ON MULTIPLY TRANSITIVE PERMUTATION GROUPS

MITSUO YOSHIZAWA

(Received January 9, 1978)

1. Introduction

In this paper we shall give some improvements of the following four results:

RESULT 1 (E. Bannai [5] Theorem 1). Let \(p \) be an odd prime. Let \(G \) be a permutation group on a set \(\Omega = \{1, 2, \ldots, n\} \) which satisfies the following condition: For any \(p^2 \) elements \(\alpha_1, \ldots, \alpha_{p^2} \) of \(\Omega \), a Sylow \(p \)-subgroup \(P \) of the stabilizer in \(G \) of the \(p^2 \) points \(\alpha_1, \ldots, \alpha_{p^2} \) is nontrivial and fixes \(p^2 + r \) points of \(\Omega \), and moreover \(P \) is semiregular on the set \(\Omega - \{P\} \) of the remaining \(|\Omega| - p^2 - r \) points, where \(r \) is independent of the choice of \(\alpha_1, \ldots, \alpha_{p^2} \) and \(0 \leq r \leq p-1 \). Then \(n = p^2 + p + r \), and one of the following three cases holds:

1. There exists an orbit \(\Omega_1 \) of \(G \) such that \(|\Omega| - |\Omega_1| \leq r \) and \(G^{\Omega_1 \setminus \Omega_2} \geq A_{p-1} \).
2. \(r = p - 1 \), and \(G \) has just two orbits \(\Omega_1 \) and \(\Omega_2 \) (with \(|\Omega_1| = |\Omega_2| = p \)) such that \(G^{\Omega_1 \setminus \Omega_2} \geq A_{p-1} \). Moreover \((G^{\Omega_1 \setminus \Omega_2})^{\Omega_1 \setminus \Omega_2} \) is primitive and contains an element of a \(p \)-cycle (therefore \(G^{\Omega_2 \setminus \Omega_1} \) if \(|\Omega_2| \geq p + 3 \)).
3. \(r = p - 1 \) and \(G \) is imprimitive on \(\Omega \) with just two blocks \(\Omega_1 \) and \(\Omega_2 \). Moreover, \((G^{\Omega_1 \setminus \Omega_2})^{\Omega_1 \setminus \Omega_2} \geq A_{p-2} \) and \((G^{\Omega_2 \setminus \Omega_1})^{\Omega_1 \setminus \Omega_2} \geq A_{p-2} \).

RESULT 2 (E. Bannai [4] Theorem 1). Let \(p \) be an odd prime. Let \(G \) be a \(2p \)-transitive permutation group such that either (i) each element in \(G \) of order \(p \) fixes at most \(2p + (p-1) \) points, or (ii) a Sylow \(p \)-subgroup of \(G_{1,2,\ldots,2p} \) is cyclic. Then \(G \) is one of \(S_n \) (\(2p \leq n \leq 4p - 1 \)) and \(A_n \) (\(2p + 2 \leq n \leq 4p - 1 \)).

RESULT 3 (D. Livingstone and A. Wanger [10] Lemma 10). If \(G \) is a \(k \)-transitive group on a set \(\Omega \) of \(n \) points, with \(n > k \geq 4 \), then there exists a subset \(\Pi \) of \(k + 1 \) points such that \(G^{\Pi \setminus \Omega} \geq A^{\Pi} \).

RESULT 4 (H. Wielandt [13] Satz B). If \(G \) is a nontrivial \(t \)-transitive group on \(\Omega \) of \(n \) points, and if \(t \) is sufficiently large, then \(\log(n-t) > \frac{1}{2} t \).

In § 2 and § 3, we shall prove the following two theorems which improve Result 1 and Result 2.

Theorem A. Let \(p \) be an odd prime. Let \(G \) be a permutation group on a
set $\Omega = \{1, 2, \ldots, n\}$ which satisfies the following condition. For any $2p$ points $\alpha, \ldots, \alpha_{2p}$ of Ω, a Sylow p-subgroup P of the stabilizer in G of the $2p$ points $\alpha, \ldots, \alpha_{2p}$ is nontrivial and fixes exactly $2p+r$ points of Ω, and moreover P is semiregular on the set $\Omega - \{P\}$ of the remaining $n-2p-r$ points, where r is independent of the choice of $\alpha, \ldots, \alpha_{2p}$ and $0 \leq r \leq p-2$. Then $n = 3p+r$, and there exists an orbit Γ of G such that $|\Gamma| \geq 3p$ and $G^\Gamma \geq A^\Gamma$.

Theorem B. Let p be an odd prime ≥ 11. Let G be a permutation group on a set $\Omega = \{1, 2, \ldots, n\}$ which satisfies the following condition. For any $2p$ points $\alpha, \ldots, \alpha_{2p}$ of Ω, a Sylow p-subgroup P of the stabilizer in G of the $2p$ points $\alpha, \ldots, \alpha_{2p}$ is nontrivial and fixes exactly $3p-1$ points of Ω, and moreover P is semiregular on the set $\Omega - \{P\}$ of the remaining $n-3p+1$ points. Then $n = 4p-1$, and one of the following two cases holds: (1) There exists an orbit Γ of G such that $|\Gamma| \geq 3p$ and $G^\Gamma \geq A^\Gamma$. (2) G has just two orbits Γ_1 and Γ_2 with $|\Gamma_1| \geq p$, $|\Gamma_2| \geq p$ and $|\Gamma_1| + |\Gamma_2| = 4p-1$, and G^Γ_i is $(|\Gamma_i|-p+1)$-transitive on Γ_i $(i=1, 2)$. Moreover, $G^\Gamma_i \geq A^\Gamma_i$ if $|\Gamma_i| \geq p+3$.

REMARK. We note that T. Oyama proved:

RESULT 5 (T. Oyama [12] Theorem 1). Let G be a permutation group on $\Omega = \{1, 2, \ldots, n\}$. Assume that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the following condition: P is a nonidentity semiregular group and P fixes exactly r points. Then (I) $r = 4$, then $|\Omega| = 6, 8$ or 12, and $G = S_6, A_8$ or M_{12} respectively. (II) If $r = 5$, then $|\Omega| = 7, 9$ or 13. In particular, if $|\Omega| = 9$, then $G \leq A_9$, and if $|\Omega| = 13$, then $G = S_4 \times M_{12}$. (III) If $r = 7$ and $N_G(P)^{(p)} \leq A_7$, then $G = M_{23}$.

Theorem A and Theorem B might look to be too technical. However they are useful in applications. In §4, we shall prove the following two consequences of them which improve Result 3 and Result 4 respectively.

Theorem C. Let p be an odd prime. Let G be a nontrivial 2p-transitive group on $\Omega = \{1, 2, \ldots, n\}$. Then there exists a subset Γ of Ω such that $|\Gamma| \geq 3p-1$ and $G^{\Gamma(p)} \geq A^\Gamma$.

Theorem D. Let G be a nontrivial t-transitive group on $\Omega = \{1, 2, \ldots, n\}$. If t is sufficiently large, then $\log(n-t) > \frac{3}{4}t$.

We give the outline of §2. Let G be a group satisfying the assumption of Theorem A. Then, G has the only one orbit whose length is not less than p. So, we may assume that G is transitive on Ω. Moreover, we find that if $p \geq 5$, then G is $(p+3)$-transitive on Ω, and that if $p = 3$, then G is 5-transitive on Ω. Suppose that $G \geq A^\Omega$. Similarly to Bannai [4, §1], we get a contradiction by using the idea of Miyamoto and Nago which uses the formula of
Frobenius ingeniously (cf. [11, Lemma 1.1]).

Next we give the outline of § 3. Let \(G \) be a counter-example to Theorem B with the least degree. So, we may assume that \(G \) is transitive on \(\Omega \). Moreover, we find that \(G \) is \((p+p+1 \over 2) \)-transitive on \(\Omega \). Again by the similar argument to that of [4, § 1], we get a contradiction.

Notation. Our notation will be more or less standard. Let \(\Omega \) be a set and \(\Delta \) be a subset of \(\Omega \). If \(G \) is a permutation group on \(\Omega \), then \(G \Delta \) denotes the pointwise stabilizer of \(\Delta \) in \(G \), and \(G(\Delta) \) denotes the global stabilizer of \(\Delta \) in \(G \). When \(A=\{a_1, \ldots, a_t\} \), we also denote \(G \Delta \) by \(G|_{\Delta} \). The totality of points left fixed by a set \(X \) of permutations is denoted by \(I(X) \), and if a subset \(\Gamma \) of \(\Omega \) is fixed as a whole by \(X \), then the restriction of \(X \) on \(\Gamma \) is denoted by \(X|\Gamma \). For a permutation \(x \), let \(\alpha_i(x) \) denote the number of \(i \)-cycles of \(x \) and \(\alpha(x)=\alpha_i(x) \). \(S^\Omega \) and \(A^\Omega \) denote the symmetric and alternating groups on \(\Omega \). If \(|\Omega| \), the cardinality of \(\Omega \), is \(n \), we denote them \(S_n \) and \(A_n \) instead of \(S^\Omega \) and \(A^\Omega \).

Acknowledgement. The author would like to thank Professor E. Bannai for suggesting him the present research and giving him many advices.

2. **Proof of Theorem A**

Let \(G \) be a permutation group satisfying the assumption of Theorem A.

Step 1. \(G \) has an orbit \(\Gamma \) such that \(|\Gamma| \geq 3p \) and \(|\Omega-\Gamma| < p \).

Proof. Since a Sylow \(p \)-subgroup of the stabilizer in \(G \) of \(2p \) points is nontrivial and fixes exactly \(2p+r \) points, we have \(|\Omega| \geq 3p+r \) and that \(G \) has an orbit \(\Gamma \) whose length is at least \(p \). Set \(|\Gamma| \equiv k \) (mod \(p \)) with \(0 \leq k \leq p-1 \).

Suppose that \(|\Gamma| = p+k \). We take \(k+1 \) points \(\alpha_1, \ldots, \alpha_k+1 \) from \(\Gamma \) and \(2p-k-1 \) points \(\alpha_{k+2}, \ldots, \alpha_{2p} \) from \(\Omega-\Gamma \). A Sylow \(p \)-subgroup of \(G_{\alpha_1, \ldots, \alpha_{2p}} \) fixes at least \(3p-1 \) points, which contradicts the assumption of Theorem A. Hence we have \(|\Gamma| \geq 2p+k \).

Suppose that \(|\Omega-\Gamma| \geq p \). We take \(p+k+1 \) points \(\alpha_1, \ldots, \alpha_{p+k+1} \) from \(\Gamma \) and \(p-k-1 \) points \(\alpha_{p+k+2}, \ldots, \alpha_{2p} \) from \(\Omega-\Gamma \). A Sylow \(p \)-subgroup of \(G_{\alpha_1, \ldots, \alpha_{2p}} \) fixes at least \(3p-1 \) points, which contradicts the assumption of Theorem A. Hence we have \(|\Omega-\Gamma| < p \). So, we have \(|\Gamma| \geq 3p \). (q.e.d.)

By Step 1, from now on we may assume that \(G \) is transitive on \(\Omega \).

Step 2. \(1 \leq t \leq p+2 \). If \(G \) is \(t \)-transitive on \(\Omega \), then \(G \) is \(t \)-primitive on \(\Omega \).

