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Abstract 

 

The skein (HOMFLYPT) polynomial is a polynomial invariant of a link. 

It is one of the most general polynomial invariants in the link polynomial 

invariants which denote the equation of the skein relation.  

The zeroth coefficient polynomial of the skein (HOMFLYPT) knot 

polynomial called the   −polynomial is studied from a viewpoint of regular 

homotopy of knot diagrams. In particular, an elementary existence proof of 

the knot invariance of the   −polynomial is given.  After observing that 

there are three types for 2 −string tangle diagrams, the  −polynomial is 

generalized to a polynomial invariant of a 2 −string tangle. As an application, 

we have a new proof of the assertion that Kinoshita's  −curve is not 

equivalent to the trivial  −curve. 
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1 Introduction

Let D be a diagram of an oriented link L with r components. The skein

(HOMFLYPT) polynomial of L in [3] is represented by a Laurent polynomial

in two variables y and z which is denoted by:

P (L; y, z) = P (D; y, z) = (yz)−r+1

+∞∑
n=0

Cn(D;−y2)z2n,

where Cn(D;−y2) is a Laurent polynomial in y2 called the n-th coefficient

polynomial of the skein polynomial P (L; y, z) = P (D; y, z) (see [1]). 1

In this paper, the zeroth coefficient polynomial C0(D; x) = C0(D;−y2)

written as x = −y2 is studied. Following the paper [5], we call the zeroth

coefficient polynomial C0(D;x) the Γ-polynomial and denote it by Γ(D) =

Γ(D;x). Let D be a knot diagram, and p a crossing point of D. Let ϵ(p) = ±

be the sign of p as in Fig. 1. Let D−ϵ(p) be the knot diagram obtained from

Figure 1: The signs of a crossing point.

D by the crossing change at p, and Do(p) the two-component link diagram

obtained from D by the splice at p. Then, call (Dϵ(p), D−ϵ(p), Do(p)) the skein

1See [2] for a general reference of terminologies in knot theory.
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triple at p of D. When the crossing point p is not emphasized, the skein

triple on D at p is denoted by (D+, D−, D0) or (D−, D+, D0) according to

ϵ(p) = + or −. The crossing point p of the skein triple on D is as in Fig. 2.

Let D1 and D2 be the knot component subdiagrams of D0. The following

Figure 2: The skein triple on D.

skein relation is observed in Kawauchi [1].

−xΓ(D+) + Γ(D−) = (1− x)x−Link(D0)Γ(D1)Γ(D2),

where Link(D0) denotes the linking number Link(D1, D2). Let w(D) be the

writhe of an oriented knot diagram D. We define the γ-polynomial γ(D; y)

of D as follows:

γ(D; y) = yw(D)C0(D;−y2),

which is a Laurent polynomial in y. Then the following result on γ(D) =

γ(D; y) is observed by Kawauchi [2].

Theorem 1.1. There is a Laurent polynomial γ(D; y) defined on a knot

diagram D which has the following 3 properties.
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(1) The following equalities hold on Reidemeister Moves I, II, III:

γ⟨ ⟩ = yγ⟨ ⟩ , γ⟨ ⟩ = y−1γ⟨ ⟩.

γ⟨ ⟩ = γ⟨ ⟩, γ⟨ ⟩ = γ⟨ ⟩.

(2) If the crossing number c(D) = 0, then γ(D) = 1.

(3) For a skein triple (D+, D−, D0) where D+ and D− are knot diagrams and

D0 = D1 ∪D2 is a two-component link diagram, we have

γ(D+) + γ(D−) = (y + y−1)(−1)−Link(D1,D2)γ(D1)γ(D2).

Although Theorem 1.1 is regarded as a known result as it is in principle

included in the skein polynomial, we shall give an elementary direct proof of

Theorem 1.1 in Section 3. In Section 4, a generalization of the Γ-polynomial

to a 2-string tangle is shown. A tangle is a pair of a 3-ball and some strings

in it whose ends are on the boundary sphere. Here, we consider a 2-string

tangle which has two strings in a 3-ball. Let T and D(T ) be an oriented

tangle and a tangle diagram. Let ∞ be a base point on the boundary circle

of the disk underlying the tangle diagram. Although in general a tangle

diagram D(T ) of a tangle T is denoted as in Fig. 3 (1), here it is denoted as

a straight line obtained by cutting open the boundary circle of the disk at a

base point ∞ as in Fig. 3 (2). From here, a tangle diagram D(T ) is denoted

without the base point ∞. In the case that an oriented tangle diagram is
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denoted without an orientation of the boundary circle of the disk, we apply

the same orientation as in Fig. 3 (2). For the string diagram D(ti) (i = 1, 2)

of an oriented tangle diagram D(T ), let si and ai (i = 1, 2) be the starting

point and the arriving point of D(ti), respectively. The type A, B or C of an

oriented tangle diagram D(T ), we mean the positional relations on si and ai

as in Fig. 4. We note that the positional relations of the end points of the

tangle diagrams (1) − (4) in the same type B or C in Fig. 4 are deformed

into a tangle diagram with the same positional relations of the end points by

choosing other base points on the boundary circle of the disk underlying the

tangle diagram D(T ). Similarly, the positional relations of the end points

of the tangle diagram (1) and (2) of type A are deformed into the same

ones. Further, as it will be shown in Lemma 4.1, (1)′ and (2)′ of type A are

reduced to (1) and (2) of type A in the Γ-polynomial level although (1)′ and

(2)′ are deformed into (1) and (2) with the reversed orientations, respectively.

In these senses, we denote the tangle diagram D(T ) of type A, B or C as

follows.

type A: D(T ) = ,

type B: D(T ) = ,

type C: D(T ) = .

For the generalization of the Γ-polynomial to a 2-string tangle, specific tangle
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Figure 3: The denotations of a tangle diagram.
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Figure 4: The types of an oriented tangle diagram.
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diagrams Xi (i = 0, 1) for the type A, B or C are fixed as follows:

typeA : D(T ) = , X0 = , X1 = .

typeB : D(T ) = , X0 = , X1 = .

typeC : D(T ) = , X0 = , X1 = .

Let D(T ) be a diagram of a 2-string tangle T , and P a 2-string tangle

diagram whose tangle sum D(T )∪P is a knot diagram. We call P a comple-

mentary tangle diagram for D(T ). Then the Γ-polynomial Γ(D(T ) ∪ P ) can

be expressed as follows by applying the skein relations of the Γ-polynomial

to D(T ) by induction on warping degree (see [7, 8]):

Γ(D(T ) ∪ P ) = f0(x)Γ(X0 ∪ P ) + f1(x)Γ(X1 ∪ P ).

Then we define the Γ-polynomial Γ(D(T )) of D(T ) by

Γ(D(T )) = f0(x)Γ(X0) + f1(x)Γ(X1).

