0. Introduction

Let G be a compact connected Lie group and let T be a maximal torus of G. Define

$$m(G) = \max \{ \dim H \mid H \text{ is a proper closed subgroup of } G \},$$
$$m_0(G) = \max \{ \dim H \mid H \text{ is a proper closed subgroup of } G \text{ with } \text{rank } H = \text{rank } G \}.$$

Let M be a connected manifold with a non-trivial smooth G-action and let H be a closed subgroup of G. Denote by $F(H, M)$ the fixed point set of the restricted action of the given G-action to the subgroup H. Then each connected component $F_a (a \in A)$ of $F(H, M)$ is a regular submanifold of M. Define

$$\dim F(H, M) = \max \{ \dim F_a \mid a \in A \}$$
if $F(H, M)$ is non-empty and we put

$$\dim F(H, M) = -1$$
if $F(H, M)$ is empty. Then we have the following results.

Theorem 1.

(a) In general, $\dim M - \dim F(T, M) \geq \dim G - m(G)$.

(b) If G is semi-simple and

$$\dim F(G, M) < \dim F(T, M),$$

then

$$\dim M - \dim F(T, M) \geq \dim G - m_0(G).$$

Theorem 2. If

$$\dim M - \dim F(T, M) = \dim G - m(G),$$
then G is semi-simple, $m(G) = m_s(G)$ and
\[\dim M - \dim F_a = \dim G - m(G) \]
for each connected component F_a of $F(T, M)$. Moreover
\[\dim H = m(G) \text{ and } \text{rank } H = \text{rank } G \]
for a principal isotropy group H.

1. Preliminary lemmas
In this section we prepare several lemmas.

Lemma 1.1. Let H be a closed subgroup of G and assume $T \subseteq H$. Then
\[F(T, G/H) = N(T)H/H. \]
In particular, $F(T, G/H)$ is a non-empty finite set.

Proof. It is clear that
\[F(T, G/H) = \{ gH \mid g^{-1}Tg \subseteq H \}. \]
If $g^{-1}Tg \subseteq H$, then there is $h \in H$ such that
\[g^{-1}Tg = hTh^{-1}, \]
since T is a maximal torus of H^0, the identity component of H. Thus
\[gh \in N(T) \text{: the normalizer of } T \text{ in } G. \]
Hence we obtain
\[F(T, G/H) = N(T)H/H. \]
Next, there is a natural surjection $N(T)/T \to N(T)H/H$, where $N(T)/T$ is the Weyl group of G which is a finite group. Therefore $F(T,G/H)$ is a non-empty finite set.

In the following, we assume that M is a connected manifold with a non-trivial smooth G-action. It is clear
\[(1.2) \quad \dim M \geq \dim G - m(G). \]

Lemma 1.3. $\dim M - \dim F(G, M) > \dim G - m(G)$.

Proof. If $F(G, M)$ is empty, then the inequality is clear from (1.2). If $F(G, M)$ is non-empty, let $n = \dim F(G, M)$ and let F_a be an n-dimensional connected component of $F(G, M)$. For $x \in F_a$,
\[T_xM = T_x(F_a) \oplus N_x \]

as \(G \)-vector spaces, where \(N_x \) is a normal space of \(F_a \) in \(M \). Then there is a non-zero vector \(v \in N_x \) with \(G_v \parallel G \). Thus

\[\dim G - m(G) \leq \dim G/G_v < \dim N_x = \dim M - n. \]

q.e.d.

Lemma 1.4. If

\[\dim M - \dim F(T, M) \leq \dim G - m_\theta(G) \]

and

\[\dim F(G, M) < \dim F(T, M), \]

then

\[M = G \cdot F(H, M). \]

Here \(H \) is a compact connected subgroup of \(G \) such that

\[\dim H = m_0(G) \quad \text{and} \quad \text{rank } H = \text{rank } G. \]

