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Abstract

In this thesis, we reexamine genus one super-Green functions with general
boundary conditions twisted by («, ) for (o,7) directions in the eigenmode
expansion and derive expressions as infinite series of hypergeometric func-
tions. First of all we review the string theory in the operator and the path
integral methods, and then, using the super-Green functions, we compute
one-loop superstring amplitudes with non-maximal supersymmetry, taking

an example of massless vector emissions of open string type I Z, orbifold.



Introduction

In the four fundamental forces of nature, the electromagnetic and the weak
interactions have been unified by Glashow-Weinberg-Salam [1] as the elec-
troweak force, and the Grand Unified Theory (GUT) [2] which unifies the
strong interaction as well as the electromagnetic and the weak interactions is
in progress. String theory have been developed as a candidate for the quan-
tum gravity which unifies the all four forces [3, 4, 5, 6, 7, 8]. Although the
discoveries such as the D-brane [9, 10], the 7- and S-dualities [11, 12] and the
AdS/CFT correspondence [13] have made some progresses, our understand-
ing for the string theory is quite insufficient. A lot of effort has been devoted
to computations of superstring amplitudes in the path integral formulation as
well as in the operator formulation until now [14, 15, 4, 16, 17, 18, 19, 20, 21].
The string theory inhabits higher dimensional spacetimes than our familiar
four-dimensional spacetime, whose extra dimensions are considered to be
compactified [22, 23] and then not to be observed at the low-energy scale
which we live in. Numerous models with orbifold compactification have been
proposed [24, 25, 26, 27|, where the partition functions have often been cal-
culated. However, it appears that there are a few articles which calculate
one-loop amplitudes for more than one point case on the orbifold. While
Atick-Dixon-Sen have calculated the two and four point one-loop amplitudes
on the orbifold in the heterotic string [28], there seems to be also a few such
calculations in the type I superstring which is considered to be connected
with the heterotic string by S-duality. In addition, the articles included the
calculation of the amplitudes on the orbifold often use the operator formal-
ism. In order to deal with the one-loop amplitudes on the orbifold in the
path integral formalism, it is necessary to take the generalized Green func-
tion that does not satisfy ordinary periodicity or antiperiodicity on the genus
one Riemann surfaces in o or 7 directions, but it seems that the number of

articles dealt with such Green function is relatively small [29]. For these



backgrounds, in this study, we discuss the Green function which satisfies the
generalized boundary conditions, and then compute the one-loop superstring
amplitudes on the orbifold as an example of using this Green function [30].

We apply the well-known eigenmode expansion in order to deal with the
Green function. Additionally, it is important to exploit partial fractions in
the bosonic part and to use Ramanujan’s summation formula in the fermionic
part. In general, our final expression is given by an infinite series consisting
of a hypergeometric function (with its argument successively shifted), which
is relevant to the genus zero Green function'. This is in accord with the
picture that the genus one Green functions can be obtained from those of
genus zero by putting an infinite number of image charges.

In this thesis, we consider orbifold compactification. Although it is Calabi-
Yau or K3 that are important in elementary particle physics, in general we
cannot calculate the amplitudes in such target space because still we have no
exact representation for these on conformal field theory. Nevertheless, the
amplitudes in the orbifold can be dealt exactly. In addition, T*/Z, orbifold
we consider here gives us the toy model for those geometries, and we can
calculate the perturbative amplitudes in string theory.

This paper consists of three parts, and we consider the Neveu-Schwarz-
Ramond (NSR) superstring through all the three parts. First of all we review
the construction of the string theory by the operator method in the part I
and by the path integral method in the part II respectively. In the part III,
we discuss the general Green function and then compute the one, two and
three point one-loop superstring amplitudes on T*/Z, orbifold as an example
of using the general Green function.

The part I consists of six sections. We review the bosonic string in the
section 1, the relation between the Chan-Paton factor and the gauge group

in the section 2 and the fermionic string in the section 3, respectively. In

'Such Green function in fact appears in string theory under constant B field [31].
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addition, we introduce the U(l) character in the section 4. And then we
calculate the one-loop partition functions on the flat spacetime in the section
5 and on the orbifold in the section 6. The (1) character introduced in the
section 4 help us to understand the partition functions in the section 5 and
6.

The part II consists of three sections. In turn by using the path integral
method, we review the bosonic string in the section 7 and the fermionic
string in the section 8 respectively, in which the partition functions are also
calculated. In the section 9, we write down the N point one-loop superstring
amplitudes in the path integral formalism. In the last part of the section
8, we recast the superstring one-loop partition functions in the worldsheet
covariant path integrals with those of the light-cone operator formulation
calculated in the section 5 in order to circumvent the nuisance of the overall
normalization.

The part III consists of three sections. In the section 10, we construct the
general Green function for the bosonic part and the fermionic part, and then,
using these, the general super-Green function on the torus. After introducing
our notations in the section 11, finally in the section 12 we compute the
one, two, and three point amplitudes on the superannulus with maximal
and non-maximal supersymmetries by using the super-Neumann function
derived from the general super-Green function in the section 10 with the
image method (or, involution) [32, 33, 34].

In appendix A-I, we summarize some notations, and give some details of
computation and background materials quoted in the text.

Several parts of the review materials in this thesis are based on the un-
published lectures delivered [35] during the period 2013.11.11-2015.11.15.
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Part I
Operator method: spectrum
and partition function in the

light-cone quantization

1 Bosonic string

We still don’t know what string theory is, but we do know a lot about
strings through first quantization, namely, quantization of string coordinates
XM(ry,0), M =0,1,...,D — 1, which is, at the same time, embedding of a

surface swept by a string into D-dimensional Minkowski spacetime.

1.1 Action and mode expansion

We postulate the following action:

1 1
SWIXM, gn; 8] = ——< / drvdoy/=gg™ 0 XM 0, X Nen,  (11)
2ra’ 2 )y
where
d*¢ = dnydo (1.2)
—1
1
NMN = _ (1.3)
1

is a metric in the Minkowski spacetime. We denote by

XM = XM (5, 1y) (1.4)

11



embedding of a string surface into two dimensional Minkowski spacetime.

g = det 9mn » (15)

we have denoted by
Gmn (0, T\) : two dimensional metric field. m,n =1, 2. (1.6)

So action takes the form of two dimensional quantum field theory of D-
massless scalars coupled to two dimensional metric fields and principle of

general covariance is at work.

e both XM ¢, are dynamical variables. However, there is no kinetic
term for ¢,,,, and the metric field is auxiliary field. This is the first

remark.

e the second remark is that it is the first quantization, namely the quanti-
zation of coordinates as a string, but at the same it is the field (second)

quantization as the two dimensional field theory.

First we regard two dimensional surface is also Minkowski like as well. As
the two dimensional quantum field theory, we would like to add the local

counterterm permitted by general covariance. So, such action will be
Sp [XM, g B] = (1 + A) SV [XM g1 ]
In A
+4up / drydoy/—g + Z— / drydoy/—gR . (1.7)
b T Js

One would like to quantize this theory by properly defining the path integral
measure for both XM and ¢,,,. However, in this first part we will proceed

in a different way. We will do so by
1. first eliminating g,,, via equation of motion (”classically”)
2. and then quantizing the theory in the light-cone gauge

12



Let us first derive equation of motion by the variation of the action. The

variation of ¢"" leads to

1
6g™ = 0, XM, X — 5gmmqpqa,,xMaqXM =0. (1.8)
The variation of XM leads to
1
oXM . ——0a, (V=g9™0,XN) = A XY =0. 1.9

In order to get Nambu-Goto action, we eliminate g,,, from eq. (1.1). We

have denoted by Yn, the induced metric, given by
= 1 pq
Yon = O X - 0, X = §gmn(g 0pX - 0,X) . (1.10)

Then, after the elimination of g,,,, we obtain

1
SO XM g, eliminated; %] = / d%¢\/— det Ymn
P

2mad
= Nambu-Goto action for a string

1
=5 (area of the surface) . (1.11)
T

This is the Nambu-Goto action which is nothing but the area of the surface
divided by 27c/.
From now on, we use the following notation:
aTM o ’ 60'

Then the Nambu-Goto action can be written as

/dTMdU\/m: /dTMdU\/—<X-X) : (X’-X’) + (X-X')2.
(1.13)

As is clear from the original form, this action is reparametrization invariant,

=x"". (1.12)

namely, any change of coordinate

™ =1Mm(Ty, o)

o=0o(ny0), (1.14)
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/dTMdU\/Tt’ymn: /dmda’\/—(x}'{) : (Xf-Xf) + (X-X’)Q.
(1.15)
But at the same time this action is non-polynomial. We would like to get rid
of this square root by fixing this local symmetry. This is done by imposing

the following ”orthonormality conditions” as constraints:

X - X'=0
{X2+X’2:0 (1.16)
or . 9
! —
gJ“);;Z ;z _ (1.17)

Then Nambu-Goto action reduces to action for massless D-scalars in 1 + 1

dimensions:

S [XM, Jmn eliminated; E}

o s [ (%) - (20 x0) 4 L (0 x)]

! l/dTMdU (XQ—X'2) . (1.18)

T 2ral 2
And the constraints takes the following form:

!

T(m\,0)

wo|R

. 2
(X n X') ~ 0
(1.19)
~0

(x-x)

and it is identified as vanishing 2d energy-momentum tensor.

!

N= M=

T (7w, 0)

vo|R

Conventions

Often used nowadays for closed string (Figure 1) itself is parametrized by
—T<o<T, —00 < Ty < 00, (1.20)
while for open string (Figure 2) it is parametrized by

O0<o<m, —00 < Ty < 00. (1.21)

14



And z and 7Z” are introduced as follows:

i(rato) _ T+io

zZ=€ (&

nE ei(TM*ff) — e"'*ig . (122)

In practice, most of the computation currently are carried out in the Eu-

clidean signature by regarding
ITM=T (1.23)

to be real. In Euclidean signature, equation of motion is just a Laplace

Figure 1: closed string Figure 2: open string

equation and the mode expansion of the solution usually takes the following

form in the 10d flat spacetime. For closed string,

XM(TM,O')EXéVI—7PM1nZZ i/ S Za ,/ ZNMZ

n#0
(1.24)

PM—[O _\/7%. (1.25)

While for open string with free end X’ |,— .= 0,

XM(ny,0) = XM —id P In(22) + \/ ZQMZ + i/ = ZaMZ

(1.26)

where
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while an open string with fixed end 06X |,— .= 0,

i(d™ —cMy oz o z ™ o z™"
M= m_NC TC ), (_) L[ Mz | MZ
‘ o\ 2%0‘" n 2%0‘" n

(1.27)

1.2 Quantization in light-cone gauge

The choice of the gauge condition eq. (1.19) does not fix the invariance of
the Nambu-Goto action completely: if eq. (1.19) is satisfied for my and o,

then it is also satisfied for any change of variable to 7y and &

M = Tm(7ar, 0)

6 =0(1ru,0) (1.28)
provided that they satisfy the following conditions:
{%M —|—6 = f(TM +0')

Ao f(TM o) . (1.29)

So we can fix this local symmetry, namely, the function f and f as well.

. 1 ~ .1 ~
A= (frat o)+ fu=-0) . o=5 (Flrato) = fin-0)) .
(1.30)
We work out this procedure for the closed string case first.

Let us first introduce the light-cone coordinates which are denoted by

XO XD—l XO _ XD—l
V2 V2

Then two dimensional inner product is written as

X+

D—1
X - Y=XMy,, = —X0y0 ¢ Z Xty
=1
D2
— Z Xyl - Xty - X"yt
=1

= Nag, X Miey Nie (1.32)
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MlcaNlc:+a_ala"'aD_2

0 -1
0

anchc = _]‘ 0
0 1

XY =XV, +X'Y, +XV_

Then the coordinate

a/
Xt (ry,0)=X + §P0+ ((tm +0) + (ty — 0))

1 1
+§function(7'M +o0)+ ifunction(TM —0)

From this equation, we see that we choose 7\ such that

X+(TM,U) :XJ + aIP0+7-M

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

and this fixes half of the residual local symmetry eq. (1.29). The remaining

residual symmetry fixed by the following equation:

a'Png(?:/g da’—aX+(TM’UI) .
0 87—]\/[

So, by egs. (1.37) and (1.38), the residual local symmetry eq.

completely fixed.

To summarize the light-cone gauge condition corresponds to
Xt (ry,0) =X + o' Pfry .

In this gauge,

Xt=dPf
oX+

X' = =0.
oo

(1.38)

(1.29) is

(1.39)

(1.40)
(1.41)

Therefore X is light-cone time synchronized at every point on a single string.
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1.2.1 conjugate momenta, Lagrangian, Hamiltonian

Recall that

1 1 L s o
N / drydo (—2X+X— XX X"X")
2mal 2

1
———P+/dTMd0'X (7w, 0) +

S —

/ drydo <X’Xl — X'iX'i)

™

4l

/dX+/ do0, X (mu,0)

/ dx* / do aP+) 0, X9, X1 — X”X”)

dra! o'py
(1.42)

Here we have denoted by

0

3+:8X+.

(1.43)

Therefore the Lagrangian becomes

2m

d
+3 / 2" <P+8+X 9, X —

L(TM):—P;/ 49 5 X~ (r, )

2 2
PJ@/QX' X’> . (1.44)

Let us introduce the momentum density conjugate to string written in

the light-cone coordinate:

i - o oL B i " ; 1 ;
P'(mm, 0) = Pi(twm, 0) = SO Xm0 27TP0 0. X" = Dy X' (1.45)
P~ (rw,0) = P(mm,0) = 0 (1.46)
00, X+ (v, 0)
oL 1
P (rw,0) =P_(1w,0) = s———— = —-F; . (1.47)

80, X~ (1, 0) o

The last equation tells us that Py is the total momentum in the + direction.

18



By the canonical procedure, the light-cone Hamiltonian is written as

The light-cone Hamiltonian

= /ﬂ do ('PZ'(TM,O')aJrXi(TM,O') +'P7(TM,O')8+X_(TM,O')) — L

—T

1 " d ; 1 Tdo 1 o
| P J (XX

~opy ) o Topr ) L aman
1 Tdo (o, i
- [ Y (xixi X”X") . 1.48
2P, a? /W 21 ( + (1.48)

1.2.2 X~

Let’s see what happens to the coordinate X~. Eq. (1.19) can be solved for
X~ by the calculation below.

(X £ X)X £X) =2X+ XV (X+X) =2/Pf (X~ £ X)) (1.49)

40/PF X~ = (X + X)X + X'} + (X — X){(X — X') = 2X' X7 4+ 2X"' X"

(1.50)
4o/ PF X~ = 4XIX" (1.51)
Therefore P, , a; and &, are expressed quadratically in o, and & .
Recall
X~ = X; + o' Py g + (oscillator) | (1.52)
and therefore 5
X =dP + ﬁ(oscillator) : (1.53)
Using eqs. (1.48) and (1.50), we see that the light-cone Hamiltonian is
. . . ]- T dU ' D+ v —
The light-cone Hamiltonian = ——— —2a' P X
2P J_ 2w
1 [Tdo .
N / 99
o J_. 27
L5 p - (1.54)
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as expected. Namely, we have derived from eq. (1.48)

1 Tdo /... o
p=——— | & (XZXl X”X”) . 1.55
* 2P a” /7T 27 N (1.55)

1.2.3 commutation relation

Now we are ready to carry out the canonical quantization. And equal time

commutators read

[Pi(TMa o), Xj(TM, a)]l= [27rla,Xi(TM, O'),Xj(TM, o)
=—i6(o —0')0" . (1.56)

These give us a set of commutation relations for the center of mass transverse

coordinates and the oscillation modes

[al, @l ] =161 m 00"

[ajw dfn] = n5n+m,05ij

[Py, X§) =—id" (1.57)

and all other commutators are vanishing. P¢ are the total center of mass

momenta for the 7th transverse direction.
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1.2.4 mass operator and number operator

The relativistic invariance tells us that the eigenvalues of the mass operator

T play important roles in the analysis.

-Mm? = PUM‘CPOMI = 2P P, + PP}
1 [™do

:_@ 271. (X Xz +XIZXIZ) +P1PZ

1 do . i i
=—2a,2/ G4 X4 (X - X))+ BR
B 1 T do e ’ Z( Jn2iz " ’
=5 e 1 5 2 ap2iz

2 2
e JURR,
—l—(z z;) <Z(—)an22z )
n#0
1 o, [™d i i
« o —n ~ =—n
L[5 (gee) o

Therefore

—9 (N+J§f+const.) . (1.59)

Here we have normal ordered the oscillator. The constant indicated is the
constant which appear through the normal ordering process. The number

operator N and N are defined by

D—-2

S
.

- 1
N = Zafnan =3 oo
i=1 n=1 1=1 n#0
D—-2 oo 1 D—-2
N= Y alak = 5 Lal,al (1.60)
i=1 n=1 1=1 n#0
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Therefore

D—-2

ZZai_na;:ﬂ\quL (D — Q)in
i=1 n#0 n=1
=2 <N + %g(—n)

= <N—%>. (1.61)

Here we have evaluated the normal ordering constant by zeta function regu-

larization (appendix C).
a’m2:2<N+J\7——-2> : (1.62)

By a separate argument, which we do not elaborate upon here, we find
D = 26. Therefore
o> =2 (N + N) 4. (1.63)

1.2.5 state space
In the state space of a closed string is given by
1P’ {{n", 1) = |P) @al, o, |Q) (1.64)
ar|Qy =0, n>0. (1.65)
Here the ground state level is denoted by |P%) ® |Q) and
o'TN?|PY @ Q) = —4|P) @ Q) . (1.66)

Another point which to note is the level matching condition. There is
no boundary for a closed string, so there is no preferred point on the string.

Quantum theory of a closed string must be invariant under the shift ¢ —
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o 4+ A. From the expression of the mode expansion, this shift is the shift of
the oscillators by

ol — ale™nA
&l — aletinA (1.67)
So with the unitary operator
U(A) = N -MA (1.68)
this shift is generated. Namely,

j —inA,j
o e o,

U(A) dg U HA) = i (1.69)
i.e. UA)X (1, 0)U N (A) = Xi(ry,0 + A) . (1.70)
So we want
U(A)[phys) = [phys) , (1.71)
which is satisfied by
(N — N)|phys) = 0. (1.72)

The ground state level is the state called tachyon. The eigenvalue of
the mass square operator in the unit of i is —4. This is called state with

"intercept” —4.
tachyon; P*) = |P") ® |Q) (1.73)

| Py = e 0) . (1.74)

The first excited state which satisfies the level matching condition of eq.
(1.72) are
PY® o @8, |Q) g k=1,..,24=D—2 (1.75)

and the eigenvalues of 7107 is zero:
o' (P ® o a* Q) =0. (1.76)
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These tensorial states are massless representing transverse degrees of sym-
metric traceless tensors and those of antisymmetric tensors, and a scalar from

the trace part. Each of them act as an irreducible massless representation
under SO(D —1,1).

P!, ¢ (p)) = CH(P)IP) @ ol ,6%,10). (1.77)

Here (7*(p) is a transverse polarization, namely, the wave function in the

momentum space.

1.3 The case of an open string

The gauge condition expresses reflecting the factor 2 difference in the mode

expansions eqs. (1.24) and (1.26),

Xt (ry,0) = X +2d' Py . (1.78)

Therefore, . .
—P(ru,0) = ——PFy2=——"P;". (1.79)

2m s

Therefore, in this case again, P* has the meaning of the total momentum in
the + direction.

The action is written as
1 g .
S = —2—2P0+ / dry / do X~ (my, 0)
T 0

1 " R IRVl
+ a,/dTM/O da(XX XX). (1.80)

47

The canonical procedure is the same as that of the closed string. Let us just

list a dictionary between the closed string case and the open string case.

closed  open
o' Pt — 20/ Py (1.81)

I =
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The light-cone Hamiltonian is therefore

The light-cone Hamiltonian = / il (X’X‘ + X" X' )
0

4Py a2 21\ /|
4o/ P X~
1 [Tdo -
_ 1 [mdo
o Jo 27
=P, (1.82)
as expected. Here we have used the fact
X~ =2dP; +---. (1.83)
Therefore,
ppr—_L [1do (XX n X’iX’i> (1.84)
070 T 4a2 |, or ' '

The quantization carried out by those in the equal time commutators
[P (1w, 0), X! (rm, 0")] = —id(0 — 0")6" | 0<o,0 <. (1.85)
Series to the commutation relations for the oscillators are
[0, al.] = ndnimod” . (1.86)
The mass operator square is computed as

~M?= PPy, = —2P; Py + PiP;
1 ["do (oo i .
—(-2) / (XX XX + R
0

42 2
2 2
1 T do . .
=l 54 o Zanz + Zanz
0 n#0 n#0
1 D—2
1=1 n#0
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Therefore

1 .
dM> = 3 o al
1=1 n#0
norm rder - 1 =
embeste Ny (D - 2) Y
n=1
~ D-=2
- N-_=—°
24
P=6 N -1, (1.88)
The number operator has been normal ordered
D-2 oo
N3 at
i=1 n=1
=
=3 Z Z calal (1.89)
i=1 n£0

The normal ordering coefficient has been computed as before by the zeta
function regularization.

1M of the ground state is —1 in the unit of %,
tachyon; P*) = |P") @ |Q) . (1.90)

These are tachyon states with ”intercept” —1.

There is an eight component massless vector in the first excited level
PLCY =D P @a ||Q). (1.91)
J

Here, we have denoted by (? the transverse polarization of the massless vector.

