĥ(E7)

α
=q−1Q̂2(P̂ + q 3

2 g1)(P̂ + q
1
2 g1)P̂ −1

+ q− 1
2 Q̂(P̂ + q 1

2 g1)(F (+)1 P̂ + q 1
2H

(−)
1 )P̂ −1

+ F (+)2 P̂ + E

α
+H(−)2 P̂ −1

+ q 1
2F
(+)
4 Q̂−1(P̂ + q− 1

2 g2)(F (−)1 P̂ + q− 1
2 g1g2H

(+)
1 )P̂ −1

+ qF (+)4 Q̂−2(P̂ + q− 3
2 g2)(P̂ + q−

1
2 g2)P̂ −1, (2.18)

where we give the similarity transitions applying the E7 curve in appendix B.

𝑃 → ∞

𝑄 → ∞𝑄 → 0

𝑃 → 0

1

1

𝑚

𝑚

𝑃 → ∞

𝑄 → ∞𝑄 → 0

𝑃 → 0

𝑔!

𝑓"
𝑃 → ∞

𝑄 → ∞𝑄 → 0

𝑃 → 0
1

𝑔!ℎ!

1
𝑔!ℎ"

1
𝑔!ℎ#

1
𝑔!ℎ$

𝑔$

𝑓# 𝑓!𝑓$

1
𝑒$
1
𝑒!

ℎ!
𝑒%

ℎ!
𝑒&

𝑒'
ℎ$
𝑒(
ℎ$

𝑒#𝑒"

Figure 1: Asymptotic values of the A1, D5 and E7 curves in the limits Q → ∞, P → ∞,

Q → 0 and P → 0. The symbols ● and ○ denote an asymptotic value and a doubly

degenerated asymptotic value, respectively. (Left) The four asymptotic values of the A1

curve are parametrized with one parameter m. (Center) The eight asymptotic values of

the D5 curve are parametrized with ten parameters. (Right) The ten asymptotic values

of the E7 curve are parametrized with ten parameters.

In the A1 curve, the asymptotic values in the limits Q→∞, P →∞, Q→ 0 and P → 0

are given as 1, 1, m and m respectively (see figure 1). Here we omitted the minus signs

of the asymptotic values since it does not affect our discussion. These asymptotic values

are transformed as

s1 ∶ m↔ 1/m, (2.19)

so that it preserves the A1 curve. This transition is given by the similarity transition

(Q,P ) ↔ (P −1,Q) which means the clockwide rotation of the asymptotic values in the

figure 1. As in the A1 case, in theD5 curve the asymptotic values in the limits Q→∞, P →
∞, Q → 0 and P → 0 are given as {1/e1,1/e2}, {e3, e4}, {e5/h2, e6/h2} and {h1/e7, h1/e8}

14



respectively (see figure 1) and they are transformed while preserving the D5 curve as

s5 ∶ 1/e1↔ 1/e2,
s2 ∶ e3↔ e4,

s0 ∶ e5/h2↔ e6/h2,

s1 ∶ h1/e7↔ h1/e8,
s4 ∶ 1/e1↔ e5/h2,

s3 ∶ e3↔ h1/e7, (2.20)

where s0 is described in terms of other transitions si≠0 as s0 = s4s3s2s5s4s3s1s3s4s5s2s3s4
because the parameters are not independent. And in the E7 curve, the asymptotic values

in the limits Q →∞, P →∞, Q → 0 and P → 0 are expected as g1, {f1, f2, f3, f4}, g2 and

{(g1h1)−1, (g1h2)−1, (g1h3)−1, (g1h4)−1} where g1 and g2 are doubly degenerate (see figure

1), which are resoled by quantization. These asymptotic values are transformed while

preserving the E7 curve as

s2 ∶ f1↔ f2,

s1 ∶ f2↔ f3,

s0 ∶ f3↔ f4,

s5 ∶ (g1h1)−1↔ (g1h2)−1,
s6 ∶ (g1h2)−1↔ (g1h3)−1,
s7 ∶ (g1h3)−1↔ (g1h4)−1,
s4 ∶ g1↔ g2,

s3 ∶ f1↔ (g1h1)−1, (2.21)

where since s0 can be described in terms of other transitions si≠0 as in the D5 case, s0 is

auxiliary transition in this sense.

In the A1 case, the transition s1 acts to one parameter m and is a generator of the

Weyl group W (A1) on the one-dimensional parameter space CA1

P = {m}. On the other

hand, in the D5 and E7 cases, the numbers of the transitions si and the parameters do not

match. This problem is solved by considering one constraint (Vieta’s formula), fixing two

degrees of freedom derived from the similarity transitions Q̂→ AQ̂ and P̂ → BP̂ and fixing

extra degrees of freedom created by the differences between the numbers of the asymptotic

15



values and parameters2. For the parameters of the D5 curve, we choose the parameters as

e2 = e4 = e6 = e8 = 1, e7 =
(h1h2)2
e1e3e5

, (2.22)

and in the case of the E7 curve as

f4 = g2 = 1, h4 =
1

f1f2f3g21h1h2h3

. (2.23)

By these parameter fixings, in both cases of the D5 and E7 curves the numbers of the

transitions si and the parameters match. In the D5 case, transitions si act to the five-

dimensional parameter space CD5

P = {(h1, h2, e1, e3, e5)} as

s5 ∶ (h1, h2, e1, e3, e5)↦ (h1,
h2

e1
,
1

e1
, e3, e5),

s2 ∶ (h1, h2, e1, e3, e5)↦ (
h1

e3
, h2, e1,

1

e3
, e5),

s0 ∶ (h1, h2, e1, e3, e5)↦ (h1,
h2

e5
, e1, e3,

1

e5
),

s1 ∶ (h1, h2, e1, e3, e5)↦ (
e1e3e5
h1h2

2

, h2, e1, e3, e5),

s4 ∶ (h1, h2, e1, e3, e5)↦ (
h1h2

e1e5
, h2,

h2

e5
, e3,

h2

e1
),

s3 ∶ (h1, h2, e1, e3, e5)↦ (h1,
e1e5
h1h2

, e1,
e1e3e5
h1h2

2

, e5), (2.24)

and generate the Weyl group W (D5). Similarly, in the E7 case the transitions si act to

the seven-dimensional parameter space CE7

P = {(f1, f2, f3, g1, h1, h2, h3)} as

s2 ∶ (f1, f2, f3, g1, h1, h2, h3)↦ (f2, f1, f3, g1, h1, h2, h3),
s1 ∶ (f1, f2, f3, g1, h1, h2, h3)↦ (f1, f3, f2, g1, h1, h2, h3),

s0 ∶ (f1, f2, f3, g1, h1, h2, h3)↦ (
f1
f3
,
f2
f3
,
1

f3
, g1, f3h1, f3h2, f3h3),

s5 ∶ (f1, f2, f3, g1, h1, h2, h3)↦ (f1, f2, f3, g1, h2, h1, h3),
s6 ∶ (f1, f2, f3, g1, h1, h2, h3)↦ (f1, f2, f3, g1, h1, h3, h2),

s7 ∶ (f1, f2, f3, g1, h1, h2, h3)↦ (f1, f2, f3, g1, h1, h2,
1

f1f2f3g21h1h2h3

),

s4 ∶ (f1, f2, f3, g1, h1, h2, h3)↦ (f1, f2, f3,
1

g1
, h1, h2, h3),

s3 ∶ (f1, f2, f3, g1, h1, h2, h3)↦ (
1

g1f1
, f2, f3,

1

f1h1

, h1, (f1g1h1)h2, (f1g1h1)h3), (2.25)

and generate the Weyl group W (E7).
2if there are n asymptotic values andm(≤ n) parameters of the curve, we can fix the (n−m) parameters.
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2.3 Case without rank differences

In this subsection, we consider the quantum curves associated with the super Chern-

Simons matrix models having the gauge groups, U(N) × U(N), U(N) × U(N) × U(N) ×
U(N) and U(N) ×U(N) ×⋯U(N)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
six

. Then, these curves are respectively represented as the

combinations of the hyperbolic cosine operators Q̂ and P̂ in the order of the Chern-Simons

levels (1.4). Among them, the combinations of one Q̂ and one P̂,

Q̂P̂, P̂Q̂, (2.26)

namely the quantum curve of (1,1) model Ĥ(1,1)3 is included in the A1 quantum curve.

Similarly, the combinations of two Q̂ and two P̂,

Q̂Q̂P̂P̂, Q̂P̂Q̂P̂, Q̂P̂P̂Q̂, P̂Q̂Q̂P̂, P̂Q̂P̂Q̂, P̂P̂Q̂Q̂, (2.27)

are included in the D5 quantum curve. These operators are those in the (2,2) model and

the (1,1,1,1) model. Finally, we consider the combinations of four Q̂ and two P̂ included

in the E7 quantum curve. Since the E7 curve have the following structure,

Ĥ(E7)

α
= q−1Q̂2(P̂ + q 3

2 g1)(P̂ + q
1
2 g1)P̂ −1 +⋯ + qF (+)4 Q̂−2(P̂ + q− 3

2 g2)(P̂ + q−
1
2 g2)P̂ −1,

(2.28)

the curves included in this curve must have the structure: ⋯P̂Q̂2P̂⋯. Thus, only parts of

the combinations,

Q̂Q̂P̂Q̂Q̂P̂, Q̂P̂Q̂Q̂P̂Q̂, P̂Q̂Q̂P̂Q̂Q̂, (2.29)

are Ĥ(2,1,2,1)4 included in the E7 quantum curve.

There are the brane configurations corresponding to above curves constructed by the

combinations of the hyperbolic cosine operators Q̂ and P̂ and at the same time we can

derive asymptotic values for each curve (see table 1). From table 1, it is found that we

make pairs in the asymptotic values facing each other (compare table 1 and figure 1).

Also, we can also understand these pairings from

P̂Q̂n
2 = Q̂n

2 (q−n
4 P̂

1
2 + q n

4 P̂ −
1
2 ),

3The operators in (2.26) are equivalent under the similarity tansitions.
4The (2,1,2,1) model, the (1,1,2,1,1) and the (1,2,1,2) model are equivalent under the similarity

transformations.
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types 1 1 m m brane configurations

Q̂P̂ 1 1 q
1
2 q

1
2 ⟨0 ● 0○⟩

P̂Q̂ 1 1 q−
1
2 q−

1
2 ⟨0 ○ 0●⟩

types {e−11 , e−12 } {e3, e4} {h−12 e5, h−12 e6} {h1e−17 , h1e−18 } brane configurations

Q̂Q̂P̂P̂ {q− 1
2 , q−

1
2} {q− 1

2 , q−
1
2} {q 1

2 , q
1
2} {q 1

2 , q
1
2} ⟨0 ● 0 ● 0 ○ 0○⟩

Q̂P̂Q̂P̂ {q− 1
2 ,1} {q− 1

2 ,1} {1, q 1
2} {1, q 1

2} ⟨0 ● 0 ○ 0 ● 0○⟩
Q̂P̂P̂Q̂ {1,1} {q− 1

2 , q
1
2} {1,1} {q− 1

2 , q
1
2} ⟨0 ○ 0 ● 0 ● 0○⟩

P̂Q̂Q̂P̂ {q− 1
2 , q

1
2} {1,1} {q− 1

2 , q
1
2} {1,1} ⟨0 ● 0 ○ 0 ○ 0●⟩

P̂Q̂P̂Q̂ {1, q 1
2} {1, q 1

2} {q− 1
2 ,1} {q− 1

2 ,1} ⟨0 ○ 0 ● 0 ○ 0●⟩
P̂P̂Q̂Q̂ {q 1

2 , q
1
2} {q 1

2 , q
1
2} {q− 1

2 , q−
1
2} {q− 1

2 , q−
1
2} ⟨0 ○ 0 ○ 0 ● 0●⟩

types {fi}i=1,⋯,4 g1 g2 {(g1hi)−1}i=1,⋯,4 brane configurations

Q̂2P̂Q̂2P̂ {q− 1
2 , q−

1
2 ,1,1} q−

1
2 q

1
2 {1,1, q 1

2 , q
1
2} ⟨0 ● 0 ○ 0 ○ 0 ● 0 ○ 0○⟩

Q̂P̂Q̂2P̂Q̂ {q− 1
2 ,1,1, q

1
2} 1 1 {q− 1

2 ,1,1, q
1
2} ⟨0 ○ 0 ● 0 ○ 0 ○ 0 ● 0○⟩

P̂Q̂2P̂Q̂2 {1,1, q 1
2 , q

1
2} q

1
2 q−

1
2 {q− 1

2 , q−
1
2 ,1,1} ⟨0 ○ 0 ○ 0 ● 0 ○ 0 ○ 0●⟩

Table 1: Asymptotic values of A1, D5 and E7 quantum curves and corresponding brane

configurations. The asymptotic values are arranged in the order of those in the limits

Q→∞, P →∞, Q→ 0 and P → 0.

P̂
n
2 Q̂ = (q−n

4 Q̂
1
2 + q n

4 Q̂−
1
2 )P̂ n

2 . (2.30)

In this subsection without the rank differences, we do not need to consider these pairings,

however in the next subsection, namely in the case with the rank differences, these param-

eter pairings are needed for the correspondences between the parameters of the curves and

the rank differences which are the numbers of the D3-branes stretching in each interval of

5-branes.

Originally there is only one parameter in the A1 curve, thus the number of the pa-

rameters describing the asymptotic values does not decrease due to the pairing between

the asymptotic values. However, in the cases of the D5 and E7 curves, the number of the

parameters decreases by pairing the asymptotic values. In the D5 case, since there are

four pairs of the asymptotic values, the curves in D5 curve type are labeled with the three

parameters. And in the E7 case, the curves are distinguished by only four parameters due

to the pairings. Therefore by reducing the parameters as

(h1, e3, h2, e1, e5) = (
m2m3

m1

,m2m3,
m1m3

m2

,
m3

m2

,
m3

m2

),
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(f1, f2, f3, g1, h1, h2, h3) = (f1, f2, f3, g1,
√

f1
f2f3g1

,

√
f2

f3f1g1
,

√
f3

f1f2g1
), (2.31)

and by labeling formally the hyperbolic cosine operators, we correspond the labeled quan-

tum curves to the points of subspace of the parameter space, CD5

P ⊃ C
(2,2)
B = {(m1,m2,m3)}5

in the case of the D5 curve type and CE7

P ∩C
(2,4)
B = {(f1, f2, f3, g1)} in the case of the E7

curve type (see table 2 and table 3).

types quantum curves (h1, e3, h2, e1, e5) (m1,m2,m3)
Q̂Q̂P̂P̂ Q̂2Q̂1P̂iP̂ii (q,1, q−1,1,1) (q−1,1,1)
Q̂P̂Q̂P̂ Q̂2P̂iQ̂1P̂ii (q, q 1

2 , q−1, q−
1
2 , q−

1
2 ) (q− 1

2 , q
1
2 ,1)

Q̂1P̂iQ̂2P̂ii (1, q− 1
2 , q−1, q−

1
2 , q−

1
2 ) (q− 1

2 ,1, q−
1
2 )

Q̂2P̂iiQ̂1P̂i (q, q 1
2 , 1, q

1
2 , q

1
2 ) (q− 1

2 ,1, q
1
2 )

Q̂1P̂iiQ̂2P̂i (1, q− 1
2 , 1, q

1
2 , q

1
2 ) (q− 1

2 , q−
1
2 ,1)

Q̂P̂P̂Q̂ Q̂2P̂iP̂iiQ̂1 (q−1, q, 1,1,1) (1, q 1
2 , q

1
2 )

Q̂1P̂iP̂iiQ̂2 (q, q−1, 1,1,1) (1, q− 1
2 , q−

1
2 )

P̂Q̂Q̂P̂ P̂iQ̂2Q̂1P̂ii (1,1, q−1, q−1, q−1) (1, q 1
2 , q−

1
2 )

P̂iiQ̂2Q̂1P̂i (1,1, q, q, q) (1, q− 1
2 , q

1
2 )

P̂Q̂P̂Q̂ P̂iQ̂2P̂iiQ̂1 (1, q 1
2 , 1, q−

1
2 , q−

1
2 ) (q 1

2 , q
1
2 ,1)

P̂iQ̂1P̂iiQ̂2 (q−1, q− 1
2 , 1, q−

1
2 , q−

1
2 ) (q 1

2 ,1, q−
1
2 )

P̂iiQ̂2P̂iQ̂1 (1, q 1
2 , q, q

1
2 , q

1
2 ) (q 1

2 ,1, q
1
2 )

P̂iiQ̂1P̂iQ̂2 (q−1, q− 1
2 , q, q

1
2 , q

1
2 ) (q 1

2 , q−
1
2 ,1)

P̂P̂Q̂Q̂ P̂iP̂iiQ̂2Q̂1 (q−1,1, q,1,1) (q,1,1)

Table 2: Point configurations for the D5 quantum curves. In the parameter space

CD5

P = {(h1, h2, e1, e3, e5)}, the parameters h1 and e3 are decided from the asymptotic

values of the limits P → 0,∞, also the parameters h2, e1 and e5 are decided from the

asumptotic values of the limits Q → 0,∞. And the point configurations corresponding to

the brane configurations give the three-dimensional subspace C
(2,2)
B = {(m1,m2,m3)} in

the parameter space CD5

P under the constraint (2.31).