The well-definedness of this identity will be our main result. Two specific

complementary tangle diagrams Pj (j = 0, 1) of D(T ) depending on the type

A,B or C of D(T ) are introduced in Fig. 5. We have the following theorem.

Theorem 1.2. For any 2-string tangle diagrams D(T ) and D(T ′) and some

complementary tangle diagrams P and P ′ for D(T ) and D(T ′) respectively,
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Figure 5: Two specific complementary tangle diagrams P0 and P1.

we take

Γ(D(T )) = f0(x)Γ(X0) + f1(x)Γ(X1),

Γ(D(T ′)) = f ′
0(x)Γ(X0) + f ′

1(x)Γ(X1).

If D(T ) and D(T ′) are of the same type and

Γ(D(T ) ∪ Pj) = Γ(D(T ′) ∪ Pj) (j = 0, 1),

then we have fi(x) = f ′
i(x) for any i (i = 0, 1).

In particular, taking D(T ) = D(T ′), we have the following corollary:
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Corollary 1.3. For every tangle diagram D(T ), the Laurent polynomials

f0 and f1 in x are independent of choices of the skein relations on D(T ) and

uniquely determined.

Remark: In these theorem and corollary, as it is shown in the proof of

Lemma 4.1, the polynomials fi(x) (i = 0, 1) of the Γ-polynomial Γ(D(T ))

are also independent of a choice of orientations of the boundary circle of the

disk underlying an oriented tangle diagram D(T ). Corollary 1.3 is a version

of a linear skein theory; cf. [6].

The proofs of Theorem 1.2 and Corollary 1.3 are given in Section 4. In

Section 5, we apply the Γ-polynomial of a 2-string tangle to a θ-curve and

give a new proof of the assertion that Kinoshita’s θ-curve is not equivalent

to the trivial θ-curve (see (5.1)) later.
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2 Preliminary

In this section, we describe briefly some basic concepts related to this pa-

per. The following concepts come from Kawauchi[2] and Shimizu[8]. An

r-component link L is a smooth embedding image of the disjoint union of r

simple closed curves into the 3-space R3. In particular, a knot K is a link of

one component. A knot diagram and a link diagram illustrated in Fig. 6, are

projected images of a knot and a link, respectively to the plane R2 with only

double crossings, where the information of over-crossings and under crossings

of the crossing points is given. We denote a knot diagram or a link diagram

as D. The following local moves of a diagram in Fig. 7 are called Reidemeis-

Figure 6: Examples of a knot diagram and a link diagram.

ter moves of type I, II and III. Unless otherwise stated, we consider that a

knot and a link have orientations.
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Figure 7: Reidemeister moves I, II and III.

The equivalence of several notions of “link equivalence”

We explain several conditions on the eqivalence of two links.

Definition 2.1. Two links L and L′ in R3 belong to the same topological

type if there is an orientation-preserving self-homeomorphism h of R3 such

that h(L) = L′ and h|L : L ∼= L′ is orientation-preserving.

For a link L and a disk D in R3 such that L ∩D = L ∩ ∂D which is an arc,

the new link L′ =cl(L− L ∩D) ∪ (∂D − L ∩D) is said to be obtained from

L by a disk move. Here, the link L′ is oriented so that the orientations on

L′ −D and L−D coincide (See Fig. 8).
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Figure 8: A disk move.

Definition 2.2. Two links L and L′ in R3 belong to the same combinatorial

type if there is a sequence of links Li(i = 0, 1, ..., s + 1) with L0 = L and

Ls+1 = L′ such that Li+1 is obtained from Li by a disk move for each i.

Two links L and L′ in R3 are said to be ambient isotopic if there is an

ambient isotopy ht (0 ≦ t ≦ 1) of R3 such that h0 =id and h1 gives the

same topological type L ∼= L′. They are said to be ambient isotopic with a

compact support if, in addition, there is a compact subset X ⊂ R3 such that

ht(x) = x for all x ∈ R3 −X and all t ∈ [0, 1].

We are in a position to explain the equivalence of two links.
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Theorem 2.3. For two links L and L′ in R3, the following (1)-(4) are mu-

tually equivalent:

(1) L and L′ belong to the same topological type.

(2) L and L′ belong to the same combinatorial type.

(3) Any diagrams of L and L′ are mutually related by a finite sequence of

Redemeister moves I, II, II.

(4) L and L′ are ambient isotopic with a compact support.

We say that two links L and L′ are equivalent if one fo the conditions (1)-(4)

on L and L′ is stated.

Warping degree

Next, we explin the warping degree of a knot diagram. For an oriented di-

agram of a knot, the warping degree is defined by Kawauchi.[3] Let b be

the point on a knot diagram D which is not any crossing point. We call it

a base point of D. We denote the pair of D and b by (D, b). A crossing

point of (D, b) is a warping crossing point if we meet the point first at the

under-crossing when we go along the oriented diagram D by starting from b.

For example, in Fig. 9, in the oriented knot diagram (D1, b), q is a warping

crossing point of (D1, b), and p, r and s are non-warping crossing points of

(D1, b). On the other hand, in the knot diagram (D2, b) with the same base

point b and the opposite orientation of the knot diagram (D1, b), p, r and s

are warping crossing points, and q is a non-warping crossing points of (D2, b).

In relation to the warping crossing point, we define the warping degree.
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Figure 9:

Definition 2.3. The warping degree of (D, b), denoted by d(D, b), is the

number of warping crossing points of (D, b). The warping degree of D, de-

noted by d(D), is the minimal warping degree for all base points of D.

For example, in Fig. 10, we have the warping degrees of the oriented knot

Figure 10:

diagrams d(D1) = 1 and d(D2) = 2.
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3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1, elementary with a direct proof.

Let b be a base point in an edge of an oriented knot diagram D. We first

define a Laurent polynomial γ(D, b) in variable y, for an oriented based knot

diagram (D, b). Then we prove that γ(D, b) does not depend on any base

point b. To do so, we use the mathematical induction on the crossing number

c(D) of a knot diagram D. Let γ(D, b) = 1 when c(D) = 0. Suppose that

γ(D′, b′) is defined for an oriented based knot diagram with c(D′) ≦ n − 1.

We consider an oriented based knot diagram (D, b) with c(D) ≦ n. After

we prove that γ(D, b) does not depend on the base point b, the Laurent

polynomial γ(D, b) is simply denoted by γ(D). For an oriented based knot

diagram (D, b) with c(D) ≦ n, we define γ(D, b) by mathematical induction

on the warping degree d(D, b) = m of the based knot diagram (D, b). We

define the Laurent polynomial γ(D, b) = yw(D) when d(D, b) = 0. Next,

assume that γ(D′′, b′′) is defined for an oriented based knot diagram d(D′′, b′′)

with c(D′′) ≦ n and the warping degree d(D′′, b′′) = m − 1. We consider

γ(D, b) in the case that d(D, b) = m ≧ 1. For any warping crossing point

p and the sign ϵ(p) = ±, the warping degree d(D−ϵ(p), b) = m − 1. Here we

note that for a link diagram D = D1 ∪D2 ∪ · · · ∪Dr with c(D) ≦ n− 1, we

define

γ(D) = (y + y−1)r−1(−1)−Link(D)γ(D1)γ(D2) · · · γ(Dr)
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where the total linking number of a link D, denoted by Link(D), is defined

as follows:

Link(D) =
∑

1≦i<j≦r

Link(Di, Dj).