1.4 Critical dmension

In the present formalism, the ”critical dimension” is obtained from an anomaly

in Lorentz generators

MMICNIC = /Tr d_U (XMICPNIC _ XNICPMIC) . (192)

- 2T
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Those generator should satisfy the algebra

My Ny KL,
[MMheMie | ppFielae

— Z'ancchMMchlc _ iancK‘CMNch‘C _ lecLchMchlc + Z'ancLchNchlc )

(1.93)
When all of the indices are transverse (1 <14, j,k, ¢ < 24),
(M7 M*] (1.94)

it is easy to check.

The problem arises from the commutator where M ~* is involved.
e boost X+ = outside this gauge.

e M~% actually consists of three oscillators, so the commutator associated
with M~ involves six oscillators, and naively M M7 is zero but this

can be anomalous due to an operator ordering problem.

[36] found
(M~ M| =0, (1.95)

vanishes if D = 26 and intercept 4 for closed and 1 for open.

2 Orientation flip and Chan-Paton factors

2.1 Orientation flip (twist operator)
2.1.1 closed string

For any figure of an closed string, one can add arrows to indicate increasing
order of o-parametrization. So, these two figures, figure 3 and figure 4 are

equivalent except for the direction of arrows, or the orientation.
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oc=0 0 =21
0 =2n o=0
Figure 3: XM (ry, 0) Figure 4: XM (ry, 27 — 0)
Quantum mechanically, this can be stated as follows. Introduce
Q such that OXM(z,2) 0t = XM (3,2) . (2.1)
This is equivalent to
QoM =alM . (2.2)

Is our physical Hilbert space invariant under this operation, namely, can

we have Q|phys) = |phys)?

[) if the answer is yes, the closed string we consider is said to be non-
orientable. We called this string type I closed string. There is no way
to assign an arrow for this string. And then only symmetric states
under the interchange of o and & survive. Tachon survives. Symmetric
traceless tensor and scalra survive, while antisymmetric tensor does not

survive.
IT) if Q|x, phys) = [¢, phys), [x) and [¢) distinct, then

e the string theory is called orientable. And the context of super-
strings is called type II closed string.

e orientable theory has more states than the unorientable states.

e type II theory must preserve orientability and the string surface

swept by an orientable states own to be an orientable surface.
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Figure 5:

2.1.2 open string

The same question can be raised for an open string as well. (See figure 5.)
Namely, can theory be invariant by the change ¢ — 7 — ¢7 And this can be

stated as follows. Introduce

Q such that QXM(z, )™ = XM(~z,—2) . (2.3)
Namely,
QaMO = ()" for Neumann(N) boundary condition
QoM™ = ()" for Dirichlet(D) boundary condition (2.4)
and
™ =M for Dirichlet boundary condition . (2.5)

The question to be raised is Q|phys) = |phys).

I) if the answer is yes, an open string is said to be non-orientable. € is

realized as -
Q=" N=YaMau. (2.6)
n=1
The case where N acting on physical Hilbert state produces

N|phys) = (even)|phys) are allowed for N,
N |phys) = (odd)|phys) are allowed for D . (2.7)

Note that o™ |Q) is projected out in the Neumann boundary condition

for bosonic string.
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IT) Q|x, phys) = |1, phys) and x and ¢ are distinct then the string theory

we consider is said to be orientable.

2.2 Chan-Paton factors

It is possible to add charges at two ends of an open string, and this is re-
garded as additional degrees of freedom for an open string. Graphically, it is

represented as in figure 6.

I,j=1,.,N

Figure 6:

In general, duality of an open string multi-particle diagrams requires
A(1,2,....,N) = A(c(1),0(2),....,0(N)) . (2.8)
Here we have denoted by j — o(j), an element of cyclic permutation group
Chp.
In the absence of this charge, the full S-matrix is written as

T(1,2,---,n) = > A(o(1),0(2),---,0(n),  (2.9)

non-cyclic permutation o
where the summation is over the non-cyclic permutation of n elements.
So the natural modification to include charges on the two ends of the
string is
T(1,2,--+,n)
= Z tr (AN N A (0(1), 0(2), - -, 0(n)) -

non-cyclic perm. o
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Here we have denoted by A* generators of some Lie algebra. The trace factor
is called Chan-Paton factor and is cyclically symmetric by the trace property.

At the level of string states, this modification implies
Z)\ Sk, i (k) 1,0 (2.11)

where the k£ is the momentum of a string,  the polarization and I and J are
additional labels of the string.

Now let’s turn to the discussion for an unoriented string. Action of 2 is
taken to be

QZ ke, Cin (k) T, JYNG, = ZH(_)mZ
IJ I,J 1

k, ¢ (k) 1, Ty (MATM )

IJ
(2.12)
Qlk, (k) 1, J) = |k, ¢t (k) I, I (2.13)

where we permit M to be general N x N matrix.

e.g.1

M = MT = Iy. In order for a vector to survive projection, A must be
AT = —)\. And then the gauge must be SO(N).
e.g.2

0 I
IFM=—MT = ( ; N/2> then AT = —MATM. And the gauge is
—In/2

USp(N).
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3 Fermionic string

3.1 Action

Let us start from a closed fermionic string. The action is

SIX™M, ¥M]

= Sp[XM] 4 Sp[UM]

! 1/dTMda (=)™ 0 XM 0, Xar + iU p- 0T ] . (3.1)

- 2ol 2

Here ¥M’s are D two dimensional Majorana fermions. Namely,

M = (w%) with ¢, )" real (3.2)
= M 1Y . .
2

p*’s are two dimensional v matrices satisfying
{0 0"} = =29 (3.3)

One representation for these two dimensional v matrices is

0 +2 01 —-10

0 1 2 01

_ — = = . 3.4
P—(Z,()) P (zO) P pp (0 1) ( )

oM = (M0 (3.5)
Up- 0 = (U5)" (0 + p°p'05) Ui
=1 M (0ry — 051 s + o™ (Ory + 05 )thons - (3.6)

M, 1™ themselves can be either periodic or antiperiodic, they are called

Neveu-Schwarz sector or Ramond sector:

YoM (1,0 = 0) = —1p M (7,0 = 27) : Neveu-Schwarz sector

YoM (7,0 = 0) =+ .M (1,0 = 27) : Ramond sector . (3.7)

32



They are considered to be the two different sectors of the same Hilbert space.

There are four sectors in total.

(U
NS NS
NS R
R NS
R R (3.8)

3.2 Quantization in light-cone gauge

Now we fix this action to the light-cone gauge. The subsidiary condition
is UF = 0 in addition to X+ = X + o/ Pyf7u. And we repeat the same

procedure as in the section 1.2.

3.2.1 momentum, Lagrangian, Hamiltonian

§ = gC) 4 ey (3.9)
where S5 = [dX L") as before and

1 ™ .
SO ! / dx+ / do(UT) (o/ Py O, + p*0p) W,

~ dnd o' Py
= / ax i) (3.10)
51.0C) ;
My, (T, 0) = w3 = ———Via - (3.11)

§(041)iq) 4/

The light-cone Hamiltonian is introduced through by the canonical pro-

cedure.
The light-cone Hamiltonian = H]gL'C') + HéL'C') =P, . (3.12)
The bosonic part is as before, while the fermionic part turns out to be
wLc)y  —t " ti 9
HF == m /TrdO'\IJ 1Y aa—\IJZ' . (313)
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3.2.2

Finally, quantization means

1
{y,, (7w, 0), Yia(ma, o)}, = 5(—i)5(0 —0")0i5008 ,

i,j=1,...,D—

2

obtain
{Via(Tm,0),¥5(11, 07) } . = +2ma/6(0 — 07)6ij00p -
Let
i =Valy' g = Valy!
5 — i(Tu+o) 5 = ¢ilmi—0)
Y= Z biz™" NS ' = Z lN)f,Z_T
rEZ+1/2 rEZ+1/2
Y= Z di 2" 'R = Z J;Z_"
nez nez

{br; bs} - 5r+s,0
{dna dm} — 6n+m,0

commutation relation, mode expansion

a,f=1,2.

)

{Era Bs} - 5r+s,0

{Jn; sz} - 5n+m,0 .

3.2.3 mass operator and number operator

—92
The contribution of the fermionic oscillators to o/TTY is

T do

L.C. .
+20/ P HW ) = —i / ”

™

(—v'o,w' +9'0,0")

=iy (bér(—z‘r)bj; — l;i,r(+ir)l~)f,>

r€Z+%

SN ALY

rez+1
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(3.14)

L of the light hand side of eq. (3.14) is due to the Majorana property. We

(3.15)
(3.16)
(3.17)
: NS
‘R, (3.18)
(3.19)

(the case of NS, NS) .

(3.20)



In general, eq. (3.20) is written as

DRI A A SR AN

+2o/ P HEC) = | 1<%t 4| s . (3.21)
> nd',d, > nd,d,
neZ R neZ R

Therefore mass operator is expressed as
() rb bl NS
oM = o0l + { ety

o > nd,di R

\ ncZ
p o~ -
> rbib NS
+Zdl ONZl +{ T‘EZ+%
—nn ~

\ ncZ
=2(N + N + const. + const.) , (3.22)
> rb',bi NS
N=Y o a,+{ &~ : (3.23)
n=1 > md,d, R
m=1,...

We need to evaluate two constants, const. and const., associated with nor-
mal ordering. This can be done by the zeta function regularization and the

computation is below.

NS

_( 2 ) <n—1 _5 n:ln_Qn—1n>>
(D—2)3 (D —2)
= §g(_1) = (3.24)



|

const. =
m=1
Similarly for const.
Therefore

R —(D-2) —(D—2) \7

—2 A~ < NS NS
MY =2 N+ N+ 16 AR (3.26)

0 R + 0 R

Invariance under the shift o0 — o + A translates into
(N—N)|)=0. (3.27)

3.2.4 critical dimension

Again we check the Lorentz commutators. Recall that the Lorentz generators

are

d
MMN = / S (XMPN - XN (3.28)
And we examine
(M~ M7 =0. (3.29)

From that, we can derive
D =10. (3.30)
3.2.5 state space

Let’s discuss the state space. Let 7/’ and 1@’ be worldsheet fermions.

Neveu-Schwarz sector

NS sector is expanded

= > b (3.31)

r€Z+%
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The expansion was already indicated in eq. (3.18). The NS ground state is

13

|0)xs such that b:|0)xs = 0, T=gg

(3.32)

i is the vector index to label the (D—2) transverse directions of our spacetime.

|0)ns is not degenerate, namely, singlet. This state space
Hys = {{b",, - b, ol -l |0)xs}} (3.33)

creates vector and in general rank n tensors from the singlet ground state
|0)ns. The spacetime consists of the spacetime bosons.

Ramond sector

As is indicated in eq. (3.18), the expansion is

=) d (3.34)
meZ
The ground state is
|0)g  such that  d’ |0)g =0, m=1,2,3, ... (3.35)
It is important to note
{dy diy =07, &' =dy. (3.36)

If |0)g is a ground state, and then df|0)y is also a ground state. And therefore
ground state is degenerate and must form a representation of the Clifford
algebra. Therefore the Ramond ground state must carry a spinor index.

And the Ramond ground state

| )r = |a)r (3.37)

must form a spinor representation of SO(8). We can think of d} as Hermitian
matrices obeying eq. (3.36). Therefore 25~ = 2% = 16 dimension is required.

Let di to be
1

ﬁ%g )
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vt is essentially 8 Euclidean dimensional gamma matrices. These matrices

are known to be realized as a block diagonal form:

o= oy ) (3:39)
<(78T) w 0

Therefore the 16 dimensional representation is actually reducible.

Let 7} to be the product of d} then it anticommute with all v%:

8

e =[[(V2dh)  and {375,706}, =0. (3.40)

=1

Therefore one can assign + or — eigenvalue to the Ramond ground state:

Vsl dr = {+| R (3.41)

And this is considered to be the chirality of 8 dimensional spacetime in the

transverse direction. So we can write this as

e =1©) =®s) @ @) - (3.42)

|®4) is a spinor representation with positive chirality while |®)) is another
spinor representation of negative chirality.

To summarize, Ramond Hilbert space is
Hr = {{d",, -+ d"pp 0l -0l |@0a) )} (3.43)

created from the 16 dimensional spinorial states. It consists of spacetime
fermions.
Let’s list the low lying spectrum of the entire state space. From (NS, NS)

sector, we obtain

e ground state scalar [0)xs®|0)s®|k) with intercept o/T10° = 2 (-
—2.

N[
~—

N[
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e massless rank 2 tensor bi_1/2|0>NS ® Bi1/2|0>1\fs ® |k)¢j(k) with polariza-
tion tensor (;;(k), which is nothing but the wave function in & space.

From (NS, R) sector, we get

e 16 dimensional fermion |0)xs®|@d) 5 ®|k)1s (k) with intercept o/ 770> =
2(—3)=-1

p
e massless vector spinor b’ ,|0)xs ® |[@&)g ® [k)x (k).

As for (R,NS) sector, we replace tilde states by untilde states. For (R,R)
sector, we get massless bosonic bi-spinorial states |@a)r ® |@d)g, /11" =

0.

3.3 The case of open fermionic string

The action and the equation of motion is same as the case of closed string. We
parametrize the length of the open string by 0. The range of 0 is0 <o <7

this time. Fermionic part of the action is written as

\TIMP L0V = ¢{V[(8TM B 60)77/}1M + ¢§4(67M + 60)77/}2M (3-44)

as before. But there is a boundary in this case and variation of the action
tells

UM 25, |9Z0=0. (3.45)
This means
BV 26U 555 = —n i 225 +hadths 355 = 0 (3.46)
and
Y101 = Padthy at 0 =0, (3.47)

at the boundary. The equation of motion is the first order equation. So

setting the boundary condition for ; and the boundary condition for 1),
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independently is too strong. ¢ = +1 at ¢ = 0 implies 0y = +dvY, at
o = 0 and the same is true for at 0 = m. Without losing generality, we can
state 11 (v, 0 = 0) = 1o(mu, 0 = 0). Then there is a choice for the sign at
the other end o = 7. If

U1 (ma, 0 =m) = —s(Tmg, 0 =7), (3.48)

it is the Neveu-Schwarz sector. If

Uy (Tv, 0 =) = o, 0 =7), (3.49)

it is the Ramond sector. Modes of ¢; and those of 15 are no longer indepen-
dent.

vi=Va', gy =Va', (3.50)

The light-cone quantization is carried out as before but there is a slight

change in the notation which we can tabulate in

closed open
Py — 2P
% = 5= (3.51)
b b
. = —b
b b
and
> rblbi NS
1 o . N
odMm?==: o al + ng€Z+1/2 = N +const.. (3.52
2 ;0 > md,d, R (3:52)
m,ieZ

Ant the normal ordering coefficient is computed as before:
_(0-2) Ng
const. = 16 : (3.53)
0 R

Critical dimension is D = 10. The Neveu-Schwarz sector consists of space-
time bosons, and the Ramond sector consists of spacetime fermions.

The spectrum is as follows:
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e NS sector: the ground state scalar [0)xs®|k) has an intercept /770> =
—3- The next level is massless vector b’ | ,[0)xs ® [k)Ci(k) (1 = 1,...,8).

e R sector: the ground state is massless 16 dimensional spinor state
)R @ |F).

4 U(1) character

In general, state space is called module and the module of the Heisenberg
algebra is essentially the Fock space of a free boson. The highest weight state
of the Heisenberg algebra [p; {0}) is labelled by the momentum («g|p) =
\/%p|p>) with zero occupation number {0}. And the states built up from
this heightest weight state are of the form

a™al - p; {0}) o< |p i ngyng, ) (4.1)

Let me recall the definition of character in finite dimensional Lie algebra
g. We denote by the pair (p, V') representation of this finite dimensional Lie
algebra.

Let H; be the elements of Cartan subalgebra and suppose that the repre-
sentation matrices H; = p(h;) are all diagonal. Then we define the following
object

chV = try(zf - 2)'t) (x1,--- ) €V (4.2)

We decompose V' into the direct sum of the submodule:
V=PV . (4.3)
m

V(p) is defined by the vector with eigenvalue of hjv = p;v:

V(p)={veV]hv=pn}. (4.4)
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Then the chV is written like

chV = Z dimV (p) i ahy? - - a)t (4.5)
T

So let Ly be

Za Oy 1= Za,nan + %a% . (4.6)
n=1

Namely, this is the zeroth element of the Virasoro algebra acting on the

plane. Then the commutator of Lg is

(Lo, [Za nQlp s O m] = Mma_,, . (4.7)

Therefore we may include Ly as the derivation in the Cartan subalgebra of
U(1).

As the restricted character, we define ChU(1),p(Q) to be the trace over the
Fock space with momentum p. If expand in the power series of ¢, we get the

following expression.

ChUu),p(Q) = Trp,pockq ™ Z pim % (\FP> (4.8)

Here we have denoted by p(m) the number of partition of m into positive

integers:
I+1+--+1+24+24---+2+---=m. (4.9)
m ny
So,
1 1
p(m = 4.10
Z ,Hll—q (q) (410

and ¢(q) is called Euler functlon.

For r folded Heisenberg algebra, the appropriate character is written as

ch(ar)r pr.er Zpr m)ggT Tim 0 (4.11)

Here p.(m) is number of ways of separating m into positive integers of r

"colors”. The sum is given by @(}]),.
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5 Partition function

5.1 Bosonic string partition function on torus

One-loop vacuum amplitudes in string perturbation theory carry an essential
information on the spectrum of a free string. The worldsheet geometry of a
torus corresponds to the one-loop vacuum amplitude of an oriented closed
string.

To determine the normalization of the amplitude, it is better to start
from quantum field theory and let us take a one component real scalar field

in D dimensions. We set ¢ = h=1 and then the action is
1 1

In this section we use the following metric:

1
=] T (52)
-1
In order to go to the Euclidean field theory, we set izy = xg.
Sp = / APad(—Ap + M2)6 | (5.3)
Then one-loop partition function in quantum field theory which is written as
o TE _ oili—loop — Z\%FC.TkmOp — /[D¢]eis

:/[D¢]e5E = (const.) Det™2 (—=Ag + M?) .
(5.4)

These obtained by the functional integral of the real scalar field theory which

is a determinant —%. Using the identity

log% = —/0 dt (e —e ™), (5.5)

t
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we obtain

1
—Ig= —3 log Det(—Ag + M?) + (const.)’

1 —A M?
— —§Tr In [%}

1 [ dt )
=3 /0 T <e—t<—AE+M ) —e_tN> . (5.6)

So we conclude that, up to the subtraction of oo, I'y is expressed by

[‘E___/ dtT —t(—Ap+M?)

d_ M Tyt Ar)
t
< dt _
Lo thz< ~i(=88)| )
o dt D _Ap)
/d xE/d yEZn|y <y‘e ‘.’L‘> x|n)

1
o)
1
=7
1
5/ 7 °
:_%/% /dD*’”E/d ye (y e 2| 2) 6P (z — y
1
-3
1
3/
1
-3/

it /de <:L"e —Ag) ‘x>
o tMQ/de o (AE)(S(D)(x_y)‘

7 °
d tM de ftp2
Lo / e (5.7)

y=z

t is a parameter called proper time and Vj is the spacetime volume. And
UV divergences contain in ¢ = 0 end which we need to regulate. Carrying
out the momentum integration, we obtain

00 D
Tp = Ve ge*tl\/ﬂ / dﬂe*tp%
2 J. t (2m)P

Vis /°° At ap
=— e . 5.8
2(4m)z Jo 12 (58)

44



In the case of a Dirac fermion in D dimension, we instead obtain

. Ve2lsl e qy )
FDlra,c =1 / e—tM ) 5.9
: 2(47)7 Jo  ta ! (&9)

Let us now apply this formula, namely, formula eq. (5.8), to D = 26

dimensional closed bosonic string. Recall that mass operator

—2 ~ 2
TN =2(N+ N —2). (5.10)
Then
VE o dt —+M?
1_‘”closed bosonic” = _W l tﬂtrphyse !
o VE 1 o dt 04,14 _L]a/m2
T T3amEam . pt g e T
ﬁzm@ VE dTQ —277o-(N ]\2772
T 2(dna)B / ' gttt
Ve > dry —omry(N+N—2
— —72(471-20/)13 / ? <phyS ‘e 2( ) phyS> .
‘ phys
(5.11)

Due to the level matching condition (N — N)|phys) = 0, inside the trace, we

can insert

1/2 o
1=0y5= / drye?mim(N=N) (5.12)

—-1/2

Note that the eigenvalue of N and N are integers. Therefore

I ’closed bosonic”

— / / d7'2 1 t +2mi(71 +ire)(N — 1)e_27”(71 ”2)(]\} b
47r a’) 1/2 T

d?r 1 5
_ —t (N=1) o(N—1) 5.13
2(47ra) /Tg AL (5.13)
q= eZm'T , q — 67271'2'7" . T=T 4 Z-7_2



is true.
We can undo the integrations of the 24 light-cone momenta by
; 12 12
/ﬂe—t(#V I T S (5.14)
(2m)2 Art A2’ Ty ' '

Then the expression becomes

2 24 z . 5

F”closed bosonic” — 2 47T o 271' 24
(5.15)

Recalling
1 2 1 o
= > ol N=2:) ala, (5.16)
n#0 n#0
and
Y o
ap = ap =1\ 51" (5.17)
the ' cosed bosonic» Can be written as
d2 d24 7 .
1—‘”closed bosonic”? — 2 47T o / / trq (Lo= l)q(LO 2 . (518)
Here . .
=3 Z sl al Ly = 5 Z LAl al (5.19)
~ ~ (cylinder)
Ly—1=1@men [ 1=1, . (5.20)
Using the notation of section 4, we can write eq. (5.18)
I *closed bosonic”
d24 . o
@a™") (hpgpeps@a) -

d2
- 247ra/ / 2m)%4 O 4 ’
(5.21)

Finally the modular invariance restricts the integration of the complex
. d2r - . d2
proper time [ % into the fundamental domain [ 7—227
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In order to evaluate eq. (5.18), we get back to eq. (5.13) to carry out the
trace. And we obtain

Vi d? 1
1—‘closed bosonic — _7]5/ —Ti (522)

2(47°0) [ 7 T

»l"‘

ﬁ 1—4q") (5.23)

The Virasoro character is defined as

X?;zllr,c)(q) = trhiqLO*i = qhi*i Z qum : (524)

m=0
where d,, is the number of degeneracies at level m.

