ON STABLE JAMES NUMBERS OF STUNTED COMPLEX OR QUATERNIONIC PROJECTIVE SPACES

HIDEAKI ŌSHIMA

(Received May 20, 1978)

Following James [7] we denote the stunted complex \((F=C) \) or quaternionic \((F=H) \) projective spaces by \(FP_{n+k,k} \) (or \(P_{n+k,k} \)) for positive integers \(n \) and \(k \), that is

\[
FP_{n+k,k} = FP_{n+k}/FP_n = FP_{n+k-1}/FP_{n-1}.
\]

Let \(d \) be the dimension of \(F \) over the real number field. Let \(i: S^d = FP_{n+1,1} \to FP_{n+k,k} \) be the inclusion. By stable James number \(F\{n, k\} \) we mean the order of the cokernel of

\[
\text{deg} = i^*: \{FP_{n+k,k}, S^{sd}\} \to \{S^{sd}, S^{sd}\} = Z
\]

where \(\{X, Y\} \) denotes the group of stable maps from a pointed space \(X \) to an other pointed space \(Y \). In the previous papers [5, 8, 9, 10] we used the notations \(k_s(FP_{n+k-1}, S^{sd}) \) instead of \(F\{n, k\} \) and estimated \(F\{1, k\} \).

The first purpose of this note is to determine \(F\{n, k\} \) for small \(k \), that is, we shall determine \(H\{n, k\} \) for \(k \leq 4 \), estimate them for \(k=5 \), determine \(C\{n, k\} \) for \(k \leq 8 \) and estimate them for \(k=9 \) and 10. These shall be done in \(\S 2 \) and \(\S 3 \). The second purpose is to show that \(F\{n, k\} \) can be identified with the James numbers defined by James in [6]. This shall be done in \(\S 4 \).

An application of this note to \(F \)-projective stable stems shall be given in [11].

In this note we work in the stable category of pointed spaces and stable maps between them, and we use Toda's notations of stable stems and Toda brackets in [14] freely.

The author wishes to thank Mr. Y. Hirashima for his kind advices.

1. Preliminaries

In what follows we shall be working with both real \(K \)-cohomology theory \(KO^* \) and complex \(K \)-cohomology theory \(K^* \). We use the following notations. \(KO^* \) and \(K^* \) denote both the \(K \)-functors and the coefficient rings. By the same letter \(\xi=\xi_n \) we denote the canonical \(F \)-line bundle over \(FP_n \),
the underlying complex or real vector bundle of it. Put $z = \xi - d/2 \in K(FP_n)$ and $t = (-1)^{d/2} c_d(z) \in H^d(FP_n; \mathbb{Z})$, where $c_d(z)$ denotes the m-th Chern class of ξ. Put also $\xi = \xi - 1 \in K^0(\mathbb{P}^n) \cong K_0^+(\mathbb{P}^n)$. The formal power series $\phi_F(x)$ are defined to be $\exp(x) - 1$ for $F = C$ or $\exp(\sqrt{x}) + \exp(-\sqrt{x}) - 2$ for $F = H$. The rational numbers $\alpha_F(n, j)$ are defined by $(\phi_F^{j}(x))^{a_{n, j}} = \sum_{n} \alpha_F(n, j)x^n$.

$ch: K(\quad \quad) \to H^*(\quad ; Q)$ denotes the Chern character. Then the followings are well known.

Proposition 1.1.

(i) $K(FP_n) = Z[\xi]/(\xi^n)$.

(ii) $KO^*(\mathbb{P}^n) = KO^*[\bar{\xi}]/(\bar{\xi}^n)$ and $\bar{\xi} \mid_{\mathbb{P}^n-1} = \bar{\xi} - 1$.

(iii) $H^*(FP_n; \mathbb{Z}) = Z[t]/(t^n)$.

(iv) $ch(z) = \phi_F(t)$.

Let $i = i_l: FP_{n+k+1+k+l} \subset FP_{n+k+1+k+l}$ be the inclusion for $l > 0$, $q = q_m: FP_{n+k+1+k+l} \to FP_{n+k+1+k+l}$ the canonical quotient map for $0 < m < k$, $p = p_n: S^{ad-1} \to FP_n$ the Hopf bundle projection, and $p = p_n: S^{(n+k)d-1} \to FP_{n+k}$ the composition of p_n and $q_n - 1: FP_{n+k} \to FP_{n+k+1+k+l}$. Let G_k denote the k-stem of the stable groups of spheres. Let $e_G: G \to \mathbb{Q}/\mathbb{Z}$ or $e'_R: G \to \mathbb{Q}/\mathbb{Z}$ be the Adams' complex or real e-invariant respectively [1]. Then we have

Proposition 1.2 (Adams[1]). $e_G: G_1 \to \mathbb{Z}, e_R: G_2 \to \mathbb{Z}, e_G: G_3 \to \mathbb{Z}, e_R: G_4 \to \mathbb{Z}, e_G: G_5 \to \mathbb{Z}, e_R: G_6 \to \mathbb{Z}, e_G: G_7 \to \mathbb{Z}$, and $e_R: G_8 \to \mathbb{Z}$ are isomorphisms, while there is a split exact sequence

$$0 \to \mathbb{Z}_2 \to G_15 \to \mathbb{Z}_59 \to 0.$$

In [10] we obtained the following.

Proposition 1.3. For $f \in \{FP_{n+k}, S^{ad}\}$ we have

$$e_G(f \circ C_{n+k}) = -\deg(f)\alpha_F(n, k).$$

Since $e_G = 2e'_R$ on $(8k+3)$-stems [1], e'_R gives more precise informations about 2-primary components, so we compute $e'_R(f \circ C_{n+k})$ for the case of $F = H$ and $k \equiv 1 \text{ mod}(2)$ or $F = C$ and $k \equiv 2 \text{ mod}(4)$.

We use the following notations. Let $g_c \in K(S^2)$ and $g_c \in K(S^0)$ denote the Bott generators. ψ^k denotes the Adams operation. Let $c: KO^* \to K^*$ be the complexification and $r: K^* \to KO^*$ the real restriction. Put $x_0 = r(x) \in KO(CP_n)$ and $x_j = r(g_c^j) \in KO^{2j}(CP_n)$. Put also $y_{2k} = g_c^{k+1} \in KO^{2k}$ and $y_{2k+1} \in KO^{2k+1}$ the generator satisfying $c(y_{2k+1}) = 2g_c^{k+2}$ for integer k. For $f \in \{X, Y\}, C(f)$ denotes the mapping cone of f.

We consider the case of $F = H$ and $k \equiv 1 \text{ mod}(2)$ or $F = C$ and $k \equiv 2 \text{ mod}(4)$.
Given \(f \in \{ FP_{n+k,k}, S^{nd} \} \), we have the commutative diagram

\[
\begin{array}{ccc}
S^{(n+k)d-1} & \xrightarrow{p_{n+k,k}} & FP_{n+k,k} \\
\downarrow & & \downarrow f' \\
S^{(n+k)d-1} & \xrightarrow{f \circ p_{n+k,k}} & S^{nd} \\
\end{array}
\]

Applying \(KO^{nd} \) and \(K^{nd} \) to this diagram; since \(KO^{nd}(S^{(n+k)d-1}) = K^{nd}(S^{(n+k)d-1}) \) \(= K^{nd-1}(S^{nd}) = 0 \) and \(KO^{nd-1}(FP_{n+k,k}), K^{nd-1}(FP_{n+k,k}) \) and \(KO^{nd-1}(S^{nd}) \) are finite groups, we have the following commutative diagram in which the horizontal sequences are exact.

\[
\begin{array}{ccc}
0 & \xleftarrow{c} & KO^{nd}(FP_{n+k,k}) \\
& \xleftarrow{f^*} & KO^{nd}(FP_{n+k+1,k+1}) \\
& \xleftarrow{c} & KO^{nd}(S^{(n+k)d}) \\
0 & \xleftarrow{c} & K^{nd}(FP_{n+k,k}) \\
& \xleftarrow{f^*} & K^{nd}(FP_{n+k+1,k+1}) \\
& \xleftarrow{c} & K^{nd}(S^{(n+k)d}) \\
0 & \xleftarrow{c} & KO^{nd}(S^{nd}) \\
& \xleftarrow{f^*} & KO^{nd}(C(f \circ p_{n+k,k})) \\
& \xleftarrow{c} & KO^{nd}(S^{(n+k)d}) \\
0 & \xleftarrow{c} & K^{nd}(C(f \circ p_{n+k,k})) \\
& \xleftarrow{f^*} & K^{nd}(S^{(n+k)d}) \\
& \xleftarrow{c} & K^{nd}(S^{(n+k)d}) \\
\end{array}
\]

We can choose generators \(a, b \in KO^{nd}(C(f \circ p_{n+k,k})) \) and \(a', b' \in K^{nd}(C(f \circ p_{n+k,k})) \) such that \(a' = c(a), 2b' = c(b), j^*(a') \) generates \(K^{nd}(S^{nd}) = Z \) and \(f'^*(b') = g_c^{-(nd/2)z^{n+k}} \).