5C
(p,q)
B denotes the space of the brane configurations described by p NS5-branes and q (1, k)5-branes.

In the case with the equal ranks, the models are distinguished by the order of the 5-branes. For example,

(2,2)model and (1,1,1,1)model are not equivalent under the similarity transitions thus are distinguished.

However, in the case with the difference ranks, the models cannot be distinguished due to the Hanany-

Witten transitions. Thus, we distinguish the spaces of the brane configurations with the rank differences

by the number of the NS5-branes and the number of the (1, k)5-branes as C(p,q)B .
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types quantum curves (f1, f2, f3, g1, h1, h2, h3)
Q̂2P̂Q̂2P̂ Q̂4Q̂3P̂iQ̂2Q̂1P̂ii (q 1

2 , q
1
2 ,1, q−1, q

1
2 , q

1
2 ,1)

Q̂4Q̂2P̂iQ̂3Q̂1P̂ii (q 1
2 ,1, q

1
2 , q−1, q

1
2 ,1, q

1
2 )

Q̂4Q̂1P̂iQ̂3Q̂2P̂ii (1, q 1
2 , q

1
2 , q−1, 1, q

1
2 , q

1
2 )

Q̂3Q̂2P̂iQ̂4Q̂1P̂ii (1, q− 1
2 , q−

1
2 , q−1, q, q

1
2 , q

1
2 )

Q̂3Q̂1P̂iQ̂4Q̂2P̂ii (q− 1
2 ,1, q−

1
2 , q−1, q

1
2 , q, q

1
2 )

Q̂2Q̂1P̂iQ̂4Q̂3P̂ii (q− 1
2 , q−

1
2 ,1, q−1, q

1
2 , q

1
2 , q)

Q̂P̂Q̂2P̂Q̂ Q̂4P̂iQ̂3Q̂2P̂iiQ̂1 (q, q 1
2 , q

1
2 , 1, 1, q−

1
2 , q−

1
2 )

Q̂4P̂iQ̂3Q̂1P̂iiQ̂2 (q 1
2 , q, q

1
2 , 1, q−

1
2 ,1, q−

1
2 )

Q̂4P̂iQ̂2Q̂1P̂iiQ̂3 (q 1
2 , q

1
2 , q, 1, q−

1
2 , q−

1
2 ,1)

Q̂3P̂iQ̂4Q̂2P̂iiQ̂1 (q 1
2 ,1, q−

1
2 , 1, q

1
2 ,1, q−

1
2 )

Q̂3P̂iQ̂4Q̂1P̂iiQ̂2 (1, q 1
2 , q−

1
2 , 1, 1, q

1
2 , q−

1
2 )

Q̂3P̂iQ̂2Q̂1P̂iiQ̂4 (q− 1
2 , q−

1
2 , q−1, 1, q

1
2 , q

1
2 ,1)

Q̂2P̂iQ̂4Q̂3P̂iiQ̂1 (q 1
2 , q−

1
2 ,1, 1, q

1
2 , q−

1
2 ,1)

Q̂2P̂iQ̂4Q̂1P̂iiQ̂3 (1, q− 1
2 , q

1
2 , 1, 1, q−

1
2 , q

1
2 )

Q̂2P̂iQ̂3Q̂1P̂iiQ̂4 (q− 1
2 , q−1, q−

1
2 , 1, q

1
2 ,1, q

1
2 )

Q̂1P̂iQ̂4Q̂3P̂iiQ̂2 (q− 1
2 , q

1
2 ,1, 1, q−

1
2 , q

1
2 ,1)

Q̂1P̂iQ̂4Q̂2P̂iiQ̂3 (q− 1
2 ,1, q

1
2 , 1, q−

1
2 ,1, q

1
2 )

Q̂1P̂iQ̂3Q̂2P̂iiQ̂4 (q−1, q− 1
2 , q−

1
2 , 1, 1, q

1
2 , q

1
2 )

P̂Q̂2P̂Q̂2 P̂iQ̂4Q̂3P̂iiQ̂2Q̂1 (q 1
2 , q

1
2 ,1, q, q−

1
2 , q−

1
2 , q−1)

P̂iQ̂4Q̂2P̂iiQ̂3Q̂1 (q 1
2 ,1, q

1
2 , q, q−

1
2 , q−1, q−

1
2 )

P̂iQ̂4Q̂1P̂iiQ̂3Q̂2 (1, q 1
2 , q

1
2 , q, q−1, q−

1
2 , q−

1
2 )

P̂iQ̂3Q̂2P̂iiQ̂4Q̂1 (1, q 1
2 , q

1
2 , q, 1, q−

1
2 , q−

1
2 )

P̂iQ̂3Q̂1P̂iiQ̂4Q̂2 (q 1
2 ,1, q

1
2 , q, q−

1
2 ,1, q−

1
2 )

P̂iQ̂2Q̂1P̂iiQ̂4Q̂3 (q 1
2 , q

1
2 ,1, q, q−

1
2 , q−

1
2 ,1)

Table 3: Point configurations for the E7 quantum curves. The labeled quantum curves

are corresponded to the point of C
(2,4)
B ∩ CE7

P = {(f1, f2, f3, g1)}, since hi are written as

hi =
√

fi
fjfkg1

(subscripts i, j, k are different).
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2.4 Case with rank differences

In the previous subsection, we have discussed the correspondences between the quantum

curves and the brane configurations without the rank differences. In this subsection,

through the Hanany-Witten transitions [41], we formulate the correspondences in the case

with the rank differences.

When we consider the case with the rank differences, we correspond the rank differences

to the parameter differences of the curves. Then, since the parameters are labeled and

distinguished, the quantum curves need to be labeled and we need to decide a reference.

In the case of the A1 curve, if we consider Q̂1P̂i as a reference and the parameter m of this

curve is denotedm(s), then the difference fromm(s) for another curve P̂iQ̂1 is denoted δm =
m/m(s). On the other hand, since we can consider the Hanany-Witten transitions (1.10) for

brane configurations, we can align the 5-branes of the brane configuration corresponding

to each curve with same sequence as a reference curve (we call this sequence standard

sequence) and read the difference of the number of the D3-branes in the interval of 5-

branes from the reference rank. We identify the parameter difference δm and the rank

difference M as

δm = m

m(s)
= e−2πiM , (2.32)

and summarize the comparison between the rank differences and the brane configurations

in table 4.

quantum curves M brane configurations

Q̂1P̂i 0 ⟨0 i● 01○⟩
P̂iQ̂1 k ⟨0 1○ 0 i●⟩ = ⟨0 i● k1○⟩

Table 4: Comparison between the rank differences and the brane configurations for the

(1,1) model. Here we omit the overall rank N .

As in the A1 case, in the cases of the D5 and E7 curves, we choose Q̂2Q̂1P̂iP̂ii and
Q̂4Q̂3P̂iQ̂2Q̂1P̂ii as references respectively. And we identify the parameter differences and

the rank differences as follows,

(δm1, δm2, δm3) = (
m1

m1(s)
,
m2

m2(s)
,
m3

m3(s)
) = (e2πiM1 , e2πiM2 , e2πiM3),

(δf1, δf2, δf3, δg1) = (
f1
f1(s)

,
f2
f2(s)

,
f3
f3(s)

,
g1
g1(s)
) = (e2πiF1 , e2πiF2 , e2πiF3 , e2πiG1). (2.33)
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In the E7 case, since the asymptotic values in the limit Q→ 0,∞ are paired, we decide to

place the operator P̂i on the left and P̂ii on the right. Namely, when we correspond the

brane configurations to the labeled E7 curves, the Hanany-Witten transition between the

NS5-branes is restricted.

quantum curves (M1,M2,M3) brane configurations

Q̂2Q̂1P̂iP̂ii (0,0,0) ⟨0 ii● 0 i● 0 1○ 02○⟩

Q̂2P̂iQ̂1P̂ii (k2 ,
k
2 ,0) ⟨0 ii● 0 1○ 0 i● 02○⟩ = ⟨0 ii● 0 i● k 1○ 02○⟩

Q̂1P̂iQ̂2P̂ii (k2 ,0,−
k
2) ⟨0 ii● 0 2○ 0 i● 01○⟩ = ⟨0 ii● 0 i● k 1○ k2○⟩

Q̂2P̂iiQ̂1P̂i (k2 ,0,
k
2) ⟨0 i● 0 1○ 0 ii● 02○⟩ = ⟨0 ii● k i● k 1○ 02○⟩

Q̂1P̂iiQ̂2P̂i (k2 ,−
k
2 ,0) ⟨0 i● 0 2○ 0 ii● 01○⟩ = ⟨0 ii● k i● k 1○ k2○⟩

Q̂2P̂iP̂iiQ̂1 (k, k2 ,
k
2) ⟨0 1○ 0 ii● 0 i● 02○⟩ = ⟨0 ii● k i● 2k 1○ 02○⟩

Q̂1P̂iP̂iiQ̂2 (k,−k
2 ,−

k
2) ⟨0 2○ 0 ii● 0 i● 01○⟩ = ⟨0 ii● k i● 2k 1○ 2k2○⟩

P̂iQ̂2Q̂1P̂ii (k, k2 ,−
k
2) ⟨0 ii● 0 1○ 0 2○ 0 i●⟩ = ⟨0 ii● 0 i● 2k 1○ k2○⟩

P̂iiQ̂2Q̂1P̂i (k,−k
2 ,

k
2) ⟨0 i● 0 1○ 0 2○ 0ii●⟩ = ⟨0 ii● 2k i● 2k 1○ k2○⟩

P̂iQ̂2P̂iiQ̂1 (3k2 ,
k
2 ,0) ⟨0 1○ 0 ii● 0 2○ 0 i●⟩ = ⟨0 ii● k i● 3k 1○ k2○⟩

P̂iQ̂1P̂iiQ̂2 (3k2 ,0,−
k
2) ⟨0 2○ 0 ii● 0 1○ 0 i●⟩ = ⟨0 ii● k i● 3k 1○ 2k2○⟩

P̂iiQ̂2P̂iQ̂1 (3k2 ,0,
k
2) ⟨0 1○ 0 i● 0 2○ 0ii●⟩ = ⟨0 ii● 2k i● 3k 1○ k2○⟩

P̂iiQ̂1P̂iQ̂2 (3k2 ,−
k
2 ,0) ⟨0 2○ 0 i● 0 1○ 0ii●⟩ = ⟨0 ii● 2k i● 3k 1○ 2k2○⟩

P̂iP̂iiQ̂2Q̂1 (2k,0,0) ⟨0 1○ 0 2○ 0 ii● 0 i●⟩ =⟨0 ii● 2k i● 4k 1○ 2k2○⟩

Table 5: Comparison between the rank differences and the brane configurations for the

(2,2) models and the (1,1,1,1) models. Here we omit the overall rank N .

It is found that the correspondences between the point configurations and the brane

configurations from table 4, 5 and 6. If the overall rank is denoted N , we identify the

point configurations with the brane configurations for the A1 curve, the D5 curve and the

E7 curve respectively as

⟨N1
i●N2

1○⟩ = ⟨N i●N +M 1○⟩, (2.34)

⟨N1
ii●N2

i●N3
1○N4

2○⟩ = ⟨N ii●N +M1 −M2 +M3
i●N + 2M1

1○N +M1 −M2 −M3
2○⟩, (2.35)

and

⟨N1
ii●N2

1○N3
2○N4

i●N5
3○N6

4○⟩
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quantum curves (F1, F2, F3,G1) brane configurations

Q̂4Q̂3P̂iQ̂2Q̂1P̂ii (k2 ,
k
2 ,0,−k) ⟨0 ii● 0 1○ 0 2○ 0 i● 0 3○ 04○⟩

Q̂4Q̂2P̂iQ̂3Q̂1P̂ii (k2 ,0,
k
2 ,−k) ⟨0 ii● 0 1○ 0 3○ 0 i● 0 2○ 04○⟩ = ⟨0 ii● 0 1○ 0 2○ k i● k 3○ 04○⟩

Q̂4Q̂1P̂iQ̂3Q̂2P̂ii (0, k2 ,
k
2 ,−k) ⟨0 ii● 0 2○ 0 3○ 0 i● 0 1○ 04○⟩ = ⟨0 ii● 0 1○ k 2○ k i● k 3○ 04○⟩

Q̂3Q̂2P̂iQ̂4Q̂1P̂ii (0,−k
2 ,−

k
2 ,−k) ⟨0 ii● 0 1○ 0 4○ 0 i● 0 2○ 03○⟩ = ⟨0 ii● 0 1○ 0 2○ k i● k 3○ k4○⟩

Q̂3Q̂1P̂iQ̂4Q̂2P̂ii (−k
2 ,0,−

k
2 ,−k) ⟨0 ii● 0 2○ 0 4○ 0 i● 0 1○ 03○⟩ = ⟨0 ii● 0 1○ k 2○ k i● k 3○ k4○⟩

Q̂2Q̂1P̂iQ̂4Q̂3P̂ii (−k
2 ,−

k
2 ,0,−k) ⟨0 ii● 0 3○ 0 4○ 0 i● 0 1○ 02○⟩ = ⟨0 ii● 0 1○ k 2○ 2k i● 2k 3○ k4○⟩

Q̂4P̂iQ̂3Q̂2P̂iiQ̂1 (k, k2 ,
k
2 ,0) ⟨0 1○ 0 ii● 0 2○ 0 3○ 0 i● 04○⟩ = ⟨0 ii● k 1○ 0 2○ 0 i● k 3○ 04○⟩

Q̂4P̂iQ̂3Q̂1P̂iiQ̂2 (k2 , k,
k
2 ,0) ⟨0 2○ 0 ii● 0 1○ 0 3○ 0 i● 04○⟩ = ⟨0 ii● k 1○ k 2○ 0 i● k 3○ 04○⟩

Q̂4P̂iQ̂2Q̂1P̂iiQ̂3 (k2 ,
k
2 , k,0) ⟨0 3○ 0 ii● 0 1○ 0 2○ 0 i● 04○⟩ = ⟨0 ii● k 1○ k 2○ k i● 2k 3○ 04○⟩

Q̂3P̂iQ̂4Q̂2P̂iiQ̂1 (k2 ,0,−
k
2 ,0) ⟨0 1○ 0 ii● 0 2○ 0 4○ 0 i● 03○⟩ = ⟨0 ii● k 1○ 0 2○ 0 i● k 3○ k4○⟩

Q̂3P̂iQ̂4Q̂1P̂iiQ̂2 (0, k2 ,−
k
2 ,0) ⟨0 2○ 0 ii● 0 1○ 0 4○ 0 i● 03○⟩ = ⟨0 ii● k 1○ k 2○ 0 i● k 3○ k4○⟩

Q̂3P̂iQ̂2Q̂1P̂iiQ̂4 (−k
2 ,−

k
2 ,−k,0) ⟨0 4○ 0 ii● 0 1○ 0 2○ 0 i● 03○⟩ = ⟨0 ii● k 1○ k 2○ k i● 2k 3○ 2k4○⟩

Q̂2P̂iQ̂4Q̂3P̂iiQ̂1 (k2 ,−
k
2 ,0,0) ⟨0 1○ 0 ii● 0 3○ 0 4○ 0 i● 02○⟩ = ⟨0 ii● k 1○ 0 2○ k i● 2k 3○ k4○⟩

Q̂2P̂iQ̂4Q̂1P̂iiQ̂3 (0,−k
2 ,

k
2 ,0) ⟨0 3○ 0 ii● 0 1○ 0 4○ 0 i● 02○⟩ = ⟨0 ii● k 1○ k 2○ 2k i● 3k 3○ k4○⟩

Q̂2P̂iQ̂3Q̂1P̂iiQ̂4 (−k
2 ,−k,−

k
2 ,0) ⟨0 4○ 0 ii● 0 1○ 0 3○ 0 i● 02○⟩ = ⟨0 ii● k 1○ 0 2○ 2k i● 3k 3○ 2k4○⟩

Q̂1P̂iQ̂4Q̂3P̂iiQ̂2 (−k
2 ,

k
2 ,0,0) ⟨0 2○ 0 ii● 0 3○ 0 4○ 0 i● 01○⟩ = ⟨0 ii● k 1○ 2k 2○ k i● 2k 3○ k4○⟩

Q̂1P̂iQ̂4Q̂2P̂iiQ̂3 (−k
2 ,0,

k
2 ,0) ⟨0 3○ 0 ii● 0 2○ 0 4○ 0 i● 01○⟩ = ⟨0 ii● k 1○ 2k 2○ 2k i● 3k 3○ k4○⟩

Q̂1P̂iQ̂3Q̂2P̂iiQ̂4 (−k,−k
2 ,−

k
2 ,0) ⟨0 4○ 0 ii● 0 2○ 0 3○ 0 i● 01○⟩ = ⟨0 ii● k 1○ 2k 2○ 2k i● 3k 3○ 2k4○⟩

P̂iQ̂4Q̂3P̂iiQ̂2Q̂1 (k2 ,
k
2 ,0, k) ⟨0 1○ 0 2○ 0 ii● 0 3○ 0 4○ 0 i●⟩ = ⟨0 ii● 2k 1○ k 2○ 0 i● 2k 3○ k4○⟩

P̂iQ̂4Q̂2P̂iiQ̂3Q̂1 (k2 ,0,
k
2 , k) ⟨0 1○ 0 3○ 0 ii● 0 2○ 0 4○ 0 i●⟩ = ⟨0 ii● 2k 1○ k 2○ k i● 3k 3○ k4○⟩

P̂iQ̂4Q̂1P̂iiQ̂3Q̂2 (0, k2 ,
k
2 , k) ⟨0 2○ 0 3○ 0 ii● 0 1○ 0 4○ 0 i●⟩ = ⟨0 ii● 2k 1○ 2k 2○ k i● 3k 3○ k4○⟩

P̂iQ̂3Q̂2P̂iiQ̂4Q̂1 (0,−k
2 ,−

k
2 , k) ⟨0 1○ 0 4○ 0 ii● 0 2○ 0 3○ 0 i●⟩ = ⟨0 ii● 2k 1○ k 2○ k i● 3k 3○ 2k4○⟩

P̂iQ̂3Q̂1P̂iiQ̂4Q̂2 (−k
2 ,0,−

k
2 , k) ⟨0 2○ 0 4○ 0 ii● 0 1○ 0 3○ 0 i●⟩ = ⟨0 ii● 2k 1○ 2k 2○ k i● 3k 3○ 2k4○⟩

P̂iQ̂2Q̂1P̂iiQ̂4Q̂3 (−k
2 ,−

k
2 ,0, k) ⟨0 3○ 0 4○ 0 ii● 0 1○ 0 2○ 0 i●⟩ = ⟨0 ii● 2k 1○ 2k 2○ 2k i● 4k 3○ 2k4○⟩

Table 6: Comparison between the rank differences and the brane configurations for the

(2,4) models. Here we omit the overall rank N .
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=⟨N ii●N +G1 + k
1○N + 1

2
(−3F1 + F2 + F3 +G1) + k

2○N − F1 − F2 + F3 + k

i●N − F1 − F2 + F3 +G1 + 2k
3○N + 1

2
(−F1 − F2 − F3 +G1) + k

4○⟩. (2.36)

Then, in the case of the E7 curve, the extra constraint appears

N1 +N5 = N2 +N4. (2.37)

This constraint means that the sums of the numbers of the D3-branes stretching in both

sides of NS5-branes are equal and is called a balanced condition [1].