Proof. Suppose, by way of contradiction, that \(G \) is \(t \)-transitive on \(\Omega \), and that \(G_{1, \ldots, t-1} \) is imprimitive on \(\Omega-\{1, \ldots, t-1\} \). Let \(\Gamma_1, \ldots, \Gamma_t \) be a system
of imprimitivity of $G_{1, \ldots, t-1}$. Let $|\Gamma_1| \equiv k \pmod{p}$, where $0 \leq k \leq p-1$. We divide the consideration into the following two cases: (I) $2p - (t-1) > k$. (II) $2p - (t-1) \leq k$.

Suppose that Case (I) holds. First assume that $|\Gamma_1| \geq 2p$. We take $k+1$ points $\alpha_t, \ldots, \alpha_t+k$ from Γ_1 and $2p-t-k$ points $\alpha_{t+k+1}, \ldots, \alpha_p$ from Γ_2. A Sylow p-subgroup of $G_{1, \ldots, t-1, \alpha_1, \ldots, \alpha_p}$ fixes at least $3p-1$ points, which is a contradiction. Next assume that $p \leq |\Gamma_1| < 2p$. We take $k+1$ points $\alpha_t, \ldots, \alpha_t+k$ from Γ_1. Moreover, we are able to take $2p-t-k$ points $\alpha_{t+k+1}, \ldots, \alpha_p$ from $\Omega - (\Gamma_1 \cup \{1, \ldots, t-1\})$. A Sylow p-subgroup of $G_{1, \ldots, t-1, \alpha_t, \ldots, \alpha_p}$ fixes at least $3p-1$ points, which is a contradiction. Hence we may assume that $|\Gamma_1| < p$. Let γ_i be a point of $\Gamma_i (i=1, \ldots, s)$. Assume $s \leq 2p-t+1$. Then a Sylow p-subgroup of $G_{1, \ldots, t-1, \gamma_1, \ldots, \gamma_s}$ is trivial, a contradiction. Hence $s > 2p-t+1$. Since a Sylow p-subgroup of $G_{1, \ldots, t-1, \gamma_1, \ldots, \gamma_s}$ fixes at most $3p-2$ points, we have $(k-1) < (2p-t+1) < p-2$. But, since $t < p+2$ and $k \geq 2$, we have a contradiction.

Suppose that Case (II) holds. In this case, we have $t = p+2$ and $k = p$. We take a point α from Γ_1, and $p-2$ points $\beta_1, \ldots, \beta_{p-2}$ from Γ_2. A Sylow p-subgroup of $G_{1, \ldots, p+1, \alpha, \beta_1, \ldots, \beta_{p-2}}$ fixes at least $3p-1$ points, which is a contradiction. (q.e.d)

Step 3. G is $(p+3)$-transitive on Ω when $p \geq 5$, and G is 5-transitive on Ω when $p = 3$.

Proof. In order to prove Step 3, we show that if G is t-transitive on Ω then G is $(t+1)$-transitive on Ω, where $1 \leq t \leq p+2$ when $p \geq 5$ and $1 \leq t \leq 4$ when $p = 3$. Suppose, by way of contradiction, that G is t-transitive on Ω, but G is not $(t+1)$-transitive on Ω. By Step 2, G is t-primitive on Ω. Let $\Delta_1, \ldots, \Delta_s$ be the orbits of $G_{1, \ldots, t}$ on $\Omega - \{1, \ldots, t\}$, where $s \geq 2$. By Theorem 18.4 in [14], $|\Delta_i| \geq p$ for every $\Delta_i (i=1, \ldots, s)$. Let $|\Delta_i| \equiv u_i \pmod{p}$, where $0 \leq u_i \leq p-1 (i=1, \ldots, s)$. By the assumption of t, we have that $p-2 < 2p-t \leq 2p-1$ when $p \geq 5$, and $2 \leq 2p-t \leq 5$ when $p = 3$. We divide the consideration into the following two cases: (I) $2p-t \geq p$. (II) $2p-t < p$.

Suppose that Case (I) holds. First assume that $2p-t-u_i-1 \leq p$. We take u_i+1 points $\alpha_1, \ldots, \alpha_{u_i+1}$ and $2p-t-u_i-1$ points $\beta_1, \ldots, \beta_{2p-t-u_i-1}$ from Δ_i. A Sylow p-subgroup of $G_{1, \ldots, t, \alpha_1, \ldots, \alpha_{u_i+1}, \beta_1, \ldots, \beta_{2p-t-u_i-1}}$ fixes at least $3p-1$ points, which is a contradiction. Next assume that $2p-t-u_i-1 > p$ and $|\Delta_i| \geq 2p$. We take u_i+1 points $\alpha_1, \ldots, \alpha_{u_i+1}$ from Δ_i and $p-t-u_i-1$ points $\beta_1, \ldots, \beta_{p-t-u_i-1}$ from Δ_i. A Sylow p-subgroup of $G_{1, \ldots, t, \alpha_1, \ldots, \alpha_{u_i+1}, \beta_1, \ldots, \beta_{p-t-u_i-1}}$ fixes at least $3p-1$ points, which is a contradiction. Hence we may assume that $2p-t-u_i-1 > p$ and $|\Delta_i| < 2p$. We take u_i+1 points $\alpha_1, \ldots, \alpha_{u_i+1}$ from Δ_i. Moreover we are able to take $2p-t-u_i-1$ points $\beta_1, \ldots, \beta_{2p-t-u_i-1}$ from $\Omega - \{1, \ldots, t\} \cup \Delta_i$. A Sylow p-subgroup of $G_{1, \ldots, u_i+1, \alpha_1, \ldots, \alpha_{u_i+1}, \beta_1, \ldots, \beta_{2p-t-u_i-1}}$ fixes
at least $3p-1$ points, which is a contradiction.

Suppose that Case (II) holds. In this case, we have that $2p-t=p-2$ or $p-1$ when $p \geq 5$, and $2p-t=2$ when $p=3$. Assume that there is an orbit Δ_i of $G_{1,\ldots,t}$ with $u_i<2p-t$. We take u_i+1 points $\alpha_1, \ldots, \alpha_{u_i+1}$ from Δ_i and $2p-t-u_i-1$ points $\beta_1, \ldots, \beta_{2p-t-u_i-1}$ from $\Omega - \{\{1, \ldots, t\} \cup \Delta_i\}$. A Sylow p-subgroup of $G_{1,\ldots,t,\alpha_1,\ldots,\alpha_{u_i+1},\beta_1,\ldots,\beta_{2p-t-u_i-1}}$ fixes at least $3p-1$ points, which is a contradiction. Hence $u_i \geq 2p-t$ for every $\Delta_i(i=1, \ldots, s)$. Assume that $s \geq 3$ or $p=3$. We take a point α_i from Δ_1 and a point α_2 from Δ_2. If $p=3$, then a Sylow p-subgroup of $G_{1,\ldots,t,\alpha_1,\alpha_2}$ fixes at least 8 points, which is a contradiction. If $p \geq 5$, we take $2p-t-2$ points $\beta_{11}, \ldots, \beta_{2p-t-2}$ from Δ_3. Then a Sylow p-subgroup of $G_{1,\ldots,t,\alpha_1,\alpha_2,\beta_{11},\ldots,\beta_{2p-t-2}}$ fixes at least $3p-1$ points, which is a contradiction. Thus we have $p \geq 5$ and $s=2$. So, $\Omega = \{1, \ldots, t\} \cup \Delta_1 \cup \Delta_2$. Hence $2p+r=t+\mu_1+\mu_2$. Let Q be a Sylow p-subgroup of $G_{1,\ldots,t}$. Then, $N_G(Q)^{(o)}$ is t-transitive and has an element of order p. Since $3p-2 \geq |I(Q)|=t+u_1+u_2 \geq t+2(2p-t)=2p+(2p-t)$, we have $|I(Q)|=3p-2$, and $N_G(Q)^{(o)} \supseteq A^e$ by [14, Theorem 13.10]. So, $N_G(Q)^{(o)}$ has an element of order p. Hence Q is not a Sylow p-subgroup of $G_{1,\ldots,t}$, a contradiction.

(q.e.d)

Step 4. $G \supseteq A^0$, or $\alpha_p(x) \geq 4$ for any element x of order p of G.

Proof. Let us assume that $\min\{|\alpha_p(X)|, x \in G\} = m \leq 3$. Hence $|\Omega| \geq 2p+mp$. Since G is 5-transitive, we have $G \supseteq A^0$ by [14, Theorem 13.10].

(q.e.d.)

From now on we assume that $G \supseteq A^0$, and prove that this case does not occur.

Step 5. Let a be an element of order p of G with $\alpha(a)=2p+r$. Then there exists an orbit Δ of $C_G(a)^{(o)}$ such that $C_G(a)^{\Delta} \supseteq A^0$ and $|\Delta| \geq 2p$.

Proof. We may assume that

$$a = (1)(2) \cdots (2p+r)(2p+r+1, \ldots, 3p+r) \cdots$$

Set $T = C_G(a)^{(o)}_{2p+r+1, \ldots, 3p+r}$. For any p points $\alpha_1, \ldots, \alpha_p$ of $I(a)$, a normalizes $G_{\alpha_1, \ldots, \alpha_p, 2p+r+1, \ldots, 3p+r}$. Hence a centralizes an element of order p of $G_{\alpha_1, \ldots, \alpha_p, 2p+r+1, \ldots, 3p+r}$. So, $T_{\alpha_1, \ldots, \alpha_p}$ has an element of order p for any p elements $\alpha_1, \ldots, \alpha_p$ of $I(a)$. Thus T has an orbit Γ with $|\Gamma| \geq p$. Let $|\Gamma|=p+k$. Suppose that $0 \leq k \leq p-1$. We take $k+1$ points $\delta_1, \ldots, \delta_{k+1}$ from Γ and $p-k-1$ points $\delta_{k+2}, \ldots, \delta_p$ from $I(a)-\Gamma$. Then $T_{\delta_1, \ldots, \delta_p}$ has no element of order p, which is a contradiction. Therefore T has an orbit Γ whose length is at least $2p$. Since it is easily seen that T^r is primitive, we have $T^r \supseteq A^r$ by [14, Theorem 13.9]. Let Δ be an orbit of maximal length of $C_G(a)^{(o)}$, then $C_G(a)^{\Delta} \supseteq A^0$ and $|\Delta| \geq 2p$.

(q.e.d.)
Step 6. For any 2p points $\alpha_1, \cdots, \alpha_{2p}$ of Ω, the order of a Sylow p-subgroup of $G_{\alpha_1, \cdots, \alpha_{2p}}$ is p.

Proof. Suppose, by way of contradiction, that for some 2p points $\alpha_1, \cdots, \alpha_{2p}$, the order of a Sylow p-subgroup P of $G_{\alpha_1, \cdots, \alpha_{2p}}$ is more than p. We may assume that \{\alpha_1, ..., \alpha_{2p}\} = \{1, ..., 2p\} and $I(P) = \{1, ..., 2p, ..., 2p+r\}$. For any 2p points $\gamma_1, \cdots, \gamma_{2p}$ of $I(P)$, the order of a Sylow p-subgroup of $G_{\gamma_1, \cdots, \gamma_{2p}}$ is $|P|$. Let a be an element of order p of $Z(P)$. We may assume that

$$a = (1)(2) \cdots (2p+r)(2p+r+1, ..., 3p+r) \cdots.$$

Since a normalizes $G_{\gamma_1, \cdots, \gamma_{2p+r+1}, \cdots, 3p+r}$, $G_{\gamma_1, \cdots, \gamma_{2p+r+1}, \cdots, 3p+r}$ has an element b of order p commuting with a. We may assume that

$$b = (1) \cdots (p)(p+1, \cdots, 2p)(2p+1) \cdots (2p+r)(2p+r+1) \cdots (3p+r) \cdots.$$

Then we may assume that $P = P$. Since $C_P(b)$ is semiregular on $I(b) - \{1, ..., p\} \cup \{2p+1, ..., 2p+r\}$, we have $|C_P(b)| = p$, and b does not centralize P. On the other hand, since $\langle P, b \rangle = P \cdot b$, we have $\langle a \rangle \times \langle b \rangle \cong C_{p, P}(b) \cong Z(P, b)$. Hence $|Z(P, b)| = |\langle a \rangle| = p$, since $[P, b] \neq 1$.