Here we identify \(K^{nd}(FP_{n+k+1,k+1}) \) with the free subgroup of \(K^{nd}(FP_{n+k+1}) \) generated by \(g_c^{-(nd/2)z^n}, g_c^{-(nd/2)z^{n+k}}, \ldots, g_c^{-(nd/2)z^{n+k}} \). Hence we can put

\[
f'^*(a') = g_c^{-(nd/2)\sum_{i=0}^k a_i z^{n+i}}
\]

for some integers \(a_i \). Then by the proof of (1.1) of [10] we have

\[
a_i = \deg(f)\alpha_F(n, i) \quad \text{for} \quad 0 \leq i \leq k-1,
\]

(1.4)

And we have

Proposition 1.5. In case of \(F=H \) and \(k \equiv 1 \mod(2) \) or \(F=C \) and \(k \equiv 2 \mod(4) \) we have

(i) \(e_k'(f \circ p_{n+k,k}) = \frac{1}{2} a_k - \frac{1}{2} \deg(f)\alpha_F(n, k) \),

(ii) if \(F=H \), \(a_k \equiv 0 \mod(2) \),

(iii) if \(F=C \), \(n \equiv 1 \mod(2) \) and \(\deg(f) \) is known, \(a_k \mod(2) \) is computable.
Proof. First consider the case of $F=H$ and $n \equiv 0 \mod(2)$. By Bott periodicity we can use \widetilde{KO} and \widetilde{K} instead of KO^n and K^n. Then we have
\[\psi^2(a) = 4^s a + \lambda b \]
for some integer λ, and
\[e^l_k (f \circ p_{s+k,k}) = \lambda / (4^s (4^s - 1)) \].
We have
\[\psi^2(a') = c(\psi^2(a)) = 4^s a' + 2\lambda b' \]
\[\psi^2(f^*(a')) = \psi^2(\sum_{i=0}^{s} a_i z^{n+i}) = \sum_{i=0}^{s} a_i (z^2 + 4z)^{n+i} \]
\[= \sum_{j=0}^{k} \sum_{i=0}^{s} a_i (z^{n+i}) 4^{s+2i} - j \lambda \chi_{n+j} \]
\[\psi^2(f^*(a')) = f^*(\psi^2(a')) = f^*(4^s a' + 2\lambda b') \]
\[= 4^s \sum_{i=0}^{s} a_i z^{n+i} + 2\lambda \chi_{n+k} \].
Comparing the coefficients of z^{n+k}, we have
\[2\lambda = 4^s (4^s - 1)a_k + \sum_{i=0}^{k-1} a_i (2z^{n+i}) 4^{s+2i} - k \].
Then by (1.4) we have
\[e^l_k (f \circ p_{s+k,k}) = \frac{1}{2} a_k - \frac{1}{2} \deg(f) \alpha_B(n, k) \]
as desired. Next we show (ii). Put $f^*(a) = \sum_{i=0}^{k} d_i y_{n+i} \xi^{s+i}$. Then
\[c(f^*(a)) = \sum_{i=0}^{k} d_i c(y_{n+i}) (c(\xi))^{s+i} = \sum_{i=0}^{k} d_i \xi_i \gamma_{2i} (-2^{n+i}) (g_{c}^{2i} \chi^{n+i} \]
where $\xi_i = 1$ (if i is even) or 2 (if i is odd). We have also
\[c(f^*(a)) = f^*(c(a)) = \sum_{i=0}^{k} a_i z^{n+i} \]
Therefore $a_k = d_k \xi_k = 2d_k$.

In case of $F=H$ and $n \equiv 1 \mod(2)$, (i) and (ii) can be proved by the quite parallel arguments to the above. We omit the details.

For $F=C$ (i) can be proved by the same methods as the above. We only prove (iii). First we consider the case of $n \equiv 3 \mod(4)$. Put $n = 4m + 3$ and $k = 4l + 2$. By Bott periodicity we can use \widetilde{KO}^2 and \widetilde{K}^2 instead of \widetilde{KO}^n and \widetilde{K}^n. By Theorem 2 of Fujii [4], it is easily seen that $\widetilde{KO}^2(CP_{4m+4l+6,4l+1})$ can
be identified with the free subgroup of $\widehat{KO}^{-2}(CP_{4m+4l+6})$ generated by $z_1z_0^{2m+1}$, $z_1z_0^{2m+2}$, \ldots, $z_1z_0^{2m+2l+2}$. So we can put $f^*(a) = \sum_{i=0}^{2l+1} d_i z_0^{2m+1+i}$ for some integers d_i. Then

$$c(f^*(a)) = \sum_{i=0}^{2l+1} d_i (c(z_1)(c(z_0)))^{2m+1+i} = g_c \sum_{i=0}^{2l+1} d_i (z - \bar{z})(z + \bar{z})^{2m+1+i}$$

where $\bar{z} = -z^2 + z^3 + \cdots$. We have also

$$c(f^*(a)) = f^*(c(a)) = g_c \sum_{i=0}^{4l+2} a_i z^{4m+3+i}.$$

So we have

$$\sum_{i=0}^{4l+2} a_i z^{4m+3+i} = \sum_{i=0}^{2l+1} d_i (2z - z^2 + z^3 - \cdots)(z^2 - z^3 + \cdots)^{2m+1+i}.$$

Calculating this equation over the mod 2 integers, we have

$$\sum_{i=0}^{4l+2} a_i z^{4m+3+i} \equiv \sum_{i=0}^{2l+1} d_i (z^2 + z^3 + \cdots)^{2m+2+i} \mod(2, z^{4m+4l+6})$$

$$\equiv \sum_{j=0}^{2l+1} \sum_{i=0}^{2l+1} d_i (2m+1+j-i)z^{4m+4l+j} \mod(2),$$

since $(x^2 + x^3 + \cdots)^n = \sum_{j=2}^{\infty} (j-1)j^x$. Then

$$a_i \equiv \sum_{j=0}^{2l+1} d_j (\frac{2m+1+j}{2m+4l+2}) \mod(2) \quad \text{for } 1 \leq i \leq 4l+2.$$

By (1.4) and (1.6) for $1 \leq i \leq 4l+1$, $d_j \mod(2)$ is determined for $0 \leq j \leq 2l$, so the equation

$$a_{4l+2} \equiv \sum_{j=0}^{2l+1} d_j (\frac{2m+4l+2-j}{2m+4l+j}) \mod(2)$$

$$\equiv \sum_{j=0}^{2l+1} d_j (\frac{2m+4l+1-j}{2m+4l+2j+2}) \mod(2)$$

determines $a_{4l+2} \mod(2)$, here we use the fact $(\frac{2t}{2t-1}) \equiv 0 \mod(2)$ for any t. Next we consider the case of $n \equiv 1 \mod(4)$. Put $n = 4m+1$. We use \widehat{KO}^{-6} and \widehat{K}^{-6} instead of \widehat{KO}^{2n} and \widehat{K}^{2n}. Then we can put $f^*(a) = \sum_{i=0}^{2l+1} d_i z_0^{2m+1+i}$ for some integers d_i. By the same arguments as the above we have

$$a_i = \sum_{j} d_j (\frac{2m+i-j-1}{2m+j}) \mod(2) \quad \text{for } 1 \leq i \leq 4l+2$$

and in particular

$$a_{4l+2} = \sum_{j} d_j (\frac{2m+4l+2-i}{2m+4l+j}) \mod(2).$$

These and (1.4) determine $a_{4l+2} \mod(2)$. This completes the proof.
To compute \(F\{n, k\} \) by inductive step on \(k \) we prepare the followings.

Proposition 1.8. \(F\{n, k\} \) is a divisor of \(F\{n, k+1\} \).

Proof. It is trivial by definition.

Proposition 1.9. For \(f \in \{FP_{n+k, k}, S^{nd}\} \) with \(\deg(f)=F\{n, k\} \) we have
\[
F\{n, k\} \# e_c(f \circ p_{n+k, k}) \mid F\{n, k+1\} \mid F\{n, k\} \# (f \circ p_{n+k, k})
\]
where \(\# g \) denotes the order of \(g \) and \(a \mid b \) implies that \(a \) is a divisor of \(b \).

Proof. Choose \(f' \in \{FP_{n+k+1, k+1}, S^{nd}\} \) with \(\deg(f')=F\{n, k+1\} \). Since \(i_1 \circ p_{n+k, k}=0 \), we have
\[
0 = e_c(f' \circ i_1 \circ p_{n+k, k}) = -\deg(f' \circ i_1) \alpha_F(n, k)
= -F\{n, k+1\} \alpha_F(n, k) = -F\{n, k\} \alpha_F(n, k) F\{n, k+1\} / F\{n, k\}
= -e_c(f \circ p_{n+k, k}) F\{n, k+1\} / F\{n, k\}
\]
Hence the first part of the conclusion is obtained. Since \((\#(f \circ p_{n+k, k})) f \circ p_{n+k, k}=0 \), there exists \(h \in \{FP_{n+k+1, k+1}, S^{nd}\} \) with \(h \circ i_1=(\#(f \circ p_{n+k, k})) f \). Then \(\deg(h)=\deg(f) \# (f \circ p_{n+k, k})=F\{n, k\} \# (f \circ p_{n+k, k}) \). Since \(\deg(h) \) is a multiple of \(F\{n, k+1\} \), the second part of the conclusion follows.

Proposition 1.10. For \(f \in \{FP_{n+k, k}, S^{nd}\} \) with \(\deg(f)=F\{n, k\} \) there exists \(h \in \{FP_{n+k, k-1}, S^{nd}\} \) with \((F\{n, k+1\} / F\{n, k\}) f \circ p_{n+k, k}=h \circ i_1 \circ p_{n+k, k} \).

Proof. Consider the exact sequence
\[
\cdots \to \{FP_{n+k, k-1}, S^{nd}\} \xrightarrow{q_1^*} \{FP_{n+k, k}, S^{nd}\} \xrightarrow{\deg} \{FP_{n+1, 1}, S^{nd}\} \to \cdots
\]
Take \(f' \in \{FP_{n+k+1, k+1}, S^{nd}\} \) with \(\deg(f')=F\{n, k+1\} \). Then \(\deg((F\{n, k+1\} / F\{n, k\}) f \circ i_1)=0 \). So there exists \(h \in \{FP_{n+k, k-1}, S^{nd}\} \) with \(q_1^*(h)=(F\{n, k+1\} / F\{n, k\}) f \circ i_1 \) by exactness. Then \(h \circ q_1 \circ p_{n+k, k}=(F\{n, k+1\} / F\{n, k\}) f \circ p_{n+k, k} \) as desired.

Proposition 1.11. \(C\{2n, 2k\} \) is a divisor of \(H\{n, k\} \).

Proof. Consider the commutative diagram
\[
\begin{array}{ccc}
CP_{2n+2k, 2k} & \supset & CP_{2n+1, 1} = S^{4n} \\
S^{4n+4k-1} \downarrow {\pi} & & \downarrow {\pi'} \\
HP_{n+k, k} & \supset & HP_{n+1, 1} = S^{4n}
\end{array}
\]
in which all maps are the canonical ones. For our purpose it suffices to show that \(\pi' \) is a homotopy equivalence. Indeed this holds because in the following
commutative diagram π^* is an isomorphism.

\[H^{\ast\ast}(CP_{2n+2k}; Z) \xleftarrow{q^*} H^{\ast\ast}(CP_{2n+2k}; Z) \xrightarrow{\pi^*} H^{\ast\ast}(S^u; Z) \]

\[H^{\ast\ast}(HP_{n+k}; Z) \xrightarrow{q^*} H^{\ast\ast}(HP_{n+k}; Z) \xrightarrow{\pi^*} H^{\ast\ast}(S^u; Z). \]

Next we compute e-invariants of some elements.

