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Abstract
The subgroup posets of finite groups are illustrated by graphs (Hasse diagrams). The prop-

erties of these graphs have been studied by many researchers — initiated by K. Brown and D.
Quillen for p-subgroups. We consider the opposite direction, that is, a realization problem:
Given a graph, when does a finite group with its Hasse diagram being the graph exist?, and if
any, classify all such finite groups. The Hasse diagram of a group is not arbitrary — it has the
top and the bottom vertices, and they are connected by paths of edges. We divide such graphs
into two types “branched” and “unbranched”, where unbranched graphs are birdcage-shaped,
and finite groups with their Hasse diagrams being such graphs are called birdcage groups. We
completely classify the unbranched case: A birdcage group is either a cyclic group of prime
power order or a semidirect product of two cyclic groups of prime orders (the orders are possi-
bly equal). In the former, the Hasse diagram is a straight line (a birdcage with a single bar) and
in the latter, a birdcage with all bars being of length 2.

1. Introduction

1. IntroductionNotation. id is the identity element of a group and Zn is the cyclic group of order n.

For a finite group, the inclusion relations between its subgroups are geometrically illus-
trated by a Hasse diagram — a graph whose vertices consist of the subgroups of the finite
group, and two vertices are connected by an edge if there is an inclusion relation between
them and no subgroup lies between them. For the identity group, this graph is degenerated,
consisting only of a single vertex. In what follows, the finite group is assumed to be not the
identity group. Then this graph has two special vertices: the top vertex (corresponding to
the finite group itself) and the bottom vertex (corresponding to the identity subgroup); they
are connected by paths of edges. This graph is said to be unbranched (or birdcage-shaped)
if there is no branch at any “intermediate” vertex between the top and the bottom vertices
(while there may be branches at the top and the bottom vertices). Otherwise it is said to be
branched. Compare Figure 1 (1), (2) with (3).

In an unbranched graph, a path connecting the top and the bottom vertices is called a bar
(the numbers of bars in Figure 1 (1), (2) are six and one). The length of a bar is the number
of its edges, and the height of an unbranched graph is the maximum of lengths of its bars
(the heights of Figure 1 (1), (2) are five and four). We will show the following (Proposition
5.2): If an unbranched graph is the Hasse diagram of a finite group, then the number of its
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bars is not arbitrary, but 1, 2, or p + 1 for some prime p: in the case of “2 or p + 1”, the
height of the unbranched graph is always 2 (in fact the lengths of all bars are 2), while in
the case of “1”, the length of the single bar may be arbitrarily large.

Fig. 1. Black circles are vertices; t and b are the top and the bottom
ones. (1), (2) are unbranched (or birdcage-shaped) graphs, though (1) has
branches at t and b. (3) is a branched graph.

Throughout this paper, we adopt the following:

Convention 1.1. (i) The Hasse diagram of the subgroup poset of a finite group is
simply called the Hasse diagram of the finite group.

(ii) Two terms “Hasse diagram” and “its underlying graph” are interchangeably used,
though the latter does not carry the information about the subgroups corresponding
to vertices.

The properties of the Hasse diagrams of finite groups have been investigated by many
researchers, pioneered by K. Brown [2] and D. Quillen [4] for p-subgroups (see [7] for
details on this subject). In this paper we conversely start with (special) graphs and study the
realization problem: when they are realized as the Hasse diagrams of some finite groups.
The motivation behind this is that we are concerned with classifying finite groups in terms
of graphs — Hasse diagrams — as well as characterizing the graphs that are the Hasse
diagrams of some finite groups:

(P1) What kinds of graphs could be the Hasse diagrams of some finite groups?
(P2) Classify all finite groups with their Hasse diagrams being equal to a given graph.

In this paper we completely classify the finite groups whose Hasse diagrams are un-
branched graphs — such finite groups are called birdcage groups, as their Hasse diagrams
are “birdcage-shaped”. For example, a direct product group Zp × Zq for any primes p and q
is a birdcage group, whose Hasse diagram, depending on whether p � q or p = q, is illus-
trated in (1) or (2) of Figure 2. An example of a nonabelian birdcage group is a nontrivial
semidirect product Zp � Zq of two cyclic groups of prime orders, where “nontrivial” means
that Zp � Zq is not a direct product. Its Hasse diagram is illustrated in (3) of Figure 2. The
symmetric group S3 of degree 3 is a nonabelian birdcage group, as S3 = Z3 � Z2, where Z3

is generated by the cyclic permutation (1 2 3) and Z2 is generated by a transposition (1 2).
An example of a non-birdcage group is Zp × Zq × Zr where p, q, r are (not necessarily

distinct) primes. In the case that p, q, r are distinct, its Hasse diagram is illustrated in Figure
3, and indeed not birdcage-shaped — branched at six vertices Zp × Zq, Zp × Zr, Zq × Zr, Zp,
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Zq, Zr.