Proof. Let \(k = \dim F(T, M) \) and denote by \(F^k \) the union of \(k \)-dimensional connected components of \(F(T, M) \). Then

\[F^k - F(G, M) \]

is non-empty by the assumption. For \(x \in F^k - F(G, M) \),

\[T_xM = T_x(G \cdot x) \oplus N_x \]

as \(G_x \)-vector spaces, where \(N_x \) is a normal space of the orbit \(G \cdot x \) in \(M \). Since \(T \subset G_x \), \(F(T, G \cdot x) \) is a non-empty finite set by Lemma 1.1. Thus

\[k = \dim F(T, T_xM) = \dim F(T, N_x) \leq \dim N_x = \dim M - \dim G/G_x \leq \dim M - \dim G + m_0(G). \]

On the other hand,

\[k \geq \dim M - \dim G + m_0(G) \]

by the assumption. Therefore

\[(1) \quad \dim G_x = m_\theta(G), \]

\[(2) \quad F(T, N_x) = N_x. \]

Since the action of \(G_x \) on \(N_x \) is a slice representation at \(x \), a principal isotropy group \(H' \) contains \(T \) by (2), and hence

\[\dim H' = m_\theta(G) \]
by (1). Let H be the identity component of the principal isotropy group H'. Then we have

$$M = G \cdot F(H, M) = \{g \cdot x | g \in G, x \in F(H, M)\}.$$ q.e.d.

Lemma 1.5. If

$$\dim M - \dim F(T, M) \leq \dim G - m(G),$$

then $m(G) = m_0(G)$ and

$$M = G \cdot F(H, M).$$

Here H is a compact connected subgroup of G such that

$$\dim H = m(G) \quad \text{and} \quad \text{rank } H = \text{rank } G.$$ Proof. Taking account of Lemma 1.3 and using similar arguments as in the proof of Lemma 1.4, we can prove this lemma.

Lemma 1.6. Let G be a compact connected Lie group and let H be a closed subgroup of G such that

$$\dim H = m_0(G) \quad \text{and} \quad \text{rank } H^0 = \text{rank } G.$$ Then $N(H)^0 = H^0$, where H^0 is the identity component of H and $N(H)$ is the normalizer of H in G.

Proof. Assume $N(H)^0 \neq H^0$. Then the assumption on H implies $N(H) = G$. Thus H is a normal subgroup of G, and hence

$$\text{rank } G = \text{rank } H^0 + \text{rank } G/H.$$ Then the assumption on H implies $\text{rank } G/H = 0$ and hence $G = H$. But this is a contradiction to

$$\dim H = m_0(G) < \dim G.$$ q.e.d.

Lemma 1.7. Let G be a compact connected semi-simple Lie group and let H be a closed connected subgroup of G such that

$$\dim H = m_0(G) \quad \text{and} \quad \text{rank } H = \text{rank } G.$$ Let V be a real G-vector space such that

$$V = G \cdot F(H, V) \quad \text{and} \quad F(G, V) = \{0\}.$$
Then \(S(V) = G/H \) as \(G \)-manifolds and \(N(H)/H = Z_2 \). Here \(S(V) \) is a \(G \)-invariant unit sphere of \(V \).

Proof. By the assumption on \(H \) and \(V \), the identity component of an isotropy subgroup at each point of \(S(V) \) is conjugate to \(H \) in \(G \). Hence there is an equivariant diffeomorphism

\[
S(V) = G/H \times \frac{F(H, S(V))}{\pi_{\mathfrak{t}}(S(V))}
\]
as \(G \)-manifolds. Here \(F(H, S(V)) \) is a unit sphere of \(F(H, V) \). Since \(N(H)/H \) is a finite group by Lemma 1.6, the natural projection

\[
G/H \times F(H, S(V)) \to S(V)
\]
is a finite covering as \(G \)-manifolds. On the other hand, \(S(V) \) is simply connected, because \(G \) is semi-simple. Therefore

\[
S(V) = G/H
\]
as \(G \)-manifolds and \(F(H, S(V)) \) is a zero-sphere \(S^0 \). Finally,

\[
N(H)/H = F(H, G/H) = F(H, S(V)) = S^0.
\]
Thus \(N(H)/H = Z_2 \), the cyclic group of order 2. q.e.d.