Therefore we can recast [ into

Ve 1
['=—————Torus ; 5.25
2 47r2a’7z ( )
2

d24 V
T = [ [ S| - 520

In the more general case, one—loop torus partition function takes the following

form:

d T 1r ir
Teorus / ZXV ) Xiixan (a) - (5.27)

> ; implies generalization of momentum integration and X;; denotes some
matrix.
Let us finally mention that for ¢ = 1 Gaussian model at generic h = %pZ,

Virasoro character and U(1) character are related by

ir q _L
X?;l,czl) (Q) — @ = ChU(l),p(Q)q 24 | (528)

First equality is true at generic h, and second equality is always true.
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5.2 Fermionic string partition function on torus
5.2.1 GSO projection and spacetime supersymmetry

Now we turn to the fermionic string.

Let us consider the following trace.

L(()NS)

T )L (5.29)

or, after the momentum integration, we are left with the trace over the
oscillators
™)Vt ®gN (5.30)

The goal is to find a sensible projection which make sure of the integer
spacing of the spectrum and this turned out to get rid of the tachyon from
the spectrum. This is called "Z, grading”.

Introduce (=) such that

{(=)" ¢ (ne, o)} =0 (5.31)

is true. Explicitly this is done by

( D—2

; Z:, L0
(=) = 1 —() T (NS) (5.32)

- D—-2 o~

NS odd,

| (+ or =)pfp(—) =1 = (R)

And then we project the state space into Zs even states.

Haso = {{|¥) [[v) € Hns @ Hr, (=) [0) = 0) }} - (5.33)

In the NS sector, tachyon is projected out and the lowest is eight dimensional
vector 8y. In the R sector, spinor states 8¢ are kept while conjugate spinor

8¢ is removed, or vice versa.
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Now for D = 10, after this projection, trace becomes

= fxs(q) - (5.34)

Note that (—)" reverses the sign of all contributions with odd number of

fermion oscillators.

2 (®) <#> =38 ﬁ <1 + qm>8 = fulq) . (5.35)

m=1

Now fxs(q) = fr(q) is true. This is the Jacobi elliptic function identity.

= _1 = 771,—l 1 A m
[T+ = T[—gm%)* =160 J](1+¢™)". (5.36)
m=1 m=1 m=1

Often quoted as
95(0) = 95(0) 4+ 93(0) . (5.37)

So the spectrum is supersymmetric.
The ground state is 8y ® 8¢ vector multiplet of D = 10, N = 1 spacetime
supersymmetry.

Now it turns to the closed string. We can just repeat the computation to

(.’7) ]_ + (—)F ]_ + (—)F L(()cylinder) _E(()cylinder)
tr 5 5 q q
F F\
= ) (LY e (LR e (538
2 2

where (-,7) = (NS,NS), (NS,R), (R,NS), (R,R).

obtain
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Now

(—)" Z{ —() e (NS) . (5.39)

\ +976(—) =1 m=1 (R) (+ : our convention)
( D—2 o
> L
- =1 r:%,... T
(—)" = { —(=) D (NS) type 11B (5.40)
+976(—) =1 m=1 (R)
( D—2 .
> b
~ i=1 r:%,... T
(- = { - Do e (NS) type IIA . (5.41)
| —7ie(—) =1 m=1 (R)

(NS,NS) sector: tachyon is projected out. So 8y ® 8y is the ground

state.

(R,NS) sector: tachyon is projected out. Massless states are 8¢ ® 8y =
8. @ 56..

(NS,R) sector: tachyon is projected out. Massless spectrum is 8y ®
85 = 8¢ @ 5H65. Therefore this is the same as the spectrum of (R,NS).
Therefore the spectrum is chiral. So this is called type IIB string.
On the other hand, in the case of type ITA, the massless spectrum is
81 ® 8 = 85 ® 56~. Therefore this case is non-chiral.

(R,R) sector: massless type IIB 8¢ ® 85 = 35@® 28 ® 1. Massless type
TTA 8¢ ® 8¢ = 8 @ 567
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So the ground state supermultiplet is

,NS) 8, @8, =35®28d1

NS
Type IIB:  boson ( -
,R) 8s5®85=35028d1

(R
) (R,NS) 85 ® 8y = 8¢ @ 565
fermion _
(NS,R) 8y ® 85 = 8¢ @ 565

NS,NS) 8, @8, =350 28 @ 1

Type ITA:  boson ( .
(R R)85®80—8VEB56T

_ (R,NS) 85 ® 8y = 8¢ @ 56g
fermion .
(NS, R) 8y ® 8- =85 D 56~

In both case, these are the N’ = 2 supergravity multiplet.
Now type IIB is symmetric under the flip, given by

()0 = ()

and
Qo' =a, O~ =10, Q0" =d.

(5.42)

(5.43)

(5.44)

(5.45)

So we can make the theory unorientable by projecting the €2 invariant state

Q|phys) = |phys). This is type I theory.

Type IIB/Q2 = TypeI.

28 removed

e (NS,NS) sector: 35@®28 @ 1 35@ 1.

35,1 removed

e (R,R) sector: 35 ®28 @1 28.

(5.46)

e (R,NS), (NS,R) sector: 85 ® 8y = 8¢ @ 565. Only one set survives

after 2 projection.

This is N =1, D = 10 supergravity multiplet.
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Spacetime anomaly cancellation or infinity cancellation implies type I
closed string must be accompanied with open strings. Consistency requires
the gauge group to be SO(32).

Upshot is

Type I = Type IIB/Q 4 open string (5.47)

and is unorientable.

5.2.2 modular invariance and fermionic string partition function

Recall that

VE d27' 1 1
1_‘c osed bosonic — T 57 5 12 T 9 197 7/ _\|4R ° 5.48
et St |, 049

We have restricted the domain to be the fundamental region of a torus by

hand. The reason is that the integrand is invariant under the modular group

of a torus.
ar +b ab
ecSL(2,Z 5.49
- (d) 2,2) (5.49)
which is generated by
1 _
T:7—7+1 and Siros = (5.50)
T |7]?
In fact,
T:n(r) = n(r +1) = eirp(7)
1
S:dr —d <——> = —2d7'
T T
Im7 — Im 1 = tm7
T 7|2
drdr drd7|r|* _drd7
(Im7)? |7|4(Tm7)? - (Im7)?
d?r B 2Ilm drd7

. = (Imr)2 is invariant

n(r) —n (—%) = V—irn(7) . (5.51)
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Therefore (Im7)2|n(7)|? is invariant under the modular group.

More generically, I', it is a torus partition function and at the same time
the free energy, is given by

Vg 1
[=———— orus D2
2 47r20/7; (5:52)
and

d?r
Trorus = / ZXVlr z]X}zhr(q) . (5'53)

In the general form eq. (5.53), the mtegrand is not guaranteed to be mod-

ular invariant. In the context of superstrings, the projection into modular
invariant integrand is called GSO projection [37]

Let us give the definition of the Jacobi theta function by the Gaussian
sums:

TR py—
n
It can be written also in terms of the infinite products

z9 [g] (2I7)

27rza (2+8) 0‘7 H 1 . q 1 + qn+a—5e2m(z+ﬁ))(1 +¢" a—ie—Qm(z—l—ﬁ))

(5.54)

(5.55)
The behavior under 7" and S as follows
25| Glr+ =eim@ g [ o] ()
93] (; —%) (—ir)3e2mos g [ 5] (2)r). (5.56)
Now
o[} 01 = —a% [[0 - - -y =0 (57
n=1
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A few different notations have been used for instance
o[i]=0. o[=0s 0[8]=w. (5.58)

What is of direct relevance to superstring vacuum amplitudes are the
following expressions.

s 8 om e~ (H(l . qﬂ)) (H(l ”n)) :

n=1 n=1

12(7) 12(7) [ v
! ! qz (H(l - q”))

1 _ n
910l _ o30lr) (H( ‘ >>

n=1

12(r) n2(7) o0 .
! g (H(l - q”))

L - (5.59)
(H(l - q”))



Let us define O, V', S, C:

O = o

- [81} (0>2—n:94 [21] (0)
NETEE

Co= (3] (0)2;:94 o | (5.60)

e

They are regarded as the SO(8) level 1 current algebra characters SO(8), as-
sociated with the four integral representations with eight independent Majorana-

Weyl fermions. This is generalized to

Sm)lz
IHROESAH R0
On = 2nN/2 = b5, 00 (@)
(57 O -v ]3]
V= BYTE = (:}156(7\,)1@1 . (5.61)
56(2\71)1:
AHROEZRAHNC)
S2n = 27771 ChSE@l)uﬁ’n—l
J[i 0= o[ 0
an = 27]" = ChSﬁ(Q\n)l,uin . (5.62)
SO@n + 1),
113
JRN0U
SQn-l—l = CQn-i—l = W = ChSOEn\#»l)l,'LZ)n . (563)



T and S acting on the four characters are represented as the matrices 2

11 1 1
inm inm inm 1 ]_ ]_ _]_ _]_
T =e 12dia (1,—1,eT,e 1 ) , S == 5.64
& 211-1 i -7 (5:64)
1—1—¢ "= "
In the n = 4 case,
11 1 1
i 1111 -1-1
T =e sdiag(l,—1,—-1,—-1), S == . 5.65
6 ) 1 (5:65)
1-1-1-1
The action of T' on a Dedekind eta function is given by
T: n® — eiminb (5.66)
Basic building blocks are given by
Oy Vs Sy Cs\'
= : 5.67
<7-22778 ) 7-22,,78 ) 7-22,,78 ) 7-22,,78 Xclosed, 10d flat, NSR. ( )

Using egs. (5.65) and (5.66), action of T" on the Xclosed, 10d flat, NSR 1S Tepre-

sented as
diag(—1,1,1,1). (5.68)

The corresponding torus amplitude for more general superstring models

is given by

T VE d27' ° X
closed, 10d flat superstring — — 2 N5 2 E :Xl ij Xj
2(471' (0% ) F 7—2

i
VE dQT

—__m [ 9Toy 5.69

2(47r2a’)5/f 2 XX (5.69)

where Xj; is a generalized GSO projection.

2See also appendix D.
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e constraints of modular invariance is written as

{STXS =X (5.70)

TIXT =X

e other physical constraints are

— the theory must contain massless graviton.

— by spin-statistics, boson and fermions contribute to eq. (5.69)

with the opposite signs.

We will just list obvious possibilities

_ _ 1
(XX X)1ra = (Vs — S8) (Vs — Cs) ——75 [
_ o 1

(XXX)us = |Vs — Cs| W
1

()ZXX) (|08|2+ |V8|2+5808+0858) 4| |16
1

(XX x)oB = (|0s|* + [V5]* + |Ss|* + |Cs[* )7T4|77|16 : (5.71)

2

5.3 Klein bottle, annulus, mobius strip
5.3.1 bosonic string partition function

Let’s get back to the flat 26 dimensional oriented closed bosonic string. Recall

that the torus free energy reads

Ve 1
oriented
flat
where
/ / d24 VlI‘ ( ) 2 / d2 1 1 1
2m)2 M=) V| 7 L a2 2 (o)

(5.73)
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In the expansion of

x5 =Trg"s” "™
1 i (mi)2
G
=g 72(1 +24g+ -+ )(1 +24G + -+ )
= |q|72(1 + 24q + 24q + 24*|q|* + - - -) , t=mwd'r, (5.74)

24q and 24q disappear after 7, integration due to the level matching con-
dition. Therefore after ground state, first excited states are massless states
and number of massless states are 242

Now let’s discuss how to build the state space of the unoriented closed
string. Namely, the closed string counterpart of the computation of eq.
(5.74). Definition of unoriented closed string is to project onto €2 invariant

states Q|phys) = |phys) given by
QaMeQ~t = gMhe (5.75)

Therefore a free energy for closed bosonic unoriented flat 26 dimensional

string ' closea 18 Obtained by replacing |x|* by Tr't%¢ LG58 namely re-
ur]i'é)rslgﬁlt‘éd
place T by T+’C , where K is
o d7—2 d24pi
K= — | — . 5.76
/0 7_22 / (277')2 |X|KB ( )
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And |x|kp is represented (projected trace is computed in the following way)

[X|kB
— Tr Qb ="

= Z(anFock space| ® (G, Fock space|QqL3yI<jE3y1 |, Fock space)
all
®|da,, Fock space)

= Z(o?mFock space| ® (o, Fock spauce|qL3yI<jEfciy1 |, Fock space)
all
®|amFock space)e 1P’

1 zeyl L i
— Z(mlam27“'|® <n1,n2,... |qL3y qLBy |n1,n2,...> ® |m1’m2’...>e t(pl)2

all

1 Feyl
- Z <m1,m2,"'|®<n1,n2;"'|ngqu8y n1,m2, )

(n1,n2,)=(m1,m2,-)

®| 1y, g, - - .>e*t(pi)2

vl —cvl .
- Z (1, mo, (g5 g, ngy - Y, mg, -+ G50 g, mgy -+ Y0
(nl,ng,"')
effectively Z (ny,mg, - |(qq)L3yl [N, ng, -+ - >e*1t(zoi)2
(’I’Ll,ﬂQ,-“)
= Z (ni,ng, -+ |92m(2m)|”1, USTR '>e_t(pi)2 . (5.77)
(711,712,“')

So we conclude that |y|kg is obtained from |x|7 (not |x|%) by replacing 7
by 2i75 and |g| by |¢|>. So the K is no longer modular invariant. Concrete

expression |y|kp is given by

1 1

— : o~ tpi)? o tPi)? 5.78
IXlen = 1 i (i) 79
Therefore
1/2
/ d7'1 =1
~1/2
*©dr, 1 1 1

K= — ) 5.79
A 7-22 (471'20/)12 7-212 |n(2”_)|24 ( )
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And then to compute the multiplicitys of the states of unoriented closed

string

LA = ol (14 244 2404247 g+ ) Sl (1424l
(5.80)

is relevant. From that we conclude that #(massless states) = $24% 4 124 =

1 25-24

524(24 +1) = —

Now the open string will act as a sort of ”twisted” sector to 2 projection.
But no invariance principle such as modular invariance. We go back to the
light-cone Hmiltonian of the open bosonic string and the vacuum energy of
the corresponding quantum field theory.

Next, we consider the open string sector. First, we go back to the torus

partition function and adapt it to the open string. Recall

D M.
o [ [
2 J, t (2m)P

for M), = 0,25 and do the Gaussian integration. Then we get

1 2

Now .
/ 2 7 T . i i,
o'’ =N -1, N—i.Za_nan. (5.83)
neZ
n#0
and for open string
!
—ia/pthe = z’,/%(—)a% (5.84)
!/
alfic = 9 %péw“ . (5.85)
Therefore .
o (p')? = O‘; . (5.86)
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Using these, we can calculate

. 24 i )
a7 =TT _E ~ @ 1 tr e-?TTz(N—l)/ d7p’ e—WTza'(Pl)z
2 Jo T 4Anialm (2m)%

00 R 24 i i2
E @ 1 tre*ﬂ'ﬁ(N*l / d *ﬂ"l’2ag

2 Jo m 47r20/72 2m)%4
q:e2ﬂ'i‘rle72£'2’7_:7_l+i7_2 d7-2 d24 ) Lgyl
N 2 47r o ) (2m) 7 10 |q|) ’

(5.87)

where .
LY = 3 Z cal ol —1. (5.88)

n
To summarize,
Vg 1
' open = ——F—— .

e = T T (5.89)

oriented

flat

where

dTQ d242 ir OodTQ 1 1
A= [T [ Gt o VN = [ |

0 T3 (471'20/)127'212 (77 (% ))24
(5.90)

and

. cy N2  pic
X2 ooy AV 10D - N7 =Ty (V/]a]) NZ= We o
2

= N2(]a)) 11 +24y/Jg| + - )e L (5.91)

To make it unoriented, replace x.4(1/|g[)- N? by Trpi (122) (/ [q)) =6 e
.A-I—M

d24 o

replace A by

where

W (V1dl) - Ne = Ty €(/Ja) - N (5.93)
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and € = +1. Recall Q such that QXMe(z 2)Q~1 = XMe(—z —2):

QoM = (—)"aMe for N
QaMeQ~t = (="M for D,

where Q = (—)V. Here

(\/H) Cyl — eeiﬂ'Ne—TrTchyl ~ eefiﬂ(hifi)eZﬂ'i(%Tg+%)Lo .

So in M, the momentum integrations unchanged

N/ dTQ 1
=€ 47r o 127.212 (ﬁ(~72+ ))24 ’

where

ﬁ<372+%>:(\/m)iﬁ(1—(—f) )#n<—72+;> .

n=1

Note that (y/]¢[)27 is not modified. Therefore

i 1\ i 1\ *
)l

Using the expansion

ir eN ip? -
Xu (Vldl) - Ne = ———— 7= eN(V]gl) N1 - 24V/]g| + -
_T —

we obtain

(x5 (VIal) - N% + X (v/lal) - Ne)

DN |

— (V)™ (mzﬂM—zﬂ - )

Therefore, in the open string sector we can see

N(N —¢)

#(massless states) = 24 5

e takes +1 for SO(N) and —1 for Sp(N).
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Grauge group
€=+1 SO(N)
e=—1 Sp(N)

We summarize the modular parameters as the table below.

T K | A M

. ; ; 1
T | 2079 %7’2 %7-2"'5

5.3.2 fermionic string partition function

To construct an unoriented string, namely the type I superstring , one first

. . . (ey1) _j (ey))
makes the closed string sector by the Q (twist) projection: Trg™o " gho "

(exl) _7 (ey1) .
Tr(£2)g"0" g0 . We obtain

Ve T+K
It =— 5.102
closed, one—loop 2(471’0/)5 2 ( )
*dr
T = / —;(XXX)HB (5.103)
o T3

o dTQ .

K= =5 > xi2in). (5.104)
e
By the similar procedure, the vacuum amplitude of the open string sector
reads - A+ M
+
It - ___F 5.105
open, one—loop 2(471’0/)5 2 ( )
o0 dT2 1 2
A= = > x| g7 ) (epf) (5.106)
0 2 ,=NSR

e dT2 _ Z 1
M= — Z Xi| =72+ = | (cpf)e. (5.107)

TS 2 2

0 2 j=NS,R

Here, cpf denotes the Chan-Paton factor, ¢ = +1 and )Z(%TQ + %) indicates

i

that the replacement by 7 — £

Ty + % in the argument is to be made only
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for the oscillator part. These replacements K : 7 — 2imp, A : 7 — %7'2,

M:1m— %7—2 +% are understood both by the twist projection in the operator
formalism and by the worldsheet involutions of the worldsheet path integrals
with torus as the double of the respective open Riemann surfaces.

Finally, the infrared stability seen as the cancellation of the massless poles

I
open, one—loop

cancellation of dilaton tadpoles [32, 38, 39, 40, 41, 42] or infinity cancellation
[43, 32]) selects cpf = 25 = 32, ¢ = —1 and the gauge group SO(32) [44].

in I} oed. one—toop T in the transverse channel (or equivalently the

6 T'/Z, orbifold

6.1 Circle compactification
6.1.1 bosonic string

Take a bosonic closed string still light-cone. Suppose that we compactify
24th dimension on a circle of radius R.

Recall for a non-compact directions

. . o ! = 5N
©iwo)= 3 e[ (Lo T

) al ; Z*TL i 2777,
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where w represents winding. Now

The condition of the circle compactification

leads

(eigenvalue of pg) =

(eigenvalue of w) =

X24 (TMa J)

Also we can write

where

T = [ S S R @X
torus — - 7_22 — Xhi q

CYO—|—C~Y0

ap —

O[I
:2 —D
\/ 22?0

O[l

=2

2

w .

= X*(r\, 0 + 27) 4+ 27(R

%, m € 7
2
éR_ER, ez
2mad! o
X = Xg(2) —i—XL(E),

Xo Y e o
—+?>—z anlnz—l-z EZ
) \/ ozolnz+2\/ Z

n;é()

ZJXXH(‘I) .