Lemma 1.12. Suppose that there is a commutative diagram

\[
\begin{array}{cccc}
S^{(n+k)d-1} & \rightarrow & FP_{n+k, k} & \subset FP_{n+k+1, k+1} \\
\downarrow & & \downarrow L & \downarrow L' \\
S^{(n+k)d-1} & \rightarrow & FP_{n+k, k} & \rightarrow C(\tilde{p}) \\
\uparrow & & \uparrow \cup i & \uparrow i' \\
S^{(n+k)d-1} & \rightarrow & FP_{n+1, 1} & \rightarrow C(s)
\end{array}
\]

in which L denotes the multiplication by non-zero integer L. Then

\[e_C(s) = L \lbrace \sum_{j=1}^{k-1} (\tilde{p}^j d^k) C_j \rbrace / d^k (d^k - 1) \]

where $C_j = C_j(n, k)$ is the coefficient of x^{n+k} in $(\phi_F(x))^{n+j}$.

Proof. Applying \tilde{K} to the above diagram we have the following commutative diagram in which the horizontal sequences are exact.

\[
\begin{array}{cccc}
0 \leftarrow & \tilde{K}(FP_{n+k, k}) & \leftarrow & \tilde{K}(FP_{n+k+1, k+1}) \leftarrow \tilde{K}(S^{(n+k)d}) \leftarrow 0 \\
\uparrow L^* & & \uparrow L'^* & \uparrow = \\
0 \leftarrow & \tilde{K}(FP_{n+k, k}) & \leftarrow & \tilde{K}(C(\tilde{p})) \leftarrow \tilde{K}(S^{(n+k)d}) \leftarrow 0 \\
\downarrow i^* & & \downarrow i'^* & \downarrow = \\
0 \leftarrow & \tilde{K}(S^{ad}) & \leftarrow & \tilde{K}(C(s)) \leftarrow \tilde{K}(S^{(n+k)d}) \leftarrow 0.
\end{array}
\]

Choose $a_j \in \tilde{K}(C(\tilde{p}))$ for $0 \leq j \leq k$ such that $L'^*(a_j) = Lx^{n+j}$ for $0 \leq j \leq k-1$ and $L'^*(a_k) = x^{n+k}$. Then $i'^*(a_0)$ and $i'^*(a_k)$ generate $\tilde{K}(C(s))$. We have

\[\psi^2(i'^*(a_0)) = d^2i'^*(a_0) + \lambda i'^*(a_k) \]

for some $\lambda \in \mathbb{Z}$ and
We compute λ. We have

\[L'^*(\psi^2(a_0)) = \psi^2(L'^*(a_0)) = \psi^2(Lz^n) = L(z^2 + dz)^n \]
\[= L \sum_{j=0}^{k-1} (\zeta)d^{n-j}z^{n+j} \]
\[= \sum_{j=0}^{k-1} (\zeta)d^{n-j}L_2z^{n+j} + L(\zeta)d^{n-k}z^{n+k} \]
\[= L'^*(\sum_{j=0}^{k-1} (\zeta)d^{n-j}a_j + L(\zeta)d^{n-k}a_k) . \]

Since L'^* is monomorphic, we have

\[\psi^2(a_0) = \sum_{j=0}^{k-1} (\zeta)d^{n-j}a_j + L(\zeta)d^{n-k}a_k . \]

Next consider the following commutative diagram

\[\xymatrix{ \tilde{K}(FP_{n+k+1}) \ar[r]^{ch} \ar[u]^{L'^*} & H^*(FP_{n+k+1}; \mathbb{Q}) \ar[u]^{L'^*} \\
\tilde{K}(C(p)) \ar[r]^{ch} \ar[u]^{i'^*} & H^*(C(p); \mathbb{Q}) \ar[u]^{i'^*} \\
\tilde{K}(C(s)) \ar[u]^{i'^*} \ar[r]^{ch} & H^*(C(s); \mathbb{Q}). } \]

Choose the generators $x_{n+j} \in H^{n+j}(C(p); \mathbb{Q})$ for $0 \leq j \leq k$ such that $L'^*(x_{n+j}) = L^{n+j}$ for $0 \leq j \leq k-1$ and $L'^*(x_{n+k}) = L^{n+k}$. Then for $1 \leq j \leq k-1$

\[L'^*(ch(a_j)) = ch(L'^*(a_j)) = ch(Lz^{n+j}) = L(\phi_F(t))^{n+j} \]
\[= L(t^{n+j} + \text{middle dim} + C, t^{n+k}) \]
\[= L'^*(x_{n+j} + \text{middle dim} + LC_jx_{n+k}) \]

where the terms middle dim mean elements of middle dimensions. Since L'^* is monomorphic, we have

\[ch(a_j) = x_{n+j} + \text{middle dim} + LC_jx_{n+k} \text{ for } 1 \leq j \leq k-1, \]

and so

\[ch(i'^*(a_j)) = i'^*(ch(a_j)) = LC_ji'^*(x_{n+k}) = ch(LC_ji'^*(a_k)) \]
\[\text{ for } 1 \leq j \leq k-1 . \]

Since ch is monomorphic now, we have

\[i'^*(a_j) = LC_ji'^*(a_k) \text{ for } 1 \leq j \leq k-1 . \]
Then
\[\psi^2(i^*(a_0)) = i^*(\psi^2(a_0)) = i^* \left\{ \sum_{j=0}^{k-1} (j) d^{n-j} a_j + L(\xi) d^{n-k} a_k \right\} \]
\[= d^n i^*(a_0) + \left\{ \sum_{j=1}^{k-1} (j) d^{n-j} L C_j + L(\xi) d^{n-k} \right\} i^*(a_k) \]
\[= d^n i^*(a_0) + L d^{n-k} \left\{ \sum_{j=1}^{k-1} (j) d^{n-j} C_j + (\xi) \right\} i^*(a_k). \]

Therefore we have
\[\lambda = L d^{n-k} \left\{ \sum_{j=1}^{k-1} (j) d^{n-j} C_j + (\xi) \right\} \]
and
\[e_c(s) = L \left\{ \sum_{j=1}^{k-1} (j) d^{n-j} C_j + (\xi) \right\} / d^n (d^k - 1). \]

This completes the proof.

As a corollary of the above lemma we have

Proposition 1.13. In the same situation as (1.12) we have

(i) if \((F, k) = (C, 1), s = L n \eta\) and in particular \(p_{n+1,1} = n \eta: S^{2n+1} \to CP_{n+1,1} = S^{2n}\),

(ii) if \((F, k) = (H, 2), e_c(s) = L n(5n-1)/2^2 \cdot 3^2 \cdot 5, \)

(iii) if \((F, k) = (C, 4), e_c(s) = L n(15n^2+30n^2+5n-2)/2^7 \cdot 3^2 \cdot 5, \)

(iv) if \((F, k) = (C, 5), e_c(s) = L n(3n^4+10n^2+5n^2-2n+216)/2^8 \cdot 3^2 \cdot 5. \)

Proof. Since
\[\phi_F(x) = \begin{cases} x + x^2/2! + x^3/3! + \cdots & \text{for } F = C \\ 2x/2! + 2x^3/4! + 2x^5/6! + \cdots & \text{for } F = H, \end{cases} \]
we can easily compute \(e_c(s)\) for small \(k\) by elementary analysis, so we omit the details except (i). (i) follows from the fact that \(e_C: G_1 \to Z_2\) is an isomorphism and \(e_c(s) = \frac{1}{2} L n = e_c(L n \eta). \)

Remark. (i) is well known.

In case of \(F=H\) and \(k \equiv 1 \mod(2)\) or \(F=C\) and \(k \equiv 2 \mod(4)\) we have \(e_c(s) = 2 e_h(s)\) so the computation of \(e_h(s)\) may give more precise informations about the 2-primary components of the order of \(s\). We do not require the whole computations but we only compute \(e_h(s)\) for the case of \((F, k) = (H, 1)\) or \((C, 2)\). Let \(g_4 = p_2: S^4 \to S^4 = HP_2\) be the Hopf map. Put \(g_\infty = \{g_4\} \in G_3. \)
Then \(e_h(\infty) = 1/24\) and

Proposition 1.14 (James [7]). \(p_{n+1,1} = n g_\infty: S^{4n+3} \to HP_{n+1,1} = S^{4n} \)
Proof. We have the short exact sequence
\[0 \to \tilde{K}_0(-8)(HP_{n+1,1}) \xrightarrow{i^*} \tilde{K}_0(-8)(HP_{n+2,2}) \xrightarrow{q^*} \tilde{K}_0(-8)(S^{2n+4}) \to 0. \]
It is easily seen by (1.1) that \(\tilde{K}_0(-8)(HP_{n+1,1}) = Z\{g \in \mathbb{F}_5, \nu \} \), \(\tilde{K}_0(-8)(HP_{n+2,2}) = Z\{g \in \mathbb{F}_5, \nu \} \), \(\tilde{K}_0(-8)(S^{2n+4}) = Z\{e\} \), \(i^*(g \in \mathbb{F}_5) = g \in \mathbb{F}_5 \) and \(q^*(e) = y_{-1}^{2n+1} \).
We have
\[\psi^2(g \in \mathbb{F}_5) = \psi^2(g \in \mathbb{F}_5) = 2^4 g \{2^{4n} + n2^{4n-3} y_{-1}^{2n+1}\}. \]
Then
\[e'_K(p_{n+1,1}) = 2^{n+1} n/(2^{n+6} - 2^{n+4}) = n/24 = e'_K(g_n). \]
This shows that \(p_{n+1,1} = ng_n \), since \(e'_K : G_3 \to Z_{24} \) is an isomorphism by (1.2).