2.5 Brane transitions from Weyl group

In this subsection, we review for the local brane transitions (local rule) [1, 42]. These

transitions are the brane transitions proposed from the viewpoint of the quantum curves

and derived by regarding the Weyl reflections for the parameters as the brane transitions

under identifications between the point configurations and the brane configurations given

in the previous subsection.

In the case of the A1 curve, the Weyl group W (A1) is generated by

s1 ∶M ↦ k −M. (2.38)

For the brane configurations, this transition is expressed as

s1 ∶ ⟨N1
i●N2

1○⟩↦ ⟨N1
1○N2

i●⟩. (2.39)

In this case, there is no reason to interpret the symmetry of the curve as the brane

transition, however the Weyl groups of the D5 and E7 curves include the Hanany-Witten

transitions. Therefore, other transitions after separating the Hanany-Witten transitions

are also interpreted as the brane transitions.

For the D5 and the E7 curves, the Weyl groups are folded due to the pairings of the

parameters (Z2 folding). The D5 and E7 Dynkin diagrams are folded as the B3 and F4

Dynkin diagrams respectively.

In the case of the D5 curve, under the identification between the point configurations

and the brane configurations, since the asymptotic values are paired, the parameter tran-

sitions are also paired (see figure 2). Therefore the symmetries of the curve are expressed

as

s1s2 ∶ (M1,M2,M3)↦ (M1,−M3,−M2),
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Figure 2: Z2 folding. Here, s0 is the auxiliary transition.

s3 ∶ (M1,M2,M3)↦ (−M2 −M3 + k,
1

2
(−M1 +M2 −M3 + k),

1

2
(−M1 −M2 +M3 + k)),

s4 ∶ (M1,M2,M3)↦ (−M2 +M3 + k,
1

2
(−M1 +M2 +M3 + k),

1

2
(M1 +M2 +M3 − k)),

s5s0 ∶ (M1,M2,M3)↦ (M1,M3,M2), (2.40)

and generate the Weyl group W (B3)6. These transitions are expressed for the brane

configurations as

s1s2 ∶⟨N1
ii●N2

i●N3
1○N4

2○⟩↦ ⟨N1
ii●N2

i●N3
1○N3 −N4 +N1

2○⟩,

s3 ∶⟨N1
ii●N2

1○N ′3
i●N4

2○⟩↦ ⟨N1
ii●N ′3

1○N2
i●N4

2○⟩,

s4 ∶⟨N1
ii●N2

1○N ′3
i●N4

2○⟩↦ ⟨N1
ii●N2

1○N4
i●N ′3

2○⟩,

s5s0 ∶⟨N1
ii●N2

i●N3
1○N4

2○⟩↦ ⟨N1
ii●N1 −N2 +N3

i●N3
1○N4

2○⟩, (2.41)

with N ′3 = N2 − N3 + N4 + k. Here, the transitions s1s2 and s5s0 are interpreted as the

Hanany-Witten transitions between (1, k)5-branes and between the NS5-branes respec-

tively. Moreover, after separating the Hanany-Witten transitions, if s3 and s4 are also

interpreted as the brane transitions, they are respectively interpreted as the exchanges

between the number of the D3-branes stretching both sides of (1, k)5-brane surrounded

by NS5-branes and NS5-brane surrounded by (1, k)5-branes.

As in the D5 case, the symmetries of the E7 curve are also folded to ones of the Weyl

6At this time, we cannot determine whether the symmetries of the curve generate the Weyl group

W (B3) or W (C3). However, from the discussion about the affine Weyl group in the next section, the

group is decided as W (B3).
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group W (F4) as

s4 ∶ (F1, F2, F3,G1)↦ (F1, F2, F3,−G1),

s3 ∶ (F1, F2, F3,G1)↦ (
1

2
(−F1 + F2 + F3 −G1), F2, F3,

1

2
(−3F1 + F2 + F3 +G1)),

s2s5 ∶ (F1, F2, F3,G1)↦ (F2, F1, F3,G1),
s1s6 ∶ (F1, F2, F3,G1)↦ (F1, F3, F2,G1),
s0s7 ∶ (F1, F2, F3,G1)↦ (F1 − F3, F2 − F3,−F3,G1), (2.42)

(see also figure 2). And for the brane configurations, these transitions are written as

s4 ∶⟨N1
1○N ′2

ii●N3
2○N4

3○N ′5
i●N6

4○⟩↦ ⟨N1
1○N3

ii●N ′2
2○N4

3○N6
i●N ′5

4○⟩,

s3 ∶⟨N1
ii●N2

1○N3
i●N ′4

2○N5
3○N6

4○⟩↦ ⟨N1
ii●N3

1○N2
i●N ′4

2○N5
3○N6

4○⟩,

s2s5 ∶⟨N1
ii●N2

1○N3
2○N4

i●N5
3○N6

4○⟩↦ ⟨N1
ii●N2

1○N2 −N3 +N4
2○N4

i●N5
3○N6

4○⟩,

s1s6 ∶⟨N1
ii●N2

1○N3
2○N4

i●N5
3○N6

4○⟩↦ ⟨N1
ii●N2

1○N3
2○N ′′4

i●N ′′5
3○N6

4○⟩,

s0s7 ∶⟨N1
ii●N2

1○N3
2○N4

i●N5
3○N6

4○⟩↦ ⟨N1
ii●N2

1○N3
2○N4

i●N5
3○N5 −N6 +N1

4○⟩, (2.43)

with N ′2 = N1−N2+N3+k, N ′4 = N3−N4+N5+k, N ′′4 = N3−N ′4+N6+k, N ′5 = N4−N5+N6+k
and N ′′5 = N3 −N4 +N6 + k. s2s5, s1s6 and s0s7 are interpreted as the brane transitions

between (1, k)5-branes. And s4 and s3 means the exchanges the numbers of the D3-branes

as in the D5 curve.

2.6 Local rule

Since the Weyl groups contain the transitions interpreted as Hanany-Witten transitions,

if we regard the Weyl groups as the brane transitions, the remaining transitions after

separating the Hanany-Witten transitions are the new transitions. Then, we have proposed

the local rule for the brane transitions,

⋯ ○N ●N ′ ○ ⋯ = ⋯ ○N ′ ●N ○ ⋯, ⋯ ●N ○N ′ ● ⋯ = ⋯ ●N ○N ′ ● ⋯. (2.44)

These local transitions mean the brane transitions without referring to whole configura-

tions.

When we discuss the brane transitions from the quantum curves, we use the fact

that the grand canonical partition functions are written by the Fredholm determinant.

Therefore, we cannot discuss about the reference rank in our analysis. For the reason, we

do not know if the local rule holds separately for each rank.
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3 Duality cascade and affine Weyl group

For the ABJM matrix model, namely for the A1 curve, in the duality cascade the number

of the D3-branes is decreased by the Hanany-Witten transitions as discussed in [46]. In this

section, we reveal that the regions where the duality cascade does not occur (fundamental

domains) are parallelotopes in the subspaces of the brane configurations in the parameter

spaces of the curves CB ∩ CP. Then the affine Weyl groups are found by considering the

fundamental domains in addition to the symmetries of curves and the transitions to replace

reference rank N mean both the duality cascades and the translations in the space CB∩CP.

These results mean finiteness of the process of duality cascades and the uniqueness of the

endpoint of the duality cascades [2].

3.1 Duality cascade

The Hanany-Witten transitions may decrease the number of D3-branes at the interval of

the 5-branes by exchanging the 5-branes. And we can continue to apply the Hanany-

Witten transitions until the negative ranks appear or the lower ranks do not appear. This

series of the dualities are called a duality cascade. If a rank becomes negative, then the

supersymmetries are broken. And we call the region where the duality cascades do not

occur in the case if the overall rank is large enough, fundamental domain of the duality

cascades.

For example, in the ABJM matrix model, namely (1,1) model consisting of one (1, k)5-
brane, one NS5-brane and D3-branes perpendicular to the 5-branes which are located at

each interval of the 5-branes in a circle, when the reference rank and the rank difference

are denoted N and M respectively, the Hanany-Witten transition makes the following

brane configurations dual,

⟨N ●N +M○⟩ = ⟨N ○N + k −M●⟩. (3.1)

Here since we decide N as a reference, M is a positive number from the inequality N ≤
N +M . In the right hand side of the above equality, if the rank difference M is less than

the Chern-Simons level k, the duality cascade does not occur. But, if M is greater than

k, we reconsider the lowest rank N + k −M as a new reference and duality cascade occurs

as

⟨N ○N + k −M●⟩ = ⟨N ′ ●N ′ − k +M○⟩ = ⟨N ′ ○N ′ + 2k −M●⟩, (3.2)
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with N ′ = N +k −M . And if 2k −M is negative, we continue to apply the Hanany-Witten

transitions until the rank lower than the reference rank does not appear or the negative

rank appears. Under this duality cascade, the reference rank N and the rank difference

M continue to be redefined as

(N,M)→ (N + k −M,−k +M)→ (N + 3k − 2M,−2k +M)→ ⋯. (3.3)

In the ABJM matrix model, if the overall rank N is large enough, we find that the

fundamental domain is clearly 0 ≤ M ≤ k as we see also below [46]. However, more

generally, it is not clear that the endpoint of the duality cascades is uniquely determined,

and any brane configuration in a circle reduces to the fundamental domain of the duality

cascades. We reveal them for the brane configurations corresponding to the D5 and E7

curves in [2] and explain them in the following sections.

3.2 Fundamental domain

The Hanany-Witten transitions may reduce each rank. And if the rank becomes lower

than the reference rank, the duality cascade occurs [43–46]. In this subsection, we discuss

the fundamental domain where we assume N1 as the reference rank.

In the case of the A1 curve, we consider the Hanany-Witten transitions for the brane

configuration ⟨N1
i●N2

1○⟩ = ⟨N i●N +M 1○⟩. The brane configurations obtained through the

Hanany-Witten transitions while preserving the reference rank are

⟨N i●N +M 1○⟩, ⟨N 1○N + k −M i●⟩. (3.4)

Since the fundamental domain of the duality cascades is obtained from the condition

N1 ≤ N2, the region is

0 ≤M ≤ k. (3.5)

This region is a line segment in the one-dimensional space of the brane configurations

⟨N i●N +M 1○⟩, C(1,1)B = {M}. The boundaries of this fundamental domain are M = 0, k,
thus these correspond to the brane configurations ⟨N i●N 1○⟩ and ⟨N i●N + k1○⟩ respectively.
These are just those without the rank difference in table 4.

In the case of the D5 curve, we discuss the Hanany-Witten transitions for the brane

configuration ⟨N1
ii●N2

i●N3
1○N4

2○⟩ = ⟨N ii●N +M1−M2+M3
i●N +2M1

1○N +M1−M2−M3
2○⟩.
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As in the A1 case, the fundamental domain is obtained from the conditions that the each

rank is greater than the reference rank N1 ≤ N2, N1 ≤ N3 and N1 ≤ N4 as

0 ≤M1 ≤ 2k, −k
2
≤M2 ≤

k

2
, −k

2
≤M3 ≤

k

2
,

0 ≤M1 +M2 ±M3 ≤ 2k, 0 ≤M1 −M2 ±M3 ≤ 2k. (3.6)

Here, above region contains extra inequality 0 ≤ M1 ≤ 2k, thus the fundamental domain

for the D5 curve can be described with less conditions by omitting this inequality. The

fact that the inequality 0 ≤M1 ≤ 2k is extra is understood by looking at the fundamental

domain in the case of, for example, M2 = 0 or M3 = 0. Therefore, it is found that the

fundamental domain becomes as

−k
2
≤M2 ≤

k

2
, −k

2
≤M3 ≤

k

2
,

0 ≤M1 +M2 ±M3 ≤ 2k, 0 ≤M1 −M2 ±M3 ≤ 2k. (3.7)

Then, this fundamental domain is a rhombic dodecahedron in the three-dimensional

subspace of the brane configurations in the parameter space of the D5 curve C
(2,2)
B =

{(M1,M2,M3)} (see figure 3). The vertices of this fundamental domain just correspond

to the brane configurations without the reference ranks in table 5. Indeed, for exam-

ple, the brane configuration ⟨N ii● N i● N 1○ N 2○⟩ in the first line of table 5 is the vertex

(0,0,0) described by the intersection of the three planes N1 = N = N +M1 −M2 +M3 = 0,
N2 = N = N +M1 and N +M1 −M2 −M3. Similarly, the other brane configurations also

correspond to the vertices of the fundamental domain.

𝑀!

𝑀" 𝑀#

2𝑘0

𝑘/2

−𝑘/2

−3𝑘/2 3𝑘/2
−𝑘/2

𝑘/2

Figure 3: Fundamental domain for the D5 curve.
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In the case of the E7 curve, we consider the Hanany-Witten transitions for the brane

configuration ⟨N1
ii●N2

1○N3
2○N4

i●N5
3○N6

4○⟩ = ⟨N ii●N +G1 +k
1○N + 1

2(−3F1 +F2 +F3 +G1)+
k

2○N −F1 −F2 +F3 + k
i●N −F1 −F2 +F3 +G1 + 2k

3○N + 1
2(−F1 −F2 −F3 +G1) + k

4○⟩. The
conditions N1 ≤ N2, N1 ≤ N3, N1 ≤ N4, N1 ≤ N5 and N1 ≤ N6 give the fundamental domain

of the duality cascades for the E7 curve as

−k ≤ F1 + F2 − F3 ≤ k, −k ≤ −F1 + F2 + F3 ≤ k, −k ≤ F1 − F2 + F3 ≤ k,
−2k ≤ F1 + F2 − F3 ±G1 ≤ 2k, −2k ≤ −F1 + F2 + F3 ±G1 ≤ 2k,
−2k ≤ F1 − F2 + F3 ±G1 ≤ 2k, −2k ≤ F1 + F2 − 3F3 ±G1 ≤ 2k,

−2k ≤ −3F1 + F2 + F3 ±G1 ≤ 2k, −2k ≤ F1 − 3F2 + F3 ±G1 ≤ 2k,

−k ≤ G1 ≤ k, −2k ≤
3

∑
i=1

Fi ±G1 ≤ 2k. (3.8)

Here, due to −k ≤ G1 ≤ k, it is found that above inequalities contain some extra inequalities,

thus the fundamental domain is described with less conditions as

−k ≤ F1 + F2 − F3 ≤ k, −k ≤ −F1 + F2 + F3 ≤ k, −k ≤ F1 − F2 + F3 ≤ k,
−2k ≤ F1 + F2 − 3F3 ±G1 ≤ 2k, −2k ≤ −3F1 + F2 + F3 ±G1 ≤ 2k,

−2k ≤ F1 − 3F2 + F3 ±G1 ≤ 2k, −k ≤ G1 ≤ k, −2k ≤
3

∑
i=1

Fi ±G1 ≤ 2k. (3.9)

This fundamental domain is an icositetrachoron in the four-dimensional space of the brane

configurations CE7

P ∩ C
(2,4)
B = {(F1, F2, F3,G1)}. The vertices of the fundamental domain

are just those without the rank differences in table 6. Also, the coordinate transformation

M1 = F1 − F2 − F3, M2 = −F1 + F2 − F3, M3 = −F1 − F2 + F3,

leads the vertices to the permutations of (±k,±k,0,0) and it is clearer that the fundamental

domain of the duality cascades is the icositetrachoron.