Fig. 2. In (2), the second row consists of (p + 1) Zp’s, and the number of
bars is p + 1. In (3), the second row consists of one Zp and p Zq’s, and the
number of bars is p + 1. See Proposition 5.2.

Fig.3. The Hasse diagram of Zp × Zq × Zr for distinct primes p, q, r.

Our main result is as follows (see §5 for the proof):
Classification Theorem A birdcage group is either a cyclic group Zpn of prime power order
or a semidirect product group Zp � Zq of two cyclic groups of prime orders (possibly p = q,
in which case this is a direct product group Zp × Zq). Here:

(a) In the former case, its Hasse diagram is a straight line (a birdcage-shaped graph
with a single bar) consisting of n edges: Explicitly {id}— Zp — Zp2 — · · · — Zpn .

(b) In the latter case, its Hasse diagram is a birdcage-shaped graph with all bars being
of length 2 (in contrast, in the former case, the length n of the straight line may be
arbitrarily large).

Consequently except for the two types (a) and (b), the other birdcage-shaped graphs cannot
be the Hasse diagrams of finite groups.

Remark 1.2. Properties of Zp�Zq are summarized in §6: To define a nontrivial semidirect
product Zp�Zq (which is not Zp×Zq), the primes p and q are not arbitrary, but q must divide
p − 1 (Lemma 6.2 (3)), and moreover in this case a nontrivial semidirect product of Zp and
Zq is unique (Proposition 6.5).

Iterated birdcage groups Birdcage groups are generalized to “iterated” birdcage groups,
which are obtained by iterated application of group extensions to birdcage groups (e.g. the
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alternating group A4 of degree 4 and the quaternion group Q8 of order 8). Their Hasse dia-
grams are no longer birdcage-shaped, but branched — “modified birdcage-shaped”: as we
iterate group extensions, the Hasse diagrams generally become more and more complicated
and branched (cf. iterated torus knots in knot theory). This will be discussed in our sub-
sequent paper, in light of algebro-geometric group theory we formulate there — which is
based on “birational viewpoint”, e.g. “blow down” corresponding to the quotient of a group
by a normal subgroup, and “blow up” to a group extension. The dynamic changes of Hasse
diagrams after blow up and down is of fundamental importance, in addition to the static
classification of Hasse diagrams.

2. Preparation

2. Preparation
Let G be a group. A set of subgroups {Kλ}λ∈Λ of G is called a concise system if Kλ � Kμ

for any distinct λ, μ ∈ Λ; then for the subgroup H := 〈Kλ〉λ∈Λ of G generated by Kλ (λ ∈ Λ),
we say that {Kλ}λ∈Λ is a genesis of H (genesis < generating subgroup-system). Note that {H}
itself is a genesis of H.

We will show that a group G whose subgroup poset is ‘aligned’, such as {id} ⊂ H1 ⊂ H2 ⊂
· · · ⊂ Hn ⊂ · · · ⊂ G, has only one genesis — the trivial one {G}. We begin with formulation:

Definition 2.1. A group G is straight if its subgroup poset {Hα}α∈A is aligned, i.e. A is a
totally ordered set such that Hα ⊂ Hβ if α ≤ β.

Lemma 2.2. If G is a straight group, then {G} is a unique genesis of G.

Proof. Let {Hα}α∈A be the subgroup poset of G, where A is a totally ordered set such that
Hα ⊂ Hβ if α ≤ β. A genesis of G is then of the form {Hα}α∈B, where B ⊂ A (so, B is also
totally ordered). It suffices to show that B consists of a single element (in which case the
genesis is necessarily {G}). If B contains at least two elements, then the straightness of G
implies that for any distinct α, β ∈ B such that α ≤ β, we have Hα ⊂ Hβ. This however
contradicts the conciseness of {Hα}α∈B. �

Example 2.3. Any cyclic group Zpn of prime power order is straight: its subgroup poset is
aligned as {id} ⊂ Zp ⊂ Zp2 ⊂ · · · ⊂ Zpn . Note that Zpn has only one genesis {Zpn} by Lemma
2.2.