Now consider the following commutative diagram in which the horizontal sequences are exact.

\[\cdots \xrightarrow{p_{n+1,1}} \{S^{2n+1}, S^{2n-1}\} \xrightarrow{p_{n+1}} \{S^{2n+1}, CP_{n+1}\} \xrightarrow{i^*} \{S^{2n+1}, CP_{n+1}\} \xrightarrow{q^*} \{S^{2n+1}, S^{2n}\} \xrightarrow{q^*} \{S^{2n+1}, S^{2n}\} \xrightarrow{q^*} \{S^{2n+1}, S^{2n}\} \xrightarrow{q^*} \cdots \]

By (1.13) \(q_*(p_{n+1}) = m7 \). Then we have

Proposition 1.15. If \(L\equiv 0 \mod(2) \)

\[q_*(i_*)^{-1}(Lp_{n+1}) = \begin{cases} \frac{1}{2} L(n-1)g_m & \text{for } n \text{ odd} \\ \{\frac{1}{2} L(n+2)g_m, \left(\frac{1}{2} L(n+2)+12\right)g_m\} & \text{for } n \text{ even.} \end{cases} \]

Proof. The above diagram shows that \(q_*(i_*)^{-1}(Lp_{n+1}) = (j_*)^{-1}(Lp_{n+1,2}) \). Since \(\{S^{2n+1}, S^{2n-1}\} = Z_2 \{\nu^3\} \) and \(p_{n+1}^{-1}(\nu^2) = (n-1)\nu^3 = 12(n-1)g_m \), \((j_*)^{-1}(Lp_{n+1,2}) \) is a coset of the subgroup of \(\{S^{2n+1}, CP_{n+1}\} = G_3 \) generated by \(12(n-1)g_m \). This coset consists of a single element if \(n \) is odd or two elements if \(n \) is even. In case of \(n \) being odd we have the following commutative diagram by the proof of
(1.11), (i) of (1.13) and (1.14).

\[
\begin{array}{c}
p_{n+1,2} \quad CP_{n+1,2} = S^{2n+2} \vee S^{2n} \supset CP_{n+1} = S^{2n-2} \\
S^{2n+1} \quad \text{=}
\end{array}
\]

(1/2)(n-1)g_{\infty} \rightarrow HP_{(n+1)/2,1} = S^{2n-2}

This diagram proves Proposition if \(n \) is odd. If \(n \) is even, we have the short exact sequence

\[0 \rightarrow \{S^{2n+1}, S^{2n-1}\} \rightarrow \{S^{2n+1}, S^{2n-2}\} \xrightarrow{j_*} \{S^{2n+1}, CP_{n+1,2}\} \rightarrow 0\]

since \(p_{n,1} = (n-1)\eta \) by (i) of (1.13). For our purpose it suffices to show that

\[(j_*)^{-1}(p_{n+1,2}) = \{(n/2+1)g_{\infty}, (n/2+13)g_{\infty}\} .\]

For any \(f \in (j_*)^{-1}(p_{n+1,2}) \) the equation

\[(*) \quad e'_k(f) = (n/2+1+12e)/24\]

implies this, because \(e'_k((n/2+1)g_{\infty}) = (n/2+1)/24 \). We prove (*). We use \(\tilde{KO}^{-2} \) if \(n \equiv 0 \mod(4) \) or \(\tilde{KO}^{-6} \) if \(n \equiv 2 \mod(4) \). The methods are quite parallel, so we only prove (*) for the case of \(n \equiv 0 \mod(4) \). Put \(n = 4m \). There is the following commutative diagram in which the horizontal sequences are exact.

\[
\begin{array}{c}
0 \leftarrow \tilde{KO}^{-2}(CP_{4m+1,2}) \leftarrow \tilde{KO}^{-2}(CP_{4m+2,2}) \leftarrow \tilde{KO}^{-2}(S^{6m+2}) \leftarrow 0 \\
\downarrow i^* \quad \downarrow i^* \quad \downarrow i^* \\
0 \leftarrow \tilde{KO}^{-2}(S^{6m+2}) \leftarrow \tilde{KO}^{-2}(C(f)) \leftarrow \tilde{KO}^{-2}(S^{6m+2}) \leftarrow 0
\end{array}
\]

By Theorem 2 of Fujii [4] it is easy to see that \(\tilde{KO}^{-2}(CP_{4m+1,2}) = Z \{z_1z_2^{2m-1}\} \), \(\tilde{KO}^{-2}(CP_{4m+2,2}) = Z \{z_1z_2^{2m-1}, z_1z_2^{2m}\} \), \(\tilde{KO}^{-2}(CP_{4m+1,1}) = Z \{w\} \) with \(2w = z_1z_2^{2m-1} \) and \(\tilde{KO}^{-2}(CP_{4m+2,1}) = Z \{z_1z_2^{2m}\} \). Take \(a \in \tilde{KO}^{-2}((C(f)) \) with \(u^*(a) = w \). Then \(a \) and \(v^*(z_1z_2^{2m}) = i^*(z_1z_2^{2m}) \) generate \(\tilde{KO}^{-2}(C(f)) \). By definition \(2a = i^*(z_1z_2^{2m-1}) + ev^*(z_1z_2^{2m}) \) for some integer \(e \). We have \(\psi^2(a) = 2^{4m}a + \lambda i^*(z_1z_2^{2m}) \) for some integer \(\lambda \), and \(e'_k(f) = \lambda/2^{4m+3} \). We have also

\[c(2a) = c(i^*(z_1z_2^{2m-1}) + ev^*(z_1z_2^{2m})) = g_{c}i^*\{2z^{4m-1} - (4m-1)z^{4m} + (4m^2+2e)z^{4m+1}\}\]

and

\[c(i^*(z_1z_2^{2m})) = 2g_{c}i^*(z^{4m+1})\]

and then
\[c(\psi^2(2a)) = c(2^{4m+1}a + 2\lambda z^{2m}) = g c^i \{ 2^{4m+1}z^{4m-1} - 2^{4m}(4m - 1)z^{4m} + (2^{4m+2}m^2 + 2^{4m+1}e + 4\lambda)z^{4m+1} \} . \]

On the other hand
\[c(\psi^2(2a)) = \psi^2(c(2a)) = \psi^2[g c^i \{ 2z^{4m-1} - (4m - 1)z^{4m} + (4m^2 + 2e)z^{4m+2} \}] = 2g c^i \{ 2z^{4m-1} - (4m - 1)z^{4m} + (4m^2 + 2e)z^{4m+1} \} = g c^i \{ 2^{4m+1}z^{4m-1} - 2^{4m}(4m - 1)z^{4m} + 2^{4m-1}(2^m + 2m + 1 + 16e)z^{4m+1} \} . \]

Comparing the coefficients of \(z^{4m+1} \), we have
\[\lambda = 2^{4m-2}(2m + 1 + 12e) \]
and so
\[e_k(f) = (2m + 1 + 12e)/24 . \]

This completes the proof.

In the sequel we shall need the explicit form of \(\alpha_F(n, k) \) for small \(k \). Since the expansion of \(\phi^{r'}(x) \) is known (see e.g. [10]), we can obtain the following by elementary calculations.

Lemma 1.16.

\[
\begin{align*}
\alpha_F(n, 0) & = 1, \\
\alpha_F(n, 1) & = -n/2^3, \\
\alpha_F(n, 2) & = n(5n+1)/2^3 \cdot 5, \\
\alpha_F(n, 3) & = -n(35n^2 + 231n + 382)/2^7 \cdot 3 \cdot 5 \cdot 7, \\
\alpha_F(n, 4) & = n(175n^3 + 2310n^2 + 10181n + 14982)/2^{11} \cdot 3^5 \cdot 5^2 \cdot 7, \\
\alpha_F(n, 5) & = -n(385n^4 + 8470n^3 + 69971n^2 + 257246n + 355128)/2^{13} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11, \\
\alpha_F(n, 1) & = -n/2, \\
\alpha_F(n, 2) & = n(3n + 5)/2^5 \cdot 3, \\
\alpha_F(n, 3) & = -n(n+2)(n+3)/2^4 \cdot 3, \\
\alpha_F(n, 4) & = n(15n^3 + 150n^2 + 485n + 502)/2^7 \cdot 3^5, \\
\alpha_F(n, 5) & = -n(3n^4 - 30n^3 + 785n^2 - 78n + 1240)/2^8 \cdot 3^2 \cdot 5, \\
\alpha_F(n, 6) & = n(63n^5 + 1575n^4 + 15435n^3 + 73801n^2 + 171150n + 152696) \\
& /2^{10} \cdot 3^4 \cdot 5 \cdot 7, \\
\alpha_F(n, 7) & = -n(9n^6 + 315n^5 + 4515n^4 + 33817n^3 + 139020n^2 + 295748n \\
& + 252336)/2^{11} \cdot 3^4 \cdot 5 \cdot 7, \\
\alpha_F(n, 8) & = n(135n^7 + 6300n^6 + 124110n^5 + 1334760n^4 + 8437975n^3 \\
& + 74777100n^2 + 68303596n + 138452016)/2^{15} \cdot 3^5 \cdot 5^2 \cdot 7, \\
\end{align*}
\]
\[\alpha_c(n, 9) = -n(15n^8 + 900n^7 + 23310n^6 + 339752n^5 - 829745n^4 + 38354500n^3 \\
+ 27449684n^2 + 112877136n + 100476288)/2^{185} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11 , \]

\[\alpha_c(n, 10) = n(99n^9 + 7425n^8 + 244530n^7 + 4634322n^6 + 55598235n^5 \\
+ 436886945n^4 + 2242194592n^3 + 7220722828n^2 \\
+ 38722058672 - 15239326848)/2^{185} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11 . \]

2. \(H\{n, k\} \) for \(k \leq 5 \)

The results of this section are summarized as follows.

Theorem 2.1.
(i) \(H\{n, 1\} = 1 \),
(ii) \(H\{n, 2\} = 24/(n, 24) \),
(iii) \(H\{n, 3\} = H\{n, 2\} \text{den}[H\{n, 2\} \alpha_H(n, 2)] \),
(iv) \(H\{n, 4\} = H\{n, 3\} \text{den}\left[\frac{1}{2} H\{n, 3\} \alpha_H(n, 3) \right] \),
(v) \(H\{n, 5\}/(H\{n, 4\} \text{den}[H\{n, 4\} \alpha_H(n, 4)]) \\
= \begin{cases} 1 & \text{if } n \equiv 1 \text{ mod}(2^5) \text{ or } 34 \text{ mod}(2^6) \\
1 & \text{otherwise}, \end{cases} \)

where \(\text{den}(a) \) denotes the denominator of a rational number \(a \) when the fraction \(a \) is expressed in its lowest terms.

Proof. (i) is trivial.

By (1.14), \(\#p_{n+1, 1} = 24/(n, 24) \), since \(g_{\infty} = 24 \). Then \(H\{n, 2\} | 24/(n, 24) \) by (1.9). Choose \(f \in \{H_P\}_{n+2, 2}, S^{\infty}\) with \(\text{deg}(f) = H\{n, 2\} \). Then

\[0 = f \circ i_1 \circ p_{n+1, 1} = \text{deg}(f)p_{n+1, 1} = H\{n, 2\} p_{n+1, 1} . \]

Therefore \(24/(n, 24) | H\{n, 2\} \). Hence (ii) follows.