Then, we can define the Laurent polynomial γ(D, b) in y at a warping crossing

point p as follows.

γ(D, b) = γ(Dϵ(p), b) = −γ(D−ϵ(p), b) + γ(Do(p)).

The following lemmas are needed to reduce the proof of Theorem 1.1.

Lemma 3.1. The Laurent polynomial γ(D, b) does not depend on any

choices of the warping crossing points.

Lemma 3.2. The Laurent polynomial γ(D, b) does not depend on the base

point b.

Proof of Lemma 3.1. Let d(D, b) ≧ 2. Let p and q be warping crossing

points of an oriented based knot diagram (D, b) with c(D) ≦ n. The Laurent

polynomial γ(D, b) at p is given as follows:

γ(Dϵ(p), b) = −γ(D−ϵ(p), b) + γ(Do(p)).
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In the same way, the Laurent polynomial γ(D, b) is given at q(̸= p) as follows.

γ(Dϵ(q), b) = −γ(D−ϵ(q), b) + γ(Do(q)).

We show that the Laurent polynomial γ(Dϵ(p), b) = γ(Dϵ(q), b). The proof is

divided by the following two cases:

(i) The case when q is a self-crossing point after the splice at p.

(ii) The case when q is a non-self-crossing point after the splice at p.

Let Do(q),o(p) denotes the link diagram obtained from D by the splices at p

and q.

Proof in the case of (i). The warping crossing point q is a self-crossing point

after the splice at p (See Fig. 11).

Figure 11:

We first consider the Laurent polynomial γ(Do(q)). Let D1 and D2 be the

20



Figure 12:

knot components of the link diagramDo(q) (See Fig. 12). Let p be the warping

crossing point of the knot diagram D1. Since c(Di) ≦ n − 1 (i = 1, 2), we

have

γ(Do(q)) = (y + y−1)(−1)−Link(Do(q))γ(D1)γ(D2)

= (y + y−1)(−1)−Link(Do(q))(−γ((D1)−ϵ(p)) + γ((D1)o(p)))γ(D2).

Then we consider the Laurent polynomial γ((D1)o(p)). Let (D1)1 and (D1)2

be the knot components of the link diagram (D1)o(p) (See Fig 13). Since

Figure 13:
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c((D1)i) ≦ c(D1) (i = 1, 2), we have

γ((D1)o(p)) = (y + y−1)(−1)−Link((D1)o(p))γ((D1)1)γ((D1)2).

Then, we have

γ(Do(q)) = −(y + y−1)(−1)−Link(Do(q))γ((D1)−ϵ(p))γ(D2)

+ (y + y−1)(−1)−Link(Do(q))(y + y−1)(−1)−Link((D1)o(p))γ((D1)1)γ((D1)2)γ(D2).

The right first term of the above identity is equal to the Laurent polynomial

γ((Do(q))−ϵ(p)) where (Do(q))−ϵ(p) denotes the link diagram obtained fromDo(q)

by the crossing change at p. The right second term of the above identity is

equal to the Laurent polynomial γ(Do(q),o(p)). Hence, we have

γ(Do(q)) = −γ((Do(q))−ϵ(p)) + γ(Do(q),o(p)).

Since the link diagrams (Do(q))−ϵ(p) and (D−ϵ(p))o(q) are equal, we have

γ((Do(q))−ϵ(p)) = γ((D−ϵ(p))o(q))

and hence

γ((D−ϵ(p))o(q)) = γ(Do(q),o(p))− γ(Do(q)).

Because d((D−ϵ(p))−ϵ(q)) = d(D−ϵ(p)) − 1 and c((D−ϵ(p))o(q)) = c(D−ϵ(p)) − 1,

22



we have

γ(Dϵ(p), b) = −γ(D−ϵ(p), b) + γ(Do(p))

= γ((D−ϵ(p))−ϵ(q), b)− γ((D−ϵ(p))o(q)) + γ(Do(p))

= γ((D−ϵ(p))−ϵ(q), b)− γ(Do(q),o(p)) + γ(Do(q)) + γ(Do(p)).

Then we see that γ(Dϵ(p), b) = γ(Dϵ(q), b) if we interchange p and q. Hence,

the identity γ(Dϵ(p), b) = γ(Dϵ(q), b) is proved in the case of (i).

Proof in the case of (ii). The warping crossing point q is a non-self-crossing

point by the splice at p (See Fig. 14). We first consider the relations between

Figure 14:

the two Laurent polynomials γ(Do(q)) and γ(Do(q),−ϵ(p)) (See Fig. 15). Let

ℓ and ℓ−ϵ(p) be the linking numbers Link(Do(q)) and Link(Do(q),−ϵ(p)) of the

link diagrams Do(q) and Do(q),−ϵ(p) respectively. Since ℓ − ℓ−ϵ(p) = ±1 and
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Figure 15:

γ(Do(q),−ϵ(p)) = γ((D−ϵ(p))o(q)), we have

γ(D−ϵ(p),o(q)) = −γ(Do(q)).

Since d((D−ϵ(p))−ϵ(q)) = d(D−ϵ(p))− 1 and c((D−ϵ(p))o(q)) = c(D−ϵ(p))− 1, the

Laurent polynomial γ((D−ϵ(p))−ϵ(q), b)) is defined and we have

γ(Dϵ(p), b) = −γ(D−ϵ(p), b) + γ(Do(p))

= −(−γ((D−ϵ(p))−ϵ(q), b) + γ((D−ϵ(p))o(q))) + γ(Do(p))

= γ((D−ϵ(p))−ϵ(q), b) + γ(Do(q)) + γ(Do(p)).

Then we see that γ(Dϵ(p), b) = γ(Dϵ(q), b) if we interchange p and q. Thus, the

identity γ(Dϵ(p), b) = γ(Dϵ(q), b) is proved in the case of (ii). Hence, Lemma

3.1 is proved. 2

Proof of Lemma 3.2. For the crossing point p of an oriented based knot
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diagram D, let b be a base point in front of the crossing point p, and b′ a

base point behind the crossing point p (See Fig. 16).

Then we consider the warping crossing points of the oriented based knot

Figure 16:

diagrams (D, b) and (D, b′). The warping crossing points of (D, b) and (D, b′)

are consistent except the crossing point p. Let q be a warping crossing point

of (D, b) except p. Since the warping degree d(D−ϵ(q), b) = d(D, b) − 1 and

the crossing number c(Do(q)) ≦ c(D)− 1, we have

γ(D, b) + γ(D−ϵ(q), b) = γ(Do(q)),

γ(D, b′) + γ(D−ϵ(q), b
′) = γ(Do(q)).