Now, since $I(a) = I(P)$, we have $C_0(a) \subseteq G_{I(P)} = N_0(G_{I(P)})$. So, $C_0(a) \subseteq N_0(G_{I(P)})$. Hence $C_0(a)_{I(P)} = C_0(a)_{I(P)} \subseteq N_0(G_{I(P)})$. Thus by Step 5, $N_0(G_{I(P)})$ has an orbit Δ of maximal length such that $N_0(G_{I(P)})^a \neq A^a$ and $|\Delta| \geq 2p$. We may assume that $\Delta = \{1, 2, \cdots, |\Delta|\}$. Set $\Gamma = \{2, 3, \cdots, 2p\}$, then $N_0(G_{I(P)})^\Gamma \neq A^\Gamma$. Since $|I(P) - \Gamma| \leq p - 1$, $|N_0(G_{I(P)})^\Gamma_p| = \frac{p}{p} = p \cdot |P|$. Thus $\langle P, b \rangle$ is a Sylow p-subgroup of $N_0(G_{I(P)})$.

Suppose that $C_0(G_{I(P)}) \cong 1$. Since $N_0(G_{I(P)})_{I(P)} \subseteq \text{Aut}(P)$, A_{2p-1} is involved in $\text{Aut}(P)$. But, we can easily seen that A_{2p-1} is not involved in $\text{Aut}(P)$ (cf. [2, §2, (3)]), which is a contradiction. Therefore we have $C_0(G_{I(P)}) \neq A^\Gamma$. Since the center of a Sylow p-subgroup of $N_0(G_{I(P)})$ is of order p, this is a contradiction.

(q.e.d.)

Step 7. $|\Omega| = (2p+r) \equiv p \mod p^2$.

(The proof of this step is the same as that of [4, §2], but we repeat it for the completeness.)

Proof. We may assume that there exist two elements a and b of order p which commute to each other such that

$$a = (1) \cdots (2p)(2p+1) \cdots (2p+r)(2p+r+1, \cdots, 3p+r)(3p+r+1, \cdots, 4p+r) \cdots,$$

and

$$b = (1, \cdots, p)(p+1, \cdots, 2p)(2p+1) \cdots (2p+r)(2p+r+1) \cdots (3p+r)(3p+r+1) \cdots (4p+r) \cdots.$$
Since $\langle a, b \rangle$ normalizes $G_{p+1, \ldots, 2p+2p+r+1, \ldots, 3p+r}$, $G(\langle a, b \rangle)_{p+1, \ldots, 2p+2p+r+1, \ldots, 3p+r}$ has an element c of order p. The element c must be of the form

$$c = (1, \ldots, p)^a (p+1) \cdots (2p) \cdots (2p+r) \cdots (2p+r+1, \ldots, 4p+r)^b \cdots,$$

where $1 \leq \alpha, \beta \leq p-1$. Suppose, by way of contradiction, that $|\Omega| - (2p+r) \equiv p \pmod{p^2}$. $\langle a, c \rangle$ has at least $p+2$ orbits of length p. Hence there is an integer $\gamma (1 \leq \gamma \leq p-1)$ such that $|I(a^\gamma)| \geq 3p$, which is a contradiction. (q.e.d)

From now on, let a be an element of order p of G such that $a = (1) \cdots (2p)(2p+1) \cdots (2p+r)(2p+r+1, \ldots, 3p+r)(3p+r+1, \ldots, 4p+r) \cdots$.

By Step 5, $G(a)^{I(\alpha)}$ has an orbit Δ such that $G(a)^{\Delta} \geq \Delta$ and $|\Delta| \geq 2p$. Hereafter we may assume that $\Delta = \{1, 2, \ldots, |\Delta|\}$.

Step 8. Set $C_G(a)_1 = C_G(a)$. If $p \geq 5$, then there is an integer $i(0 \leq i \leq 2)$ such that $C_G(a)_{i-i}$ and $C_G(a)_{i+1}$ have exactly m orbits on $\Omega - I(a)$, where m is at most three, and moreover m is at most two when $|\Omega| - (2p+r) \equiv 0 \pmod{p^2}$. If $p = 3$, then there is an integer $i (0 \leq i \leq 1)$ such that $C_G(a)_i$ and $C_G(a)_{i+1}$ have exactly m orbits on $\Omega - I(a)$, where m is at most two, and moreover m is one when $|\Omega| - (2p+r) \equiv 0 \pmod{p^2}$.

Proof. Suppose that $p \geq 5$. In order to prove Step 8 for $p \geq 5$, it is sufficient to show that $G(a)^{I(\alpha)}$ has at most three orbits on $\Omega - I(a)$, and that $G(a)^{I(\alpha)}$ has at most two orbits on $\Omega - I(a)$ when $|\Omega| - (2p+r) \equiv 0 \pmod{p^2}$.

Set $H = G_{1,2,3}$. Then H is p-transitive on $\Omega - \{1, 2, 3\}$ by Step 3. By the remark following Lemma 1.1 in [11], we get the following expression:

$$\frac{|H|}{p} = \sum_{x \in H} \alpha_p(x) \geq \sum_{x \in u_k} \frac{|H|}{|C_H(u_k)|} \frac{1}{p} \sum_y \alpha^*(y),$$

where u_k ranges all representatives of conjugacy classes (in H) of elements of order p, and y ranges all p^*-elements in $C_H(u_k)$ and $\alpha^*(y) = \alpha(y^p - I(x^\gamma))$. Hence,

$$\frac{|H|}{p} \geq \frac{|H|}{|C_H(a)|} \frac{1}{p} \sum_y \alpha^*(y).$$

Assume that $|\Omega| - (2p+r) \equiv 0 \pmod{p^2}$. Since a normalizes $G_{1, \ldots, 2p+2p+r+1, \ldots, 3p+r}$, $G_{1, \ldots, 2p+2p+r+1, \ldots, 3p+r}$ has an element b of order p with $ab = ba$. If $|I(X)| = 2p+r$ for any nontrivial element x of $\langle a, b \rangle$, then $\langle a, b \rangle$ has just $p-1$ orbits of length p on $\Omega - \{1, \ldots, 3p+r\}$. So $|\Omega| - (2p+r) \equiv 0 \pmod{p^2}$, a contradiction. Hence $H (\subseteq \langle a, b \rangle)$ contains an element of order p which fixes less than $2p+r$ points, and so, the equality in the above expression does not hold. Now, assume that $x \in C_H(a)$ and $p | x$. Set $|x| = p \cdot s$. Since $|I(x^s)| \leq 2p+r$, we have $\alpha^*(x^s) \leq p \cdot \alpha_p((x^s)^{I(\alpha)})$. So, $\alpha^*(x) \leq p \cdot \alpha_p(x^{I(\alpha)}) + 2p \cdot \alpha_p(x^{I(\alpha)})$. Hence, we have that
\[
\sum x^*(y) \geq \sum \alpha(y^{(i)}) - \sum \alpha_2(y^{(i)}) - 2p \cdot \sum \alpha_3(y^{(i)}).
\]
Since \(C_H(a)^\Delta \geq A^{\Delta-\{1,2,3\}}\) and \(|\Delta| \geq 2p\), we get \(p \cdot \sum \alpha(y^{(i)}) = p \cdot 2p \cdot \sum \alpha(y^{\Delta-\{1,2,3\}}) = |C_H(a)|\) by the formula of Frobenius. Similarly, if \(2p \cdot \sum \alpha_2(y^{(i)}) = 0\), then \(2p \cdot \sum \alpha_3(y^{(i)}) = |C_H(a)|\). On the other hand, \(\sum \alpha^*(y) = f \cdot |C_H(a)|\), where \(f\) is the number of orbits of \(C_H(a)\) on \(\Omega-I(a)\). Hence we get
\[
|H| \geq f \cdot |H/(f-2)|, \text{ and hence } f \leq 3.
\]
In the above expression, if \(|\Omega|-(2p+r) \equiv 0 \pmod{p^2}\), the equality does not hold.

Suppose that \(p=3\). Then \(r=0\) or 1. If \(r=0\), then \(G\) is 6-transitive on \(\Omega\) by [10, Lemma 6]. So, we have \(G \cong A^6\) by [4, Theorem 1]. But this contradicts our assumption. Hence \(r=1\). Since \(\langle a \rangle \in Syl_3(G,\{3,\{p+1, p+2, \ldots, \{2p, \ldots, \{2p+3, \ldots, \{2p+2, \ldots, \{2p+1, \ldots, \{2p\}\})\}\}\})\), have \(N_\Delta(\langle a \rangle) > A_7\), by Step 3. Hence \(C_H(a)^{\Delta(\langle a \rangle)} > A_7\). Set \(H = G_{1,2}\). Then \(H\) is 3-transitive on \(\Omega-\{1,2\}\), and \(C_H(a)^{\Delta(\langle a \rangle)} \geq A_5\). By the similar argument as in the case \(p=5\), we have that \(C_H(a)\) has at most two orbits on \(\Omega-I(a)\), and that \(C_H(a)\) is transitive on \(\Omega-I(a)\) when \(|\Omega| \equiv 7 \pmod{9}\). Therefore, the consequences of Step 8 hold. (q.e.d.)

Step 9. \(C_G(a)^{\Delta(\langle a \rangle)}\) has at most \(2m\) orbits on \(\Omega-I(a)\). Moreover \(C_G(a)^{\Delta(\langle a \rangle)}\) has exactly \(m\) orbits on \(\Omega-I(a)\).

Proof. By Step 8, \(C_G(a)^{\Delta(\langle a \rangle)}\) has exactly \(m\) orbits on \(\Omega-I(a)\). Let \(\Gamma_1, \ldots, \Gamma_m\) be the orbits. We take an arbitrarily fixed orbit \(\Gamma_1\). Let \(\Sigma_1, \ldots, \Sigma_k\) be the orbits of \(C_G(a)^{\Delta(\langle a \rangle)}\). Since \(C_G(a)^{\Delta(\langle a \rangle)} > A_7\), and \(\Gamma_1\) is an orbit of \(C_G(a)^{\Delta(\langle a \rangle)}\), \(C_G(a)^{\Delta(\langle a \rangle)}\) acts on the set \(\{\Sigma_1, \ldots, \Sigma_k\}\) transitively. Let \(Y = C_G(a)^{\Delta(\langle a \rangle)}(\Sigma_1)\). Then \(|C_G(a)^{\Delta(\langle a \rangle)}(\Sigma_1)| = k\). Similarly, we have \(|C_G(a)^{\Delta(\langle a \rangle)}(\Sigma_2)| = k\). Hence, \(|C_G(a)^{\Delta(\langle a \rangle)}(\Sigma_1, \ldots, \Sigma_k)| = |Y^{\Delta(\langle a \rangle)}| = |\Delta|-i\). Therefore \(Y\) is transitive on \(\Delta-\{1, \ldots, i\}\).

Step 10. \(|\Omega|-(2p+r) \equiv 2p \pmod{p^2}\) and \(p \geq 5\).