Take \(f \in \{H_P\}_{n+2, 2}, S^{\infty}\) with \(\text{deg}(f) = H\{n, 2\} \). We have \(\#e_c(f \circ p_{n+2, 2}) = \#(f \circ p_{n+2, 2}) \), since \(e_c: G_7 \to Z_{360} \) is an isomorphism by (1.2). They by (1.9) \(H\{n, 3\} = H\{n, 2\} \cdot \#c(f \circ p_{n+2, 2}) \). By (1.3) \(e_c(f \circ p_{n+2, 2}) = -H\{n, 2\} \alpha_H(n, 2) \). Hence (iii) is obtained.

For any \(h \in \{H_P\}_{n+3, 2}, S^{\infty}\) we have

\[e'_{k}(h \circ q_1 \circ p_{n+3, 3}) = -\frac{1}{2}\text{deg}(h \circ q_1)\alpha_H(n, 3) = 0 \]

by (1.5). Since \(e'_k: G_1 \to Z_{360} \) is an isomorphism by (1.2), \(h \circ q_1 \circ p_{n+3, 3} = 0 \).

Then by (1.10), for \(f \in \{H_P\}_{n+3, 3}, S^{\infty}\) with \(\text{deg}(f) = H\{n, 3\} \), \(\#(f \circ p_{n+3, 3}) \) is a divisor of \(H\{n, 4\}/H\{n, 3\} \). Conversely (1.9) implies that \(\#(f \circ p_{n+3, 3}) \) is a multiple of \(H\{n, 4\}/H\{n, 3\} \). Hence \(\#(f \circ p_{n+3, 3}) = H\{n, 4\}/H\{n, 3\} \). On the other hand \(e'_{k}(f \circ p_{n+3, 3}) = -\frac{1}{2}H\{n, 3\} \alpha_H(n, 3) \) by (1.5). Hence \(\#(f \circ p_{n+3, 3}) = \text{den}\left[\frac{1}{2} H\{n, 3\} \alpha_H(n, 3) \right] \). Therefore
\[H\{n, 4\}/H\{n, 3\} = \text{den}\left[\frac{1}{2} H\{n, 3\} \alpha_H(n, 3) \right] \]

and this implies (iv).

For the proof of (v) we prepare a lemma.

Lemma 2.2. If \(n \equiv 0 \) or \(3 \mod(4) \), the image of \(p_{n+4,2}^* : \{HP_{n+4,2}, S^{4n}\} \rightarrow \{S^{4n+15}, S^{4n}\} \) contains the element \(\eta \kappa \in G_{15} \).

The proof of (2.2): Since all Toda brackets which appear in the proof have zero indeterminacies, we have

\[\eta \kappa = \langle \epsilon, 2t, \nu^t \rangle = \langle \epsilon, 2\nu, \nu \rangle = \langle \epsilon, 2g_{\omega}, g_{\omega} \rangle . \]

Consider the diagram

\[\begin{array}{ccc}
S^{4n+14} & \xrightarrow{(n+3)g_{\omega}} & S^{4n+11} \\
\downarrow & & \downarrow \\
P_{n+3,1} & \xrightarrow{HP_{n+3,1}=S^{4n+8}} & P_{n+4,1} \\
\downarrow & & \downarrow \\
\epsilon & \xrightarrow{i} & S^{4n+12} \\
\end{array} \]

By (1.14) \(p_{n+3,1}=(n+2)g_{\omega} \) and \(p_{n+4,1}=(n+3)g_{\omega} \). So \(p_{n+3,1} \circ (n+3)g_{\omega} = \epsilon \circ p_{n+3,1} = 0 \), since \(2g_{\omega}^2 = \epsilon g_{\omega} = 0 \). Then there exists \(f \in \{HP_{n+4,2}, S^{4n}\} \) with \(f \circ i = \epsilon \), and by definition of Toda bracket

\[f \circ p_{n+4,2} \subseteq \langle \epsilon, (n+2)g_{\omega}, (n+3)g_{\omega} \rangle \]

and

\[\langle \epsilon, (n+2)g_{\omega}, (n+3)g_{\omega} \rangle = \frac{1}{2} (n+2) (n+3) \langle \epsilon, 2g_{\omega}, g_{\omega} \rangle \]

\[= \frac{1}{2} (n+2) (n+3) \eta \kappa . \]

Thus \(f \circ p_{n+4,2} = \frac{1}{2} (n+2) (n+3) \eta \kappa \). Since the order of \(\eta \kappa \) is 2, the conclusion follows.

Now we prove (v). Take \(f \in \{HP_{n+4,4}, S^{4n}\} \) with \(\text{deg}(f) = H\{n, 4\} \). Then \(e_c(f \circ p_{n+4,4}) = -H\{n, 4\} \alpha_H(n, 4) \) by (1.3), and \(\#(f \circ p_{n+4,4}) = \#e_c(f \circ p_{n+4,4}) = 1 \) or 2 by (1.2). From (1.9) \(H\{n, 5\}/(H\{n, 4\} \text{den}[H\{n, 4\} \alpha_H(n, 4)]) = 1 \) or 2. And by (1.2), if \(\nu_3(H\{n, 4\} \alpha_H(n, 4)) \equiv -1 \), we have \(\#(f \circ p_{n+4,4}) = \#e_c(f \circ p_{n+4,4}) = \text{den}[H\{n, 4\} \alpha_H(n, 4)] \) and

\[H\{n, 5\} = H\{n, 4\} \text{den}[H\{n, 4\} \alpha_H(n, 4)] , \]
where \(\nu_p(n/m) = \nu_p(n) - \nu_p(m) \) for a prime number \(p \) and integers \(m \) and \(n \). (1.16), (ii), (iii), (iv) and elementary analysis show that \(\nu_p(H\{n,4\}\alpha_H(n,4)) \geq 0 \) if and only if \(n \equiv 3 \mod(2^3), 1 \mod(2^5), 34 \mod(2^6) \) or \(0 \) and \((2^9) \). Consider the case of \(n \equiv 3 \mod(2^9) \) or \(0 \mod(2^{10}) \). By (2.2) there exists \(h \in \{HP_{n+4,2}, S^{\omega}\} \) with \(h \circ p_{n+4,2} = \eta \kappa \). Then if \(f + h \circ q_2 \), say \(f' \), satisfies the conditions \(\#e(f \circ p_{n+4,2}) = \#(f' \circ p_{n+4,2}) \) and \(\deg(f') = H\{n,4\} \). Then by (1.3) \(\#e(f' \circ p_{n+4,2}) = \text{den}[H\{n,4\}\alpha_H(n,4)] \) and the conclusion (v) follows from (1.9).

3. \(C\{n,k\} \) for \(k \leq 10 \)

In this section we determine inductively \(C\{n,k\} \) for \(k \leq 8 \) and estimate them for \(k = 9 \) and \(10 \). The results are as follows.

Theorem 3.1.

(i) \(C\{n,1\} = 1 \),

(ii) \(C\{n,2\} = 2(n/2) \),

\(\frac{24}{n, 24} \) if \(n \equiv 1 \mod(4) \)

(iii) \(C\{n,4\} = C\{n,3\} = \begin{cases} 12/(n, 3) & \text{if } n \equiv 1 \mod(8) \\ 6/(n, 3) & \text{if } n \equiv 5 \mod(8) \end{cases} \)

(iv) \(C\{n,5\} = C\{n,4\}\text{den}[C\{n,4\}\alpha_c(n,4)] \),

(v) \(C\{n,6\} = C\{n,5\}\text{den}[C\{n,5\}\alpha_c(n,5)] \)

\(\begin{cases} C\{n,5\} & \text{if } n \equiv 0 \mod(2), 1, 11 \text{ or } 27 \mod(32) \\ 2C\{n,5\} & \text{otherwise} \end{cases} \)

(vi) \(C\{n,7\} = \begin{cases} C\{n,6\}\text{den}[C\{n,6\}\alpha_c(n,6)] & \text{if } n \equiv 0 \mod(2) \text{ or } 19 \mod(32) \\ 2C\{n,6\}\text{den}[C\{n,6\}\alpha_c(n,6)] & \text{otherwise} \end{cases} \)

(vii) \(C\{n,8\} = C\{n,7\} \),

(viii) \(C\{n,9\}/(C\{n,8\}\text{den}[C\{n,8\}\alpha_c(n,8)]) \)

\(\begin{cases} 1 \text{ or } 2 & \text{if } n \equiv 3 \mod(2^7) \text{ or } 1 \mod(2^9) \\ 1 & \text{otherwise} \end{cases} \)

\(\begin{cases} 1 & \text{if } n \equiv 0, 6 \mod(2^3), 10, 12 \mod(2^4) \\ 18, 20 \mod(2^5), 34, 36 \mod(2^6) \text{ or } 4 \mod(2^7) \\ 1 \text{ or } 2 & \text{otherwise} \end{cases} \)

Proof. (i) is trivial. (ii) is proved by the same methods as the proof of (ii) of (2.1).

The proof of (iii): The first equality is a consequence of (1.9) and the fact \(G_3 = 0 \). We prove the second equality. Choose \(f \in \{CP_{n+2,2}, S^{2\omega}\} \) with \(\deg(f) = C\{n,2\} \). Then \(C\{n,3\}/C\{n,2\} \) is a divisor of \(\#(f \circ p_{n+2,2}) \) from (1.9), there exists \(h \in \{CP_{n+2,1}, S^{2\omega}\} \) with \((C\{n,3\}/C\{n,2\})f \circ p_{n+2,2} = h \circ q_1 \circ p_{n+2,2} \) from (1.10), while \(q_1 \circ p_{n+2,2} = (n+1)\eta \) from (i) of (1.13), so \(C\{n,3\}/C\{n,2\} \) is a multiple
of \(\#(f \circ p_{n+2,2}) \) if \(n \) is odd, and therefore \(C\{n,3\}/C\{n,2\} = \#(f \circ p_{n+2,2}) \) if \(n \) is odd. From (1.5), \(e'_k(f \circ p_{n+2,2}) = \frac{1}{2} a_2 - \frac{1}{2} C\{n,2\} \alpha_c(n,2) \) for some integer \(a_2 \). If \(n \equiv 3 \) mod(4), say \(n=4m+3 \), \(a_2 \equiv 0 \) mod(2) by (1.6)', then \(e'_k(f \circ p_{n+2,2}) = -(4m+3)/(6m+7)/12 \) by (1.16) and (ii), hence \(\#(f \circ p_{n+2,2}) = \text{den}[(4m+3)/12] = 12/(n,24) \) by (1.2), and therefore the conclusion follows in this case since \(C\{n,2\} = 2 \). If \(n \equiv 1 \) mod(4), say \(n=4m+1 \), \(a_2 \equiv 1 \) mod(2) by (1.4), (1.7), (1.7)' and (ii), then \(e'_k(f \circ p_{n+2,2}) = -(12m-1)(m+1)/6 \) by (1.16) and (ii), hence \(\#(f \circ p_{n+2,2}) = \text{den}[(m+1)/6] \) and the conclusion follows easily in this case also.

