A GENERALIZATION OF PRIME IDEALS IN RINGS

KENTARO MURATA, YOSHIKI KURATA AND
HIDETOSHI MARUBAYASHI

(Received February 6, 1969)

Introduction

In [2], van der Walt has defined s-prime ideals in noncommutative rings and obtained analogous results of McCoy [1] for s-prime ideals. In the present paper, we shall give a generalized concept of prime ideals, called f-prime ideals, by using some family of ideals, and obtain analogous results in [2]. If our family of ideals is, in particular, the set of principal ideals of the ring, the f-prime ideals coincide with the prime ideals and conversely. In addition, if we take multiplicatively closed systems as kernels, the f-prime ideals coincide with the s-prime ideals.

1. f-prime ideals and the f-radical of an ideal

Let \(R \) be an arbitrary (associative) ring. Throughout this paper, the term "ideals" will always mean "two-sided ideals in \(R \)."

For each element \(a \) of \(R \), we shall associate an ideal \(f(a) \) which is uniquely determined by \(a \) and satisfies the following conditions:

(I) \(a \in f(a) \), and

(II) \(x \in f(a) + A \Rightarrow f(x) \subseteq f(a) + A \) for any ideal \(A \).

The principal ideal \((a) \) generated by \(a \) is an example of the \(f(a) \), and this is the case of [2]. Moreover there are other interesting examples of the \(f(a) \). For example, let \(Q \) be any subset of \(R \). If we define, for each element \(a \) of \(R \), \(f(a) = (a, Q) \), the ideal generated by \(a \) and \(Q \), then it is easy to see that \(f(a) \) satisfies the above conditions. If, in particular, \(Q \) is the empty set, then the \(f(a) \) coincides with the principal ideal \((a) \).

REMARK. As is easily seen, the following four conditions are equivalent:

(i) For any element \(a \) of \(R \), \(f(a) = (a) \),

(ii) \(f(0) = 0 \),

(iii) For any ideal \(A \), \(x \in A \Rightarrow f(x) \subseteq A \),

(iv) For any element \(a \) of \(R \), \(x \in (a) \Rightarrow f(x) \subseteq (a) \).

DEFINITION 1.1. A subset \(S \) of \(R \) is called an f-system if \(S \) contains an
An ideal P is said to be \textit{f-prime} if its complement $C(P)$ in R is an \textit{f-system}.

R is evidently an \textit{f-prime} ideal. Obviously an \textit{s-prime} ideal in the sense of [2] is a prime ideal in the sense of [1], and it follows from Lemma 1.4 below that if we assume $f(a) = (a)$ for every element a in R, then prime ideals are nothing but \textit{f-prime} ideals. But it can be shown that this is not always true with a suitable choice of $f(a)$.

\textbf{Example 1.3.} Consider the ring \mathbb{Z} of integers. Let P be the ideal (p^2) and let S^* be the m-system $\{q, q', q'^2, \ldots\}$, where p and q are different prime numbers. If we put $f(a) = (a, q)$ for each element a in \mathbb{Z}, then the complement $C(P)$ of P in \mathbb{Z} is an \textit{f-system} with kernel S^*. Hence P is an \textit{f-prime} ideal, but not a prime ideal. This also shows that an \textit{f-prime} ideal need not be an \textit{s-prime} ideal, in general.

\textbf{Lemma 1.4.} For any \textit{f-prime} ideal P,
\[f(a_1)f(a_2)\cdots f(a_n) \subseteq P \Rightarrow a_i \in P \text{ for some } i. \]

Proof. It is evident from the definition of \textit{f-systems}.

\textbf{Lemma 1.5.} Let $S(S^*)$ be an \textit{f-system} in R, and let A be an ideal in R which does not meet S. Then A is contained in a maximal ideal P (in the class of all ideals, each of which does not meet S). The ideal P is necessarily an \textit{f-prime} ideal.