2. Proof of theorems

Let \(G \) be a compact connected Lie group and let \(T \) be a maximal torus of \(G \). Let \(M \) be a connected manifold with a non-trivial smooth \(G \)-action. It is easy to see that

\[
F(T, M) = M \quad \text{implies} \quad F(G, M) = M.
\]
Thus

\[
\dim M - \dim F(T, M) \geq 2,
\]
because

\[
\dim M \equiv \dim F_a \pmod{2}
\]
for each connected component \(F_a \) of \(F(T, M) \).

If \(G \) is not semi-simple, then

\[
\dim G - m(G) = 1
\]
and hence there is nothing to prove. In particular, if

\[
\dim M - \dim F(T, M) = \dim G - m(G),
\]
then \(G \) is semi-simple, and \(m(G) = m_0(G) \) by Lemma 1.5.
Now we assume that G is semi-simple and there is a closed connected subgroup H of G such that

\[(*) \quad M = G \cdot F(H, M), \quad \dim H = m_0(G) \quad \text{and} \quad \text{rank } H = \text{rank } G. \]

Moreover, (i) first suppose that $F(G, M)$ is empty. Then by the assumption (*), the identity component of an isotropy subgroup at each point of M is conjugate to H in G. Hence there is an equivariant diffeomorphism

\[M = \frac{G|H}{N(H)/H} \times F(H, M) \]

as G-manifolds. Since $N(H)/H$ is a finite group by Lemma 1.6, the natural projection

\[p: \frac{G|H}{N(H)/H} \times F(H, M) \to M \]

is a finite covering as G-manifolds. Hence we obtain

\[F(T, M) = p(F(T, G/H) \times F(H, M)) \cdot \]

Here $F(T, G/H)$ is a non-empty finite set by Lemma 1.1. Therefore

\[\dim M - \dim F_a = \dim M - \dim F(H, M) \]

\[= \dim \frac{G|H}{N(H)/H} = \dim G - m_0(G), \]

for each connected component F_a of $F(T, M)$.

(ii) Next suppose that $F(G, M)$ is non-empty. Then each fibre N_x of the normal G-vector bundle of $F(G, M)$ in M satisfies the hypothesis of Lemma 1.7, and hence

\[N(H)/H = Z_2 \quad \text{and} \quad S(N_a) = G/H. \]

Let U be a G-invariant closed tubular neighborhood of $F(G, M)$ in M. Then there is an equivariant diffeomorphism

\[M = \partial(D(V) \times F(H, M - \text{int } U))/Z_2 \]

as G-manifolds. Here V is a real G-vector space (unique up to G-isomorphism) with $S(V) = G/H$, Z_2 acts on the unit disk $D(V)$ as antipodal involution, and G acts naturally on $D(V)$ and trivially on $F(H, M - \text{int } U)$. Hence we obtain

\[F(T, M) = \partial(F(T, D(V)) \times F(H, M - \text{int } U))/Z_2 \]

\[= \partial([-1, 1] \times F(H, M - \text{int } U))/Z_2. \]

Therefore

\[\dim M - \dim F_a = \dim M - \dim F(H, M - \text{int } U) \]

\[= \dim D(V) - 1 \]

\[= \dim G/H \]

\[= \dim G - m_0(G). \]
for each connected component \(F_a \) of \(F(T, M) \).

Now the proofs of Theorem 1 and Theorem 2 are completed by Lemma 1.4 and Lemma 1.5.

3. Integers \(m(G) \) and \(m_0(G) \)

In this section we show certain properties of \(m(G) \) and \(m_0(G) \). It is easy to see that

\[
(3.1) \quad m(G_1 \times G_2) \geq \max (m(G_1) + \dim G_2, \dim G_1 + m(G_2)),
\]

and

\[
(3.2) \quad m(G) \geq 1, \quad \text{if} \quad G \neq S^1.
\]

Lemma 3.3. Let \(G_1 \) and \(G_2 \) be compact connected Lie groups. Suppose that \(G_1 \) is simple and \(G_1 \neq S^1 \). Let \(H \) be a closed connected subgroup of \(G_1 \times G_2 \) with \(\dim H = m(G_1 \times G_2) \). Then

\[
H = H_1 \times G_2 \quad \text{or} \quad H = G_1 \times H_2
\]

where \(H_a \) is a closed subgroup of \(G_a \) (\(a = 1, 2 \)) with \(\dim H_a = m(G_a) \).