Next we consider the case of \(n \) being even. Take \(f \in \{CP_{n+3,3}, S^2n\} \) with \(\text{deg}(f) = C\{n,3\} \). First we show that \(C\{n,3\} \) is a multiple of \(24/(n,24) \). Since arguments are quite parallel we only consider the case of \(n \equiv 0 \) mod(4). Put \(n=4m \) and consider the commutative diagram

\[
\begin{array}{ccc}
\widetilde{K}_0(CP_{4m+3,3}) & \xrightarrow{c} & \widetilde{K}(CP_{4m+3,3}) \\
\uparrow f^* & & \uparrow f^* \\
\widetilde{K}_0(S^{2m}) & \xrightarrow{c} & \widetilde{K}(S^{2m}) \\
\end{array}
\]

We can put \(f^*(g^n_k) = d_0\bar{z}^m + d_1\bar{z}^{m+1} \) for some integers \(d_0 \) and \(d_1 \). We have

\[
c(f^*(g^n_k)) = d_0(\bar{z}^m + \bar{z}) + d_1(\bar{z}^{m+1}) = d_0\bar{z}^m - 2d_1m\bar{z}^{m+1} + ((2m^2+m)d_0 + d_1)\bar{z}^{m+2},
\]

\[
c(f^*(g^n_k)) = d_0\bar{z}^m + a_1\bar{z}^{m+1} + a_2\bar{z}^{m+2}
\]

for some integers \(a_0, a_1 \) and \(a_2 \). Comparing the coefficients of the powers of \(z \), by (1.4) we have

\[
d_0 = a_0 = C\{n,3\},
\]

\[
(2m^2+m)d_0 + d_1 = a_2 = C\{4m,3\} \alpha_c(4m,2) = C\{4m,3\}m(12m+5)/6
\]

and so \(d_1 = -C\{4m,3\}m/6 \). Thus \(C\{4m,3\} \) is a multiple of \(\text{den}(m/6) = 24/(4m,24) \) as desired. Second we show that \(C\{n,3\} \) is a divisor of \(24/(n,24) \). We define \(h: \text{CP}_{n+2,2} = S^{2n} \vee S^{2n+2} \to S^{2n} \) by \(h|_{S^{2n}} = 24/(n,24) \) and

\[
h|_{S^{2n+2}} = \begin{cases} 0 & \text{if } n \equiv 0 \text{ mod}(16) \\ \eta^2 & \text{for other even } n \end{cases}
\]

Since \(p_{n+2,2} = 2 \text{ng} \vee \eta, h\circ p_{n+2,2} = (12n/(n,24))\eta^m + \eta|_{S^{2n+2}} = 0 \). Hence there exists \(f' \in \{CP_{n+3,3}, S^{2n}\} \) with \(f'|_{CP_{n+2,2}} = h \). Clearly \(\text{deg}(f') = 24/(n,24) \), so \(C\{n,3\} \) is a divisor of \(24/(n,24) \). Thus \(C\{n,3\} = 24/(n,24) \) if \(n \) is even. This completes the proof of (iii).

The proof of (iv): By (1.3), \(e_c(h\circ q_{1}\circ p_{n+4,4}) = 0 \) for any \(h \in \{CP_{n+4,3}, S^{2n}\} \) and then \(h\circ q_{1}\circ p_{n+4,4} = 0 \) by (1.2). So by (1.3), (1.9) and (1.10)
$$C\{n,5\}/C\{n,4\} = \#(f \circ p_{n+5,5}) = \text{den}[C\{n,4\} \alpha_c(n,4)].$$

The proof of (v): First consider the case of $n \equiv 1 \mod(2)$. Choose $f \in \{CP_{n+5,5}, S^{2n}\}$ with $\deg(f) = C\{n,5\}$. Recall that $G_9 = Z_2\{7\} \oplus Z_2\{7\} \oplus Z_3\{\mu\}$ and the kernel of $e_c: G_9 \to Q/Z$ is $Z_2\{7\} \oplus Z_2\{7\}$. Hence, if $e_c(f \circ p_{n+5,5}) = 0$, we can choose $h \in \{CP_{n+5,1}, S^{2n}\} = G_8$ with $(f+h \circ q) p_{n+5,5} = 0$, because $g_c p_{n+5,5} = p_{n+5,4} = \eta$ by (i) of (1.13). Since $\deg(f+h \circ q) = \deg(f) = C\{n,5\}$, by (1.9) we have

$$C\{n,6\} = C\{n,5\} = C\{n,5\} \# e_c(f \circ p_{n+5,5}).$$

If $e_c(f \circ p_{n+5,5}) \neq 0$, (1.9) implies

$$C\{n,6\} = 2C\{n,5\} = C\{n,5\} \# e_c(f \circ p_{n+5,5}).$$

Since $C\{n,5\}$ and $\alpha_c(n,5)$ are known, we can easily compute $\text{den}[C\{n,5\} \alpha_c(n,5)]$ by elementary analysis. Indeed

$$\# e_c(f \circ p_{n+5,5}) = \begin{cases} \text{den}[C\{n,5\} \alpha_c(n,5)] & \\
1 \text{ if } n \equiv 1, 11 \text{ or } 27 \mod(32) & \\
2 \text{ for other odd } n. &
\end{cases}$$

This completes the proof of (v) if n is odd.

Suppose that n is even. It is easy to see that $\text{den}[C\{n,5\} \alpha_c(n,5)] = 1$. From (1.8) and (1.11)

$$C\{n,5\} \mid C\{n,6\} \mid H\{n/2,3\}.$$

By the previous calculations $C\{n,5\}$ and $H\{n/2,3\}$ are coincide if $n \equiv 0 \mod(4), 6, 10$ or $14 \mod(16)$, so $C\{n,5\} = C\{n,6\}$ in this case, while if $n \equiv 2 \mod(16)$ the odd components are coincide but

$$2 = \nu_2(C\{n,5\}) \leq \nu_2(C\{n,6\}) \leq \nu_2(H\{n/2,3\}) = 3.$$

Put $n = 16m + 2$. We construct a commutative diagram in which $\deg(f) = C\{16m+2,5\}$.
By (i) of (1.13), $q_{16m+5}p_{16m+7}=p_{16m+7,1}=0$ and so by (1.15) we have

$$q_{16m+7}(i_1^*i_1^{-1}(p_{16m+7}) = ((8m+4)g_\omega, (8m+16)g_\omega) .$$

Take $s_1 \in (i_1^*i_1^{-1}(p_{16m+7}) \subseteq \{S_{32m+13}, CP_{16m+6}\}$ with $q_{16m+4}s_1=(8m+16)g_\omega$. Put $s_1=q_{16m+1}^*s_1$. Then

$$q_3^3s_1 = q_{16m+4}^3s_1 = (8m+16)g_\omega = 0 .$$

Hence there exists $s_2 \in \{S_{32m+13}, CP_{16m+5,3}\}$ with $i_1^*s_2 = s_1$. Since $q_2^*s_2 \in G_3=0$, there exists $s_3 \in \{S_{32m+13}, CP_{16m+4,2}\}$ with $i_1^*s_3 = s_2$. Next we define h by $h|_{S_{32m+4}} = C\{16m-2,4\}$ and $h|_{S_{32m+6}} = h^2$. Since $p_{16m+4,3}=(8m+1)g_\omega \vee \eta$ by the proof of (1.11), (1.14) and (i) of (1.13), we have

$$h \circ p_{16m+4,2} = C\{16m+2,4\} \cdot (8m+1)g_\omega + \eta^3$$

$$= \frac{24(8m+1)g_\omega + 12g_\omega}{16m+2,24}$$

$$= 0 .$$

So there exists $h' \in \{CP_{16m+5,3}, S_{32m+4}\}$ with $h' \circ i = h$. Since $h' \circ p_{16m+5,3} \in G_3=0$, there exists $h'' \in \{CP_{16m+6,4}, S_{32m+4}\}$ with $h'' \circ i = h'$. By (1.2), (1.3) and (iv) we have

$$\#(h'' \circ p_{16m+6,4}) = \#C(h'' \circ p_{16m+6,4})$$

$$= \text{den} \{\deg(h'') \alpha_c(16m+2,4)\}$$

$$= C\{16m+2,5\}/C\{16m+2,4\} .$$

Hence there exists $f \in \{CP_{16m+7,5}, S_{32m+4}\}$ with $(C\{16m+2,5\}/C\{16m+2,4\})h'' = f \circ i$ and $\deg(f) = \deg(h'')C\{16m+2,5\}/C\{16m+2,4\} = C\{16m+2,5\}$. This completes the construction of the above diagram.