Proof. Since \(a\) is an element of order \(p\) of the form
\[a = (1) \cdots (p)(p+1) \cdots (2p)(2p+1) \cdots (2p+r)(2p+r+1) \cdots, 3p+r \]

\[(3p+r+1, \cdots, 4p+r) \cdots, \]

we may assume that \(C_\alpha \) has an element of order \(p \). By Step 7, we may assume that

\[b = (1, \cdots, p)(p+1) \cdots (2p)(2p+1) \cdots (2p+r)(2p+r+1) \cdots \]

\[(3p+r)(3p+r+1, \cdots, 4p+r) \cdots. \]

Let \(K = G_1 \cdots, G_{p+1}, \cdots, G_{p+2}, \cdots, |1| \) and \(L = \langle b \rangle \cdot K \). Then \(|C_L(\alpha)| : C_K(\alpha) | = p \). By Step 9, \(C_K(\alpha) \) and \(C_L(\alpha) \) have exactly \(m \) orbits on \(\Omega - I(\alpha) \). Since \(m |C_K(\alpha)| = \sum_{y \in C_K(\alpha)} \sigma^*(y) \) and \(|C_L(\alpha)| = \sum_{y \in C_L(\alpha)} \sigma^*(y), \) we have

\[\frac{m \cdot \sigma^* - 1}{p} |C_L(\alpha)| = \sum_{y \in C_L(\alpha), \sigma^*(\alpha)} \sigma^*(y). \]

Next we show that the elements of order \(p \) of \(\langle a, b \rangle \) are not conjugate to each other in \(C_L(\alpha) \). Suppose \(a'b^j \) and \(a'^{-1}b^j \) are conjugate to each other, where \(0 \leq i, j, i', j' \leq p-1 \). If \(j \neq j' \), then \((a'b^j)(a'^{-1}b^j) = (a'^{-1}b^j)(a'b^j) \), which is a contradiction. Hence \(j = j' \). Assume \(i \neq i' \). There exists an element \(x \) in \(C_L(\alpha) \) such that \((a'b^j)^x = a'^{-1}b^j \). Then \(b^j = a'^{-1}b^j \). Since \((a'b^j)^x = a'^{-1}b^j \), we have \(p \mid x \). Hence there exists a \(p \)-element \(x_0 \) in \(C_L(\alpha) \cap N_L(\langle a, b \rangle) \) such that \(x_0 \in C_L(\langle a, b \rangle) \). Since \(\langle a, b \rangle \in \text{Syl}_p(C_L(\alpha)) \), this is a contradiction. Thus \(i = i' \) and \(j = j' \).

Let \(s \) be the number of orbits of length \(p \) of \(\langle a, b \rangle \) on \(\Omega - I(\alpha) \). For each fixed \(j \) \((1 \leq j \leq p-1) \), there are \(s \) elements \(i_1, \cdots, i_s \) of \(\{0, 1, \cdots, p-1\} \) such that \(|I(a_i' b^j)| = |I(\alpha)| \) \((k = 1, \cdots, s) \). Let \(i \) be an arbitrarily fixed element of \(\{i_1, \cdots, i_s\} \), and let \(\{\gamma_1, \cdots, \gamma_s\} = I(a_i' b^j) \cap (\Omega - I(\alpha)) \). Since \(\langle a, b \rangle \) is a Sylow \(P \)-subgroup of \(C_L(\langle a, b \rangle) \), \(C_L(\langle a, b \rangle) \) has the normal subgroup \(Y \) such that \(C_L(\langle a, b \rangle) = \langle a, b \rangle \cdot Y \), where \((|Y|, \sigma^*) = 1 \), and \(Y \subseteq C_K(\alpha) \). Since \(Y \) acts on \(I(\langle a, b \rangle) = \{p+1, \cdots, 2p, 2p+1, \cdots, 2p+r \} \), \(Y \) acts on \(\gamma_1, \cdots, \gamma_s \). Since \(a_t \cdot \gamma_b = b^p \cdot \gamma_b \) and \([Y, Y] = 1 \), we have \(Y |\sigma^* - 1 = 1 \). Hence any element of \(a'b^j \cdot Y \) fixes at least \(p \) points of \(\Omega - I(\alpha) \). Moreover, it is clear that \(a'b^j \cdot Y \cap C_K(\alpha) = \phi \). Therefore

\[\sum_{y \in C_L(\langle a, b \rangle) \cap C_K(\alpha)} \sigma^*(y) \geq s(p-1)p |C_L(\langle a, b \rangle) : \langle a, b \rangle| = \frac{s(p-1)}{p} |C_L(\alpha)|. \]
Hence, \(m(p-1)|C_L(a)| \geq s(p-1)|C_L(a)| \). Then \(m \geq s \). On the other hand, if \(|\Omega|-(2p+r) \equiv hp \pmod{p^2} \), where \(2 \leq h \leq p \), then we have \(s = h \). Therefore, we have that \(|\Omega|-(2p+r) \equiv 2p \pmod{p^2} \) and \(p \geq 5 \), by Step 8. (q.e.d.)

Step 11. We complete the proof.

Proof. By Step 10, \(\{2p+r+1, \ldots, 3p+r\} \) and \(\{3p+r+1, \ldots, 4p+r\} \) are the orbits of length \(p \) of \(\langle a, b \rangle \) on \(\Omega-I(a) \), and \(m=2 \) and \(p \geq 5 \). By Step 4 we have \(\alpha_p(a) \geq 4 \), hence \(|\Omega-I(a)| \geq p^2+2p \). Let \(\Gamma_1, \ldots, \Gamma_l \) be the orbits of \(C_G(a)_{1,2, \ldots, l} \) on \(\Omega-I(a) \), where \(2 \leq l \leq 4 \) by Step 9. Since \(|b|=p, b \) acts on the set \(\{\Gamma_1, \ldots, \Gamma_3\} \) trivially. If \(l=2 \), then we may assume that \(\Gamma_1 \cup \Gamma_2 \) are the orbits of \(C_G(a)_{1,2} \) on \(\Omega-I(a) \) by Step 9, and one of the following three cases holds: (i) \(|\Gamma_1|=2p \pmod{p^2} \), \(|\Gamma_2|=0 \pmod{p^2} \). (ii) \(|\Gamma_1|=0 \pmod{p^2} \), \(|\Gamma_2|=2p \pmod{p^2} \). (iii) \(|\Gamma_1|=|\Gamma_2|=p \pmod{p^2} \). If \(l=3 \), then we may assume that \(\Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \) are the orbits of \(C_G(a)_{1,2,3} \) on \(\Omega-I(a) \), and one of the following two cases holds: (i) \(|\Gamma_1|=|\Gamma_2|=0 \pmod{p^2} \), \(|\Gamma_3|=2p \pmod{p^2} \). (ii) \(|\Gamma_1|=|\Gamma_3|=0 \pmod{p^2} \), \(|\Gamma_2|=2p \pmod{p^2} \). We have the following for any value of \(l \): There is a \(\Gamma_j (1 \leq j \leq 4) \) such that \(|\Gamma_j|=0 \pmod{p^2} \) and \(|\Gamma_j| \geq p^2 \). Let \(\beta_1, \ldots, \beta_p \) and \(\gamma_1, \ldots, \gamma_p \) be two \(p \)-cycles of \(a \) such that \(\{\beta_1, \ldots, \beta_p, \gamma_1, \ldots, \gamma_p\} \subseteq \Gamma_j \). \(C_G(a)_{\beta_1, \ldots, \beta_p, \gamma_1, \ldots, \gamma_p} \) has an element \(c \) of order \(p \). Hereafter we examine the relation between \(a \) and \(c \). We may assume that

\[c = (1, \ldots, p)(p+1, \ldots, 2p)(2p+1) \cdots (2p+r)(\beta_1) \cdots (\beta_p)(\gamma_1) \cdots (\gamma_p) \cdots . \]

Since \(|\Gamma_j| \equiv 2p \pmod{p^2} \), \(\langle a, c \rangle \) has at least \(p+2 \) orbits of length \(p \) on \(\Omega-I(a) \). Let \(K=G_{1,2, \ldots, l} \), and \(L=\langle c \rangle \cdot K \). By the same argument as in the proof of Step 10, we have that \(L.2^{p-1}|C_L(a)| = \sum_{\alpha \in K} \alpha^*(\alpha) \), and that the elements of \(\langle a, c \rangle - \{1\} \) are not conjugate to each other in \(C_L(a) \). For each fixed \(j (1 \leq j \leq p-1) \), there are at least \(2p+3 \) \(\frac{p+3}{2} \) elements \(i_1, \ldots, i_{(p+3)/2} \) of \(\{0, 1, \ldots, p-1\} \) such that \(|I(a^ic^j)| \geq p+r \left(k=1, \ldots, \frac{p+3}{2} \right) \). Let \(i \) be an arbitrarily fixed element of \(\{i_1, \ldots, i_{(p+3)/2}\} \). Since \(\langle a, c \rangle \) is a Sylow \(p \)-subgroup of \(C_L(a, c) \) there exists the normal subgroup \(M \) of \(C_L(a, c) \) such that \(C_L(a, c)=\langle a, c \rangle \cdot M \). First assume that \(a^ic^j \) fixes exactly \(p \) points \(\delta_1, \ldots, \delta_p \) in \(\Omega-I(a) \). Then, by the same argument as in the proof of Step 10, any element of \(a^ic^j \cdot M \) fixes \(\{\delta_1, \ldots, \delta_p\} \) pointwise. Next assume that \(a^ic^j \) fixes exactly \(2p \) points \(\eta_1, \ldots, \eta_{2p} \) in \(\Omega-I(a) \).
and a fixes $\{\beta_1, \ldots, \beta_r\}$ and $\{\gamma_1, \ldots, \gamma_s\}$ with $\{\beta_1, \ldots, \beta_r\} \cup \{\gamma_1, \ldots, \gamma_s\} = \{\eta_1, \ldots, \eta_{2p}\}$. If M fixes $\{\beta_1, \ldots, \beta_r\}$ and $\{\gamma_1, \ldots, \gamma_s\}$, then any element of a^cM fixes $\{\eta_1, \ldots, \eta_{2p}\}$ pointwise. And if M transposes $\{\beta_1, \ldots, \beta_r\}$ and $\{\gamma_1, \ldots, \gamma_s\}$ then there exists the subgroup M_0 of index two of M such that any element of a^cM_0 fixes $\{\eta_1, \ldots, \eta_{2p}\}$ pointwise. Therefore, by the same argument as in the proof of Step 10, we have that

$$\sum_{r \in G(a) \cap C(x)} \alpha^*(y) \geq \frac{p+3}{2} \cdot (p-1) \cdot p \cdot |C_L(a)| \cdot |C_L(a \cdot c)| = \frac{(p+3)(p-1)}{2p} \cdot |C_L(a)|.$$

Hence $l \geq \frac{p+3}{2}$. So, we have $p=5$ and $l=4$.

We may assume that $|\Gamma_1| = |\Gamma_2| = \equiv 0 \pmod{5^2}$. Let $(\delta_1, \ldots, \delta_5)$ and (η_1, \ldots, η_5) be two 5-cycles of a such that $\{\delta_1, \ldots, \delta_5\} \subseteq \Gamma_1$ and $\{\eta_1, \ldots, \eta_5\} \subseteq \Gamma_2$. $C_G(a \delta_1 \ldots \delta_5, \eta_1 \ldots \eta_5)$ has an element d of order 5. Since d acts on the set $\{\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4\}$ trivially, $\langle a, d \rangle$ has at least 2·5 orbits of length 5 on $\Omega - I(a)$. Hence, there exists an element x of order 5 of $\langle a, d \rangle$ such that $|I(x)| \geq 3 \cdot 5 + r$, which is a contradiction. (Q.E.D.)