Proof. If S is empty, the assertion is trivial, and so suppose that S is not empty. The existence of P follows from Zorn's lemma. We now show that $C(P)$ is an \textit{f-system} with kernel $S^* + P$. For any element a of $C(P)$, the maximal property of P implies that $f(a) + P$ contains an element s of S, and thus we can choose an element $s^* = f(s) \cap S^*$. Since $f(s)$ is contained in $f(a) + P$, we can write $s^* = a' + p$ where a' in $f(a)$ and p in P. Then $a' = s^* - p$ is contained in $f(a) \cap (S^* + P)$, which completes the proof of the lemma.

\textbf{Definition 1.6.} The \textit{f-radical} $r(A)$ of an ideal A will be defined to be the set of all elements a of R with the property that every \textit{f-system} which contains a contains an element of A.

\textbf{Theorem 1.7.} The \textit{f-radical} of an ideal A is the intersection of all the \textit{f-prime} ideals containing A.
Proof. We show that if \(P \) is an \(f \)-prime ideal containing \(A \), then \(r(A) \) is contained in \(P \). For suppose that \(r(A) \) is not contained in \(P \). Then there exists an element \(x \) in \(r(A) \) not in \(P \). Since \(C(P) \) is an \(f \)-system, \(C(P) \cap A \neq \phi \). But this contradicts the fact that \(A \) is contained in \(P \). Hence \(r(A) \) is contained in the intersection of all \(f \)-prime ideals which contain \(A \).

Conversely, let \(a \) be an element of \(R \), but not in \(r(A) \). Then there exists an \(f \)-system \(S(S^*) \) which contains \(a \) but does not meet \(A \). There exists, by Lemma 1.5, an \(f \)-prime ideal \(P \) which contains \(A \) and does not meet \(S \). Hence, \(P \) does not contain \(a \) and \(a \) can not be in the intersection of all \(f \)-prime ideals containing \(A \). This completes the proof.

Corollary 1.8. The \(f \)-radical of an ideal is an ideal.

Now, let \(S(S^*) \) be an \(f \)-system in \(R \) and let \(A \) be an ideal which does not meet \(S \). It follows from Zorn's lemma that there exists a maximal \(m \)-system \(S^*_f \) which contains \(S^* \) and does not meet \(A \). Let us consider the set \(S_i = \{ x \in R \mid f(x) \cap S^*_f \neq \phi \} \cap C(A) \). Then \(S_i \) is an \(f \)-system with kernel \(S^*_f \) and does not meet \(A \). According to Lemma 1.5, there exists an \(f \)-prime ideal \(P \) which contains \(A \) and does not meet \(S_i \). As is seen in the proof of Lemma 1.5, \(C(P) \) is an \(f \)-system with kernel \(S^*_f + P \), and the maximal property of \(S^*_f \) implies that \(S^*_f + P = S^*_f \). Hence we have \(C(P) = S_i \) by the definition of \(S_i \).

In view of this we make the following definition:

Definition 1.9. An \(f \)-prime ideal \(P \) is said to be a minimal \(f \)-prime ideal belonging to an ideal \(A \) if \(P \) contains \(A \) and there exists a kernel \(S^* \) for the \(f \)-system \(C(P) \) such that \(S^* \) is a maximal \(m \)-system which does not meet \(A \).

It follows from the above consideration that any \(f \)-prime ideal \(P \) containing \(A \) contains a minimal \(f \)-prime ideal belonging to \(A \). From Theorem 1.7, we can conclude the following:

Theorem 1.10. The \(f \)-radical of an ideal \(A \) coincides with the intersection of all minimal \(f \)-prime ideals belonging to \(A \).

2. Elements \(f \)-related to an ideal

We now make the following definition:

Definition 2.1. An element \(a \) of \(R \) is said to be (left-)\(f \)-related to an ideal \(A \) if, for every element \(a' \) in \(f(a) \), there exists an element \(c \) not in \(A \) such that \(a'c \) is in \(A \). An ideal \(B \) is said to be (left-)\(f \)-related to \(A \) if every element of \(B \) is \(f \)-related to \(A \). Elements and ideals not \(f \)-related to \(A \) is called (left-)\(f \)-unrelated to \(A \).