For a while, we concentrate on this part only:

—Vir
Xc 1

()

Vir
q)Xce=1

(¢)=

TI"F( )( )

\/_|n()

c=1,(cyl)
Lo

@
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( . ZB:I,(CyI)

Z

EF(I 1)

anz-

nZ

(6.3)

(6.4)

(6.5)

(6.6)



‘/a/
R

where a =

L cyl +Za nan__

L) = —52 4 Za s Ap—— (6.10)

h and h are eigenvalue of o and eigenvalue of &, respectively. We know

!/ _ !
%(h +h) = O‘Rm
! -/
%(h—h):g. (6.11)
Therefore
1
- 1
h= 7 <—§ + ma> : (6.12)

) e (] (6.13)
) =a sl maﬂl. )

1
=5 20m-2=2lm. (6.14)

This can be regarded as a Lorentz invariant of a two-dimensional Minkowski
space with signature (1, —1).
At a =1 (R = V'), the lattice is generated by the two lattice vectors

1 1
, which are light like:
-1 1
10 NG
) 2 ) =0, (6.15)
0—-1 +5
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For a general radius, boost with rapidity y = loga is

1 (1 1.1 1
(6.16)

=Lorentz boost of I'; 1 ,

where
1 1 1 1

Using these, we can reduce eq. (6.9)

a\/EZ

L,meZ

)imat ) (gyalme=D® - (5.18)

6.1.2 fermionic string
Let’s first go over the GSO projection once again and go to the S-S com-

pactification.
Recall " .
TliBflag = — — ———— 6.19
1IB,flat 2 (47r20/)5 ( )
where
d T Vlr Vir
T = ZX Xijxn, (q) - (6.20)

The momentum integration has been done 8 times
Let us first perform the circle compactification to IIB superstring
1
(6.21)

YX)us = |V — Ss|*—— .
(WX = V% = Sl

In our notation, Virasoro characters are as follows
L (=g )

_(_\F (cylinder) 00
Ose = Trns=5—q"0 I+
Vaik = Trys B 17 2 [ (=g
(6.22)

3See the next subsubsection for the coefficient a./75
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1_(_)If‘qL(()cylinder) H;o:1(1 _ qn)s . (623)

2
Note that represents bosonic contribution with normal ordering coefficient

included, and Trr )

each integration contrlbutes

dp o 1\ L=rms 1
/_petp R (6.24)
21 4t VAT2a! Ty

1

_\E' ; (cylinder)
— T‘I‘R#QLO}’ } _ 81—‘[2/0:1(1 + qn)8

L(cylmder) . . . .
makes no contribution in this case. Recall

The circle compactification eliminates and replace it by the lattice

412’ o
sum of the momentum and the winding number. Therefore
Vi 1
Pig,s, = ——Eimjsl’HB (6.25)
2 (472a/)2
where
d2
VAR / (XXX)HB ) (6.26)
F TS

Ly ma+ 2 _1l¢ maff)
(XXX)IIB—|V8 Ss|* VA2 Ty —r—e 4|77|1627TR Z q* s

Lmez
Fy(a,7) = ay/m Y qim i gatme=a)’ (6.28)
L,m€EZ
and a = % (see also appendix E). Note that ;1= = £2 — 2 i the

continuous limit.

6.2 5 orbifold of a circle compactification
Recall the circle compactification, X?4(z,z) = X, focusing on o?*(2) = «

and a?*(z) = a:

» A1 d2 c _
g e=rs E/ — (YXx) Y51 (q,q), (6.29)
F

2
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where

_ — (eyl) _7 (eyl)
(XX x) (g, q) = Trr()L -

ﬁ Yoo ¥, (6.30)
\/T_2|n( ) T

a: eigenvalue of oy

a: eigenvalue of dp , (6.31)
TD(R) = Lorentz boost of DY (6.32)
and
(:yl ]-
LS acmon: -k
nEZ
E(Cyl):lZ'd & ._i (6.33)
0 2 . —n n - 24 . .
nez
Recall
/ a/ al Z*Tl
X(z,2)=X —i (a+a)r + E(Oz—d)a+z B a;n +Z&Zl
n#0 n#0
/ —n >—"Nn
—X—zap7'+aazf)+i\/%<20/%+ d;%) :
n#0 n#0
where

eigenvalue of p: %, m e Z
(R

eigenvalue of w: —, £ € Z . (6.35)
a

Using these, we can obtain (see subsubsection 6.1.1)

o (f +ma) @
(£ +ma) R

S-Sl
S
I

(6.36)

o
Il
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Note X (z, Z) is an angle variable.

Now we would like to consider Z; projection
Zy: X(z,2) > —X(2,2) . (6.37)

Namely, we will introduce the operator

identify

Figure 7:
Z, such that Z,XZ,=-X, Z2=1 (6.38)
ie. {Zy, X}, =0. (6.39)
Therefore
[Zy, LSV = [2, L] = 0. (6.40)

The diagonalization need not be changed.
(xXx) on the Z, orbifold of the circle compactification consists of the

two sectors:
(XXX)CZLSI’Orb(q’ Cj) = (XXX)?lflbtwisted(Q7 Cj) + (XXX)?VI;’?sted(Qa Cj) . (641)

6.2.1 untwisted sector

The mode expansion is unchanged in the untwisted sector. (xyXy) in this

sector can be written as

1 o e _pey)
(XXX)ﬁwaisted = §TrF(R)(1 + Zz)qLO g (6.42)
Supposed Z, action on the zero mode |Q) as
2,1) = 1) (6.43)
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(6.44)

ZoJm, €) = | = m, —0)
(therefore {Z,, a}|m, £) = {Z,, &}|m, f) = 0). The state space projected is
Huntwisted = Hl(l—lr;‘gwisted S Hl(l;gwisted ) (645)
where
untw1sted {{Ha mla n; |0 (Z+]) S QZ}}
m, ) + | —m, =) }}

® , (m, £) # 0,,0,0 6.46

{20 0 2 0u 0.0 6.0
and

untw1sted {{Ha m; O nj |0 (Z+j) €2Z+1}}

® {{ Im, & _\|/; =0 (1 0) £ 02}} . (6.47)

In calculation
. |m0)+|—m,—{)
Z2a7n1 O _py - Qp. - O~é,m1 6477712 . 647m |Q> Im E)Q\/Em, 0
V2
= (—an, ) (—aop,)  (amn) o (—0mm ) (= 0omy) - (=G ) -+ [)
10 |m ) +|—m,—{)
X P CR I (m,0) #05  (6.48)
0—1 o o
V2
but
7,10,0) = [0,0) . (6.49)
Taking trace, we obtain
10
Tr =0. (6.50)
0—1
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Then the lattice sum cancels exept the |0,0) contribution. Therefore

(XXX)?lrI‘lbtWiSted = %(XXX) + %a\\//?? q_2_14 0o !
[I+q
= %(XXX)(O,O) + %(XXX)(U,;) : (6.51)
Note
THICIR
e 21_[(1 e (6.52)
I
ng( = i — (6.53)
T [Ta-am

n . (6.54)

Now we can write ()ZXx)(O@ as

2

Xy, e VT | n’ 1 _a/m s [T
(X X)(O,z) JT2 q 95 [%] H(l —q") VT2 9 [é]
a\/T2 | 27
= . 6.55
V7 o [i] (6.55)

6.2.2 twisted sector

In the twisted sector, we impose

X(r,0+21) = (ZQX(T, 0)22) 4 2mlR = —X(1,0) + 2nlR.  (6.56)
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The mode expansion is

/ —r 5T
X(2,2) = Xp — ia/pr + /o —|—i\/% (; arzr > ; Zr ) . (6.57)

Substituting into (6.56), we obtain

2Xo — 2ia/pr + 20/ o) + o/ 271D

+1 %,(Z 2m T+Zar —i—Zar——i—Zar )
r#0 r#0 r#0
=2nR. (6.58)

We conclude
rezZ+1/2, eigenvalues of p and w are 0 (6.59)

(0 < eigenvalue of X, < 7R is ZE — 0,mR). The string in the twisted
sector must line in the fixed points. Hence there are two states in the coordi-
nate representation: {{|X°=0), |[X°=27R)}}. Calculation of the normal

ordering coefficients can be dealt with

Lgﬂ:% Z a,rar— Z o rar.+ Z r
7‘—5

reZ+3 reZ+3
Z a_, O '+1' N (n—l>
T‘EZ+% 2 n=0 2
1
=5 Z a_ro : +=Ci(—1,2 =0)
T‘EZ+%
1 11 1 1
=5 Zl O_y Oy +§ﬂ =5 Zl Oy +4_8 ) (6.60)
rez+i rez+i
Likewise . !
LY = % Z TR (6.61)
T'EZ+§



Therefore

1 - (eyD) 7 (ey)
(XXX)?VI;?sted = iTrtWisted <1 + ZQ) qLO (]LO
1 1
=5 (X0 10 + 5 (X)) » (6.62)

and

(6.64)
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6.2.3 summary

The final answer is

c=1,S1,orb __ d27— — c¢=1,S1,orb —
J = [ (X)) (g, 0) (6.65)
F T2
where
(XXX)C:LSlorb
la\/ﬁ 1 1,2 152 2n n Ui
R s A A b
2 n (a,&)€T1 (R) 19 |:6:| 79 |:%:| 0
1r1, _ _
=5 (X000 + (XX 0,4 + (XXX) 40+ (RXX) 5)] (6.66)

We can easily see that
. 11 1 1
d : —, =i i — —
under S: (0,0), (2, 2) invariant and <0, 2) > (2,0>
. 1\ . ) 1 11
under 7": (0,0), {0, 5 invariant and 3 0) <~ 35 (6.67)

and then eq. (6.66) is modular invariant.

6.3 TIIB strings on T*/Z, orbifold

Now we consider T4 (= (S1)*)/Z, compactification.

6.3.1 bosonic case

The bosonic part is just a generalization of S'/Z, case. Namely,
(X ={{XDe{{X}} i=1,2340=506738 (6.68)
and Zs action satisfies
2.XZ0 = X'\ 7,XZ = — X" <22)2 1. (6.69)
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Then
[ZQ, Lgyl] = [ZQ, Egyl] ~0. (6.70)

For the bosonic part,

4
(VX x)h /2

untwisted, bosonic

1 c c
o QTI.F( )(]_+Z ) LyliL !

B 1 1
ST
1 3(a)? =5 (@)
% 73 ||+ (H CLI\/T_2> Z q2( I)ZCJ?( 7’
21N Ji (al, a7 €T4,4(RY))
4
n 1 H \/_
— a
7 (M) 57
0
. T4/ Zs _ T/ Z>
= (XXX)( /) (XXX)(O,/%) (6.71)
and
HGI\/T_Q . 4 4
4
¢ 17/ Z> e I et il + 2 -
(X X)twmted,bosonlc 7_22-1-2|77|8 2 19[8] 9 8]
3
= (RXX)[) o + (R0, 72 (6.72)

(3,0) (3:3)
Note that 2* = 16 in eq. (6.72) derives from the number of fixed points of

T* under Z, action. Since

A 11 1 1
under S': (0,0), <§,§> invariant and <0,§> “ <§,O>

. 1 1 11
under 7": (0,0), <O,§> invariant and <§,0> > <§,§> ,  (6.73)

the modular invariance of
T4/Z2 T4/Z2

_ T4/ Z; _ _
(XXX)bos/onic = (XXX)untwisted, bosonic + (XXX)twisted, bosonic (674)

is preserved.
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6.3.2 fermionic case

Now let’s turn to the worldsheet fermions.

Recall
0) N rmion : PIP LT
=Tt g (=) T
. | A NS od,d,
SZ :TTR—li;_)—Fngmm, (SR =s(=) i ™ -(6.75)
Clearly
SN v
(=) i *
2 ~ ~
1+ L+(=) ¢
N 2 2
SN S5
+ 1_(_) 22 " 1:F(_) £2 " (676)

This provides SO(4); pary ® SO(4)¢pare decomposition of the SO(8) current

algebra character

Os = 045040 + V; Vi
Ve = 04;‘/215 + VZQOM . (6.77)

. . . 9 . 5 5
Likewise, with i = 7):"1er,

Sg = 545545 + C@CM
Cs = S@CM + 042545 . (6.78)
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Now let’s consider the Z, action of the worldsheet fermions ¢, ¢ =

5,6,7,8. By worldsheet supersymmetry, we must have
2o Zey = ), Zyp'Zey = —1* for both NS & R . (6.79)
Then

Zs |holomorphic states in O4y) =+ |holomorphic states in O4)

Zs |holomorphic states in V) = — [holomorphic states in Vi) (6.80)
in NS sector. As for R sector,

Therefore .

S> d,d

Z = Yy (—)m=1 ¢ (6.82)
So in this sector,
7 |states in Sy0) = — |states in Syp)
7, |states in Cyp) = + |states in Cyp) . (6.83)
We can write the 1 inserted part in the untwisted sector as
Vé — Sg = (‘/;104 — 0404) + (04‘/2; — 5454) = QO + QV . (684)
On Z, insertion in the untwisted sector, we get Qo — Q. Therefore
_ T*/Z3 on TTB
(XXX)unt/Wi;ted
11
73 n[®2
1 1 (Z alﬁ) 2 '
Ui 2
x { ———=—Fuy(a’,7)|Qo + Qv[* + - Qo — Qv ;
7-22|77|82 ( )( )| | 7_22 19[%] | |
(6.85)
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where

Fua(ar, ) = (H al\/7—2> Z I
I

(al,a’ €Ty 4(RY))

In order to proceed to the twisted sector, we recall that
. 1 1
SOQn = 5(0271 + ‘/Qn) + 5(52n + CQn)

N 1 1

7

S

A 1
A 1
SC2n — 5(0271 - ‘/271) -

(SZn - CZn)

(SZn - CZn) .

2o | TS|

Since
$Qo=3{(V = $)(0+8)+ (0~ )V +C)}
5Qv =3 {(V+8)(0 =8 +(O+ )V =)} |
we can obtain
S(Qo—Qy)=-SO+VS—-CV+0C.

Therefore

(6.86)

(6.87)

(6.88)

(6.89)

S(Qo —Qv) = (=804 +0;C40) + (—CiVie + VisSar) = Qs + Qe . (6.90)

So the twisted sector with 1 insertion gets factor |Qs + Q¢|?. Under T,

T(OZn; ‘/—27“ S2n7 0271)] - (02717 ‘/271; SZn; CZn)zT’z] )

where

J

Then
TQs = e 3iQs, TQc=¢e 3 (—i)Qc -

79

TZ-(-") = e%diag(l, —1,emTﬂ,emT")n;2e%diag(1, —1,i,14) .

(6.91)

(6.92)

(6.93)



So the twisted sector with Z, insertion gets factor |Qs — Q¢|?. Therefore

— 4 9 ONn — 4 2 on — 4 2 on
(Y X x) T/ Z20n B — (3 X )17 TZ2 00 B (X)L on B (6.94)

untwisted

T%/Zyon1IB .
untwisted 1S the same as eq. (6.85) and

T%/Z>on1IB I 1

where (YXx)

oY . _\Nr )1
(X X)tw1sted 7-22+2|,,7|8 9
4 4
4| M 2 4| M 2
X q 2 ; Qs + Qc|” + 2 570 Qs — Qc|
(6.95)
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Part 11

Path integral method: bosonic

and fermionic amplitudes

7 Bosonic string partition function

Here we set as follows:
e work in the Euclidean signature both for the worldsheet and spacetime.
e deal only with a closed bosonic string for a while.

String perturbation theory + path integrals read

Kh/ [ngn][DXM] —Se[XM,gmn]

Z= ol (DiF(M))] ¢ ’

(7.1)
h=0
where M is the worldsheet swept out by the string and [vol.(Diff(M))] is the

volume of the group of the diffeomorphism. The Euclidean action is

1 1
Se[XM, gun] = S5 / d*€p/99™ 0 XM 0, X + B / d’¢\/g, (7.2)
T M M

where B is a counter term. B should be tuned so that the renormalized

effective action has conformal invariance.

7.1 DXM

In the finite dimension case, N dimensional Riemannian space with metric

is defined by

ds®> = G opdYAdY® = (dY,dY) = [|dY||*. (7.3)
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The volume element is
[[v*'VG=D"Y. (7.4)
A=1

We want to construct an infinite dimensional analog of this.

We can write

/[DXM]e_SE[ng]

— e B/ devs / [DXM] / [DX™M]e5X1%1X)

IM] =3 (X' |26 X7
_ ['DXéV[] I[DX Je i ! o B[d*eVg DX/M]e L(X'|X")
f[DX’M]e_5<X’\X’)

Then we can tune B, albeit being divergent such that

e_deng\/g/[DXM]e—%XlP —1 (7.6)

I}

Using this,
D

/[DXM]eS X9l — (spacetime volume) <det Ag) i !

1 'DXéW]e*%HXOHQ

2

det’A > , (7.7)

= (spacetime vol.)

(rae
where || Xo||* = X§ [ d%&g./g. Therefore

/[DXm]e%“X“ = <ﬁ> . (7.8)

S}

7.2 Dgnn

Proceed to Dg,,, in the same spirits. We consider

M =space of metrices on M

= {{9mn (&) |gmn (&) is a metric on M}} . (7.9)
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A natural metric on M is
I69IF = (39.69) = | €T (G 4+ ug™ P Sgmaa . (7.10)
M
where u is arbitrary and

Gn?? = = (00,061 + 62,07 — gng™) (7.11)

DO | —

is the projector onto the space of symmetric traceless tensors. We can write

any metric variation as

OGmn = Ohmn + 0pGmn - (7.12)
Then
59| = /M P& SGE™ G5y + du / SN (7.13)
Thus we conclude
[Dgon] = [Dhunal D] (7.14)

We must count each deformation once and for all.
The next strategy would be to trade dh,,, with two infinitesimal generator

0vy, of diffeomorphism through
8Grmn = Vo, + Vv, . (7.15)
Let ¢, a diffeomorphism + Wely rescaling

OGmn = Vv, + Vi, 0vm 4+ 00gmn
- vmévn + Vn(svm - gmn(vpévp) + 5¢gmn + gmn(vp(svp)
= (P160)mn + (60 + VP60,) gun (7.16)

where P, is the operator which maps a vector to a symmetric traceless rank
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2 tensor. One would think

[Dgumn] = [Dhun][Dp] = [Dvy][D] ‘a(hmnp) ‘

O(vm9)

Pl*
det
01

— [Du,][Dé] (detPf P1> .

= [Dvn][Dg]

Two catches
1. Are all dh,,, obtained from dv,,?

2. (Pydv) = 0 possible?

Let k* be in the orthogonal complement of ImP; in {{6h,,,}}:

(6k*, Piov)y = (Pjok*,6v) =0,

(7.17)

(7.18)

where PlT is the operator which maps a symmetric traceless tensor to a vector.

Therefore
(P}ok") = —2V"6k- =0,

Hence
5kt € kerP;

and then we can write

This is the answer to 1.

Next we consider 2.

(P160)mn = 0 0v € ker Py

& V5, 0v, + V3, 0u, — gmn VPov, =0.
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This can be written as
L) gmn = (VP0p)gun - (7.23)

This is called conformal Killing equation, where dv is a conformal Killing vec-
tor (CKV). (7.23) means a diffeomorphism generated by CKV §v is equivalent

to a Weyl rescaling. This implies doubly counting. We omit this in diffeomor-
1
3

1
phism. Then we conclude that (detPfP1> * should have been (det'PfPl) .

Py
0V, Shgp
P

-
one

(kerPy)* to (k(-‘:rP1t )t
one

&

onto
defect

Figure 8:

This is the application of the Atiyah-Singer index theorem.
The Riemann-Roch

dim kerP; — dim ker P = 3x(M) . (7.24)

The left hand side represents analytic side, while the right hand side does
topological side.

Summary (figure 8):

1. extra integrations which belong to kerPf; Theichmiiller deformation.

2. [Dv] is from (kerP;)* only.
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So far, we have

=N vol(Diffy ) vol(Diff,)
7= ; K /[D¢] U dt; vol(Diffy)vol (Diff)

1 2 2
x J[det' P P2 (ﬁdet'AO (spacetime vol.), (7.25)
g

where Hdti represents integration over Teichmiiller deformation and .J is
i
Jacobian to correctly count the volume of Teichmiiller deformation. Here

vol(Diffy) 1 (7.26)
vol(Diff;) ~ vol(CKV) '

Zero indicates connected component and

Diff(M
DilT((M)) = I1,(Diff(M)) = mapping class group = (MCG),, . (7.27)
Therefore
1(Diff
L,l) = # of distinct path connected components of Diffeo. group .
vol(Diffy)
(7.28)
We will use following:
Fact
For any metric g,,, on M, 3 a unique ¢ such that
Imn (€)= ”© gpnn (€)
1 h=0
R;=const =< 0 h=1 . (7.29)
-1 h>2

There exists a global "slice” for the action of the Weyl groups (Figure 9),
which is
M= H{9mn(&)|Gmn on M, R; = const}} . (7.30)
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Teichmiiller space is defined by
Teichmiiller space with genus h = M /Diffy(M) = 7;,

and Moduli space is defined by

Moduli space with A = M/Diff(M) = (moduli), = T, /(MCG)}, .

Figure 9:

Therefore

{{tangent vectors at § on M}} = {{V,,00, + V,,00,,}} @ ker P} .