3.3 Affine Weyl group

In this subsection, we discuss how the Weyl groups which are symmetries of the curves

act to the spaces of the brane configurations. And if we add to Weyl groups the reflection

with respect to boundary planes of the fundamental domain of the duality cascades, we

get the affine Weyl groups 7. Then, the fundamental domain of the duality cascades is

7For affine Weyl groups, for example, see [49].
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divided to the affine Weyl chambers and we also find that it can fill the spaces of the brane

configurations.

The Weyl reflection for the hyperplane perpendicular to the simple root α acts to a

vector v as follows,

sα(v) = v − 2
(v,α)
(α,α)

α, (3.10)

where we identify a vector v in the subspace of the brane configurations in the parameter

space of the curves CB ∩CP as a wight vector.

In the case of the A1 curve, the A1 Weyl group W (A1) acts to a one-dimensional vector

v =M as

s1 ∶M ↦ −M, (3.11)

where we redefine the parameter M as M →M + k
2 for simplicity. Then, from M −s1(M) =

2M it is found that the metric, the simple root and the Cartan matrix are

g = 2, α1 = 1, A
(A1)
11 = 2, (3.12)

where we decide the metric g so that the length of the root vector α1 becomes
√
2. Also,

the overall rank N is invariant under actions of the Weyl group.

The fundamental domain in the A1 case has two boundary planes, thus we can con-

sider the extra reflections about those planes in addition to the Weyl reflection. These

reflections generate the affine Weyl group W (Â1). The extra root and the Cartan matrix

are respectively,

α̃0 = −1, (A(Â1)
ij ) =

⎛
⎝

2 −2
−2 2

⎞
⎠
, (3.13)

and we give the Dynkin diagram in figure 4. Therefore, the affine Weyl group W (Â1) is

0 1

Figure 4: Affine A1 Dynkin diagram.

obtained by considering the fundamental domain in addition to the symmetry of the A1

curve. Moreover, by dividing the fundamental domain with the Weyl group or by dividing
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the space of the brane configurations C
(1,1)
B with the affine Weyl group, the affine Weyl

chamber is obtained as

0 ≤M ≤ k

2
. (3.14)

The affine Weyl group allows us to translate a point in the direction perpendicular to

the boundary planes. we can fill the one-dimensional space C
(1,1)
B = CA1

P by reflecting the

affine Weyl chamber or translating the fundamental domain of the duality cascades with

the affine Weyl group.

The reflection associated with the simple root vector α̃0 acts to C
(1,1)
B as

s̃0 ∶M ↦ k −M, (3.15)

and cannot preserve the overall rank N unlike the reflections of the Weyl group W (A1).
Concretely, from the fact that s̃0 is a reflection, namely s̃20 = id, it is found that s̃0 trans-

forms N as

s̃0 ∶ N ↦ N + 2aM − ak, (3.16)

with the arbitrary parameter a. Besides, when we identify the overall rank N as the

eigenvalue of the additional grading operator in the affine Lie algebra and at same time

the Chern-Simons level as the level of the weight vector v, N is transited with the highest

root θ = α1 as

s̃0 ∶ N ↦ N − (θ, v) + k, (3.17)

therefore an arbitrary parameter a is decided as a = −1.

In the case of the D5 curve, with the correspondence between the parameters of the

D5 curve and the brane configuration, the transitions for the parameters of the curve

acts to the three-dimensional subspace of the brane configurations in the parameter space

C
(2,2)
B ⊂ CD5

P as

s12 ∶= s1s2 ∶ (M1,M2,M3)↦ (M1,−M3,−M2),

s3 ∶ (M1,M2,M3)↦ (−M2 −M3,
1

2
(−M1 +M2 −M3),

1

2
(−M1 −M2 +M3)),

s4 ∶ (M1,M2,M3)↦ (−M2 +M3,
1

2
(−M1 +M2 +M3),

1

2
(M1 +M2 +M3)),

s50 ∶= s5s0 ∶ (M1,M2,M3)↦ (M1,M3,M2), (3.18)
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where we redefine M1 →M1 + k for simplicity. These transitions generate the Weyl group

W (B3) = {s12, s3, s4; s50}. And these transitions are the Weyl reflections for a three-

dimensional vector

v =
⎛
⎜⎜
⎝

M1

M2

M3

⎞
⎟⎟
⎠
. (3.19)

By representing the reflections s12, s3, s4, s50 for the vector v with the corresponding simple

root vectors α12, α3, α4, α50 as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v − s12v = 2(M2 +M3)α12,

v − s3v = −(M1 +M2 +M3)α3,

v − s4v = (M1 +M2 −M3)α4,

v − s50v = −2(M2 −M3)α50,

(3.20)

we find that the simple root vectors and the Cartan matrix are respectively given with

the metric (gij) = diag(1,2,2) as

α12 =
⎛
⎜⎜
⎝

0

1/2
1/2

⎞
⎟⎟
⎠
, α3 =

⎛
⎜⎜
⎝

−1
−1/2
−1/2

⎞
⎟⎟
⎠
, α4 =

⎛
⎜⎜
⎝

1

1/2
−1/2

⎞
⎟⎟
⎠
, (A(B3)

ij ) =
⎛
⎜⎜
⎝

2 −2 0

−1 2 −1
0 −1 2

⎞
⎟⎟
⎠
, (3.21)

where we omit α50 because s50 is auxiliary transition described by the others si≠50. Here

we decide the degree of freedom of overall of the metric so that the lengths of the root

vectors become 1 or
√
2. If we consider the reflection about the boundary plane of the

fundamental domain as the extra reflection s̃0 of the affine Weyl group W (B̂3), the extra

root vector α̃0 and the Cartan matrix are given by8

α̃0 =
⎛
⎜⎜
⎝

1

−1/2
1/2

⎞
⎟⎟
⎠
, (A(B̂3)

ij ) =

⎛
⎜⎜⎜⎜⎜
⎝

2 −2 0 0

−1 2 −1 −1
0 −1 2 0

0 −1 0 2

⎞
⎟⎟⎟⎟⎟
⎠

, (3.22)

and the Dynkin diagram is given in figure 5. Also, when we divide the fundamental domain

8If we change the definitions of the metric and the simple roots, we can construct the C3 Cartan

matrix. Actually, the Weyl groups W (B3) and W (C3) are indistinguishable. However, if we choose the

Weyl group W (C3), we cannot construct the affine Weyl group with the reflection about the boundary

plane of the fundamental domain.
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12 3

0

4

Figure 5: Affine B3 Dynkin diagram.

by the hyperplanes parpendicular to the root vectors αi, the affine Weyl chamber is given

as

0 ≤M2 +M3, M1 +M2 +M3 ≤ 0, 0 ≤M1 +M2 −M3, −k ≤M1 −M2 +M3, (3.23)

where this chamber shares the surface surrounded by the three points

(M1,M2,M3) = (0,
k

2
,
k

2
), (−k

2
,
k

2
,0), (−k

2
,
k

4
,−k

4
), (3.24)

with the fundamental domain (see figure 6). As in the A1 case, this fundamental affine

𝑀!

𝑀" 𝑀#

Figure 6: Affine B3 Weyl chamber. The region is the part obtaned by dividing the fun-

damental domain by the planes consisting of the dotted lines. Then dotted lines intersect

the surface of fundamental domain at (3.24).

Weyl chamber (or the fundamental domain) can fill the three-dimensional subspace of the

brane configurations C
(2,2)
B ⊂ CD5

P with actions of the affine Weyl group, and we identify

the overall rank N and the Chern-Simons level as the eigenvalue of the additional grading
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operator and the level of the weight vector respectively. Actually, the reflection s̃0 acts to

(M1,M2,M3) and N as

s̃0 ∶ (M1,M2,M3)↦(M2 −M3 − k,
1

2
(M1 +M2 +M3 + k),

1

2
(−M1 +M2 +M3 − k)),

s̃0 ∶ N ↦N +M1 −M2 +M3 + k. (3.25)

This result for N is reproduced from the formula (3.17) with the highest root θ = α4 +
2α3 + 2α12 in B3.

Finally, we construct the affine Weyl group for the parameter space in the case of

the E7 curve. As in the D5 case, the correspondence between the curve and the brane

configuration reduces the symmetry of the curve W (E7) to W (F4). And the Weyl group

W (F4) acts to the four-dimensional vector

v =

⎛
⎜⎜⎜⎜⎜
⎝

F1

F2

F3

G1

⎞
⎟⎟⎟⎟⎟
⎠

, (3.26)

as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v − s4v = G1α4,

v − s3v = −
1

2
(3F1 − F2 − F3 +G1)α3,

v − s25v = 2(F1 − F2)α25,

v − s16v = 2(F2 − F3)α16,

v − s07v = 2F3α07.

(3.27)

where α4, α3, α25, α16 and α07 are the simple root vectors corresponding to the reflections

s4, s3, s25, s16 and s07 respectively. With the metric

(gij) =
1

2

⎛
⎜⎜⎜⎜⎜
⎝

3 −1 −1 0

−1 3 −1 0

−1 −1 3 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

, (3.28)

these simple root vectors are given as

α4 =

⎛
⎜⎜⎜⎜⎜
⎝

0

0

0

2

⎞
⎟⎟⎟⎟⎟
⎠

, α3 =

⎛
⎜⎜⎜⎜⎜
⎝

−1
0

0

−1

⎞
⎟⎟⎟⎟⎟
⎠

, α25 =

⎛
⎜⎜⎜⎜⎜
⎝

1/2
−1/2
0

0

⎞
⎟⎟⎟⎟⎟
⎠

, α16 =

⎛
⎜⎜⎜⎜⎜
⎝

0

1/2
−1/2
0

⎞
⎟⎟⎟⎟⎟
⎠

, α07 =

⎛
⎜⎜⎜⎜⎜
⎝

1/2
1/2
1

0

⎞
⎟⎟⎟⎟⎟
⎠

, (3.29)
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and the Cartan matrix is obtained as

(A(F4)
ij ) =

⎛
⎜⎜⎜⎜⎜
⎝

2 −1 0 0

−1 2 −1 0

0 −2 2 −1
0 0 −1 2

⎞
⎟⎟⎟⎟⎟
⎠

. (3.30)

By considering the reflection about the boundary plane as the extra reflection in the affine

Weyl group, the extra root and the Cartan matrix are given as

α̃0 =

⎛
⎜⎜⎜⎜⎜
⎝

1

1

1

−1

⎞
⎟⎟⎟⎟⎟
⎠

, (A(F̂4)
ij ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 0

−1 2 −1 0 0

0 −2 2 −1 0

0 0 −1 2 −1
0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.31)

and see figure 7 about the Dynkin diagram. Also, the fundamental affine Weyl chamber

0 4 3 25 16

Figure 7: Affine F4 Dynkin diagram.

shares the area surrounded by the four points:

(F1, F2, F3,G1) = (
k

2
,
k

2
, k,0), (k

2
,
3k

4
,
3k

4
,0), (2k

3
,
2k

3
,
2k

3
,0), (k

2
,
k

2
,
k

2
,−k

2
), (3.32)

with the fundamental domain of the duality cascades, namely it is given as

−3F1 + F2 + F3 −G1 ≤ 0, F1 ≤ F2 ≤ F3, G1 ≤ 0, F1 + F2 + F3 −G1 ≤ 2k. (3.33)

This region fills the four-dimensional space C
(2,4)
B ∩ CE7

P with the actions of the affine

Weyl group. And the reflection corresponding to the simple root vector α̃0 is concretely

represented as

s̃0 ∶ (F1, F2, F3,G1)↦(
1

2
(F1 − F2 − F3 +G1) − k,

1

2
(−F1 + F2 − F3 +G1) − k,

1

2
(−F1 − F2 + F3 +G1) − k,

1

2
(F1 + F2 + F3 +G1) + k),

s̃0 ∶ N ↦N +
1

2
(F1 + F2 + F3 −G1) + k. (3.34)
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3.4 Translations and brane transitions

In the previous subsection, the affine Weyl groups are given by considering the funda-

mental domains in addition to the Weyl groups which are the symmetries of the curves.

In this subsection, let us discuss that the affine Weyl group is not only a mathemati-

cally interesting structure but also a natural structure from the viewpoint of the brane

transitions.

The extra reflection s̃0 in the affine Weyl group is the reflection about the boundary

plane of the fundamental domain, and this reflection changes the overall rank (3.17). If the

overall rank decreases after the reflection, we expect it to match with the duality cascade.

At the same time, since all translations of the affine Weyl group are always represented

with at least one s̃0, these translations also change the overall rank. In this subsection,

conversely, from the transitions which change the overall rank, we reproduce the transla-

tions obtained from the affine Weyl group. The transitions changing the reference rank

for sequence of the 5-branes are given as the rotation for the 5-brane at the left end to

the right end. These transitions mean that we replace the reference after cyclically mov-

ing 5-branes to the S1 direction, thus we will call these transitions the cyclic transitions.

Since the cyclic transitions mean the redefinition of the reference rank, if the reference

rank decreases after the cyclic transitions, the duality cascade occurs. Also, since the

cyclic transitions are obtained by turning the sequence of the 5-branes to S1 direction,

they are natural transitions considered as extensions of the similarity transitions in the

case without difference ranks.

First, in the case of the A1 curve, the cyclic transitions for the NS5-brane
i● ci and for

the (1, k)5-brane 1○ c1 act to the brane configuration ⟨N1
i●N2

1○⟩ = ⟨N i●N +M + k
2

1○⟩ as

ci ∶⟨N
i●N +M + k

2

1○⟩↦ ⟨N +M + k

2

1○N i●⟩

HW= ⟨N +M + k

2

i●N + 2M + 2k1○⟩ = ⟨N ′ i●N ′ +M + 3k

2

1○⟩, (3.35)

c1 ∶⟨N
i●N +M + k

2

1○⟩ HW= ⟨N 1○N −M + k

2

i●⟩

↦ ⟨N −M + k

2

i●N 1○⟩ = ⟨N ′ i●N ′ +M − k

2

1○⟩, (3.36)

where the equals labeled HW mean the dualities under the Hanany-Witten transitions and

the unlabeled equals mean the redefinition of the reference rank. Thus, these transitions

act to the one-dimensional space of the brane configurations C
(1,1)
B = {M} as

ci ∶M ↦M + k, c1 ∶M ↦M − k, cic1 ∶M ↦M. (3.37)
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These transitions clearly mean the translations on C
(1,1)
B = {M} and are described in terms

of the affine Weyl group W (Â1) = {s1, s0} as

ci = s̃0s1, c1 = s1s̃0. (3.38)

Also, these translations act to the overall rank N as

ci ∶ N ↦ N +M + k

2
, c1 ∶ N ↦ N −M + k

2
. (3.39)

Next, in the case of the D5 curve, the translations act to the brane configuration

⟨N1
ii●N2

i●N3
1○N4

2○⟩ = ⟨N ii●N +M1 −M2 +M3 + k
i●N + 2M1 + 2k

1○N +M1 −M2 −M3 + k
2○⟩,

for example, the translation for an NS5-brane
ii● cii is given as

cii ∶⟨N
ii●N +M1 −M2 +M3 + k

i●N + 2M1 + 2k
1○N +M1 −M2 −M3 + k

2○⟩

↦ ⟨N +M1 −M2 +M3 + k
i●N + 2M1 + 2k

1○N +M1 −M2 −M3 + k
2○N ii●⟩

= ⟨N ′ i●N ′ +M1 +M2 −M3 + k
1○N ′ − 2M3

2○N ′ −M1 +M2 −M3 − k
ii●⟩

HW= ⟨N ′ ii●N ′ +M1 −M2 +M3 + 3k
i●N ′ + 2M1 + 4k

1○N ′ +M1 −M2 −M3 + 2k
2○⟩. (3.40)

When we regard this cyclic transition cii as the transition on the three-dimensional space

of the brane configurations C
(2,2)
B = {(M1,M2,M3)}, this transition is represented as

cii ∶ (M1,M2,M3)↦ (M1 + k,M2 −
1

2
k,M3 +

1

2
k), (3.41)

thus this cyclic transition for the NS5-brane
ii● means the translation on the parameter

space. Also the inverse of cii is expressed as the inverse cyclic transition for the NS5-brane
ii● in the brane configurations,

c−1ii ∶⟨N
ii●N +M1 −M2 +M3 + k

i●N + 2M1 + 2k
1○N +M1 −M2 −M3 + k

2○⟩
HW= ⟨N i●N +M1 +M2 −M3 + k

1○N − 2M3 + k
2○N −M1 +M2 −M3 + k

ii●⟩

↦ ⟨N −M1 +M2 −M3 + k
ii●N i●N +M1 +M2 −M3 + k

1○N − 2M3 + k
2○⟩

= ⟨N ′ ii●N ′ +M1 −M2 +M3 − k
i●N ′ + 2M1

1○N ′ +M1 −M2 −M3
2○⟩, (3.42)

and is represented on the space of the brane configurations as

cii ∶ (M1,M2,M3)↦ (M1 − k,M2 +
1

2
k,M3 −

1

2
k). (3.43)
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When ci, cii, c1 and c2 denote the cyclic transitions for the 5-branes
i●, ii●, 1○ and 2○ respec-

tively, the transitions ci (i = i, ii,1,2) are represented on the space of the brane configura-

tions as

cii ∶ (M1,M2,M3)↦ (M1 + k,M2 −
1

2
k,M3 +

1

2
k),

ci ∶ (M1,M2,M3)↦ (M1 + k,M2 +
1

2
k,M3 −

1

2
k),

c1 ∶ (M1,M2,M3)↦ (M1 − k,M2 −
1

2
k,M3 −

1

2
k),

c2 ∶ (M1,M2,M3)↦ (M1 − k,M2 +
1

2
k,M3 +

1

2
k),

ciciic1c2 ∶ (M1,M2,M3)↦ (M1,M2,M3), (3.44)

and mean the translations on the space C
(2,2)
B = {(M1,M2,M3)}. These translations are

represented in terms of generators of the affine Weyl group W (B̂3) as

cii = s3s12s3s4s3s12s3s̃0,
ci = s3s12s3s̃0s3s12s3s4,
c1 = s12s4s3s̃0s3s12s4s3,
c2 = s4s3s̃0s3s12s4s3s12. (3.45)

Here, since the Weyl group W (B3) does not change the reference rank and these cyclic

transitions change the reference rank, we need to use at least one extra reflection s̃0 in the

affine Weyl group to describe these transitions with the affine Weyl group.