Elements and ideals right-\(f \)-related to \(A \) can be similarly defined, but the right hand definitions and theorems will be omitted.
Proposition 2.2. Let A be an ideal. Then the set S consisting of all elements of R which are f-unrelated to A is an f-system.

Proof. For every element a in S, we can choose an element a^* in $f(a)$ such that, for every element c not in A, a^*c is not in A. The set S^* which consists of all such elements a^* is multiplicatively closed and hence S is an f-system with kernel S^*.

It is natural to consider that every element of R is f-related to R. Furthermore we shall now assume, in this section, the following condition:

(α) Each ideal A is f-related to itself.

It may be remarked that (α) can be stated in the following convenient form:

(α') 0 is f-related to each ideal A.

For suppose that 0 is f-related to A. Let a be any element in A. Then a is in $A+f(0)$ and hence $f(a)$ is contained in $A+f(0)$. For any element a' in $f(a)$, there exist a'' in A and b'' in $f(0)$ such that $a'=a''+b''$. Since 0 is f-related to A, we can choose an element c not in A such that $b''c$ is in A. Therefore, $a'c=a''c+b''c$ is in A and this means that A is f-related to itself.

Clearly, (α) is fulfilled in case $f(a)=(a)$ for every element a in R. And, it can be proved that, whenever R has no right zero-divisors, R satisfies (α) if and only if $f(a)=(a)$ for every element a in R. But, in case of general rings, this need not be true as is seen from the following example.

Example 2.3. Consider a simple module M such that $m_1m_2=0$ for any two elements m_1 and m_2 in M. Let K be a field and let R be the direct sum of M and K as modules. Then R can be made into a commutative ring by defining as

$$(m_1+k_1)(m_2+k_2) = k_1k_2,$$

where m_1, m_2 in M and k_1, k_2 in K. As is easily seen, the ideals in R are R, M, K and (0). If we define $f(a)=(a, M)$ for every element a in R, then R satisfies (α), but $f(a)$ does not coincide with (a), since $f(0)=M \neq (0)$.

Proposition 2.4. Let A be an ideal. Then the f-radical $r(A)$ of A is f-related to A.

Proof. Let S be as in Proposition 2.2. If $r(A)$ contains an element f-unrelated to A, then, by the definition of the radical, we have $S \cap A=\phi$, a contradiction.

It follows from this proof, in terms of relatedness, that the assumption (α) can be also restated as follows: for any ideal A, the f-radical of A is f-related to A.

Let A be an ideal and let S be the f-system consisting of all elements f-
unrelated to A. Then S does not meet the ideal (0), and hence, by Lemma 1.5, there exists a maximal ideal (in the class of all ideals, each of) which does not meet S, or equivalently, a maximal ideal (each of) which is f-related to A. Each such maximal ideal is necessarily an f-prime ideal. In view of this, we put the following:

Definition 2.5. A maximal ideal in the class of all ideals, each of which is f-related to an ideal A, is called a maximal f-prime ideal belonging to A.

Proposition 2.6. Let A be an ideal. Then A is contained in every maximal f-prime ideal belonging to A.

Proof. Let P be any maximal f-prime ideal belonging to A. Then it is sufficient to show that $A+P$ is f-related to A. Let $a+p$ be any element in $A+P$, where a in A and p in P. Since $a+p$ is in $A+f(p)$, $f(a+p)$ is contained in $A+f(p)$, and hence each element a' in $f(a+p)$ can be written as $a'=a''+p''$, where a'' in A and p'' in $f(p)$. We can choose an element c not in A such that $p''c$ is in A. Then $a'c=a''c+p''c$ is contained in A, which completes the proof.

Since any f-prime ideal containing A contains a minimal f-prime ideal belonging to A, it follows from Proposition 2.6 that every maximal f-prime ideal belonging to A necessarily contains a minimal f-prime ideal belonging to A. The converse is also true in case of [1], but we can provide an example to show that this need not be true in our case.