Example 2.3 indicates that any subgroup of a straight group is also straight. This is indeed
true, because the subgroup poset of any subgroup of a straight group is necessarily aligned.
Conversely if any subgroup of a group G is straight, then in particular G is straight. The
following thus holds:

Lemma 2.4. A group G is straight if and only if any subgroup of G is straight.

Before proceeding, we clarify the difference between “largest subgroup” and “maximal
subgroup”:

Definition 2.5. Let G be a (not necessarily finite) group.
(1) A proper subgroup L of G is called a largest subgroup of G if H ⊂ L for any proper

subgroup H of G. Note that a largest subgroup if exists is unique: Say L′ is another
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largest subgroup of G, then L′ ⊂ L and L ⊂ L′, so L′ = L.
(2) A proper subgroup M of G is called a maximal subgroup of G if there exists no

proper subgroup H of G such that M � H. Note that even if a maximal subgroup
exists, it is generally not unique.

Note that if a group G has a largest subgroup, then G cannot have more than one maximal
subgroup — the largest subgroup is the unique maximal subgroup. If G is infinite, then G
may have no maximal subgroup (in which case G has no largest subgroup). In contrast if G
is finite, then G does have (finitely many) maximal subgroups, and the following hold:

(i) If G has only one maximal subgroup M, then M is a largest subgroup of G, and vice
versa.

(ii) If G has more than one maximal subgroups, then G has no largest subgroup.
For an infinite group G, (i) may fail (while (ii) holds): Even if G has only one maximal

subgroup, G may have no largest subgroup.

Example 2.6. We identify a cyclic group Zpn of prime power order with the multiplicative
group of pnth roots of unity. From the sequence of inclusions Zp ↪→ Zp2 ↪→ · · · ↪→ Zpn ↪→
· · · , the direct limit group H := lim−−→n Zpn is constructed. Set G := H × Z2 (the direct product

group of H and Z2 = {±1}). Then G has only one maximal subgroup H × {1}, but has no
largest subgroup (see Figure 4): note that {1}×Z2 ⊂ Zp×Z2 ⊂ Zp2×Z2 ⊂ · · · ⊂ Zpn×Z2 ⊂ · · ·
does not attain a largest subgroup, as it is an infinite increasing “unbounded” sequence. Note
also that the subgroup poset of G is not aligned, so G is not a straight group.

Fig.4. The subgroup poset of G := H × Z2, where H := lim−−→n Zpn .

If a straight group G is finite, then its subgroup poset is “finitely” aligned, such as {id} �
H1 � H2 � · · · � Hn � G. Then Hn is a largest subgroup of G (or equivalently, a unique
maximal subgroup of G). This implies that G is cyclic — in fact the following holds:

Lemma 2.7. If a (not necessarily finite) group G has a largest subgroup, then G is cyclic.
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Proof. Let L be the largest subgroup of G. Take any element g ∈ G \ L and consider the
cyclic subgroup K of G generated by g. Of course K � L. As the largest subgroup L is the
unique maximal subgroup of G, this implies that K coincides with G. Hence G is a cyclic
group generated by g. �

There is an infinite straight group that is not cyclic and has no largest subgroup.

Example 2.8. Let p be a prime and consider the direct limit G := lim−−→n Zpn of the sequence

of inclusions Zp ↪→ Zp2 ↪→ · · · ↪→ Zpn ↪→ · · · . Then G is straight but not cyclic and has no
largest subgroup.

In Lemma 2.7, the cyclic group G is actually finite: otherwise G is Z, which has no largest
subgroup, contradicting the assumption. The following thus holds:

Lemma 2.9. If a group G has a largest subgroup, then G is a finite cyclic group (conse-
quently the largest subgroup is a unique maximal subgroup of G).

We can say more:

Corollary 2.10. If a group G has a largest subgroup, then G is a cyclic group of prime
power order, that is, Zpn for some prime power pn.

Proof. By Lemma 2.9, G is a finite cyclic group, say, generated by g ∈ G. If the order m of
g is divisible by (at least) two primes, say p and q, then G contains two maximal subgroups
Zm/p := 〈gp〉 and Zm/q := 〈gq〉, which contradicts the uniqueness of a maximal subgroup of
G — the unique maximal subgroup is the largest subgroup of G. Hence the order of g is a
power pn of a single prime, that is, G = Zpn . �

Corollary 2.11. A finite group G is straight if and only if G is a cyclic group Zpn of prime
power order.