These cyclic transitions are geometrically interpreted as the translations in the direction

perpendicular to the boundary planes of the fundamental domain of the duality cascades.

We give all combinations of these cyclic transitions in table 7. The transitions in table 7

mean the translations perpendicular to the planes described by the inequalities (3.6). The

extra inequalities in (3.6) are −k ≤M1 ≤ k, the transitions associated with these are given

by one for the two NS5-branes ciici and one for the two (1, k)5-branes c1c2. Namely, the

cyclic transitions for the 5-branes of the same type are not the translations perpendicular

to the boundary planes in the fundamental domain (3.7).

Also, the cyclic transitions are redefinitions of the reference rank that chooses the

number of the D3-branes connecting to the 5-brane on the left end from the right side as

the new reference rank. For example, the cyclic transition ciic2 = c−11 c−1i corresponds to the

redefinition of the reference to the number of the D3-branes at ⋅ on the brane configuration

⟨ii● 2○ ⋅ i● 1○⟩.
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Cyclic transitions (M1,M2,M3) N

cii (M1 + k,M2 − k
2 ,M3 + k

2) N +M1 −M2 +M3 + k
ci (M1 + k,M2 + k

2 ,M3 − k
2) N +M1 +M2 −M3 + k

c1 (M1 − k,M2 − k
2 ,M3 − k

2) N −M1 −M2 −M3 + k
c2 (M1 − k,M2 + k

2 ,M3 + k
2) N +M1 +M2 +M3 + k

ciici (M1 + 2k,M2,M3) N + 2M1 + 2k
ciic1 (M1,M2 − k,M3) N − 2M2 + 2k
cic1 (M1,M2,M3 − k) N − 2M3 + 2k
ciic2 (M1,M2,M3 + k) N + 2M3 + 2k
cic2 (M1,M2 + k,M3) N + 2M2 + 2k
c1c2 (M1 − 2k,M2,M3) N − 2M1 + 2k
ciicic1 (M1 + k,M2 − k

2 ,M3 − k
2) N +M1 −M2 −M3 + k

ciicic2 (M1 + k,M2 + k
2 ,M3 + k

2) N +M1 +M2 +M3 + k
ciic1c2 (M1 − k,M2 − k

2 ,M3 + k
2) N −M1 −M2 +M3 + k

cic1c2 (M1 − k,M2 + k
2 ,M3 − k

2) N −M1 +M2 −M3 + k

Table 7: List of the cyclic transitions which are interpreted as the translations perpendic-

ular to the boundary planes of the fundamental domain.

Finally, in the case of the E7 curve, we discuss the cyclic transitions acting to the brane

configuration ⟨N1
ii●N2

1○N3
2○N4

i●N5
3○N6

4○⟩ = ⟨N ii●N +G1 +k
1○N + 1

2(−3F1 +F2 +F3 +G1)+
k

2○N − F1 − F2 + F3 + k
i●N − F1 − F2 + F3 +G1 + 2k

3○N + 1
2(−F1 − F2 − F3 +G1) + k

4○⟩. In

this case, as we mentioned in the previous section, we place the NS5-brane
ii● on the left

and the NS5-brane
i● on the right and that the Hanany-Witten transition between NS5-

branes is restricted. However the labels for the 5-branes are introduced to consider the

correspondence between the brane configurations and the quantum curves, thus they are

not physical. Therefore if we rotate the NS5-brane cyclically, we relabel for the NS5-branes

so that the NS5-brane
ii● is placed to the left of the NS5-brane

i●. Also, when we consider

the cyclic transition for the NS5-brane
i●, it acts to the brane configuration after relabeling

to the NS5-branes. The cyclic transitions are represented in the four-dimensional space

C
(2,4)
B ∩CE7

P = {(F1, F2, F3,G1)} as

c● ∶= cii = ci ∶ (F1, F2, F3,G1)↦ (F1, F2, F3,G1 + 2k),
c1 ∶ (F1, F2, F3,G1)↦ (F1 − k,F2, F3,G1 − k),
c2 ∶ (F1, F2, F3,G1)↦ (F1, F2 − k,F3,G1 − k),
c3 ∶ (F1, F2, F3,G1)↦ (F1, F2, F3 − k,G1 − k),
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c4 ∶ (F1, F2, F3,G1)↦ (F1 + k,F2 + k,F3 + k,G1 − k),
ciciic1c2c3c4 ∶ (F1, F2, F3,G1)↦ (F1, F2, F3,G1), (3.46)

and mean the translations on the space. In table 8, we give the combinations of the cyclic

transitions geometrically interpreted as the translations perpendicular to the boundary

planes of the fundamental domain (3.9). The cyclic transitions not included in table 8,

c●c●, cicj, cicjck and cicjckcℓ (i, j, k, ℓ = 1,⋯,4) are not the translations associated with the

boundary planes of the fundamental domain (3.9). Especially, among them, cicj are the

translations perpendicular to the extra separations described by the extra inequalities in

(3.8).

4 Discussions

4.1 Space-filling with Hanany-Witten transitions

In this subsection, we show that the boundary planes facing each other in the fundamental

domain are parallel in the general case corresponding to the super Chern-Simons matrix

model. This fact is derived from the Hanany-Witten transitions independently of the affine

Weyl groups.

In the case with p NS5-branes and q (1, k)5-branes, the Hanany-Witten transitions

lead

⟨0 1●N2
2●N3

3● ⋯ Nx
x●Nx+1 ⋯

p−1● Np
p●Np+1

1○Np+2
2○ ⋯ Np+y

y○Np+y+1 ⋯
q−2○ Np+q−1

q−1○ Np+q
q○⟩

HW= ⟨0 q○ pk −Np+q
q−1○ 2pk −Np+q−1

q−2○ ⋯ 2○ (q − 1)pk −Np+2
1○ qpk −Np+1

p● q(p − 1)k −Np
p+1● ⋯ qxk −Nx+1

x● q(x − 1)k −Nx ⋯
3● 2qk −N3

2● qk −N2
1●⟩, (4.1)

where the RR-charges are invariant on both sides. From this equation, we find that if

there is 0 ≤ Na as the condition to describe the fundamental domain, there is always the

condition 0 ≤ f(k)−Na corresponding to it independently of the affine Weyl groups where

f is the linear function of k.This fact means that the boundary planes facing each other

in the fundamental domain are paralell. And the fundamental domain is obtained by the

cutting out the rectangle described by 0 ≤ Na ≤ f(k).

As a simple example, let us consider the brane configuration with one (1, k)5-brane
and two NS5-brane: ⟨N ii●N +M1

i●N +M2
1○⟩. Then the space of the brane configurations
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Cyclic transitions (F1, F2, F3,G1) N

c● (F1, F2, F3,G1 + 2k) N +G1 + k
c1 (F1 − k,F2, F3,G1 − k) N + 1

2(−3F1 + F2 + F3 −G1) + k
c2 (F1, F2 − k,F3,G1 − k) N + 1

2(F1 − 3F2 + F3 −G1) + k
c3 (F1, F2, F3 − k,G1 − k) N + 1

2(F1 + F2 − 3F3 −G1) + k
c4 (F1 + k,F2 + k,F3 + k,G1 − k) N + 1

2(F1 + F2 + F3 −G1) + k
c●c1 (F1 − k,F2, F3,G1 + k) N + 1

2(−3F1 + F2 + F3 +G1) + k
c●c2 (F1, F2 − k,F3,G1 + k) N + 1

2(F1 − 3F2 + F3 +G1) + k
c●c3 (F1, F2, F3 − k,G1 + k) N + 1

2(F1 + F2 − 3F3 +G1) + k
c●c4 (F1 + k,F2 + k,F3 + k,G1 + k) N + 1

2(F1 + F2 + F3 +G1) + k
c●c1c2 (F1 − k,F2 − k,F3,G1) N − F1 − F2 + F3 + k
c●c1c3 (F1 − k,F2, F3 − k,G1) N − F1 + F2 − F3 + k
c●c1c4 (F1, F2 + k,F3 + k,G1) N − F1 + F2 + F3 + k
c●c2c3 (F1, F2 − k,F3 − k,G1) N + F1 − F2 − F3 + k
c●c2c4 (F1 + k,F2, F3 + k,G1) N + F1 − F2 + F3 + k
c●c3c4 (F1 + k,F2 + k,F3,G1) N + F1 + F2 − F3 + k
c●c1c2c3 (F1 − k,F2 − k,F3 − k,G1 − k) 1

2(−F1 − F2 − F3 −G1) + k
c●c1c2c4 (F1, F2, F3 + k,G1 − k) 1

2(−F1 − F2 + 3F3 −G1) + k
c●c1c3c4 (F1, F2 + k,F3,G1 − k) 1

2(−F1 + 3F2 − F3 −G1) + k
c●c2c3c4 (F1 + k,F2, F3,G1 − k) 1

2(3F1 − F2 − F3 −G1) + k
c●c●c1c2c3 (F1 − k,F2 − k,F3 − k,G1 + k) N + 1

2(−F1 − F2 − F3 +G1) + k
c●c●c1c2c4 (F1, F2, F3 + k,G1 + k) N + 1

2(−F1 − F2 + 3F3 +G1) + k
c●c●c1c3c4 (F1, F2 + k,F3,G1 + k) N + 1

2(−F1 + 3F2 − F3 +G1) + k
c●c●c2c3c4 (F1 + k,F2, F3,G1 + k) N + 1

2(3F1 − F2 − F3 +G1) + k
c●c1c2c3c4 (F1, F2, F3,G1 − 2k) N −G1 + k

Table 8: List of the cyclic transitions interpreted as the translations perpendicular to the

boundary planes of the fundamental domain.
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is the two-dimensional space C
(2,1)
B = {(M1,M2)}. In this case, firstly we find that the

fundamental domain is at least inside the rectangle described by 0 ≤M1 ≤ k and 0 ≤M2 ≤
2k from the equation ⟨N ii●N +M1

i●N +M2
1○⟩ HW= ⟨N 1○N + 2k −M2

i●N + k −M1
ii●⟩. And

the fundamental domain is obtained as the parallelogram as in figure 8,

0 ≤M1 ≤ k, 0 ≤ −M1 +M2 ≤ k, (4.2)

by cutting out the rectangle with the condition 0 ≤ −M1+M2 ≤ k from the Hanany-Witten

𝑀!

𝑀"

𝑀! = 2𝑘

𝑀! = 0

𝑀" = 0 𝑀" = 𝑘

−𝑀" +𝑀! = 0

−𝑀" +𝑀! = 𝑘

Figure 8: Fundamental domain of the (2,1) model.

transitions for ⟨N ii●N +M1
i●N +M2

1○⟩ (see table 9 for all the inequalities).

brane configurations separations in C
(2,1)
B = {(M1,M2)}

⟨N ii●N +M1
i●N +M2

1○⟩ 0 ≤M1, 0 ≤M2

⟨N ii●N +M1
1○N + k +M1 −M2

i●⟩ 0 ≤M1, −M1 +M2 ≤ k
⟨0 1○ 2k −M2

ii● k +M1 −M2
i●⟩ M2 ≤ 2k, −M1 +M2 ≤ k

⟨N i●N −M1 +M2
ii●N +M2

1○⟩ 0 ≤ −M1 +M2, 0 ≤M2

⟨N i●N −M1 +M2
1○N + k −M1

ii●⟩ 0 ≤ −M1 +M2, M1 ≤ k
⟨N 1○N + 2k −M2

i●N + k −M1
ii●⟩ M2 ≤ 2k, M1 ≤ k

Table 9: Comparison between the brane configurations and the separations in C
(2,1)
B for

the (2,1) model.

Moreover, the fundamental domain in this case can fill C
(2,1)
B = {(M1,M2)} with the

translations. Now we cannot use the affine Weyl group to obtain the translations, however
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by considering the cyclic transitions, these translations are obtained as

c1 ∶ (M1,M2)↦ (M1 − k,M2 − 2k),
cii ∶ (M1,M2)↦ (M1 + k,M2 + k),
ci ∶ (M1,M2)↦ (M1,M2 + k),

c1ciici ∶ (M1,M2)↦ (M1,M2). (4.3)

In general, when the fundamental domain is found, it is nontrivial whether it can fill the

space of the brane configurations with the transitions. But if the fundamental domain

cannot fill the space, it means that the space of the brane configurations has a special

subspace whose configurations are not included in the fundamental domain of the duality

cascades.

4.2 Deformations with FI parameters

In the previous section, we regard the Weyl group for the parameters of the curves as

the brane transitions from the correspondences between the brane configurations and the

quantum curves. Then, we fix the lowest rank of all ranks as the reference. And by

considering the duality cascades that the reference rank decreases by the Hanany-Witten

transitions, we can define the affine Weyl groups in the space of the brane configurations.

In these discussions, the Weyl groups of the curves are reduced to the smaller Weyl groups

from the correspondence between the brane configurations and the quantum curves. Con-

cretely, in the case of theD5 and E7 curve, W (B3) andW (F4) act to the space of the brane
configurations, respectively. In this subsection, by introducing the super determinant op-

erator we regard full Weyl groups of the curves as the brane transitions. The insertion of

this operator is interpreted as the introduce of Fayet-Iliopoulos parameters [19,50–52].

Let us introduce the super determinant operator defined by

X(Na−1,Na) = e−∑
Na−1
m=1 x

(a−1)
m +∑Na

n=1 x
(a)
n . (4.4)

The vacuum expectation value is denoted by

⟨X⟩(p1,q1,⋯)
k,(Z1,⋯,Zr)(N1,⋯,Nr) = ∫

r

∏
a=1

DNax(a)

Na!(2π)Na
∆(Na−1,Na)(X(Na−1,Na))Za , (4.5)

with

DNax(a) =
Na

∏
ℓ=1

dx
(a)
ℓ e

ika
4π
(x(a)

ℓ
)2−ζax(a)ℓ , ζa = Za −Za−1. (4.6)
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If Z1 = ⋯ = Zr = 0, this value matches the partition function as

Z
(p1,q1,⋯)
k (N1,⋯,Nr) = ⟨X⟩(p1,q1,⋯)k,(0,⋯,0)(N1,⋯,Nr). (4.7)

In the case without difference ranks N1 = ⋯ = Nr = N , the vacuum expectation value in

the grand canonical ensemble is denoted by

⟨X⟩(p1,q1,⋯)
k,(Z1,⋯,Zr)(z) =

∞
∑
N=0

zN⟨X⟩(p1,q1,⋯)
k,(Z1,⋯,Zr)(N). (4.8)

With the Fredholm determinant, this value is represented as

⟨X⟩(p1,q1,⋯)
k,(Z1,⋯,Zr)(z) = det(1 + zĤ

−1), (4.9)

and then the quantum curve is modified as

Ĥ−1 = e− i
2h̵

p̂2
r

∏
a=1
(e− i

2h̵
saq̂2e−

2π
h̵
Zaq̂

1

2 cosh p̂
2

e
2π
h̵
Zaq̂e

i
2h̵

saq̂2)e i
2h̵

p̂2 , (4.10)

with the appropriate similarity transition and goes as

Ĥ−1 =
r

∏
a=1

1

2 cosh r̂−2πiZa

2

, (4.11)

where r̂ denote p̂ for an NS5-brane and q̂ for a (1, k)5-brane.