Example 2.7. Let us consider the ideal $A=(xy)$ in the ring $K[x, y]$ of polynomials in two non-commutative indeterminates x and y over a field K. If we define $f(a)=(a)$ for every element a in $K[x, y]$, then the assumption (α) is satisfied and A is f-related to itself. Hence we can consider the maximal f-prime ideal belonging to A. As is easily seen, the ideal (y) is a minimal f-prime ideal belonging to A, but it is f-unrelated to A. Thus, (y) is not contained by any maximal f-prime ideal belonging to A.

Proposition 2.8. Let A be an ideal. Then every element or ideal which is f-related to A is contained in a maximal f-prime ideal belonging to A.

Proof. Obviously, an element a is f-related to A if and only if $f(a)$ is f-related to A. So we shall prove the only case of an ideal which is f-related to A. Let B be such an ideal, and let S be the f-system consisting of all elements of R which are f-unrelated to A. Then B does not meet S and hence, by Lemma 1.5, B is contained in a maximal f-prime ideal P belonging to A.

It follows from this proposition that the ideals of R which are f-related to A are spread over the maximal f-prime ideals belonging to A.

Definition 2.9. Let A be an ideal and let b be an element in R. The (left-)
f-quotient $A:b$ of A by b will be defined to be the set of all elements x of R such that $f(b)f(x)$ is contained in A. Moreover, for any ideal B, the (left-)f-quotient of A by B will be defined as $\cap_{b\in B} (A:b)$, and denoted by $A:B$.

From this definition, we have

1. $A' \subseteq A'' \Rightarrow A':b \subseteq A'' : b$ and $A' : B \subseteq A'' : B$,
2. $B' \subseteq B'' \Rightarrow A : B' \subseteq A : B''$,
3. $(A' \cap A'') : b = (A' : b) \cap (A' : b)$ and $(A' \cap A'') : B = (A' : B) \cap (A' : B)$.

We note that $A:b$ may be empty. However, if it is not, it is an ideal containing A. To see this, take an arbitrary element $x+a$ in $(A:b)+A$, where x in $A:b$ and a in A. Then $x+a$ is contained in $f(x)+A$, and so is $f(x+a)$. Hence $f(b)f(x+a)$ is contained in A. That is, $(A:b)+A$ is contained in $A:b$.

Definition 2.10. Let A be an ideal, and let P be any maximal f-prime ideal belonging to A. The principal f-component A_P of A determined by P will be defined as follows:

$$A_P = \begin{cases} \cup_{s \in P}(A:s) & \text{(if } P \neq R) \\ A & \text{(if } P = R) \end{cases}$$

For $P \neq R$, the principal f-component A_P may be empty in certain cases. In case $f(a) = (a)$ for every a in R it is not empty, but, as is seen from Example 2.3, there exists a ring in which (a) is satisfied, and $f(a)$ need not be (a), and A_P is not empty for all A and $P \neq R$.

So we shall assume, in the rest of this paper, the following condition:

(β) For any ideal A and ideal B not contained in $r(A)$, we have $A:B=\phi$.

For any maximal f-prime ideal P belonging to A, it follows from Proposition 2.6 that P contains A, and hence $r(A)$ is contained in P. If s is not in P, then s does not contained in $r(A)$. Hence, from the assumption (β), $A:s=\phi$ and therefore we have $A_P=\phi$.

We now show that A_P is an ideal containing A. If $P=R$, the assertion is trivial. Let $P \neq R$ and let x, y be any two elements of A_P. Then there exist s and t in $C(P)$ such that both $f(s)f(x)$ and $f(t)f(y)$ are contained in A. Take two elements $s^* \in S^* \cap f(s)$ and $t^* \in S^* \cap f(t)$, where S^* is a kernel of $C(P)$. Since S^* is an m-system, s^*zt^* is in S^* (whence is in $C(P)$) for some z in R. Thus $s^*zt^* \subseteq f(s) \cap f(t)$, $f(s^*zt^*) \subseteq f(s) \cap f(t)$. Hence $f(s^*zt^*)f(x+y) \subseteq (f(s) \cap f(t))(f(x) + f(y)) \subseteq f(s)f(x)+f(t)f(y) \subseteq A$.