Proof. =⇒: A finite straight group has a largest subgroup (or equivalently has only one
maximal subgroup), thus the assertion follows from Corollary 2.10.⇐=: See Example 2.3.

�

Proposition 2.12. For a finite group G, the following are equivalent:

(a) G is straight.
(b) G has only one maximal subgroup (or equivalently G has a largest subgroup).
(c) G is a cyclic group Zpn of prime power order.

Proof. (a) =⇒ (b): Trivial. (b) =⇒ (c): Corollary 2.10. (c)⇐⇒ (a): Corollary 2.11. �

3. Birdcage groups

3. Birdcage groups
The Hasse diagram of a finite group is of special shape — it has the top vertex (cor-

responding to the finite group itself) and the bottom vertex (corresponding to the identity
subgroup), and these two vertices are connected by paths of edges. The Hasse diagram is
called unbranched (or birdcage-shaped) if there is no branch at any “intermediate” vertex
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between the top and the bottom vertices (while there may be branches at the top and the
bottom vertices). Otherwise it is called branched.

Definition 3.1. A finite group with birdcage-shaped Hasse diagram is called a birdcage
group.

Let Γ be a birdcage-shaped graph (not necessarily assumed to be the Hasse diagram of a
finite group). Let B1, B2, . . . , Bm be the bars of Γ, where each bar connects the top and the
bottom vertices (see Figure 5). The number li of edges of Bi (i = 1, 2, . . . ,m) is called the
length of Bi, and the maximum h := max{l1, l2, . . . , lm} is called the height of Γ.

Fig.5. l1 = 4, l2 = 5, l3 = 1, l4 = 3, and h = 5.

As seen later, a birdcage-shaped graph is generally not the Hasse diagram of a finite
group. In fact it must consist of either a single bar (whose length is arbitrary) or more than
one bar such that the length of every bar is 2.

The following is a fundamental constraint on birdcage groups:

Lemma 3.2. If G is a birdcage group, then every “proper” subgroup of G is a straight
group (so a cyclic group of prime power order by Proposition 2.12).

Proof. Otherwise, say that H is a proper nonstraight subgroup of G. Then the Hasse
diagram of G branches at H. �

Note next the following:

Lemma 3.3. If a finite group G contains a straight subgroup Zpn that is normal in G, then
all subgroups Zpi (i = 0, 1, 2, . . . , n) of Zpn are normal in G.

Proof. As Zpn is normal in G, gZpng−1 = Zpn for any g ∈ G. Thus for each i, gZpig−1

is a subgroup of Zpn . Here any subgroup of Zpn is uniquely determined by its order, so
gZpig−1 = Zpi , that is, Zpi is normal in G. �

Now consider a semidirect product group G = Zpn � Zqm of two cyclic groups of prime
power orders. By the definition of semidirect product, (i) G is generated by Zpn and Zqm :
G = 〈Zpn ,Zqm〉, (ii) Zpn is normal in G, and (iii) Zpn ∩ Zqm = {id}. Note the following:

(a) If m ≥ 2, then a subgroup H := 〈Zpn ,Zq〉 of G is not a straight group, in fact a
semidirect product Zpn � Zq, because Zpn is normal in H and Zpn ∩ Zq = {id} (as
Zpn ∩ Zqm = {id}). As G contains a nonstraight group, G is not a birdcage group
(Lemma 3.2).



892 S. Takamura

(b) If n ≥ 2, then a subgroup K := 〈Zp,Zqm〉 of G is not a straight group, in fact a
semidirect product Zp � Zqm , because Zp is normal in G by Lemma 3.3 (so normal
in K) and Zp ∩ Zqm = {id} (as Zpn ∩ Zqm = {id}). As G contains a nonstraight group,
G is not a birdcage group (Lemma 3.2).

We thus obtain the following:

Lemma 3.4. Let Zpn � Zqm be a semidirect product group of two cyclic groups of prime
power orders. If n ≥ 2 or m ≥ 2, then Zpn � Zqm is not a birdcage group.

In the Hasse diagram of a finite group G, an edge connecting a maximal subgroup and G
is unique. Similarly an edge connecting a minimal subgroup and {id} is unique. In particular
the following holds:

Lemma 3.5. If H is both a maximal and a minimal subgroup of a finite group G, then the
Hasse diagram of G does not branch at H.