In the case of the D5 curve, the quantum curve Ĥ(2,2) is modified as

Ĥ ′(2,2) = (2 cosh
q̂ − 2πiZ4

2
)(2 cosh q̂ − 2πiZ3

2
)(2 cosh p̂ − 2πiZ2

2
)(2 cosh p̂ − 2πiZ1

2
). (4.12)

By redefining p̂ and q̂, we can set Z2 and Z4 as

Z2 = Z4 = 0. (4.13)

Then, the parameters of D5 curve (h1, h2, e1, e3, e5) and (M1,M2,M3, Z1, Z3) correspond
as

(h1, h2, e1, e3, e5) = (
m2m3

m1

,
m1m3

m2

,
m3

m2z1
,m2m3z3,

m3z1
m2

), (4.14)

with mi = e2πiMi (i = 1,2,3) and zj = e2πiZj (j = 1,3). And the Weyl group W (D5) acts to
C
(2,2)
B as

s1 ∶ (m1,m2,m3, z1, z2)↦ (m1,

√
m2z3
m3

,

√
m3z3
m2

, z1,m2m3),
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s2 ∶ (m1,m2,m3, z1, z2)↦ (m1,

√
m2

m3z3
,

√
m3

m2z3
, z1,

1

m2m3

),

s3 ∶ (m1,m2,m3, z1, z2)↦ (
1

m2m3

,

√
m2

m1m3

,

√
m3

m1m2

, z1, z3),

s4 ∶ (m1,m2,m3, z1, z2)↦ (
m3

m2

,

√
m2m3

m1

,
√
m1m2m3, z1, z3),

s5 ∶ (m1,m2,m3, z1, z2)↦ (m1,

√
m2m3

z1
,
√
m2m3z1,

m3

m2

, z3),

s0 ∶ (m1,m2,m3, z1, z2)↦ (m1,
√
m2m3z1,

√
m2m3

z1
,
m2

m3

, z3), (4.15)

namely, for the brane configuration

⟨N1
ii●
0
N2

i●
Z1

N3
1○
Z1

N4
2○
0
⟩

= ⟨N ii●
0
N +M1 −M2 +M3 + k

i●
Z1

N + 2M1 + 2k
1○
Z2

N +M1 −M2 −M3 + k
2○
0
⟩, (4.16)

the Weyl group W (D5) acts as

s1 ∶↦ ⟨N
ii●
0
N +M1 −M2 +M3 + k

i●
Z1

N + 2M1 + 2k
1○

M2+M3

N +M1 −Z3 + k
2○
0
⟩,

s2 ∶↦ ⟨N
ii●
0
N +M1 −M2 +M3 + k

i●
Z1

N + 2M1 + 2k
1○

−M2−M3

N +M1 +Z3 + k
2○
0
⟩,

s5 ∶↦ ⟨N
ii●
0
N +M1 +Z1 + k

i●
−M2+M3

N + 2M1 + 2k
1○
Z3

N +M1 −M2 −M3 + k
2○
0
⟩,

s0 ∶↦ ⟨N
ii●
0
N +M1 −Z1 + k

i●
M2−M3

N + 2M1 + 2k
1○
Z3

N +M1 −M2 −M3 + k
2○
0
⟩, (4.17)

where we omit s3 and s4 since they have nothing to do with Z1 and Z3. Here there are

s3 and s4 interpreted as the local rule but not s1, s2, s5 and s0 before inserting the super

determinant operator. However, before inserting the operator, the products s1s2 and s5s0

of them exist and are interpreted as the Hanany-Witten transition between (1, k)5-branes
and that between NS5-branes respectively. Therefore if we regard s1, s2, s5 and s0 as the

brane transitions, these should be called half Hanany-Witten transitions.

Also, we can confirm that there are similar half Hanany-Witten transitions for the E7

case. In the E7 case, to consider Weyl group W (E7) acting to the brane configuration

with the FI parameters

⟨N1
ii●
0
N2

1○
Z1

N3
2○
Z2

N4
i●
0
N5

3○
Z3

N6
4○
0
⟩

=⟨N ii●
0
N +G1 + k

1○
Z1

N + 1

2
(−3F1 + F2 + F3 +G1) + k

2○
Z2

N − F1 − F2 + F3 + k
i●
0
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N − F1 − F2 + F3 +G1 + 2k
3○
Z3

N + 1

2
(−F1 − F2 − F3 +G1) + k

4○
0
⟩, (4.18)

we represent the Weyl group W (E7) (2.25) as

s0 ∶ (f1, f2, f3, g1, z1, z2, z3)↦ (
f1√
f3z3

,
f2√
f3z3

,
1

z3
, g1,

z1√
f3z3

,
z2√
f3z3

,
1

f3
),

s1 ∶ (f1, f2, f3, g1, z1, z2, z3)↦ (f1,
√

f2f3z3
z2

,

√
f2f3z2
z3

, g1, z1, z2, z3),

s2 ∶ (f1, f2, f3, g1, z1, z2, z3)↦ (
√

f1f2z2
z1

,

√
f1f2z1
z2

, f3, g1,

√
f2z1z2
f1

,

√
f1z1z2
f2

, z3),

s3 ∶ (f1, f2, f3, g1, z1, z2, z3)↦ (
√

f2f3
f1g1

, f2, f3,
1

f1

√
f2f3g1
f1

, z1, z2, z3),

s4 ∶ (f1, f2, f3, g1, z1, z2, z3)↦ (f1, f2, f3,
1

g1
, z1, z2, z3),

s5 ∶ (f1, f2, f3, g1, z1, z2, z3)↦ (
√

f1f2z1
z2

,

√
f1f2z2
z1

, f3, g1,

√
f1z1z2
f2

,

√
f2z1z2
f1

, z3),

s6 ∶ (f1, f2, f3, g1, z1, z2, z3)↦ (f1,
√

f2f3z2
z3

,

√
f2f3z3
z2

, g1, z1,

√
f2z2z3
f3

,

√
f3z2z3
f2
),

s7 ∶ (f1, f2, f3, g1, z1, z2, z3)↦ (f1
√

z3
f3
, f2

√
z3
f3
, z3, g1, z1

√
f3
z3
, z2

√
f3
z3
, f3), (4.19)

under the parameter transitions

(f1, f2, f3, g1, h1, h2, h3)→ (z1f1, z2f3, z3f3, g1,
1

z1

√
f1

f2f3g1
,
1

z2

√
f2

f1f3g1
,
1

z3

√
f3

f1f2g1
).

(4.20)

Indeed, this W (E7) act to (4.18) with Fj = e2πifj , G1 = e2πig1 and Zj = e2πizj (j = 1,2,3) as

s0 ∶↦⟨N
ii●
0
N +G1 + k

1○
Z1

N + 1

2
(−3F1 + F2 + F3 +G1) + k

2○
Z2

N − F1 − F2 + F3 + k
i●
0

N − F1 − F2 + F3 +G1 + 2k
3○

1
2
(−F3+Z3)

N + 1

2
(−F1 − F2 + F3 +G1) +Z3 + k

4○
0
⟩,

s1 ∶↦⟨N
ii●
0
N +G1 + k

1○
Z1

N + 1

2
(−3F1 + F2 + F3 +G1) + k

2○
1
2
(−F2+F3+Z2+Z3)

N − F1 + k +Z2 −Z3
i●
0

N − F1 +G1 + 2k +Z2 −Z3
3○

1
2
(F2−F3+Z2+Z3)

N + 1

2
(−F1 − F2 − F3 +G1) + k

4○
0
⟩,

s2 ∶↦⟨N
ii●
0
N +G1 + k

1○
1
2
(−F1+F2+Z1+Z2)

N + 1

2
(−F1 − F2 + F3 +G1) + k +Z1 −Z2

2○
1
2
(F1−F2+Z1+Z2)

N − F1 − F2 + F3 + k
i●
0
N − F1 − F2 + F3 +G1 + 2k

3○
Z3

N + 1

2
(−F1 − F2 − F3 +G1) + k

4○
0
⟩,
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s5 ∶↦⟨N
ii●
0
N +G1 + k

1○
1
2
(F1−F2+Z1+Z2)

N + 1

2
(−F1 − F2 + F3 +G1) + k −Z1 +Z2

2○
1
2
(−F1+F2+Z1+Z2)

N − F1 − F2 + F3 + k
i●
0
N − F1 − F2 + F3 +G1 + 2k

3○
Z3

N + 1

2
(−F1 − F2 − F3 +G1) + k

4○
0
⟩,

s6 ∶↦⟨N
ii●
0
N +G1 + k

1○
Z1

N + 1

2
(−3F1 + F2 + F3 +G1) + k

2○
1
2
(F2−F3+Z2+Z3)

N − F1 + k −Z2 +Z3
i●
0

N − F1 +G1 + 2k −Z2 +Z3
3○

1
2
(−F2+F3+Z2+Z3)

N + 1

2
(−F1 − F2 − F3 +G1) + k

4○
0
⟩,

s7 ∶↦⟨N
ii●
0
N +G1 + k

1○
Z1

N + 1

2
(−3F1 + F2 + F3 +G1) + k

2○
Z2

N − F1 − F2 + F3 + k
i●
0

N − F1 − F2 + F3 +G1 + 2k
3○

1
2
(F3+Z3)

N + 1

2
(−F1 − F2 + F3 +G1) −Z3 + k

4○
0
⟩. (4.21)

Here s3 and s4 are omitted because they do not affect the FI parameters and the transitions

interpreted as the local rule. And other transitions s0, s1, s2, s5, s6 and s7 are interpreted

as the half Hanany-Witten transitions that give the Hanany-Witten transitions under Z2

folding.

From above discussion for the D5 and E7 Weyl groups, we find that the half Hanany-

Witten transitions are summarized as

s± ∶ ⟨⋯K(●/○)
Z1

L(●/○)
Z2

M⋯⟩↦ ⟨⋯K(●/○)
Z±

1

2
(K +M) ± (Z2 −Z1)(●/○)

Z∓

M⋯⟩, (s±)2 = 1,

(4.22)

with Z± = 1
2(±

1
2(K − 2L +M) + Z1 + Z2). The products s+s− = s−s+ denote the Hanany-

Witten transitions.

4.3 Fundamental domains for D5 and E7 Weyl groups

Next, let us find the fundamental domain obtain by the Weyl group W (D5). Before

inserting the super determinant operator, the fundamental domain is obtained as that for

the Weyl group W (B3)

N1 ≤ N2, N1 ≤ N3, N1 ≤ N4, (4.23)

namely

0 ≤M1 −M2 +M3 + k, 0 ≤ 2M1 + 2k, 0 ≤M1 −M2 −M3 + k. (4.24)
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Acting the Weyl groupW (D5) (4.15) to these inequalities, the following inequalities appear
in addition to the inequalities (3.7) describing the fundamental domain for the Weyl group

W (B3),

−k ≤M2 ±M3 ≤ k, −k ≤ Z1 ±Z3 ≤ k, −k ≤ Zi ≤ k,
−k ≤M1 ±Zi ≤ k, −k ≤M2 +M3 ±Zi ≤ k, −k ≤M2 −M3 ±Zi ≤ k, (4.25)

with i = 1,3 and if we remove the extra inequalities, they become

−k
2
≤M2 ≤

k

2
, −k

2
≤M3 ≤

k

2
, −k ≤ Z1 ±Z3 ≤ k,

−k ≤M1 +M2 ±M3 ≤ k, −k ≤M1 −M2 ±M3 ≤ k,
−k ≤M1 ±Zi ≤ k, −k ≤M2 +M3 ±Zi ≤ k, −k ≤M2 −M3 ±Zi ≤ k. (4.26)

It is found that by the action of the Weyl group W (D5) to the vector on C
(2,2)
B

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M1

M2

M3

Z1

Z3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.27)

with the metric (gij) = diag(1,2,2,1,1), the simple root vectors are represented as

α1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

1/2
1/2
0

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, α2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

1/2
1/2
0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, α3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1
−1/2
−1/2
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, α4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1/2
−1/2
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, α5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

−1/2
1/2
−1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.28)

And D5 Weyl chamber is given as

(α1, v) =M2 +M3 −Z3 ≥ 0, (α2, v) =M2 +M3 +Z3 ≥ 0, (α3, v) = −M1 −M2 −M3 ≥ 0,
(α4, v) =M1 +M2 −M3 ≥ 0, (α5, v) = −M2 +M3 −Z1 ≥ 0. (4.29)

If we define the new root α̃0 as α̃0 = −θ with the highest root of the D5 Lie algebra

θ = α1 + α2 + 2α3 + 2α4 + α5, (4.30)

the affine D5 Weyl chamber is obtained by adding

(α̃0, v) + k = −M2 +M3 +Z1 + k ≥ 0, (4.31)
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to the above inequalities describing the D5 Weyl chamber.

In the E7 case, with the same argument as above, the structure as in the D5 case can

be obtained. Then we consider the brane configuration with the FI parameters,

⟨N1
ii●
0
N2

1○
Z1

N3
2○
Z2

N4
i●
0
N5

3○
Z3

N6
4○
0
⟩

=⟨N ii●
0
N +G1 + k

1○
Z1

N + 1

2
(−3F1 + F2 + F3 +G1) + k

2○
Z2

N − F1 − F2 + F3 + k
i●
0

N − F1 − F2 + F3 +G1 + 2k
3○
Z3

N + 1

2
(−F1 − F2 − F3 +G1) + k

4○
0
⟩. (4.32)

The parameters of the E7 curve (f1, f2, f3, g1, h1, h2, h3) are corresponded to the parameters

describing the brane configurations (F1, F2, F3,G1, Z1, Z2, Z3) as

(f1, f2, f3, g1, h1, h2, h3)→ (z1f1, z2f3, z3f3, g1,
1

z1

√
f1

f2f3g1
,
1

z2

√
f2

f1f3g1
,
1

z3

√
f3

f1f2g1
),

(4.33)

with Fj = e2πifj , G1 = e2πig1 and Zj = e2πizj (j = 1,2,3).

As in the D5 case, the fundamental domain is obtained as

−k ≤ Fi ≤ k, −k ≤ G1 ≤ k, −k ≤Hi′ ≤ k, −k ≤ Fi − Fj ≤ k, −k ≤Hi′ −Hj′ ≤ k,
−k ≤ Fi −Hi′ ≤ k, −k ≤Hi′ +G1 ≤ k, −k ≤ Fi +G1 +Hi′ +Hj′ ≤ k,

−k ≤ Fi + Fj +G1 +Hi′ +Hj′ ≤ k, −k ≤ Fi + Fj +G1 +
3

∑
i′=1

Hi′ ≤ k,

−k ≤ Fi + Fj + 2G1 +
3

∑
i′=1

Hi′ ≤ k, −k ≤
3

∑
i=1

Fi +G1 +
3

∑
i′=1

Hi′ ≤ k,

−k ≤
3

∑
i=1

Fi + 2G1 +
3

∑
i′=1

Hi′ ≤ k, −k ≤
3

∑
i=1

Fi + 2G1 + 2H1 +H2 +H3 ≤ k,

−k ≤
3

∑
i=1

Fi + 2G1 +H1 + 2H2 +H3 ≤ k, −k ≤
3

∑
i=1

Fi + 2G1 +H1 +H2 + 2H3 ≤ k, (4.34)

with i, j, i′, j′ = 1,2,3 (i ≠ j and i′ ≠ j′) in terms of (F1, F2, F3,G1,H1,H2,H3). In this

notation, it is difficult to assess whether this fundamental domain contains the inequal-

ities in the F4 case (3.9), however if we represent this fundamental domain in terms of

(F1, F2, F3,G1, Z1, Z2, Z3) as

−k ≤ F1 + F2 − F3 ≤ k, −k ≤ −F1 + F2 + F3 ≤ k, −k ≤ F1 − F2 + F3 ≤ k,
−2k ≤ F1 + F2 − 3F3 ±G1 ≤ 2k, −2k ≤ −3F1 + F2 + F3 ±G1 ≤ 2k,
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−2k ≤ F1 − 3F2 + F3 ±G1 ≤ 2k, −k ≤ G1 ≤ k, −2k ≤
3

∑
i=1

Fi ±G1 ≤ 2k,

−k ≤ Fi ±Zi ≤ k, −k ≤ Fi − Fj +Zk ≤ k, −2k ≤ Fi − Fj − Fk ±G1 − 2Zi ≤ 2k,
−2k ≤ Fi −Zj +Zk ≤ 2k, −k ≤ (Fi − Fj) ± (Zi −Zj) ≤ k,

−2k ≤ Fi + Fj − Fk ±G1 + 2Zi − 2Zj ≤ 2k,
−k ≤ Z1 +Z2 −Z3 ≤ k, −k ≤ −Z1 +Z2 +Z3 ≤ k, −k ≤ Z1 −Z2 +Z3 ≤ k, (4.35)

with i, j, k = 1,2,3 (all subscripts i, j and k are different), it is clear that the inequalities

up to the third line are those in the F4 case (3.9). Also, the W (E7) acts to C
(2,4)
B as (2.25).

By acting these transitions to the vector v with the metric gij as

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

F1

F2

F3

G1

H1

H2

H3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (gij) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3
2

1
2

1
2

3
2 1 1 1

1
2

3
2

1
2

3
2 1 1 1

1
2

1
2

3
2

3
2 1 1 1

3
2

3
2

3
2

7
2 2 2 2

1 1 1 2 2 1 1

1 1 1 2 1 2 1

1 1 1 2 1 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.36)

with Hj = e2πihj and the simple root vectors of the E7 are obtained as

α1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

1

−1
0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, α2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

−1
0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, α3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1
0

0

−1
0

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, α4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

2

−1
−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

α5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

0

1

−1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, α6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

0

0

1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, α7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.37)

And the E7 Weyl chamber is described by the inequalities

(α1, v) = F2 − F3 ≥ 0, (α2, v) = F1 − F2 ≥ 0, (α3, v) = −F1 −G1 −H1 ≥ 0,
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(α4, v) = G1 ≥ 0, (α5, v) =H1 −H2 ≥ 0, (α6, v) =H2 −H3 ≥ 0,
(α7, v) = F1 + F2 + F3 + 2G1 +H1 +H2 +H3 ≥ 0. (4.38)

Moreover, when we consider the highest root vector of the E7

θ = 2α1 + 3α2 + 4α3 + 2α4 + 3α5 + 2α6 + α7, (4.39)

we can construct the extra root vector as α̃0 = −θ and the affine E7 Weyl chamber is

obtained by adding

(α̃0, v) + k = F3 + k ≥ 0, (4.40)

to the inequalities describing the E7 Weyl chamber (4.38).