Then, we have

γ(D, b)− γ(D, b′) = γ(D−ϵ(q), b
′)− γ(D−ϵ(q), b).

25



By continuing this process for the other warping crossing points, we have

γ(D, b)− γ(D, b′) = γ(D′, b′)− γ(D′, b)

for the oriented based knot diagram (D′, b) without any warping crossing

points except the crossing point p. Then we have the following two cases:

(i) The case when p is a warping crossing point of the based knot diagram

(D′, b).

(ii) The case when p is not a warping crossing point of the based knot diagram

(D′, b).

We show that the Laurent polynomial γ(D, b) = γ(D, b′) by showing that

γ(D′, b) = γ(D′, b′) in each case. At the first, let D′
1 and D′

2 be the knot

components of the link diagram D′
o(p) obtained by the splice at p. Since the

crossing number c(D′
1) ≦ c(D′) − 1 and c(D′

2) ≦ c(D′) − 1, we can define

γ(D′
o(p)). Since the knot diagram (D′, b) does not have any warping crossing

points except the crossing point p, the linking number Link(D′
1, D

′
2) = 0.
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Since d(D′
1) = 0 and d(D′

2) = 0, then we have

γ(D′
o(p)) = (y + y−1)(−1)−Link(D

′
1,D

′
2)γ(D′

1)γ(D
′
2)

= (y + y−1)yw(D′
1)+w(D′

2)

= (y + y−1)yw(D′)−ϵ(p)1

= yw(D′)−ϵ(p)1+1 + yw(D′)−ϵ(p)1−1.

Proof in the case of (i). The positional relations of the base points b and b′

between the crossing point p are given in Fig. 17. Then we have d(D′, b) = 1

and d(D′, b′) = 0.

Figure 17:

Since d(D′
−ϵ(p), b) = 0, we have γ(D′

−ϵ(p), b) = yw(D′
−ϵ(p)

) and
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γ(D′, b) = γ(D′
ϵ(p), b)

= −γ(D′
−ϵ(p), b) + γ(D′

o(p))

= −yw(D′
−ϵ(p)

) + γ(D′
o(p))

= −yw(D′)−ϵ(p)2 + yw(D′)−ϵ(p)1+1 + yw(D′)−ϵ(p)1−1.

Then, in spite of the sign ϵ(p) = ± of the crossing point p, we have

γ(D′, b) = yw(D′).

On the other hand, since the warping degree d(D′, b′) = 0, we have γ(D′, b′) =

yw(D′). Then we have γ(D′, b) = γ(D′, b′), so that γ(D, b) = γ(D, b′).

Proof in the case of (ii). The positional relations between the crossing point

p, the two base points b and b′ is as follows (See Fig. 18). Then we have

d(D′, b) = 0 and d(D′, b′) = 1. Since d(D′
−ϵ(p), b

′) = 0, we have γ(D′
−ϵ(p), b

′) =

Figure 18:
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yw(D′
−ϵ(p)

) and

γ(D′, b′) = γ(D′
ϵ(p), b

′)

= −γ(D′
−ϵ(p), b

′) + γ(D′
o(p))

= −yw(D′
−ϵ(p)

) + γ(D′
o(p))

= −yw(D′)−ϵ(p)2 + yw(D′)−ϵ(p)1+1 + yw(D′)−ϵ(p)1−1.

Then, in spite of the sign ϵ(p) = ± of the crossing point p, we have

γ(D′, b) = yw(D′).

On the other hand, since the warping degree d(D′, b′) = 0, we have γ(D′, b′) =

yw(D′). Then we have γ(D′, b) = γ(D′, b′), so that γ(D, b) = γ(D, b′). 2

By Lemma 3.2, the Laurent polynomial γ(D, b) of the oriented based knot

diagram (D, b) is simply denoted by γ(D). We return the proof of Theorem

1.1. We show the following Lemma 3.3:

Lemma 3.3. The Laurent polynomial γ(D) defined for a knot diagram D

with c(D) ≦ n has the following three properties.

(i) The following equalities hold on Reidemeister Moves I, II, III.

γ⟨ ⟩ = yγ⟨ ⟩ , γ⟨ ⟩ = y−1γ⟨ ⟩.
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γ⟨ ⟩ = γ⟨ ⟩, γ⟨ ⟩ = γ⟨ ⟩.

(ii) If c(D) = 0, then γ(D) = 1.

(iii) For the skein triple (D+, D−, D0) with a knot diagram D±, we have

γ(D+) + γ(D−) = (y + y−1)(−1)−Link(D1,D2)γ(D1)γ(D2)

for D1 and D2 are the knot component diagrams of the link diagram D0.

Proof of Lemma 3.3. The property (ii) is direct from the definition. Next,

we show the property (iii). Let p be a warping crossing point of the oriented

knot diagram D. Let D1 and D2 be the knot component diagrams of the

link diagramDo(p). When the sign ϵ(p) = +, we have the following Laurent

polynomial by the definition.

γ(D+) = −γ(D−) + (y + y−1)(−1)−Link(D1,D2)γ(D1)γ(D2).

When the sign ϵ(p) = −, we have the following Laurent polynomial by the

definition.

γ(D−) = −γ(D+) + (y + y−1)(−1)−Link(D1,D2)γ(D1)γ(D2).

Thus, for the skein triple (D+, D−, D0) of a knot diagram D, we have the
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following equality.

γ(D+) + γ(D−) = (y + y−1)(−1)−Link(D1,D2)γ(D1)γ(D2).

Let D′ be a knot diagram which is applied Reidemeister move I, II or III to an

oriented based knot diagram (D, b). We show the property (i) by using the

mathematical induction on the warping degree d(D′, b) = m and the crossing

point c(D′, b) = n of an oriented based knot diagram (D′, b). Suppose that

we have the equalities of Lemma 3.3.(i) on Reidemeister moves I, II, III when

c(D′, b) ≦ n− 1.

Proof on Reidemeister Move I. Let D′ be a knot diagram which is applied

Reidemeister move I to an oriented based knot diagram (D, b). Since Lemma

3.2, we take a base point b and a crossing point p as in Fig. 19. Then

the warping crossing points of (D, b) and (D′, b) are consistent. When the

Figure 19:

31



crossing number c(D′, b) = 1, we have γ(D′, b) = yϵ(p) and γ(D, b) = 1. Then

in the case that ϵ(p) = +, we have γ(D′, b) = yγ(D, b). In the case that

ϵ(p) = −, we have γ(D′, b) = y−1γ(D, b). Next, let the crossing number

c(D′, b) = n ≧ 2. Let the warping degree d(D′, b) = m = 0. Then γ(D′, b) =

yw(D′). Since d(D, b) = 0, γ(D, b) = yw(D). When the sign ϵ(p) = +, we

have w(D′) = w(D) + 1 and γ(D′, b) = yγ(D, b), so that we have γ(D′) =

yγ(D). When the sign ϵ(p) = −, we have w(D′) = w(D)− 1 and γ(D′, b) =

y−1γ(D, b), so that we have γ(D′) = yγ(D). Thus, we have

γ⟨ ⟩ = yγ⟨ ⟩ , γ⟨ ⟩ = y−1γ⟨ ⟩.