Note that H is both a maximal and a minimal subgroup of G precisely when in the Hasse
diagram of G an ascending path of edges connecting {id} and G through H is unique, given
by {id}— H — G (length 2). From Lemma 3.5, the following holds:

Proposition 3.6. In the Hasse diagram of a finite group G, if every ascending path from
{id} to G is of length 2, then G is a birdcage group.

Note next the following:

Lemma 3.7. For any semidirect product Zp � Zq, where p and q are (not necessarily
distinct) primes, every ascending path from {id} to Zp � Zq in its Hasse diagram is of length
2.

Proof. Case p � q: As the order of Zp � Zq is pq, the order of any nontrivial proper
subgroup of Zp � Zq must be either p or q; so the nontrivial proper subgroups of Zp � Zq

are, up to conjugation, Zp and Zq (Sylow subgroups). Thus all ascending paths from {id} to
Zp � Zq in the Hasse diagram of Zp � Zq are of length 2: {id}— Zp — Zp � Zq and {id}—
Zq — Zp � Zq.

Case p = q: Then Zp � Zp is a direct product Zp × Zp (Lemma 6.2 (3)). The nontrivial
proper subgroups of Zp × Zp are Zp’s. Thus any ascending path from {id} to Zp × Zp in the
Hasse diagram of Zp × Zp is {id}— Zp — Zp × Zp and of length 2. �

Lemma 3.7 ensures that Zp�Zq satisfies the condition of Proposition 3.6, so it is a birdcage
group and its Hasse diagram is birdcage-shaped, where each ascending path from {id} to
Zp � Zq is a bar of length 2. This with Lemma 3.4 yields the following:

Corollary 3.8. A semidirect product group Zpn �Zqm of two cyclic groups of prime power
orders is a birdcage group if and only if n = m = 1. Here the length of every bar in the
Hasse diagram of Zp � Zq is 2; so the height of the Hasse diagram is 2.

4. Maximal normal subgroups of birdcage groups

4. Maximal normal subgroups of birdcage groups
We prepare terminologies. Let G be a finite group.
• G is Sylow-cyclic (or a Z-group) if any Sylow subgroup of it is cyclic.
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• G is metacyclic if its commutator group [G,G] and the quotient group G/[G,G] are
cyclic ([5] p.247). Note: This is a classical definition. A modern (broader) definition
is as follows: G is metacyclic if it has a normal subgroup N such that N and G/N
are cyclic ([5] p.56).
• G is solvable if its derived series terminates in finite steps.

Then: Sylow-cyclic
(i)
=⇒ metacyclic

(ii)
=⇒ solvable, where for (i) see [6] p.356 Theorem

12.6.17 (2) or [3] p.146 Theorem 9.4.3, and for (ii) see Remark 4.2 below. In particular
the following holds:

Lemma 4.1. If a finite group is Sylow-cyclic, then it is solvable.

Remark 4.2. “Metacyclic =⇒ solvable” is immediate from an alternative definition of
solvable (finite) group ([6] p.38): A finite group G is solvable if it has a normal series
N0 = {id} � N1 � · · · � Nl = G such that the factor groups Ni/Ni−1 (i = 1, 2, . . . , l) are
abelian. Note that if a finite group G is metacyclic, then it has a normal series N0 = {id} �
N1 = [G,G] � N2 = G such that N1/N0 = [G,G] and N2/N1 = G/[G,G] are cyclic, in
particular G is solvable.

For a group G, its commutator subgroup [G,G] is normal in G. Here if G is solvable,
then in particular [G,G] � G, and [G,G] is a proper normal subgroup of G. If moreover G
is simple, then the simpleness of G implies that [G,G] = 1, that is, G is abelian. Note that
an abelian simple finite group is a cyclic group of prime order. Hence: A simple solvable
finite group is a cyclic group of prime order. If a simple finite group is Sylow-cyclic, then it
is solvable (Lemma 4.1), so the following holds:

Lemma 4.3. If a simple finite group is Sylow-cyclic, then it is a cyclic group of prime
order.

A maximal normal subgroup of a finite group is a normal subgroup that is maximal among
all proper normal subgroups of the finite group; it is generally not a normal maximal sub-
group. However for any birdcage group, it is (see (2) of Lemma 4.4 below). This fact will
play a key role in our later discussion.