Hence

tangent vectors at ¢ on (moduli),}} = ker P} .
1

Let’s start over
8gmn(€) = 5p(€) Gmn (€) + 6lmn (€) + > deidll,

where
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(7.34)
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{{o.}} is a set of basis vector in kerP;. (¢®|¢(®) is defined through

@0167), = [ Vaeroe . (7.7

[Dgumn] = [Dp][Dln] H de;y/det(gp]¢0)) . (7.38)

On M, we make a gauge slice S transverse to the orbit of diffeomorphism.
Let

Therefore

§ = (action of Diffg)g’,  §' €8, (7.39)
g = e?(action of Diffy)g’ . (7.40)

Clearly
S = M/Diffy(M) = T, = parametrized by 7; . (7.41)

Infinitesimal deformation of eq. (7.40) is

OGmn

8 gmn (€) = 08 Gmn + (Vindvn + Vdvim) + Z .0
= 0(€)e” O G (€, 73) + Vv, + Vo0 +Ze¢(f)wér
mn [ m n n m l aTl (2]
(7.42)
where V,, indicates covariant derivative. Compare (7.35) = (7.42),
p(€) L s 0¢(8)
(&) | = | 0P dvm (&) | (7.43)
(SCZ' 00 Mz] 67']‘
where M;’ is a matrix such that
: 09(7)
PTG 0|0 ,
gj<¢< lot)de; = 2jj<¢< 105, 197 (744)
S (60160 = 301200 (7.49
; ; aTj
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Therefore

H 6Ci = detMZj H (STZ'
= det (<¢“’|e¢’a§’a—@>) (det ((0“16))) " [[dm.  (7.46)

i

Finally
[D grn]
1 ! t L (0) ¢8§(7’) (01 4(0) ]
= [Do][Dv,(€)Idet! (P Pr); | [ dridet(s®le?=—2), (det ((6©]61"))),
i j
(7.47)
7.3 Summary
The previous formula for Z is refined to be
S dr; » 04
hz_‘g“ /7-hv01 CKV) |MCG|| [ ¢]< et(p(]e? 8Tj>g>
det P*Pl o N |
(det ) <IM ng\/_det Ag> (spacetime volume)
_ . h Hde 59§
_;K /moduh vol( CKV) /[ZM] <det( le? 8Tj>g>
det’ PTP1 2m , -3 '
det(¢ ) <fM ng\/_det Ag> (spacetime volume) .
(7.48)

7.4 Example: torus

We set D = 26 and look at Z;—;.
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Recall eq. (7.24), dim kerPfL = 2, dim ker P, = 2. Using eq. (7.48),

1
Tyt = ti 1. d(WP)poy—————
n—1= (spacetime vo )/(mOdUH)h:1 ( )hflvol(kerPl)
D
2m 2
x (det'P{ P,)? <7det’AA> : 7.49
( 1 1) fM d2€\/§ g ( )
where ©1590)
det(¢]55)s
A(WP)jey = %2 (7.50)
det (p(D|¢®)2 =i
Recall that for any metric g,,,, 3¢ such that
9mn = e¢gmn (751)
R; = const. (7.52)

Gauss-Bonnet theorem states x(M) = = [}, d*6V/gR; = 2 — 2h — b. When
we set h=1,b=0,

1
Ry~ d?6\/4=0 (7.53)
T Jm

Therefore
R; =0 (7.54)

and we can choose [, d*¢\/§ = const = 1 for example.
We parametrize the torus by 0 < &' < 1, 0 < €2 < 1 (Figure 10). The

line element is written as

ds® = GndE™dE”
=dzdz, (7.55)

where z = Re 2 4+ ¢ Im 2. Range of Re z or Im 2 is not [0, 1]. Let

Im z =762, Imz>0

Rez=¢'4+ 2. (7.56)
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Then

ds® = |dg" + 71 dE” 4 impd€?|?
= |dg' 4+ 7d€?|?, (7.57)

where 7 = 71 + iy (Figure 11). Now the metric can be written as

“ 1 1
9mn =

2 2

T + Ty

(7.58)

and [, d¢?\/g = 7. Note, in D = 26, [, d*/g = 7 and = 1 will make no

Ez

1

Figure 10: Figure 11:

difference because of Weyl invariance but D # 26 not clear.
Let’s first get a concrete expression for d(WP),—;, vol(kerP;). Recall
qﬁ,(ﬁ)n € kerFA’f. We know ¢ = 1,2. In the complex basis

—v:+2) B
Pl = 2) ~]=o, (7.59)

0 ] 0
= — z _= 2z s = 2— . .
v V= g7V = 2o (7.60)

where

Therefore

¢, is a function of z only

¢** is a function of z only .
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They must be periodic too. These mean ¢,,, ¢s; are both constant, and

»** = 0. ¢"™ is defined by the inverse of §,:

= | (7.61)
T —T1 1
By invariance argument alone, we can conclude
0 1 ol
0 _ Y o s apgZIpg

Prnn 910 Imn 29mn9 90 (7.62)

Therefore
mn 1 27_1 mn ™ |7 7_12 _ 7_22

From

(3], = / d2¢\/gGatelgl) plt) = / d%6\/g9"m g1l L) | (7.64)

2
(eMp) = (0P]6®) = =, (sM|p?) =0. (7.65)
T2
Hence A
det(p(]¢W)), = = (7.66)
2
while, from
0 0
4 A\ ~ A mn, l ~
<d)( )|8T(£l)g> - / d2€\/§G pqqun)n aT(ZI)qu
= (¢!}, (7.67)
0 4
02 s\ _ =
det <¢ |87_(é,)g> =7 (7.68)

Next we consider vol(kerP;). Again in the complex basis

vl
Plz( o) (7.69)
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We can take
jom _ (1) gom_ (0 (7.70)
0 1
as QNS(Z)’" € kerP;, ¢ =1, 2. Using these,
det(G015) =det [ @€/3annd "
—det [ &6/
=75 (7.71)
and then
vol(kerPy) = det(d;(f)|d~>(ﬂ')> =712, (7.72)
Now we evaluate the determinant:
(P P)6v,, = (—2)0" (P60 nm
= —20" (000, + 000V — Gmn O’ 0V,,)
=—20"0,0V, = 2400, . (7.73)
Therefore )
(det'Pf Pl) * = det/(24;) . (7.74)
We just quote the result for det’'Ay:
det' Ay = 75 n(1)[*. (7.75)
Therefore
Zp=1
= 1
= (spacetime volume) / dri—2——(det 2)
(moduli)n=1 ;=1 5 (i) 2Ty
T3
2 D=2 (T2 H
< (w2 In(n)) = (52)
’z?) (7.76)

— (vol.) /
(moduli)y—1

2 Hz dTi 4y —
g e Crnln(r)l
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Finally, we discuss the integration region of d?7. Again, Teichmiiller space

is written as

Trn—1 =genus 1 Teichmiillar space

={r =7 +in/lmr >0} = UHP . (7.77)

The consider

gl N gl/ — Ozfl + 652 o 51 — Ozfll _ 552/
52 - 52/ — ,.yé-l + 562 52 — _,.yé-ll + 552/

maintain periodicity. Then «a, 3,7, must be integer. Now that [, d*¢\/g =

(7.78)

the same constant as before, ad — v = 1. Then
2

det de?12 = |5 — 2| qelr ar — 8 de?’ .
|de” + 7d€[" = |0 — 7] £+<—_W+5 ¢ (7.79)
This motivates a transformation

ar — f3

Let

SL(2,Z):{ ( “ _66)
—

This is an genus one MCG

&,5,7,6€Z,a6—57:1} .

= (MCG)p=1 - (7.81)

Note that the action of

SL(2,R) = { ( “ _55>
—y

on Tp—; preserves the boundary Im 7 = 0, i.e. real line — real line. So the

a,ﬁ,%(SER,a(S—BW:l} (7.82)

—-10
Th=1 is "stable” under SL(2,R). But it is not "faithful” as < 0 1) acts

trivially on Tp—:
(-1)7—0

0oty (783)
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The group PSL(2,R) = SL(2,R)/{{*1.}} acts faithfully on 7,—,. The
elements of SL(2,Z) which are in PSL(2,R) form a group

PSL(2,Z)=SL(2,Z)/{{£1,}}

= the modular group . (7.84)
Let
11 ,
T = or T—oT=T7+1, (7.85)
01
0-1 1
S = or  T—oT =-——, (7.86)
10 T
and . .
F:{772207|T|217_§§7—1§§} (787)
as in figure 12.
/
b
Figure 12:

Facts
i) PSL(2,Z) is generated by S, T
ii) for V7 € Tp=1, 3g € PSL(2,Z) such that g7 € F.

iii) g7 = 7, 7 € F has the solution g = 1, except fot the cases 7 = A, i, B.
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ii), iii) = F' is a fundamental region of the PSL(2,Z). Therefore

(moduli)p—1 =Tp=1/SL(2,Z) = Tp—1/(PSL(2,7Z)) - {{+1:}}
— F/{{£1,}}. (7.88)

So this final formula is attained by

/ dTldTQ e =
(moduli)

The final formula

/ dTldTQ e (789)
]_'

NN

—12

(det 2) (2772 |n(T)[*) (7.90)

drd
Zp=1 = (Volume)/ n TZ
F (2m)73

can be understood as coming from collection of free particle one loop dia-
grams. The 7, is understood as a ”proper time”. UV divergence correspond
to oo at 7, — 0 but in eq. (7.90) it is cut off. The infinity at 7, — oo is IR

and related to the presence of tachyon in the spectrum.

8 Fermionic string partition function

Variables are
XaMa wMaj aM ) (81)

Qa

where x,” is a Rarita-Schwinger filed. The zwei bein e,,* and the metric

Jmn are related by
9mn — emaenb(sab . (82)

We use following indices:
M : 10d vector
«: 2d spinor

m : 2d Einstein

a: 2d local Lorentz . (8.3)
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Note that a, a are Euclidean indices. The action can be written as

5= 27r10/ /dZU\/g {%gmnamXManXM - %wMaj My 'V o ¥rtaj M
_%('@/}Maj Maanby V(@XM — iXWMaj M)} :
(8.4)
where

Xa =€ Xm (8.5)

O =e," O (8.6)

Va=e" (Om — wm%f’) (8.7)

Win = m €10 Oap - (8.8)

The partition function we want to compute is

De,,* Dxm” M M-S
2= Y [ omaam | amoisw | PP e

topology spin structure

(8.9)
where
Q(D) : volume of 2d diffeo.
Q(W): volume of 2d Weyl
Q(L) : volume of 2d local Lorentz
Q(S) : volume of 2d susy
Q(SW) : volume of 2d super Weyl . (8.10)
There are following symmetries:
(1) 2d diffeomorphism
dem® =0n"Ohen” + €, 0mn" (8.11)
OXm = 01" OnXm + XnOmn" (8.12)
SXM=snro, XM (8.13)
Onaj ' = 017" Bptoriaj M - (8.14)
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Using this,
5(gmn) = 0 (em®ena) *= S min + O (8.15)

.9

where ”;” indicates the covariant derivative.

(2) Weyl transformation

dem” = Aepn” (6gmn = 2Agmn, de." = _Aeam) ( )
1 1

6Xm = §AXm (6Xa = _EAXa) ( )

(8.19)

1
6¢Maj M= _§A¢Maj M .

(3) local Lorentz transformation

Sem =0e"e,,” (8.20)

1
5Xm - 5475Xm (821)
sXM=0 (8.22)

1
(SwMaj M = §év5wMaj M . (823)

(4) supersymmetry transformation
0em® =iCY" Xm (8.24)
OXm =2V ¢ (8.25)
OXM =Chuay (8.26)
i -
OUMaj M= —§’YnC(Xn¢Maj MY iy (0 XM
n 1

= i7" 0 XY = 5 (ntha ) - (8.27)
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(5) super Weyl transformation

Sem” =0 (8.28)
IXm = YmA (8.29)
SXM=0 (8.30)
Staiaj M =0 (8.31)

Our procedure to compute eq. (8.9) is as follows:
1. define the inner product in the function space of €,,%, Xm.
2. find orthogonal bases.

3. change of integration.

8.1 Del

The inner product can be defined by

(de|de)y = /d%\/g {ea"ebméemaéenb + ce ey 0e, e’ + c'eame‘méemb(Senb} :
(8.32)

The orthogonal decomposition is written as

Sem® = 60€m" + (PLON)m” + 00" e,y + Z et m® (8.33)

where

1
Py (Pion)m* ={0n"0nen® + €, 0mdn™} — iem“eb” {5774846nb + egbanénl}

1
—ieabembedcec" {W@end + egd('?n(sné} (8.34)

W' ker Py . (8.35)
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Now
e (P1on),® =0
eabebm(Plén)m“ =0 (836)

and
(0oen|(Pion)m®) = 0. (8.37)

Therefore

De,,” _ DoD(Pin)Dl o dot (Gl
/Q(D)Q(W)Q(L) _/Q(D)Q(W)Q(L)Udzd ey (8.38)

Next we perform changing integration variables. We introduce following

fiducial metric for gauge fixing:
em® = €2 én’(Ti) (8.39)

where 7; denotes bosonic moduli. Taking variation of eq. (8.39),

Den
Sem® = 6Men® + (50" Dnem® + e D) + 6T"e,," + Z " (%)

=(0A + %eb” {5774846nb + egbﬁnénl})em“ + (Pion)m”

1 L a
+ |60 + 58@60” {6n‘0re, + egd&léné}] g, b 4 Z o7 <8e > .

871-
(8.40)
By matrix form, this transformation can be describeed as
do 10 % 0 oA
d/ 0L % 0 dL
= . (8.41)
(561' 000 T;j 57'1'

To obtain Tj;, we consider the inner product of
oem’
Scithim® = ) 0 —2— . 8.42
> deatm” = 3 mg (8.42)
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Then

dep,*
(3l4i)es = (5] 5= om. (8.43)
Therefore 5
= (W) (] 5 o 2 )im = Ty (8.44)
and hence .
detT = det<wi|¢j>ildet<wi|acl> . (845)
aTj
Finally,
De,,”
/Q(D)Q(W)Q(L)
D sz P )
= / 5 (g)/;%vi)y Hd det'(P] )2 detTdet (¢ |1);) 2
DADLD'n dem
-/ Q(D)Q(W) iy [T dridet (PLPy) Hdetdyifu) et <‘”Z T >
Oem
/ Hdn det (P Py)3det(;|v;)~det <¢l ;Tj > ,
(8.46)

where the conformal Killing vector is excluded in D'n and Q(CK) denotes

the volume of conformal Killing vector.

8.2 Dy,

Similarly to the previous subsection, first we define the inner product by

]‘ /! m_n
(Ox|ox) = /dQJ\/Z]{(SXm(gm" — §*ym7")6xn + " xmy™y 5Xn} . (8.47)

The orthogonal decomposition is

OXm = Ymdp + (P1200) + > 0 W, | (8.48)
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where
1
6¢ : spin 3 (parameter)

3
dp : spin 5 (parameter)

0€ : Grassmann #

U, ekerPf (8.49)

and
(P1/26<)m - 2vm6C - 7m7nvn6< ) me(Pl/Q(SC)m =0. (850)

Then
(Ym0p|(P1/26C)m) =0 etc. . (8.51)

Therefore
Dxp" DPD(P1/2C) _1

= et (W;|W,) 2. 52
[ aoisw = | asym LLdeeewio) &5

To consider the change of integration variables, we introduce the fiducial

metric such as

Xm = YmA+ Y Qi | (8.53)
i
where a; denotes supermoduli and ®;,,, € kerPIT/T The variation is

0Xm = Ym0 +2V,n0C + Y da; ®;

= YmOX + YY" Va0 + (2Vin0C = 17" VdC) + Y _ da;®; , (8.54)

where 7,0, 2V,,,0¢ and ), da;®; denote super Weyl, local supersymmety

and super moduli respectively. The transformation matrix can be written as

op 1 x 0 oA
(SEi 0 0 Sij daj
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From tihs
662' = Sijdaj s (856)

while from eqs. (8.48) and (8.54)
06V, = da; ®; . (8.57)
Multiplying ¥ on the left hand side,
(;[;)d€; = (V] @;)da; , (8.58)

and then
de; = (\If|\If>i7€1(\I!k|<I>j>daj ) (8.59)

Comparing with eq. (8.56),

Sij = (W|0)7 (Te|@;) - (8.60)
Therefore
detS;; = det (V| W) det(V,|P;) . (8.61)
Finally,
/ Dxm
Q(S)Q(SW)
DPD(P1/2C —.l

DAD'g - 1 .
:/Wdet 1/2P1/2 2/I_IdaldetS det (V| W)™

'D)\D'
:/ C /Hdazdet 1/2P1/2)7§det<‘1’i|‘I’k>+5det(\llk|cbj>*1
- /HdaiQ(CKs)det (P1/2P1/2)75det<\11i|\Ilk>+§det<\11k|(bj>*1 , (8.62)

where the conformal killing spinor is exclued in D’ and Q(CKS) denotes the

volume of conformal killing spinor.
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8.3 Summary

To summarize subsections 8.1 and 8.2,

De,,” Dxm,
/Q(D)Q(W)Q(L)/Q(S)Q(SW)

/Hdn

det (PIPL)2det(v;]1;) 2det (1h;]

oen”
o

X /Udazmdet (P1/2P1/2)*§det(\lli|\I!j>+5det<\lfi|<1>j>’1

Therefore

Z 3 /Hdn

topology spin structure

det (Ptpl) det<¢z|¢y>ijdet<¢2|

(8.63)

oen®
or; )

_1 1 _
/Hdaz CKS det( 1/2P1/2) 2det<\IfZ|\I']>+2det(\Ill|CI>]> !

X / DXM Dy Me .

8.4 Example: torus
On torus, the metric is

1 T 9

Imn =

1 712 + 722

and g, = em®ene. The zwei bein can be written as

1o
Em =
T T2
10 17'1 _
T1 T2 07'2
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1 1

(al 7'12 + 7'22

] , z=0'+710 ,

(8.64)

(8.65)

(8.66)

(8.67)



The inverse of e,,% is

1 0
e, = [_T_IL] )
T2 T2

Dirac matrices (worldsheet Euclidean) are

01 0— 10 01
1 = 9 2 — Y ’ - ) 0 = :Z ? .

Fermions on torus are classified into 4 sectors:

Yo' +1,0%) =ri(a',0?) , r=+1
¢(01,02+1):Sw(01,02) ) s==1,
where
(r,s)=(++) RR
(+,-) R NS
(—+) NS R
(—,—) NS NS.

We consider how many supermoduli paraeters exist in (7, s) sector.

this, we would like to solve
PIT/Z\I!m =0, and "V, =e, "Y'V, =0.
In general, this equation can be written as
—2V™,, =0.
When the metric is conformal flat,

0= 0™, = ¢g™d,,, = 0.
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It is better to use complex notation:

me\IIm = Vaeamqjm

_ 0 61m - iegm \Ilm
61m + iegm 0
=YW, + 7V, (8.79)
where
. 01 - 00 (8.80)
K oo| 10| '
Thus
\Ijz = (61 — iegm)\ljm
U, =(e/™ +iex™) ¥y, . (8.81)
Since
0_0.0
do' 9z 0z
0 0 0
- 2 .82
007 oz oz (8.82)
0 0
o"v,, = —U; + —U, . 8.83
02" " oz (8.83)
So we conclude
2\If +£\I’ =0 W, + 47T, =0 (8.84)
622622_’7272_' )

This solution is

f(z)] , \1!;:[ 0] : (8.85)
0 9(2)

where f(2) is an analytic function and ¢g(Z) antianalytic. On torus, there must
be constant. Except for RR sector, i.e. (++) sector, there is no supermoduli.

The conformal Killing spinor ( satisfies
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In the flat case, this reduces to

20mC — YmY"0nC =0 (8.87)

and then
(2gm" — YmY")0n( = 0. (8.88)

Therefore
(=0, (8.89)

where ( is constant spin § spinor. In the (+—), (—+), (——) sector there is

no conformal Killing spinor, while in the (++) there is one (two component)
conformal Killing spinor.

The formula is eq. (8.64) as before:

7
1 ’ 1 _1 ama
= Z Z /Udnmdet (PiPy)2det (1;]1);) 2det(wi|§—7_j>

topology spin structure
1
X / H dalmdet,(Pf/2P1/2)_%det<qu|\IJJ>+%det<\Ifl|(P]>_l
X / DXMDipygay Me™ . (8.90)

But for RR it vanishes because of the matter fermion zero mode. Therefore,
for (+7 _)a (_a +)a (_7 _)

e no supermoduli
e no CKS
and for (+,+)

L (Ra R)vac. amp. — 0.
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The torus vacuum amplitude for IIB/ITA in flat ten dimensions is, there-

fore, simply written as

Ziml"™ =1, Z Z CriCou [ TT driaet (PP ) e

1=1,2
det <¢l >det (il;) "2 </d2a\/)
or;
{det'(zz/Qfa/Q)z det (v 8)5] : (8.91)
(rys),(r',s")
where we have chosen C__ = -C_, = -C,_ = %, C_=-C_,=-C,_ =

%, C,. = C,, = 0 in accordance with the GSO projection of the I1IB su-
perstring that implements the modular invariance. The Euclidean volume
is denoted by Vg. Omitting the calculations of the Weil Petersen measure

factor and those of the functional determinants, we obtain

1 [ d2r 1 1
Zp"™ = KV, —/ > T(7)%, 8.92
flat E2 ]_-(7'2)27'24|77(7')|16| ( )| ( )
where
T = (e 91V +0_.v c. 0[] 8.93
(T)_n(7)4 o [0] O [5] Oy [0] ' (8.93)

We take a short cut to proceed further and to determine the normaliza-
tion factor K by comparing the last expression eq. (8.92) with the vacuum
amplitude evaluated in the light cone gauge operator formalism, written in
terms of the so(8) characters. (The overall normalization can also be seen

by the one-loop free energy in local field theory):

Vi d?r
UB/IA _ _7E/ X . 8.94
flat 2(47r2a’)5 - (X X)HB/IIA flat - ( )

Identifying eq. (8.92) with eq. (8.94), we obtain

K= _MTla’)f’ | (8.95)
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Note that, from the point of view of one-loop free energy in local field the-

ory, ——— comes from a gaussian integration over one momentum, and

(472l )2
—% f d:—; .-+ comes from a proper time representation of log Det.
9 Fermionic string amplitudes at one-loop

The superstring scattering amplitudes are given in general by the functional

integrals with the appropriately chosen vertex operators HOI over these

T
worldsheet fields with respect to this action modulo the local symmetries
<H Or)

Dxp”
“EE i s [P [P Tl

top. s.s.
(9.1)
Therefore
Alon=>_2 / [ gk CKV det! (P Py det(usupy) = det <wz On” >

top. s.s.

_1 1 _
X/Udalmdet (P1/2P1/2) Zdet(\I/l|\Ifj>2det<\Ifz|<I>J> !

X/DXM/DwMaj Me=sT]or- (9.2)
I
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Part IIT
Genus one Green’s function
with («, 8) boundary condition

and superstring amplitudes

10 Genus one Green functions with («, #) bound-

ary condition

In this section, we compute the genus one Green functions with general
boundary condition to be designated by («, (), using the eigenmode ex-
pansion. We mainly consider the case of torus here. The other one-loop
geometries, Klein bottle, annulus and Mo6bius band, can be constructed by
the involution (or, the image method) as seen, for example, in [33, 34].