3. Proof of Theorem B

In the proof of Theorem B, we shall use the following Lemma.

Lemma. There is no group satisfying the following condition: Let G be a 3-transitive group on Ω. Let α and β be two points of Ω. $G_{\alpha, \beta}$ is an imprimitive group on $\Omega - \{\alpha, \beta\}$ with two blocks Δ_1, Δ_2 of length $\frac{|\Omega|}{2} - 1$, and moreover, for any point γ of Δ_1 and any point δ of Δ_2, $G_{\alpha, \beta, \gamma, \delta}^{\Delta_1}$ and $G_{\alpha, \beta, \gamma, \delta}^{\Delta_2}$ are 2-transitive groups.

(I think that this lemma is essentially known already in [7, § 1, Proof of Theorem 1])

Proof of Lemma (cf. [7, § 1, Proof of Theorem 1]). Let G be a group satisfying the above condition.

Set $|\Omega| = n$ and $|\Delta_i| = n+1$ ($i=1, 2$). Then $G_{\alpha, \beta}$ has just two orbits Σ_1 and Σ_2 on $\Omega - \{\alpha, \beta\}$ such that $|\Sigma_1| = n+1$ and $|\Sigma_2| = n$.

For any subset Δ of Ω with $|\Delta| = 4$, G_Δ has two orbits Π_1 and Π_2 on $\Omega - \Delta$ such that $|\Pi_1| = |\Pi_2|$ or $|\Pi_1| = |\Pi_2| = 2$. In either case, G_Δ is a subgroup of $G_{\alpha, \beta, \gamma, \delta}$ which satisfies the assumption of the Witt's Lemma [14, Theorem 9.4], where $\alpha_1, \alpha_2, \alpha_3$ are three elements of Δ. Hence G_Δ is a 3-transitive group. Thus, $G_\Delta = S_4$. Therefore, G acts on $\Omega^{(2)}$, the set of unordered pairs of elements of Ω, as a transitive permutation group of rank 4, where the orbitals, Γ_0, Γ_1, Γ_2 and Γ_3 of this permutation group are defined as follows: for $\{\alpha, \beta\} \in$
\[\Omega^{(2)}, \Gamma_0(\{\alpha, \beta\}) = \{\alpha, \beta\} \]

\[\Gamma_i(\{\alpha, \beta\}) = \{(\gamma, \delta) \in \Omega^{(2)} \mid \{\alpha, \beta\} \cap \{\gamma, \delta\} = 1\} \]

\[\Gamma_3(\{\alpha, \beta\}) = \{\{\gamma, \delta\} \in \Omega^{(2)} \mid \{\alpha, \beta\} \cap \{\gamma, \delta\} = \phi \}. \]

\[\delta \text{ is in the orbit of length } v \text{ of } G_{a\beta y} \text{ on } \Omega - \{\alpha, \beta, \gamma\} \]

\[\Gamma_2(\{\alpha, \beta\}) = \{\{\gamma, \delta\} \in \Omega^{(2)} \mid \{\alpha, \beta\} \cap \{\gamma, \delta\} = \phi \}. \]

\[\delta \text{ is in the orbit of length } v + 1 \text{ of } G_{a\beta y} \text{ on } \Omega - \{\alpha, \beta, \gamma\}. \]

The degrees corresponding to \(\Gamma_i \) (\(i = 0, 1, 2, 3 \)) are respectively

\[1, 2(n-2) = 4(v+1), \quad \frac{(n-2)v}{2} = v(v+1), \quad \frac{(n-2)(v+1)}{2} = (v+1)^2. \]

Moreover, these orbitals \(\Gamma_i \) (\(i = 0, 1, 2, 3 \)) are all self-paired.

Let us define the intersection matrices \(M_i \) (\(i = 0, 1, 2, 3 \)) for the permutation group \(G \) on \(\Omega^{(2)} \) as follows:

\[M_i = (\mu_{jk}^{(i)}) \text{ with } 0 \leq j \leq 3, 0 \leq k \leq 3, \text{ where} \]

\[\mu_{jk}^{(i)} = |\Gamma_j(x) \cap \Gamma_i(y)| \text{ with } y \in \Gamma_k(x) \]

(\(\text{where } x, y \in \Omega^{(2)} \)).

Now we can obtain the intersection matrix \(M_2 \) (cf. [9, §4]). This is,

\[M_2 = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & v & 2v-2 & 2v \\
v(v+1) & \frac{v(v-1)}{2} & -v+2 & v(v-1) \\
0 & \frac{v(v+1)}{2} & v^2-1 & 0
\end{pmatrix} \]

By direct calculations, we obtain the eigenvalues \(\theta_0, \theta_1, \theta_2, \theta_3 \) of \(M_2 \).

\[\theta_0 = v(v+1), \quad \theta_1 = -v, \quad \theta_2 = -v^2 + 2 + \sqrt{v^4 + 4v+4} \quad \text{and} \]

\[\theta_3 = -v^2 + 2 - \sqrt{v^4 + 4v+4} . \]

Since \((v^2)^2 < v^4 + 4v+4 < (v^2 + 2)^2 \), it is clear that \(\theta_2 \) and \(\theta_3 \) are irrational numbers.

Let us denote by \(\pi^{(2)} \) the permutation character of \(G \) on \(\Omega^{(2)} \). Then \(\pi^{(2)} \) is multiplicity free and \(\pi^{(2)} = 1 + X_1 + X_2 + X_3 \), where \(X_i = X^{(r-1,1)} \mid G \) and \(X_2 \) and \(X_3 \) are irreducible characters appearing in \(X^{(r-2,0)} \mid G \) corresponding to \(\theta_2 \) and \(\theta_3 \) respectively. Since \(\theta_2 \) and \(\theta_3 \) are irrational, \(X_2 \) and \(X_3 \) are not rational characters (cf. [6, Lemma 1]), so \(X_2 \) and \(X_3 \) are algebraic conjugate
and especially of the same degree. Therefore $X_2(l) = X_3(l) = n(n−3)/4$ and $X_1(l) = n−1$. By a theorem of Frame [14, Theorem 30.1 (A)], we obtain that the number

$$q = \left\{ \frac{n(n-1)}{2} \right\} \frac{2(n-2) \cdot v(n-2)(v-2)}{(n-1) \cdot n(n-3)/4 \cdot n(n-3)/4}$$

must be an integer. But, since $n=2v+4$, we have a contradiction. (q.e.d.)

Proof of Theorem B. Let G be a counter-example to the theorem with the least possible degree.

Step 1. The number of orbits of G on Ω is at most two.

Proof. By Theorem A and the assumption for G, G has no orbit on Ω whose length is less than p.

Suppose, by way of contradiction, that G has three orbits Δ_1, Δ_2 and Δ_3 with $|\Delta_i| \geq p$ ($i=1, 2, 3$). Set $|\Delta_i| = k_i \pmod{p}$, where $0 \leq k_i < p−1$ ($i=1, 2, 3$). Assume that $2p−(k_1+k_2+2) \geq p$. We take $k_1+p−1$ points $\alpha_1, \ldots, \alpha_{k_1+p−1}$ from Δ_1, k_2+1 points $\beta_1, \ldots, \beta_{k_2+1}$ from Δ_2 and $p−k_1−k_2$ points $\gamma_1, \ldots, \gamma_{p−k_1−k_2}$ from Δ_3. A Sylow p-subgroup of $G_{\alpha_1, \ldots, \alpha_{k_1+p−1}, \beta_1, \ldots, \beta_{k_2+1}, \gamma_1, \ldots, \gamma_{p−k_1−k_2}}$ fixes at least $3p$ points, which contradicts the assumption of Theorem B. Hence $2p−(k_1+k_2+2) < p$. We take k_1+1 points $\alpha_1, \ldots, \alpha_{k_1+1}$ from Δ_1, k_2+1 points $\beta_1, \ldots, \beta_{k_2+1}$ from Δ_2 and $2p−k_1−k_2−2$ points $\gamma_1, \ldots, \gamma_{2p−k_1−k_2−2}$ from Δ_3. A Sylow p-subgroup of $G_{\alpha_1, \ldots, \alpha_{k_1+1}, \beta_1, \ldots, \beta_{k_2+1}, \gamma_1, \ldots, \gamma_{2p−k_1−k_2−2}}$ fixes at least $3p$ points, which is a contradiction. (q.e.d.)

Step 2. We may assume that G is transitive on Ω. ($|\Omega| \equiv p−1 \pmod{p}$.)

Proof. Suppose that G is not transitive on Ω. By Step 1, G has two orbits Δ_1 and Δ_2 such that $\Delta_1 \cup \Delta_2 = \Omega$ and $|\Delta_i| \geq p$ ($i=1, 2$). Set $|\Delta_i| = s_i p + k_i$, where $0 \leq k_i < p−1$ ($i=1, 2$). In this case $k_1+k_2 = p−1$. By the assumption of Theorem B, $s_1 \geq 2$ or $s_2 \geq 2$. We may assume that $s_1 \geq 2$ and $s_2 \geq 2$. We divide the consideration into the following three cases: (I) $s_1 \geq 3$. (II) $s_1 = s_2 = 2$. (III) $s_1 = 2$, $s_2 = 1$.

Suppose that Case (I) holds. By Theorem A and the assumption for G, $G_{\alpha_1, \ldots, \alpha_{k_2+1}} \geq A_{k_2+1}$, and so, $s_1 = 3$. For k_2+1 points $\alpha_1, \ldots, \alpha_{k_2+1}$ of Δ_2, $G_{\alpha_1, \ldots, \alpha_{k_2+1}}$ is $(p+k_2)$-transitive by [10, Lemma 6]. Since $G_{\alpha_1, \ldots, \alpha_{k_2+1}}$ has an element x of order p with $\alpha_j(x) = 2$, we have $G_{\alpha_1, \ldots, \alpha_{k_2+1}} \geq A_{k_2+1}$ by [14, Theorem 13.10]. This is a contradiction.

Suppose that Case (II) holds. We may assume that $k_1 \geq k_2$. For $p+k_2+1$ points $\alpha_1, \ldots, \alpha_{p+k_2+1}$ of Δ_2, $G_{\alpha_1, \ldots, \alpha_{p+k_2+1}}$ has an element of order p, and moreover $G_{\alpha_1, \ldots, \alpha_{p+k_2+1}}$ is k_1-transitive by [10, Lemma 6]. Since $k_1 \geq 5$, $G_{\alpha_1, \ldots, \alpha_{p+k_2+1}} \geq A_{k_2+1}$ by [14, Theorem 13.10]. This is a contradiction.
Suppose that Case (III) holds. By [10, Lemma 6] and [14, Theorem 13.10], G is a group satisfying the consequence (2) of Theorem B. This is a contradiction. (q.e.d.)

Step 3. **G is primitive on Ω.** For any element x of order p of G, α_p(x) ≥ 8 holds.