Lemma 4.4. Let G be a birdcage group. Then the following hold:

(1) For any maximal normal subgroup N of G, the quotient G/N is a cyclic group of
prime order.

(2) Any maximal normal subgroup of G is a maximal subgroup of G.

Proof. (1): If N is a maximal normal subgroup of G, then G/N is a simple group. We first
consider the case that G/N is a p-group. Since a simple p-group is a cyclic group of prime
order p (Remark 4.5 below), the assertion holds. We next consider the case that G/N is not
a p-group; then Sylow subgroups of G/N are proper subgroups of G/N. We show that any
proper (in particular Sylow) subgroup of G/N is cyclic. Let π : G → G/N be the quotient
homomorphism. If H is a proper subgroup of G/N, then π−1(H) is a proper subgroup of G.
As G is a birdcage group, π−1(H) is a cyclic group (Lemma 3.2), say, generated by g. Then
H is generated by π(g), so H is cyclic. Hence any proper subgroup of the simple group G/N
is cyclic. In particular G/N is Sylow-cyclic. Such a simple group is a cyclic group of prime
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order (Lemma 4.3).
(2): Let N be a maximal normal subgroup of G. If there exists a subgroup H such that

N � H � G, then H/N is a nontrivial proper subgroup of G/N. This cannot occur as G/N is
a cyclic group of prime order by (1). Hence N is a maximal subgroup of G. �

Remark 4.5. Any simple p-group is a cyclic group of prime order p. To see this, note that
any p-group has a nontrivial center ([5] Theorem 4.28 p.79), which is a nontrivial normal
subgroup. In particular if a p-group is simple, then the center coincides with the p-group
itself. Thus any simple p-group is abelian, which is necessarily a cyclic group of prime
order p.

5. Proof of our main result

5. Proof of our main result
We show our main result that a birdcage group is either Zpn or Zp�Zq. Let G be a birdcage

group. We separate into two cases depending on whether the number of maximal subgroups
of G is one or more.
Case 1. G has only one maximal subgroup M: Then G is a cyclic group Zpn of prime power
order (Corollary 2.10).
Case 2. G has more than one maximal subgroups: Let M1, M2, . . . , Ml (l ≥ 2) be the maximal
subgroups of G. Note the following properties of them:
(M.1) Any two maximal subgroups Mi and Mj intersect trivially: Mi ∩ Mj = {id}. Other-

wise the Hasse diagram of G is branched at Mi ∩ Mj (where two branches towards
Mi and Mj come out).

(M.2) (At least) one of M1, M2, . . . , Ml is normal in G. In fact any maximal normal
subgroup N of G is a maximal subgroup of G (Lemma 4.4 (2)), so N is one of
M1, M2, . . . , Ml.

We now show that G is a semidirect product of cyclic groups of prime orders. First in (M.2),
renumbering if necessary, we may assume that N = M1. Set H := Mk, where k is any of
2, 3, . . . , l. Then G = 〈N,H〉 (because 〈N,H〉 is strictly larger than the maximal subgroups
N and H). Moreover N ∩ H = {id} by (M.1) and N is normal in G. Thus G = N � H
(a semidirect product of N and H). Here note that as N and H are proper subgroups of a
birdcage group G, they are cyclic groups of prime power orders (Lemma 3.2), say N = Zpn

and H = Zqm ; then G = Zpn � Zqm . This is a birdcage group if and only if n = m = 1
(Corollary 3.8). This completes the proof of our main result.

Remark 5.1. As shown above, in terms of the numbers of maximal subgroups in birdcage
groups, the following holds: A birdcage group contains only one maximal subgroup if and
only if it is Zpn , while it contains more than one maximal subgroup if and only if it is a
semidirect product group Zp � Zq.

The number of bars in the Hasse diagrams of Zp�Zq. We determine the Hasse diagram
of Zp � Zq. We already know that it is birdcage-shaped with the length of every bar being 2
(Lemma 3.7). It thus suffices to determine the number of its bars. This number is equal to
the number of nontrivial proper subgroups of Zp � Zq, which we shall determine. Consider
first the direct product case: Zp×Zq (p � q) and Zp×Zp. For Zp×Zq (� Zpq), the number of
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nontrivial proper subgroups are two, consisting of Zp and Zq. For Zp ×Zp, as |Zp ×Zp| = p2

and Zp×Zp is noncyclic, the order of any nonidentity element is p, and any nontrivial proper
subgroup of Zp × Zp is a cyclic group of order p. The number of nonidentity elements of
Zp × Zp is p2 − 1, while the number of nonidentity elements that generate the same cyclic
subgroup of order p is p − 1 (the number of generators of a cyclic subgroup of order p).