Let 2 = o' +70? and z = ¢' + 70% (0 < 01,00 < 1) be the complex
coordinates on the worldsheet torus with modular parameter 7 = 7 + 7.

The Laplacian is defined by A = 40,0;. We use the plane wave bases

271i(n1 +a)o! 2mi(ne+B)o>

D) o [g] (o' 0% = e e

a2 {(na+B) = (n1+a)7}z o= 22 {(n2+5)—(n1 +)7} 2

VT2

(10.1)

as our eigenfunctions, where n;,ns € Z, 0 < «, < 1. We have imposed

the orthonormality on ®,,, ,, [g] (o', 0?%) to determine the normalization fac-
tor \/—% (See appendix A.6.) This function possesses the following quasi-
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periodicities:

Do | §] (0! +1,0%) =00, 1, 5] (01, 0%)

Do [§] (0102 + 1) =P, 0, (5] (0 0%) (10.2)

In the subsequent subsections, we will first consider the bosonic and
fermionic components and then use these components to provide the su-
pertorus Green function. We will also consider the superannulus Neumann

function as the involution of the supertorus Green function.

10.1 Bosonic part

Since the eigenequation is
A®p 0, [5] (07,07 = A8D @0, [5] (01,07 (10.3)

the eigenvalue reads

Ales) = 4@

ni,ny m |(’I’L2 + 6) - (nl + 04)7'|2
2

= — 5 [{(HQ + 6) — (n1 —+ CY)Tl}Q + {(m + OZ)TQ}Q] . (104)

Note that Ag?()o) = 0. In the following, we consider the cases of @ # 0 and
(Oé, 6) - (07 0)7 (0? %)

10.1.1 case of a # 0

Now we would like to compute the Green function

oo

G5l 00= Y it [3] (e [5] 0.0

ni,ng=-—00 * 11,12

o¢]
:l Z 1 p2mi(nit+a)ot 2mi(na+B)o” (10.5)
T2 A(aﬁ)

ni,nN2=—00 ni,n2
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By translational invariance, we have chosen 0 in the second set of arguments.

Exploiting the partial fraction, we decompose A(O‘;‘ﬂ) into

n1,n9

r =7 1 1
A 4@2r)2n +a L (ne+P) = (m +a)r (na+ ) — n1+af

/\

which is permissible even for n; = 0, a # 0. Using

1— e—27ri,8qn1+a

1
d0_6727ri{(n2+6)7(n1+04)7}0 — . , 10.7
/0 2mi{(ny + B) — (1 + )7} ( )
we obtain
. _ 1
1 _ i(fr—7) 1 1‘ / dge—2mH{(n2+8)—(n1+a)r}o
ASen, A2m) i ta [1— e mignite

1
_ 1_ e,Qm',qu(era

1
)/ dae—?m’{(ng—l—ﬁ)—(nl-i-a)’?}a :
0

(10.8)

where ¢ = e?™7. According to eq. (B.14), we have the following manipula-
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tion:

o0

> !
ny +al—e 2mbgnita

ni,n2=—00
1 1 i
X/ do.ef2m{(n2+5)*(n1+a)7'}ae2m(n1+a)a eZm(n2+5)g

0

o0

_ 1 1
B Z ny +al— e 2mBgnita

n1=-—00

1
X / d0'5(0'2 — O—)e+27ri/3(02—a)+27ri(n1+a)(01+70)
0

o0

_ Z 1 Cnl-i-a
- oo M1 +al— e 2mibgnita
ad Cm+a 0 1 eZm',B <%)m—a
m=ni
= 7;] m+al— e 2ribgmta + mZ—1 m— a1 — e2riBgm—a
m'=m— ,Elfa > §m+a
ZO m + « 1—e" 27”/8qm+a
m'+a/
L (Y
2771[3
2 m' + of 1 — e2miBgm/+a
eq-( Z 271'16 n)aF(l a, 1 + o gq )
n:U
ad n+1 o q”+1
Z (e?myn et ( > F <l,o/,l+o/; ) :
1 + a n=0 C <‘

(10.9)
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27wz Qm'(gl _,_702)

where ( = e”™* =e and o/ =1 — «. Similarly,

o0

1 1
Z n+al— e_QWiﬁq—(nl-l-a)

ni,n2=—00

1
- / dae_?ﬂ—i{(n2+ﬁ)_(nl +a)’?}‘7e27ri(nl +a)ot e27ri(n2 +8)0?
0

T - i A -n—+1
- (e%‘ﬁ)"+1<q ) F<1,a,1+a;—q )

[(1+a) ! z :
INOY S ; | .
_F(l(jj Z)/) ( 72“6)71 (an) F(l,a,1+a;cq ) _

Substituting egs. (10.9) and (10.10) into eq. (10.5), we obtain

G [5] (. 210,0)

5
N _2(;71') F(E(i)a) g (e7™)" (¢Cgm) “F(1, 1 + a; (q™)
+% g(emﬁ)nﬂ (q“CH)a’ . (1, o qn;)

(10.11)
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10.1.2 case of (o, 3) = (0,0)

In this case, it is necessary to exclude (ny,ny) = (0,0) at the sum in eq
(10.5):

Gi4(2,2)0,00=G [7] (2, 2/0,0)

0
o0
_ 1 1 2miniol 2mingo?
=— E 5 e e .
T: 4(2m) |ng — ny7|?
nime=—00 (r—7)2 172 1

(nlan2)¢(090)

(10.12)
As the result of the calculation in appendix G.1, we obtain
G++(Z, 2|07 0)
1
eq.(g.12)iln v [z] (2) ~1(Im z)?
2w g |:%:| (0) 2 D)
1 — | 1 e
+ %Q;IHH —q" - E(Imz) +%ln(27r) + 27y - 0
(10.13)
The terms in the bracket [...] vanish when acting on A = 40,0;.
10.1.3 case of (o, ) = (0,3)
Here we consider
Gy (2,200,0)=G | 1] (2,20,0)
_ 1 Z ere 1 1 2e27rin101e27ri(n2+%)02 ‘
T2 oy mgm—o0 (r—7)2 ‘(nQ + 5) N an‘
(10.14)

Now we divide this sum into n; # 0 part and ny; = 0 part to use the partial
fraction decomposition in eq. (10.6).
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As the result of the calculation in appendix G.2, we obtain

G, (270, o)"q'(i'”‘)% [ln I1—¢|+ g(—l)mln 11— g™ |1 — % ] — 7Ty,
(10.15)
10.2 Fermionic part
The eigen-equations are
(=0)0:n,y |5] (01, 0%) = K32 By | 5] (0, 0%)
(=)@ | §] (0, 0%) = KBy [ §] (0,07 (10.16)
The eigenvalues can be written as
) = =2 (i + B) — (m + )} =+ {2 + ) — (1 + )1}
R =+ = {na+ B) — (1 + )7} = {02+ 8) = (m + )7}
(10.17)

Note that h}(()%o) = R(()%O) =0.

10.2.1 case of (o, 3) # (0,0)

Here we calculate the Green function

= 1 = 1 wi(ni4+a)ol 2mi(n o2
s 5] (720,0)=— 3 e

ni,na=—o00 'VN1,N2

_ 1 e 1 : : .
S [3] (2:20,00=— D7 e tmimraltemtntnt AT (10.18)
T2 o\

ni,ne=—00 Kny ;N2
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We obtain

S [B] (2, 7]0,0)

eqs. (10.7), (10.17), (10.18) 1 i 1

- o 7-_2(7— o 7_—)2 1 — e—27ri,8qn1+a

n1,n2=-—00

1
8 / dO’eQm(U2 —o)n2 e2”i5(02 —0) o2mi(n1 +a)(o! +70?)
0

_ (r=7)i i mte eq. (B.AT) & v [%:Z] (zlr) [g] (0]7)
- _ a—2mif yni1ta - o a—1 L ’
m et o[58 o o [3] G
(10.19)
Similarly, using
I 1
9 H (0fr) = o' H (0] - 7), (10.20)
fami1 . . o[k _
i[53 (A -m v 5] o=
sls] a0 = 2 e
o35 0-7 0 [1] (-21-7)
-04—% / %
eas. (B.38), (B.40) _1’79 | 1-8] (z]7) 0 [%] (07) (10.21)
™ [a—1T 1 .
9|57 o) 0[] i)
This time, we have used
1 mif sn1+a
/ doe?mil(n2+p)—(m+a)7io _ _ : 1—e’ ﬂq ’ (10.22)
0 2mi{(ny + B) — (1 + )T}

instead of eq. (10.7), avoiding getting §(0®+0) which vanishes in the original

domain.
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), (3,0),(0,3), we obtain

_ioflemn? |

MIESMES
[E—

(0[7)

™9 (3] OF7) o [] (alr)
) 0o ;0 [2] G o[ 3] oln)
S ,(2,2]0,00=S8 [8] (2,2]0,0) = — :;: i
™o 9] o) o[ 1] 1)
) o[ eEn e 3] om
S, (2,20,00=8 [0] (2,2]0,0) = ~—L2. (10.23)
: i |3] ) 9 [ 1] )

and the complex conjugates of these.

10.2.2 case of (o, 3) = (0,0)

In this case, we need to exclude the zero mode (ny,ny) = (0,0) in the sum:

1 - 1 L,
S..(2,2]0,00=8 0 2,2|0,0) = — p2minio g2minzo
++( | ) [0] ( | ) Ty nl,mz—oo (—%) (n2 — an)
(n1,m2)#(0,0)
S, (2,20,00=8 [0] (2,2|0,0) = & i ! e~ 2miniot g —2minao?
) ) 0 ) ’ To 50 —|—%(n2 — nﬁ)
(n1,m2)#(0,0)
(10.24)
Here we use the relation
eqgs. . . a
Sy (2, 2(0,0) 200 24)zu'a—c:++(z,,z|o,()) (10.25)
2

to calculate eq. (10.24), because eq. (B.47) appears not to work well when
(a, B) = (0,0). Eq. (10.25) can be easily understood by using the last line
in eq. (10.1). From eqs. (10.25), (10.13), we obtain

Soi(z20,0) = %1: H ((:)) - 2(122) —1. (10.26)
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In addition,

(10.26) @

S, (2,2]0,0) = S, (z, 2[0,0) —1. (10.27)

The last term, namely, —1 in eqs. (10.26) and (10.27) vanishes when acting
with (—i)0; or (—17)0,.

10.3 Supertorus Green function and superannulus Neu-

mann function
10.3.1 supertorus Green function

We define the supertorus Green function (vy = (—, —) or (—,+) or (+,—)) by

Gs—'li[;iirtorus (Z[, 2] |ZJ, ZJ)
43

9[0] éléJ—

—Suf(zl,iﬂzb 5J) - TSW(ZI7 ZI|ZJv2J) )

EG+:|:(Z[,2]|ZJ,2J)+ 4
(10.28)

where 0, § are Grassmann coordinates and G, G, and S,, are given in
eqs. (10.13), (10.15) and (10.23), respectively. According to appendix H,

t .
we can see that Gs—'li[;r;r orus Gsupersphere when 2 ~ 25, where Gsupersphere is

Vg
the supersphere Green function. The worldsheet supersymmetry is broken

in general by the boundary condition, but it is still useful to consider this

object, which we demonstrate in section 12.
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10.3.2 superannulus Neumann function

Using the image method as in [32] (appendix F), the superannulus Neumann

function can be written as

1 — —
Ni;il;le:rannu us (Z, ZI; Z, Z’
43

Gsupertorus <E Z_I i 9_, Z) Gsupertorus E Z_, i 9_,
2 2 ? 2 Y \/57 \/i 2 l/f 2 ? 2 Y \/i’ \/i

l/f
il Gsupertorus g é, i ﬂ ZQ
272722

Gsupertorus <E 5_1 i 0_,
m) | @oupertorus <—z =T

2°2°V2' V2
T2 supe I

:1 GsupertoruS <E Z_I i 0_, Zﬂ)
2 J;/ft 227 /2 /2 o 27227 V2| 2
Gsupertorus ) Zl) Gsupertorus <—_2 —Z’_iiﬁ_ :|:Z§/ ZQ

2 V2 V2

V22

43
(10.29)

where Z, 7/, 0 and 6 denote respectively the conjugate points of z, 2/, 6 and

0.

11 Box notation

In order to proceed even further and to prepare for calculation of string scat-
tering amplitudes in section 12, we will introduce notation for the integrand

of the string one-loop partition function.
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11.1 IIB/IIA flat

Let us, in particular, write (XX X)us/ia fias as

(XX X)11B/11A flat

1 s :
BN U L T L
= - — 1+ +-| F

e
oo
++
++
oo
N——

2
= Z Jv,7,1IB/TIA flat - (11.1)

v,v

Here we have introduced

__||an B
7’:});{‘) <: a?ﬂfb ) (11.2)

in order to represent the contribution from a single chiral boson and fermion

obeying the boundary conditions (aw, fy) and (g, Bf) respectively:

++ | _ (|0 0 || __
T St ar Be

(11.3)

r and s are the same as in eq. (8.70). In the notation of section 10, r = e*™®

s = e*™P g0 that

r=+l<a=0, r=—-l&a=

(NN NCR

s=+16=0, s=—-1&p= modulo 1. (11.4)

The power 8 = 10 — 2 seen in eq. (11.1) permits covariant interpretation as
the 2d metric and 2d gravitino fields obey the same boundary condition as

the worldsheet bosons and fermions do respectively.
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11.2 IIB string on T%(= (S')1)/Z,

As a simple prototypical example, let us consider IB string on T*(= (S")*)/Z,
with radii of S* being R;, [ = 5,6,7,8.

(XXX)uB,1/2,
1 ~
=3 H Fy(ar, ) | (XXX)uB, flat
1=5,6,7,8
1 | ey gy S e & prvny Y vy gy (N U o PR
+§ H GVT2 S\ o] Tl ] T e T
1=5,6,7,8
1 1 v} 1 1 v} 1 v} v}
s ([++]]+=T Z[++][+-T [+ +][+-| _[++]]+-
—— |-+ —+||-- - ++ F4 |+ -

i-N
N
—

1 1 4 4 4 4 4 4
v =+ [+ =+ _[++[[=+] _[++[[-+
+§ H VT2 ) 5\ | == |+ - — 4| [+ + +-||-- +4 |-+

1=5,6,7,8
1 i 7 i i — 7 7
s ([F+]T=+] Z[++T[-+] = [++]]-+] _[++]]-+
-—||+- —+]| [+ + +-|[=- ++|| -+
1 Ut i ot
+§ H GVT2 S\ ] Tl ] T e T
1=5,6,7,8
1 1 7 1 1 T 7 7
o ([++TT==1 _[++][--T = [++]T--T =[++]]--
o \[=—][++ —+| [+ - +-||-+ ++ |- -
EE ju,U,IIB,T“/Zz (11-5)

v,v
1 L2 1 BRY)
where Fy(ar, 7) = ar\/T2 Z q4(ma1+a1) (14(771(11 L)
LmeZ
line represents the contribution from the 7% compactification without Z, in-

and a;y = ‘{;}7. The first

sertion, the second, the third and the fourth lines represent the contributions
from the untwisted sector with Z, insertion, the Z, twisted sector and the
Z, twisted sector with the Z, insertion respectively. In each term inside the
bracket, the first bin represents the spacetime part and the second bin the

internal part. Referring to the character of ¢ = 1, Z, orbifold, we are able to
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see

$+as $+ar
Th Sb | — O‘bgb _ v [%Jﬁﬁf} (0) _ 20 [%Jﬁﬁf] (0)
T g ar By I
n > tap
v [%+ﬁb] (0)
1 1 11
for (Oéb, 6}3) = (07 5) ) <§7 0) ) <§7 5) .

(11.6)

Here, the arguments of the theta constants are modulo 1 and the non-integer
parts are understood to be taken. Note that, in this notation, we have
included the contribution from the 2* = 16 fixed points in the twisted sector
in eq. (11.6).

11.3 open superstring on T*/Z,

Another prototypical example which we will consider in the next section is
the open string sector in the type I superstring on T*(= (S')*)/Zy. The

partition function is

Ve o 1 Airyz, + Migyz,

Ziriyz, = T @)y 5 (11.7)
o0 dTQ 1
Avr)z, :/0 7—27_—25 ‘71,1"4/z2‘T:%T2 (11.8)
o0 d7—2 1 -
M . =/ — = o 11.9
W T Ty s TP i (11.9)

Among the many possibilities discussed in [25, 42, 41], where the dilaton
tadpoles cancel, we will consider the simplest case where the gauge group
is U(n = 16)) x U(d = 16)5) with all of the D5 branes at the same fixed
point and the first and the second subscripts indicate D9 and D5 brane
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respectively?.

T4z,
1 1 ‘
= 5T + 5T

1
= (2n)%=
(2n)? (
1=5,6,7,8

:1
—
S
=
!
N
N——
DO | —
N
|+
|+
€]
|
| +
++
[
|
++
| +
€]
|
++
++
co
N~

—(2d)21 H (ar/72) L=t e
B o\l L=+ —+||-- +-)|++ 4]+ -
1=5,6,7,8
1 1
P38 3L ) 1110

where Fi(ar, ) = aI\/EZe’t””’I, 7Ty = 4. See also [27, 26, 53, 54, 55].

pr

12 One-loop superstring amplitudes with non-

maximal supersymmetry

In this section, we apply the genus one super Green function constructed un-
der the general twists in the (o, 7) directions to superstring amplitudes. For
simplicity, we illustrate this by the annulus contribution to the open super-
string amplitudes of the compactification in section 11.3, but our procedure
is applicable to a large class of toroidal models and their orbifolding of closed

and open superstrings including heterotic string [56] compactifications.

12.1 Neumann functions with arguments on the bound-
ary

In order to proceed to the computation, we need the Neumann function for

the superannulus under a variety of boundary conditions for a worldsheet

*Other aspects of this series of model are discussed in [45]-[52].
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boson and a worldsheet fermion specified by ('l’/‘;) and with the arguments
set on the same boundary. The Neumann function for the Mobius strip case
can be read off from the annulus case by the change of the arguments in

the theta functions and will not be discussed explicitly here. For the case of
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<++), which is always needed,

vt

Nsuperannulus _ — |72
++ RIy 21525 2] 7
43

i
2

1
- 4Gsupertorus (_,_;_,_
2 Jg/j 2 272"\

(2,0)=(3,0)=(—z,+i0)

e Zr Zy| 1Ty +0_120_J25 Zr 2y | 1T
ST\ 2202 ). 4 27210 2 .
(Fi0r) (Fibs)
R s, ()i
4 N 2’ 2 2 Z=Z=-Z
1 z z iT:
eas.(B.38),(B.40),(10.20), iln v [; (F-% ‘72) (21 — 24)?
- 2w 19/[% (0‘@) 47y
1 2
1 — z z T:
—2% Il -¢" |- L2 4 —m@r)+22
+{ ;n| q"| 55 T3 n(2m) + 5
G by 21 Zj| T s 21 Zj| T
22 T 2 V22 1 ZJ| T2
S (22|22 s, (L2
+ 4 f<2 2>+ 4 f<2 2 2)]
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G HICEE 3 e (2:2)2)
RIS o Vav2 i\ 2 210
2

1 = 21— 2J 1 Ty T2
90 295 In|l - ¢"| — e 422 T
+{27r ;M =55 T +25
(12.1)

The last line of eq. (12.1) can be dropped in the calculation of amplitudes
as the source J satisfies [d?2dfdfJ = 0. We need the case (J;:) as well:

superannulus = . _ iTQ
N_|__ <ZJ72J’ZK72K 7

Vg

. . 05 Ok .

on z=%,0=0 2] RK | 1T2 V22 2] ZK| 1T

=9 e, (K2 + S, (22K 22

221 2 e 4 27212 .
2=F=—-% z=F=

1 2’2 _
—9( ZJ_ZK iTQ 4 HJ 9[(8 ZJ.ZK iTQ (122)
o\ 20 2 ) VeV 220 2 ) '

Note that, for closed string models with Z, insertion, Gs_ulftoms and G®Upertorus
Vg 23
are needed in order to evaluate the contributions from the twisted sectors.

Likewise, strir_mnn” 1S NPuperanntits are needed in the case of a 5-9 string.

43 Vg

12.2 Koba-Nielsen type formula for genus one super-

string amplitudes
N

Let H O be the product of N vertex operators
I=1

C}P) -/dz;/dﬁ;D;X(z[,Gf)eik"x(zf’of), I=1,..
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for massless vector emission of an open superstring. It can be written as

fo- (oo )

X exp [i/dQZdeGJ(z, 2,0,0) - X(z, 2,0,0)] . (12.3)

IM(2,2,0,0) XN: — MDD (2 — 21)(0 - 01)(0—6;) . (12.4)

=1

Here we have introduced the grassmann source ny, J = 1,2, 3, ..., N, for this
representation. Following section 9, we carry out the gaussian integration®
and the sum S over the boundary conditions.

Let S = &' @ S(44), where S(1) is the part of the sum which contains
(++) to some power in v;. For these parity-violating cases [62], it is well-
known that the amplitudes for lower N vanish. Ignoring these cases in this
thesis, let us denote the remaining part of the N point amplitude for the case

labelled by e by
1 (Vo) g™ A'y + M’y
2 (4m2a/)? 2 '

Here, we have denoted by (V&0) a product of the momentum conserving delta

A = — (12.5)

functions (27)%dim§(ddim) Z kr | (that appear from the integrations of the

zero modes of the bosonic coordinates) and the volume of the compactifica-
tion V,. The annulus and the Md&bius strip contributions are denoted by A%,

and M’} respectively, and

o [ 1 o fon )

ves'’ J=1

(12.6)

=L
T=35T2

N
exp [ Z (kr — int D)™ (ky — iUJDJ)LN/ML,V]

I1,J=1

®See [32]. See also [57, 58, 59, 60, 61] for different approaches of computation.
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fi (e fon o f o)

I
es’
N
exp [71'0/ Z (k[ — Z?’][D])M(kj — inJDJ)LN,ML,V] (127)
I,J=1 r=imyyl
2 2

in accordance with eqs. (5.107) and (11.9). We will restrict our attention to

the annulus case from now on.