Proof. Suppose, by way of contradiction, that G is imprimitive on Ω. Let Δ_1, ..., Δ_s be a system of imprimitivity of G. Set |Δ_i| ≡ k (mod p), where 0 ≤ k ≤ p - 1. First assume that |Δ_i| ≤ p. Then s > 2p and we are able to take 2p points δ_1, ..., δ_2p from Ω such that δ_i ∈ Δ_i (i = 1, ..., 2p). A Sylow p-subgroup of G_{δ_1, ..., δ_2p} fixes at least 4p points, which is a contradiction. Next assume that either p < |Δ| < 2p, or |Δ| ≥ 2p and s ≥ 3. We take k+1 points α_1, ..., α_{k+1} from Δ_i and k+1 points β_1, ..., β_{k+1} from Δ_j. We are able to take 2p - 2k - 2 points γ_1, ..., γ_{2p-2k-2} from Ω - (Δ_i ∪ Δ_j). A Sylow p-subgroup of G_{α_1, ..., α_{k+1}, β_1, ..., β_{k+1}, γ_1, ..., γ_{2p-2k-2}} fixes at least 3p points, which is a contradiction. Therefore, we have that |Δ_i| ≥ 2p and s = 2. Then Ω = Δ_1 ∪ Δ_2 and k = \(\frac{p-1}{2} \).

By Theorem A, |Δ_i| = 3p + \(\frac{p-1}{2} \) or 2p + \(\frac{p-1}{2} \). By the similar argument to that of Case (II) of Step 2, we have a contradiction. Thus G is primitive on Ω. By [14, Theorem 13.10], for any element x of order p of G, we have α_p(x) ≥ 8. (q.e.d.)

Step 4. Let 2 ≤ t ≤ \(\frac{p-1}{2} \). If G is t-transitive on Ω, then G is t-primitive on Ω.

Proof. Suppose, by way of contradiction, that G is t-transitive on Ω and G_{1, ..., t-1} is imprimitive on Ω - {1, ..., t-1}. Let Δ_1, ..., Δ_s be a system of imprimitivity of G_{1, ..., t-1} on Ω - {1, ..., t-1}. Set |Δ_i| ≡ k (mod p) and |Δ_i| = lp + k, where 0 ≤ k ≤ p - 1. In this case, (t-1) + sk = p - 1 (mod p). We divide the consideration into the following two cases: (I) 2p - t + 1 ≥ p. (II) 2p - t + 1 < p.

Suppose that Case (I) holds. First assume that l = 0. Then s > 2p - t + 1 and we are able to take 2p - t + 1 points δ_1, ..., δ_{2p-t+1} of Ω such that δ_i ∈ Δ_i (i = 1, ..., 2p - t + 1). A Sylow p-subgroup of G_{δ_1, ..., δ_{2p-t+1}} fixes at least 3p points, which is a contradiction. Secondly assume that l = 1. By Step 3, we get s ≥ 8. Assume that k ≥ \(\frac{p-1}{2} \). We take a point α from Δ_1, a point β from Δ_2, a point γ from Δ_3 and 2p - t - 2 points δ_4, ..., δ_{2p-t-2} from Δ_4 ∪ Δ_5. A Sylow p-subgroup of G_{δ_1, ..., δ_{2p-t-2}} fixes at least 3p points, which is a contradiction. Hence we have \(k ≤ \frac{p-3}{2} \) when l = 1. We take k + 1 points α_1, ..., α_{k+1}
from \(\Delta_1, k+1 \) points \(\beta_1, \ldots, \beta_{k+1} \) from \(\Delta_2 \) and \(2p-t-2k-1 \) points \(\gamma_1, \ldots, \gamma_{2p-t-2k-1} \) from \(\Delta_3 \), \(\Delta_4 \). A Sylow \(p \)-subgroup of \(\Gamma_1, \ldots, t-1, \alpha_1, \ldots, \alpha_{k+1}, \beta_1, \ldots, \beta_{k+1}, \gamma_1, \ldots, \gamma_{2p-t-2k-1} \) fixes at least \(3p \) points, which is a contradiction. Thirdly assume that \(t \geq 2 \) and \(2p-t-k=k+p \). We take \(k+1 \) points \(\alpha_1, \ldots, \alpha_{k+1} \) from \(\Delta_1 \) and \(2p-t-k \) points \(\beta_1, \ldots, \beta_{2p-t-k} \) from \(\Delta_2 \). A Sylow \(p \)-subgroup of \(\Gamma_1, \ldots, t-1, \alpha_1, \ldots, \alpha_{k+1}, \beta_1, \ldots, \beta_{2p-t-k} \) fixes at least \(3p \) points, which is a contradiction. Fourthly assume that \(t \geq 2 \) and \(2p-t-k=k+p \). Assume that \(s \geq 3 \). We take \(k+1 \) points \(\alpha_1, \ldots, \alpha_{k+1} \) from \(\Delta_1, k+1 \) points \(\beta_1, \ldots, \beta_{k+1} \) from \(\Delta_2 \) and \(p-1 \) points \(\gamma_1, \ldots, \gamma_{p-1} \) from \(\Delta_3 \). A Sylow \(p \)-subgroup of \(\Gamma_1, \ldots, t-1, \alpha_1, \ldots, \alpha_{k+1}, \beta_1, \ldots, \beta_{k+1}, \gamma_1, \ldots, \gamma_{p-1} \) fixes at least \(3p \) points, which is a contradiction. Hence we have \(\Omega = \{1, \ldots, t-1\} \cup \Delta_1 \cup \Delta_2 \) when \(t \geq 2 \) and \(2p-t-k=k+p \). Since \(k=2p-t-k=k+p \). We take \(k+1 \) points \(\beta_1, \ldots, \beta_{k+1} \) from \(\Delta_1 \) and \(p-1 \) points \(\gamma_1, \ldots, \gamma_{p-1} \) from \(\Delta_3 \). A Sylow \(p \)-subgroup of \(\Gamma_1, \ldots, t-1, \alpha_1, \ldots, \alpha_{k+1}, \beta_1, \ldots, \beta_{k-1}, \gamma_1, \ldots, \gamma_{p-1} \) fixes at least \(3p \) points, which is a contradiction. Hence, we have \(\Omega = \{1, \ldots, t-1\} \cup \Delta_1 \cup \Delta_2 \) when \(t \geq 2 \) and \(2p-t-k=k+p \).

Let \(Q \) be a Sylow \(p \)-subgroup of \(\Gamma_1, \ldots, t \). Then \(N_\Gamma(Q) \) is \(t \)-transitive on \(\Omega \). Since \(|\Omega| = p-1 \), we have \(|\Gamma(Q)| = p-1 \). Let \(x \) be an element of order \(p \) of \(Q \) with \(|\Gamma(x)| = 3p-1 \), and \(\gamma_1, \ldots, \gamma_\ell \) be a \(p \)-cycle of \(x \). Let \(\delta_1, \ldots, \delta_\ell \) be a subset of \(\Omega \) such that if \(|\Gamma(Q)| = 2p-1 \), then \(\delta_1, \ldots, \delta_\ell = \Gamma(x) \)(and if \(|\Gamma(Q)| = 3p-1 \), then \(x^{[\delta_1, \ldots, \delta_\ell]} \) is a \(p \)-cycle of \(x \) different from \(\gamma_1, \ldots, \gamma_\ell \)). \(C_\Gamma(x) \gamma_1, \ldots, \gamma_\ell \) has an element \(y \) of order \(p \). Since \(y \) fixes \(\Omega \), we may assume that \(y \in N_\Gamma(Q) \). Then \(y^{[\Gamma(Q)]} \) is an element of order \(p \) of \(N_\Gamma(Q) \) which is \(2 \)-transitive on \(\Omega \) and we have \(N_\Gamma(Q)^{[\Gamma(Q)]} \geq A^{[\Gamma(Q)]} \). Since \(G_1, \ldots, t \) is imprimitive on \(\Omega = \{1, \ldots, t-1\} \), this is a contradiction.

Suppose that Case (II) holds. In this case, \(p+2 \leq t \leq p+\frac{p-1}{2}+2 \). Let \(Q \) be a Sylow \(p \)-subgroup of \(G_1, \ldots, t \). Then \(N_\Gamma(Q)^{[\Gamma(Q)]} \) is \(t \)-transitive on \(\Omega \). Since \(|\Omega| = p-1 \), we have \(|\Gamma(Q)| = p-1 \) and, so, \(|\Gamma(Q)| = 2p-1 \) or \(3p-1 \). Since \(t \geq p+2 \), \(N_\Gamma(Q)^{[\Gamma(Q)]} \) has an element of order \(p \), and so, we get \(N_\Gamma(Q)^{[\Gamma(Q)]} \geq A^{[\Gamma(Q)]} \). We may assume that \(\{A_1, \ldots, A_r\} \) is the subset of \(\{\Delta_1, \ldots, \Delta_r\} \) such that \(I(Q) \cap \Delta_i + \phi \) for \(1 \leq i \leq u \) and \(I(Q) \cap \Delta_i = \phi \) for \(u < i \leq s \). Since \(G_1, \ldots, t-1 \) is imprimitive on \(\Omega = \{1, \ldots, t-1\} \), we have that \(k \leq 1 \) or \(u=1 \). Assume that \(k \geq 2 \). Then \(u=1 \) and, so, \((t-1)+k = p-1 \) (mod \(p \)). Hence \(t-1+k = 2p-1 \). Then \(p - \frac{p-1}{2} - 2k \leq p-2 \). On the other hand, \((t-1)+sk \equiv p-1 \) (mod \(p \)). Then \((t+k)+(s-1)k \equiv 0 \) (mod \(p \)), and so, \(p | s-1 \). Hence
Let d_i be a point of Δ_i ($i=1, \cdots, s$). A Sylow p-subgroup of $G_{1-\cdots-1, a_1, \cdots, a_s}$ fixes at least $2p+(k+1)(k-1)$ points. But, $(k+1)(k-1) \geq \left(p - \frac{p-1}{2} - 1 \right) \left(p - \frac{p-1}{2} - 3 \right) \geq p$, which is a contradiction. Therefore $k=0$ or 1. We take two points α_1, α_2 from Δ_1 and $2p-t-1$ points $\beta_1, \cdots, \beta_{2p-t-1}$ from Δ_2. A Sylow p-subgroup of $G_{1-\cdots-1, a_1, \cdots, a_s}$, fixes at least $3p$ points, which is a contradiction.

Step 5. G is $(p+p+1+2)$-transitive on Ω.

Proof. By Step 3 and Step 4, in order to prove Step 5 we show that if G is t-primitive on Ω then G is $(t+1)$-transitive on Ω, where $1 \leq t \leq p+\frac{p-1}{2} + 2$.

Suppose, by way of contradiction, that G is t-primitive on Ω, but G is not $(t+1)$-transitive on Ω. Let $\Delta_1, \cdots, \Delta_s$ be the orbits of G on $\Omega - \{1, \cdots, t\}$, where $s \geq 2$. We may assume that $|\Delta_1| \geq |\Delta_2| \geq \cdots \geq |\Delta_s| \geq p$ (cf. [14, Theorem 18.4]). Set $|\Delta_i| \equiv k_i \pmod{p} (i=1, \cdots, s)$, then $t+k_1+\cdots+k_s \equiv p-1 \pmod{p}$.

We divide the consideration into the following two cases: (I) $2p-t \geq p+1$. (II) $2p-t < p$.

Suppose that Case (I) holds. First assume that $|\Delta_i| = p$ or $p+1$. We take two points α_1, α_2 from Δ_1 and two points β_1, β_2 from Δ_2. We are able to take $2p-t-4$ points $\gamma_1, \cdots, \gamma_{2p-t-4}$ from $\Delta_3 \cup \cdots \cup \Delta_s$. A Sylow p-subgroup of $G_{1-\cdots-1, a_1, \cdots, a_s}$ fixes at least $3p$ points, which is a contradiction. Therefore $|\Delta_1| > p+2$.