Let the warping degree d(D′, b) = m ≧ 1. Suppose that we have the following

equality on Reidemeister Move I for the oriented based knot diagram (D′, b)

with the warping degree d(D′, b) ≦ m−1 or the crossing point c(D′, b) ≦ n−1.

γ⟨ ⟩ = yγ⟨ ⟩ , γ⟨ ⟩ = y−1γ⟨ ⟩.

Let q be a warping crossing point of the oriented based knot diagram (D′, b).

Let D′
1 and D′

2 be the knot component diagrams of the link diagram D′
o(q)

and D′
1 has the crossing point by Reidemeister Move I. Then we have

γ(D′
ϵ(q), b) = −γ(D′

−ϵ(q), b) + (y + y−1)(−1)Link(D
′
1,D

′
2)γ(D′

1)γ(D
′
2).

Then we show that the equality on Reidemeister Move I holds for the ori-

ented based knot diagram (D′, b) with the warping degree d(D′, b) = m ≧ 1

in the case that ϵ(p) = ±, respectively. In the case that ϵ(p) = +, the
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warping degree d(D′
−ϵ(q), b) = m− 1, the crossing number c(D′

i) ≦ n− 1 and

Link(D′
1, D2) = Link(D1, D2), we have γ(D′

−ϵ(q), b) = yγ(D−ϵ(q), b) and

(y+y−1)(−1)Link(D
′
1,D2)γ(D′

1)γ(D2) = (y+y−1)(−1)Link(D1,D2)yγ(D1)γ(D2).

Then we have

γ(D′, b) = yγ(D−ϵ(q), b) + y(y + y−1)(−1)Link(D1,D2)γ(D1)γ(D2).

Thus, we have γ(D′, b) = yγ(D, b). In the case that ϵ(p) = −, the warp-

ing degree d(D′
−ϵ(q), b) = m − 1, the crossing number c(D′

i) ≦ n − 1 and

Link(D′
1, D2) = Link(D1, D2), we have γ(D′

−ϵ(q), b) = y−1γ(D−ϵ(q), b) and

(y+y−1)(−1)Link(D
′
1,D2)γ(D′

1)γ(D2) = (y+y−1)(−1)Link(D1,D2)y−1γ(D′
1)γ(D2).

Then we have

γ(D′, b) = y−1γ(D−ϵ(q), b) + y−1(y + y−1)(−1)Link(D1,D2)γ(D1)γ(D2))

Thus, we have γ(D′, b) = y−1γ(D, b) and

γ⟨ ⟩ = yγ⟨ ⟩ , γ⟨ ⟩ = y−1γ⟨ ⟩.

Proof on Reidemeister Move II. Let D′ be a knot diagram which is applied

Reidemeister move II to an oriented based knot diagram (D, b). We take a

base point b and a crossing point p1, p2 as in Fig. 20. Then the warping cross-
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ing points of (D, b) and (D′, b) are consistent. In spite of that the direction

Figure 20:

of the two strings of the knot diagram D′ has 4 patterns as in Fig. 20, we

have ϵ(p1)+ ϵ(p2) = 0 in every pattern. Then we have w(D′) = w(D). When

the crossing number c(D′, b) = 2, we have γ(D′, b) = 1. Since c(D, b) = 0, we

have γ(D, b) = 1. So that we have γ(D′, b) = γ(D, b). Next, let the crossing

number c(D′, b) = n ≧ 3. Let the warping degree d(D′, b) = m = 0. Then

γ(D′, b) = yw(D′) = yw(D). Since d(D, b) = 0, γ(D, b) = yw(D). Thus, we have
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γ(D′, b) = γ(D, b). Let the warping degree d(D′, b) = m ≧ 1. Suppose that

we have γ(D′, b) = γ(D, b) on Reidemeister Move II for an oriented based

knot diagram (D′, b) with the warping degree d(D′, b) ≦ m− 1 or the cross-

ing point c(D′, b) ≦ n− 1. Let q be a warping crossing point of the oriented

based knot diagram (D′, b). Let D′
1 and D′

2 be the knot component diagrams

of the link diagram D′
o(q). Then we have

γ(D′
−ϵ(q), b) = −γ(D′

−ϵ(q), b) + (y + y−1)(−1)Link(D
′
1,D

′
2)γ(D′

1)γ(D
′
2).

Since d(D′
−ϵ(q), b) = m − 1, we have γ(D′

−ϵ(q), b) = γ(D−ϵ(q), b). In the

case that p1 and p2 are non-self-crossing points, we have Link(D′
1, D

′
2) =

Link(D1, D2). Since the crossing number c(D′
i) ≦ n − 1, we have γ(D′

i) =

γ(Di) and

γ(D′
ϵ(q), b) = −γ(D−ϵ(q), b) + (y + y−1)(−1)Link(D1,D2)γ(D1)γ(D2).

In the case that p1 and p2 are self-crossing points of a knot component di-

agram Di of the link diagram D′
o(q), we have Link(D′

1, D
′
2) = Link(D1, D2).

Since the crossing number c(D′
i) ≦ n− 1, we have γ(D′

i) = γ(Di) and

γ(D′
ϵ(q), b) = −γ(D−ϵ(q), b) + (y + y−1)(−1)Link(D1,D2)γ(D1)γ(D2).

Thus, we have γ(D′, b) = γ(D, b)

Proof on Reidemeister Move III. Let D′ be a knot diagram which is ap-
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Figure 21:

plied Reidemeister move III to an oriented based knot diagram (D, b). Since

Lemma 3.2, we take a base point b and crossing points pi, p
′
i (i = 1, 2) as in

Fig. 21. Then the warping crossing points of (D, b) and (D′, b) are consis-

tent and ϵ(p1) = ϵ(p′1), ϵ(p2) = ϵ(p′2).Thus we have w(D′) = w(D). When

the crossing number c(D′, b) = 3, we have γ(D′, b) = γ(D, b). Next, let the

crossing number c(D′, b) = n ≧ 4. If the warping degree d(D′, b) = m = 0,

then γ(D′, b) = yw(D′) = yw(D). Since d(D, b) = 0, we have γ(D, b) = yw(D).

Thus, we obtain γ(D′, b) = γ(D, b). Let the warping degree d(D′, b) = m ≧ 1.