Now we proceed to the proof of (v). We may write $s_3 = s_3 \setminus q_1^*s_3$ for some $s_3 \in \{S_{32m+13}, S_{32m+4}\}$. By (iii) of (1.13)

$$e(c(q_3^*s_3) = (16m+3)(3840m^3+2640m^2+590m+43)/2! \cdot 3 \cdot 5$$

so by (1.2) $q_1^*s_3$ is divisible by 2. Then

$$f \circ p_{16m+7,5} = f \circ 3p_{16m+7,5}, \text{ since } 2G_3 = 0 ,$$

$$= (C\{16m+2,5\}/C\{16m+2,4\})h \circ s_3$$

$$= (C\{16m+2,5\}/C\{16m+2,4\})(C\{16m+2,4\})s_3^3 + \eta^2 \circ q_1^*s_3$$

$$= (C\{16m+2,5\}/C\{16m+2,4\})(0+0), \text{ since } C\{16m+2,4\} \equiv 0 \mod(2)$$

$$\quad \text{ and } 2\eta = 0$$

$$= 0 .$$

Thus by (1.9), $C\{16m+2,6\} = C\{16m+2,5\}$. This completes the proof of (v).
The proof of (vi): First consider the case of \(n \) being odd. For any \(h \in \{CP_{n+6,6}, S^{2n}\} \), by (i) of (1.5) we have

\[e'_h(h \circ q \circ p_{n+6,6}) = \frac{1}{2} a \]

for some integer \(a \). By (1.6) and (1.7) \(a \) is even. Then \(h \circ q \circ p_{n+6,6} = 0 \) by (1.2). Thus (1.9) and (1.10) imply

\[C \{n, 7\} = C \{n, 6\} \#(f \circ p_{n+6,6}) \]

for \(f \in \{CP_{n+6,6}, S^{2n}\} \) with \(\deg(f) = C \{n, 6\} \). Again by (i) of (1.5)

\[e'_h(f \circ p_{n+6,6}) = \frac{1}{2} a + \frac{1}{2} C \{n, 6\} a \]

for some integer \(a \), and by the proof of (iii) of (1.5) we have

\[a \equiv 0 \mod(2) \quad \text{if} \quad n \equiv 3 \mod(4) \quad \text{or} \quad 33 \mod(64) \]

for other odd \(n \).

Then since \(\#(f \circ p_{n+6,6}) \) is equal to \(e'_h(f \circ p_{n+6,6}) = \text{den} \left[\frac{1}{2} a + \frac{1}{2} C \{n, 6\} a \right] \)

by (1.2), elementary analysis draws the conclusion for odd \(n \) by (iii), (iv), (v) and (1.16).

Next suppose that \(n \) is even. Choose \(f \in \{CP_{n+6,6}, S^{2n}\} \) with \(\deg(f) = C \{n, 6\} \).

(1.2) says that \(e_c = 2e'_h : G_1 \to Q/Z \) is monomorphic on the odd component, so (vi) is true about the odd components by (1.3) and (1.9). So we only see the 2-primary part. Recall that \(G_1 = Z \{5\} \oplus Z_{63} \). By (1.3), (1.16) and elementary analysis show that

\[\nu_2(\# \circ (f \circ p_{n+6,6})) \leq 2 \]

If \(\nu_2(\# \circ (f \circ p_{n+6,6})) = 0 \), \(\nu_2(\#(f \circ p_{n+6,6})) \leq 1 \) by (1.2) and (1.5). If \(\nu_2(\#(f \circ p_{n+6,6})) = 0 \), the result follows by (1.9). If \(\nu_2(\#(f \circ p_{n+6,6})) = 1 \), we have

\[f \circ p_{n+6,6} = 4 \xi \mod(\text{odd components}) \]

Since \(4 \xi = \mu \gamma^2 \) and \(p_{n+6,1} = q_5 \circ p_{n+6,6} = n \),

\[(f + \mu \gamma q_5) p_{n+6,6} = 0 \mod(\text{odd components}) \]

Clearly \(\deg(f + \mu \gamma q_5) = \deg(f) = C \{n, 6\} \), so the result follows again by (1.9). If \(\nu_2(\# \circ (f \circ p_{n+6,6})) = u = 1 \) or 2,

\[\nu_2(C \{n, 6\}) + u \leq \nu_2(C \{n, 7\}) \]

by (1.9), and

\[\nu_2(\#(f \circ p_{n+6,6})) = u + 1 \]
by (1.2) and (1.5), so
\[f \circ p_{n+6,6} \equiv 2^{n+6,6} \mod (2^{n+6,6}, \text{odd components}) \]
and then
\[(2^n f + \mu \eta q_5) \circ p_{n+6,6} \equiv 0 \mod (\text{odd components}). \]

Put \[\#((2^n f + \mu \eta q_5) \circ p_{n+6,6}) = 2m + 1. \] Then there exists \(h \in \{ CP_{n+7,7}, S^{2n+10} \} \) with \(h \mid CP_{n+6,6} = (2m + 1) (2^n f + \mu \eta q_5) \). Clearly \(\deg(h) = 2^n (2m + 1) \deg(f) = 2^n (2m + 1) \cdot C \{ n, 6 \} \). Since \(\deg(h) \) is a multiple of \(C \{ n, 7 \} \), we have
\[\nu_2(C \{ n, 7 \}) \leq \nu_2(C \{ n, 6 \}) + u \]
and hence
\[\nu_2(C \{ n, 7 \}) = \nu_2(C \{ n, 6 \}) + u \]
\[= \nu_2(C \{ n, 6 \}) + \nu_2(\#c(f \circ p_{n+6,6})) \]
\[= \nu_2(C \{ n, 6 \}) \text{den}[C \{ n, 6 \} \alpha_c(n, 6))] \]
as desired. This completes the proof of (vi).

The proof of (vii): Since \(G_{13} = Z_3 \{ \alpha_1, \beta_1 \} \), \(C \{ n, 8 \}/C \{ n, 7 \} = 1 \) or 3 by (1.9). In case of \(n \) being even, the relations
\[C \{ n, 7 \} \mid C \{ n, 8 \} \mid H \{ n/2, 4 \} \]
and the previous calculations show that the 3-components of the first and the third are equal so that the 3-components of these three are equal. Thus \(C \{ n, 8 \} = C \{ n, 7 \} \) if \(n \) is even.

Choose \(h \in \{ CP_{n+7,7}, S^{2n+10} \} \) with \(\deg(h) = C \{ n+5, 2 \}. \) Then
\[e_c(h \circ q_5 \circ p_{n+7,7}) = -C \{ n+5, 2 \} \alpha_c(n+5, 2) \]
\[= -(n+5)(3n+20)/(12(n+5,2)) \]
so by (1.2)
\[\#(h \circ q_5 \circ p_{n+7,7}) \equiv 0 \mod(3) \text{ if and only if } n \equiv 1 \mod(3). \]
Therefore if \(n \equiv 1 \mod(3) \), the image of
\[p_{n+7,7}^* = (q_5 \circ p_{n+7,7})^*: \{ CP_{n+7,2}, S^{2n+10} \} \rightarrow \{ S^{2n+13}, S^{2n+10} \} = G_3 \]
contains \(Z_3 \{ \alpha_1 \}. \)

Take \(f \in \{ CP_{n+7,7}, S^{2n} \} \) with \(\deg(f) = C \{ n, 7 \}. \) Suppose that \(n \equiv 1 \mod(3). \)
If \(f \circ p_{n+7,7} = 0, C \{ n, 8 \} = C \{ n, 7 \} \) by (1.9). If \(f \circ p_{n+7,7} \neq 0, \) that is \(f \circ p_{n+7,7} = \pm \beta \alpha_1, \)
the above implies that there exists \(h' \in \{ CP_{n+7,2}, S^{2n+10} \} \) with \(h' \circ q_5 \circ p_{n+7,7} = \mp \alpha_1, \)
and we have
STABLE JAMES NUMBERS OF STUNTED COMPLEX

\[(f + \beta_1 \circ h' \circ q_3) \circ p_{n+7,7} = 0,\]
\[\deg(f + \beta_1 \circ h' \circ q_3) = \deg(f) = C\{n, 7\}\]

and so by (1.9)
\[C\{n, 8\} = C\{n, 7\}.\]

Therefore \(C\{n, 8\} = C\{n, 7\}\) if \(n \equiv 1 \mod(3)\).

We must prove (vii) for the case of \(n \equiv 1 \mod(6)\). Put \(n = 6m + 1\). Take \(f \in \{CP_{6m+8,7}, S^{12m+2}\}\) with \(\deg(f) = C\{6m+1,7\}\). By the same methods as the proof of (v) we can construct a commutative diagram

\[
\begin{array}{ccc}
S^{12m+15} & \xrightarrow{s_1} & CP_{6m+8,7} \\
\downarrow & & \downarrow 2 \\
CP_{6m+7,6} & \xleftarrow{s_2} & CP_{6m+8,7} \\
\downarrow 4 & & \downarrow 4 \\
CP_{6m+5,4} & \xleftarrow{i} & CP_{6m+6,5} \\
\end{array}
\]

Take \(a \in \{CP_{6m+5,4}, S^{12m+2}\}\) with \(\deg(a) = C\{6m+1,4\}\) and \(b \in \{CP_{6m+3,2}, S^{12m+2}\}\) with \(\deg(b) = C\{6m+1,2\} = 2\). Consider the diagram

\[
\begin{array}{ccc}
\{S^{12m+6}, S^{12m+2}\} & \xrightarrow{\gamma} & \{CP_{6m+5,4}, S^{12m+2}\} \\
\downarrow & & \downarrow \approx \\
\{S^{12m+8}, S^{12m+2}\} & \xrightarrow{\gamma} & \{S^{12m+4}, S^{12m+2}\} \\
\end{array}
\]

in which the horizontals and the vertical are the parts of suitable Puppe exact sequences. Then \(a\) generates a free part of \(\{CP_{6m+5,4}, S^{12m+2}\}\) which is of rank 1, and so
\[f \circ i \circ i = (\deg(f)/\deg(a))a + q^*(e)\]
\[= (C\{6m+1,7\}/C\{6m+1,4\})a + q^*(e)\]

for some \(e \in \{S^{12m+8}, S^{12m+2}\} = G_6\). Then
\[2f \circ p_{6m+8,7} = 8f \circ p_{6m+8,7}, \text{ since } G_{12} = Z_3 \]
\[= f \circ \text{i.o.i.o.s}_3 \]
\[= (C \{6m+1,7\} / C \{6m+1,4\}) a \circ s_3 + e \circ q \circ s_3 \]
\[= (C \{6m+1,7\} / C \{6m+1,4\}) a \circ s_3, \text{ since } G_{6} \circ G_7 = 0. \]

By the previous calculations and elementary analysis it follows that

\[\nu_3(C \{6m+1,7\}) = \begin{cases} 3 & \text{if } m \equiv 1 \text{ or } 2 \text{ mod}(3) \\ 2 & \text{if } m \equiv 3 \text{ or } 6 \text{ mod}(9) \\ 1 & \text{if } m \equiv 0 \text{ mod}(9) \end{cases} \]

so if \(m \equiv 0 \text{ mod}(9) \) we have

\[C \{6m+1,7\} / C \{6m+1,4\} \equiv 0 \text{ mod(3)} \]

and so

\[f \circ p_{6m+8,7} = 0 \]

and then by (1.9)

\[C \{6m+1,8\} = C \{6m+1,7\} \text{ if } m \equiv 0 \text{ mod}(9). \]

Next suppose that \(m \equiv 0 \text{ mod}(9) \). By (iii) of (1.13) we can easily see that

\[\nu_3(\#_{eC}(g_2 \circ s_3)) = 0. \]

So by (1.13) and the same methods as the proof of (v), we can construct a commutative diagram

Then

\[f \circ p_{6m+8,7} = 640f \circ p_{6m+8,7} \]
\[= f \mid C_{6m+3,2} \circ s_5 \]
\[= (\deg(f)/\deg(b))b \circ s_5 \]
\[= (C\{6m+1,7\}/2)b \circ s_5 \]
\[= 0, \text{ since } C\{6m+1,7\} \equiv 0 \mod(6) \]

so by (1.9)
\[C\{6m+1,8\} = C\{6m+1,7\} \text{ if } m \equiv 0 \mod(9). \]

This completes the proof of (vii).