We have denoted by Z J, the part of the integrand which has appeared
ves’
in the vacuum amplitude, (for instance, eq. (11.10)) and N'pz, indicates

the superannulus Neumann function specified by the boundary condition
v = (’;‘f’) which is determined by the spacetime indices M, L. The prime ’
indicates the omission of the bosonic and fermionic zero modes.

Let us analyze the exponential part of the integrand in eq. (12.6)

exp[- . ] =exp 20/ Z k?/lkﬁlﬂ-N,ﬂL,Vb
1<I<J<N

exp 2o/ Y {ik}'0,k}0,B}],

1<I<J<N
+(=n" k56, + U?kyGI)BJI\}[]L,uf + (" 0rky — nh0,k7CHL o
—iny 77§IBML Wt

+n1'n}0:0,E), ub}] ) (12.8)

where the I = J part vanishes by the on-shell condition. Following [32], let
us label the first, the second, the third and the fourth line of the exponent by
the number of n’s and by the number of #’s, namely, [0, 2], [1,1], [2,0], [2, 2]
respectively. Also upon compactification, namely the division of the pair of
indices (M, L) into the spacetime part (i, A) and the internal part (¢, ('), we
set the internal part of the momenta k¢ = 0 for simplicity. Index structure of

1J 1J 1J 1.J IJ
71-‘]\'[1\/[11 4 71-‘]\'[ML—I— ) BMLU{’ CML R CML-}— ) EML,++7 EML,+— are of the
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form Z g..X,f{“) and the expressions are read off from

TN =T ! [El] (f (_0 zzgz;;z) + g (e ;Z‘])
[% ir
IJ_}ES (ZI_Z_J|@) lﬁw(%_%‘%) 19'@](0‘%)
T2 2 2720 2 g, (0]F) g[i](%_%‘%)
= N]QZH((; o
HICa
2

|
| =
<
<
| — |
NN
—
—~
NS
|
w|§‘

- <l
m|51
N

|
R
<
| — |
—
—
NS
|
w|§‘
-
w3
N
v
')

(SN ORI

—
—~
NS

|
w|§‘
<
w3
S
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21 ZJ

WNi{E27T G+_ <E,?

iTQ

3)

—In ‘\/5— \/Z,‘ +3 (=1)"n
m=1

1j :1 i . i 17
C+* - 9 <8Z] 82]) |:7TN+*} ‘222572

m'\/g_,+\/<7 i 1 1

- [27rlm%j - (27r)7r272]

VG VIa)™
v

z2=z=

11— 1—

VG /lah)™
VG

2\/(,_\/(, VG @

B =(-1); (a—ZI - a7,> : (8—,21 - a—z) Lo\ | N
e YOVl
= e o

Vol VG/lah™

Vs V&

i 3 (- VG /lahm - VG W/l i
m=1 1 — \/G 1 — \/G
VGl VG (/ldl

See appendix I for these properties.

12.3 Analysis and evaluation of N = 1,2,3 cases

We will now analyze a few simplest cases. Let us first obtain a few generic
features of the amplitudes from the integral representation. First, in order
to obtain a non-vanishing amplitude, all grassmann integrations must be

saturated. Also, under the assumption made in the last subsection, Z EY =

T
0 for M =0,1,...,9. Note that, the zero mode is absent in the expansion of

X* ¢ =5,6,7,8, and that momentum conservation is not ensured.

[) N = 1; the amplitude vanishes generally and trivially as such case is

absent in the integrand.
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1) N = 2; there is no contribution from [0, 2][2, 0] or from [1, 1]? by k;-k; =
kr - Cgp) = 0 for I,J = 1,2. Neither is there any contribution from
[2,2] which does not involve v by the same reason that the vacuum

amplitude vanishes by the Jacobi identity or supersymmetry.

I[IT) N = 3; this case poses the general question of the presence or absence of
the vertex correction. There is no contribution form the parts in which
[0,2] is involved as k; - k;y = 0 for I,.J = 1,2,3. The remaining possi-
bilities for a non-vanishing amplitude are [1,1]* and [1, 1][2,2]. Among
them, the parts which do not involve Bl vanish after the summation
over v¢ by the Jacobi identity or supersymmetry. We conclude that the
possibilities are contained in [1,1] of B}, , B3}, , Biip . type and of

(BﬂL,usCJI\/IJL,ub type.

12.3.1 case of maximal supersymmetry

In this case, namely, in the case of flat 10d and its toroidal compactifications,
it is well-known that the vanishing of these two types after the summation
over vg is established, (see, for example, [21]) by the Riemann identity eq.

(B.44). In fact
4

J, = (2n)? (H Fl(af,72)> C,,ﬁ"(o) (12.11)

7712

132



according to eqs. (11.3) and (11.10) and

nl?

(2n)2 (H Fi(ar, 1)

=" Cut, (0)(B)))?
4

) > J,.(B))?

=0 (12.12)
where
x1=%{0+0+<%—%)+(%_%>}:%_%
y1:%{0+0—(%_%)_<%_%)}:_<%_%>
o {10 (5-3)-(G-3)) -
”1:%{0_0_<%—%>+<%—%)}=0- (12.13)
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and we have used ¢ [ ] (0) = 0. Similarly,

[NIENIES

12

" > BB
o ([re)
I

=Y Cy,, (0)'B) B} B)?
vg

(Y [Pz =3n 1O
:%:cwmf(o) G) 7,70) ﬂ[%](%_%)
(rz-m 1O\ (ne-n 7O
9, (0) ﬁ[i](z_g_%) 0, (0) 19@](%1_%3)
eq.(B.44) 1 (1)3 g E] (0)°

A HIC S O HICEE T HICES Y

a[f](3-2)01](3-2)0[(3-3)0 [ o

=0, (12.14)
where
=30 (G5 G-

1 21 2 Zo 23 1 23 Z3 2
yﬁg@*(?‘?)—(5‘5)‘(5‘3>}:(5‘5)
=309+ G-3)-G-3)-G3)

1 2 2 Zo 23 21 23
w=3{0-(3-3)-(F-3)+GF-3)}=0 (12.15)

12.3.2 case of non-maximal supersymmetry

Finally, let us consider the case of type I superstring on T*/Z,. Among

the summation over v, only the part belonging to %‘YI(JZ,E) in eq. (11.10)
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contributes to the N = 3 amplitude. So we will concentrate on this case.

The integrations of the exponential factor eq.

coordinates HCJ /dm/dﬁj exp[- - -] yield

2
(20/ks - (s - (P - ¢ { 2B2BRBY + (B2) (€3 - 03

(12.8) over the grassmann

+(B2) (0 )+ (B) (0 - Cg)} |

(12.16)
Coming back to eq. (12.6), we obtain the expression for AgT“/Z2:
A% = (2m) T (T1T2T3> (20" (ks - ) (k1 - 7)) (ke - G57)
X dzy j 2)
/ B 7 (111_[23 ) uezs'
«{-ompmny+ (52) (8 - cp)
23\ 2 (21 31 51\ % [ 32 12
+ (Bu?> (C++ o C++) + (Bu?> (C++ o C++)} ’
(12.17)

where J/(Z2) has been introduced in eq. (11.10) and v/¢ refers to the spacetime

part (bin) of v¢. Let us recall from eqgs. (11.3), (11.6)

++2:19[8](0) +—2:M

__ 773 ) -+ 0[%] (0) ’

++2:0[g](0) +—2:M and therefore (12.18)
-+ 3 ) - - 0[§] (0 ’

T[] _ ++*+—*:i19[8] (0)20[2](0)2 (12.19)
—— |-+ -+ |- - 776 19[%] (0)2 .



as well as from eq. (12.9)

179
o : (12.20)
T2

We obtain
AST‘*/ZQ
= (20)Tr (T'T°T%) (20" (ks - ) (ky - &) (s - (7

X 00@% dz[> ! 3( (aI\/T_2)> 0[8}2(0);9[2] o
o 2T (Izll_,[2,3/ <2> I=£3[,7,8 ﬁ[%] (0)n®
20 [2] ©
T

|

195
[fogasn [0\ olo-s (o \

ST a[n-n) | offm o

X (19, E] S —19, [%] S +27T(2122))
Mo vlje-s
+{1—-2,2—-3,3—=>1}{1 —-2,2— 3,3 — 1} in the second term
+{1—-2,2—-3,3—>1}{1 —-2,2— 3,3 — 1} in the second term]|T:i% . (12.21)
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where we have introduced shorthand notation ) [g] (I-J) =9 [g] (2 —2).
The second, third and fourth terms in eq. (12.21) can be further converted
by using eq. (B.45):

1
Z 57'5?3(35551)2

| e (P @02 O

S (ar 7'2)) 5% -3 2 (B” )2 (BI{F)2
2 <I—£3[,7,8 v 2n v g] (0) { }
1 14 79[3]2(0)79[3]2(0)

_ — (a/I TQ)) _—6 — 2
(1) (L

1|z

1o u-ag) Y

X
—

eq.(

Il

.45)_( H (a[\/772)> %%ﬁ’[ir(o .

I=5,6,7,8

where in eq. (B.45),

MG (-3) )34
nHG DGk -3

1
w9~ (5-3) o0 -0
(o o RN STRN
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Finally, we obtain

AgT‘l/Zg
= (2n)Tr (T'T?T%) (20') (ks - ) (k- &) (s - G57)

ST o) (5) (I o) 3

201" 09 9] ©) 29 2] 0
o oTilo-am[fe-ww[] ey
spla-2wple-se-n_*[ija-w[ije-sm[ije-y
9 [5]” (0) 19[2]3(0)
p 0’@](1—2);9’[;](2—3);9’@](3—1) WE]Q(O)
olja-2 ofife-s ofe-v) Y|,

Unlike the case of maximal supersymmetry, after nationalizing, each term

consists of the product of different ¥ functions and we do not find the use of

the Riemann identity.

Conclusion
In this thesis, we have mainly provided following two things.
1. we found super-Green function with («, ) twisted boundary condition.

2. we obtained finite value for the three point one-loop superstring am-

plitude with non-maximal supersymmetry.

Now we can calculate any amplitude with twisted boundary condition due

to our first work. Here we have found the super-Green faction consists of the
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bosonic part which can be written as the infinite series of hypergeometric
function and the fermionic part which is formed by the Jacobi theta functions
by using Ramanujan’s summation formula in analytic number theory. The
second result insists that the amplitudes with non-maximal supersymmetry
need not satisfy the non-renormalization theorem. Taking T*/Z, orbifold
compactification, we have considered the toy model for Calabi-Yau or K3

compactifications which can be solved exactly.
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A Notations

A.1 Indices

M,N,..=0,1,...,D — 1: spacetime vector
My, Ny, ... = +,—,1,..., D — 2: spacetime vector (light-cone)
a, f,...=1,2: 2d worldsheet spinor
m,n,... =1,2: 2d worldsheet einstein
a,b,... =1,2: 2d worldsheet local Lorentz .  (A.1)

A.2 Fields

XM bosonic cordinate
Y+ (worldsheet) fermionic cordinate

e, : zwei bein

Xo" ¢ Rarita — Schwinger field . (A.2)
A.3 Metric
1 "y
nMN = .. ) anchc = _1 0 : (A3)
' 0 1
1
A.4 Light-cone coordinates
XO XD—I XO _ XD—l
xt-2 2 x 2T (A.4)
V2 V2
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A.5 Superfield

We introduce a real superfield by

XM(2,2,0,0) = XM(2,2) + \/ngbM(z, zZ) + \/gwM(z, 2)0 + %QQFM(Z, 7)
(A.5)
where 0 and # are Grassmann numbers, X™(z, z) and ¢ (2, z) are bosonic
and fermionic fields, and FV(z, z) is a auxiliary field. The super-derivatives

are defined by
0 0o - 0 0

D= -5 +ifo, Dzﬁ—w‘%. (A.6)
A.6 Normalization in eq. (10.1)
Let us determine the normalization N in
Doy [5] (01, 0%) = Nepritmtale! it 9)e” (A7)

The inner product with functions f, ¢g is defined

)= [ a0t [ a0t ary. (A8)

On a torus geometry

1 T

and Vi =/det Gmn =7, (A.9)

Gmn (T) =

1 7'12 + 722

the orthonormality of ®,,, ,, [g] (o', 0?) implies

S Omans = (@ [5] (0505, @i | 3] (01,0%)) = NPT, 0, s
(A.10)

Hence we take
N=—. (A.11)



B Some formulae

B.1 Gamma function
Px) = / 14t [Rex > 0).
0

For example,

B.2 Zeta function

B.2.1 definition

1
()=~
n=1 n
For example,
1 2 m
B.2.2 generalized zeta function
Generalized zeta function is defined by
((z,a) = i ! [a: const., Rez > 1].
n=0 (CL + n)Z

This function satisfies

=06, () =10,
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B.3 Gauss hypergeometric function

B.3.1 definition

F(a,ﬁ,v;z)=2F1(Oé,3§%Z):Z%;—T
_ I'(v) st pyipeigy L)@
=r@re g, e,
(B.7)
where
(@) =ala+1)(a+2)-(a+n—1)= F(;‘(Z)”), (@)o=1. (BS8)

In order to obtain the second line in eq. (B.7), we must have
e Revy > Ref > 0,
e 2z can not be the real number which is greater than 1,

e (1 —1tz)~® takes the branch which goes to 1 as ¢t — 0.

B.3.2 specific cases

When we set « =1, B =a (>0),y=14a (. Rey > Ref > 0) and z = z,

we obtain

B2T(1+a) /1 o=t
F(l,a,1 ;T) = dt . B.9

Other cases are, for example,
log(l —2)=—2F(1,1,2;2) , (B.10)

F(1,2,3;2) = _z_22 {z+In(1—-2)} . (B.11)
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B.4 Computation of the infinite sum I

When b =1, k = 0, the formula

00 n 1 ltafl l_tk
Z - =—/ LA Gl )dt, (B.12)
(a+nb)(a+nb+1)---(a+nb+k) k'), 1—at

n=0

[a,b >0, |z| < 1],

is converted into

= 2" L=t (o) T(a)
= dt = ——F(1,a,1 ;T . B.13
Zn—l—a /0 1—tx I'(1+a) (10,14 a;2) (B-13)

n=0

Using this, with @ > 0, m € {0,N} and |zy™| < 1,

= 1 gnte =1 -
— n+a C n+a\™m
;n—i-al—C’y"Jf“ §n+ax mZZO( Y )
SDICCED
m=0 n=0 nta
(B.13) o=~ 4, avm L@ "
=" 2 (Cy") mF(laa,l-i-a;fﬂy )
m=0
1°T(a)
= — Cy*)"F(1,a,1 cxy™) .

m=0

(B.14)
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Similarly, with a = 1 + a,

oo

1 n+a

“~n+al—Cyrte

% pnte 1 70

Z o T

! —i—al—Cy”“ al—Cy°

© 1 x(n—l)—l—(l-i—a) 1 70

nz_; m—D+(1+a)l—Cyrnira  g1—Cye
mznfl_,&EH»a = 1 .'L'm+& 1 x®

+_7
:0m+a1—C’ym+a al—Cy®

(Ba1a) 2°T(a) — . _ _ 1 a°
= — Cy*)"F(1,a,1 cxy™) 4+ ————
F(1+a’)n;( y) (70’7 +a)xy )+a1_cya
(B.15)
and, witha=2—a
~n—al— Cyrn—a
B i pn—a N 1 pl-o
_n:2n—a1—C’y"—a 1l—al—-Cyl-e
B i 1 x(n—2)+(2—a) N 1 rl-e
o _ _ n—2)+ _ _ 1—a
= (n—2)+(2—a)1-Cyl ) 1—al—Cy
mETL72_545270, i 1 fL’m+d 1 xl—e
o = m-+a — _ 1-a
~m+al—-Cymnta  1—-al-Cy
(B11) 17°T(a) . 1 Lloa
= = Cy )"F(1,a,1+ a;zy™) +
1_‘(1_'_&)“12_0( y) ( Y ) 1—al C'yl—a
(B.16)
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B.5 ¢-Pochhammer symbol

g-Pochhammer symbol is defined by

=TI —ag) . (argy = (5D
(a’q)oo_zgo(l T SO = g g

where a,q € C, |¢| <1 and n € Z. When a = 0, the former is

o0

09 =[J1=1.

k=0

The latter can be explicitly written as

;

n—1
H(l—aqk) n>0
k=0
(a;q)nz{l n=>0 .
ﬁ ! n <0
iy (1~ ad”)

This satisfies

B.6 Ramanujan’s {9; summation formula
B.6.1 definition

The Ramanujan’s summation formula [63, 64] is

(@ )n s _ (0% D)oo (@5 D)oo (25 @)oo (%5 @)
Z (05 ¢)n a (Z§Q)OO(bSQ)OO(£;Q)OO(%§Q)OO ,

n=—oo

with |2 <]z| <1, || < 1.
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B.6.2 specific case

From eq. (B.21), one can derive

= (05000 (s @)oo 0)5
2. T—aq"  (4;9)50(2 @)oo (L5 @)oo (45 0) o0

(B.22)

n=—oo

with |¢] < |2| < 1.
Proof: substituting b = aq into eq. (B.21), the left hand side is

”1(1 —a k)
(a; q)n b::aq (a; q)n _ l!;I(:) !
(0;q)n  (ag;q)n TT0 - a™
(1-a)(1 —ag)(1 —ag®)---(1 —ag"*)(1 = ag"™")
(1—aq)(1—ag?) - (1 —ag"?)(1 —ag"')(1 — ag")
1—a

= : B.23
1 —agm ( )

Therefore
1 (9, 1

1—af(ag;q), 1—ag"’

(B.24)
The right hand side is ©

1 (az;q)oo(q;Q)oo(aiz;Q)oo(s;Q)oob::aq (025 @)oo (L3 @)oo (q; 4) %
L—=a (20)00 (b5 0)oo( L5 D)oo (5000 (25 @0)50(05 @)oo (L5 @)oo (L5 @)oo
(B.25)
Therefore, substrituting b = ag and dividing eq. (B.21) by 1 —a on the both

sides, we obtain eq. (B.22). O

Note that (1—a)(ag;¢)eo = (1—a) [[rep(l—ag"™) = (1—a)x (1 —ag)(l—ag?) --- =
[Tz (1 - ad®) = (a;¢)co -
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B.6.3 Jacobi triple product

The Jacobi triple product is written as

00
Z (ewzr)n2(e2mz)n
— H (1 . (eﬂ"LT H 7TZT (2m+1) (e27riz))(1 + (em"r)(Zerl) (e27riz)71) :
m=1 m=0

(B.26)

where z,7 € C and Im7 > 0.

Proof: When b =0, ¢ = ¢ and 2 = —%% the left hand side of eq. (B.21)
can be written as

o0

qlzl n
Z (CL; qIQ)n <_ a )
n=—00
o.°] 3 _ qlzl n
— Z ((anQn 2) (q'2) n+1;q/2)n (_ )
n=—00 a
(B-20) - Pn—2\" ; 2y 2ol L n ¢2\"
= 2 (e @) (L) (-
n=—00 n
> 1
_ m2 1 L2
= n_zooqn S <aq12n—2’q )n (B.27)

and the right hand side

(a‘ (L2 g2 ) (q’2;Q’2)oo< <q;u>’q ) (—d'#50%)(a% ¢ )oo< "—:;q'2>
( qaz’q) (;;q)oo (_u.qlg)oo(q’.q
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Then, taking a — 0o on the both sides, © we obtain

o0 oo o0
Z 2 2 2m+1 2m+1 _1—1
qlnzln: _/mH1+q/m+ /(1+q/m+ I— ) (B.29)
n=—00 m=1 m=0
Setting ¢’ = ™" and 7' = 2™, we can see
[e.e]
L, )
E : emin TeQﬂ'an
n=—oo
o0

)
— 2m7rz*r H 1 + e (2m+1) m7'e2mz)(1 + e(2m+1)7ri7'e—27riz) O

m:l m=0
(B.30)
B.7 Dedekind eta function
The Dedekind eta function is defined by
n(r) == [Ja-q"). (B.31)
n=1

B.8 Jacobi theta function
B.8.1 definition

We define the Jacobi theta function as

9 [g] (Z|7') — Z em’(n—i—a) 7-627rz'(n+a)(z+ﬁ)

neZ
00

e2mo¢(z+,8) miaT H(l eZmnT)(l + eZm(n+a )TeZWZ(er,B))
n=1

% (1 + 6271'2'(717047%)7672771'(24»6))

Y

(B.32)

(7q'z qz) (/2 /2)00 7q7”,q12 N ) ,
7 7%’ 2) ( 12( o )‘”“—)m(q'Q;q'Q)w(—q'Z';q'z)oo (_%;qm)w — Hi:o(l

(=
ql2m+2) Hi:o(]' + q12m+1 I)(]_ + ql2m+1zlfl) — Hi:1(1 _ qIZm) sz:o(]- + ql2m+1zl)(1 +
q’2m+1ZI_1 .
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where we have used eq. (B.26) in the second line. We also use the following

notation:
dee=d [t ve=o3], vo=0[)), wa=v[l],
(B.33)
where

TiT

9 |:§:| ( |7_) _ZemzeT H(l . eZm'nT)(l . eZﬂ'inTeZﬂ'iz)(l o 6271'2'(7171)7'67271'12)
2

n=1
_ 00
_ —28% Sin T2 H(l o e27rin7)(1 o e27rin7627riz)(1 o eQrinTe—Qm'z) :
n=1
(B.34)
) 00
9 |:8:| ( |7_ _emz H 27rzm' eZmnTe2mz)(1 + e2m(nfl)7’ef2mz)
_ 26’%" COS T2 H(l _ e27rin7)(1 + e27rin7627riz)(1 + e27rinTe—27riz) :
n=1
(B.35)
9 [8] (Z|7') — H(l _e27rinr)(1+e2m'( 2)7 27rzz)(1+e2m( 2)Te—2mz) (B.36)
n=1

[ g :| |7_ H 27rzm' eZwi(nfé)Te%riz) (1 o e27ri(n7%)7'ef27riz) ) (B37)
2

B.8.2 properties

This function has following properties:

vt e =vls] e, v[n] en = ls] e, B.38)

2 [5] G+ 1n =g [5] (21r).