5 Conclusion

Let us summarize the contents of this thesis.

Firstly, we consider some super Chern-Simons matrix models with the equal ranks de-

scribed with the A1, D5 and E7 quantum curves. And in the case with the rank differences,

by fixing the lowest rank of all ranks as the reference, we can consider the correspondence

between the quantum curves and the brane configurations. Then, the Weyl groups, namely

the symmetries of the quantum curves, contain the transitions interpreted as the Hanany-

Witten transitions. After separating them, if we also regard the remaining transitions as

the brane transitions, we find the new brane transitions that exchange the number of the

D3-branes stretching both sides of the 5-brane surrounded by the different 5-branes from

the original 5-brane. Furthermore, we propose the brane transitions without referring to

whole configurations and call it local rule [1].

Secondly, we consider the duality cascades for the brane configurations in a circle. If the

ranks lower than the reference is obtained by the Hanany-Witten transitions, we redefine it

as the new reference rank, which is the duality cascade in field theories. We can understand

the redefinitions of the reference rank as the cyclic transitions in the brane configurations

and as the translations in the space of the brane configurations. We obtain the affine

Weyl groups in the space of the brane configurations by considering these translations in

addition to the Weyl groups of the curves. It is found that the fundamental domain of the

duality cascades is characterized by the affine Weyl chamber and is the polytope that can

fill the spaces of the brane configurations. Namely, we can systematically understand the

duality cascades as the affine Weyl groups.
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When the quantum curves are related to the brane configurations, the Weyl groups

of the curves are diminished by Z2 folding. Concretely, W (D5) and W (E7) respectively
become W (B3) and W (F4) by Z2 folding. Therefore, thirdly, we consider the insertion

of the super determinant operator which is interpreted as the introduction of the FI pa-

rameters. By this, we consider the full Weyl group of the curves as the brane transitions.

Also in this case, the fundamental domains in the Weyl chambers are naturally obtained

as the affine Weyl chambers.

Fourthly, more generally, by the Hanany-Witten transitions, it is found that the facing

boundary planes of the fundamental domains of the duality cascades are parallel. More-

over, for brane configurations with NS5-branes and (1, k)5-branes aligned in a circle, the

fundamental domains are obtained by cutting out the rectangle described the condition

that the numbers of the D3-branes at the intervals of the 5-branes in the brane configura-

tion of the standard order are positive.

In the appendices of this thesis, we give the reviews of our research results in my

doctoral course including the mathematical structure of the quantum A-period of the

D5 quantum curve [11], the correspondence between the ABJM matrix model and two-

dimensional Toda lattice hierarchy [12, 13] and the static force potential of non-Abelian

gauge theory at a finite box in Coulomb gauge [59].

A Fermi gas formalism

The Fermi gas formalism [8] is the method that we regard the partition functions of the

matrix models as those in free fermion model. We recognize the fermionic feature from

the property of the determinant. Moreover, the computed partition function leads the

Fermi surface in the WKB expansion h̵→ 0. It is also found that the partition function is

represented with the Airy function.

Here, we show that the grand canonical partition function is written with the Fredholm

determinant. Namely when the partition function labeled by p1 + q1 + p2 + q2 + ⋯ = r is

denoted by

Z
(p1,q1,⋯)
k (N) = ∫

r

∏
a=1

DNx(a)

N !

r

∏
a=1

∆(N)(x(a−1), x(a)), (A.1)

with

DNx(a) =
N

∏
ℓ=1

dx
(a)
ℓ

2π
e

isa
4πk
(x(a)

ℓ
)2 , (A.2)
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∆(N)(x(a−1), x(a)) = ∏
N
m<m′ 2k sinh

x
(a−1)
m −x(a−1)

m′
2k ∏N

n<n′ 2k sinh
x
(a)
n −x(a)

n′
2k

∏N
m=1∏N

n=1 2k cosh
x
(a−1)
m −x(a)n

2k

, (A.3)

we show that the grand canonical partition function is expressed with the Fredholm de-

terminant as

Ξ
(p1,q1,⋯)
k (z) = det(1 + zĤ−1(p1,q1,⋯)). (A.4)

After we showed it for the ABJM matrix model and we generalize the result to that for

the (p1, q1,⋯) model.

The (1,1) model is the ABJM matrix model without the rank difference and the

partition function in the model is represented by

ZABJM
k (N) = Z(1,1)k (N) = ∫

DNx(1)

N !

DNx(2)

N !
∆(N)(x(2), x(1))∆(N)(x(1), x(2)), (A.5)

with

DNx(1) =
N

∏
ℓ=1

dx
(1)
ℓ

2π
e

i
2π
(x(1)

ℓ
)2 , DNx(2) =

N

∏
ℓ=1

dx
(2)
ℓ

2π
e
−i
2π
(x(2)

ℓ
)2 . (A.6)

The measure is expressed with the Cauchy determinant,

∆(N)(x, y) = det( 1

2k cosh xm−yn
2k

)
N×N

. (A.7)

For convenience, we define the function P and Q as

P(x(+), x(−)) = 1

2k cosh x(+)−x(−)
2k

, Q(x(−), x(+)) = 1

2k cosh x(−)−x(+)
2k

, (A.8)

where x(±) denotes the variable associated with sa = ±1. These functions P and Q are the

same functional type, however it is convenient to distinguish by a different notation when

we consider the quantization. In this notation, the partition function is represented as

Z
(1,1)
k (N) = ∫

DNx(1)

N !
det(H−1(1,1)(x

(1)
m , x

(1)
n ))

N×N
, (A.9)

with

H−1(1,1)(x
(1)
m , x

(1)
n ) = ∫ Dx(−)P(x(1)m , x(−))Q(x(−), x(1)n ), (A.10)

where we used the Cauchy-Binet formula. And the determinant of H−1(1,1) is expanded as

Z
(1,1)
k (N) = ∫

DNx(1)

N !
∑

σ∈SN

(−1)σ
N

∏
m=1

H−1(1,1)(x
(1)
m , x

(1)
σ(m)). (A.11)
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Due to the nature of the permutation group, with the trace

tr(H−1(1,1)) = ∫ Dx(1)H−1(1,1)(x(1), x(1)), (A.12)

the partition function is represented as

Z
(1,1)
k (N) = 1

N !
∑

∑n
j=1 jℓj=N

(−1)∑n
j=1(j−1)ℓj

N !

∏n
j=1(jℓj ⋅ ℓj!)

n

∏
j=1
(tr(H−j(1,1)))

ℓj
, (A.13)

and finally becomes

Z
(1,1)
k (N) = ∑

∑n
j=1 jℓj=N

n

∏
j=1

1

ℓj!
((−1)

j−1

j
tr(H−j(1,1)))

ℓj

, (A.14)

where we calculate the sum for all ℓj satisfying the condition ∑n
j=1 jℓj = N . From this

partition function, the grand canonical partition function in the ABJM matrix model

without the rank difference is represented with the determinant as

Ξ
(1,1)
k (z) =

∞
∑
N=0

zNZ
(1,1)
k (N)

=
∞
∑
N=0

zN ∑
∑n

j=1 jℓj=N

n

∏
j=1

1

ℓj!
((−1)

j−1

j
tr(H−j(1,1)))

ℓj

=
∞
∑
N=0

∑
∑n

j=1 jℓj=N

n

∏
j=1

1

ℓj!
((−1)

j−1

j
tr((zH−1(1,1))j))

ℓj

=
∞
∏
j=1

∞
∑
ℓj=0

1

ℓj!
((−1)

j−1

j
tr((zH−1(1,1))j))

ℓj

=
∞
∏
j=1

exp((−1)
j−1

j
tr((zH−1(1,1))j))

= exp(tr log(1 + zH−1(1,1)))

= det(1 + zH−1(1,1))
N×N

. (A.15)

Let us introduce the operators q̂ and p̂ satisfying the canonical quantization condition

[q̂, p̂] = ih̵ and the eigenstates corresponding to them

⟨x∣q̂ = x⟨x∣, ⟪p∣p̂ = p⟪p∣. (A.16)

In the normalization of the eigenstates

⟨x∣x′⟩ = 2πδ(x − x′), ⟨x∣p⟫ =
√

2π

h̵
e

ixp
h̵ , ∫

dx

2π
∣x⟩⟨x∣ = 1,
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⟪p∣p′⟫ = 2πδ(p − p′), ⟪p∣x⟩ =
√

2π

h̵
e
−ixp
h̵ , ∫

dp

2π
∣p⟫⟪p∣ = 1, (A.17)

through the Fourier transformation, the following equation holds,

1

2k cosh x−x′
2

= ∫
dp

2π

e
i(x−x′)p

h̵

cosh p
2

= ∫
dp

2π

1

cosh p
2

⟨x∣p⟫⟪p∣x′⟩ = ⟨x∣ 1

2 cosh p̂
2

∣x′⟩. (A.18)

Therefore the functions P and Q are written as

P(x(+), x(−)) = ⟨x(+)∣ 1

2 cosh p̂
2

∣x(−)⟩, Q(x(−), x(+)) = ⟨x(−)∣ 1

2 cosh p̂
2

∣x(+)⟩, (A.19)

and H−1(1,1) becomes

H−1(1,1)(x
(1)
m , x

(1)
n ) = ∫

dx(2)

2π
e
−i
2h̵
(x(2))2⟨x(1)m ∣

1

2 cosh p̂
2

∣x(2)⟩⟨x(2)∣ 1

2 cosh p̂
2

∣x(1)n ⟩

= ⟨x(1)m ∣
1

2 cosh p̂
2

e
−i
2h̵

q̂2 1

2 cosh p̂
2

∣x(1)n ⟩, (A.20)

in terms of the operators. Since the trace of the H−1(1,1) is

tr(H−1(1,1)) = ∫ Dx(1)H−1(1,1)(x(1), x(1))

= ∫
dx(1)

2π
e

i
2h̵
(x(1))2⟨x(1)∣ 1

2 cosh p̂
2

e
−i
2h̵

q̂2 1

2 cosh p̂
2

∣x(1)⟩

= ∫
dx(1)

2π
⟨x(1)∣ 1

2 cosh p̂
2

e
−i
2h̵

q̂2 1

2 cosh p̂
2

e
i
2h̵

q̂2 ∣x(1)⟩, (A.21)

the similarity transition leads

tr(H−1(1,1)) = ∫
dx(1)

2π
⟨x(1)∣ 1

2 cosh p̂
2

e
−i
2h̵

p̂2e
−i
2h̵

q̂2 1

2 cosh p̂
2

e
i
2h̵

q̂2e
i
2h̵

p̂2 ∣x(1)⟩

= ∫
dx(1)

2π
⟨x(1)∣ 1

2 cosh p̂
2

1

2 cosh q̂
2

∣x(1)⟩, (A.22)

where we use the formula,

e−
i
2h̵

q̂2f(q̂, p̂)e i
2h̵

q̂2 = f(q̂, p̂ + q̂), e−
i
2h̵

p̂2f(q̂, p̂)e i
2h̵

p̂2 = f(q̂ − p̂, p̂). (A.23)

By defining the operators

Ĥ−1(1,1) = P̂−1Q̂−1, P̂−1 = 1

2 cosh p̂
2

, Q̂−1 = 1

2 cosh q̂
2

, (A.24)
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the grand canonical partition function is derived as

Ξ
(1,1)
k (z) = det(1 + zĤ−1(1,1)), (A.25)

where the determinant is defined through the trace,

tr(Ĥ−1(1,1)) = ∫
dx(1)

2π
⟨x(1)∣Ĥ−1(1,1)∣x(1)⟩. (A.26)

The operator Ĥ−1(1,1) is nothing but the quantum curve.

Since the generalization of the ABJM matrix model only changes the measure, it is

sufficient to generalize the quantum curve Ĥ−1 as

Ĥ−1 =
r

∏
a=1

1

2 cosh r̂
2

, (A.27)

where r̂ denote p̂ for an NS5-brane and q̂ for a (1, k)5-brane. For example, in the case

of the (p1, q1,⋯) model, the grand canonical partition function is represented with the

quantum curve,

Ĥ−1(p1,q1,⋯) = P̂
−p1Q̂−q1⋯. (A.28)

B Similarity transition for E7 curve

In this section, we show the similarity transitions to derive the E7 quantum curve Ĥ(E7)

in (2.18) [48]. First, we define the operator

Q̂′ ∶= Û(−1)−1Q̂, (B.1)

with

Û(u)−1 ∶= P̂(P̂ + q u
2 g1)

−1
for u ∈ Z. (B.2)

Then, the relation between Q̂n and Q̂′n can be represented as

Q̂n = (Û(−1)Q̂′)
n

= Q̂′−n
n

∏
i=1

Û(2i − 1), Q̂−n = (Û(−1)Q̂′)
−n
= Q̂′−n

n

∏
i=1

Û(1 − 2i)−1. (B.3)

With these properties, we rewrite Ĥ(E7) in terms of Q̂′ as

Ĥ(E7)/α
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= q−1Q̂′2Û(3)Û(1)P̂

+ q−1/2Q̂′Û(1)(F (+)1 P̂ + q1/2H(−)1 )

+ F (+)2 P̂ + E

α
+H(−)2 P̂ −1

+ q1/2F (+)4 Q̂′−1Û(−1)−1(P̂ + q−1/2g1)(P̂ + q−1/2g2)(F (−)1 P̂ + q−1/2g1g2H(+)1 )P̂ −2

+ qF (+)4 Q̂′−2Û(−3)−1Û(−1)−1(P̂ + q−3/2g1)(P̂ + q−1/2g1)(P̂ + q−3/2g2)(P̂ + q−1/2g2)P̂ −3,

(B.4)

by replacing Q̂′ to Q̂, (2.18) is obtained as

Ĥ(E7)/α
= q−1Q̂2Û(3)Û(1)P̂

+ q−1/2Q̂Û(1)(F (+)1 P̂ + q1/2H(−)1 )

+ F (+)2 P̂ + E

α
+H(−)2 P̂ −1

+ q1/2F (+)4 Q̂−1Û(−1)−1(P̂ + q−1/2g1)(P̂ + q−1/2g2)(F (−)1 P̂ + q−1/2g1g2H(+)1 )P̂ −2

+ qF (+)4 Q̂−2Û(−3)−1Û(−1)−1(P̂ + q−3/2g1)(P̂ + q−1/2g1)(P̂ + q−3/2g2)(P̂ + q−1/2g2)P̂ −3

= q−1Q̂2(P̂ + q3/2g1)(P̂ + q1/2g1)P̂ −1

+ q−1/2Q̂(P̂ + q1/2g1)(F (+)1 P̂ + q1/2H(−)1 )P̂ −1

+ F (+)2 P̂ + E

α
+H(−)2 P̂ −1

+ q1/2F (+)4 Q̂−1(P̂ + q−1/2g2)(F (−)1 P̂ + q−1/2g1g2H(+)1 )P̂ −1

+ qF (+)4 Q̂−2(P̂ + q−3/2g2)(P̂ + q−1/2g2)P̂ −1. (B.5)

C Qunatum mirror map for del Pezzo geometries

In this section, let us review the results of [11] briefly.

The perturbative part of the grand canonical partition function in the ABJM matrix

model leads to the fact that the partition function is the Airy function and the non-

perturbative part consists of the worldsheet instantons, the membrane instantons and the

bound states of them. On the other hand, we also understand the ABJM matrix model

from a geometric viewpoint. The ABJM matrix model is represented with the Fredholm
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determinant of the quantum curve associated with the curve of genus one known as the

local P1×P1. Then we can consider two cycles for the curve of one genus, integrations along

them give the periods (called A- and B-periods) respectively and they are modified for the

quantum curve as explained below. The B-period by integrating along the B-cycle give

the derivatives of the free energy and it is found that the woldsheet instantons are written

in terms of the BPS indices and have the multi-covering structure that the instantons in

the higher order contain instantons in the lower order [7]. The membrane instantons also

have similar multi-covering structure with the coefficients of the positive integer. Here,

there is a natural question what role the A-period plays. The answer is that the A-period

allows us to better understand the cancelation mechanism among the divergences of the

instantons [4] that exactly give the non-perturbative part. This cancelation mechanism

occurs among instantons including the bound states, however by redefining the fugacity

with the A-period ΠA as

log zeff = log zE +ΠA(z), (C.1)

with zE = z + E, the bound state is included in the worldsheet instantons, as the result,

the cancelation mechanism of the divergences occurs between the worldsheet and mem-

brane instantons. This redefined chemical potential (or fugacity) is often called effective

chemical potential. From such an important role, we expect that the A-period has the

interesting structure and the structure is important to understand the non-perturbative

effects. Therefore, in [11] to systematically examine the A-period, we have considered

the D5 quantum curve that enjoys the larger symmetries than the A1 quantum curve

describing the ABJM matrix model.