Proof. Let \(p_a : G_1 \times G_2 \to G_a \) (\(a = 1, 2 \)) be natural projections, and let \(i_a : G_a \to G_1 \times G_2 \) be natural injections defined by

\[
i_1(g) = (g, e_2), g \in G_1, \quad i_2(g) = (e_1, g), g \in G_2
\]

where \(e_a \) is the identity element of \(G_a \) (\(a = 1, 2 \)). Define

\[
H_a = p_a(H) \quad \text{and} \quad H_a' = i_a^{-1}(H).
\]

Then \(H_a' \) is a normal subgroup of \(H_a \) (\(a = 1, 2 \)) and \(H_a' \times H_a' \) is a normal subgroup of \(H \), and \(H \subset H_1 \times H_2 \). Moreover the projection \(p_a \) induces an isomorphism

\[
p_a' : H/H_1' \times H_2' \to H_a/H_a' \quad (a = 1, 2).
\]

(i) First suppose \(H_1 \neq G_1 \). Then

\[
H \subset p_1^{-1}(H_1) = H_1 \times G_2 \neq G_1 \times G_2.
\]

Hence we obtain

\[
H = H_1 \times G_2 \quad \text{and} \quad \dim H_1 = m(G_1)
\]

from the assumption \(\dim H = m(G_1 \times G_2) \).

(ii) Next suppose \(H_1 = G_1 \). Then \(H_1' \) is a normal subgroup of the simple Lie group \(G_1 \) and hence \(H_1' = G_1 \) or \(H_1' \) is a finite group. Since \(m(G_1) \geq 1 \) and
there is an isomorphism
\[H|_{i_1}(H') = H_2, \]
we obtain
\[m(G_1 \times G_2) = \dim H = \dim H_1' + \dim H_2 < \dim H_1' + m(G_1) + \dim G_2 \leq \dim H_1 + m(G_1 \times G_2). \]
Thus \(\dim H_1' \neq 0 \), and hence
\[H_1' = H_1 = G_1. \]
Therefore
\[H = G_1 \times H_2 \quad \text{and} \quad \dim H_2 = m(G_2) \]
from the assumption \(\dim H = m(G_1 \times G_2) \).

Corollary 3.4. Let \(G_1 \) and \(G_2 \) be compact connected Lie groups. Suppose that \(G_1 \) is simple. Then
\[\dim (G_1 \times G_2) - m(G_1 \times G_2) = \min \left(\dim G_1 - m(G_1), \dim G_2 - m(G_2) \right). \]
Proof. If \(G_1 \neq S^1 \), then the equation follows from Lemma 3.3. If \(G_1 = S^1 \), then \(m(G_1 \times G_2) = \dim G_2 \) and hence the equation holds. q.e.d.

Theorem 3.5. Let \(G_1 \) and \(G_2 \) be compact connected Lie groups. Then
\[\dim (G_1 \times G_2) - m(G_1 \times G_2) = \min \left(\dim G_1 - m(G_1), \dim G_2 - m(G_2) \right). \]
Proof. Let \(G^* \) be a compact connected covering group of \(G \). Then it is easy to see that
\[m(G^*) = m(G). \]
There are covering groups \(G^*_a \) of \(G_a \) \((a=1, 2)\) such that
\[G_1^* = H_1 \times \cdots \times H_r \times T^m \]
\[G_2^* = K_1 \times \cdots \times K_s \times T^n \]
where \(H_i, K_j \) are compact connected non-abelian simple Lie groups, and \(T^m, T^n \) are tori. If \(m \) or \(n \) is non-zero, then
\[\dim (G_1 \times G_2) - m(G_1 \times G_2) = 1 \]
\[\min \left(\dim G_1 - m(G_1), \dim G_2 - m(G_2) \right) = 1. \]
Next, if \(m=n=0 \), then
\[\dim (G_1 \times G_2) - m(G_1 \times G_2) = \min \left(\dim H_i - m(H_i), \dim K_j - m(K_j) \right) \]
\[= \min \left(\dim G_1 - m(G_1), \dim G_2 - m(G_2) \right) \]
be Corollary 3.4.