Suppose that we have γ(D′, b) = γ(D, b) on Reidemeister Move III for an ori-

ented based knot diagram (D′, b) with the warping degree d(D′, b) ≦ m− 1.

Let q be a warping crossing point of the oriented based knot diagram (D′, b).

Let D′
1 and D′

2 be the knot component diagrams of the link diagram D′
o(q).

Then we have

γ(D′
ϵ(q), b) = −γ(D′

−ϵ(q), b) + (y + y−1)(−1)Link(D
′
1,D

′
2)γ(D′

1)γ(D
′
2).
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Since d(D′
−ϵ(q), b) = m − 1, we have γ(D′

−ϵ(q), b) = γ(D−ϵ(q), b). In the

case that p1 and p2 are non-self-crossing points, we have Link(D′
1, D

′
2) =

Link(D1, D2). Since the crossing number c(D′
i) ≦ n − 1 , we have γ(D′

i) =

γ(Di) (i = 1, 2) and

γ(D′
ϵ(q), b) = −γ(D−ϵ(q), b) + (y + y−1)(−1)Link(D1,D2)γ(D1)γ(D2).

In the case that p1 and p2 are self-crossing points of a knot component di-

agram Di of the link diagram D′
o(q), we have Link(D′

1, D
′
2) = Link(D1, D2).

Because the crossing number c(D′
i) ≦ n−1, we have γ(D′

i) = γ(Di) (i = 1, 2)

and

γ(D′
ϵ(q), b) = −γ(D−ϵ(q), b) + (y + y−1)(−1)Link(D1,D2)γ(D1)γ(D2).

In the case that one of pi (i = 1, 2) is a non-self-crossing point and the other

is a self-crossing point of a knot component Di of the link diagram D′
o(q), we

have Link(D′
1, D

′
2) = Link(D1, D2). Since the crossing number c(D′

i) ≦ n−1,

we have γ(D′
i) = γ(Di) (i = 1, 2) and

γ(D′
ϵ(q), b) = −γ(D−ϵ(q), b) + (y + y−1)(−1)Link(D1,D2)γ(D1)γ(D2).

Thus, we have γ(D′, b) = γ(D, b). 2

The proof of Theorem 1.1 is completed. 2
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We have the following corollary showing a reconstruction of the γ-polynomial

stated in the introduction:

Corollary 3.4. For a knot diagramD, there is a Laurent polynomial Γ(D;x)

in x with the following three properties (i), (ii) and (iii).

(i) The Laurent polynomial Γ(D) is invariant on Reidemeister moves I, II, III.

Γ⟨ ⟩ = Γ⟨ ⟩ = Γ⟨ ⟩,

Γ⟨ ⟩ = Γ⟨ ⟩,

Γ⟨ ⟩ = Γ⟨ ⟩.

(ii) If c(D) = 0, then Γ(D) = 1.

(iii) For the skein triple (D+, D−, D0) with a knot diagram D±, we have

−xΓ(D+) + Γ(D−) = (1− x)x−Link(D1,D2)Γ(D1)Γ(D2)

for the knot component diagrams D1 and D2 in the link diagram D0.

Proof of Corollary 3.4. Let Γ′(D) = y−w(D)γ(D) be the Laurent polyno-

mial in y for a knot diagram D. We show the following lemma:
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Lemma 3.5. For a knot diagram D, the Laurent polynomial Γ′(D; y) has

the following three properties (i)′, (ii)′ and (iii)′.

(i)′ The Laurent polynomial Γ′(D) is invariant on Reidemeister moves I, II, III.

(ii)′ If c(D) = 0, then Γ′(D) = 1.

(iii)′ For the skein triple (D+, D−, D0) with a knot diagram D±, we have

−y2Γ′(D+)− Γ′(D−) = (−y2 − 1)(−y2)−Link(D1,D2)Γ′(D1)Γ
′(D2)

for the knot component diagrams D1 and D2 in the link diagram D0.

Proof of Lemma 3.5. We show (i)′. On Reidemeister moves II and III,

Γ′(D) is invariant since γ(D) is invariant. Then we show the invariance on

Reidemeister move I. Let D′ and D′′ be the knot diagrams which is applied

Reidemeister move I to a knot diagram D as in Fig. 22. Then we have

Figure 22:
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Γ′⟨ ⟩ and Γ′⟨ ⟩ as follows.

Γ′⟨ ⟩ = Γ′(D′)

= y−w(D′)γ(D′)

= y−(w(D)+1)yγ(D)

= y−w(D)y−1yγ(D)

= y−w(D)γ(D)

= Γ′(D).

Γ′⟨ ⟩ = Γ′(D′′)

= y−w(D′′)γ(D′′)

= y−(w(D)−1)y−1γ(D)

= y−w(D)yy−1γ(D)

= y−w(D)γ(D)

= Γ′(D).

Thus, the Laurent polynomial Γ′(D) is invariable on Reidemeister Moves I,
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completing the proof of (i)′. The property (ii)′ follows from definition. We

show (iii)′. Using the identity γ(D+) + γ(D−) = γ(Do), we have

y−w(D−)γ(D+) + y−w(D−)γ(D−) = y−w(D−)γ(Do).

Since

w(D−) = w(D+)− 2, w(D0) = w(D1) + w(D2) + 2Link(D1, D2)

and w(D−) = w(D0)− 1, we have

y−w(D+)+2γ(D+) + y−w(D−)γ(D−)

= y−w(D1)−w(D2)−2Link(D1,D2)+1(y + y−1)(−1)−Link(D1,D2)γ(D1)γ(D2).

Noting that Γ′(D) = y−w(D)γ(D), we have

y2Γ′(D+) + Γ′(D−) = y(y + y−1)y−2Link(D1,D2)(−1)−Link(D1,D2)Γ′(D1)Γ
′(D2)

= (y2 + 1)(−y2)−Link(D1,D2)Γ′(D1)Γ
′(D2),

completing the proof of (iii)′. Thus, the proof of Lemma 3.5 is completed.

2

Let x = −y2 and Γ(D;x) = Γ′(D; y). Thus, Γ(D) = Γ(D;x) is a Laurent

polynomial in x with the properties (i), (ii) and (iii). Hence the proof of

Corollary 3.4 is completed. 2

If D is a diagram of a knot K, then we denote Γ(D) = Γ(D;x) by Γ(K) =
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Γ(K;x) as an invariant of K, and call Γ(D) = Γ(K) the Γ-polynomial of K.

Let D = D1 ∪D2 ∪ · · · ∪Dr be a diagram of a link L = K1 ∪K2 ∪ · · · ∪Kr

where Di is a diagram of a knot component Ki (i = 1, 2, . . . , r). Then we

define

Γ(D) = (1− x)r−1x−Link(D)Γ(D1)Γ(D2) · · ·Γ(Dr)

which is an invariant of L and denoted by Γ(L). We have the following

corollary:

Corollary 3.6. For the skein triple (D+, D−, D0) on a self-crossing point of

a link diagram D = D1 ∪D2 ∪ · · · ∪Dr (r ≧ 2), we have

−xΓ(D+) + Γ(D−) = Γ(D0).