9 [g] (2 + 7|7) = =278 (g~ 3 6=2mi%) [g] (2|7) (B.39)
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9 [g] (z]7) = ¥ [f‘ﬁ] (—z] - 7). (B.40)

The theta function satisfies the heat equation:

0? L0 Ta
e [ ] (sl7) = dmi—v [ﬁ] (2]7) . (B.41)
The derivative [ 3 ] (0|7) is expressed by the Dedekind eta function:
7 [ 1] 01r) = =2 {n(n)}’ (B.42)

At 2 ~ 0, 1
AHIEE I
> ~Z. (B.43)
o | 1] (olr)

B.8.3 the Riemann identity

For a, 5 = 0, %, this function satisfies the Riemann identity [65]

> =g 5] @ 5] o [5] wo 5] @

a,8=0,1
=20 (1] @[] o [] @oo [1] @) (Bag)
and also
28] @I o [3 wlr) 0[] wlr)w [](vm
= ¢ @iryo [§] o (3] ir) o [§] wlr)
saHIGLHHITLH ](um i)
+19H( [ ] (ylr)v M(UIT [ ]
=20 [3] @100 [3] o [} @i o[ o), Bas)
where

1 1
x1:§(x+y+u+v), y1:§(x+y—u—v),
1
5(

1
Uy = x—y+u—v),vlz§(:r—y—u+v). (B.46)

152



B.9 Computation of the infinite sum II

Using eq. (B.22), we find

<

| zIn)

o0 2miz\n . _oriaz U
(e°™%) ie

[ I
—
=
\]

~—

Z 1 — (ef2wi[3qa)qn - o1 9 [

n=—oo

Ll Ll FTISYT T

™ | o N

3

| oI7)

| —
wi= Q [wl= R
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Proof: With ¢ = e>™ and a = e~ >™¢®,

>
w1 —ad”
eq.(B.22) (aC; @)oo (3 @)oo (45 Q)%
(4 )00 (G5 D)oo (L oo (L5 @)oo
e, (1+ ezm{w(%—ﬁ)}qmm)(l _|_e—2m{z+(%_,3>}qm,a+1)
= (1 + Q2i{0+(5 =B} gmeta) (1 4 @27ils+3) gm) (1 4 @ 2milet3) gm1)
H;?:l(]' - qm)2
12, (1 + e2Fid0H (G =0} gm—ait1)

m=0

2l h)O0+(5=8) ¢ ] (1 — g™)
= 1. —
eZﬂi(&*%)(ZJr(%*B))q(a 22)2 Hz—l(l — qm)
a—1)2
eQﬂi(a—%)(zﬁ-(%—ﬂ))q( 22)
X (ai%ﬁ

H;zoﬂ(l - qm)(l + eQm{Z+(%—ﬂ)}qm+(a—%)_

” i i m afl —
[T20_, (1 — gm)(1 + e?miH0+ =B} gmt(a=s)
12, (1 + e 2mite+ G- gm—(a=3)-3)

Hoo (1 + eQ?ri{O-I-(%—ﬂ)}qm—(a—%)_%)

m=1

)
)

=] N

(-5)?

eQﬂi(—%)(z'i'%)q 2 H;::l(]' — qm)
3 o.¢]
(—2m)q¥ T, (1 - ™)

(—2m) {# T 0 - )}

X T3
e2ﬂi(—%>(Z+%>q(‘§) T2, (1 — gm) (1 + emil+a)gmt(=3)=3)
1
X . 1 1
[T (1 + e 2mileHa)gm=(=3)=3)
cas.(132) (Bany & 270~ Dz i) ¥ [%:Z_ GID) (—om) n(r)1?
=20 i om v ] G
o2mios 0 72| (21 0 [ 1] (0I)
eqs (B?;:),(B.42)Ze 5 ? 12_ 0 (B48)
g om e fi] G




Note that, for 7, > 0 and 0 < o!,02 < 1,

lql < [e*™*| < 1. (B.49)

C Zeta function regularization

In general,
CGal~1,2) =Y (n — a)e e
n=1
(=T p et 2 1 a(l—a) 1
- (e — 1)2 —e it T 1 tO).
(C.1)
D Supplement to S, T
T:TZ(T) — 77(7' + 1) = e%n(T) , To — invariant ,

o8] o) =0 [5] O + 1) = e Do [ e T (0l

T2

s s (-1) =i, no D

T |72’

JHICOETIH <0‘—%> — (—ir)3e> By [ 2] (0)r). (D.1)

SO
T(O2na ‘/271; SZn; CZn)] - (0271; ‘/—271, S2n: 0271)1711] (D3)

inm inm

1e ). (D.4)

7}(]71) = e%diag(l, —1,e
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Under S

oo oo 2o fi]o
n n 771 n

oo offfo ofijo v
n n n

SO

N 1 1

N 1 1
S‘/Qn — 5(02n + ‘/Qn) - 5(5’271 + CQn)

1n in
(LY e (2L
SSon==T | == | + T | —2-
2 0 2 0
n 1n
i) e ol
— 2 +_n 2
1 "
— _(OQn - ‘/Qn) + 5(5’271 CQn)
1 "
SCQn — 9 (OQn ‘/Qn) - E(SQn CQn)
Therefore
11 1 1 11 1 1
1111 —1 —1 1111 —-1-1
Sij = 5 T
2 11-1 ™ —" 211-11 -1
1—1—¢™ ¢ 1-1-11
Set n = 4,

XT - (087 VvS: SS; CS)/TQQUS
is representation as

T = diag(—1,1,1,1).

A ]
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Let’s now check IIB case

00 00
01 —-10

XIIB: . (DlO)
0-110

00 00
Then

00 00
01 -10
TXup= = XupT
0-110

00 00

00 00
01 —-10
SXHB: :XHBS. (D].].)
0-110

00 00

E Modular invariance of the lattice sum

Consider the ratio

1 Lima+L4)2 -1 (ma—1L)2
577 Dtmez 1 © g ‘

FQ(G’7 T) = j‘ %e_tlﬂ
2T
1 1 y2 1 02
——— 9 1 a(mat ) z3(ma—7)
TV 2

— a\/gz e—7TT2(m2a2+£—Z)+27TiTlm£ ) (E].)
lm
To prove its modular invariance, the basic identity is
F(x)= Z exp(—7(n+x)A(n + x))

= (detA)™"” 3" exp(—rmA~'m + 2rim - x) . (E.2)

meZp
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=Fy(—1/7,a). (E.3)

F Image method in superspace

In this appendix, we apply the method of images in superspace to superan-
nulus.

Let the conjugate point of (z,0) be (%,0). The involution acting on f(z, 0)
associated with (z,0) — (Z,0) is denoted by

if(2,0) = f(2,0) = fn(z, and  only) . (F.1)
Let the supersymmetry transformation of f(z,#) be
5 = (€Q — 2Q) f(2.60) (F2)
We require

W6f =06if(2,0) =6f(2,0) = —Qf(Z,0)

o “ 0 0 - -
=ieQf =1c <29& + %> f(z,0) =2Qf(z,0). (F.3)
So we conclude
2Q = —2Q (F.4)
~f -0 0 _ ~ 0 0
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Therefore,

if =%, then § =46 (UHP),
Z=—%, then § = +if (annulus),

~, then 0 = if (disk) . (F.6)

and Z2=-—
zZ zZ

G G..and G, _

G.1 Gi4(2,20,0)=G[]] (z,20,0)

G++(Z,Z|0,0) =G [g} (272|070)
= 1

>
T 4(2m)? Iny — 7|2

nine=—00 (7—7)>2
(nlan2)¢(090)

2

e27rin1 ol 2minso

0 0
o l § : 1 e27rin1crle27rin2cr2 4 l § : 1 e27rin202
o 4(2m)? |ne — ny7|? To 4(2m)? |ns|? -
ni,ne=—00 (r—7)21'"2 1 na=—00 (r—7)21'"2
n170 na#0

(G.1)

Using

n

Z%lx == In(1 - 5g™) (G.2)

n=1
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the first term in the last line of eq. (G.1) can be computed as

)
! E ! ominiol 2mingo?
= 2 e e
T 4(27r) |’I’L 0 7'|2
ni,n2=—00 (7—7)2 2 1
n17#0

o0

_ 1 Z T—7 1 11 J2rinso 2minao”
7—2 4(271')2 nl nQ — an n2 _ nl,]i

ni,n2=—0o0

n17#0
= 1 i Z(T - 77_) 1 fol dO'ei%'i(n?*”lT)” fOl do-e*2ﬂ"i(n2*n1‘l_')0
N T2 ni,ne=—00 4(27T) nl ]_ — qnl 1 o q_nl
’nl;éO
w2minio! (2mingo®
=2
42
i ! fol d06(02 _ U)e%ml(al—Hﬂ fol d05(02 — U)e%z’m(al+%a)
><Tl——oon_l 1_qn1 1_(j—n1
n1£0
N D
— 4(27T) S ny ]_ — qn1 n 1 o qfnl
n17#0
_\ N1 ni
1) =! [nl L—gm ml—gm ml—gm mnl- qu
eq.(G-2) -2
4(2m)
00 m q_m q._, _
« 3 [—m(l—Cq )—1n<1_zq ) _l“<1‘zq ) (-2 )]
m=0
2 oo o 9
4(2m) [ | | mz_l | | c
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Next, turning to the second term,

R— 1 iz 1 (T =2 [ 1 5 2 = 1y
- ‘ e2min2o” _ —_p?min2ot —_p2minao
1(r—7)?
=~ F(o?). G.4
m Ay 1) (G4)
Now
1 d2F(J2) - 2mingo? - —2mingo? e271’i027€+ 1
(2mi)? d(0?)? _nz_le +nz_le T — e2mict—er ] — e2mio?—c_
=-1 modulo §(c?). (G.5)
1
F(o®) = (2mi)* <—§(02)2 + A(0?) + B) : (G.6)
Using
A=F'(0)=0, B:F(O):Qii:ZC(Z):Z-W—Q, (G.7)
= n3 6
we obtain
1 & 1 » 1 (7—7)?

. 1 2
_ S 27rzn20 -~ 7 2 -\ 2 _ 2\2 2._
o 2o T e = amr 2T < ) 6)

ng=—00 (7—7)2
no#0

1 (Imz)? 2

T2

As a result of eqs. (G.1), (G.3) and (G.8),

i 2 ZOO . ¢ |
G++(Z,Z|0,0):m 1n|<—1|2+ 1H|1—Cq |2 1—? ]
m=1
1 (Imz)® w2
o D .
9 T2 + 27 6 (G 9)
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Due to

[To-an(1-2)

m=1 C

_igiem= (1 — e ) T (1 — q") (—2m) {qi I (- q”)}3
iqéeﬂ'iz(l — ef27riz) Hiozl(l — q”) (—27T) {(]2_14 1—[2021(1 _ qn)}

X H (1 — g™ (1 — e 2mi=g™)

|

eﬂ'iz(]_ _ e—2m‘z) 9 [

3

o
<

| @
| ©

the terms in the box brackets of eq. (G.9) can be recast as follows:

nj¢ =1+ Infl— (g™
m=1

eas.(B.31),(B.42) (2mi) [ [, (1 — ¢™)

: (G.10)

bl o] | Il =

2

qm
11
¢

N

ea(G10) ‘62772'2 _ 1‘2 (2m0) [Ty (1 — ™)

e’l‘l’iZ (1 _ 672771'2)

[\
)
—
[ I
—~
N
~

W] N[ | D= D=

<

| I
—
=}
~—

=1In M 2+2§:1n|1 —¢"? = 27(Im 2) + 2In(27) . (G.11)
A E] (0) n=1

Hence we obtain

G++(272|070)
1
eqs.(G.9_),(G.11>iln v ;] (2) _l(Imz)2
BT AR IO
o
1, a1 1 2
+ §2;1n|1—q |—§(Imz)+%ln(27r)+272-€
(G.12)

The terms in the brackets on the last line vanish when acting A = 40,05.
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G.2 G, (27%0,0)=C [0] (2,20, 0)

G (2,2(0,0)
=G [§] 20,0
: 3 1 2miniot 2ﬂi(n2+})02
= — Z 4(271—)2 1 2e 1 e 5
D) ni,N2=—00 (qu_')Q ‘(nQ _|_ 5) _ an‘
: 3 1 2minio! 27ri(n2+l)02
—_ — Z 4(271—)2 1 ‘Qe 1 e 5
To nine=—00 (7_7)2 ‘(77/2 + 5) — T
n17#0
! 3 ! 271(n2+?)a2
+T_2 Z 4(2m)° 2¢ 2)7.

3
ng=—00 (7—7)2 ‘ 2+ 3

(G.13)
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The first term in the last line of eq. (G.13) is

)
1 1 2ming ol 27ri(n2+%)02
_ 1) 1 26 (§]
T 1) —
2 n1na=—c0 (r—7)2 ‘(nQ + 2) an‘
ni#0

1 i T-7 1 1 B 1
o 42m)2ny | (ne+2) =t (na+3) —m7

ni,n2=—00

n17#0
XeZﬂ'inlaleQﬂ'i(nz-i-%)JQ
— l i T—T i ) /1 dae—Qm’{(nz-l—%)—an}a
To 4(271')2 n |1 — e*27”éq”1 0

n1,no=—00
n170

_L /1 do_e—Qﬂ'i{(nQ-'_%)_an}a] eZﬂ’inlgl eQ?Ti(TZQ-i'%)g-?
0

1 _ eQWi%q—nl

= -2 i i fol dO’ (6(0’2 _ O.)) e27‘ri%(g2_o'>e2ﬂ"in1(0-1+7_g)
4(27T) ni——o0 ny 1 — (—qnl)
n17#0
fol dO’ (6(0’2 _ O.)) e27‘ri%(0-2—a')e2ﬂ"in1(0-1+7—_0)
L= (=q)
—9 00 1 (m g__nl
— 4(2m) m_zoo n {1 “(Cgm) 11— (—q ™)
n1#£0

—(=1)™*'In <1 . ﬂqm> +(=1)™ " In(1 — g‘qm)}

qm
1— L
¢

2 ) > . . 2
=0 [1n|1—C| +mz_:1(—1) In|l —¢q™| ] , (G.14)
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where we have used

I D N DTS D TIaE
=Y (== (1 = 2y™)} = 3 (=)™ In(1 - ay™)

The second term in eq. (G.13) is

l i 1 e?m’(nz—l—%)az
)2 2
2 na=-—00 517'(37"))2 ‘77/2 + %‘

1 (’7' - 77')2 - 1 2mi(na+1)o? - 1 —2mi(ng—4 )02
L (S et 5 et

2 2
no=0 (nQ + %) na—1 (n2 — %)
1 (T B 77_)2 2
. ' G.16
Ty 4(2m)? G ( )
Then
d2F(o?)
(27m)2 d(0?)?
_ Z eQm’(nz-i—%)a2 1 Z e—27ri(n2_%)02
n2=0 no=1
—2mio2—e_
_ 2rmile? 1 e B ,
=€ (1 _ 6271'2'(7275_’_ + 1 — 6271-1'025_) =0 modulo 6(0’ ) .

—~

G.17)
F(0?) = (21)? (A0® + B) (G.18)

and

oy
I
/E]z
=
I
WE
+ | =
N | —
M—l—
]
—

n2=0 (nQ
eq.(B.5) 1 1 1
eqs.(B.4),(B.6) 72 w2 s 2
= ?-ﬁ- 4+? —45% =2 ?:71' (G.lg)



Using the formula

Z oL + = coth(ar) , (G.20)

eq.(G. [ 1 .
TEM o |2 — {— _ + coth <37r> }] ~0.
i 2 (1) 23 2
(G.21)
F(o®) = (2r)’n*. (G-22)
Therefore
1 - 1 wi(na+2)o? ]-(7'—77')2~
puy Z 4(2m)2 22 (n3) 5—72}7(02)
2 na=-—00 (7-(,7—-))2 ‘77/2 + %‘ T2 4(277)
1 (2i1)?
__( ZTQ) (277')2 2
T 4(27)?
= -1’7y (G.23)
Finally,
G+_(Z,2|0,0)
eqs.(G.l_),(G’.23) 1 ° . . qm ,
= 1n|1—g|+n;(—1) 1n|1—gq|1_?]_ﬂ72_

(G.24)
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H Supertorus Green function and supersphere

Green function

Since X
o[H] e, _
2 ~Z, ln‘l—e“z‘ ~ In |z| (H.1)
AHUS
_ z~0 1
Gi4(2,2]0,0)~ %ln|z| (H.2)
and
S, (220,002 1L F, (2 20,0070 - L2 (H.3)
ve\ %y 21U, ~ T, ve\ %5 21U, ~ T T T .
! Tz ! Tz
where vy = (——), (—+), (+—). Using eqs. (H.2) and (H.3),
GS—EII;IG:I‘TIOI'US(ZI, Z1_|2;J, 2'])
43
0:0 0107
= Guyser Z1l2r, 20) + =7 S (e, 21l 2r) = = S (e, 2121, 21)
| I | n 0,0, (i 1 00, i1
~"—Inl|z; — 2 — — ——
2 ! / 4 T2 — 2y 4 TZr — 2
1 . 1 _ A =
= EIH(ZI —z5+ 29[9J) + EIH(ZJ[ —Zzj+ 29[9J)
1
= 2— In |Z[ —Z7+ 29[9J| = Gsupersphere(zb Z[|ZJ, 5]) . (H4)
s

I Supplement to NI/ B,{f'], cth Bl

I.1 Properties under [ < J

Here we check the properties under I < .J.

Due to the even/odd properties for theta functions,

a2k




e HIONE AHI0
Syf(_z) :119,4( Z) [2] :1 <+79l/f(z)> |:21:| :_Suf(z)-
“ - HIE
2
(1.2)
In addition, by the fact that the derivative of a even/odd function becomes

odd/even,

Ao wllo_oflo
R ERIIE |
rfer oo
Mo e e
Using these,
WNii q(I:)(IQ)ln _ﬁ[i] (1271_?‘7) E(Z[_ZJ) ﬂNi‘i
o) |72 =
PR %%(—1)‘9{(%—%} %) BL
JI q.(4.3 19,@](%1_%”%) &I — &7 IJ
Ciy = %(_1)19E](%1—%"|%)+(_1) P -y
1 1 (ray 1 +19" E] (¥ -%[%) - (19'[ ](222))2 LT
! 19[2](%’—7\7) 19”(7—7\7 E
-y
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From eq. (12.10),
TNl =+7N{T

JI _ _ plJ]
B, =-B,

JI 1J
C+7 - _C+,
Ell =+E}’ .

I.2 Singularity at z; ~ z;

Let us look at a singularity of aN{%, B]7, C1/ and El% at z; ~ z;.
By eq. (H.1),
NI P |2 A
TN 41 o Y
rresver 11
“ T 2% %
1 1
1J 217
C-l—:l: ~ 5,2_1 _zr
2 T2
s~z 1 1
Eiﬂ: TE —
59
where we have also used
HIEE
lim 2
=09 (1] i)
2
m % 0 9 %
L’Hopit:al’srule . v [%] (Z|T) eq (241) lim 0z {471—28719 [%] (Z|7')}
“olem T i em
2 2
2{r[i]ent g {imoow 1] G0}
= 4mi lim = = 4mi =
=0 o[ (el lim, 00" | ] (217)
2 2
_ ypir 2 ()} e {n(m)}]
T 3 dm 3
—2m{n(7)} {n()}
= dri—In{n(1)}® = 3 - drwi— Inn(7)
T T
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(L.7)

(1.8)



to evaluate E17 .

1.3 Eq. (12.8) at z; ~ z; in case of maximal supersym-
metry
Let us check that eq. (12.8) reduces to that of [32] at z; ~ z; in case of

maximal supersymmetry.

According to eq. (1.7),

exp |2a/ Z ki k;mN’

I<I<J<N

exp 20[’ Z {Zk[ . k]@[@]BifJ

1<I<J<N
+(kI . 77J9[ - k] . nIGJ)B,ffJ + (kj . 7][0[ — k[ . 7]]0])0_{_{1_
—ing - 0By + - 0010, B 1

SN exp[ S kr-kyln ———‘]

1<I<J<N
, _ 11
exp 20 Z Zkf'kJQIGJQz_]_z_J
1<I<J<N 2 T3
1 1 1 1
+ | (kr-nsbr — k- 77[9J)§ 5 + (ks -0 — k- 77J9J)§ 3
2T 2 2 2

. 1 1 -1 1
_an'nJ_ﬁ'H?I'??JgIHJ( ) )2}]

2 21 4 (Z]_ZJ
_ H )
N 2 2

2 2
20’ kr-ky
1<I<J<N

1 1 16, —0
exp [ Z {20[’2%[']47]9[9]—7 —|—20[ (k[ 77]+k] 77[) g
1<I<J<N

27 2 2 2% 2 - %J
. 1 1 1
—2a/in; - 77]§ T 2a'n; - 77]9[1% IR . (1.9)
-3 %-9)
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