Now let $x=x'+x''$ be any element in A_P+A, where x' in A_P and x'' in A. Then $f(s)f(x')$ is contained in A for some s in $C(P)$. Since x is in $f(x')+A$, $f(x)$ is contained in $f(x')+A$, and hence we have $f(s)f(x) \subseteq f(s)f(x') + f(s)A \subseteq A$. Thus x is in A_P and A is contained in A_P.

For any maximal f-prime ideal P belonging to A, since $A \subseteq A_P \subseteq P$, $A_P=R$ if and only if $A=R$. Furthermore, if P is the only maximal f-prime ideal belong-
Proposition 2.11. Let A be an ideal, and let P be any maximal f-prime ideal belonging to A. Then the principal f-component A_P is contained in every ideal D such that A is contained in D and that any element of $C(P)$ are f-unrelated to D.

Proof. If $P=R$, the assertion is trivial. Let $P \neq R$ and let D be any ideal such that A is contained in D and that any element of $C(P)$ are f-unrelated to D. If x is an arbitrary element of A_P, then there exists an element s in $C(P)$ such that $f(s)f(x) \subseteq A$. Since s is f-unrelated to D, we can choose an element s^* in $f(s)$ such that $s^*c \in D$ implies $c \in D$. s^*x is in D and hence x is in D.

We note from Proposition 2.8 that any element of $C(P)$ are f-unrelated to D if and only if any maximal f-prime ideal belonging to D are contained in P.

Theorem 2.12. Any ideal A is represented as the intersection of all its principal f-components A_P.

Proof. Since A is contained in every principal f-component of A, it is also contained in their intersection. To prove the converse, let a be an arbitrary element of the intersection of all principal f-components A_P. For any maximal f-prime ideal P belonging to A, $f(s)f(a) \subseteq A$ for some s in $S=C(P)$. Consider the ideal B which consists of all elements b of R such that $f(b)f(a) \subseteq A$. Then B is not contained in P, and hence according to Proposition 2.8, B cannot be f-related to A. This means that B contains at least one element b which is f-unrelated to A. Since $f(b)f(a)$ is in A, the f-unrelatedness of b implies that a is in A. The theorem is therefore established.

Remark. It is natural to define a (left-)f-primal ideal as follows: an ideal A is said to be (left-)f-primal, if the set X of the elements, each of which is (left-)f-related to A, forms an ideal. If A is f-primal, X is called the (left-)adjoint of A. Then we can prove that the principal f-component of A determined by the maximal f-prime ideal P is contained in the intersection of all f-primal ideals A_λ such that (1) A_λ contains A, and (2) the adjoint of A_λ is contained in P.

3. f-primary decompositions

In this section, we shall consider f-primary decompositions of ideals on the analogy of the primary decompositions of ideals in a commutative Noetherian ring. For this purpose, we assume besides (β), throughout this section, the following condition:

(γ) If S is an f-system with kernel S^*, and if for any ideal A, $S \cap A$ is not empty, then so is $S^* \cap A$.
Clearly, this assumption is satisfied in case \(f(a) = (a) \) for every element \(a \) in \(R \). But, for a suitable choice of \(f(a) \), this is not always satisfied as is seen from the following example:

Example 3.1. As is seen from Example 1.3, for the ideal \(P = (p^i) \) in the ring \(\mathbb{Z} \) of integers, its complement \(S = C(P) \) is an \(f \)-system with kernel \(S^* = \{q, q^2, q^3, \ldots\} \), where \(p \) and \(q \) are different prime numbers. Now, let \(A \) be the ideal \((p) \), then we have \(S \cap A \neq \phi \), though \(S^* \cap A = \phi \).

Proposition 3.2. Let \(A \) and \(B \) be any two ideals. Then

1. \(A \subseteq B \Rightarrow r(A) \subseteq r(B) \),
2. \(r(r(A)) = r(A) \),
3. \(r(A \cap B) = r(A) \cap r(B) \).

Proof. (1) and (2) follow from the definition of the radical.