On the other hand, for the skein triple (D+, D−, D0) on a non-self-crossing

point of a link diagram D = D1 ∪D2 ∪ · · · ∪Dr (r ≧ 2), we have

xΓ(D+) = Γ(D−).

Proof of Corollary 3.6. Let D± = D1 ∪ · · · ∪ Di± ∪ · · · ∪ Dr and D0 =

D1 ∪ · · · ∪ Di0 ∪ · · · ∪ Dr be the link diagrams which is applied to a skein

triple (D+, D−, D0) on a self-crossing point of a knot component diagram Di

of a link diagram D = D1 ∪ D2 ∪ · · · ∪ Dr. Then xΓ(D+) and Γ(D−) are
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given as follows:

xΓ(D+) = x(1− x)r−1x−Link(D)Γ(D1) · · ·Γ(Di+) · · ·Γ(Dr),

Γ(D−) = (1− x)r−1x−Link(D)Γ(D1) · · ·Γ(Di−) · · ·Γ(Dr).

Thus we have

−xΓ(D+) + Γ(D−) = (1− x)r−1x−Link(D)Γ(D1) · · · (−xΓ(Di+) + Γ(Di−)) · · ·Γ(Dr)

= (1− x)r−1x−Link(D)Γ(D1) · · ·Γ(Di0) · · ·Γ(Dr).

Let Di1 and Di2 be the knot component diagrams of the link diagram Di0 .

Since

Γ(Di0) = Γ(Di1) ∪ Γ(Di2) = (1− x)x−Link(Di1
,Di2

)Γ(Di1)Γ(Di2),

we have

− xΓ(D+) + Γ(D−)

= (1− x)r−1x−Link(D)−Link(Di1
,Di2

)Γ(D1) · · ·Γ(Di1)Γ(Di2) · · ·Γ(Dr)

= (1− x)(r+1)−1x−Link(Di0
)Γ(D1) · · ·Γ(Di1)Γ(Di2) · · ·Γ(Dr)

= Γ(D0).

For the skein triple (D+, D−, D0) on a non-self-crossing point of a link dia-
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gram D = D1 ∪ · · · ∪Dr(r ≧ 2), we have

Γ(D+) = (1− x)r−1x−Link(D+)Γ(D1) · · ·Γ(Di+) · · ·Γ(Dr),

Γ(D−) = (1− x)r−1x−Link(D−)Γ(D1) · · ·Γ(Di−) · · ·Γ(Dr).

Since Link(D+) = Link(D−) + 1, we have

xΓ(D+) = Γ(D−).

Then, Corollary 3.6 is proved. 2
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4 A Generalization of the Γ-polynomial to a

2-string tangle

In this section, we generalize the Γ-polynomial Γ(D) of a knot diagram D to

a 2-string tangle diagram D.

For a 2-string tangle diagram D(T ) and a complementary tangle diagram

P introduced in Section 1, we note that the patterns of the connections of the

endpoints between D(T ) and P are uniquely determined, respectively as it

is shown in Fig. 23. Let D(T0) be the oriented diagram which obtained from

Figure 23: Knot diagrams D(T ) ∪ P .

D(T ) by the splice at a crossing point between the string diagrams D(t1) and

D(t2) of D(T ). For the oriented knot diagram D(T )∪P , we have an oriented

link diagram D(T0) ∪ P depending on the type A, B or C, respectively as

in Fig 24. For an oriented tangle diagram D(T ) of type A, B or C, let
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Figure 24: Link diagrams D(T0) ∪ P .

Xi (i = 0, 1) be the following oriented tangle diagrams, respectively.

typeA : D(T ) = , X0 = , X1 = .

typeB : D(T ) = , X0 = , X1 = .

typeC : D(T ) = , X0 = , X1 = .

As it is shown in Section 1, for the type A,B or C of D(T ), the Γ-polynomial

Γ(D(T ) ∪ P ) can be expressed as follows by applying the skein relation of

the Γ-polynomial by induction on warping degree of D(T ):

Γ(D(T ) ∪ P ) = f0(x)Γ(X0 ∪ P ) + f1(x)Γ(X1 ∪ P ).

This well-definedness is shown soon later (Corollary 1.3). Then we denote it

by

Γ(D(T )) = f0(x)Γ(X0) + f1(x)Γ(X1),
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which means as follows:

typeA : Γ( ) = f0(x)Γ( ) + f1(x)Γ( ).

typeB : Γ( ) = f0(x)Γ( ) + f1(x)Γ( ).

typeC : Γ( ) = f0(x)Γ( ) + f1(x)Γ( ).

For a tangle diagram D(T ) of type A, B or C and i = 0, 1, let Pi be the

complementary tangle diagram described in Fig. 3. Here, we prove Theorem

1.2 and Corollary 1.3.

Proof of Theorem 1.2. To prove Theorem 1.2, we first consider the three

types, A : , B : and C : with the same

orientation of the boundary circle of the disk of an oriented tangle diagram

D(T ) as in Fig.23. On the two oriented tangle diagrams D(T ) and D(T ′) of

the type A, B, or C, we have Γ(D(T ) ∪ P0) and Γ(D(T ′) ∪ P0) as follows:

Γ(D(T ) ∪ P0) = f0(x)Γ(X0 ∪ P0) + f1(x)Γ(X1 ∪ P0),

Γ(D(T ′) ∪ P0) = f ′
0(x)Γ(X0 ∪ P0) + f ′

1(x)Γ(X1 ∪ P0).

On the other hand, we have Γ(D(T ) ∪ P1) and Γ(D(T ′) ∪ P1) as follows:

Γ(D(T ) ∪ P1) = f0(x)Γ(X0 ∪ P1) + f1(x)Γ(X1 ∪ P1),

Γ(D(T ′) ∪ P1) = f ′
0(x)Γ(X0 ∪ P1) + f ′

1(x)Γ(X1 ∪ P1).
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Since Γ(D(T ) ∪ P0) = Γ(D(T ′) ∪ P0) and Γ(D(T ) ∪ P1) = Γ(D(T ′) ∪ P1) ,

we have

(f0(x)− f ′
0(x))Γ(X0 ∪ P0) + (f1(x)− f ′

1(x))Γ(X1 ∪ P0) = 0,

(f0(x)− f ′
0(x))Γ(X0 ∪ P1) + (f1(x)− f ′

1(x))Γ(X1 ∪ P1) = 0.

Noting that

Γ(X1 ∪ P0) = Γ(X1 ∪ P1) = 1,

Γ(X0 ∪ P0) = (1− x) and Γ(X0 ∪ P1) = (1− x)x−1,

we have

f1(x)− f ′
1(x) = (f0(x)− f ′

0(x))(1− x),

f1(x)− f ′
1(x) = (f0(x)− f ′

0(x))(1− x)x−1.