We can obtain the quantum A-period as the natural modification of the (classical)

A-period by introducing the wave function and considering the Schrödinger equation for

the quantum curve Ĥ(D5) following [7, 30],

[
Ĥ(D5)

α
+ z

α
]Ψ(x) = 0. (C.2)

The operators Q̂ and P̂ act to the wave function as

Q̂Ψ(x) =XΨ[X], P̂Ψ(x) = Ψ[q−1X], (C.3)

thus the quantum A-period is obtaind as

ΠA(z) = ResX=0
1

X
log

P [X]
−zX/(α(X − e3)(X − 1))

, (C.4)
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with

P [X] = Ψ[q−1X]
Ψ[X]

. (C.5)

It is found that this quantum A-period is naturally given by comparing the classical A-

period

Πcl
A = ∮ pdx = ∮

dX

X
logP. (C.6)

Under the parameter transitions,

h1 = q3q4, h2 =
1

q2q3
, e1 =

q1
q2
, e3 =

q4
q5
, e5 =

1

q1q2
, (C.7)

the quantum A-period is expanded in the large z as

ΠA(z) =
∞
∑
ℓ=1

(−1)ℓ+1
zℓ

Aℓ(h1, h2, e1, e3, e5;α), (C.8)

with

A1 = 0,
A2 = q1 + q−11 + q2 + q−12 + q3 + q−13 + q4 + q−14 + q5 + q−15 ,

A3

q
1
2 + q− 1

2

= 1
√
q1q2q3q4q5

(q1 + q2 + q3 + q4 + q5

+ q1q2q3 + q1q2q4 + q1q2q5 + q1q3q4 + q1q3q5 + q1q4q5 + q2q3q4
+ q2q3q5 + q2q4q5 + q3q4q5 + q1q2q3q4q5),⋯. (C.9)

Here we choose the overall factor α to

α = h
1
2
2 e

1
4
1

e
1
2
3 e

1
4
5

, (C.10)

because the Weyl groupW (D5) acts to not only parameters of the curve but also the overall

factor α. It is found that the quantum A-period has the group theoretical structure, which

is written in terms of the D5 characters as

A1 = 0, A2 = χ10, A3 = (q
1
2 + q− 1

2 )χ16,

A4 = (q2 + q−2)χ1 + (q
3
2 + q− 3

2 )(χ45 + 3χ1) +
3

2
χ54 +

5

2
χ45 +

11

2
χ1,⋯. (C.11)
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Also, as in [6], since the inverse quantum A-period has a simple structure, we solve the

quantum A-period inversely

log zE = log z +
∞
∑
ℓ=1
(−1)ℓEℓz

−ℓ
eff. (C.12)

Then we find the multi-covering structure in the quantum A-period

Eℓ =∑
n∣ℓ

(−1)n+1
n

ϵ ℓ
n
, (C.13)

with the multi-covering components ϵd(q; q1, q2, q3, q4, q5)

ϵ1 = 0,
ϵ2 = χ10,

ϵ3 = (q
1
2 + q− 1

2 )χ16,

ϵ4 = (q2 + q−2)χ1 + (q + q−1)(χ45 + 3χ1) + 4χ1,

ϵ5 = (q
5
2 + q− 5

2 )χ16 + (q
3
2 + q− 3

2 )(χ144 + 3χ16) + (q
1
2 + q− 1

2 )3χ16,

ϵ6 = (q4 + q−4)χ10 + (q3 + q−3)(χ120 + 4χ10) + (q2 + q−2)(χ320 + χ126 + 3χ120 + 9χ10)
+ (q + q−1)(3χ120 + 8χ10) + (χ320 + 2χ120 + 9χ10),

ϵ7 = (q
11
2 + q− 11

2 )χ16 + (q
9
2 + q− 9

2 )(χ144 + 4χ16) + (q
7
2 + q− 7

2 )(χ560 + 4χ144 + 13χ16)
+ (q 5

2 + q− 5
2 )(χ720 + 4χ560 + 9χ144 + 25χ16) + (q

3
2 + q− 3

2 )(3χ560 + 8χ144 + 27χ16)
+ (q 1

2 + q− 1
2 )(χ720 + 3χ560 + 9χ144 + 27χ16),

ϵ8 = (q8 + q−8)χ1 + (q7 + q−7)(χ45 + 3χ1) + (q6 + q−6)(χ210 + χ54 + 4χ45 + 10χ1)
+ (q5 + q−5)(χ945 + 4χ210 + 4χ54 + 14χ45 + 25χ1)
+ (q4 + q−4)(χ1050 + 4χ945 + χ770 + 13χ210 + 10χ54 + 35χ45 + 54χ1)
+ (q3 + q−3)(χ1386 + 4χ1050 + 10χ945 + 3χ770 + 25χ210 + 19χ54 + 62χ45 + 84χ1)
+ (q2 + q−2)(3χ1050 + 8χ945 + 3χ770 + 27χ210 + 19χ54 + 68χ45 + 102χ1)
+ (q + q−1)(χ1386 + 3χ1050 + 10χ945 + 3χ770 + 27χ210 + 22χ54 + 73χ45 + 105χ1)
+ (4χ1050 + 10χ945 + 2χ770 + 28χ210 + 22χ54 + 72χ45 + 108χ1).

The coefficients of ϵd are positive integers and the representations appearing are same ones

in the B-period [32,33] except for the trivial case d = 1.

For the above results, some questions remain. First, we do not understand whether

the structure that the A-period is written in terms of the D5 characters of the same

representations (except for ϵd=1) with the B-period is natural. In addition, we do not

know why the trivial case ϵd=1 is the only exception. Second, the coefficients of the multi-

covering components are positive integers, however it is not clear what they count.
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D ABJM/2DTL correspondence

In this section, we summarize the results of [12, 13] briefly.

The localization technique is known as the method to obtain the matix models from

the supersymmetric gauge theories [3,17]. Therefore, only when the supersymmetries are

preserved, the vacuum expectation values in the supersymmetric gauge theories reduce to

those in the matrix model by the localization technique. In the ABJM theory. The vacuum

expectation values of the half BPS Wilson loops in the ABJM theory are represented as

the insertions of the super Schur functions [53] in the ABJM matrix model. For the one-

point functions in the ABJM matrix model, the characteristic structure is found and it is

called shifted Giambelli relation [22]. And this structure leads that the one-point functions

satisfy some relations well-known for the Schur functions [54], the Giambelli relations [23]

and the Jacobi-Trudi relations [12].

Later, in [21], the two-point function in the ABJM matrix model is proposed as the

generalization of the one-point function. This generalization is constructed so that the

two-point functions do not reduce to the one-point functions through the Littlewood-

Richardson rule trivially and satisfy the modification of the shifted Giambelli relation of

one-point functions. The two-point functions are not results by the localization technique,

however we expect that the definition of the two-point functions is natural and physical

from the characteristic properties of the two-point functions.

In [13], we have studied the correspondence between the ABJM matrix model and the

soliton equations. After J. Scott-Russell found the solitary waves in 1834, the many non-

linear differential equations describing the solitons are found and solved. Furthermore, it is

found that there are infinite non-linear differential equations compatible with the original

equation and the whole set of them is called integrable hierarchy. The Sato theory claims

that when the soliton solution (tau-function) is expanded with the Schur functions, the

coefficients satisfy the Plücker relations and the whole set of the relations equivalent to

the integrable hierarchy [55–58]. Interestingly, the two-dimensional Toda lattice (2DTL)

hierarchy gives modified Kadomtsev-Petviashvili (mKP) hierarchy by simple reduction.

The coefficients of the tau function expanded with the Schur functions are represented

as the expectation values of the product of the fermions in the Fermionic construction

known in the integrable systems. Then, the Wick theorem for the fermions leads not only

the Plücker relations but also the Giambelli relations and Jacobi-Trudi relations (see, for

example, [58]). In [13], by generalizing the theorem, we have shown that the coefficients

of the 2DTL tau function satisfy the shifted Giambelli relation modified for the two-point
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functions. By this fact, if we correspond the two-point functions to the coefficients of the

2DTL tau function for the hook representations, the correspondence for any representation

is automatically constructed due to the shifted Giambelli relation.

This correspondence between ABJM matrix model and 2DTL hierarchy (ABJM/2DTL

correspondence) gives us some advantages. First, the proofs that the one-point functions

satisfy the Giambelli relation and the Jacobi-Trudi relation were complicated, however the

ABJM/2DTL correspondence allows us to rederive them with the Wick theorem system-

atically. Also, we can find the Giambelli relation for the two-point functions as the new

relation with the generalized Wick theorem. In this way, we expect that the Fermionic

construction will play an important role when discussing the mathematical structure of

the ABJM matrix model in the future.

Second, the ABJM/2DTL correspondence allows us to reevaluate the generalization

from the one-point functions to two-point functions in the ABJMmatrix model in the view-

point of the integrable systems. In the integrable systems, the 2DTL hierarchy reduces

mKP hierarchy by simple reduction. On the other hand, in the ABJM matrix model, if

one Schur function inserted in the two-point function is trivial one, the two-point function

reduces to the one-point function. These reductions agree in the ABJM/2DTL corre-

spondence. Actually, the two-point functions correspond to the 2DTL hierarchy and the

one-point functions correspond to the mKP hierarchy. Therefore the generalization to the

two-point functions is considered natural from the viewpoint of the integrable system.

E Static force potential of non-Abelian gauge theory

at a finite box in Coulomb gauge

Although the contents in this appendix do not relate directly to the main topic of this

thesis, I have also studied static force potential at a finite box in my doctoral course.

In this section, let us review the results of [59] briefly. We have reconsidered the force

potential existing between two classical static sources of pure non-Abelian gauge theory

in the Caulomb gauge9 at a twisted [71–77] (and periodic [78, 79]) finite box. There

we have calculated the interaction energy up to the one-loop level in the old-fashioned

perturbation theory and analyzed it in the derivative expansion and the short-distance

expansion. And as the result, the former expansion leads the negative beta-function and

9We give some of the references about non-Abelian gauge theory with the Coulomb gauge [60–70].
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the Uehling potential in the non-Abelian gauge theory. The latter expansion is given by

the convolution of the two Green functions being non-singular at x1 = x2 (see (E.14)).

Also, it was found that the effect of the twist comes from Green function of the Laplacian

in the twisted sector.

First, in the Coulomb gauge, the Hamiltonian consists of the physical degrees of free-

dom and all of the gauge degree of freedom being eliminated as

H = 1

2
∑
a
∫ d3x(J −1Π(tr)a

i JΠ(tr)a
i +B(tr)a

i B
(tr)a
i )+HCoul,

HCoul =
g20
2
∑
a,b
∫ d3xd3x′J −1ρa(x)⟨x∣((∂iDi)−1(−∂2)(∂jDj)−1)

ab

∣x′⟩J ρb(x′), (E.1)

where Π
(tr)a
i , B

(tr)a
i , Di, ρa and J are respectively the conjugate momentum of the trans-

verse gauge field A
(tr)a
i , the transverse magnetic field, covariant derivative, the current

density and Faddeev-Popov determinant J = det(∂iDi). Here the current density includes

two external source terms as

ρa(x) = g0ϵabcAb
i(x)Πc

i(x) + ρa1,ex(x) + ρa2,ex(x),
ρa1,2,ex(x) = qa1,2δ(3)(x −x1,2), (E.2)

where λ is twisted sector and ∣w⟩λ is the ket vector in the momentum representation in

the λ twisted sector. The twisted sector is derived from the twisted boundary condition

for the gauge field [80],

Ai(x, y, z) = PAi(x +L, y, z)P −1 = QAi(x, y +L, z)Q−1 = Ai(x, y, z +L), (E.3)

where P and Q are the constant matrices which satisfy for SU(N),

PQ = QPe
2πi
N . (E.4)

The Green function of the Laplacian in the λ twisted sector is

Gλ(x∣x′) = − 1

4π
∑
ℓ∈Z3

e2πiλ⋅ℓ

∣x −x′ +Lℓ∣
, (E.5)

where we use the Poisson resummation formula. In the limit L →∞, the dependence on

the twisted sector disappears

G(x∣x′) = − 1

4π

1

∣x −x′∣
. (E.6)
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With the Green function in the λ twisted sector, the part of the vacuum energy which

depends on linearly upon both ρa1,ex(x) and ρa2,ex(x) at the lowest classical level is obtained
as

Etw = −g20∑
a
∫ d3xd3x′ρa1,ex(x)Gλ(a)(x∣x′)δabρb2,ex(x′)

= −g20∑
a

qa1q
a
2G

λ(a)(x1∣x2). (E.7)

Therefore, the twisted sector makes the interaction energy smaller than that in the periodic

boundary condition at the classical level.

And in the old-fashioned perturbation theory well-known in the quantum mechanics,

the perturbative expansion of the interaction energy E(r12 = ∣x1−x2∣) is given up to second

order by

E(r12) =∑
a

g20q
a
1q

a
2

4π2L
∑

n∈Z3+λ(a)
n≠0

⟨x1∣n⟩λ(a)
1

n ⋅n
[1 + g20(δ′λ(a)(n) + δ

′′
λ(a)
(n))]λ(a)⟨n∣x2⟩, (E.8)

where δ′
λ(a)
(n) and δ′′

λ(a)
(n) are contributions included in the leading order and the second

order respectively and the sum of them gives the correction at the one-loop level

δ′
λ(a)
(n) = 3

16π3

1

n ⋅n∑c≠a
∑

m∈Z3+λ(c)
m≠0

(n +m)iP (m)ijnj

∣n +m∣2∣m∣
,

δ′′
λ(a)
(n) = − 1

32π3

1

n ⋅n∑c≠a
∑

m∈Z3+λ(c)
m≠0

(∣m∣ − ∣n −m∣)2
∣m∣ + ∣n −m∣

P (m)ijP (n −m)ij
∣m∣∣n −m∣

. (E.9)

The zero mode m = 0 in the summation is removed to prevent the divergence in the

periodic case λ = 0.

In the following, we investigate the result (E.8) in the long-distance and the short-

distance expansions. At long-distance r12 ∼ L, the quantum correction is expanded in ni

as

δ′
λ(a)
(n) + δ′′

λ(a)
(n)

= 1

32π3∑
c≠a

∑
m∈Z3+λ(c)

m≠0

[ 1
2!
( 12

∣m∣3
− 14(m ⋅n)2
∣m∣5∣n∣2

) + 1

3!
(−66(m ⋅n)

∣m∣5
+ 57(m ⋅n)3
∣m∣7∣n∣2

)

+ 1

4!
(−150∣n∣

2

∣m∣5
+ 822(m ⋅n)2

∣m∣7
− 714(m ⋅n)4
∣m∣9∣n∣2

) + (higher orders of ni)]. (E.10)
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Here if we consider the case of the periodic boundary condition λ = 0, due to the cubic

symmetry, the quantum correction reduces to

δ′λ=0(n) + δ′′λ=0(n) =
1

16π3 ∑
m∈Z3

m≠0

[11
3

1

∣m∣3
− 47

60

∣n∣2
∣m∣5

+O(∣n∣4)]. (E.11)

We obtain the interaction energy at the periodic box as

E(r12) =
1

4π
∑
a
∑
n∈Z3

g20q
a
1q

a
2

∣x1 −x2 +nL∣
[1 + g20

11

12π2

1

4π
∑

m∈Z3

m≠0

6

∣m∣3
]

−∑
a

g40q
a
1q

a
2

(4π)2
47

30

1

(2π)3
(L2 ∑

n∈Z3

δ(3)(x1 −x2 +nL) −
1

L
) ∑

m∈Z3

m≠0

1

∣m∣5

+ (higher orders in the derivative expansion), (E.12)

and the parts of the first and second line give the negative beta-function and the Uehling

potential respectively in the large L.

In the expansion at short-distance r12 ≪ L, in the limit L → ∞ we can expand the

interaction energy in the inverse of the momentum of the external charges 1/p as

E(r12) =∑
a

g20q
a
1q

a
2

(2π)3 ∫
d3peip⋅(x1−x2)[ 1

p2
+ g20(

1

3π2

Λ2

p4
+O(Λ

3

p5
))], (E.13)

where Λ is UV cutoff. We note that the 1/p4-term is written as

∫ d3zG(x1∣z)G(z∣x2) = ∫
d3p

(2π)3
1

p4
eip⋅(x1−x2), (E.14)

which is non-singular at x1 = x2,

∫ d3zG(x∣z)G(z∣x′) = (−1
4π
)
2

∫ d3z
1

∣x − z∣
1

∣z −x′∣
. (E.15)

Then in terms of the Green functions, the interaction energy E(r12) is written as

E(r12) = −g20∑
a

qa1q
a
2[G(x1∣x2) −

1

3π2
g20Λ

2∫ d3zG(x1∣z)G(z∣x2) +O(Λ3)]. (E.16)

The short-distance expansion begins with the convolution of the two Coulomb Green

functions and is non-singular at the short distance limit of the two external sources x1 = x2.

This term does not appear in the QED.
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