The proof of (viii): Take \(f \in \{C_{n+8,8}, S^{2n}\} \) with \(\deg(f) = C\{n,8\} \). First consider the case of \(n \) being even. By (i) of (1.13) \(p_{n+8,i} = q_7 \circ p_{n+8,8} = \eta \). Then \(f \) or \(f + \kappa q_n \), say \(f' \), satisfies
\[\#(f' \circ p_{n+8,8}) = \#_c(f' \circ p_{n+8,8}) = \text{den}[C\{n,8\} \alpha_c(n,8)], \]
\[\deg(f') = \deg(f) = C\{n,8\} \]
by (1.2), and so the conclusion follows from (1.9). Next suppose that \(n \) is odd. By (1.2)
\[\#(f \circ p_{n+8,8})/\#_c(f \circ p_{n+8,8}) = 1 \text{ or } 2. \]

By the previous calculations and elementary analysis we have
\[\nu_2(\text{den}[C\{n,8\} \alpha_c(n,8)]) = 0 \text{ if and only if } n \equiv 3 \mod(2^7) \text{ or } 1 \mod(2^9). \]
Therefore if \(n \equiv 3 \mod(2^7) \) and \(1 \mod(2^9) \), by (1.2) we have
\[\#(f \circ p_{n+8,8}) = \#_c(f \circ p_{n+8,8}) = \text{den}[C\{n,8\} \alpha_c(n,8)] \]
and so the conclusion follows.

The proof of (ix): Since \(2G_{17} = 0 \), by (1.9) we have
\[C\{n,10\}/C\{n,9\} = 1 \text{ or } 2. \]

In case of \(n \) being even, by the following relations and an elementary analysis conclusion follows if \(n \equiv 0 \mod(2^3), 10, 12, 14 \mod(2^4), 18, 20, 22 \mod(2^5), 34, 36 \mod(2^6) \) or \(4 \mod(2^7) \)
\[C\{n,9\}/C\{n,10\}/H\{n/2,5\}. \]

If \(n \equiv 6 \mod(2^9) \), the conclusion follows from the same methods as the proof of (vii).

4. Relations with other James numbers

In this section we use the notations and terminologies of James [6,7] freely.
Consider the fibration of Stiefel manifolds
\[O_{n-1,k-1} \rightarrow O_{n,k} \overset{p}{\rightarrow} O_{n,1} = S^{nd-1} \]
and the cofibration of quasi-projective spaces
\[Q_{n-1,k-1} \rightarrow Q_{n,k} \overset{q}{\rightarrow} Q_{n,1} = S^{nd-1} \]
where \(n > k > 0 \). Following James [6] we define non-negative integers \(O\{n,k\} \), \(O'\{n,k\} \), \(Q\{n,k\} \) and \(Q'\{n,k\} \) by the equations
\[
\begin{align*}
\pi_{nd-1}(O_{n,k}) &= O\{n,k\} \pi_{nd-1}(S^{nd-1}), \\
\pi_{nd-1}(O'_{n,k}) &= O'\{n,k\} \pi_{nd-1}(S^{nd-1}), \\
\pi_{nd-1}(Q_{n,k}) &= Q\{n,k\} \pi_{nd-1}(S^{nd-1}), \\
\pi_{nd-1}(Q'_{n,k}) &= Q'\{n,k\} \pi_{nd-1}(S^{nd-1})
\end{align*}
\]
here \(\pi_m^*(X) = \{S^m, X\} \) for a pointed space \(X \). We have

Lemma 4.1. \(O\{n,k\} | Q\{n,k\}, O'\{n,k\} | O\{n,k\} \) and \(Q'\{n,k\} | Q\{n,k\} \).

Proof. The first conclusion follows from the commutative diagram
\[
\begin{array}{ccc}
Q_{n,k} & \xrightarrow{q} & Q_{n,1} \\
\cap & & \cap \\
O_{n,k} & \xrightarrow{p} & O_{n,1}
\end{array}
\]
and the others follow immediately by definition.

Let \(M_k(F) \) be the order of the canonical \(F \)-line bundle over \(FP_k \) in the \(J \)-group \(J(FP_k) \) [3] which was determined by Adams-Walker [2] and Sigrist-Suter [13]. We have

Lemma 4.2. \(Q'\{n,k\} = O'\{n,k\} \).

Proof. For any \(m \) with \(m \equiv 0 \mod(M_k(F)) \) there exists \(S^0 \)-section \(w: Q_{m,1} \rightarrow Q_{m,k} \), that is, \(q \circ w = 1 \). By James [7] we have the diagram
\[
\begin{array}{cccccccc}
Q_{m,1} & \xrightarrow{1*} & Q_{m,k} & \xrightarrow{w*1} & Q_{m,k} & \xrightarrow{g'} & Q_{m+1,k} \\
\downarrow & & \downarrow & & \downarrow & & \\
1*q & & 1*p & & q*p & & q \\
\end{array}
\]
\[
\begin{array}{cccccccc}
Q_{m,1} & \xrightarrow{1*} & Q_{m,1} & \xrightarrow{w*1} & Q_{m,k} & \xrightarrow{g'} & Q_{m+1,k} \\
\end{array}
\]

in which \(g' \circ (w*1) \circ (1*i) \) is a homotopy equivalence by (7.3) of [7], the first
square is commutative, the second is homotopy commutative and the third is homotopy commutative up to sign from quasi-projective case of (5.2) of [7]. Applying \(\pi_{(m+n)d-1} \) to this diagram we have the following diagram

\[
\begin{array}{c}
\pi_{(m+n)d-1}(Q_{n,k}) \xrightarrow{i_*} \pi_{(m+n)d-1}(O_{n,k}) \xrightarrow{g_*} \pi_{(m+n)d-1}(Q_{m,k} \ast O_{n,k}) \xrightarrow{q_*} \\
\downarrow q_* \downarrow p_* \downarrow (q \ast p)_* \downarrow q_* \\
\pi_{(m+n)d-1}(Q_{n,k}) = \pi_{(m+n)d-1}(O_{n,k}) \xrightarrow{(q \ast p)_*} \pi_{(m+n)d-1}(Q_{m,k} \ast O_{n,k}) \xrightarrow{q_*} \pi_{(m+n)d-1}(S^{m+n})
\end{array}
\]

in which the first and second squares are commutative and the third is commutative up to sign. Hence \(Q^j \{m-n,k \} \mid O^j \{n,k \} \mid Q^j \{n,k \} \). Since \(Q^j \{m+n,k \} = Q^j \{n,k \} \), the conclusion follows.

We have also

Lemma 4.3. If \(n \geq 2(k-1)+2/d \), then

\[Q^j \{n,k \} = O^j \{n,k \} = O \{n,k \} = Q \{n,k \}. \]

Proof. Since \(Q_{n,k} \) and \(O_{n,k} \) are \((n-k+1)d-2\) connected, the canonical homomorphisms \(\pi_{(m+n)d-1}(Q_{n,k}) \xrightarrow{i_*} \pi_{(m+n)d-1}(O_{n,k}) \) and \(\pi_{(m+n)d-1}(O_{n,k}) \xrightarrow{q_*} \pi_{(m+n)d-1}(O_{n,k}) \) are epimorphisms if \(n \geq 2(k-1)+2/d \). Then \(Q^j \{n,k \} = Q \{n,k \} \) and \(O^j \{n,k \} = O \{n,k \} \) in this case, and the conclusion follows from (4.2).

Atiyah [3] proved that \(Q_{n,k} \) and \(P_{k-n,k} \) are \(S \)-duals. His proof gives the following precise theorem.

Theorem 4.4. For any \(j \) with \(jM \{F \} \geq n \), there exists a \((djM \{F \} - 1)\)-duality \(u \in \{Q_{jM \{F \} - n+k,k} \mid P_{n,k} \}, S^{d(jM \{F \} - 1)} \} \).

Consider the cofibrations

\[
S^{(n-k)d} \xrightarrow{i_*} P_{n,k} \rightarrow P_{n,k-1} \rightarrow S^{(n-k)d+1} \\
S^{md-2} \xrightarrow{q_*} Q_{m-1,l-1} \subset Q_{m,l} \rightarrow S^{md-1}
\]

We have

Proposition 4.5. If \(jM \{F \} \geq n \), \((djM \{F \} - 1)\)-dual of \(i : S^{(n-k)d} \rightarrow P_{n,k} \) is \(q: Q_{jM \{F \} - n+k,k} \rightarrow S^{d(jM \{F \} - n+k)d-1} \), and hence \(F \{n-k,k \} = Q^j \{jM \{F \} - n+k,k \} \).

Proof. By Puppe exact sequences associated with the above cofibrations it is easily seen that \(\{S^{(n-k)d}, P_{n,k} \} \) and \(\{Q_{jM \{F \} - n+k,k}, S^{d(jM \{F \} - n+k)d-1} \} \) are infinite cyclic groups with generators \(i \) and \(q \) respectively. Then the conclusion follows from (4.4).
As a corollary of (4.3) and (4.5) we have

Theorem 4.6. $F\{n,k\}$ is equal to $O\{jM_k(F) - n, k\}$ if $jM_k(F) \geq n + 2k - 2 + 2/d$.

In case of $F = C$, Sigrist [12, Théorème I] proved that a prime number p is a factor of $O\{m, l\}$ if and only if p is a factor of $M_k(C)/(m, M_k(C))$. His proof is valid for the case of $F = H$, since $M_k(H)$ is known [13]. Then by (4.6) we have

Proposition 4.7. A prime number p is a factor of $F\{n, k\}$ if and only if p is a factor of $M_k(F)/(n, M_k(F))$.

References