It is clear that \(r(A \cap B) \subseteq r(A) \cap r(B) \). Conversely, let \(x \) be any element in \(r(A \cap B) \) and let \(S \) be any \(f \)-system containing \(x \). Then, there exist two elements \(a \) and \(b \) in \(S \cap A \) and \(S \cap B \) respectively. By the assumption (\(\gamma \)), we can choose two elements \(a^* \) and \(b^* \) in \(S^* \cap A \) and \(S^* \cap B \) respectively. Since \(S^* \) is an \(m \)-system, \(a^*b^* \) is in \(S^* \) for some element \(z \) in \(R \). Therefore \(a^*b^* \in S^* \cap (A \cap B) \), and hence \(S \cap (A \cap B) \) is not empty. This means that \(x \) is in \(r(A \cap B) \), which completes the proof of (3).

Definition 3.3. An ideal \(Q \) is called (left-)\(f \)-primary, if \(f(a)f(b) \subseteq Q \) implies that \(a \in r(Q) \) or \(b \in Q \).

Let us note that, by Lemma 1.4, \(f \)-prime ideals are always \(f \)-primary ideals. As is easily seen from Definition 3.3, we have

Proposition 3.4. If \(Q' \) and \(Q'' \) are \(f \)-primary ideals such that \(r(Q') = r(Q'') \), then \(Q = Q' \cap Q'' \) is also an \(f \)-primary ideal such that \(r(Q) = r(Q') = r(Q'') \).

Another characterization of \(f \)-primary ideals can be given by means of \(f \)-quotients.

Proposition 3.5. An ideal \(Q \) is \(f \)-primary if and only if \(Q : B = Q \) for all ideals \(B \) not contained in \(r(Q) \).

Proof. Suppose that \(Q \) is \(f \)-primary and that \(B \) is an ideal not contained in \(r(Q) \). We can choose an element \(b \) in \(B \) but not in \(r(Q) \). By the assumption (\(\beta \)), \(Q : b \) is not empty, and for any element \(a \) in \(Q : b \), \(f(b)f(a) \) is contained in \(Q \). Since \(Q \) is \(f \)-primary and \(b \) is not in \(r(Q) \), \(a \) is in \(Q \). Thus \(Q : b \) is contained in \(Q \). This shows that \(Q = Q : B \), because again by (\(\beta \)) \(Q : B \) is an ideal such that \(Q \subseteq Q : B \subseteq Q : b \).

Conversely, suppose that \(f(a)f(b) \) is contained in \(Q \) and that \(a \) is not in
$r(Q)$. Then $f(a)$ is not contained in $r(Q)$, and hence we have $Q:f(a)=Q$. For an arbitrary element a' in $f(a)$, $f(a')f(b) \subseteq f(a)f(b) \subseteq Q$, and thus b is in $Q:f(a)=Q$. This proves that Q is f-primary.

If an ideal A can be written as

$$A = Q_1 \cap Q_2 \cap \cdots \cap Q_n,$$

where each Q_i is an f-primary ideal, this will be called an f-primary decomposition of A, and each Q_i will be called the f-primary component of the decomposition. A decomposition in which no Q_i contains the intersection of the remaining Q_j is called irredundant. Moreover, an irredundant f-primary decomposition, in which the radicals of the various f-primary components are all different, is called a normal decomposition. As is easily seen from Proposition 3.4, each f-primary decomposition can be refined into one which is normal.

Besides the assumptions (β) and (γ), we assume, in this section, the following condition:

(δ) For any f-primary ideal Q, we have $Q:Q=R$.

Evidently, this assumption is satisfied in case $f(a)=(a)$ for every element a in R. But, for a suitable choice of $f(a)$, this is not all true.

Example 3.6. As is seen from Example 1.3, the ideal (p^2) is f-prime and hence is an f-primary ideal in \mathbb{Z}. Suppose that the assumption (δ) is satisfied for this (p^2). Then we have $f(p^2) \subseteq (p^2)$ and hence $(p^2)=f(p^2)=(p^2)+(q)$, a contradiction.