Remark 3.6. The integer $m_0(G)$ can be defined only when G is non-abelian (i.e. G does not coincide with its maximal torus).

Theorem 3.7. Let G_1 and G_2 be compact connected non-abelian Lie groups. Then

$$\dim (G_1 \times G_2) - m_0(G_1 \times G_2) = \min (\dim G_1 - m_0(G_1), \dim G_2 - m_0(G_2)).$$

Proof. Let H be a closed connected subgroup of $G_1 \times G_2$ such that

$$\dim H = m_0(G_1 \times G_2) \quad \text{and} \quad \operatorname{rank} H = \operatorname{rank} (G_1 \times G_2).$$

Then there are closed connected subgroups H_a of $G_a (a=1, 2)$ such that

$$H = H_1 \times H_2 \quad \text{and} \quad \operatorname{rank} H_a = \operatorname{rank} G_a (a = 1, 2)$$

from the assumption $\operatorname{rank} H = \operatorname{rank} (G_1 \times G_2)$. Moreover

$$\dim H = m_0(G_1 \times G_2)$$

implies that

$$H_1 = G_1 \quad \text{and} \quad \dim H_2 = m_0(G_2)$$

or

$$H_2 = G_2 \quad \text{and} \quad \dim H_1 = m_0(G_1).$$

q.e.d.

Table of $m(G)$ and $m_0(G)$ for simple Lie group G (cf. [1], [2])

<table>
<thead>
<tr>
<th>G</th>
<th>dim G</th>
<th>$m(G)$</th>
<th>H</th>
<th>$m_0(G)$</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SU(n), n \geq 4$</td>
<td>$n^2 - 1$</td>
<td>$(n-1)^2$</td>
<td>$SU(n-1) \times U(1)$</td>
<td>$(n-1)^2$</td>
<td>$SU(n-1) \times U(1)$</td>
</tr>
<tr>
<td>$SU(4)$</td>
<td>15</td>
<td>10</td>
<td>$Sp(2)$</td>
<td>9</td>
<td>$SO(3) \times U(1)$</td>
</tr>
<tr>
<td>$SO(2n+1)$</td>
<td>$2n^2 + n$</td>
<td>$2n^2 - n$</td>
<td>$SO(2n)$</td>
<td>$2n^2 - n$</td>
<td>$SO(2n)$</td>
</tr>
<tr>
<td>$Sp(n)$</td>
<td>$2n^2 + n$</td>
<td>$2n^2 - 3n + 4$</td>
<td>$Sp(n-1) \times Sp(1)$</td>
<td>$2n^2 - 3n + 4$</td>
<td>$Sp(n-1) \times Sp(1)$</td>
</tr>
<tr>
<td>$SO(2n), n > 3$</td>
<td>$2n^2 - n$</td>
<td>$2n^2 - 3n + 1$</td>
<td>$SO(2n-1)$</td>
<td>$2n^2 - 5n + 4$</td>
<td>$SO(2n-2) \times SO(2)$</td>
</tr>
<tr>
<td>G_2</td>
<td>14</td>
<td>8</td>
<td>$SU(3)$</td>
<td>8</td>
<td>$SU(3)$</td>
</tr>
<tr>
<td>F_4</td>
<td>52</td>
<td>36</td>
<td>$Spin(9)$</td>
<td>36</td>
<td>$Spin(9)$</td>
</tr>
<tr>
<td>E_6</td>
<td>78</td>
<td>52</td>
<td>F_4</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>E_7</td>
<td>133</td>
<td>79</td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>E_8</td>
<td>248</td>
<td>136</td>
<td></td>
<td>136</td>
<td></td>
</tr>
</tbody>
</table>

Here H, U are closed connected subgroups of G with $\dim H = m(G)$, $\dim U = m_0(G)$ and $\operatorname{rank} U = \operatorname{rank} G$.

Osaka University
References