Secondly assume that $2p-t-k_i \geq p$ and $|\Delta_i| \geq 2p+k_i$. We take $p-t-k_i$ points $\beta_1, \cdots, \beta_{p-t-k_i}$ from $\Delta_2 \cup \cdots \cup \Delta_s$. By [10, Lemma 6], $G_{1-\cdots-1, a_1, \cdots, a_s}$ is $(p+k_i)$-transitive, which contradicts Theorem 17.7 in [14]. If $k_i \equiv 0$ or 1 then our assumptions are satisfied. Therefore $k_i \geq 2$.

Thirdly assume that either $2p-t-k_i \geq p$ and $|\Delta_i| = p+k_i$, or $2p-t-k_i < p$. We are able to take $2p-t-k_i$ points $\beta_1, \cdots, \beta_{2p-t-k_i}$ from $\Delta_2 \cup \cdots \cup \Delta_s$. By [10, Lemma 6], $G_{1-\cdots-1, a_1, \cdots, a_s}$ is k_i-transitive, which contradicts Theorem 17.7 in [14].

Suppose that Case (II) holds. In this case, $p < t \leq p+\frac{p-1}{2} + 2$. Let Q be a Sylow p-subgroup of $G_{1-\cdots-1}$, then $N_{\mathcal{G}}(Q)^{(Q)}$ is t-transitive, and $|I(Q)| = 2p-1$ or $3p-1$. Since $t \geq p$, we have $N_{\mathcal{G}}(Q)^{(Q)} = N_{\mathcal{A}}(Q)^{(Q)}$. Hence, there is a unique orbit Δ_j such that $k_j \neq 0$. Since $t+k_j \equiv p-1 \pmod{p}$, we have that $k_j = 2p-1-t \geq 3$. By [10, Lemma 6], $G_{1-\cdots-1}^{(Q)}$ is k_j-transitive, and so, we have $j \neq 1$ by [14, Theorem 17.7]. Assume that $s \geq 3$. We take a point α from Δ_1, $2p-t-2$ points $\beta_1, \cdots, \beta_{2p-t-2}$ from Δ_j and a point γ from Δ_s, where $1 < i < s$ and $i \neq j$. A Sylow p-subgroup of $G_{1-\cdots-1, a_1, \cdots, a_s}$ fixes at least $3p$ points, which is a contradiction. Therefore $s=j=2$. If $p \geq 13$, then $k_j = 2p-1-t \geq 4$. This is a contradiction by [1]. Hence, we have $p=11$. Moreover, we have
MULTIPLY TRANSITIVE PERMUTATION GROUPS 791

\[k_i = 2p - 1 - t = 3 \] by [1]. By [8, Theorem 5], we have that either (i) \(|\Delta_1| + |\Delta_2| + 1 = \frac{1}{2}(|\Delta_1|^2 + |\Delta_2|^2 + 2)\), or (ii) \(|\Delta_1| + |\Delta_2| + 1 = (\lambda + 1)^2(\lambda + 4)^2\), \(|\Delta_2| = (\lambda + 1)(\lambda^2 + 5\lambda + 5)\), for some positive integer \(\lambda\). Case (i) does not hold, since \(3 + 1 \equiv \frac{1}{2}(3^2 + 3 + 2) \pmod{11}\). Moreover Case (ii) does not hold, since for every \(\lambda (\lambda = 0, 1, \ldots, 10)\), we have \(3 + 1 \equiv (\lambda + 1)^2(\lambda + 4)^2 \pmod{11}\) or \(3 \equiv (\lambda + 1)^2(\lambda^2 + 5\lambda + 5) \pmod{11}\). (q.e.d.)

Step 6. Let \(a\) be an element of order \(p\) of the form

\[
a = (1) \cdots (p) \cdots (2p-1) (3p, \ldots, 4p-1). \]

Then one of the following holds for \(C = C_0(a)^{(p)}_{1, \ldots, 2p-1}\).

(i) \(C\) has an orbit \(\Delta\) such that \(C^\Delta \geq A^\Delta\) and \(|\Delta| \geq 2p\).

(ii) There exist two orbits \(\Delta_1\) and \(\Delta_2\) of \(C\) such that \(|\Delta_1| \geq p\) and \(C^{\Delta_1}\) is \((|\Delta_1| - p + 1)\)-transitive (\(i = 1, 2\)), and \(\Delta_1 \cup \Delta_2 = I(a)\). Moreover, if \(|\Delta_1| \geq p + 3\), then \(C^{\Delta_1} \geq A^{\Delta_1}\).

(iii) \(C\) is an imprimitive group with two blocks \(\Gamma_1\) and \(\Gamma_2\) of length \(p + \frac{p-1}{2}\) such that \(C^{\Gamma_1} \geq A^{\Gamma_1}\) (\(i = 1, 2\)).

Proof. For any \(p\) points \(\alpha_1, \ldots, \alpha_p\) of \(I(a), C_{\alpha_1, \ldots, \alpha_p}\) has an element of order \(p\). Since \(C\) has an element of order \(p\), it has an orbit whose length is at least \(p\). Assume that \(C\) has two orbits \(\Delta_1\) and \(\Delta_2\) with \(|\Delta_i| \geq p\) (\(i = 1, 2\)). Set \(|\Delta_i| = p + k_i (i = 1, 2)\). If \(\Delta_1 \cup \Delta_2 = I(a)\), then \(k_1 + k_2 + 2 \leq p\). We take \(k_1 + 1\) points \(\alpha_1, \ldots, \alpha_{k_1+1}\) from \(\Delta_1\) and \(k_2 + 1\) points \(\beta_1, \ldots, \beta_{k_2+1}\) from \(\Delta_2\), so \(C_{\alpha_1, \ldots, \alpha_{k_1+1}, \beta_1, \ldots, \beta_{k_2+1}}\) has no element of order \(p\), a contradiction. Hence \(\Delta_1 \cup \Delta_2 = I(a)\). By [10, Lemma 6], we have that \(C\) is a group satisfying (ii). Assume that \(C\) has a unique orbit \(\Delta\) with \(|\Delta| \geq p\). Then we have \(|\Delta| \geq 2p\). If \(C^\Delta\) is primitive, by [14, Theorem 13.9] we have that \(C^\Delta\) is a group satisfying (i). Assume that \(C^\Delta\) is imprimitive. Let \(\Gamma_1, \ldots, \Gamma_\ell\) be a system of imprimitivity of \(C^\Delta\). If \(|\Gamma_1| < p\), then \(|\Gamma_1| = 2\). We take \(p\) points \(\alpha_1, \ldots, \alpha_p\) with \(\alpha_i \in \Gamma_i (i = 1, \ldots, p)\), so \(C_{\alpha_1, \ldots, \alpha_p}\) has no element of order \(p\), a contradiction. Hence \(|\Gamma_1| \geq p\), and so we have \(s = 2\) and \(|\Gamma_1| = |\Gamma_2| = p + \frac{p-1}{2}\). By [10, Lemma 6], we have that \(C\) is a group satisfying (iii). (q.e.d.)

Step 7. For any \(2p\) points \(\alpha_1, \ldots, \alpha_{2p}\) of \(\Omega\), the order of a Sylow \(p\)-subgroup of \(G_{\alpha_1, \ldots, \alpha_{2p}}\) is \(p\).

Proof. Suppose, by way of contradiction, that for some \(2p\) points \(\alpha_1, \ldots, \alpha_{2p}\), the order of a Sylow \(p\)-subgroup \(P\) of \(G_{\alpha_1, \ldots, \alpha_{2p}}\) is more than \(p\). We may assume that \(\{\alpha_1, \ldots, \alpha_{2p}\} = \{1, \ldots, 2p\}\) and \(I(P) = \{1, \ldots, 2p, \ldots, 3p-1\}\). Let \(a\) be an element of order \(p\) of \(Z(P)\). We may assume that
a = (1) \cdots (3p-1)(3p, \ldots, 4p-1) \cdots.

Since \(C_G(a)^{(e)} \) is a permutation group of degree \(3p-2 \), one of the following two cases holds:

(I) \(C_G(a)^{(e)} \) has an orbit \(\Delta \) such that \(C_G(a) \Delta \supseteq A \Delta \) and \(|\Delta| \geq 2p-1 \).

(II) \(C_G(a)^{(e)} \) has two orbits \(\Delta_1, \Delta_2 \) such that \(|\Delta_i| \geq p \) and \(C_G(a)^{\Delta_i} \) is \((|\Delta_i|-p+1)\)-transitive \((i=1, 2)\), and \(\Delta_1 \cup \Delta_2 = I(a) - \{1\} \). Moreover, if \(|\Delta_i| \geq p+3 \), then \(C_G(a)^{\Delta_i} \supseteq A^{\Delta_i} \).

Suppose that Case (I) holds. We may assume that \(\Delta = \{2, 3, \ldots, |\Delta|, |\Delta|+1\} \). Let \(\Gamma = \{2, 3, \ldots, 2p\} \). Since \(C_G(\alpha)^{\Delta} \supseteq A^{\Delta} \), we have \(G(\Gamma) \supseteq A^{\Gamma} \). On the other hand, by the Frattini-Sylow argument, \(G(\Gamma) = N\Gamma(P\Gamma) = N\Gamma(P) \cdot G\Gamma(P) \). Hence, \(N\Gamma(P\Gamma) = G\Gamma(P) \supseteq A^{\Gamma} \), so we have \(N\Gamma(P) = P \cdot b \) has an element \(b \) of order \(p \). Since \(|\Gamma| < 2p \), \(b \) is a \(p \)-cycle. Since \(b \) normalizes \(G_{1-3p-1} \), we may assume that \(P = P \). Then \(\langle b, P \rangle \subseteq \text{Syl}_p(N\Gamma(P)) \). Since \(C_G(a)^{\Delta} \) is semiregular on \((\Omega - I(P)) \cup I(b) = \{3p, \ldots, 4p-1\} \). Hence, since \(|\Delta| \geq p+3 \), we have \(C_G(a)^{\Delta} \supseteq A^{\Delta} \).

Suppose that Case (II) holds. Then, one of the following two cases holds:

(i) \(N\Gamma(P)^{(e)} \supseteq A^{(e)} \).

(ii) \(\Delta_1 \) and \(\Delta_2 \) are the orbits of \(N\Gamma(P)^{(e)} \). \(N\Gamma(P)^{\Delta_i} \) is \((|\Delta_i|-p+1)\)-transitive \((i=1, 2)\), and if \(|\Delta_i| \geq p+3 \), then \(N\Gamma(P)^{\Delta_i} \supseteq A^{\Delta_i} \).