Thus the number of cyclic subgroups of order p in Zp × Zp is p2 − 1
p − 1 , that is, p + 1 (which

is the number of nontrivial proper subgroups of Zp × Zp).
We next determine the nontrivial proper subgroups of a nontrivial semidirect product

G := Zp � Zq; note that q < p as q divides p − 1 (Lemma 6.2 (3)). Since |G| = pq, any
nontrivial proper subgroup of G is isomorphic to Zp or Zq (Sylow p- or q-subgroup of G).
We determine the numbers np and nq of Zp and Zq in G. Note that |G| = np(|Zp| − 1) +
nq(|Zq| − 1)+ 1, i.e. |G| = np(p− 1)+ nq(q− 1)+ 1. On the other hand, by Sylow’s theorem,
np divides the factor q in |G| = pq, so np is 1 or q. Similarly nq is 1 or p. The possible
combinations of np and nq are thus

(5.1) (np, nq) = (1, 1), (1, p), (q, 1), (q, p).

Here (np, nq) = (1, 1) does not occur: otherwise |G| = (p − 1) + (q − 1) + 1 = p + q − 1,
where pq− (p+ q− 1) = (p− 1)(q− 1) > 1 (as p and q are distinct primes), thus pq > |G| (a
contradiction). Similarly (np, nq) = (q, p) does not occur: otherwise |G| = q(p − 1) + p(q −
1) + 1 = pq + (pq − p − q + 1), where pq − p − q + 1 = (p − 1)(q − 1) > 1, thus |G| > pq
(a contradiction). Moreover (np, nq) = (q, 1) does not occur: in fact by Sylow’s theorem
np ≡ 1 mod p, so if np = q, then q ≡ 1 mod p, which implies q = 1 (as q < p). This
contradicts the assumption that q is a prime. Therefore (np, nq) = (1, p). We summarize the
above results (together with the data for Zpn) as follows — note that the nontrivial proper
subgroups of Zp � Zq are the maximal subgroups of Zp � Zq, as the length of any bar of the
Hasse diagram of Zp � Zq is 2 (Lemma 3.7):

Proposition 5.2. For birdcage groups, their nontrivial proper subgroups, maximal sub-
groups, and the numbers of bars of their Hasse diagrams are as follows:

birdcage group
nontrivial proper maximal

#(bars)
subgroups subgroups

(a) Cyclic group of prime power order
Zpn Zp, Zp2 , . . . , Zpn−1 Zpn−1 1

(b) Direct product
Zp × Zq (p � q) Zp, Zq Zp, Zq 2
Zp × Zp (p + 1)Zp’s (p + 1)Zp’s p + 1

(c) Nontrivial semidirect product
Zp � Zq (q < p) Zp, pZq’s Zp, pZq’s p + 1

Remark 5.3. In (c), the p Zq’s are given by the conjugates gZqg
−1 (g ∈ Zp). To see this,

note that the Zq’s are Sylow q-subgroups of Zp � Zq, so they are conjugate by elements of
Zp�Zq. Here an element of Zp�Zq is of the form gh (g ∈ Zp, h ∈ Zq). Then (gh)Zq(gh)−1 =

g(hZqh−1)g−1 = gZqg
−1, so h is irrelevant. As the number of Zq’s in Zp �Zq is exactly p, the

p conjugates gZqg
−1 (g ∈ Zp) must be distinct and exhaust all Zq’s in Zp � Zq.
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6. Supplement: Semidirect products of cyclic groups of prime orders
We derive properties of Zp � Zq. We begin with a general setup. A semidirect product

N � H of groups N and H is a group structure on the direct product set N × H associated
with a homomorphism ϕ : H → Aut(N): the product of two elements is given by