Then we have

(f0(x)− f ′
0(x))(1− x)(1− x−1) = 0

Since this equality holds for any x, we have f0(x) = f ′
0(x) and then f1(x) =

f ′
1(x). 2

Lemma 4.1. The Γ-polynomial Γ(D(T )) of a tangle diagram does not de-

pend on a choice of orientations of the boundary circle of the disk underlying

the tangle diagram.

48



Proof of Lemma 4.1. As in Fig. 25, let D(T−) be the oriented tangle

diagrams whose orientations of the boundary circles are the opposite orien-

tations of the oriented tangle diagrams D(T ). For the type A, B or C of the

Figure 25: The tangle diagrams D(T−) for the type A, B and C.

tangle diagram D(T ), the tangle diagram D(T−) is consistent with the tangle

diagram obtained by the 180o rotation of the tangle T except the boundary

circle. For the type A, B or C of the tangle diagram D(T−), let X−
i (i = 1, 0)
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be the following tangle diagrams.

typeA : D(T−) = , X−
0 = , X−

1 = .

typeB : D(T−) = , X−
0 = , X−

1 = .

typeC : D(T−) = , X−
0 = , X−

1 = .

For the type A, B or C of a tangle diagram D(T−), let P−
0 be the tangle

diagrams as in Fig. 26.

Figure 26: The complementary tangle diagrams P−
0 for D(T−)

Since every crossing point of D(T−) and D(T ) is consistent and the signs of

every consistent crossing points of D(T−) and D(T ) are equal, we have

Γ(D(T )) = f0(x)Γ(X0) + f1(x)Γ(X1),

Γ(D(T−)) = f0(x)Γ(X
−
0 ) + f1(x)Γ(X

−
1 ).

Noting that Γ(Xi ∪P0) = Γ(X−
i ∪P0) and Γ(Xi ∪P1) = Γ(X−

i ∪P1) (i=0,1),
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we have Γ(Xi) = Γ(X−
i ) (i = 0, 1) and then Γ(D(T )) = Γ(D(T−)). 2

Thus, the proof of Theorem 1.2 is completed. 2

Proof of Corollary 1.3. Let Γ(D(T )) = f0(x)Γ(X0)+f1(x)Γ(X1), Γ(D(T ′)) =

f ′
0(x)Γ(X0)+f ′

1(x)Γ(X1). For j = 0, 1, every crossing point of the tangle sum

diagram of D(T )∪Pj is consistent with the crossing point of the tangle sum

diagram D(T ′)∪Pj. Then, we have Γ(D(T )∪Pj) = Γ(D(T ′)∪Pj) (j = 0, 1).

Hence, we have fi(x) = f ′
i(x) (i = 0, 1) by Theorem 1.2. 2
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5 An application of the Γ-polynomial of a 2-

string tangle to a theta-curve

In this section, we apply the Γ-polynomial of a 2-string tangle diagram to a

theta-curve and show the fact that Kinoshita’s θ-curve is not equivalent to

the trivial θ-curve.

A θ-curve is one of spatial graphs, which has two vertices and three edges

to connect the two vertices. The diagram (1) in Fig. 27 is the trivial θ-curve

G0 without crossing. The diagram (2) in Fig. 27 is a diagram of Kinoshita’s

θ-curve G with three edges (see [9, 10]). Though every constituent knot of

Kinoshita’s θ-curve G (i.e. every knot in G) is trivial, it is known that G is

not equivalent to the trivial θ-curve G0. As an application, we shall show

Figure 27: The trivial θ-curve and Kinoshita’s θ-curve.
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that the Γ-polynomial of a 2-string tangle is used to confirm this fact.

(5.1) Kinoshita’s θ-curve is not equivalent to the trivial θ-curve.

Proof of (5.1). Let ei and e0i (i = 1, 2, 3) be the three edges of G and

G0, respectively. Suppose that there exists an orientation-preserving home-

omorphism h : R3 → R3 such that h(G) = G0. We may consider that

h(ei) = e0i (i = 1, 2, 3). For G0, we take an oriented disk neighborhood R0 of

D(e03) as in Fig. 28 (1). Let t0i (i = 1, 2) be the parts of the edges e0i (i = 1, 2),

obtained by removing R0∩e0i from the edges e0i , respectively. Let a
0
i (i = 1, 2)

be the oriented arcs in the boundary circle of the disk neighborhood R0 which

have the common end points of t0i (i = 1, 2), respectively, as in Fig. 28 (1).

Let k0
i = t0i ∪ a0i be an oriented knot for i = 1, 2. Similarly, for G, we take

an oriented disk neighborhood R of D(e3), ti and ai (i = 1, 2) in D(G) in

Fig. 28 (2). Let ki = ti∪ai be an oriented knot for i = 1, 2. Since we take the

linking number Link(k1, k1) = 0 as it is seen in Fig. 28 (2), the orientation-

preserving homeomorphism h : R3 → R3 can be assumed to satisfy that

h(R) = R0. Further, we may take h(ai) = a0i (i = 1, 2). As in Fig. 29, we

give an orientation to the strings ti and t0i (i = 1, 2) of D(T ) and D(T 0) so

that D(T ) and D(T 0) are the oriented tangle diagrams, which are seen to

be of the same type B. Let Γ(D(T )) and Γ(D(T 0)) be the Γ-polynomials as

follows.
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Figure 28: The oriented disk neighborhoods R0 of D(e03) and R of D(e3).

Γ(D(T )) = f0(x)Γ(X0) + f1(x)Γ(X1),

Γ(D(T 0)) = f 0
0 (x)Γ(X0) + f 0

1 (x)Γ(X1).

For the oriented tangle diagrams D(T ) and any j (j = 0, 1), since

Γ(D(T ) ∪ Pj) = (−1 + 2x−1 − x−2)Γ(X0 ∪ Pj) + Γ(X1 ∪ Pj),

we have

Γ(D(T )) = (−1 + 2x−1 − x−2)Γ(X0) + Γ(X1).

On the other hand, for the oriented tangle diagram D(T 0) and any j (j =
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Figure 29: The tangle diagrams D(T 0) and D(T ).

0, 1), since

Γ(D(T 0) ∪ Pj) = Γ(X1 ∪ Pj),

we have

Γ(D(T 0)) = Γ(X1).

Because the knot diagrams D(T ) ∪ Pj and D(T o) ∪ Pj are equivalent and

thus we have

Γ(D(T ) ∪ Pj) = Γ(D(T o) ∪ Pj) (j = 0, 1),
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we have f0(x) = f 0
0 (x) by Theorem 1.2. Since actually we have

f0(x) = −1 + 2x−1 − x−2 ̸= 0 = f 0
0 (x),

we conclude that such a homeomorphism h does not exist. Hence, the proof

of (5.1) is completed. 2
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