If Case (i) holds, then we have a contradiction by the similar argument to that of Case (I). Hence we assume that Case (ii) holds. We may assume that \(|\Delta_1| > |\Delta_2| \) and \(\Delta_1 = \{2, 3, \ldots, |\Delta_1|, |\Delta_1|+1\} \). Let \(\Gamma = \{2, 3, \ldots, 2p\} \). Since \(|\Gamma \cap \Delta_2| = 0 \), we have \((C_G(a)^{\Delta_2})^{\Delta_1} \supseteq A^{\Delta_1} \) by [10, Lemma 6]. Then \(N\Gamma(P)^{(e)} \supseteq A^{\Delta_1} \), and so \(N\Gamma(P)^{(e)} \big|_{P} = |P| \cdot p \). \(C_G(a)^{1-2p-1-3p-1-4p-1} \) has an element \(b \) of order \(p \). Then \(b \) is a \(p \)-cycle, and we may assume that \(P = P \). So \(\langle b, P \rangle \subseteq \text{Syl}_p(N\Gamma(P)^{(e)}) \). By the same argument as in Case (I), we have \(|Z(\langle b, P \rangle) \big|_{P} = p \). Assume that \(C_G(a)^{\Delta_1} \supseteq C_G(a)^{\Delta_2} \). Since \(N\Gamma(P)^{(e)} \supseteq \text{Aut}(P) \) and \(N\Gamma(P)^{(e)} \supseteq A^{\Delta_1} \), we have that \(A^{(3p-1)b} \) is involved in \(\text{Aut}(P) \). But, we can easily seen that \(A^{(3p-1)b} \) is not involved in \(\text{Aut}(P) \) (cf. [2, §2. (3)]) , which is a contradiction. Hence \(C_G(a)^{(e)} \supseteq A^{\Delta_1} \). Since the center of a Sylow \(p \)-subgroup of \(N\Gamma(P)^{(e)} \) is of order \(p \), this is a contradiction.

By the same argument as in Step 7 in the proof of Theorem A, we have

Step 8. \(|\Omega| - (3p-1) \equiv p \pmod{p^2} \).
From now on, let a be an element of order p of the form

$$a = (1) \cdots (2p)(2p+1) \cdots (3p-1)(3p, \cdots, 4p-1)(4p, \cdots, 5p-1) \cdots .$$

We divide the consideration into the following two cases:

(α) $C_G(a)^{t(a)}$ has an orbit Δ such that $|\Delta| \geq 2p$ and $C_G(a)^{\Delta} \supseteq A^\Delta$;

(β) otherwise.

When Case (α) holds, we may assume that $\Delta = \{1, \cdots, |\Delta|\}$. When Case (β) holds, we may assume that $\Delta_1 = \{1, \cdots, w\}$ and $\Delta_2 = \{w+1, \cdots, 3p-1\}$ are the orbits or the blocks of $C_G(a)^{t(a)}$, and that $|\Delta_1| \geq |\Delta_2| \geq p$.

By the same argument as in Step 8, Step 9, Step 10 and Step 11 in the proof of Theorem A, we have

Step 9. Case (α) does not hold.

Hereafter we assume that Case (β) holds.

Step 10. Set $C_G(a)^{w+1, w+2, \cdots, 2p, 0} = C_G(a)^{w+1, w+2, \cdots, 2p}$.

There is an integer i $(0 \leq i \leq 1)$ such that $C_G(a)^{w+1, w+2, \cdots, 2p, i}$ and $C_G(a)^{w+1, w+2, \cdots, 2p, i+1}$ have exactly m orbits on $\Omega - I(a)$, where m is at most two, and moreover $m = 1$ when $|\Omega| - (3p-1) \equiv 0 \pmod{p^2}$.

Proof. In order to prove Step 10, it is sufficient to show that $C_G(a)^{w+1, \cdots, 2p, 1, 2}$ has at most two orbits on $\Omega - I(a)$, and is transitive on $\Omega - I(a)$ when $|\Omega| - (3p-1) \equiv 0 \pmod{p^2}$.

Set $H = G_{w+1, \cdots, 2p, 1, 2}$. Then H is p-transitive on Ω $- \{w+1, \cdots, 2p, 1, 2\}$ by Step 5. By the remark following Lemma 1.1 in [11], we get the following expression:

$$\frac{|H|}{p} \geq \frac{|H|}{p} \sum y \alpha^*(y),$$

where y ranges all p'-elements in $C_H(a)$ and $\alpha^*(y) = \alpha(y^{2-I(a)})$. Here the equality does not hold when $|\Omega| - (3p-1) \equiv 0 \pmod{p^2}$ (cf. Step 8 in the proof of Theorem A). Now, $\sum y \alpha^*(y) \equiv \sum y \alpha^*(y) - p \cdot \sum y \alpha_p(y^{f(a)})$. Since $|\Delta_1 - \{1, 2\}| \geq p + \frac{p-1}{2} - 2 \geq p + 3$, we have $C_H(a)^{\Delta_1 - \{1, 2\}} \supseteq A^{\Delta_1 - \{1, 2\}}$ by Step 6.

Hence, $p \cdot \sum y \alpha_p(y^{f(a)}) = p \cdot \sum y \alpha_p(y^{\Delta_1 - \{1, 2\}}) = |C_H(a)|$ by the formula of Frobenius. On the other hand, $\sum y \alpha^*(y) = f \cdot |C_H(a)|$, where f is the number of orbits of $C_H(a)$ on $\Omega - I(a)$. Hence we get

$$\frac{|H|}{p} \geq \frac{|H|}{p} (f-1),$$

and hence $f \leq 2$.

In the above expression, if $|\Omega| - (3p-1) \equiv 0 \pmod{p^2}$, the equality does not hold. (q.e.d.)
Step 11. \(C_G(a)_{1,2,\ldots,2p}\) has at most \(2m\) orbits on \(\Omega-I(a)\). Moreover, \(C_G(a)_{1,\ldots,p+1,p+2,p+3,\ldots,2p}\) has exactly \(m\) orbits on \(\Omega-I(a)\).

Proof. By Step 10, \(C_G(a)_{w+1,\ldots,2p,i}\) has exactly \(m\) orbits on \(\Omega-I(a)\). Let \(\Gamma_1, \ldots, \Gamma_m\) be the orbits. We take an arbitrarily fixed orbit \(\Gamma_j\) of \(C_G(a)_{w+1,\ldots,2p,i}\) on \(\Omega-I(a)\). Let \(\Sigma_1, \ldots, \Sigma_m\) be the orbits of \(C_G(a)_{w+1,\ldots,2p,i}\) actions on the set \(\{\Sigma_1, \ldots, \Sigma_m\}\) transitively. Let \(Y=C_G(\alpha)_{w+1,\ldots,2p,i}\), then \(|C_G(\alpha)^{-1}Y\cap \text{transitive}|=k\). Similarly we have that \(|C_G(\alpha)^{-1}Y\cap \text{transitive}|=k\). Hence, \(|C_G(\alpha)_{w+1,\ldots,2p,i}\cdot C_G(\alpha)_{w+1,\ldots,2p,i}^{-1}|=|Y_{\Delta_i-i}|=|\Delta_i|-i\). Therefore \(Y\) is transitive on \(\Delta_i-\{i\}\). Let \(\beta_1, \ldots, \beta_k\) be a \(p\)-cycle of \(\alpha\) such that \(\{\beta_1, \ldots, \beta_k\}\subseteq \Sigma_i\). For any \(w-p-i\) elements \(\alpha_1, \ldots, \alpha_{w-p-i}\) of \(\Delta_i-\{i\}\), \(C_G(\alpha)_{w+1,\ldots,2p,i}^{\alpha_1}\ldots\alpha_{w-p-i}^{\alpha_{w-p-i}}\) has an element \(b\) of order \(p\). Then \(b\in Y\) and \(b^1\) is a \(p\)-cycle, and so, \(Y^1_{\Delta-i}\) has the \(p\)-cycle. Since \(\alpha_1, \ldots, \alpha_{w-p-i}, \alpha_{w-p-i}\) are any \(w-p-i\) points of \(\Delta_i-\{i\}\), we have \(Y^{\alpha_1-i}_{\Delta-i}\supseteq A^{\alpha_1-i}_{\Delta-i}\) (cf. [14, Theorem 13.9]). Therefore \(k\leq 2\). If \(k=2\), then \(Y^{\alpha_1-i}_{\Delta-i}=A^{\alpha_1-i}_{\Delta-i}\) and \(C_G(\alpha)_{w+1,\ldots,2p,i}^{\alpha_1}\ldots\alpha_{w-p-i}^{\alpha_{w-p-i}}\supseteq S^{\alpha_1-i}_{\Delta-i}\). Therefore \(\Gamma_j\) is an orbit of \(C_G(\alpha)_{1,\ldots,p+1,p+2,p+3,\ldots,2p}\) on \(\Omega-I(a)\), even if \(k=2\).

(q.e.d.)

Step 12. We complete the proof.

Proof. Since \(a\) is an element of order \(p\) of the form
\[a=(1)\cdot(p)(p+1)\cdot(3p-1)\cdot(3p)\cdot(4p-1)\cdot(4p)\cdot(5p-1)\cdot(5p),\]
\(C_G(\alpha)_{p+1,\ldots,2p,3p-1,\ldots,4p-1}\) has an element \(b\) of order \(p\). By Step 8, we may assume that
\[b=(1,\ldots,p)(p+1)\cdot(3p-1)\cdot(3p)\cdot(4p-1)\cdot(4p)\cdot(5p-1)\cdot(5p).\]
Let \(K=G_{1,\ldots,p+1,\ldots,2p,3p-1,\ldots,4p-1}\) and \(L=\langle b\rangle\cdot K\). By the same argument as Step 10 in the proof of Theorem A, we have a contradiction.

(q.e.d.)

4. Proofs of Theorem C and Theorem D

Proof of Theorem C. Let \(G\) be a nontrivial \(2p\)-transitive group on \(\Omega=\{1,\ldots,n\}\). Let \(P\) be a Sylow \(p\)-subgroup of \(G_{1,\ldots,2p}\), then \(P\leq P\) and \(P\) is not semiregular on \(\Omega-I(P)\) by [3] and [4]. Moreover, \(N_G(P)^{(\alpha)}\) is \(S_m(2p\leq m\leq 3p-1)\) or \(A_m(2p+2\leq m\leq 3p-1)\). Hence, if \(n=(I(P))\equiv p-1\pmod{p}\), then Theorem C holds. Suppose that \(n\equiv p-1\pmod{p}\). Let \(Q\) be a subgroup of \(P\) such that the order of \(Q\) is maximal among all subgroups of \(P\) fixing more than \(|I(P)|\) points. Set \(N=N_G(Q)^{(\alpha)}\), then \(N\) has an orbit \(\Gamma\) such that \(N^\Gamma\supseteq A^\Gamma\) and \(|\Gamma|\geq 3p\), by Theorem A.

(q.e.d.)

Proof of Theorem D. Let \(G\) be a nontrivial \(t\)-transitive group on \(\Omega=\)
{1, ⋯, n}. Suppose that \(t \) is sufficiently large. By Satz \(B \) in [13], \(\log(n-t) > \frac{t}{2} \).

By the proof of [13, Satz \(B \)], we can see that \(\log(n-t) > \left(\frac{1}{2} + \varepsilon_0\right)t \) for some \(\varepsilon_0 > 0 \). Moreover, we can see that, in the proof of [13, Satz \(B \)], it was only used that for any \(k \)-transitive group \(H \) on \(\Sigma \), there exists a subset \(\Pi \) of \(\Sigma \) such that \(|\Pi| = k \) and \(H^{\Pi} \supseteq A^\Pi \).

Let \(p_1 = 2, p_2 = 3, \ldots \), and \(p_i \) be the \(i \)-th prime number. Then \(\lim_{i \to \infty} \frac{p_{i+1}}{p_i} = 1 \).

(This result is well known in the theory of numbers.)

Since \(t \) is sufficiently large, by the above remark and Theorem \(C \), there exists a positive number \(\varepsilon \) which is sufficiently close to 0, and exists a subset \(\Delta \) of \(\Omega \) such that \(|\Delta| \geq \left(\frac{3}{2} - \varepsilon\right)t \) and \(G_{\Delta}^\Delta \supseteq A^\Delta \). Therefore we have

\[
\log(n-t) > \frac{3}{4} t.
\]

(q.e.d.)

GAKUSHUIN UNIVERSITY

References