(6.1) (k, h)(k′, h′) =
(
kϕh(k′), hh′

)
for (k, h), (k′, h′) ∈ N × H,

where by convention ϕh denotes ϕ(h) (an automorphism of N). In emphasizing ϕ, the semidi-
rect product is denoted by N �ϕ H. Consider the case that N = Zp and H = Zq, where p
and q are primes. Then Zp �ϕ Zq is associated with a homomorphism ϕ : Zq → Aut(Zp).
Here Ker(ϕ) is a subgroup of Zq, so Ker(ϕ) is either {id} or Zq. In the former case, ϕ is
injective. In the latter case, ϕ is trivial, and Zp �ϕ Zq is the direct product group Zp × Zq.
We closely look at the former case. Note first that Aut(Zp) � Zp−1. In fact letting a be a
generator of Zp, then for ϕ ∈ Aut(Zp), ϕ(a) = ak for some positive integer k (1 ≤ k ≤ p− 1),
and the correspondence k ∈ Zp−1 �→ ϕ ∈ Aut(Zp) gives an isomorphism Aut(Zp) � Zp−1.
Now ϕ : Zq → Aut(Zp) � Zp−1 is injective, so Zq may be regarded as a subgroup of Zp−1.
Consequently q = |Zq| divides p − 1 = |Zp−1|. Conversely if q divides p − 1, then Zp−1

contains a (unique) cyclic subgroup of order q, say K, and an injective homomorphism from
Zq into Aut(Zp) � Zp−1 is unique up to isomorphism of K.

Remark 6.1. Write p − 1 = nq, where n is a positive integer, and identify Znq with
the cyclic group generated by an nqth root α := e2πi/nq of unity. Then αn = e2πi/q is an
element of order q in Znq, and the elements of order q in Znq are exhausted by αkn = e2πik/q

(k = 1, 2, . . . , q − 1). Hence a cyclic subgroup of order q in Znq is given by K := 〈αn〉 and is
unique.

Note that the condition “q divides p − 1” is not satisfied if p = q, and in this case any
semidirect product Zp �ϕ Zp is trivial, that is, Zp × Zp. We formalize the above results as
follows:

Lemma 6.2. Let p and q be primes. Then the following hold:

(1) Any homomorphism ϕ : Zq → Aut(Zp) � Zp−1 is either trivial or injective; thus a
semidirect product Zp �ϕ Zq is nontrivial precisely when ϕ is injective.

(2) A nontrivial (equivalently, injective) homomorphism Zq → Aut(Zp) � Zp−1 exists if
and only if q divides p−1; in this case there exists a unique cyclic subgroup of order
q in Aut(Zp).

(3) A nontrivial semidirect product Zp �ϕ Zq exists if and only if q divides p − 1. In the
case that p = q, any semidirect product Zp �ϕ Zp is trivial, that is, Zp × Zp.

In what follows, we assume that q divides p−1 so that there exists (at least one) nontrivial
semidirect product of Zp and Zq. We show that such a semidirect product is unique up to
isomorphism. We need the following:

Lemma 6.3. Let Zp �ϕZq be a nontrivial semidirect product; so q divides p−1. Then the
nontrivial homomorphism ϕ : Zq → Aut(Zp) is injective and its image ϕ(Zq) is independent
of ϕ.
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Proof. The injectivity of ϕ is already shown in Lemma 6.2 (1). It remains to show that
ϕ(Zq) is independent of the choice of an injective homomorphism ϕ. This follows from the
fact that a cyclic subgroup of order q in Aut(Zp) is unique (Lemma 6.2 (2)). �

We will use the following general result:

Proposition 6.4 ([1] p.23 Proposition 11). Let H be a cyclic group. If two homomor-
phisms ϕ, ψ : H → Aut(N) are injective and ϕ(H) = ψ(H), then two semidirect product
groups N �ϕ H and N �ψ H are isomorphic.

We return to our context. Let Zp �ϕ Zq and Zp �ψ Zq be nontrivial semidirect product
groups. By Lemma 6.3, ϕ and ψ are injective and ϕ(Zp) = ψ(Zp). Hence by Proposition 6.4,
Zp �ϕ Zq and Zp �ψ Zq are isomorphic. Therefore nontrivial semidirect product groups of Zp

and Zq are unique. We formalize these results as follows:

Proposition 6.5. Let p and q be (a priori not necessarily distinct) primes. For a nontrivial
semidirect product group of Zp and Zq to exist, q must divide p − 1 (so a posteriori p and
q are distinct). Moreover in this case there exists exactly one nontrivial semidirect product
group of Zp and Zq up to isomorphism.

Remark 6.6. If q = 2, then the condition “q divides p − 1” is satisfied precisely when p
is an odd prime. If q is an odd prime, then it is subtle: p must be a prime of the form nq+ 1.
For example if q = 3, then p = 7, 13, 19, . . . .
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