In the proof of Theorem 7 it is asserted that there exists \(\alpha \in U^*(B_G \times M) \) such that
\[
\alpha q(\tau(M)) = \omega' \quad \text{and} \quad r^G(\alpha) = 0.
\]
The proof of this assertion is not correct. Under a further assumption that
\(U_*(M) \) is projective over \(U_*(pt) \), this is proved correctly as follows.

It follows from Lemma 2 and (7.1) that \(i^*(id \times f^k)_*\Delta' = 0 \) for \(i^*: U^*(E_G \times M^k) \rightarrow U^*(E_G \times (M^k - M)) \) induced by the inclusion. Therefore there exists \(\alpha \in U^{-2m(k-1)}(B_G \times M) \) such that
\[
(id \times f^k)_*\Delta' = j^*\phi_1(\alpha),
\]
where \(\phi_1: U^*(B_G \times M) \cong U^*(E_G \times (M^k, M^k - M)) \) is the Thom isomorphism, and \(j^*: U^*(E_G \times (M^k, M^k - M)) \rightarrow U^*(E_G \times M^k) \) is induced by the inclusion.

It is easily seen that the diagram
\[
\begin{array}{ccc}
U^{-2m(k-1)}(M) & \xrightarrow{r_0^*} & U^{-2m(k-1)}(B_G \times M) \xrightarrow{\cdot (\nu_i)} U^i(B_G \times M) \\
| d_l & & | j^* \circ \phi_1 \\
U^i(M^k) & \xleftarrow{r_0^*} & U^i(E_G \times M^k) \xrightarrow{(id \times d)^*}
\end{array}
\]
is commutative, where \(r \) and \(r_0 \) are the inclusions, and \(d_l \) is the Gysin homomorphism induced by the diagonal map \(d: M \rightarrow M^k \). Consequently we have
\[
(8.1) \quad (id \times d)_*(id \times f^k)_*\Delta' = \alpha \cdot e(\nu_i),
\]
\[
(8.2) \quad r^* (id \times f^k)_* \Delta' = dr^G(\alpha).
\]
It follows from (6.1), (6.3) and (8.1) that
\[\alpha q(\tau(M)) = (id \times f)^*q(\tau(M')) \]
and from (8.2) that
\[dr^*\delta(\alpha) = (f^k)^*r'^*(\Delta') \]
where \(r' : M'^{\times k} \to E_G \times M'^{\times k} \) is the inclusion. Since \(f \) is null-homotopic, these imply that
\[\alpha q(\tau(M)) = w^{m'}, \quad dr^*(\alpha) = 0. \]
Thus it suffices to prove that \(d_i \) is injective. Since \(U_*(M) \) is projective over \(U_*(pt) \), it holds that
\[U^*(M) \cong \text{Hom}_{U_*(pt)}(U_*(M), U_*(pt)) \]
(see [2]). Therefore, if \(b \in U_*(M) \) is not zero then there exists \(\beta \in U^*(M) \) such that \(\langle \beta, b \rangle \neq 0 \). Since \(\langle \beta \times 1 \times \cdots \times 1, d_*b \rangle = \langle \beta, b \rangle \), it follows that \(d_* \) and hence \(d_i \) is injective.