Now we shall prove, under the assumptions (β), (γ) and (δ), that the number of f-primary components and the radicals of f-primary components of a normal decomposition of A depend only on A and not on the particular normal decomposition considered. This is a main theorem of this section.

Theorem 3.7. Suppose that an ideal A has an f-primary decomposition, and let

$$A = Q_1 \cap Q_2 \cap \cdots \cap Q_n = Q'_1 \cap Q'_2 \cap \cdots \cap Q'_m$$

be two normal decompositions of A. Then $n=m$, and it is possible to number the f-primary components in such a way that $r(Q_i)=r(Q'_i)$ for $1 \leq i \leq n=m$.

Proof. If A coincides with R, the assertion is trivial. We may suppose therefore that A does not coincide with R, in which case all the f-primary components $Q_1, \ldots, Q_n, Q'_1, \ldots, Q'_m$ are proper ideals. Among the radicals $r(Q_1), \ldots, r(Q_n), r(Q'_1), \ldots, r(Q'_m)$ take one which is maximal in this set, and we may assume that it is $r(Q_1)$. We now prove that $r(Q_1)$ occurs among $r(Q'_1), \ldots, r(Q'_m)$. To prove this it will be enough to show that Q_1 is contained in $r(Q'_j)$ for some j.

Suppose that Q_1 is not contained in $r(Q'_1)$ for $1 \leq j \leq m$. Then we have, by Proposition 3.5, $Q'_j : Q_j = Q'_j$ for $1 \leq j \leq m$, and consequently

$$A : Q_1 = (Q'_1 \cap \cdots \cap Q'_n) : Q_1 = (Q'_1 : Q_1) \cap \cdots \cap (Q'_n : Q_1) = Q'_1 \cap \cdots \cap Q'_n = A.$$

If $n=1$, then, by the assumption (δ), we have

$$R = Q'_1 : Q_1 = A : Q_1 = A,$$

a contradiction. On the other hand, if $n>1$, then we have again by (δ) since Q_1 is not contained in $r(Q'_i)$ for $2 \leq i \leq n$. This is a contradiction. Now we may arrange that Q_1 and Q'_j so that $r(Q_i) = r(Q_i)$. We shall use an induction on the number n of f-primary components. If $n=1$, then $A=Q'_1 = Q'_1 \cap \cdots \cap Q'_n$, and moreover if $m>1$, then Q_1 is not contained in $r(Q'_1)$ for $2 \leq j \leq m$. Since

$$R = Q'_1 : Q_1 = (Q'_1 : Q_1) \cap \cdots \cap (Q'_n : Q_1),$$

we have $R = Q'_1 = Q'_1 = \cdots = Q'_n$, by Proposition 3.5, a contradiction. Similarly, $m=1$ implies that $n=1$, and in this case the assertion is trivial.

Let us now assume that $n \leq m$. We shall show that $n=m$ and by a suitable ordering $r(Q_i) = r(Q'_i)$ for $1 \leq i \leq n=m$. Assume that these results are valid for ideals which may be represented by fewer than n f-primary components. Put $Q = Q_1 \cap Q'_1$, then by Proposition 3.4, Q is an f-primary ideal such that $r(Q) = r(Q'_1) = r(Q'_1)$. Also $Q_i : Q = Q_i$ for $2 \leq i \leq n$, and $Q_i : Q = R$. For the first relation follows from the fact that Q is not contained in $r(Q_i)$, while the second follows from $R = Q_i : Q \subseteq Q'_i : Q$. Consequently $A : Q = Q'_1 \cap \cdots \cap Q'_n$, and an exactly similar argument shows that $A : Q = Q'_1 \cap \cdots \cap Q'_n$. Hence, we have

$$Q'_1 \cap \cdots \cap Q'_n = Q'_1 \cap \cdots \cap Q'_n,$$

and moreover both decompositions are normal. Thus by the induction hypothesis we have $n-1 = m-1$, that is, $n=m$. Furthermore, by a suitable ordering we have $r(Q_i) = r(Q'_i)$ for $2 \leq i \leq n=m$. This completes the proof.

YAMAGUCHI UNIVERSITY
References

